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Abstract: Urban surface and near-surface air temperatures are known to be often higher than 

their rural counterparts, a phenomenon now labeled as the urban heat island (UHI) effect. 

However, whether the elevated urban temperatures are more persistent than rural temperatures at 

time scales commensurate to heat waves has not been addressed despite its importance for 20 

human health. Combining numerical simulations by a global climate model with a surface energy 

balance theory, it is demonstrated here that urban surface and near-surface air temperatures are 

significantly more persistent than their rural counterparts in cities dominated by impervious 

materials with large thermal inertia. Further use of these materials will result in even stronger 

urban temperature persistence, especially for tropical cities. The present findings help pinpoint 25 

mitigation strategies that can simultaneously ameliorate the larger magnitude and stronger 

persistence of urban temperatures.   

One-Sentence Summary: The thermal memory of urban materials prolongs extreme 

temperature hazards in cities. 

  30 
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Introduction 

Urbanization is arguably one of the most profound human-induced land cover changes (1, 

2) and its imprints on the climate system are a subject of inquiry and debate (3-5).  Most cities 

experience an urban heat island (UHI) effect with higher temperatures recorded compared to 

surrounding rural areas. Much attention has been dedicated to the magnitude and 5 

diurnal/seasonal variations of UHIs (6). However, the difference between urban and rural land in 

terms of temperature persistence (i.e., the tendency for temperature anomalies to continue for an 

extended period) remains unexplored. Moreover, a mechanistic link between how urbanization 

alters surface properties and the persistence of temperatures in cities continues to be elusive.  

Addressing these research gaps at time scales of heat waves (i.e., multi-day extreme 10 

temperature events) is of particular significance. Heat is one of the most important drivers of 

weather-related mortality (7, 8). Studies have reported that heat waves are associated with 

mortality rates that exceed the anticipated impacts from single hot days (9, 10). Every 1-day 

increase in heat wave duration is found to be associated with an increase of mortality risk by 

0.38% in the United States and such increases of mortality risk are even higher (2.50%) in the 15 

Northeastern United States (11). Understanding how urban surface characteristics modify the 

temperature persistence is thus a prerequisite for quantifying health risks associated with urban 

heat waves and developing interventions to reduce heat-related illnesses in cities.  

Results 

Quantifying temperature persistence in a global climate model 20 

The persistence of daily temperature can be quantified using autocorrelation and spectral 

analyses (Materials and Methods). In this study, we use the near-surface air temperature and 

radiative surface temperature (hereafter referred to as surface temperature) simulated by the 

Community Earth System Model during the period of 1991-2010 (Materials and Methods). Prior 

to applying autocorrelation and spectral analyses, the long-term linear trend and the mean annual 25 

cycle of temperature are removed (see Materials and Methods), yielding daily temperature 

anomalies. Figure 1A and 1D feature the globally averaged temporal autocorrelation for near-

surface air temperature and surface temperature, respectively. Results suggest that both urban 

and rural near-surface air temperature and surface anomalies have signatures of a ‘red-noise’ 

process (i.e., the autocorrelation decays exponentially), consistent with Hasselmann's stochastic 30 

climate model (12, 13) and the meteorological literature (14, 15). The spectral results are shown 

in Figure S1, where signatures of a red-noise process are again observed: the spectra of both 
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near-surface air temperature and surface temperature approach 𝑓−2 (𝑓 indicates frequency) at 

high frequencies. The computed autocorrelation and spectra are broadly consistent with results 

from prior studies (16, 17), which nonetheless did not examine the urban-rural contrasts.  

For a red-noise process, the decay rate of the temporal autocorrelation (Figure 1A and 

1D) and the peak of the pre-multiplied spectra (Figure S1A and S1B) can be used to define a 5 

characteristic time scale (Γ) that quantifies temperature persistence (see Materials and Methods). 

In the following, the time scale (Γ) characterizing the decay rate of the temporal autocorrelation, 

which is estimated from lag-1 autocorrelation (see Materials and Methods), will be used (called 

the persistence time scale hereafter).  

The global averaging of urban and rural results (Figures 1A and 1D) leads to small urban-10 

rural differences that may indicate similar temperature persistence between urban and rural land. 

However, this does not imply that urban and rural persistence time scales are similar at regional 

and local scales. Figures 1B and 1E show the results for Central America where the urban 

autocorrelation decays slower than the rural autocorrelation, implying stronger urban 

temperature persistence. The reason for the stronger urban temperature persistence in this region 15 

will be discussed later.  

To examine temperature persistence at local scales, urban and rural persistence time 

scales are estimated at the grid cell level. Before discussing the spatial pattern of urban-rural 

difference in the persistence time scale (Figure 2), we highlight that the majority of Γ values, 

both for urban and rural areas, ranges between 2 to 6 days (Figures 1C and 1F), which is 20 

commensurate with the time scale of synoptic weather variability. Furthermore, Figures 1C and 

1F demonstrate the importance of Γ in the context of heat waves by showing that the average 

length of heat events, which are defined as periods when the daily temperature anomaly is 

positive and larger than one standard deviation (16), is well correlated with Γ. 

Red noise or, equivalently, a first-order autoregressive/Markov model, is only an 25 

approximation for the full dynamics of daily temperature anomalies (18). Figure 1 shows that the 

autocorrelation does not experience a zero-crossing at large lags, indicating the existence of 

long-term memory in the temperature time series (19, 20). However, at the time scales of interest 

(on the order of a few days), the red-noise approximation reasonably describes the 

autocorrelation and spectra (Figures 1 and S1) consistent with many meteorological studies on 30 

daily fluctuations (21, 22). Further tests (see Materials and Methods) indicate that the primary 
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findings of this study remain unaltered when employing a decorrelation (or integral) time scale 

(23, 24), which is free of the red-noise approximation.  
 

Fig. 1. Daily urban and rural near-surface air (A, B, C) and surface (D, E, F) temperature 
anomalies exhibiting red-noise behaviors. (A, D) The global average temporal autocorrelation 5 
(AC) as a function of lag (𝜏) for urban (red) and rural (blue) temperature anomalies. The average 
is performed over all grid cells that have urban fractions larger than 0.1% (4241 in total). The 
black line is the theoretical result for a red-noise process (an exponential decay with a decay rate 
of 1 Γ⁄ ). (B, E) Similar to (A, D) but for averages over Central America (Latitude: 7°N to 18°N, 
Longitude: 82°W to 118°W). (C, F) Relation between Γ and the average length of heat events, 10 
which are defined as periods when the daily temperature anomaly is positive and larger than one 
standard deviation during the study period (1991-2010). Data in C and F include both urban and 
rural results and are for all grid cells that have urban fractions larger than 0.1%. The color in C 
and F indicates data density. The upper and lower bounds in A, B, D, E represent the 95% 
confidence intervals for the spatial mean AC values. The 95% confidence intervals are small due 15 
to the very large sample size. 
 

Urban-rural contrasts of temperature persistence  

To quantify the local urban-rural difference in temperature persistence, the fractional 

difference of Γ between urban and rural land within the same grid cell (i.e., the urban-rural 20 

difference in Γ normalized by the rural Γ, or 𝛿Γ/Γ where 𝛿 indicates the urban-rural difference) 

is computed (Figure 2A and 2B). Comparing Figure 2A to 2B (see also Figure 2D), it can be 

concluded that the urban-rural contrast of surface temperature persistence (Figure 2B) is larger in 

terms of magnitude than its near-surface air temperature counterpart (Figure 2A). This finding is 

expected as surface temperature is directly affected by surface radiative and biophysical 25 

properties. Any differences in surface radiative and biophysical properties between urban and 

rural land are reflected in the surface temperature. On the other hand, the mixing power of 

atmospheric turbulence tends to smear out or blend the effect of surface changes on the near-

surface air temperature.  

Globally, the urban-rural difference in temperature persistence can be either positive or 30 

negative. The negative 𝛿Γ/Γ values for near-surface air temperature (Figure 2A) are mostly 

insignificant. In places where 𝛿Γ is significant for both near-surface air temperature (Figure 2A) 

and surface temperature (Figure 2B), urban near-surface air temperatures exhibit 10-40% higher 

persistence than their rural counterparts, and that number rises to 100-200% for urban surface 

temperatures. Central America, West Africa and India experience the largest increases in urban 35 

near-surface air temperature persistence compared to their rural surroundings. This pattern is 

consistently observed across different seasons (Figure S2).  
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Why do Central America, West Africa and India show the strongest urban-rural 

difference in terms of near-surface air temperature persistence? This is because the climate 

model prescribes large thermal inertia or thermal effusivity (𝜇, unit: 104 J m−2 K−1 s−1/2) for urban 

impervious materials over these regions (Figure 2C). The strong correlations between 𝛿Γ/Γ and 

thermal inertia of urban impervious materials are evidenced by Figure 2D (coefficient of 5 

determination R2 = 0.86 and 0.63 for near-surface air temperature and surface temperature, 

respectively). In particular, the roofs in these tropical regions (Central America, West Africa and 

India) are treated by the climate model as corrugated metal roofs with little or no insulation (25), 

which have exceptionally large thermal inertia (Figure S3). Known for their affordability, 

durability, weather resistance, ease of installation, and low maintenance, metal roofs are 10 

extensively used in tropical regions. Consequently, their impact on the urban-rural difference of 

temperature persistence is particularly evident in areas like Central America, West Africa, and 

India. 

 

Fig. 2. The urban-rural differences of near-surface air temperature and surface 15 
temperature persistence time scales and their relations with urban thermal inertia. (A) The 
urban-rural difference of near-surface air temperature persistence quantified by 𝛿Γ/Γ (the urban-
rural difference in the persistence time scale normalized by the rural persistence time scale, 
where 𝛿 represents the urban-rural difference, namely urban minus rural). The stippled regions 
are those with significant urban-rural differences of lag-1 autocorrelation at the 95% confidence 20 
level. (B) The urban-rural difference of surface temperature persistence quantified by 𝛿Γ/Γ. The 
stippled regions are those with significant urban-rural differences of lag-1 autocorrelation at the 
95% confidence level. (C) The thermal inertia of urban impervious materials (𝜇, unit: 104 J m−2 
K−1 s−1/2) as used in the climate model. (D) The urban-rural differences of temperature 
persistence (𝛿Γ/Γ) as a function of the thermal inertia of urban impervious materials (𝜇, unit: 104 25 
J m−2 K−1 s−1/2) in grid cells with significant urban-rural differences of lag-1 autocorrelation at 
the 95% confidence level. The large dots/circles in D are bin averages and the shading indicates 
the standard deviation in each bin.  
 

A surface energy balance theory 30 

The positive correlations between 𝛿Γ/Γ and the thermal inertia of urban impervious 

materials are physically intuitive and can be explained by a one-dimensional surface energy 

balance theory (see Materials and Methods). The surface energy balance model yields  

Γ =
Ω

1 + Ω
Γ𝑓, 
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where Γ𝑓 is a forcing time scale and the non-dimensional Ω parameter represents the importance 

of thermal inertia relative to energy dissipative mechanisms including sensible heat transfer, 

latent heat transfer, and radiative heat transfer. While the forcing time scale is identical for both 

urban and rural areas, the Ω parameter differs between urban and rural areas. Even without a 

priori defining the exact magnitude of Γ𝑓, the surface energy balance theory predicts that as the 5 

thermal inertia of cities increases (e.g., using materials such as steel and dense concrete), the 

urban Ω parameter increases, leading to stronger urban surface temperature (and near-surface air 

temperature) persistence. This is in qualitative agreement with results shown in Figure 2D.  

Within the confines of the surface energy balance theory, the thickness of the urban 

impervious material that determines its extrinsic thermal mass plays a secondary role relative to 10 

that of the material’s intrinsic thermal inertia. This is also consistent with the climate model 

results. An examination of the relation between the climate model simulated 𝛿Γ/Γ values and the 

thickness of impervious material prescribed by the climate model suggests that the simulated 

𝛿Γ/Γ shows negative correlations with the thickness of roofs. This counterintuitive and 

unphysical result is because the corrugated metal roofs, which give rise to the large 𝛿Γ/Γ values, 15 

are relatively thin; this correlation is therefore not indicative of a causative link. Furthermore, the 

climate model simulated 𝛿Γ/Γ shows no correlations with the thermal mass of roofs, which takes 

the material thickness into account. This finding shows that thermal inertia (rather than thermal 

mass) is the key control of daily temperature persistence.  

The surface energy balance theory further provides a framework for analyzing how 20 

various environmental and meteorological factors such as urban morphology, vegetation fraction, 

wind speed, and air temperature might affect Γ (e.g., through altering energy dissipative 

mechanisms like sensible, latent, and radiative heat transfer). The fact that we focus on the role 

of thermal inertia in the analysis of climate model results does not imply that other factors do not 

play a role. However, since climate models inevitably have uncertainties in their inputs and 25 

parameterizations, comprehensively exploring the role of all possible factors affecting 𝛿Γ/Γ goes 

beyond the scope of this work. Nevertheless, two important points are highlighted here: (i) some 

uncertainties in the climate model may be partially compensated for when analyzing differences 

between urban and rural areas within the same grid cell; (ii) the linkage between larger thermal 

inertia of urban impervious materials and stronger urban surface (and near-surface air) 30 

temperature persistence, which is simulated by the climate model, can be elucidated through the 
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surface energy balance analysis. The agreement between the climate model results and the 

surface energy balance theory provides credibility to the findings reported here. 

Further increases in urban near-surface air temperature persistence  

How urban Γ will change if the thermal inertia of cities is further increased due to the 

continuing replacement of vegetation with impervious materials with large thermal inertia, such 5 

as steel and dense concrete, is now explored. The fractional increase in Γ or ΔΓ/Γ (the increase in 

Γ normalized by the baseline Γ) is computed. Here Δ refers to a change over the urban land due 

to increased urbanization and is different from 𝛿 that indicates the urban-rural difference. From 

the surface energy balance theory, it can be shown that ΔΓ/Γ is independent of Γ𝑓 due to the 

normalization, increases with ΔΩ/Ω when ΔΩ/Ω is small (with stronger increasing trends in 10 

places with smaller Ω values), and approaches a constant when ΔΩ/Ω is large (see Materials and 

Methods).  

These behaviors are shown in Figure 3, which depicts how further increases in thermal 

inertia of cities cause increases in Γ for the urban near-surface air temperature. In this analysis, 

cities are made of uniform building morphology and thermal properties globally to circumvent 15 

any uncertainties in the input data of these properties in the climate model, and the thermal 

inertia of impervious materials over urban land is gradually increased (see Materials and 

Methods). As predicted by the surface energy balance theory, the computed ΔΓ/Γ first increases 

with ΔΩ/Ω and then approaches a plateau. The increasing trend and concomitantly the plateau 

value are higher in the tropics (20 S to 20 N), compared to the extratropics (20 to 65 degrees) in 20 

both Northern Hemisphere (NH) and Southern Hemisphere (SH).  

The fact that the increase of ΔΓ/Γ with ΔΩ/Ω is not spatially uniform in simulations with 

globally uniform buildings is an important result. It demonstrates that urban thermal inertia (or 

more broadly urban morphologies and properties) is not the only factor affecting ΔΓ/Γ, 

confirming an earlier point. Here it is clear that the background climate also plays a role. The 25 

stronger increase of ΔΓ/Γ with ΔΩ/Ω in tropical regions implies that the baseline Ω values are 

smaller in the tropics than other regions (Eq. 17). A plausible explanation is that the latent heat 

transfer efficiency is larger in the tropics with abundant rainfall (26), which leads to smaller 

baseline Ω values. This stronger increase of ΔΓ/Γ with ΔΩ/Ω in tropical regions also explains the 

significantly positive δΓ/Γ values in southeastern Asia in the control simulation (Figures 2A and 30 

2B), even though the thermal inertia of urban impervious materials in this region is not 
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particularly large when compared to hotspots like Central America, West Africa, and India 

(Figure 2C). Overall, these results suggest that the much stronger urban temperature persistence 

in the tropics compared to rural surroundings (Figures 2A and 2B) is not only related to the large 

thermal inertia of urban impervious materials prescribed by the input data (e.g., in regions like 

Central America, West Africa, and India), but also caused by the inherent stronger sensitivity of 5 

Γ to changes in thermal inertia in the tropics.  

With a 9-fold increase in Ω (e.g., from light wood to dense concrete, or from asphalt to 

steel), Γ increases by 18-20% in the extratropical region (Figure 3). To put these numbers in 

context, a linear relation between Γ and heat wave lengths as suggested by Figure 1C would 

imply that heat wave lengths are also increased by 18-20%, which amounts to about 0.36 to 0.6 d 10 

since most heat waves are on the order of 2-3 days (11). This corresponds to an increase of 

mortality risk by 0.14-0.23% based on data for the United States (11). In the tropical region, the 

increase of mortality risk is even higher (0.34-0.51%) due to the much larger increase in Γ (45% 

for a 9-fold increase of Ω, see Figure 3). More worryingly, the longest heat waves will be 

extended the most. 15 

 
Fig. 3. The relation between 𝚫𝚪/𝚪 with 𝚫𝛀/𝛀 in the uniform city simulations. NH and SH 
stand for the Northern Hemisphere and the Southern Hemisphere, respectively. Only grid cells 
with significant changes in lag-1 autocorrelation are considered. The large dots are bin averages 
and the error bars indicate the standard deviations.  20 
 

Discussion 

With the climatological UHIs (6) and potential synergistic interactions between heat 

waves and UHIs (27), it is already understood that urban temperatures will be much higher than 

rural temperatures during heat waves. Here, it is demonstrated that the large thermal inertia of 25 

urban impervious materials also leads to more persistent daily temperature anomalies in cities. 

Further increases in urban thermal inertia associated with continuing urbanization will cause 

even stronger urban temperature persistence. Cities in the tropical region are particularly prone to 

the effect of increasing thermal inertia when quantified by the fractional increase in the 

persistence time scale.  30 

Urban heat mitigation often focuses on reducing the magnitude of temperature, especially 

the daytime maximum temperature. If so, it may appear plausible that increasing thermal inertia 
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would reduce the daytime maximum temperature by storing more heat in the impervious 

materials (3-5). But the consequence of increasing the thermal inertia is two-fold: an increase in 

the nighttime minimum temperature (3-5) and an increase in the temperature persistence as 

shown here. The former effect of increasing thermal inertia at the diurnal scale has long been 

recognized (6), but the latter effect of increasing thermal inertia at the multi-day time scale is the 5 

key finding offered here. Heat mitigation strategies that can simultaneously reduce the daytime 

maximum temperature and the thermal inertia should be considered. In light of these findings, 

replacing roofs that have exceptionally high thermal inertia such as non-insulated steel or dense 

concrete roofs with white roofs made of materials with lower thermal inertia is recommended.   

Other solutions that may ameliorate urban temperature persistence include shading 10 

approaches (by trees or other means) that intercept solar radiation and release most of it rapidly 

into the air rather than storing it. A similar effect can be attained by solar panels, but only if they 

are separated from the underlying roofs with an open-air space to reduce conductive storage. 

Roofs that enhance the latent heat transfer efficiency, such as blue and green roofs, are also 

possible but more costly alternatives. Water and wet soils also have large thermal inertia and thus 15 

blue and green roofs need to be properly designed to prevent any potential prolongation of 

temperature hazards. When achieving both goals (reducing the daytime maximum temperature 

and thermal inertia) is not possible, city planners need to quantify the benefits and penalties of 

proposed urban heat mitigation strategies not only at the diurnal time scale, but also at longer 

(weather) time scales.  20 
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Materials and Methods 

Numerical simulations 

The numerical experiments are conducted using the Community Earth System Model 

(CESM) version 2.0.1 (28). The land component of CESM2.0.1 is the Community Land Model 

(CLM) version 5 (29). Within each land grid cell, CLM allows for multiple land units including 5 

vegetated, crop, urban, glacier, and lake. The processes over the urban land unit are 

parameterized by the urban surface scheme of the Community Land Model, called the 

Community Land Model - Urban (CLMU). The CLMU conceptualizes the urban environment as 

a two-dimensional canyon that includes five facets (roof, sun-shaded wall, sun-lit wall, pervious 

ground, and impervious ground), of which four are impervious (roof, sun-shaded and sun-lit 10 

walls, and impervious ground). The CLMU parameterizes radiative, turbulent, and land surface 

processes within the canyon and aggregates the fluxes from different facets. Details about the 

CLMU model can be found elsewhere (28, 30-34). The CLMU inputs, including building 

morphology and thermal properties, are supplied by a global dataset (25).  

We use CESM to conduct global land-only (uncoupled from the atmospheric model) 15 

simulations. Based on an initial condition provided by CESM (that has been spun up), we run the 

CLM model at 0.9 latitude by 1.25 longitude for another 84 years of spin up by recycling the 

1990-2010 Global Soil Wetness Project Phase 3 atmospheric forcing (29) four times. We finally 

conduct multiple 21-year runs using the same atmospheric forcing from 1990 to 2010, initialized 

by the 84-year spin up run, and our analysis focuses on the 20-year period from 1991 to 2010 20 

from these final runs.  

Two such sets of final simulations are conducted here. In the first set (called the control 

simulation), we do not alter any CLMU inputs but simply output all needed variables at the daily 

scale. The control simulation results are used for Figures 1-2 and S1-S4. In the second set (called 

the uniform city simulations), we modify the CLMU input data so that all urban grid cells 25 

globally have the same building morphological and thermal properties representing those of the 

northeastern United States. Within the second set of simulations, we conduct a baseline run and 

five additional sensitivity runs with increased urban thermal inertia (by multiplying the heat 

capacity and thermal conductivity of all impervious facets by factors of 2, 5, 10, 20, and 50, 

respectively). The ΔΓ/Γ and ΔΩ/Ω in Figure 3 are computed as the differences between the 30 

sensitivity runs and the baseline run normalized by the results in the baseline run.  
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There are two reasons that the building morphological and thermal properties data are 

taken to be those representing the northeastern United States. First, the mortality numbers used 

here are from the United States, including the northeastern United States. Second, regardless of 

where these properties are taken from, the uniform city simulations are idealized simulations that 

are not meant to represent the real world but to test causal connections predicted by the surface 5 

energy balance theory. We expect that results from such simulations with other building 

properties agree with the theory. 

Near-surface air temperature and surface temperature 

Both urban and rural near-surface air temperatures (sometimes also termed surface air 

temperature or 2-m air temperature) are direct outputs from CLM. Within each grid cell where 10 

the urban fraction exceeds 0.1%, the urban near-surface air temperature is computed by CLMU 

for the urban land unit. For each land grid cell, the rural near-surface air temperature is an 

average for the vegetated and crop land units. The vegetated land unit might contain up to 15 

different plant functional types and bare soil. 

Urban and rural surface temperatures are inferred from the incoming longwave radiation 15 

(𝐿𝑊𝑖𝑛, W m−2) and outgoing longwave radiation (𝐿𝑊𝑜𝑢𝑡, W m−2) as 𝑇𝑠 = (
𝐿𝑊𝑜𝑢𝑡−(1−𝜀)𝐿𝑊𝑖𝑛

𝜀𝜎
)

1/4
 , 

where 𝜀 is the surface emissivity and 𝜎 is the Stefan-Boltzmann constant (5.67 × 10−8 

W m−2 K−4). For consistency with prior work (3), the urban and rural surface emissivity values 

are set to be 0.88 and 0.96, respectively.  

Autocorrelation  20 

 The autocorrelation (AC) is computed as  

  𝐴𝐶(𝜏) =
𝑇′(𝑡)𝑇′(𝑡+𝜏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜎𝑇
2 ,  

where 𝑇′ is the daily temperature anomaly computed with the long-term linear trend and the 

mean annual cycle subtracted, the overbar denotes the time mean, 𝜏 denotes the time lag (unit: 

d), and 𝜎𝑇
2 is the variance of 𝑇′.  The mean annual cycle is the variation of temperature as a 25 

function of the day of the year but independent of the year and is computed as the average over 

1991-2000. Sensitivity tests are conducted by only subtracting the mean annual cycle (but 

keeping the long-term linear trend) and the findings are not altered.   

Spectrum 

The spectrum is computed using Welch’s method with segments of length 29 days and 30 

50% overlap between different segments.  
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Spatial averaging  

The spatially averaged AC values in Figure 1 are calculated using Fisher z-

transformation. We transform AC values to their respective z-values, compute the mean (and the 

95% confidence intervals) of the z-values, and then back-transform the mean (and the 95% 

confidence intervals) of the z-values to obtain the mean (and the 95% confidence intervals) of 5 

the AC values, following prior work (16). The 95% confidence intervals are generally small due 

to the very large sample size.  

A surface energy balance theory for daily temperature persistence 

 The surface energy balance equation provides a theoretical basis for understanding how 

thermal inertia and various heat transfer mechanisms affect the persistence of surface 10 

temperature anomalies. It offers a direct physical connection between land surface properties and 

temperature persistence across different climatic zones.  

The one-dimensional surface energy balance equation can be written as (35, 36):     

 𝑆𝑊𝑖𝑛(1 − 𝛼) + 𝜀𝐿𝑊𝑖𝑛 = 𝐻 + 𝐿𝐸 + 𝐺 + 𝜀𝜎𝑇𝑠
4 (1) 

where 𝑆𝑊𝑖𝑛 and 𝐿𝑊𝑖𝑛 are the incoming shortwave and longwave radiation (W m−2), 15 

respectively; 𝛼 and 𝜀 are the surface albedo and emissivity (unitless), respectively. The right-

hand-side of Eq. 1 includes four dissipative or energy loss terms (viewed from the surface 

perspective): the sensible heat flux (H, W m−2), the latent heat flux (LE, W m−2), the ground heat 

flux or heat storage (G, W m−2), and the emitted longwave radiation by the surface (𝜀𝜎𝑇𝑠
4, 

W m−2), which is expressed using the Stefan-Boltzmann law where 𝜎 is the Stefan-Boltzmann 20 

constant (5.67 × 10−8 W m−2 K−4) and 𝑇𝑠 is the surface temperature (K). Here, the emitted 

longwave radiation is rearranged to the right-hand-side of the surface energy balance equation, 

instead of the left-hand-side as in textbooks (35, 36).  This re-formulation emphasizes that each 

term on the right-hand-side of Eq. 1 is a function of 𝑇𝑠. In contrast, the terms on the left-hand-

side of Eq. 1 are assumed to be external (atmospheric) forcing onto the land surface and are not 25 

directly affected by 𝑇𝑠.   

To proceed, each term on the right-hand-side of Eq. 1 is written as a linear function of 𝑇𝑠. 

For example, a bulk parameterization is used for the sensible heat flux (35) given by  

 𝐻 =
𝜌𝑐𝑝(𝑇𝑠−𝑇𝑎)

𝑟𝑎
, (2) 

where 𝜌 is the air density (kg m−3), 𝑐𝑝 is the heat capacity of dry air at constant pressure (J kg−1 30 

K−1), 𝑇𝑎 is the air temperature (K), and 𝑟𝑎 is the aerodynamic resistance to convective heat 
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transfer (s m−1) that depends on a range of factors such as the wind speed and thermal 

stratification of the near-surface atmosphere, etc. This bulk parameterization for sensible heat 

flux can thus be written as follows:  

 𝐻 = 𝜆𝐻𝑇𝑠 + 𝐶𝐻, (3) 

where 𝜆𝐻 = 𝜌𝑐𝑝 𝑟𝑎⁄  and 𝐶𝐻 = −𝜆𝐻𝑇𝑎 represent the slope and the intercept of the linear relation 5 

between 𝐻 and 𝑇𝑠, respectively.  

 Likewise, for latent heat flux, the parameterization used is given by (37, 38):  

 𝐿𝐸 = 𝛽
𝜌𝐿𝑣(𝑞∗(𝑇𝑠)−𝑞𝑎)

𝑟𝑎
, (4) 

where 𝐿𝑣 is the latent heat of vaporization (J kg−1), 𝑞∗(𝑇𝑠) is the saturated specific humidity 

(kg kg−1) at the surface temperature and can be linked to the saturated water vapor pressure (Pa) 10 

at the surface temperature, or 𝑒∗(𝑇𝑠), through 𝑞∗(𝑇𝑠) = 0.622𝑒∗(𝑇𝑠)/𝑃, 𝑃 is the mean air 

pressure (Pa) at the surface, 𝑞𝑎 is the air specific humidity (kg kg−1) and similarly can be linked 

to the air water vapor pressure, or 𝑒𝑎, through 𝑞𝑎 = 0.622𝑒𝑎/𝑃. The 𝛽 parameter is a 

dimensionless quantity (varying between 0 and 1) that reduces the actual evapotranspiraton value 

from its potential value due to either dry soils or stressed vegetation. Clearly the latent heat flux 15 

as expressed in Eq. 4 is a function of 𝑇𝑠. However, the relation is not linear since the saturated 

water vapor pressure (𝑒∗) is related to 𝑇𝑠 exponentially through the Clausius-Clapeyron relation. 

Nonetheless, the Clausius-Clapeyron relation can be linearized to yield 

 𝐿𝐸 = 𝜆𝐿𝐸𝑇𝑠 + 𝐶𝐿𝐸  , (5) 

where 𝜆𝐿𝐸 = 𝜆𝐻
𝛽

𝛾
∆𝑎, 𝐶𝐿𝐸 = 𝜆𝐿𝐸 [−𝑇𝑎 +

𝑒∗(𝑇𝑎)−𝑒𝑎

∆𝑎
], 𝛾 =

𝑃𝑐𝑝

0.622𝐿𝑣
 is the psychometric constant, 20 

∆𝑎=
𝑑𝑒∗

𝑑𝑇
|

𝑇𝑎

is the derivative of 𝑒∗ with respect to temperature evaluated at the air temperature, and 

𝑒∗(𝑇𝑎) is the saturated water vapor pressure at the air temperature. 

 For ground heat flux, the force-restore model (39-41) is used, linking 𝐺 to 𝑇𝑠 through 

 𝐺 =
𝜇

√2𝜔
[

𝑑𝑇𝑠

𝑑𝑡
+ 𝜔(𝑇𝑠 − 𝑇𝑑𝑒𝑒𝑝)], (6) 

where 𝜇 is the thermal inertia or thermal effusivity (J m−2 K−1 s−1/2) and can be computed as 𝜇 =25 

√𝑘𝐶ℎ𝑝, where 𝑘 is the thermal conductivity (J m−1 K−1 s−1) and 𝐶ℎ𝑝 is the ground volumetric heat 

capacity (J m−3 K−1); 𝜔 is the angular frequency of the forcing (e.g., 𝜔 =

2𝜋 (24 × 3600) = 7.27 × 10−5⁄  rad s−1 for diurnal forcing and 𝜔 = 2𝜋 365⁄ = 0.0172 rad d−1 

for annual forcing) and thus 𝜔−1 represents a forcing time scale; 𝑇𝑑𝑒𝑒𝑝 is the deep ground 
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temperature taken at a depth that is unaffected by the thermal wave at the forcing time scale. The 

force-restore model was originally developed for soil/vegetated surfaces with stable 𝑇𝑑𝑒𝑒𝑝 at a 

sufficient depth. For building surfaces such as roofs and walls, application of the force-restore 

model assumes that energy storage over the time scale of interest is limited more severely by the 

thermal properties (volumetric heat capacity and thermal conductivity) than by the thickness and 5 

that the building interior temperature varies at a much slower rate than the surface temperature. 

Here, the forcing time scale is assumed to be identical for both urban and rural areas. 

However, the exact magnitude of the forcing time scale is not essential for two reasons. First, the 

analysis focuses on the normalized persistence time scale difference (see e.g., Figures 2A, 2B, 

and 3). Due to this normalization, the main findings are not affected by the exact magnitude of 10 

the forcing time scale. Second, the surface energy balance model is primarily used as a 

diagnostic tool (i.e., rather than a prognostic model) for interpreting the climate model results. 

Since this work analyzes daily temperature fluctuations, the forcing time scale must be longer 

than the diurnal scale (even though its exact magnitude is not needed for our analysis). The focus 

on daily temperature fluctuations, instead of sub-daily temperature fluctuations, alleviates the 15 

complexity associated with considering multiple forcing time scales. For example, the diurnal 

forcing needs to be further included if some sub-daily temperatures (e.g., daily maximum or 

minimum temperature) were to be studied (41). Previous work found that the persistence of sub-

daily temperatures differs from that of daily mean temperature (42). However, no theory has 

been developed that can adequately describe the persistence of sub-daily temperatures. 20 

Developing such a theory and exploring the persistence of sub-daily temperatures are left for 

future investigations.  

Eq. 6 can be rewritten as  

 𝐺 =
𝜇

√2𝜔
[

𝑑𝑇𝑠

𝑑𝑡
+ 𝜔(𝑇𝑠 − 𝑇𝑑𝑒𝑒𝑝)] = 𝜆𝐺 (Γ𝑓

𝑑𝑇𝑠

𝑑𝑡
) + 𝜆𝐺𝑇𝑠 + 𝐶𝐺 , (7) 

where 𝜆𝐺 = 𝜇√
𝜔

2
, Γ𝑓 = 𝜔−1 (the forcing time scale), and 𝐶𝐺 = −𝜆𝐺𝑇𝑑𝑒𝑒𝑝. 25 

The emitted longwave radiation involves the surface temperature to the 4th power, which can 

be also linearized to give   

 𝑇𝑠
4 ≈ 𝑇𝑎

4 + 4𝑇𝑎
3(𝑇𝑠 − 𝑇𝑎). (8) 

Hence, the emitted longwave radiation can be simplified to  

 𝜀𝜎𝑇𝑠
4 ≈ 𝜆𝐸𝐿𝑊𝑇𝑠 + 𝐶𝐸𝐿𝑊, (9) 30 
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where 𝜆𝐸𝐿𝑊 = 4𝜀𝜎𝑇𝑎
3, 𝐶𝐸𝐿𝑊 = −

3

4
𝜆𝐸𝐿𝑊𝑇𝑎. 

 Substituting Eqs. 3, 5, 7, 9 into Eq. 1 yields: 

 𝑑𝑇𝑠

𝑑𝑡
= −

1

Γ
𝑇𝑠 + 𝐶, (10) 

where 

 Γ =
Ω

1+Ω
Γ𝑓, (11) 5 

 Ω =
𝜆𝐺

𝜆𝐻+𝜆𝐿𝐸+𝜆𝐸𝐿𝑊
=

𝜆𝐺

𝜆𝑂
, (12) 

𝐶 = (𝜆𝐺Γ𝑓)−1[𝑆𝑊𝑖𝑛(1 − 𝛼) + 𝜀𝐿𝑊𝑖𝑛 − 𝐶𝐻 − 𝐶𝐿𝐸 − 𝐶𝐺 − 𝐶𝐸𝐿𝑊]. Here Ω is a dimensionless 

parameter that quantifies the importance of thermal inertia (𝜆𝐺) relative to three other heat 

dissipative mechanisms including sensible heat transfer, latent heat transfer, and radiative heat 

transfer (𝜆𝑂 = 𝜆𝐻 + 𝜆𝐿𝐸 + 𝜆𝐸𝐿𝑊).  10 

The derivations so far largely follow a previous study (38) that examined the relative 

efficiencies of the four mechanisms on the right-hand-side of Eq. 1 in dissipating surface 

temperature anomalies. However, the prior work (38) did not introduce the concept of 

temperature persistence within this surface energy balance framework, which is the primary 

focus of this study and is elaborated on in the next section.  15 

The interpretation and estimation of 𝜞  

 When 𝑇𝑠 is decomposed into a mean component (𝑇𝑠̅) and a fluctuating component (𝑇𝑠
′), it 

can be shown from Eq. 10 that: 

 𝑑𝑇𝑠
′

𝑑𝑡
= −

1

Γ
𝑇𝑠

′ + 𝐶′ (13) 

where 𝐶′ is the fluctuating component of 𝐶. Given the focus on the daily temperature 20 

persistence, the mean annual cycle is treated as the mean and the daily temperature anomalies are 

treated as the fluctuations. For the remaining derivation, we drop the prime symbol for notational 

convenience and state that 𝑇𝑠 is the temperature anomaly and 𝐶 is the forcing anomaly. 

 If 𝐶 is white noise, it can be shown that 𝑇𝑠 is red noise. This is essentially Hasselmann’s 

stochastic climate model (12, 13), which has been widely used to study sea surface temperature 25 

anomalies (43, 44). For a red noise process (also called a first-order autoregressive or Markov 

model), the stationary temporal autocorrelation (𝐴𝐶) is 

 𝐴𝐶(𝜏) = 𝑒−
𝜏

Γ, (14) 
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where 𝜏 is the time lag (with a unit of d). It is clear that Γ characterizes the decay rate of the 

temporal autocorrelation, which explains why Γ is a good indicator for the daily temperature 

persistence. It can be also shown that the normalized spectrum of 𝑇𝑠 follows the Lorentz 

spectrum 

 𝐸𝑇(𝑓)

𝜎𝑇
2 =

4/Γ

4𝜋2𝑓2+Γ−2, (15) 5 

where 𝐸𝑇 is the energy spectrum of 𝑇𝑠, 𝜎𝑇
2 is the variance of 𝑇𝑠, and 𝑓 is the frequency (with a 

unit of d−1). Eq. 15 indicates that the normalized 𝑇𝑠 spectrum approaches 𝑓−2 at high frequencies 

(red noise) and 𝑓0 at low frequencies (white noise). The transition of the two scaling laws occurs 

at a frequency of 1 (2𝜋Γ)⁄ , corresponding to a time scale of ~Γ. Again, this demonstrates that Γ 

is an important time scale characterizing the dynamics of 𝑇𝑠. An alternative way of identifying 10 

the transitional frequency (or the transitional time scale) is to use the normalized, pre-multiplied 

spectrum 𝑓𝐸𝑇(𝑓)/𝜎𝑇
2, whose peak is reached at the transitional frequency.   

Hence,  Γ can be estimated from lag-1 autocorrelation 𝐴𝐶(1) as  

 Γ = [−𝑙𝑛(𝐴𝐶(1))]
−1

. (16) 

We could also estimate Γ using the pre-multiplied spectrum but identifying the peak of the pre-15 

multiplied spectrum can be ambiguous. We choose to use the decay of the autocorrelation to 

estimate Γ for its simplicity and following recent studies (16, 43).  In the analysis of numerical 

simulation results, a significant urban-rural difference in Γ indicates that the difference in 𝐴𝐶(1) 

between urban and rural areas is significant at the 95% confidence level. This significance is 

determined using a two-tailed test, which employs z-scores derived from the Fisher 20 

transformation. 

Changes in 𝜞 due to further increases in urban thermal inertia  

 From Eq. 11, changes in Ω (represented by ΔΩ) over urban land will cause a change in Γ 

(represented by ΔΓ). We are particularly interested in the fractional change in Γ due to fractional 

changes in Ω.  When ΔΩ is sufficiently small,  25 

 ΔΓ

Γ
= (

1

1+Ω
)

ΔΩ

Ω
. (17) 

This expression states that ΔΓ/Γ increases with ΔΩ/Ω when ΔΩ/Ω is small and the increasing 

trend is stronger in places with smaller Ω. On the other hand, Eq. 11 indicates that as  Ω → ∞, 

Γ → Γf. In other words, when Ω is sufficiently large, any additional increase in Ω will no longer 
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cause Γ to increase. This is understandable as when the thermal inertia is large enough, any 

further increase in thermal inertia will no longer cause temperature persistence to increase. 

Based on Eq. 12, fractional changes in Ω can be further linked to fractional changes in 

thermal inertia through 

 ΔΩ

Ω
=

ΔλG

λG
−

ΔλO

λO
≈

ΔλG

λG
=

Δμ

μ
.  (18) 5 

Here we have implicitly assumed that increases in thermal inertia will not cause 𝜆𝑂 to change 

strongly because 𝜆𝑂 is primarily controlled by sensible, latent, and radiative heat transfer 

efficiencies that are, to a leading order, not sensitive to changes in thermal inertia.  

The surface energy balance model as a diagnostic tool 

 The correspondence and difference between the surface temperature in the surface energy 10 

balance model and the surface temperature simulated by the climate model requires further 

clarification. The surface energy balance model is a one-dimensional model for a homogeneous 

surface, and thus the surface temperature represents a bulk temperature. In contrast, the surface 

temperature simulated by the climate model is an ‘averaged’ or ‘aggregated’ surface temperature 

of multiple surfaces/facets since the climate model considers the energy balances for multiple 15 

surfaces/facets for both urban and rural land. As a result, the surface energy balance model can 

be viewed as a simplified version of the climate model and a diagnostic tool for understanding 

the persistence of surface temperature simulated by the more complicated climate model (45).  

The air temperature in the surface energy balance model is also different from the near-

surface air temperature simulated by the climate model. The air temperature in the surface 20 

energy balance model is a forcing for the bulk surface and thus better corresponds to the 

atmospheric forcing temperature used to drive the climate model instead of the simulated near-

surface air temperature. In contrast, the near-surface air temperature simulated by the climate 

model can be viewed as an interpolated temperature between the surface temperature and the 

atmospheric forcing temperature (either following the well-established Monin-Obukhov 25 

similarity theory or some empirical parameterizations or a combination of both). As such, with 

the atmospheric forcing anomalies viewed as white noise, the day-to-day variability of near-

surface air temperature simulated by the climate model largely follows the day-to-day variability 

of surface temperature simulated by the climate model, but damped by the mixing power of 

atmospheric turbulence (45). This provides the theoretical basis for using the surface energy 30 
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balance model to qualitatively diagnose the persistence of near-surface air temperature simulated 

by the climate model.  

A decorrelation time scale that does not invoke the red-noise approximation 

 A decorrelation (or integral) time scale can be defined without a priori assuming that 

temperature anomalies follow a red-noise process, as follows (23, 24): 5 

 𝑇𝑜 = 1 + 2 ∑ (1 −
𝐿

𝑁
)𝑁

𝐿=1 𝐴𝐶(𝐿), (19) 

where 𝐿 is the lag ranging from 1 to N and 𝐴𝐶(𝐿) is the autocorrelation at lag 𝐿. Unlike the Γ 

estimated from lag-1 autocorrelation, which indicates short-term memory, the decorrelation time 

scale 𝑇𝑜 encodes all the information about the autocorrelation, including long-term memory 

effects (14).  10 

Figure S4 shows the results for 𝛿𝑇𝑜/𝑇𝑜 computed with 𝑁 = 90. The broad pattern of 

𝛿𝑇𝑜/𝑇𝑜 remains similar to 𝛿Γ/Γ, even though 𝑇𝑜 and Γ are different. Hence, the main conclusions 

here are not affected by the red-noise approximation. Note that for continuous time series with 

N→ ∞, 𝑇𝑜 = 1 + 2 ∫ 𝐴𝐶(𝜏)𝑑𝜏
∞

0
. For the specific choice of an exponential autocorrelation 

function usually associated with a first-order autoregressive process, 𝑇𝑜 = 1 + 2Γ.  15 
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