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A twirling channel is a quantum channel induced by a continuous unitary representation
T = ZEB m;; on a compact group G, where 7m; are inequivalent irreducible representations.
Motivated by a recent work [8] on minimal mixed unitary rank of @, we explore the connections
of the independence number, zero-error capacity, quantum codes, orthogonality index and phase
retrievability of the quantum channel @, with the irreducible representation multiplicities m; and
the irreducible representation dimensions dim H ;. In particular, we show that the independence
number of ®, is the sum of the multiplicities, the orthogonal index of ®, is exactly the sum
of those representation dimensions, and the zero-error capacity is equal to log(Z,‘il m;). We
also present a lower bound for the phase retrievability in terms of the minimal length of phase
retrievable frames for C".
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1. Introduction

A quantum channel @ is a completely positive trace-preserving (CPTP) linear
map from an operator system B(H) to an operator system B(K), which has a Kraus
representation of the form

O(T) = Z A;TA:, VT € B(H),
i=1

for some operators Aj,...,A, € B(H,K). In this representation, Ai,...,A, are
also referred as the Kraus operators of @®. For a quantum channel @, the Choi—
Jamiotkowski matrix [10, 27] is the matrix defined by

[87]
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Co = [®(Ei) = ) Eij ® D(E;j),

i.j=1

where {ei};’zl is an orthonormal basis of H and E;; is the rank-one operator ¢;®e;.
The Choi rank of @ is the smallest integer » from the Kraus representations which
is equal to the rank of Cg.

Covariant channels form a special and important type of quantum channels
where certain symmetries are present in the quantum channel. In this paper we
are interested in exploring the connections of some important concepts/quantities
for a group representation induced quantum channels (also referred to as twirling
channels) with its irreducible decomposition of the group representation.

For a compact group G, a continuous function 7 : G — U(H) is called a (finite-
dimensional) unitary representation if w(gh) = m(g)m(h). A subspace V of H is
called m-invariant if 7(g)x € V for all g € G and x € V. A representation = is called
irreducible if 0 and H are the only m-invariant subspaces. It is well known that
any unitary representation m on a finite-dimensional Hilbert space H is the direct
sum of irreducible representations. More precisely, there exists a unitary operator U
on H such that

Un(@U" =mim @ --- & myny,

where m; € N and my,...,my; are inequivalent irreducible unitary representations
of G acting on the Hilbert spaces Hi,...,H;, respectively. Clearly we have
dimH = Z;lzl m;n;, where n; = dim H;.

With the help of a characterization for mixed unitary quantum channels by the
complement channels, it was proved recently in [8] that a unitary representation
nm induced quantum channel ®, has the minimal mixed unitary rank in the sense
that its mixed unitary rank is the same as the Choi rank which is equal to
r = Zle(dim H;)?. Inspired by this, naturally one would like to know how the
multiplicity vector m = (my,...,mg) and the dimension vector n = (ny,...,ny)
of the representation are related to several other concepts such as independence
number, quantum codes, zero-error capability for the induced quantum channels.
It is well known that independence numbers and quantum zero-error capacity are
among the important quantities in quantum communication theory and they have
been extensively studied in the literature cf. [2, 3, 6, 7, 17]. Additionally we are
also interested in exploring some “dual versions" of these concepts that include the
concepts of orthogonality index and phase retrievability. The phase retrievability of
a quantum channel ®, which was recently introduced in [29], concerns the ability
of distinguishing the pure states from the input system by a positive operator-valued
measure (POVM) or observables from the output system. The main purpose of this
note is to obtain precise characterizations for all the above mentioned quantities for
twirling channels ®,. More precisely we shall prove the following statements:

() a(d,) = Zle m; is the independence number of ®,, and the zero-error capacity
Co(®,) is equal to log(zlflz1 m;).
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(i) B(®,) = max{my,...,mg} is the largest number m such that there exists
a quantum code of dimension m.

(i11) Zﬁl:l n; is the orthogonality index of @,.

(iv) max{ni,...,ng} is the largest integer N such that there exists an N-dimensional
subspace M with the property ®,(x ® y) =0 whenever x L y and x,y € M.

(v) max{B(®d,), I_‘Zi + 1]} is a lower bound for the phase retrievability of @,.

2. Preliminaries

We recall some notation, definitions and basic facts that are needed for the rest
of this paper.

2.1. Notations

Here is a list of standard notation we will use in this paper: Let H,K be
finite-dimensional Hilbert spaces over C.

e B(H, K) — the space of all the linear operators from H to K, write B(H) = B(H, K)
if H=K. In the case that H = C" and K = C", B(H,K) = M,;;x,(C) and we
use M, (C) for the case when m =n. We use Iy (or I if no confusion from the
context) to denote the identity operator on H.

e (A,B) =tr(AB") is the trace inner product on B(H), and U(H) is the group of
unitary operators on a complex Hilbert space H.

e For a subset A of B(H), the commutant A’ = {T € B(H) : TA = AT,VA € A}.

elet x € Hyy € K. We will use x ® y to denote the rank-one operator defined
by z — (z,y)x for z € K. Occasionally, x ® y is also used to denote the tensor
product in H ® K and the readers should be able to distinguish them from the
context.

elet m be a unitary representation of a group G, we use mn to denote the
representation 7 @ --- @ ;m (m-copies). Any unitary representation m on a finite-
dimensional Hilbert space can be decomposed as

T=mm & --Ddmygng,

where m; are inequivalent irreducible unitary representations.

e For a unitary representation m of a group G on a Hilbert space H, we use A,
to denote the algebra generated by n(G). Clearly A, = span{n(g) : g € G} which
is a C*-algebra.

e Two unitary representations 7 : G — U(H) and o : G — U(K) are called disjoint
if they have no equivalent subrepresentations, or equivalently the intertwining space
is trivial, i.e.

Hom(x,0) ={T € B(H,K) : Tn(g) = 0(g)T} = {0}.

In particular, any two inequivalent irreducible representations are disjoint.
o [d]={1,2,....d}.
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2.2. Quantum code, independent number and orthogonality index

Let ® : B(H) —» B(K) be a quantum channel. Recall that a quantum code C
for a noise quantum channel @ is a subspace of the Hilbert space such that there
exists another channel ¥ such that

p="od(p)

for any state p supported on C. In this case we say that C is correctable under
the noise channel ®.

Related to quantum code is the concept of independence number for a quantum
channel @, which is the largest integer m such that there is an orthonormal
set {xx}j., such that x; ® x, L EJE; for all i,j and all k # ¢, where {E;}!_
are Kraus operators of ®@. In what follows the independence number of @ will be
denoted by a(®). This is the same largest integer m with which there exists a set of
states p1,...,pm € B(H) such that ®(py),...,P(p,) can be perfectly distinguished
cf. [15]. The zero-error capacity of a channel @ is defined in an asymptotic setting
by

Co(®) = lim %loga(dy@"),

where ®®" is the n-fold quantum channel defined on the B(H®"). It is well known
that the zero-error capacity is even harder to compute than the independence number.
In fact, it is not even known if it is in general a computable quantity in the sense
of Turing cf. [17].

It is known that the independent number is also the largest integer a(®) such
that there exists an orthonormal set {xi}f‘i , with the property ®(x; ®x;) L ®(x; ®x;)
for any 7 # j. Motivated by this we define the orthogonality index of ®, denote
it by y(®), to be the largest number N such that there exist N nonzero vectors
{x;}Y, with the property ®(x; ®x;) =0 for any i # j.

2.3. Covariant quantum channels

Let # and o be unitary representations of a compact group G on C" and C™,
respectively. We say that @ is (x,0)-covariant if

O(n(g)Tr(g™") = o ()@(T)o(g™")

holds for every g € G.

Covariant quantum channels form an important class of channels since many
challenging problems in quantum information theory are usually more tractable when
certain symmetries are imposed on the channel. We refer to [5, 9, 14, 18-21, 30,
32, 33, 35] for some recent progresses on theoretical studies of covariant quantum
channels. In particular, in their recent work [30], M. Mozrzymas, M. Studzifiski and
N. Datta investigated the structure of covariant quantum channels with respect to an
irreducible representation & for a finite group G, and obtained spectral decomposition
of such covariant quantum channels in terms of representation characteristics of the
group G.
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There is a natural way, called channel twirling, to produce a (i, o )-covariant
quantum channel from any given quantum channel. Let ® : B(H) — B(K) be
a quantum channel, and 7,0 be two continuous unitary representations of a group
G on H and K, respectively. Then

‘P(T)=/Gff(g‘l)<I>(7r(g)T7r(g‘l))U(g)dﬂ(g)

is a (m,o)-covariant quantum channel, where u is the Haar measure of the compact
group G. Note that

WD) = 2 Y ole () Tr(s™ ()

geG

if G is finite.

Now we consider a special type of covariant quantum channels (the ones twirled
from the identity map). Let 7 : G —» U(H) and o : G — U(K) be two continuous
unitary representations. We define a linear map @, , : B(K,H) — B(K, H) by

.o (T) = /G 7(g)To (g )dug)

and denote @, , by ®, when m =o0. Then ®, is a m-covariant quantum channel
which will be called a n-induced twirling channel. Twirling channels have a long
history in the quantum information literature and have numerous applications. For
example, channels of this form have been used in the contexts of quantum error
correction, quantum data hiding, as well as in the study of quantum entanglement,
and quantum coherence c.f [2, 4, 11, 37].

Here is a list of properties that will be needed for the rest of this paper.

e A’ =range(P,);

e v is irreducible if and only if ®,(7T) = mtr(T)I for every T € B(H);

e d, , =0 if and only if # and o are disjoint. In particular, ®, , =0 when =«
and o are inequivalent irreducible representations.

2.4. Frames and phase-retrievability

Frame theory is closely related to operator-valued measures and consequently to
quantum information theory. Phase retrieval property of a frame is probably the
most relevant part to quantum information theory cf. [34]. Recall that a sequence
{fij}jer is called a frame for a Hilbert space H if there are two positive constant
numbers A, B > 0 such that

Allxl? < > 1, P < Bllx]?
iel
holds for every x € H. A frame is called a tight frame if A = B and a Parseval frame
if A=B=1. A frame {f;};e; is a Parseval frame if and only if X, f; ® f; = 1.
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Every frame {fj}je; is similar to a Parseval frame in the sense that there is
an invertible operator S € B(H) such that {Sfj};e; is a Parseval frame. In the
finite-dimensional case, a finite sequence {xi}i’\i , is a frame for H if and only if
H =span{x; : 1 <i < N}.

A phase retrieval frame for a Hilbert space H refers to a frame {f;};er in H
such that the magnitudes of the frame coefficients (x, f;) of a signal x € H uniquely
determine the rank-one state x ® x. More generally, a collection of operators {A;}es
in B(H) is called a phase retrievable operator-valued frame for H if the phaseless
measurements (A ;x,x) uniquely determine x ® x. It is obvious that a (vector-valued)
frame {f;} er is phase retrievable if and only if {f; ® f;};er is a phase retrievable
operator-valued frame. A natural question is to find the minimal length of a phase
retrievable frame for R” and C".

For an n-dimensional Hilbert space H, we will use 7, to denote the smallest
integer N such that there is a phase retrievable frame {x j};\’: , for H. The following

is well known in the literature.

ProrosiTion 2.1. If H be an n-dimensional complex Hilbert space, then I, <
4n — 4. Moreover, every generic frame { fj}j.\’: , of length N > 4n —4 is phase
retrievable.

A positive operator-valued measure (POVM for short) or observables on a Hilbert
space H is a collection of positive operators {F;} in B(H) such that 3 F; = Iy.
A POVM {F;}je; is information complete (cf. [34]) if {(x,F;x)};er uniquely
determines the pure state x ® x. In other words, an information complete POVM is
a phase retrievable operator-valued frame. For a quantum channel ® : B(H) — B(K),
its adjoint ®* is unital and hence {®*(F;)} ey is a POVM for H whenever {F;};cs
is a POVM for K. In the Heisenberg picture of quantum channels, a POVM in K
are the observables that are used to measure a state p in B(H) with measurement
(p, @ (F))) = tr(p@*(F;)) = tr(P(p)Fy).

It is important that a quantum channel ® admits a POVM on K that distinguishes
the pure states from H (cf. [13, 36]). Such a quantum channel was called in [29]
phase retrievable, and some characterizations were discussed in terms of the Kraus
operators. Clearly many quantum channels are not phase retrievable. For this reason,
we introduce the following definition.

DEerintTION 2.1. A subspace M of H is called phase retrievable under a quantum
channel @ : B(H) — B(K) if there exists a POVM {F;};c; in B(K) such that
{Pu®*(F;)Pum}jer is a phase retrievable operator-valued frame for M, where Py
is the orthogonal projection onto M.

We will point out later that M is called phase retrievable subspace for @ if
and only if ® is pure state injective on M, i.e. P(x ® x) = P(y ® y) implies that
x®x=yQy for x,y € M. The phase retrievability index pr(®,) is defined to be
the largest integer k such that there exits a k-dimensional subspace M C H such
that M is phase retrievable under ®. We will examine pr(®,) in Section 5.
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3. Quantum codes and independence numbers of @,

Recall that a quantum code C for a noise quantum channel ® is a subspace of
the Hilbert space such that there exists another channel ¥ such that

p="Yod(p)
for any state p supported on C. We need the following lemma.
LemMmA 3.1. Let C be a subspace of H, and let P be the orthogonal projections

onto C. Suppose @ is a quantum channel with Kraus operators {E;};_,. Then the
following are equivalent:

(1) C is a quantum code for .
(ii) There exists a Hermitian matrix A = [a;;] such that PEYE;P = a;;P holds for

all i,j.

(iii) For any orthonormal basis {x;}]_, of C, xx ® x¢ L EJE; for all i,j and all
k #¢.

(iv) For any orthonormal basis {xi}}L, of C, ®(xx ® xx) L @(x, ® x¢) for any
k#¢.

Proof: The equivalence of (i), (ii) and (iii) are well known (cf. Theorem 5.2 [6]).
(i1i) & (iv): Note that
(@(xi ® x0), ®(xr ®x7)) = > tr((Eixe ® Evxi) (Ejxp @ Ejxy))
i,j=1
and tr((Eixx ® Eixi)(Ejxe ® Ejxe)) > 0. Therefore (®(x; ® x;), ®(x; ® x;)) =0 if
and only if
|(EjX[, Eixk>|2 =tr((Eix; ® Eixk)(Eng ® Eng) =0. O

By Lemma 3.1, the independence number m for a quantum channel @ is the
largest integer m such that there is an orthonormal set {x;}]., such that ®(x; ®xx)
and ©(x, ® x;) are orthogonal in the trace inner product for any k # £, where
{E;};_, are Kraus operators of ®. Moreover, if C is a quantum code for ®, then
Lemma 3.1 also implies that a(®) > dimC, and hence

a(®) > max{dimC : C is a quantum code for ®}.

In what follows we will use B(®) to denote the right-hand-side of the above
inequality. The following simple example shows that the equality does not hold in
general.

ExampLE 3.1. Let @ : My 2(C) — M5y»(C) be a quantum channel with Kraus
operators E; =e¢; ®e; and E; = e3 ® ¢3. Then ®(e; ® ¢1) L O(e; ® ¢3), and hence
a(®) = 2. However, C? is not a correctable quantum code for @ since condition
(ii) in Lemma 3.1 is not satisfied. Thus B(®) = 1.

On the other hand there are plenty of quantum channels when the equality holds.
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ExampLE 3.2. Let ® : B(H) — B(H @ H) be a quantum channel with Kraus
operators E, E; defined by Ex = \/li(xGBO) and Erx = %(O@X) for any x € H.
Then EE, = EJE; = %IH, and EYE; =0 if i # j. Thus H is a quantum code for
@, and hence a(®) = B(P) =dimH.

It is natural to explore necessary and/or sufficient conditions under which the
equality holds. We will prove that the equality holds for a twirling channel @, if
and only if m is unitarily equivalent to mo for some irreducible representation o
and m € N. We first show that a(®,) = Zil m;.

THEOREM 3.1. Suppose that m = mm| @ --- ® mgng is a unitary representation
of G on a Hilbert space H, where each n; is irreducible and n;,n; are inequivalent

for V1 <i#j<d. Then a(®,)= Z,d:] m;.
Proof: Let A, be the C*-algebra generated by n(G). Then
Ax =Um ® B(H,)) & - & (I;n; ® B(Hg)),

where I,,; is the identity matrix on C™. Let {e; J-};":"l be the canonical orthonormal
basis for C™ and pick a unit vector x; € H;. Set x;; = ¢;; ® x; viewing it as
a vector in H by considering C™ ® H; as a subspace of H. Then it is obvious
that (x;;, Axge) = 0 for all (i,j) # (k,£) and all A € A,. This implies that
a’(q)n) 2 2;1:1 m;.

Conversely, suppose xi,...,xy is a collection of nonzero vectors in H such
that (x;, Axz) = 0 for all { # k and for all A € A,. Let M; = A,x;. Then we
have that M; L M; for all i # j and each M; is n-invariant. Let o; be the
restriction of m to M;. Then each o; is a unitary representation and o @ --- ® oy
is a subrepresentation of m. Since m is the direct sum of only m| + .-+ my
number of irreducible subrepresentations, we get that N < Z,‘il m; which implies
that a(®,) < sz:l m;. Thus we proved the claim that a(®,) = Zﬁl:l m;. O

To prove B(®,) = max{my,...,my} we first consider the following special case.

Lemma 32. If t=mo =1, ® 0 acting on C" @ K such that o : G — U(K) is
irreducible, then a(®,) = B(D,) =m.

Proof: First, by Theorem 3.1, we know that a(®,) =m. Now fix a unit vector
x € K and let x; = ¢; ® x, where {ei}l’.'; , 1s the canonical orthonormal basis for C™.
Let C = span{x;}!", = C" ® x. It is enough to show that C is a quantum code
for ®. For any u=c®x,v=d®x € C such that u L v, we have that ¢ L d. Since
Ar =1, ®B(K), we get

{u, Avy) = {e,d) - {x,Tx) =0

for any A=1,®7T € A,, which implies by Lemma 3.1 that C is a quantum code.
Thus we obtain a(®,) = B(P,). O
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THEOREM 3.2. Suppose that m = m\n; ® --- ® mgny IS a unitary representation
of G on a Hilbert space H, where m; is irreducible and r;,n; are inequivalent for
VI<i#j<d. Then B(®,)=max{my,...,mg}.

Proof: Let C be a quantum code of dimension N for ®,. Let {u j}f\i , be an
orthonormal basis for C, and P; be the orthogonal projection onto the subspace
C™ @ H;. Since Py +---+ P; =1, there exists an i such that P;u; # 0. For any
fixed index j > 2, uy +u;,u; —u; are two orthogonal vectors in C. Since C is
a quantum code, we get that u; L Aju; and u; +u; L Ax(u; —u;). In particular,
since P; € A, we have

(uj, Pauy) =0 and  (uy +uj, Pi(uy —u;)) =0.
The above two combined imply that Pu; L Pu; and |[P;u;|| = ||P;u:||. With the
same argument by replacing u; by u;, and j by another index j’, we clearly
get that {P;u j}?’: , is an orthogonal set of nonzero vectors in C™ ® H; such
that Piu; L ﬂn;l.,,iPiujr for any j # j’. Thus N < &(®,,z) = m;, and therefore
B(®,) <max{m;:1<i<d}.

On the other hand, without losing the generality we can assume that m; =
max{m; : i = 1,...,d}. By Lemma 3.2, there is an m;-dimensional quantum
code C; in C" ® Hy for @, . Clearly C=C ®0&®---®0 is a quantum code
of ®,. Thus we have B(®,) > dimC = mj, and consequently we have proved
B(®,) = max{my,...,mg}. O

CoroLLARY 3.1. Let 1 = mm & --- ®mgny be a unitary representation of G
on a Hilbert space H, where n; is irreducible and n;,n; are inequivalent for
VI<i#j<d Then a(®,;)=B(D,) if and only if d = 1.

Proof: If d = 1, then a(®,) = B(P,) follows from Lemma 3.2. Conversely, since
a(®y)=m+---+my and B(®P,) = max{mi,...,my}, we immediately get d =1 if
CK((I),r) = ﬁ(cbn) o

Let G be a group and m =mm; ®--- ®mymy be a unitary representation of G
onto a finite-dimensional Hilbert space H. Let G" = {g =(g1,...,8n) : & € G} be
the product group and 72" be the unitary presentation of G on H®" defined by

¥ (g) =n(g1)® - ®n(gn), VgeG"

THeOREM 3.3. Let m = mn; & --- @ mygng be a unitary representation of G
on a Hilbert space H, where m; is irreducible and m;,n; are inequivalent for

V1 <i+#j<d. Then 4
Co(®) = log( )" mi).
i=1

Proof: Write [d]" ={(ki,...,kn) : k; € [d]}. The %" has the decomposition of
the form ®

)t = Z My, =+ My, (Mg, ® -+ ® 7y,
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Note that 7y, ® --- ® my, is irreducible, and 7y, ® - -+ ® 7y, Uy ® - ®@my are
inequivalent whenever (ki,...,k,) # (k’,...,k,) (This can be easily checked by
comparing their characters). Thus, by Theorem 3.1, we get

(DY) = a(Pyen) = Z My My =My, = (my + - +mg)",

and hence Cy(D,) = lim, 0 %log a(PE") = log(z“fl:1 m;). O

4. Orthogonality index of @,

Recall that the orthogonality index of a quantum channel ®, denoted by y(®),
is the largest number N such that there exists {xi}fi , such that ®(x; ® x;) = 0
for any i # j. This is a concept related to strongly disjoint frames that plays
extremely important roles in frame theory and in establishing a Balian-Low type of
duality principle for group representation frames cf. [1, 16, 24, 25]. Let {xi}il\:' , be

a sequence in a Hilbert space H and {yi}ﬁ\:’ , be a sequence in a Hilbert space K.
We say that {xi}f.\il {yi}f.\il are strongly disjoint if Zf\il(x,x,-)y,- =0 for all x € H, or
equivalently, Zf\zll yi®x; = 0. Consequently, ®,(x®y) =0 if and only if {n(g)x}secc
and {n(g)y}gec are strongly disjoint. In this case we also say that x and y are
m-orthogonal [16].

Lemma 4.1. Let n: G — U(H) be a unitary representation and x,y € H. Then
D, (x®y) =0 if and only if x L ALy.
Proof: Recall that A’ =range(®) and ® = ®*. Thus we have
(T, ®(x®y)) =(P(T),x ®y) =(P(T)x,y)

which implies that ®(x ® y) = 0 if and only if x L ®(T)y for every T € B(H).
Thus we get that x and y are m-orthogonal if and only if x L A’ y. O

We remark that since A, is a C*-algebra, we have that A, x L Ay if and
only if x L A’ y.

Lemma 4.2. If n=mo : G — U(H) acting on H=C" ® K such that o : G —
U(K) is irreducible, then y(®,) =dimK.

Proof: If ®,(x®y) =0 for some x,y € H=C"Q®K, then by Lemma 4.1 we
have A’x L Ay, where A, = M, (C) ® I. Note that we can always write x,y
in the form of x = 27, e; ®x; and y = 277, ¢; ® y; for some x;,y; € K, where
{e:}™, is the canonical orthonormal basis for C™. Let E;; = e; ® ¢; € M,,,(C). Since

E;®l €A, we get
i,y =((Ei®Dx,(Ej; ®1)y) =0
for all i,j € [m].
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Now, let {ui}?’zl be an orthonormal set in H such that ®,(u; ® u;) =0 for any
i #j. Write u; = Z;"zl e; ® u;j, where u;; € K. For each i, pick an index n; such
that u;,;, # 0. Then by the above argument we get that {ul-nl.}ﬁ , 1s an orthogonal set
of nonzero vectors in K. This implies that N < dim K, and hence y(®,) < dimK.

On the other hand, let {u; i, be an orthonormal basis for K and let x; = e;®u; € H
for i € [n]. Then clearly we have A’ x; L A’ x; for any i # j. Thus y(®,) > dimK,
which completes the proof. O

Now we prove for the general case.

THeOREM 4.1. Suppose that m = mm @ -+ ® myny is a unitary representation
of G on a Hilbert space H, where each m; is an irreducible representation on H;
and ri,m; are inequivalent for Y1 < i # j < d. Then y(®,) = Zl’;l n;, where
n; = dim Hl'.

Proof: Since Ay = (I, ® B(Hy)) ® -+ ® (I, ® B(Hg)), we get that
Ay =My, (C)@1Iy) @& (M, (C)®Iy,).
By Lemma 4.2, there is an orthonormal basis {xij};.lil for C™ ® H; that
Xij L (M, (C) ® I, )xik
for 1 < j # k <m,;. This implies that
Xij L Al xre
whenever (i, j) # (k, ). Thus, ®,(x;; ®xxs) =0 for all (i, j) # (k,{), which implies
that y(®,) > 2?:1 n;.

For the other direction of the inequality, let N = y(®,). Then there exists an
orthonormal set {xj};.\’: , for H such that x; L Ajx, for all j # k. Let P; be the
orthogonal projection onto the subspace C™ ® H;. Then P; € A’. This implies that
Pix; L ?I;ninl_P,-xk for all k # ¢ and every i. In particular, we have P;x; L P;x; for
all j # k. Define subsets Aj,...,Ay of {1,...,N} inductively by

Ay ={j € [N] D Pix; # 0}

and
AN ={j ¢ Ai—1:Pixj # 0}

for 2 <i <d. Then [N] = U;ilAi. Let y; = Pix; for j € Aj. Then {y;}jea, is
a collection of nonzero orthogonal vectors such that y; L A, . yx for all k # ¢
in Ay. Thus, by Lemma 4.2, we have |A{| < n;. With the same arguments we also
have |A;] <n; for i =2,...,d. Therefore we get y(®,) =N = Zflzl |A;] < Zil n;,
which completes the proof. O

Note that y(®) can be considered as a “dual object" of a(®). Similarly it is

natural to consider a “dual version" of B(®). For this let us define 7(®) to be
the largest integer L such that there exists an L-dimensional subspace M with the
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property that ®(x ® y) =0 whenever x L y and x,y € M. We have the following
dual theorem of Theorem 3.2.

THEOREM 4.2. Suppose that 1 = mm®- - -®myn, is a unitary representation of G
on a Hilbert space H=(C" ®H,)®---®(C"d®H,), where r;,n; are inequivalent
irreducible representations for Y1 <i # j < d. Then t(®,) = max{ni,...,nq}, where
n; =dim H; for each i € [d].

Proof: We first show that 7(®,) > n; for every i € [d]. It suffices to check
that 7(®,) > n;. Let M = e¢; ® H;. Then two vectors x = ¢, Qu, y=e, Qv e M
are orthogonal if and only if # and v are orthogonal vectors in H; Thus for any
B=(B1®Ig)® - ®(By®Ip,) € A, we get (x,By) = (e, Bie1) - (u,v) =0, which
implies by Lemma 4.1 that ®,(x® y) =0. Thus 7(®,) > n;, and therefore we get
7(®,) > max{ni,...,ng}.

Now let M be a subspace such that ®,(x ® y) = 0 whenever x,y € M are
orthogonal vectors. Let {u j}f\i , be an orthonormal basis for M, and P; be the
orthogonal projection onto the subspace C™ ® H;. Since u; # 0 and P+ -+ P4 =1,
there exists an index i such that P;u; # 0. For any fixed index j > 2, uj+uj,u;—u;
are two orthogonal vectors in M. Thus u; L Aju; and uy+u; L A, (u;—u;). Since

P; e A’ we get
(uj,Piul):O and <u1+uj,Pi(u1—uj)):0.

The above two combined to imply that Pu; L Pu; and [[Pu;|| = ||P;u||. With
the same argument by replacing u; by u;, and j by another index j’, we clearly
get that {P;u j}j.\’: , is an orthogonal set of nonzero vectors in C™ ® H; such that
Piuj L A, o Piuj for any j # j'. Thus N < y(®p,,), and hence it follows from
Theorem 4.1 that N < n;. Therefore we get N < max{n; : | <i < d} and hence
7(D,) < max{n; : 1 <i < d}, which completes the proof. O

5. Phase-retrievability of @,
We first point out the following and provide its proof for self-completeness.

LemMma 5.1. [29] Let ® : B(H) — B(K) be a quantum channel and M be
a subspace of H. The the following are equivalent:

(i) There exists a POVM {FJ-}?’:l such that {(x,dD*(Fj)x)}j.\’:l uniquely determines

X Q®x for every x € M (In this case we say that ® is phase retrievable on M ).
(i) x®x =y®y whenever ®(x®x) =DP(y®y) and x,y € M (In this case we say

that ® is pure state injective on M).

Proof: (i) = (ii): Let {F;};e; be a POVM in B(K) such that {(x,dD*(Fj)x)};\’:1
uniquely determines x ® x for every x € M. If ®(x®x) = ®(y ® y) with x,y € M,
then we have

(x @x, @ (F))) =(P(x ®x), Fj) =(P(y®y), Fj) = {y ® y, ®*(F}))

for all j €J, and hence x ® x =y ® y. Therefore ® is pure-state injective.
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(i) = (i): Assume that & is pure-state injective on M. Let {F;};er be
a POVM such that span{F; : j € J} coincides with the space of all self-adjoint
operators of B(K). Then (x ® x,®*(F;)) = (y® y,®*(F;)), where x,y € M, implies
tr(®(x ® x)Fj) = tr(®(y ® y)F;) for all j, which implies that ®(x ® x) = P(y ® y).
Therefore x ® x =y ® y and hence we get (i). O

Recall that pr(®,) is the largest integer k& such that there exits a k-dimensional
subspace M C H such that M is phase retrievable under ®.

LEMMA 5.2. Suppose that m1 = mm; ®---®myny is a unitary representation of G
on a Hilbert space H, where each m; is an irreducible representation on H;, and
ni, ; are inequivalent for V1 <i # j < d. Then pr(®,) > max{m,...,mq} = f(P,).

Proof: Tt suffices to show that pr(®,) > m;. Fix a unit vector u € H; and let
M =C™ ®u. Then for any x =a®u, we can write the rank-one operator x ® x in
the matrix form

X®x = [a;x ®ajx]m xm,-

where a = (ai,...,am,,). Thus @, (x ® x) = [Py, (aju ® aju)]m xm,. Since my is
irreducible, we know that @, (T) = %tr(T)IHl, where n; = dim H;. Therefore we

get that

I
O, (x®x) = [(I)nl(aiu ® aju)]mlxml = [n_laiafIHl]mlxml‘

Now, if ®,(x®x) = D,(y®y) for two vectors x =a®u,y =b®u € M, then we
have a;a; = b;b; for all i,j=1,...,m, which implies that x ® x = y ® y. Therefore
pr(®,) > mj. O

ProprosiTion 5.1. pr(®,) = 1 if either (i) n is irreducible or (ii) 7 = 1 ® 73
such that m, and m, are inequivalent representations on one-dimensional Hilbert
spaces.

Proof: (i) follows from the fact that ®,(x ® x) = ®,(x ® x) whenever ||x|| = |y||.
Thus any subspace of dimension greater than 1 cannot be phase retrievable for ®.
For (ii), it is sufficient to point out that @, is not pure state injective on
H = H & H,. Pick two unit vectors x; € Hy,x, € Hp. Let x = x; ® x, and
y =x1 @ (-x2). Then @ (x®x) = Iy, ® Iy, = P,(y ® y). However, x®x # y ® y.
Thus @, is not pure state injective on H. O

Our goal is to get a reasonable estimate for pr(®,). For this purpose we present
the following characterization of phase retrievable subspaces for representations of
multiplicity one, i.e. my =---=mg = 1.

PropPosITION 5.2. Let m =7 ®---®ny be a unitary representation of G acting on
H=H; & -®Hy such that n; and n; are inequivalent irreducible representations
for all i # j, and let M be a k-dimensional subspace of H. Then the following are
equivalent:
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(i) M is phase retrievable for @,

(i) M =range(T) for some linear map T = (Ty, ..., Ty) : C¥ — H such that {Y}*Y}}flzl
does phase retrieval for C*, where Té =Tié® - ® Tyé for all ¢ € Ck.

Proof: (i) = (ii): Let P; be the orthogonal projection from H to H; fori=1,...,d,
and U :CK — M be a unitary map. Define T; = P;U and T = (Ty,...,T;). Then

TéE=TVUED - @Tyé =P UED---dPUE=(P1®---®Py)UE =UE.
Thus range(T) = M. Suppose that &,17 € C* such that
EQETT)=menTT), ie ILEP =Tl
for every i € [d]. Since my,...,ny are inequivalent irreducible representations we
et that
& O (TE®TE) = 0
if i#j and @ (Tié ®Té) = din}H.”E‘f””Hw Thus we get
QO (TERTE) = [Pry,n,; (T:6 @ Tjé)laxa = [Pry,n; (Tin @ Tjm)axa = P (Tn & Tn).

Since T¢,Tn € M and @, is pure state injective on M, we get that TéQTE = Tn®Tn,

which implies that £ ® £ = ® 5. Therefore {7}*7}}?:1 does phase retrieval for Ck.
(i) = (): Let x=T&,y =Tn € M be such that @, (x ® x) = ®,(y ® y). Then

we get @p (16 ®Tj&) = Py 7, (Tim ® Tym) for all i, j € [d], which implies that

TP = 1Tml% e (0 TiTix) = (y, T/ Tiy)

for every i € [d]. Since {7}*Ti}§’:] does phase retrieval for C¥, we get that £®¢ = n®n
which in turn implies that x®x = y®y. Therefore M is phase retrievable for ®,. O

CoroOLLARY 5.1. Let n =m ®---®nmy be a unitary representation of G acting on
H=H®---®Hy such that n; and n; are inequivalent irreducible representtaions

for all i # j. Then pr(®,;) > L%"' 1].

Proof: Let k = L% +1]. Then d > 4k — 4, and hence by Proposition 2.1 there

exists a phase retrievable frame {¢&; f'l:l for C*. Since {Sfi}le is also a phase
retrievable frame for any invertible matrix S € My« (C), we can assume that & = e;
for i € [k], where {ey,...,ex} is the canonical orthonormal basis for C¥. Pick unit
vectors x; € H; for i € [d], and let T; =x; ® & : CK — H; be the rank-one operator
defined by T;ié = (£,&)x; (V¢ € CK). We claim that T = (Ty,...,T;) : C* — H is
a rank-k linear operator. Clearly it is enough to show that Te;,...,Tey are linearly

independent. Suppose that Zle ciTe; =0 for some scalars c¢; € C. Note that
k k

k
ZciTei = ) ci{e;, &)X @"’@Zci<eia§d>xd
i1 i1 i1
k k
=CiX1® - @ CpX D Z ci{ei,Exs1)Xps - @ Z ci{ei,éa)xg.
' =1

i=1
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Thus we get ¢y =---=cx =0, and hence Tey,...,Te; are linearly independent. Now
let M =range(T). Then M is a k-dimensional subspace of H. Since T;T; =&; ® &;
and {fi}flzl is a phase retrievable frame for C¥, we immediately get from Proposition
5.2 that M is phase retrievable for ®,, and therefore pr(®,) > k > L% +1]. O

Since it is easy to see by definition that pr(®,) > pr(®,) if o is a subrepre-
sentation of m, we get the following lower bound of pr(®,) from Lemma 5.2 and
Corollary 5.1.

THEOREM 5.1. Let m=mm & - - ®myng be a unitary representation of G such
that n; and ©; are inequivalent irreducible representations for all i # j. Then

pr(®@) = max{B(@,), 15 + 11}

Recall that 7 is the smallest integer such that there is a phase retrievable frame
of I vectors for CK. Now consider the case when 7 =7, @ ---® my such that x;
and n; are inequivalent one-dimensional irreducible representations for all i # j. We
claim that if I < d < Iy, then pr(®,) = k = max{B8(®,),k} (Note B(®,) =1 in
this case).

Indeed, by replacing d with 7 in the proof of Corollary 5.1, we get pr(®,) > k.
Therefore we only need to show that pr(®,) < k. Let M be an L-dimensional
subspace of H such that @, is pure state injective on M. Then by Proposition 5.2,
there exists a linear operator T = (T},...,T;) : Cb — H such that range(T) = M
and {T;“Y}}il does phase retrieval for CL. Since H; is one-dimensional, we know
that 7; is rank-one operator. Write T; = x; ® & for some x; € H; and & € CE. Then
T'T; = |lx;||?£; ®&;. This implies that {f,-}fl:1 is a phase retrievable frame for CL, and
thus d > 1. If L > k+1, then I > I;,; and this would have implied that d > .y,
which is a contradiction. Thus L < k, which implies that pr(®,) < k. Therefore
pr(®,) = k = max{B(®d,), k} for this case. We make the following conjecture.

CONJECTURE. Let m = mm @ --- ® mgng be a unitary representation of G
such that n; and n; are inequivalent irreducible representations for all i # j and
I <d < Ijy1. Then pr(®,) = max{B(P,), k}.
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