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A twirling channel is a quantum channel induced by a continuous unitary representation
𝜋 =

∑⊕
𝑖
𝑚𝑖 𝜋𝑖 on a compact group 𝐺, where 𝜋𝑖 are inequivalent irreducible representations.

Motivated by a recent work [8] on minimal mixed unitary rank of Φ𝜋 , we explore the connections
of the independence number, zero-error capacity, quantum codes, orthogonality index and phase
retrievability of the quantum channel Φ𝜋 with the irreducible representation multiplicities 𝑚𝑖 and
the irreducible representation dimensions dim 𝐻𝜋𝑖 . In particular, we show that the independence
number of Φ𝜋 is the sum of the multiplicities, the orthogonal index of Φ𝜋 is exactly the sum
of those representation dimensions, and the zero-error capacity is equal to log(∑𝑑

𝑖=1 𝑚𝑖 ) . We
also present a lower bound for the phase retrievability in terms of the minimal length of phase
retrievable frames for C𝑛.

Keywords: covariant quantum channels, twirling channels, independence number, quantum code,
zero-error capacity, orthogonality index, phase retrievable frames.

1. Introduction

A quantum channel Φ is a completely positive trace-preserving (CPTP) linear
map from an operator system 𝐵(𝐻) to an operator system 𝐵(𝐾), which has a Kraus
representation of the form

Φ(𝑇) =
𝑟∑︁
𝑖=1

𝐴𝑖𝑇𝐴
∗
𝑖 , ∀𝑇 ∈ 𝐵(𝐻),

for some operators 𝐴1, . . . , 𝐴𝑟 ∈ 𝐵(𝐻, 𝐾). In this representation, 𝐴1, . . . , 𝐴𝑟 are
also referred as the Kraus operators of Φ. For a quantum channel Φ, the Choi–
Jamiołkowski matrix [10, 27] is the matrix defined by

[87]
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𝐶Φ = [Φ(𝐸𝑖 𝑗)]𝑛×𝑛 =

𝑛∑︁
𝑖, 𝑗=1

𝐸𝑖 𝑗 ⊗ Φ(𝐸𝑖 𝑗),

where {𝑒𝑖}𝑛𝑖=1 is an orthonormal basis of 𝐻 and 𝐸𝑖 𝑗 is the rank-one operator 𝑒𝑖 ⊗ 𝑒 𝑗 .
The Choi rank of Φ is the smallest integer 𝑟 from the Kraus representations which
is equal to the rank of 𝐶Φ.

Covariant channels form a special and important type of quantum channels
where certain symmetries are present in the quantum channel. In this paper we
are interested in exploring the connections of some important concepts/quantities
for a group representation induced quantum channels (also referred to as twirling
channels) with its irreducible decomposition of the group representation.

For a compact group 𝐺, a continuous function 𝜋 : 𝐺 → 𝑈 (𝐻) is called a (finite-
dimensional) unitary representation if 𝜋(𝑔ℎ) = 𝜋(𝑔)𝜋(ℎ). A subspace 𝑉 of 𝐻 is
called 𝜋-invariant if 𝜋(𝑔)𝑥 ∈ 𝑉 for all 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝑉 . A representation 𝜋 is called
irreducible if 0 and 𝐻 are the only 𝜋-invariant subspaces. It is well known that
any unitary representation 𝜋 on a finite-dimensional Hilbert space 𝐻 is the direct
sum of irreducible representations. More precisely, there exists a unitary operator 𝑈
on 𝐻 such that

𝑈𝜋(𝑔)𝑈∗ = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 ,

where 𝑚𝑖 ∈ N and 𝜋1, . . . , 𝜋𝑑 are inequivalent irreducible unitary representations
of 𝐺 acting on the Hilbert spaces 𝐻1, . . . , 𝐻𝑑 , respectively. Clearly we have
dim𝐻 =

∑𝑑
𝑖=1 𝑚𝑖𝑛𝑖, where 𝑛𝑖 = dim𝐻𝑖.

With the help of a characterization for mixed unitary quantum channels by the
complement channels, it was proved recently in [8] that a unitary representation
𝜋 induced quantum channel Φ𝜋 has the minimal mixed unitary rank in the sense
that its mixed unitary rank is the same as the Choi rank which is equal to
𝑟 =

∑𝑑
𝑖=1(dim𝐻𝑖)2. Inspired by this, naturally one would like to know how the

multiplicity vector m = (𝑚1, . . . , 𝑚𝑑) and the dimension vector n = (𝑛1, . . . , 𝑛𝑑)
of the representation are related to several other concepts such as independence
number, quantum codes, zero-error capability for the induced quantum channels.
It is well known that independence numbers and quantum zero-error capacity are
among the important quantities in quantum communication theory and they have
been extensively studied in the literature cf. [2, 3, 6, 7, 17]. Additionally we are
also interested in exploring some “dual versions" of these concepts that include the
concepts of orthogonality index and phase retrievability. The phase retrievability of
a quantum channel Φ, which was recently introduced in [29], concerns the ability
of distinguishing the pure states from the input system by a positive operator-valued
measure (POVM) or observables from the output system. The main purpose of this
note is to obtain precise characterizations for all the above mentioned quantities for
twirling channels Φ𝜋 . More precisely we shall prove the following statements:

(i) 𝛼(Φ𝜋) =
∑𝑑

𝑖=1 𝑚𝑖 is the independence number of Φ𝜋 , and the zero-error capacity
𝐶0(Φ𝜋) is equal to log(∑𝑑

𝑖=1 𝑚𝑖).
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(ii) 𝛽(Φ𝜋) = max{𝑚1, . . . , 𝑚𝑑} is the largest number 𝑚 such that there exists
a quantum code of dimension 𝑚.

(iii)
∑𝑑

𝑖=1 𝑛𝑖 is the orthogonality index of Φ𝜋 .
(iv) max{𝑛1, . . . , 𝑛𝑑} is the largest integer 𝑁 such that there exists an 𝑁-dimensional

subspace 𝑀 with the property Φ𝜋 (𝑥 ⊗ 𝑦) = 0 whenever 𝑥 ⊥ 𝑦 and 𝑥, 𝑦 ∈ 𝑀 .
(v) max{𝛽(Φ𝜋), ⌊ 𝑑4 + 1⌋} is a lower bound for the phase retrievability of Φ𝜋 .

2. Preliminaries
We recall some notation, definitions and basic facts that are needed for the rest

of this paper.

2.1. Notations

Here is a list of standard notation we will use in this paper: Let 𝐻, 𝐾 be
finite-dimensional Hilbert spaces over C.

• 𝐵(𝐻, 𝐾) — the space of all the linear operators from 𝐻 to 𝐾 , write 𝐵(𝐻) = 𝐵(𝐻, 𝐾)
if 𝐻 = 𝐾 . In the case that 𝐻 = C𝑛 and 𝐾 = C𝑚, 𝐵(𝐻, 𝐾) = 𝑀𝑚×𝑛 (C) and we
use 𝑀𝑛 (C) for the case when 𝑚 = 𝑛. We use 𝐼𝐻 (or 𝐼 if no confusion from the
context) to denote the identity operator on 𝐻.

• ⟨𝐴, 𝐵⟩ = tr(𝐴𝐵∗) is the trace inner product on 𝐵(𝐻), and 𝑈 (𝐻) is the group of
unitary operators on a complex Hilbert space 𝐻.

• For a subset A of 𝐵(𝐻), the commutant A′ = {𝑇 ∈ 𝐵(𝐻) : 𝑇𝐴 = 𝐴𝑇,∀𝐴 ∈ A}.
• Let 𝑥 ∈ 𝐻, 𝑦 ∈ 𝐾 . We will use 𝑥 ⊗ 𝑦 to denote the rank-one operator defined

by 𝑧 ↦→ ⟨𝑧, 𝑦⟩𝑥 for 𝑧 ∈ 𝐾 . Occasionally, 𝑥 ⊗ 𝑦 is also used to denote the tensor
product in 𝐻 ⊗ 𝐾 and the readers should be able to distinguish them from the
context.

• Let 𝜋 be a unitary representation of a group 𝐺, we use 𝑚𝜋 to denote the
representation 𝜋 ⊕ · · · ⊕ 𝜋 (𝑚-copies). Any unitary representation 𝜋 on a finite-
dimensional Hilbert space can be decomposed as

𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 ,

where 𝜋𝑖 are inequivalent irreducible unitary representations.
• For a unitary representation 𝜋 of a group 𝐺 on a Hilbert space 𝐻, we use A𝜋

to denote the algebra generated by 𝜋(𝐺). Clearly A𝜋 = span{𝜋(𝑔) : 𝑔 ∈ 𝐺} which
is a C*-algebra.

• Two unitary representations 𝜋 : 𝐺 → 𝑈 (𝐻) and 𝜎 : 𝐺 → 𝑈 (𝐾) are called disjoint
if they have no equivalent subrepresentations, or equivalently the intertwining space
is trivial, i.e.

Hom(𝜋, 𝜎) = {𝑇 ∈ 𝐵(𝐻, 𝐾) : 𝑇𝜋(𝑔) = 𝜎(𝑔)𝑇} = {0}.
In particular, any two inequivalent irreducible representations are disjoint.

• [𝑑] = {1, 2, . . . , 𝑑}.



90 D. HAN and K. LIU

2.2. Quantum code, independent number and orthogonality index
Let Φ : 𝐵(𝐻) → 𝐵(𝐾) be a quantum channel. Recall that a quantum code C

for a noise quantum channel Φ is a subspace of the Hilbert space such that there
exists another channel Ψ such that

𝜌 = Ψ ◦Φ(𝜌)
for any state 𝜌 supported on C. In this case we say that C is correctable under
the noise channel Φ.

Related to quantum code is the concept of independence number for a quantum
channel Φ, which is the largest integer 𝑚 such that there is an orthonormal
set {𝑥𝑘}𝑚𝑘=1 such that 𝑥𝑘 ⊗ 𝑥ℓ ⊥ 𝐸∗

𝑖 𝐸 𝑗 for all 𝑖, 𝑗 and all 𝑘 ≠ ℓ, where {𝐸𝑖}𝑟𝑖=1
are Kraus operators of Φ. In what follows the independence number of Φ will be
denoted by 𝛼(Φ). This is the same largest integer 𝑚 with which there exists a set of
states 𝜌1, . . . , 𝜌𝑚 ∈ 𝐵(𝐻) such that Φ(𝜌1), . . . ,Φ(𝜌𝑚) can be perfectly distinguished
cf. [15]. The zero-error capacity of a channel Φ is defined in an asymptotic setting
by

C0(Φ) = lim
𝑛→∞

1
𝑛

log𝛼(Φ⊗𝑛),

where Φ⊗𝑛 is the 𝑛-fold quantum channel defined on the 𝐵(𝐻⊗𝑛). It is well known
that the zero-error capacity is even harder to compute than the independence number.
In fact, it is not even known if it is in general a computable quantity in the sense
of Turing cf. [17].

It is known that the independent number is also the largest integer 𝛼(Φ) such
that there exists an orthonormal set {𝑥𝑖}𝑁𝑖=1 with the property Φ(𝑥𝑖 ⊗ 𝑥𝑖) ⊥ Φ(𝑥 𝑗 ⊗ 𝑥 𝑗)
for any 𝑖 ≠ 𝑗 . Motivated by this we define the orthogonality index of Φ, denote
it by 𝛾(Φ), to be the largest number 𝑁 such that there exist 𝑁 nonzero vectors
{𝑥𝑖}𝑁𝑖=1 with the property Φ(𝑥𝑖 ⊗ 𝑥 𝑗) = 0 for any 𝑖 ≠ 𝑗 .

2.3. Covariant quantum channels
Let 𝜋 and 𝜎 be unitary representations of a compact group 𝐺 on C𝑛 and C𝑚,

respectively. We say that Φ is (𝜋, 𝜎)-covariant if
Φ(𝜋(𝑔)𝑇𝜋(𝑔−1)) = 𝜎(𝑔)Φ(𝑇)𝜎(𝑔−1)

holds for every 𝑔 ∈ 𝐺.
Covariant quantum channels form an important class of channels since many

challenging problems in quantum information theory are usually more tractable when
certain symmetries are imposed on the channel. We refer to [5, 9, 14, 18–21, 30,
32, 33, 35] for some recent progresses on theoretical studies of covariant quantum
channels. In particular, in their recent work [30], M. Mozrzymas, M. Studziński and
N. Datta investigated the structure of covariant quantum channels with respect to an
irreducible representation 𝜋 for a finite group 𝐺, and obtained spectral decomposition
of such covariant quantum channels in terms of representation characteristics of the
group 𝐺.
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There is a natural way, called channel twirling, to produce a (𝜋, 𝜎)-covariant
quantum channel from any given quantum channel. Let Φ : 𝐵(𝐻) → 𝐵(𝐾) be
a quantum channel, and 𝜋, 𝜎 be two continuous unitary representations of a group
𝐺 on 𝐻 and 𝐾 , respectively. Then

Ψ(𝑇) =
∫
𝐺

𝜎(𝑔−1)Φ(𝜋(𝑔)𝑇𝜋(𝑔−1))𝜎(𝑔)𝑑𝜇(𝑔)

is a (𝜋, 𝜎)-covariant quantum channel, where 𝜇 is the Haar measure of the compact
group 𝐺. Note that

Ψ(𝑇) = 1
|𝐺 |

∑︁
𝑔∈𝐺

𝜎(𝑔−1)Φ(𝜋(𝑔)𝑇𝜋(𝑔−1))𝜎(𝑔)

if 𝐺 is finite.
Now we consider a special type of covariant quantum channels (the ones twirled

from the identity map). Let 𝜋 : 𝐺 → 𝑈 (𝐻) and 𝜎 : 𝐺 → 𝑈 (𝐾) be two continuous
unitary representations. We define a linear map Φ𝜋,𝜎 : 𝐵(𝐾, 𝐻) → 𝐵(𝐾, 𝐻) by

Φ𝜋,𝜎 (𝑇) =
∫
𝐺

𝜋(𝑔)𝑇𝜎(𝑔−1)𝑑𝜇(𝑔)

and denote Φ𝜋,𝜎 by Φ𝜋 when 𝜋 = 𝜎. Then Φ𝜋 is a 𝜋-covariant quantum channel
which will be called a 𝜋-induced twirling channel. Twirling channels have a long
history in the quantum information literature and have numerous applications. For
example, channels of this form have been used in the contexts of quantum error
correction, quantum data hiding, as well as in the study of quantum entanglement,
and quantum coherence c.f [2, 4, 11, 37].

Here is a list of properties that will be needed for the rest of this paper.

• A′
𝜋 = range(Φ𝜋);

• 𝜋 is irreducible if and only if Φ𝜋 (𝑇) = 1
dim 𝐻

tr(𝑇)𝐼 for every 𝑇 ∈ 𝐵(𝐻);
• Φ𝜋,𝜎 = 0 if and only if 𝜋 and 𝜎 are disjoint. In particular, Φ𝜋,𝜎 = 0 when 𝜋

and 𝜎 are inequivalent irreducible representations.

2.4. Frames and phase-retrievability
Frame theory is closely related to operator-valued measures and consequently to

quantum information theory. Phase retrieval property of a frame is probably the
most relevant part to quantum information theory cf. [34]. Recall that a sequence
{ 𝑓 𝑗} 𝑗∈J is called a frame for a Hilbert space 𝐻 if there are two positive constant
numbers 𝐴, 𝐵 > 0 such that

𝐴∥𝑥∥2 ≤
∑︁
𝑖∈𝐼

|⟨𝑥, 𝑓𝑖⟩|2 ≤ 𝐵∥𝑥∥2

holds for every 𝑥 ∈ 𝐻. A frame is called a tight frame if 𝐴 = 𝐵 and a Parseval frame
if 𝐴 = 𝐵 = 1. A frame { 𝑓 𝑗} 𝑗∈J is a Parseval frame if and only if

∑
𝑗∈J 𝑓 𝑗 ⊗ 𝑓 𝑗 = 𝐼.
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Every frame { 𝑓 𝑗} 𝑗∈J is similar to a Parseval frame in the sense that there is
an invertible operator 𝑆 ∈ 𝐵(𝐻) such that {𝑆 𝑓 𝑗} 𝑗∈J is a Parseval frame. In the
finite-dimensional case, a finite sequence {𝑥𝑖}𝑁𝑖=1 is a frame for 𝐻 if and only if
𝐻 = span{𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑁}.

A phase retrieval frame for a Hilbert space 𝐻 refers to a frame { 𝑓 𝑗} 𝑗∈J in 𝐻

such that the magnitudes of the frame coefficients ⟨𝑥, 𝑓 𝑗⟩ of a signal 𝑥 ∈ 𝐻 uniquely
determine the rank-one state 𝑥 ⊗ 𝑥. More generally, a collection of operators {𝐴 𝑗}∈J
in 𝐵(𝐻) is called a phase retrievable operator-valued frame for 𝐻 if the phaseless
measurements ⟨𝐴 𝑗𝑥, 𝑥⟩ uniquely determine 𝑥 ⊗ 𝑥. It is obvious that a (vector-valued)
frame { 𝑓 𝑗} 𝑗∈J is phase retrievable if and only if { 𝑓 𝑗 ⊗ 𝑓 𝑗} 𝑗∈J is a phase retrievable
operator-valued frame. A natural question is to find the minimal length of a phase
retrievable frame for R 𝑛 and C𝑛.

For an 𝑛-dimensional Hilbert space 𝐻, we will use I𝑛 to denote the smallest
integer 𝑁 such that there is a phase retrievable frame {𝑥 𝑗}𝑁𝑗=1 for 𝐻. The following
is well known in the literature.

Proposition 2.1. If 𝐻 be an 𝑛-dimensional complex Hilbert space, then I𝑛 ≤
4𝑛 − 4. Moreover, every generic frame { 𝑓 𝑗}𝑁𝑗=1 of length 𝑁 ≥ 4𝑛 − 4 is phase
retrievable.

A positive operator-valued measure (POVM for short) or observables on a Hilbert
space 𝐻 is a collection of positive operators {𝐹𝑖} in 𝐵(𝐻) such that

∑
𝑗∈J 𝐹𝑗 = 𝐼𝐻 .

A POVM {𝐹𝑗} 𝑗∈J is information complete (cf. [34]) if {⟨𝑥, 𝐹𝑗𝑥⟩} 𝑗∈J uniquely
determines the pure state 𝑥 ⊗ 𝑥. In other words, an information complete POVM is
a phase retrievable operator-valued frame. For a quantum channel Φ : 𝐵(𝐻) → 𝐵(𝐾),
its adjoint Φ∗ is unital and hence {Φ∗(𝐹𝑗)} 𝑗∈J is a POVM for 𝐻 whenever {𝐹𝑗} 𝑗∈J
is a POVM for 𝐾 . In the Heisenberg picture of quantum channels, a POVM in 𝐾

are the observables that are used to measure a state 𝜌 in 𝐵(𝐻) with measurement
⟨𝜌,Φ∗(𝐹𝑗)⟩ = tr(𝜌Φ∗(𝐹𝑗)) = tr(Φ(𝜌)𝐹𝑗).

It is important that a quantum channel Φ admits a POVM on 𝐾 that distinguishes
the pure states from 𝐻 (cf. [13, 36]). Such a quantum channel was called in [29]
phase retrievable, and some characterizations were discussed in terms of the Kraus
operators. Clearly many quantum channels are not phase retrievable. For this reason,
we introduce the following definition.

Definition 2.1. A subspace 𝑀 of 𝐻 is called phase retrievable under a quantum
channel Φ : 𝐵(𝐻) → 𝐵(𝐾) if there exists a POVM {𝐹𝑗} 𝑗∈J in 𝐵(𝐾) such that
{𝑃𝑀Φ∗(𝐹𝑗)𝑃𝑀 } 𝑗∈J is a phase retrievable operator-valued frame for 𝑀 , where 𝑃𝑀

is the orthogonal projection onto 𝑀 .

We will point out later that 𝑀 is called phase retrievable subspace for Φ if
and only if Φ is pure state injective on 𝑀 , i.e. Φ(𝑥 ⊗ 𝑥) = Φ(𝑦 ⊗ 𝑦) implies that
𝑥 ⊗ 𝑥 = 𝑦 ⊗ 𝑦 for 𝑥, 𝑦 ∈ 𝑀 . The phase retrievability index pr(Φ𝜋) is defined to be
the largest integer 𝑘 such that there exits a 𝑘-dimensional subspace 𝑀 ⊂ 𝐻 such
that 𝑀 is phase retrievable under Φ. We will examine pr(Φ𝜋) in Section 5.
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3. Quantum codes and independence numbers of Φ𝜋

Recall that a quantum code C for a noise quantum channel Φ is a subspace of
the Hilbert space such that there exists another channel Ψ such that

𝜌 = Ψ ◦Φ(𝜌)
for any state 𝜌 supported on C. We need the following lemma.

Lemma 3.1. Let C be a subspace of 𝐻, and let 𝑃 be the orthogonal projections
onto C. Suppose Φ is a quantum channel with Kraus operators {𝐸𝑖}𝑟𝑖=1. Then the
following are equivalent:

(i) C is a quantum code for Φ.
(ii) There exists a Hermitian matrix 𝐴 = [𝑎𝑖 𝑗] such that 𝑃𝐸∗

𝑖 𝐸 𝑗𝑃 = 𝑎𝑖 𝑗𝑃 holds for
all 𝑖, 𝑗 .

(iii) For any orthonormal basis {𝑥𝑘}𝑚𝑘=1 of C, 𝑥𝑘 ⊗ 𝑥ℓ ⊥ 𝐸∗
𝑖 𝐸 𝑗 for all 𝑖, 𝑗 and all

𝑘 ≠ ℓ.
(iv) For any orthonormal basis {𝑥𝑘}𝑚𝑘=1 of C, Φ(𝑥𝑘 ⊗ 𝑥𝑘) ⊥ Φ(𝑥ℓ ⊗ 𝑥ℓ) for any

𝑘 ≠ ℓ.

Proof: The equivalence of (i), (ii) and (iii) are well known (cf. Theorem 5.2 [6]).
(iii) ⇔ (iv): Note that

⟨Φ(𝑥𝑘 ⊗ 𝑥𝑘),Φ(𝑥ℓ ⊗ 𝑥ℓ)⟩ =
𝑟∑︁

𝑖, 𝑗=1
tr((𝐸𝑖𝑥𝑘 ⊗ 𝐸𝑖𝑥𝑘) (𝐸 𝑗𝑥ℓ ⊗ 𝐸 𝑗𝑥ℓ))

and tr((𝐸𝑖𝑥𝑘 ⊗ 𝐸𝑖𝑥𝑘) (𝐸 𝑗𝑥ℓ ⊗ 𝐸 𝑗𝑥ℓ)) ≥ 0. Therefore ⟨Φ(𝑥𝑖 ⊗ 𝑥𝑖),Φ(𝑥 𝑗 ⊗ 𝑥 𝑗)⟩ = 0 if
and only if

|⟨𝐸 𝑗𝑥ℓ , 𝐸𝑖𝑥𝑘⟩|2 = tr((𝐸𝑖𝑥𝑘 ⊗ 𝐸𝑖𝑥𝑘) (𝐸 𝑗𝑥ℓ ⊗ 𝐸 𝑗𝑥ℓ) = 0. □

By Lemma 3.1, the independence number 𝑚 for a quantum channel Φ is the
largest integer 𝑚 such that there is an orthonormal set {𝑥𝑘}𝑚𝑘=1 such that Φ(𝑥𝑘 ⊗ 𝑥𝑘)
and Φ(𝑥ℓ ⊗ 𝑥ℓ) are orthogonal in the trace inner product for any 𝑘 ≠ ℓ, where
{𝐸𝑖}𝑟𝑖=1 are Kraus operators of Φ. Moreover, if C is a quantum code for Φ, then
Lemma 3.1 also implies that 𝛼(Φ) ≥ dimC, and hence

𝛼(Φ) ≥ max{dimC : C is a quantum code for Φ}.
In what follows we will use 𝛽(Φ) to denote the right-hand-side of the above
inequality. The following simple example shows that the equality does not hold in
general.

Example 3.1. Let Φ : 𝑀2×2(C) → 𝑀2×2(C) be a quantum channel with Kraus
operators 𝐸1 = 𝑒1 ⊗ 𝑒1 and 𝐸2 = 𝑒2 ⊗ 𝑒2. Then Φ(𝑒1 ⊗ 𝑒1) ⊥ Φ(𝑒2 ⊗ 𝑒2), and hence
𝛼(Φ) = 2. However, C2 is not a correctable quantum code for Φ since condition
(ii) in Lemma 3.1 is not satisfied. Thus 𝛽(Φ) = 1.

On the other hand there are plenty of quantum channels when the equality holds.
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Example 3.2. Let Φ : 𝐵(𝐻) → 𝐵(𝐻 ⊕ 𝐻) be a quantum channel with Kraus
operators 𝐸1, 𝐸2 defined by 𝐸1𝑥 = 1√

2
(𝑥 ⊕ 0) and 𝐸2𝑥 = 1√

2
(0 ⊕ 𝑥) for any 𝑥 ∈ 𝐻.

Then 𝐸∗
1𝐸1 = 𝐸∗

2𝐸2 = 1
2 𝐼𝐻 , and 𝐸∗

𝑖 𝐸 𝑗 = 0 if 𝑖 ≠ 𝑗 . Thus 𝐻 is a quantum code for
Φ, and hence 𝛼(Φ) = 𝛽(Φ) = dim𝐻.

It is natural to explore necessary and/or sufficient conditions under which the
equality holds. We will prove that the equality holds for a twirling channel Φ𝜋 if
and only if 𝜋 is unitarily equivalent to 𝑚𝜎 for some irreducible representation 𝜎

and 𝑚 ∈ N. We first show that 𝛼(Φ𝜋) =
∑𝑑

𝑖=1 𝑚𝑖.

Theorem 3.1. Suppose that 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 is a unitary representation
of 𝐺 on a Hilbert space 𝐻, where each 𝜋𝑖 is irreducible and 𝜋𝑖, 𝜋 𝑗 are inequivalent
for ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then 𝛼(Φ𝜋) =

∑𝑑
𝑖=1 𝑚𝑖.

Proof: Let A𝜋 be the C*-algebra generated by 𝜋(𝐺). Then

A𝜋 = (𝐼𝑚1 ⊗ 𝐵(𝐻1)) ⊕ · · · ⊕ (𝐼𝑚𝑑
⊗ 𝐵(𝐻𝑑)),

where 𝐼𝑚𝑖
is the identity matrix on C𝑚𝑖 . Let {𝑒𝑖 𝑗}𝑚𝑖

𝑗=1 be the canonical orthonormal
basis for C𝑚𝑖 and pick a unit vector 𝑥𝑖 ∈ 𝐻𝑖. Set 𝑥𝑖 𝑗 = 𝑒𝑖 𝑗 ⊗ 𝑥𝑖 viewing it as
a vector in 𝐻 by considering C𝑚𝑖 ⊗ 𝐻𝑖 as a subspace of 𝐻. Then it is obvious
that ⟨𝑥𝑖 𝑗 , 𝐴𝑥𝑘ℓ⟩ = 0 for all (𝑖, 𝑗) ≠ (𝑘, ℓ) and all 𝐴 ∈ A𝜋 . This implies that
𝛼(Φ𝜋) ≥

∑𝑑
𝑖=1 𝑚𝑖.

Conversely, suppose 𝑥1, . . . , 𝑥𝑁 is a collection of nonzero vectors in 𝐻 such
that ⟨𝑥𝑖, 𝐴𝑥𝑘⟩ = 0 for all 𝑖 ≠ 𝑘 and for all 𝐴 ∈ A𝜋 . Let 𝑀𝑖 = A𝜋𝑥𝑖. Then we
have that 𝑀𝑖 ⊥ 𝑀 𝑗 for all 𝑖 ≠ 𝑗 and each 𝑀𝑖 is 𝜋-invariant. Let 𝜎𝑖 be the
restriction of 𝜋 to 𝑀𝑖. Then each 𝜎𝑖 is a unitary representation and 𝜎1 ⊕ · · · ⊕ 𝜎𝑁

is a subrepresentation of 𝜋. Since 𝜋 is the direct sum of only 𝑚1 + · · · + 𝑚𝑑

number of irreducible subrepresentations, we get that 𝑁 ≤ ∑𝑑
𝑖=1 𝑚𝑖 which implies

that 𝛼(Φ𝜋) ≤
∑𝑑

𝑖=1 𝑚𝑖. Thus we proved the claim that 𝛼(Φ𝜋) =
∑𝑑

𝑖=1 𝑚𝑖. □

To prove 𝛽(Φ𝜋) = max{𝑚1, . . . , 𝑚𝑑} we first consider the following special case.

Lemma 3.2. If 𝜋 = 𝑚𝜎 = 𝐼𝑚 ⊗ 𝜎 acting on C𝑚 ⊗ 𝐾 such that 𝜎 : 𝐺 → 𝑈 (𝐾) is
irreducible, then 𝛼(Φ𝜋) = 𝛽(Φ𝜋) = 𝑚.

Proof: First, by Theorem 3.1, we know that 𝛼(Φ𝜋) = 𝑚. Now fix a unit vector
𝑥 ∈ 𝐾 and let 𝑥𝑖 = 𝑒𝑖 ⊗ 𝑥, where {𝑒𝑖}𝑚𝑖=1 is the canonical orthonormal basis for C𝑚.
Let C = span{𝑥𝑖}𝑚𝑖=1 = C𝑚 ⊗ 𝑥. It is enough to show that C is a quantum code
for Φ. For any 𝑢 = c ⊗ 𝑥, 𝑣 = d ⊗ 𝑥 ∈ C such that 𝑢 ⊥ 𝑣, we have that c ⊥ d. Since
A𝜋 = 𝐼𝑚 ⊗ 𝐵(𝐾), we get

⟨𝑢, 𝐴𝑣⟩ = ⟨c, d⟩ · ⟨𝑥, 𝑇𝑥⟩ = 0

for any 𝐴 = 𝐼𝑚 ⊗ 𝑇 ∈ A𝜋 , which implies by Lemma 3.1 that C is a quantum code.
Thus we obtain 𝛼(Φ𝜋) = 𝛽(Φ𝜋). □
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Theorem 3.2. Suppose that 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 is a unitary representation
of 𝐺 on a Hilbert space 𝐻, where 𝜋𝑖 is irreducible and 𝜋𝑖, 𝜋 𝑗 are inequivalent for
∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then 𝛽(Φ𝜋) = max{𝑚1, . . . , 𝑚𝑑}.

Proof: Let C be a quantum code of dimension 𝑁 for Φ𝜋 . Let {𝑢 𝑗}𝑁𝑖=1 be an
orthonormal basis for C, and 𝑃𝑖 be the orthogonal projection onto the subspace
C𝑚𝑖 ⊗ 𝐻𝑖. Since 𝑃1 + · · · + 𝑃𝑑 = 𝐼, there exists an 𝑖 such that 𝑃𝑖𝑢1 ≠ 0. For any
fixed index 𝑗 ≥ 2, 𝑢1 + 𝑢 𝑗 , 𝑢1 − 𝑢 𝑗 are two orthogonal vectors in C. Since C is
a quantum code, we get that 𝑢1 ⊥ A𝜋𝑢 𝑗 and 𝑢1 + 𝑢 𝑗 ⊥ A𝜋 (𝑢1 − 𝑢 𝑗). In particular,
since 𝑃𝑖 ∈ A𝜋 we have

⟨𝑢 𝑗 , 𝑃𝑖𝑢1⟩ = 0 and ⟨𝑢1 + 𝑢 𝑗 , 𝑃𝑖 (𝑢1 − 𝑢 𝑗)⟩ = 0.
The above two combined imply that 𝑃𝑢 𝑗 ⊥ 𝑃𝑢1 and ∥𝑃𝑖𝑢 𝑗 ∥ = ∥𝑃𝑖𝑢1∥. With the
same argument by replacing 𝑢1 by 𝑢 𝑗 , and 𝑗 by another index 𝑗 ′, we clearly
get that {𝑃𝑖𝑢 𝑗}𝑁𝑗=1 is an orthogonal set of nonzero vectors in C𝑚𝑖 ⊗ 𝐻𝑖 such
that 𝑃𝑖𝑢 𝑗 ⊥ A𝑚𝑖 𝜋𝑖𝑃𝑖𝑢 𝑗′ for any 𝑗 ≠ 𝑗 ′. Thus 𝑁 ≤ 𝛼(Φ𝑚𝑖 𝜋) = 𝑚𝑖, and therefore
𝛽(Φ𝜋) ≤ max{𝑚𝑖 : 1 ≤ 𝑖 ≤ 𝑑}.

On the other hand, without losing the generality we can assume that 𝑚1 =

max{𝑚𝑖 : 𝑖 = 1, . . . , 𝑑}. By Lemma 3.2, there is an 𝑚1-dimensional quantum
code C1 in C𝑚1 ⊗ 𝐻1 for Φ𝑚1 𝜋1 . Clearly C = C1 ⊕ 0 ⊕ · · · ⊕ 0 is a quantum code
of Φ𝜋 . Thus we have 𝛽(Φ𝜋) ≥ dimC = 𝑚1, and consequently we have proved
𝛽(Φ𝜋) = max{𝑚1, . . . , 𝑚𝑑}. □

Corollary 3.1. Let 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 be a unitary representation of 𝐺
on a Hilbert space 𝐻, where 𝜋𝑖 is irreducible and 𝜋𝑖, 𝜋 𝑗 are inequivalent for
∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then 𝛼(Φ𝜋) = 𝛽(Φ𝜋) if and only if 𝑑 = 1.

Proof: If 𝑑 = 1, then 𝛼(Φ𝜋) = 𝛽(Φ𝜋) follows from Lemma 3.2. Conversely, since
𝛼(Φ𝜋) = 𝑚1 + · · · +𝑚𝑑 and 𝛽(Φ𝜋) = max{𝑚1, . . . , 𝑚𝑑}, we immediately get 𝑑 = 1 if
𝛼(Φ𝜋) = 𝛽(Φ𝜋). □

Let 𝐺 be a group and 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 be a unitary representation of 𝐺
onto a finite-dimensional Hilbert space 𝐻. Let 𝐺𝑛 = {g = (𝑔1, . . . , 𝑔𝑛) : 𝑔𝑖 ∈ 𝐺} be
the product group and 𝜋⊗𝑛𝜋 be the unitary presentation of 𝐺 on 𝐻⊗𝑛 defined by

𝜋⊗𝑛𝜋 (g) = 𝜋(𝑔1) ⊗ · · · ⊗ 𝜋(𝑔𝑛), ∀g ∈ 𝐺𝑛.

Theorem 3.3. Let 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 be a unitary representation of 𝐺

on a Hilbert space 𝐻, where 𝜋𝑖 is irreducible and 𝜋𝑖, 𝜋 𝑗 are inequivalent for
∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then

C0(Φ𝜋) = log
( 𝑑∑︁
𝑖=1

𝑚𝑖

)
.

Proof: Write [𝑑]𝑛 = {(𝑘1, . . . , 𝑘𝑛) : 𝑘𝑖 ∈ [𝑑]}. The 𝜋⊗𝑛𝜋 has the decomposition of
the form

𝜋⊗𝑛𝜋 =

⊕∑︁
(𝑘1 ,...,𝑘𝑛 ) ∈ [𝑑 ]𝑛

𝑚𝑘1 · · ·𝑚𝑘𝑛 (𝜋𝑘1 ⊗ · · · ⊗ 𝜋𝑘𝑛)
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Note that 𝜋𝑘1 ⊗ · · · ⊗ 𝜋𝑘𝑛 is irreducible, and 𝜋𝑘1 ⊗ · · · ⊗ 𝜋𝑘𝑛 , 𝜋𝑘′1 ⊗ · · · ⊗ 𝜋𝑘′𝑛 are
inequivalent whenever (𝑘1, . . . , 𝑘𝑛) ≠ (𝑘 ′1, . . . , 𝑘 ′𝑛) (This can be easily checked by
comparing their characters). Thus, by Theorem 3.1, we get

𝛼(Φ⊗𝑛
𝜋 ) = 𝛼(Φ𝜋⊗𝑛) =

∑︁
(𝑘1 ,...,𝑘𝑛 ) ∈ [𝑑 ]𝑛

𝑚𝑘1𝑚𝑘2 · · ·𝑚𝑘𝑛 = (𝑚1 + · · · + 𝑚𝑑)𝑛,

and hence C0(Φ𝜋) = lim𝑛→∞
1
𝑛

log𝛼(Φ⊗𝑛
𝜋 ) = log(∑𝑑

𝑖=1 𝑚𝑖). □

4. Orthogonality index of Φ𝜋

Recall that the orthogonality index of a quantum channel Φ, denoted by 𝛾(Φ),
is the largest number 𝑁 such that there exists {𝑥𝑖}𝑁𝑖=1 such that Φ(𝑥𝑖 ⊗ 𝑥 𝑗) = 0
for any 𝑖 ≠ 𝑗 . This is a concept related to strongly disjoint frames that plays
extremely important roles in frame theory and in establishing a Balian-Low type of
duality principle for group representation frames cf. [1, 16, 24, 25]. Let {𝑥𝑖}𝑁𝑖=1 be
a sequence in a Hilbert space 𝐻 and {𝑦𝑖}𝑁𝑖=1 be a sequence in a Hilbert space 𝐾 .
We say that {𝑥𝑖}𝑁𝑖=1 {𝑦𝑖}𝑁𝑖=1 are strongly disjoint if

∑𝑁
𝑖=1⟨𝑥, 𝑥𝑖⟩𝑦𝑖 = 0 for all 𝑥 ∈ 𝐻, or

equivalently,
∑𝑁

𝑖=1 𝑦𝑖 ⊗ 𝑥𝑖 = 0. Consequently, Φ𝜋 (𝑥 ⊗ 𝑦) = 0 if and only if {𝜋(𝑔)𝑥}𝑔∈𝐺
and {𝜋(𝑔)𝑦}𝑔∈𝐺 are strongly disjoint. In this case we also say that 𝑥 and 𝑦 are
𝜋-orthogonal [16].

Lemma 4.1. Let 𝜋 : 𝐺 → 𝑈 (𝐻) be a unitary representation and 𝑥, 𝑦 ∈ 𝐻. Then
Φ𝜋 (𝑥 ⊗ 𝑦) = 0 if and only if 𝑥 ⊥ A′

𝜋𝑦.

Proof: Recall that A′
𝜋 = range(Φ) and Φ = Φ∗. Thus we have

⟨𝑇,Φ(𝑥 ⊗ 𝑦)⟩ = ⟨Φ(𝑇), 𝑥 ⊗ 𝑦⟩ = ⟨Φ(𝑇)𝑥, 𝑦⟩
which implies that Φ(𝑥 ⊗ 𝑦) = 0 if and only if 𝑥 ⊥ Φ(𝑇)𝑦 for every 𝑇 ∈ 𝐵(𝐻).
Thus we get that 𝑥 and 𝑦 are 𝜋-orthogonal if and only if 𝑥 ⊥ A′

𝜋𝑦. □

We remark that since A′
𝜋 is a C*-algebra, we have that A′

𝜋𝑥 ⊥ A′
𝜋𝑦 if and

only if 𝑥 ⊥ A′
𝜋𝑦.

Lemma 4.2. If 𝜋 = 𝑚𝜎 : 𝐺 → 𝑈 (𝐻) acting on 𝐻 = C𝑚 ⊗ 𝐾 such that 𝜎 : 𝐺 →
𝑈 (𝐾) is irreducible, then 𝛾(Φ𝜋) = dim𝐾 .

Proof: If Φ𝜋 (𝑥 ⊗ 𝑦) = 0 for some 𝑥, 𝑦 ∈ 𝐻 = C𝑚 ⊗ 𝐾 , then by Lemma 4.1 we
have A′

𝜋𝑥 ⊥ A′
𝜋𝑦, where A′

𝜋 = 𝑀𝑚(C) ⊗ 𝐼. Note that we can always write 𝑥, 𝑦

in the form of 𝑥 =
∑𝑚

𝑖=1 𝑒𝑖 ⊗ 𝑥𝑖 and 𝑦 =
∑𝑚

𝑖=1 𝑒𝑖 ⊗ 𝑦𝑖 for some 𝑥𝑖, 𝑦𝑖 ∈ 𝐾 , where
{𝑒𝑖}𝑚𝑖=1 is the canonical orthonormal basis for C𝑚. Let 𝐸𝑖𝑖 = 𝑒𝑖 ⊗ 𝑒𝑖 ∈ 𝑀𝑚(C). Since
𝐸𝑖𝑖 ⊗ 𝐼 ∈ A′

𝜋 , we get

⟨𝑥𝑖, 𝑦 𝑗⟩ = ⟨(𝐸𝑖𝑖 ⊗ 𝐼)𝑥, (𝐸 𝑗 𝑗 ⊗ 𝐼)𝑦⟩ = 0

for all 𝑖, 𝑗 ∈ [𝑚].
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Now, let {𝑢𝑖}𝑁𝑗=1 be an orthonormal set in 𝐻 such that Φ𝜋 (𝑢𝑖 ⊗ 𝑢 𝑗) = 0 for any
𝑖 ≠ 𝑗 . Write 𝑢𝑖 =

∑𝑚
𝑗=1 𝑒𝑖 ⊗ 𝑢𝑖 𝑗 , where 𝑢𝑖 𝑗 ∈ 𝐾 . For each 𝑖, pick an index 𝑛𝑖 such

that 𝑢𝑖𝑛𝑖 ≠ 0. Then by the above argument we get that {𝑢𝑖𝑛𝑖 }𝑁𝑖=1 is an orthogonal set
of nonzero vectors in 𝐾 . This implies that 𝑁 ≤ dim𝐾 , and hence 𝛾(Φ𝜋) ≤ dim𝐾 .

On the other hand, let {𝑢𝑖}𝑛𝑖=1 be an orthonormal basis for 𝐾 and let 𝑥𝑖 = 𝑒1⊗𝑢𝑖 ∈ 𝐻
for 𝑖 ∈ [𝑛]. Then clearly we have A′

𝜋𝑥𝑖 ⊥ A′
𝜋𝑥 𝑗 for any 𝑖 ≠ 𝑗 . Thus 𝛾(Φ𝜋) ≥ dim𝐾 ,

which completes the proof. □

Now we prove for the general case.

Theorem 4.1. Suppose that 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 is a unitary representation
of 𝐺 on a Hilbert space 𝐻, where each 𝜋𝑖 is an irreducible representation on 𝐻𝑖

and 𝜋𝑖, 𝜋 𝑗 are inequivalent for ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then 𝛾(Φ𝜋) =
∑𝑘

𝑖=1 𝑛𝑖, where
𝑛𝑖 = dim𝐻𝑖.

Proof: Since A𝜋 = (𝐼𝑚1 ⊗ 𝐵(𝐻1)) ⊕ · · · ⊕ (𝐼𝑚𝑑
⊗ 𝐵(𝐻𝑑)), we get that

A′
𝜋 = (𝑀𝑚1 (C) ⊗ 𝐼𝐻1) ⊕ · · · ⊕ (𝑀𝑚𝑑

(C) ⊗ 𝐼𝐻𝑑
).

By Lemma 4.2, there is an orthonormal basis {𝑥𝑖 𝑗}𝑛𝑖𝑗=1 for C𝑚𝑖 ⊗ 𝐻𝑖 that

𝑥𝑖 𝑗 ⊥ (𝑀𝑚𝑖
(C) ⊗ 𝐼𝐻𝑖

)𝑥𝑖𝑘
for 1 ≤ 𝑗 ≠ 𝑘 ≤ 𝑚𝑖. This implies that

𝑥𝑖 𝑗 ⊥ A′
𝜋𝑥𝑘ℓ

whenever (𝑖, 𝑗) ≠ (𝑘, ℓ). Thus, Φ𝜋 (𝑥𝑖 𝑗 ⊗ 𝑥𝑘ℓ) = 0 for all (𝑖, 𝑗) ≠ (𝑘, ℓ), which implies
that 𝛾(Φ𝜋) ≥

∑𝑑
𝑖=1 𝑛𝑖.

For the other direction of the inequality, let 𝑁 = 𝛾(Φ𝜋). Then there exists an
orthonormal set {𝑥 𝑗}𝑁𝑗=1 for 𝐻 such that 𝑥 𝑗 ⊥ A′

𝜋𝑥𝑘 for all 𝑗 ≠ 𝑘 . Let 𝑃𝑖 be the
orthogonal projection onto the subspace C𝑚𝑖 ⊗ 𝐻𝑖. Then 𝑃𝑖 ∈ A′

𝜋 . This implies that
𝑃𝑖𝑥 𝑗 ⊥ A′

𝑚𝑖 𝜋𝑖
𝑃𝑖𝑥𝑘 for all 𝑘 ≠ ℓ and every 𝑖. In particular, we have 𝑃𝑖𝑥 𝑗 ⊥ 𝑃𝑖𝑥𝑘 for

all 𝑗 ≠ 𝑘 . Define subsets Λ1, . . . ,Λ𝑑 of {1, . . . , 𝑁} inductively by

Λ1 = { 𝑗 ∈ [𝑁] : 𝑃1𝑥 𝑗 ≠ 0}
and

Λ𝑖 = { 𝑗 ∉ Λ𝑖−1 : 𝑃𝑖𝑥 𝑗 ≠ 0}

for 2 ≤ 𝑖 ≤ 𝑑. Then [𝑁] = ∪𝑑
𝑖=1Λ𝑖. Let 𝑦 𝑗 = 𝑃1𝑥 𝑗 for 𝑗 ∈ Λ1. Then {𝑦 𝑗} 𝑗∈Λ1 is

a collection of nonzero orthogonal vectors such that 𝑦 𝑗 ⊥ A′
𝑚𝑖 𝜋𝑖

𝑦𝑘 for all 𝑘 ≠ ℓ

in Λ1. Thus, by Lemma 4.2, we have |Λ1 | ≤ 𝑛1. With the same arguments we also
have |Λ𝑖 | ≤ 𝑛𝑖 for 𝑖 = 2, . . . , 𝑑. Therefore we get 𝛾(Φ𝜋) = 𝑁 =

∑𝑑
𝑖=1 |Λ𝑖 | ≤

∑𝑑
𝑖=1 𝑛𝑖,

which completes the proof. □

Note that 𝛾(Φ) can be considered as a “dual object" of 𝛼(Φ). Similarly it is
natural to consider a “dual version" of 𝛽(Φ). For this let us define 𝜏(Φ) to be
the largest integer 𝐿 such that there exists an 𝐿-dimensional subspace 𝑀 with the
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property that Φ(𝑥 ⊗ 𝑦) = 0 whenever 𝑥 ⊥ 𝑦 and 𝑥, 𝑦 ∈ 𝑀 . We have the following
dual theorem of Theorem 3.2.

Theorem 4.2. Suppose that 𝜋 = 𝑚1𝜋1⊕· · ·⊕𝑚𝑑𝜋𝑑 is a unitary representation of 𝐺
on a Hilbert space 𝐻 = (C𝑚1 ⊗𝐻1) ⊕ · · · ⊕ (C𝑚𝑑 ⊗𝐻𝑑), where 𝜋𝑖, 𝜋 𝑗 are inequivalent
irreducible representations for ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then 𝜏(Φ𝜋) = max{𝑛1, . . . , 𝑛𝑑}, where
𝑛𝑖 = dim𝐻𝑖 for each 𝑖 ∈ [𝑑].

Proof: We first show that 𝜏(Φ𝜋) ≥ 𝑛𝑖 for every 𝑖 ∈ [𝑑]. It suffices to check
that 𝜏(Φ𝜋) ≥ 𝑛1. Let 𝑀 = 𝑒1 ⊗ 𝐻1. Then two vectors 𝑥 = 𝑒1 ⊗ 𝑢, 𝑦 = 𝑒1 ⊗ 𝑣 ∈ 𝑀
are orthogonal if and only if 𝑢 and 𝑣 are orthogonal vectors in 𝐻1 Thus for any
𝐵 = (𝐵1 ⊗ 𝐼𝐻1) ⊕ · · · ⊕ (𝐵𝑑 ⊗ 𝐼𝐻𝑑

) ∈ A′
𝜋 we get ⟨𝑥, 𝐵𝑦⟩ = ⟨𝑒1, 𝐵1𝑒1⟩ · ⟨𝑢, 𝑣⟩ = 0, which

implies by Lemma 4.1 that Φ𝜋 (𝑥 ⊗ 𝑦) = 0. Thus 𝜏(Φ𝜋) ≥ 𝑛1, and therefore we get
𝜏(Φ𝜋) ≥ max{𝑛1, . . . , 𝑛𝑑}.

Now let 𝑀 be a subspace such that Φ𝜋 (𝑥 ⊗ 𝑦) = 0 whenever 𝑥, 𝑦 ∈ 𝑀 are
orthogonal vectors. Let {𝑢 𝑗}𝑁𝑖=1 be an orthonormal basis for 𝑀 , and 𝑃𝑖 be the
orthogonal projection onto the subspace C𝑚𝑖 ⊗𝐻𝑖. Since 𝑢1 ≠ 0 and 𝑃1 + · · · +𝑃𝑑 = 𝐼,
there exists an index 𝑖 such that 𝑃𝑖𝑢1 ≠ 0. For any fixed index 𝑗 ≥ 2, 𝑢1 +𝑢 𝑗 , 𝑢1 −𝑢 𝑗

are two orthogonal vectors in 𝑀 . Thus 𝑢1 ⊥ A′
𝜋𝑢 𝑗 and 𝑢1 +𝑢 𝑗 ⊥ A′

𝜋 (𝑢1 −𝑢 𝑗). Since
𝑃𝑖 ∈ A′

𝜋 we get
⟨𝑢 𝑗 , 𝑃𝑖𝑢1⟩ = 0 and ⟨𝑢1 + 𝑢 𝑗 , 𝑃𝑖 (𝑢1 − 𝑢 𝑗)⟩ = 0.

The above two combined to imply that 𝑃𝑢𝑖 ⊥ 𝑃𝑢1 and ∥𝑃𝑖𝑢 𝑗 ∥ = ∥𝑃𝑖𝑢1∥. With
the same argument by replacing 𝑢1 by 𝑢 𝑗 , and 𝑗 by another index 𝑗 ′, we clearly
get that {𝑃𝑖𝑢 𝑗}𝑁𝑗=1 is an orthogonal set of nonzero vectors in C𝑚𝑖 ⊗ 𝐻𝑖 such that
𝑃𝑖𝑢 𝑗 ⊥ A′

𝑚𝑖 𝜋𝑖
𝑃𝑖𝑢 𝑗′ for any 𝑗 ≠ 𝑗 ′. Thus 𝑁 ≤ 𝛾(Φ𝑚𝑖 𝜋), and hence it follows from

Theorem 4.1 that 𝑁 ≤ 𝑛𝑖. Therefore we get 𝑁 ≤ max{𝑛𝑖 : 1 ≤ 𝑖 ≤ 𝑑} and hence
𝜏(Φ𝜋) ≤ max{𝑛𝑖 : 1 ≤ 𝑖 ≤ 𝑑}, which completes the proof. □

5. Phase-retrievability of Φ𝜋

We first point out the following and provide its proof for self-completeness.
Lemma 5.1. [29] Let Φ : 𝐵(𝐻) → 𝐵(𝐾) be a quantum channel and 𝑀 be

a subspace of 𝐻. The the following are equivalent:
(i) There exists a POVM {𝐹𝑗}𝑁𝑗=1 such that {⟨𝑥,Φ∗(𝐹𝑗)𝑥⟩}𝑁𝑗=1 uniquely determines

𝑥 ⊗ 𝑥 for every 𝑥 ∈ 𝑀 (In this case we say that Φ is phase retrievable on 𝑀).
(ii) 𝑥 ⊗ 𝑥 = 𝑦 ⊗ 𝑦 whenever Φ(𝑥 ⊗ 𝑥) = Φ(𝑦 ⊗ 𝑦) and 𝑥, 𝑦 ∈ 𝑀 (In this case we say

that Φ is pure state injective on 𝑀).
Proof: (i) ⇒ (ii): Let {𝐹𝑗} 𝑗∈J be a POVM in 𝐵(𝐾) such that {⟨𝑥,Φ∗(𝐹𝑗)𝑥⟩}𝑁𝑗=1

uniquely determines 𝑥 ⊗ 𝑥 for every 𝑥 ∈ 𝑀 . If Φ(𝑥 ⊗ 𝑥) = Φ(𝑦 ⊗ 𝑦) with 𝑥, 𝑦 ∈ 𝑀 ,
then we have

⟨𝑥 ⊗ 𝑥,Φ∗(𝐹𝑗)⟩ = ⟨Φ(𝑥 ⊗ 𝑥), 𝐹𝑗⟩ = ⟨Φ(𝑦 ⊗ 𝑦), 𝐹𝑗⟩ = ⟨𝑦 ⊗ 𝑦,Φ∗(𝐹𝑗)⟩
for all 𝑗 ∈ J, and hence 𝑥 ⊗ 𝑥 = 𝑦 ⊗ 𝑦. Therefore Φ is pure-state injective.
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(ii) ⇒ (i): Assume that Φ is pure-state injective on 𝑀 . Let {𝐹𝑗} 𝑗∈J be
a POVM such that span{𝐹𝑗 : 𝑗 ∈ J} coincides with the space of all self-adjoint
operators of 𝐵(𝐾). Then ⟨𝑥 ⊗ 𝑥,Φ∗(𝐹𝑗)⟩ = ⟨𝑦 ⊗ 𝑦,Φ∗(𝐹𝑗)⟩, where 𝑥, 𝑦 ∈ 𝑀 , implies
tr(Φ(𝑥 ⊗ 𝑥)𝐹𝑗) = tr(Φ(𝑦 ⊗ 𝑦)𝐹𝑗) for all 𝑗 , which implies that Φ(𝑥 ⊗ 𝑥) = Φ(𝑦 ⊗ 𝑦).
Therefore 𝑥 ⊗ 𝑥 = 𝑦 ⊗ 𝑦 and hence we get (i). □

Recall that pr(Φ𝜋) is the largest integer 𝑘 such that there exits a 𝑘-dimensional
subspace 𝑀 ⊂ 𝐻 such that 𝑀 is phase retrievable under Φ.

Lemma 5.2. Suppose that 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕𝑚𝑑𝜋𝑑 is a unitary representation of 𝐺
on a Hilbert space 𝐻, where each 𝜋𝑖 is an irreducible representation on 𝐻𝑖, and
𝜋𝑖, 𝜋 𝑗 are inequivalent for ∀1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑑. Then pr(Φ𝜋) ≥ max{𝑚1, . . . , 𝑚𝑑} = 𝛽(Φ𝜋).

Proof: It suffices to show that pr(Φ𝜋) ≥ 𝑚1. Fix a unit vector 𝑢 ∈ 𝐻1 and let
𝑀 = C𝑚1 ⊗ 𝑢. Then for any 𝑥 = a ⊗ 𝑢, we can write the rank-one operator 𝑥 ⊗ 𝑥 in
the matrix form

𝑥 ⊗ 𝑥 = [𝑎𝑖𝑥 ⊗ 𝑎 𝑗𝑥]𝑚1×𝑚1 ,

where a = (𝑎1, . . . , 𝑎𝑚1). Thus Φ𝜋 (𝑥 ⊗ 𝑥) = [Φ𝜋1 (𝑎𝑖𝑢 ⊗ 𝑎 𝑗𝑢)]𝑚1×𝑚1 . Since 𝜋1 is
irreducible, we know that Φ𝜋1 (𝑇) =

1
𝑛1

tr(𝑇)𝐼𝐻1 , where 𝑛1 = dim𝐻1. Therefore we
get that

Φ𝜋 (𝑥 ⊗ 𝑥) = [Φ𝜋1 (𝑎𝑖𝑢 ⊗ 𝑎 𝑗𝑢)]𝑚1×𝑚1 = [ 1
𝑛1
𝑎𝑖 𝑎̄ 𝑗 𝐼𝐻1]𝑚1×𝑚1 .

Now, if Φ𝜋 (𝑥 ⊗ 𝑥) = Φ𝜋 (𝑦 ⊗ 𝑦) for two vectors 𝑥 = a ⊗ 𝑢, 𝑦 = b ⊗ 𝑢 ∈ 𝑀 , then we
have 𝑎𝑖 𝑎̄ 𝑗 = 𝑏𝑖 𝑏̄ 𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑚, which implies that 𝑥 ⊗ 𝑥 = 𝑦 ⊗ 𝑦. Therefore
pr(Φ𝜋) ≥ 𝑚1. □

Proposition 5.1. pr(Φ𝜋) = 1 if either (i) 𝜋 is irreducible or (ii) 𝜋 = 𝜋1 ⊕ 𝜋2
such that 𝜋1 and 𝜋2 are inequivalent representations on one-dimensional Hilbert
spaces.

Proof: (i) follows from the fact that Φ𝜋 (𝑥 ⊗ 𝑥) = Φ𝜋 (𝑥 ⊗ 𝑥) whenever ∥𝑥∥ = ∥𝑦∥.
Thus any subspace of dimension greater than 1 cannot be phase retrievable for Φ.

For (ii), it is sufficient to point out that Φ𝜋 is not pure state injective on
𝐻 = 𝐻1 ⊕ 𝐻2. Pick two unit vectors 𝑥1 ∈ 𝐻1, 𝑥2 ∈ 𝐻2. Let 𝑥 = 𝑥1 ⊕ 𝑥2 and
𝑦 = 𝑥1 ⊕ (−𝑥2). Then Φ𝜋 (𝑥 ⊗ 𝑥) = 𝐼𝐻1 ⊗ 𝐼𝐻2 = Φ𝜋 (𝑦 ⊗ 𝑦). However, 𝑥 ⊗ 𝑥 ≠ 𝑦 ⊗ 𝑦.
Thus Φ𝜋 is not pure state injective on 𝐻. □

Our goal is to get a reasonable estimate for pr(Φ𝜋). For this purpose we present
the following characterization of phase retrievable subspaces for representations of
multiplicity one, i.e. 𝑚1 = · · · = 𝑚𝑑 = 1.

Proposition 5.2. Let 𝜋 = 𝜋1 ⊕ · · · ⊕𝜋𝑑 be a unitary representation of 𝐺 acting on
𝐻 = 𝐻1 ⊕ · · · ⊕ 𝐻𝑑 such that 𝜋𝑖 and 𝜋 𝑗 are inequivalent irreducible representations
for all 𝑖 ≠ 𝑗 , and let 𝑀 be a 𝑘-dimensional subspace of 𝐻. Then the following are
equivalent:
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(i) 𝑀 is phase retrievable for Φ𝜋 ,
(ii) 𝑀 = range(𝑇) for some linear map 𝑇 = (𝑇1, . . . , 𝑇𝑑) : C𝑘 → 𝐻 such that {𝑇∗

𝑖 𝑇𝑖}𝑑𝑖=1
does phase retrieval for C𝑘 , where 𝑇𝜉 = 𝑇1𝜉 ⊕ · · · ⊕ 𝑇𝑑𝜉 for all 𝜉 ∈ C𝑘 .

Proof: (i) ⇒ (ii): Let 𝑃𝑖 be the orthogonal projection from 𝐻 to 𝐻𝑖 for 𝑖 = 1, . . . , 𝑑,
and 𝑈 : C𝑘 → 𝑀 be a unitary map. Define 𝑇𝑖 = 𝑃𝑖𝑈 and 𝑇 = (𝑇1, . . . , 𝑇𝑑). Then

𝑇𝜉 = 𝑇1𝑈𝜉 ⊕ · · · ⊕ 𝑇𝑑𝜉 = 𝑃1𝑈𝜉 ⊕ · · · ⊕ 𝑃𝑑𝑈𝜉 = (𝑃1 ⊕ · · · ⊕ 𝑃𝑑)𝑈𝜉 = 𝑈𝜉.
Thus range(𝑇) = 𝑀 . Suppose that 𝜉, 𝜂 ∈ C𝑘 such that

⟨𝜉 ⊗ 𝜉, 𝑇∗
𝑖 𝑇𝑖⟩ = ⟨𝜂 ⊗ 𝜂, 𝑇∗

𝑖 𝑇𝑖⟩, i.e. ∥𝑇𝑖𝜉∥2 = ∥𝑇𝑖𝜂∥2

for every 𝑖 ∈ [𝑑]. Since 𝜋1, . . . , 𝜋𝑑 are inequivalent irreducible representations we
get that

Φ𝜋𝑖 , 𝜋 𝑗
(𝑇𝑖𝜉 ⊗ 𝑇𝑗𝜉) = 0

if 𝑖 ≠ 𝑗 and Φ𝜋𝑖 (𝑇𝑖𝜉 ⊗ 𝑇𝑖𝜉) = 1
dim 𝐻𝑖

∥𝑇𝑖𝜉∥2𝐼𝐻𝑖
. Thus we get

Φ𝜋 (𝑇𝜉 ⊗ 𝑇𝜉) = [Φ𝜋𝑖 , 𝜋 𝑗
(𝑇𝑖𝜉 ⊗ 𝑇𝑗𝜉)]𝑑×𝑑 = [Φ𝜋𝑖 , 𝜋 𝑗

(𝑇𝑖𝜂 ⊗ 𝑇𝑗𝜂)]𝑑×𝑑 = Φ𝜋 (𝑇𝜂 ⊗ 𝑇𝜂).
Since 𝑇𝜉, 𝑇𝜂 ∈ 𝑀 and Φ𝜋 is pure state injective on 𝑀 , we get that 𝑇𝜉⊗𝑇𝜉 = 𝑇𝜂⊗𝑇𝜂,
which implies that 𝜉 ⊗ 𝜉 = 𝜂 ⊗ 𝜂. Therefore {𝑇∗

𝑖 𝑇𝑖}𝑑𝑖=1 does phase retrieval for C𝑘 .
(ii) ⇒ (i): Let 𝑥 = 𝑇𝜉, 𝑦 = 𝑇𝜂 ∈ 𝑀 be such that Φ𝜋 (𝑥 ⊗ 𝑥) = Φ𝜋 (𝑦 ⊗ 𝑦). Then

we get Φ𝜋𝑖 , 𝜋 𝑗
(𝑇𝑖𝜉 ⊗ 𝑇𝑗𝜉) = Φ𝜋𝑖 , 𝜋 𝑗

(𝑇𝑖𝜂 ⊗ 𝑇𝑗𝜂) for all 𝑖, 𝑗 ∈ [𝑑], which implies that

∥𝑇𝑖𝜉∥2 = ∥𝑇𝑗𝜂∥2, i.e. ⟨𝑥, 𝑇∗
𝑖 𝑇𝑖𝑥⟩ = ⟨𝑦, 𝑇∗

𝑖 𝑇𝑖𝑦⟩
for every 𝑖 ∈ [𝑑]. Since {𝑇∗

𝑖 𝑇𝑖}𝑑𝑖=1 does phase retrieval for C𝑘 , we get that 𝜉⊗𝜉 = 𝜂⊗𝜂
which in turn implies that 𝑥 ⊗ 𝑥 = 𝑦 ⊗ 𝑦. Therefore 𝑀 is phase retrievable for Φ𝜋 . □

Corollary 5.1. Let 𝜋 = 𝜋1 ⊕ · · · ⊕ 𝜋𝑑 be a unitary representation of 𝐺 acting on
𝐻 = 𝐻1 ⊕ · · · ⊕ 𝐻𝑑 such that 𝜋𝑖 and 𝜋 𝑗 are inequivalent irreducible representtaions
for all 𝑖 ≠ 𝑗 . Then pr(Φ𝜋) ≥ ⌊ 𝑑4 + 1⌋.

Proof: Let 𝑘 = ⌊ 𝑑4 + 1⌋. Then 𝑑 ≥ 4𝑘 − 4, and hence by Proposition 2.1 there
exists a phase retrievable frame {𝜉𝑖}𝑑𝑖=1 for C𝑘 . Since {𝑆𝜉𝑖}𝑑𝑖=1 is also a phase
retrievable frame for any invertible matrix 𝑆 ∈ 𝑀𝑘×𝑘 (C), we can assume that 𝜉𝑖 = 𝑒𝑖
for 𝑖 ∈ [𝑘], where {𝑒1, . . . , 𝑒𝑘} is the canonical orthonormal basis for C𝑘 . Pick unit
vectors 𝑥𝑖 ∈ 𝐻𝑖 for 𝑖 ∈ [𝑑], and let 𝑇𝑖 = 𝑥𝑖 ⊗ 𝜉𝑖 : C𝑘 → 𝐻𝑖 be the rank-one operator
defined by 𝑇𝑖𝜉 = ⟨𝜉, 𝜉𝑖⟩𝑥𝑖 (∀𝜉 ∈ C𝑘). We claim that 𝑇 = (𝑇1, . . . , 𝑇𝑑) : C𝑘 → 𝐻 is
a rank-𝑘 linear operator. Clearly it is enough to show that 𝑇𝑒1, . . . , 𝑇𝑒𝑘 are linearly
independent. Suppose that

∑𝑘
𝑖=1 𝑐𝑖𝑇𝑒𝑖 = 0 for some scalars 𝑐𝑖 ∈ C. Note that

𝑘∑︁
𝑖=1

𝑐𝑖𝑇𝑒𝑖 =

𝑘∑︁
𝑖=1

𝑐𝑖 ⟨𝑒𝑖, 𝜉1⟩𝑥1 ⊕ · · · ⊕
𝑘∑︁
𝑖=1

𝑐𝑖 ⟨𝑒𝑖, 𝜉𝑑⟩𝑥𝑑

= 𝑐1𝑥1 ⊕ · · · ⊕ 𝑐𝑘𝑥𝑘 ⊕
𝑘∑︁
𝑖=1

𝑐𝑖 ⟨𝑒𝑖, 𝜉𝑘+1⟩𝑥𝑘+1 · · · ⊕
𝑘∑︁
𝑖=1

𝑐𝑖 ⟨𝑒𝑖, 𝜉𝑑⟩𝑥𝑑 .
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Thus we get 𝑐1 = · · · = 𝑐𝑘 = 0, and hence 𝑇𝑒1, . . . , 𝑇𝑒𝑘 are linearly independent. Now
let 𝑀 = range(𝑇). Then 𝑀 is a 𝑘-dimensional subspace of 𝐻. Since 𝑇∗

𝑖 𝑇𝑖 = 𝜉𝑖 ⊗ 𝜉𝑖
and {𝜉𝑖}𝑑𝑖=1 is a phase retrievable frame for C𝑘 , we immediately get from Proposition
5.2 that 𝑀 is phase retrievable for Φ𝜋 , and therefore pr(Φ𝜋) ≥ 𝑘 ≥ ⌊ 𝑑4 + 1⌋. □

Since it is easy to see by definition that pr(Φ𝜋) ≥ pr(Φ𝜎) if 𝜎 is a subrepre-
sentation of 𝜋, we get the following lower bound of pr(Φ𝜋) from Lemma 5.2 and
Corollary 5.1.

Theorem 5.1. Let 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕𝑚𝑑𝜋𝑑 be a unitary representation of 𝐺 such
that 𝜋𝑖 and 𝜋 𝑗 are inequivalent irreducible representations for all 𝑖 ≠ 𝑗 . Then

pr(Φ𝜋) ≥ max{𝛽(Φ𝜋), ⌊
𝑑

4
+ 1⌋}.

Recall that I𝑘 is the smallest integer such that there is a phase retrievable frame
of I𝑘 vectors for C𝑘 . Now consider the case when 𝜋 = 𝜋1 ⊕ · · · ⊕ 𝜋𝑑 such that 𝜋𝑖
and 𝜋 𝑗 are inequivalent one-dimensional irreducible representations for all 𝑖 ≠ 𝑗 . We
claim that if I𝑘 ≤ 𝑑 < I𝑘+1, then pr(Φ𝜋) = 𝑘 = max{𝛽(Φ𝜋), 𝑘} (Note 𝛽(Φ𝜋) = 1 in
this case).

Indeed, by replacing 𝑑 with I𝑘 in the proof of Corollary 5.1, we get pr(Φ𝜋) ≥ 𝑘 .
Therefore we only need to show that pr(Φ𝜋) ≤ 𝑘 . Let 𝑀 be an 𝐿-dimensional
subspace of 𝐻 such that Φ𝜋 is pure state injective on 𝑀 . Then by Proposition 5.2,
there exists a linear operator 𝑇 = (𝑇1, . . . , 𝑇𝑑) : C𝐿 → 𝐻 such that range(𝑇) = 𝑀

and {𝑇∗
𝑖 𝑇𝑖}𝑑𝑖=1 does phase retrieval for C𝐿 . Since 𝐻𝑖 is one-dimensional, we know

that 𝑇𝑖 is rank-one operator. Write 𝑇𝑖 = 𝑥𝑖 ⊗ 𝜉𝑖 for some 𝑥𝑖 ∈ 𝐻𝑖 and 𝜉𝑖 ∈ C𝐿 . Then
𝑇∗
𝑖 𝑇𝑖 = ∥𝑥𝑖 ∥2𝜉𝑖 ⊗ 𝜉𝑖. This implies that {𝜉𝑖}𝑑𝑖=1 is a phase retrievable frame for C𝐿 , and

thus 𝑑 ≥ I𝐿 . If 𝐿 ≥ 𝑘 +1, then I𝐿 ≥ I𝑘+1 and this would have implied that 𝑑 ≥ I𝑘+1,
which is a contradiction. Thus 𝐿 ≤ 𝑘 , which implies that pr(Φ𝜋) ≤ 𝑘 . Therefore
pr(Φ𝜋) = 𝑘 = max{𝛽(Φ𝜋), 𝑘} for this case. We make the following conjecture.

Conjecture. Let 𝜋 = 𝑚1𝜋1 ⊕ · · · ⊕ 𝑚𝑑𝜋𝑑 be a unitary representation of 𝐺

such that 𝜋𝑖 and 𝜋 𝑗 are inequivalent irreducible representations for all 𝑖 ≠ 𝑗 and
I𝑘 ≤ 𝑑 < I𝑘+1. Then pr(Φ𝜋) = max{𝛽(Φ𝜋), 𝑘}.
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