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Abstract
Analytic signals constitute a class of signals that are widely applied in time–frequency
analysis such as extracting instantaneous frequency (IF) or phase derivative in the
characterization of ultrashort laser pulse. The purpose of this paper is to investigate
the phase retrieval (PR) problem for analytic signals in C

N by short-time Fourier
transform (STFT)measurements since suchmeasurements enjoy some nice structures.
Since generic analytic signals are not sparse in the time domain, the existing PR results
for sparse (in time domain) signals do not apply to analytic signals. In this paper, the
windows are required to be bandlimited such that they usually have the full support
length N and allow us to get much better resolutions on low frequencies. By exploiting
the structure of the STFT associated with bandlimited windows for analytic signals,
we prove that the STFT-based phase retrieval (STFT-PR for short) of generic analytic
signals can be achieved by their (3� N

2 � + 1) measurements, where �x� denotes the
largest integer that is not larger than x . Since the generic analytic signals are (� N

2 �+1)-
sparse in the Fourier domain, such a number of measurements is lower than 4N+O(1)
and O(k3) which are required in the literature for STFT-PR of all signals and of k2-
sparse (in the Fourier domain) signals in C

N2
, respectively. Moreover, we also prove

that if the length N is even and the windows are also analytic, then the number of
measurements can be reduced to ( 3N2 − 1). As an application of this, we get that the
instantaneous frequency (IF) of a generic analytic signal can be exactly recovered
from the STFT measurements.
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1 Introduction

Phase retrieval (PR) is a nonlinear sampling problem (c.f. [3, 4, 12, 21, 45, 48, 49])
that asks to recover a signal z ∈ C

N , up to the potential ambiguity, from themagnitude
measurements

|〈z, ak〉|, k ∈ �,

where ak ∈ C
N is referred to as a measurement vector. PR problem is of great interest

since it has been widely applied in many applications including coherent diffraction
imaging (CDI) ( [38, 43]), quantum tomography ( [28]) and holography ( [32]). The
most classical PR problem is to recover a signal by its Fourier transformmeasurements
( [16, 21]).

Associated with a window w ∈ C
N and a separation parameter 0 < L < N , the

short-time Fourier transform (STFT) or Gabor transform of a signal z ∈ C
N at (k,m)

is defined as (c.f. [7, 33]):

ŷwk,m =
N−1
∑

n=0

znwmL−ne
−2π ikn/N , (1)

where k = 0, 1, . . . , N −1 andm = 0, 1, . . . , �N/L�−1. Compared with the Fourier
transform, STFT is more effective for time–frequency localization since its associated
window enjoys great flexibility (c.f. [13, 19, 26, 44]), and many deeper theoretical
results related to Gabor frame analysis have been established in the literature (c.f. [15,
22, 23]).

Finding the required number of measurements to do phase retrieval is always a fun-
damental issue, especially for practical applications including quantum tomography
(c.f. [28]). For STFT-PR we refer to, e.g., [1, 5–7, 27, 33, 34, 42] for many recent
results on this issue. Bojarovska and Flinth [10] characterized all the windows when
N 2-number of STFTmeasurements can recover all the signals inC

N . With the help of
graph theory, Pfander and Salanevich [40] proved that the recovery of any signal inC

N

can be achieved by O(N log N ) STFT measurements. From the perspective of frame
theory (c.f. [27]), the STFT-PR is essentially the PR problem by the frame measure-
ment vectors in C

N . There exist many phase retrievable frames of 4N + O(1)-length
(e.g., [2, 29, 46]). As for the STFT-PR, the recovery can be also achieved by 4N+O(1)
measurements (c.f. [2, 9, 30, 31]). Note that the abovementioned results hold for all the
signals in C

N . By appropriately choosing the window w and the separation parameter
L , Jaganathan, Eldar and Hassibi [31] proved that almost all nonvanishing signals in
C

N can be determined by their 3N +O(1) number of STFT measurements. Recently,
the STFT-PR for structured signals has attracted much attention (e.g., [10, 20, 31]). In
particular, it was proved in [10] that a k2-sparse (in the Fourier domain) signal can be
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recovered by O(k3) number of STFT measurements. In this paper, we will investigate
the phase retrieval problem for analytic signals that appear in many important applica-
tions such as time–frequency analysis ( [14]), instantaneous frequency (IF) extracting
in holography (e.g., [25]) and the characterization of a changing pulse frequency (e.g.,
[24]). As a proper subset of C

N , we are interested in finding fewer number of STFT
measurements than the above mentioned number to guarantee the recovery of any
generic analytic signal.

The definition of an analytic signal was given by Marple [36]. As in [36] the
space C

N is supposed to consist of N -periodic and complex-valued signals z =
(z0, . . . , zN−1) such that the subscripts are considered modulo N . For a real-valued
signal x ∈ R

N , its analytic signal A(x) = (A(x)0, . . . , A(x)N−1) is defined through
its discrete Fourier transform (DFT) Â(x) = (( Â(x))0, . . . , ( Â(x))N−1), where for
even length N ,

( Â(x))k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x̂0, k = 0,
2̂xk, 1 ≤ k ≤ N

2 − 1,
x̂ N

2
, k = N

2 ,

0, N
2 + 1 ≤ k ≤ N − 1,

(2)

and for odd length N ,

( Â(x))k =
⎧

⎨

⎩

x̂0, k = 0,
2̂xk, 1 ≤ k ≤ N−1

2 ,

0, N+1
2 ≤ k ≤ N − 1.

(3)

From now on, the entire set of analytic signals on C
N is denoted by C

N
A . For x ∈ R

N ,
its discrete Hilbert transform Hx is defined to be

(A(x) − x)
i

. (4)

Remark 1 (1) By [36], we know that C
N
A = {x + iHx : x ∈ R

N }, i.e., the real part

(A(x)) = x and the imaginary part �(A(x)) is Hx, where H is the discrete Hilbert
transform. (2) For a real-valued signal x = (x0, . . . , xN−1) ∈ R

N , it is commonly
accepted that its phase (θ0, . . . , θN−1) is defined via its analytic signal z = x +
iHx = (z0, . . . , zN−1) = (z0,
 + iz0,�, . . . , zN−1,
 + izN−1,�) ∈ C

N such that
θk = arctan zk,�

zk,
 (cf. [17, 18]).

We say that z ∈ C
N is B-bandlimited if its DFT contains N − B consecutive zeros.

For 0 �= z = (z0, . . . , zN−1) ∈ C
N , its support is defined to be� = {

i ∈ {0, . . . , N −
1} : zi �= 0

}

. Then the support length of z is defined as the cardinality #�. We also say
that z is #�-sparse. For a polynomial f in N (real or complex) variables, its vanishing
locus is V ( f ) = {(x0, . . . , xN−1) ∈ R

N (resp. C
N ) : f (x0, . . . , xN−1) = 0}. The

complement of V ( f ) in R
N (resp. CN ) is dense (c.f. [7]). For x ∈ R, we will use the

notation �x� (respectively, �x�) to denote the smallest (respectively, largest) integer
that is not smaller (respectively, larger) than x .
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1.1 Main Result

We start with the definition of a generic analytic signal in C
N .

Definition 1 When saying that a generic analytic signal is uniquely determined by
a collection of polynomial measurements, we mean that the analytic signals which
cannot be determined by these measurements lie in the vanishing locus of a nonzero
polynomial on C

N .

The main results will be stated in Theorems 2, 3 and 4 which can be summarized
as follows.

Theorem 1 Suppose that wl ∈ C
N , l = 1, . . . , M are the structured B-bandlimited

windows for STFT such that their bandlimits 2 ≤ B ≤ � N
2 � + 1. Moreover, the STFT

separation parameter 0 < L < N satisfies �N/L� ≥ 3. Then for a generic analytic
signal z ∈ C

N , it can be recovered (up to a sign) by its (3� N
2 � + 1) number of STFT

measurements. Moreover, if the length N is even and the windows are analytic then
the above number of measurements can be reduced to ( 3N2 − 1).

The STFT in Theorem 1 requires multiple bandlimited windows. The following
concerns the application background of such a type of STFT.

Remark 2 (1) The windowwl in Theorem 1 is bandlimited. By the discrete uncertainty
principle (c.f. [10, section 3.2]) its support length is generally N . That is,wl is generally
a long window. By [37, 41], longer windows on low frequencies allow getting better
frequency resolution, and they have been used in some STFT-PR approaches (e.g.,
[39]). (2) Multiple-windowmeasurements were used in Theorem 1, and such a type of
STFT measurements were also used for STFT-PR in [33]. We point out that multiple-
window approach is particularly useful in coded diffraction patterns (c.f. [11]).

Remark 3 (1) Since any generic analytic signal is (� N
2 � + 1)-sparse in the Fourier

domain, as mentioned previously it is generally not sparse in the time domain. There-
fore, the existing PR results for sparse (in time domain) signals do not hold for analytic
signals. (2) A generic analytic signal is (� N

2 � + 1)-sparse (in the Fourier domain) or
equivalently has bandlimit B = � N

2 �+1. Theorem 1 implies that it can be determined
(up to a sign) by its (3B − 2) STFT measurements. When the windows are analytic,
such a required number of measurements can be reduced to (3B − 4).

An immediate consequence of Theorem 1 is the exact recovery of instantaneous fre-
quency (IF) for generic analytic signals. Given an analytic signal z = (z0, . . . , zN−1),
denote its element zk by |zk |ei arg(zk ) with arg(zk) ∈ [0, 2π). Define

ϕ∗(k) := (arg(zk) − arg(zk−1)) mod 2π. (5)

Then zϕ := (ϕ∗(0), . . . , ϕ∗(N − 1)) is referred to as the phase derivative (PD) or IF
of z (c.f. [18]).

Proposition 1 Suppose that z ∈ C
N is a generic analytic signal. Then its IF can

be exactly recovered from the same number of STFT measurements as specified in
Theorem 1.
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Proof By Theorem 1, we get z or −z. Since the k-th element of −z is expressed
as |zk |ei((arg(zk )−π) mod 2π), [(arg(zk) − π) mod 2π − (arg(zk−1) − π) mod 2π ]
mod 2π = (arg(zk) − arg(zk−1)) mod 2π. That is, the IF of −z is identical to that
of z. This completes the proof. ��

1.2 Comparisons with the Existing Results

In this subsection, we make some comparisons between Theorem 1 and the results in
[10, 35].

measurement number It was proved by [10] that the STFT-PR of a k2-sparse (in the Fourier domain)

signal in C
N2

can be achieved by O(k3) measurements. Theorem 1 implies
that its STFT-PR can be achieved by using only 3� N

2 � + O(1) number of
measurements.

condition The main result in [35] only applies to the case when N is even and the
separation parameter 0 < L < N is odd with the property that �N/L� ≥ 5.
However, Theorem 1 only requires �N/L� ≥ 3 in this case, and the odevity
of L, N is not required.

ambiguities The ambiguity for FROG-PR in [35] is different from that in Theorem 1 since
it additionally contains shift and reflection.

application The IFs of only a few analytic signals can be extracted from FROG-PR ( [35,
section 4]). However, Proposition 1 applies to every generic analytic signal.

Remark 4 As mentioned previously, the required number of measurements for PR (or
the uniqueness problem) is fundamental not only for the mathematical theory ( [2–4])
but also for practical applications including quantum tomography ( [28]). Compared
with the existing result for PR of all signals in C

N (cf. [2, 9, 30, 31]) or that for the
(Fourier transform) sparse signals inC

N ( [10]), our required number ofmeasurements
for generic analytic signals is reduced approximately by 62.5

100 and 1 − 4
9N2 .

2 Preliminary

A complex number 0 �= z ∈ C is traditionally denoted by |z|ei arg(z), where i, |z| and
arg(z) are the imaginary unit, modulus and phase, respectively. The real and imaginary
parts, and conjugation of z are denoted by 
(z), �(z) and z̄, respectively. For N sets
S1, . . . ,SN their Cartesian product is defined to be

S1 × · · · × SN = {(s1, . . . , sN ) : sk ∈ Sk}.
The discrete Fourier transform (DFT) of z ∈ C

N is defined by ẑ := (̂z0, ẑ1, . . . , ẑN−1)

such that ẑk = ∑N−1
n=0 zne−2π ikn/N . The inverse discrete Fourier transform (IDFT)

admits the formula

zk = 1

N

N−1
∑

n=0

ẑne2π ikn/N . (6)
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By the IDFTs of z and w, the STFT ŷwk,m in (1) can be expressed as

ŷwk,m = 1

N

N−1
∑

l=0

ẑk+lŵlω
lm, (7)

where ω = e
2π iL
N . The following is a characterization of the DFT structure for an

analytic signal.

Proposition 2 (c.f. [35]) Suppose that z ∈ C
N . Denote the Cartesian product of sets

by ×. Then z is analytic if and only if the following two items holds:

(i) for even length N, ẑ ∈ R × C
N
2 −1 × R ×

( N
2 −1)copies

︷ ︸︸ ︷

{0} × . . . × {0};

(ii) for odd length N, ẑ ∈ R × C
N−1
2 ×

N−1
2 copies

︷ ︸︸ ︷

{0} × . . . × {0}.
The following gives a characterization of the generic analytic signals.

Proposition 3 Let � be a set of generic analytic signals in C
N such that any signal in

� can be determined by a collection of polynomial STFT measurements. Meanwhile,
all the signals in the complementCN

A \� cannot be determined by these measurements
and they lies in the vanishing locus of a nonzero polynomial f on C

N :

V ( f ) = {(x0, . . . , xN−1) ∈ C
N : f (x0, . . . , xN−1) = 0}.

Denote C
N
A \ � by {A(x) = x + iHx : x ∈ 	 ⊆ R

N } where Hx defined in (4) is
the discrete Hilbert transform of x. Then 	 lies in the vanishing locus of a nonzero
polynomial g on R

N .

Proof For any analytic signal A(x), it follows from Remark 1 that Hx = A(x)−x
i .

Consequently, ̂Hx = ̂A(x)−̂x
i . By (2) and (3), for any x, y ∈ R

N we have ̂H(x + y) =
̂Hx+ ̂Hy. From this and the linearity of IDFTwe have that H(x+y) = Hx+Hy. That
is, the discrete Hilbert transform H is linear. Then there exists a matrix He ∈ R

N×N

such that Hx = Hex for any x ∈ R
N . Consequently,

A(x) = (I + iHe)x, (8)

where I is the identity matrix. For any x + iHx ∈ C
N
A \� it follows from (8) that

f (x + iHx) = f ((I + iHe)x) = 0. By choosing g(x) := f ((I + iHe)x), the proof
is completed. ��

3 Main Results

3.1 Several Lemmas

This section starts with an auxiliary result from [8, Lemma 3.2].
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Lemma 1 Consider an equation system w.r.t z ∈ C:

⎧

⎪

⎨

⎪

⎩

|z + v1| = n1,

|z + v2| = n2,

|z + v3| = n3,

(9)

where v1, v2, v3 ∈ C are distinct. If there exists a solution z̃ = a + ib to the above

system and �(v1 − v2

v1 − v3

) �= 0, then it is the unique one. Moreover, it is given by

(

a
b

)

= 1

2

(

c d
e f

)−1 (

n21 − n22 + |v2|2 − |v1|2
n21 − n23 + |v3|2 − |v1|2

)

,

where c = 
(v1 − v2), d = �(v1 − v2), e = 
(v1 − v3) and f = �(v1 − v3).

The following two lemmas will be needed in the proofs of Theorems 2 and 3.

Lemma 2 Suppose that a rational function f (z) = az + b

cz + d
, z = x + iy ∈ C satisfies

the conditions ad − bc �= 0, ac �= 0, a, b, c, d ∈ C. Then the set {(x, y) ∈ R
2 :

�( f (z)) = 0, z = x + iy} lies in the vanishing locus of a nonzero polynomial on R
2.

Proof Let z = x + iy. We have

�( f (z)) = �(
(az + b)(c̄z̄ + d̄)

(cz + d)(c̄z̄ + d̄)
) = �(

ac̄|z|2 + ad̄z + bc̄z̄ + bd̄

|cz + d|2 )

= �(ac̄)(x2 + y2) + (�(ad̄) + �(bc̄))x + (
(ad̄) − 
(bc̄))y + �(bd̄)

|cz + d|2 .

(10)

Now the proof can be completed by choosing the polynomial F(x, y) :=
�(ac̄)(x2 + y2) + (�(ad̄) + �(bc̄))x + (
(ad̄) − 
(bc̄))y + �(bd̄). ��
Lemma 3 Let L and N be such that 0 < L < N and �N/L� ≥ 3. If 0 ≤ m1,m2,m3 ≤
�N/L� − 1 are distinct, then �(ωm1 − ωm2

ωm1 − ωm3

) �= 0 where ω = e
2π iL
N .

Proof Since

ωm1 − ωm2

ωm1 − ωm3
= (ωm1 − ωm2)(ωm1 − ωm3)

|ωm1 − ωm3 |2 = 1 − ωm1−m3 − ωm2−m1 + ωm2−m3

|ωm1 − ωm3 |2 ,

we get that the condition �(ωm1−ωm2

ωm1−ωm3 ) �= 0 is equivalent to the condition

�(1 − ωm1−m3 − ωm2−m1 + ωm2−m3)

= − sin
(

2π(m1−m3)L
N

)

− sin
(

2π(m2−m1)L
N

)

+ sin
(

2π(m2−m3)L
N

)

�= 0.
(11)
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Assume to the contrary that �(ωm1−ωm2

ωm1−ωm3 ) = 0. Then we have

sin
(2π(m2 − m3)L

N

)

= sin
(2π(m1 − m3)L

N

)

+ sin
(2π(m2 − m1)L

N

)

,

which implies that

sin
(π(m2−m3)L

N

)

cos
(π(m2−m3)L

N

)

=sin
(π(m2−m3)L

N

)

cos
(π(2m1−m3−m2)L

N

)

.

Since m2 �= m3 and 0 ≤ m2,m3 ≤ �N/L� − 1, we get that sin
(

π(m2−m3)L
N

)

�= 0

and hence

cos
(π(m2 − m3)L

N

)

= cos
(π(2m1 − m3 − m2)L

N

)

.

This implies that π(m2−m3)L
N = π(2m1−m3−m2)L

N or π(m2−m3)L
N = −π(2m1−m3−m2)L

N .
Thus we have either m1 = m2 or m1 = m3, which leads to a contradiction. The proof
is completed. ��

3.2 The First Main Result:Window Bandlimit 2 ≤ B ≤ �N
2 � Case

Suppose that the window w ∈ C
N is B-bandlimited such that 2 ≤ B ≤ � N

2 �. Conse-
quently, there exists i ∈ {0, . . . , N − 1} such that

ŵi = · · · = ŵi+N−B−1 = 0, ŵi+N−B �= 0. (12)

For such a subscript i , we consider the following measurements

∣

∣ŷw� N
2 �−(i+N−B)−n+1,m

∣

∣ = 1

N

∣

∣

N−1
∑

l=0

ẑ� N
2 �−(i+N−B)−n+1+lŵlω

lm
∣

∣, (13)

where n = 1, . . . , � N
2 � + 1.

The following is a 2-bandlimited window in C
48 such that (12) holds with i = 2.

Example 1 For N = 48, we design a window w such that its bandlimit B = 2. Its real
and imaginary parts are plotted in Fig. 1 (a) while the real and imaginary parts of ŵ
are plotted in Fig. 1 (b).

The following example on the summation in (13) for the case N = 6 and B = 3
exhibits the structure of |̂yw� N

2 �−(i+N−B)−n+1,m
| for general N and B.

Example 2 Let N = 6, B = � N
2 � = 3. For an analytic signal z ∈ C

6, it follows
from Proposition 2 (i) that its DFT ẑ = (̂z0, ẑ1, ẑ2, ẑ3, 0, 0). Choose a 3-bandlimited
window w ∈ C

6 such that ŵ = (ŵ0, ŵ1, ŵ2, 0, 0, 0) and correspondingly i = 3 in
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Fig. 1 (a) Graph of the real and imaginary parts of w; (b) graph of the real and imaginary parts of ŵ

(12). For n = 1, . . . , 4, |̂yw4−n,0| in (13) are expressed as: |̂yw3,0| = 1
6 |̂z3ŵ0|, |̂yw2,0| =

1
6 |̂z2ŵ0+ ẑ3ŵ1|, |̂yw1,0| = 1

6 |̂z1ŵ0+ ẑ2ŵ1+ ẑ3ŵ2| and |̂yw0,0| = 1
6 |̂z0ŵ0+ ẑ1ŵ1+ ẑ2ŵ2|.

The terms ẑkŵl on which ŷw4−n,0 is dependent are arranged as follows,

n = 1 ẑ3ŵ0
n = 2 ẑ2ŵ0 ẑ3ŵ1
n = 3 ẑ1ŵ0 ẑ2ŵ1 ẑ3ŵ2
n = 4 ẑ0ŵ0 ẑ1ŵ1 ẑ2ŵ2

(14)

Based on (14), the terms ẑkŵlω
lm for ŷw4−n,m can be arranged similarly.

For the general case, similar to (14), it follows from 2 ≤ B ≤ � N
2 �, (12) and Propo-

sition 2 that the terms ẑkŵl on which |̂yw� N
2 �−(i+N−B)−n+1,0

| in (13) is dependent are

arranged as follows,

ẑ�N2 �ŵi+N−B
ẑ�N2 �−1ŵi+N−B ẑ�N2 �ŵi+N−B+1

. . . .
.
.

ẑ�N2 �+1−B ŵi+N−B ẑ�N2 �+2−B ŵi+N−B+1 · · · ẑ�N2 �ŵi+N−1

. . . . . .

ẑ0ŵi+N−B ẑ1ŵi+N−B+1 · · · ẑB−1ŵi+N−1

(15)

For n = 1, as implied on the first row of (15) the corresponding measurement
|̂yw� N

2 �−(i+N−B),0
| is involved with only the term ẑ� N

2 �ŵi+N−B . An observation on

(13) gives us that, for
∣

∣ŷw� N
2 �−(i+N−B)−n+1,m

∣

∣ the related terms ẑkŵlω
lm are arranged

as in (15). The following is on the determination of ẑ� N
2 �.

Lemma 4 Suppose that the window w ∈ C
N is B-bandlimited such that 2 ≤

B ≤ � N
2 �. Consequently, there exists i ∈ {0, . . . , N − 1} such that ŵi = · · · =
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ŵi+N−B−1 = 0 and ŵi+N−B �= 0. Then for any analytic signal z ∈ C
N with DFT

ẑ = (̂z0, ẑ1, . . . , ẑ� N
2 �, 0, . . . , 0), we have the following:

Case I: If N is even, then the component ẑ� N
2 � can be determined (up to a sign) by

the measurement |̂yw� N
2 �−(i+N−B),0

|.
Case II: If N is odd, then the component ẑ� N

2 � canbe determined (up to a unimodular
scalar) by |̂yw� N

2 �−(i+N−B),0
|.

Proof It follows from (12) and (13) that |̂yw� N
2 �−(i+N−B),0

| = 1
N |̂z� N

2 �ŵi+N−B |. Then

ẑ� N
2 � =

N |̂yw� N
2 �−(i+N−B),0

|
|ŵi+N−B | eiθ0 . The proof for the odd case is completed. By Proposition

2 for N being even, we have ẑ N
2

∈ R. Then ẑ N
2

= ε
N |̂ywN

2 −(i+N−B),0
|

|ŵi+N−B | with ε ∈ {1,−1}.
This completes the proof for the even case. ��

Now it is ready to establish the first main theorem.

Theorem 2 Suppose that the window w ∈ C
N is B-bandlimited such that 2 ≤ B ≤

� N
2 � and there exists i ∈ {0, . . . , N − 1} such that (12) holds and ŵi+N−B+1 �=

0. Moreover, we assume that the STFT separation parameter 0 < L < N
satisfies �N/L� ≥ 3, and choose any three distinct numbers m1,m2,m3 from
{0, 1, . . . , �N/L� − 1}. Then any generic analytic signal z ∈ C

N can be determined,
up to a global sign, by its (3� N

2 � + 1) number of STFT measurements

{|̂yw�N2�−(i+N−B),0
|, |̂ywk−(i+N−B),m j

| : k = 0, . . . , �N
2

� − 1, j = 1, 2, 3
}

. (16)

Proof We mainly prove for the case when N is even since the proof for the odd N
case is very similar. We will complete it by induction. By Lemma 4, the component
ẑ N

2
can be determined up to a sign by the measurement |̂ywN

2 −(i+N−B),0
|. Denote such

a determination result by ε̂z N
2
with ε ∈ {1,−1}. In what follows, we discuss how to

recover other components ẑ0, . . . , ẑ N
2 −1.

We first address the recovery of ẑ N
2 −1 by the STFT measurements

{|̂ywN
2 −1−(i+N−B),m j

| : j = 1, 2, 3}. Consider the equation system w.r.t̂z̊ N
2 −1:

|̂ywN
2 −1−(i+N−B),m j

| = 1
N

∣

∣̂z̊ N
2 −1ŵi+N−Bω(i+N−B)m j + ε̂z N

2
ŵi+N−B+1ω

(i+N−B+1)m j
∣

∣,

j = 1, 2, 3.
(17)

Note that (17) is equivalent to

N |̂ywN
2 −1−(i+N−B),m j

|
|ŵi+N−Bω(i+N−B)m j | = ∣

∣̂z̊ N
2 −1 + v j, N2 −1

∣

∣, j = 1, 2, 3, (18)
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where

v j, N2 −1 :=
ε̂z N

2
ŵi+N−B+1ω

(i+N−B+1)m j

ŵi+N−Bω(i+N−B)m j
. (19)

For the generic analytic signal z, we have ẑ N
2

�= 0. Therefore, for v j, N2 −1 in (19) we
have

v1, N2 −1 − v2, N2 −1

v1, N2 −1 − v3, N2 −1
= ωm1 − ωm2

ωm1 − ωm3
. (20)

By (20) and Lemma 3, we have �
(v1, N2 −1 − v2, N2 −1

v1, N2 −1 − v3, N2 −1

)

�= 0. Then it follows from

Lemma 1 that there exists a unique solution to the equation system (18) w.r.t̂z̊ N
2 −1.

Clearly, ε̂z N
2 −1 is a solution. Then it is the unique one. Inwhat follows, we address how

to recover the other components ẑ N
2 −2, . . . , ẑ0. Suppose that ε̂zk has been obtained

for any k ∈ { N2 , N
2 − 1, . . . , k0} with k0 ∈ { N2 , N

2 − 1, . . . , 1} by the measurements

{|̂ywN
2 −(i+N−B),0

|, |̂yw�−(i+N−B),m j
| : � = N

2
− 1, . . . , k0, j = 1, 2, 3

}

.

Now we discuss how to recover ẑk0−1. Consider the equation system w.r.t̂z̊k0−1:

|̂ywk0−1−(i+N−B),m j
| = 1

N

∣

∣̂z̊k0−1ŵi+N−Bω(i+N−B)m j

+
N
2 −k0+1

∑

l=1
ε̂zk0−1+lŵi+N−B+lω

(i+N−B+l)m j
∣

∣, j = 1, 2, 3.

(21)

Note that (21) is equivalent to

N |̂ywk0−1−(i+N−B),m j
|

|ŵi+N−Bω(i+N−B)m j | = ∣

∣̂z̊k0−1 + v j,k0−1
∣

∣, j = 1, 2, 3, (22)

where

v j,k0−1 :=
ε̂zk0 ŵi+N−B+1ω

(i+N−B+1)m j +
N
2 −k0+1
∑

l=2

ε̂zk0−1+l ŵi+N−B+lω
(i+N−B+l)m j

ŵi+N−Bω
(i+N−B)m j

.

(23)

Motivated by Lemma 1, define

f (̂zk0) := v1,k0−1 − v2,k0−1

v1,k0−1 − v3,k0−1
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= âzk0 + b

ĉzk0 + d
, (24)

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a = εŵi+N−B+1(ω
m1 − ωm2),

b =
N
2 −k0+1

∑

l=2
ε̂zk0−1+lŵi+N−B+l(ω

lm1 − ωlm2),

c = εŵi+N−B+1(ω
m1 − ωm3),

d =
N
2 −k0+1

∑

l=2
ε̂zk0−1+lŵi+N−B+l(ω

lm1 − ωlm3).

(25)

Recall that ŵi+N−B+1 �= 0 and m1,m2,m3 are distinct. Then ac �= 0. For the generic
analytic signal z, we have ad − bc �= 0. That is, f (̂zk0) meets the requirements in
Lemma 2. Then �[ f (̂zk0)] �= 0. Therefore, by Lemma 1 the component ε̂zk0−1 can be
determined by the equation system (22). Through the induction procedures, the proof
can be completed.

For N being odd, as in the even case the recovery starts with ẑ N−1
2
. Suppose that

what we get is ẑ N−1
2
eîθ0 . Through the similar recursive procedures as in (22), what we

get is eîθ0 (̂z0, . . . , ẑ N−1
2

). Recall that ẑ0 is real. Then one needs to choose a phase θ̃

such that eiθ̃eîθ0̂z0 is real. That is, what we get is ε(̂z0, . . . , ẑ N−1
2

) with ε ∈ {1,−1}.
This completes the proof. ��
Remark 5 (1) In Theorem 2, it is required that ŵi+N−B+1 �= 0. Such a requirement is
crucial for the determination of ẑ� N

2 �−1. If it is not satisfied, then the equation system

w.r.t̂z̊� N
2 �−1:

N |̂yw� N
2 �−1−(i+N−B),m j

|
|ŵi+N−Bω(i+N−B)m j | = ∣

∣̂z̊� N
2 �−1 +

ẑ� N
2 �ŵi+N−B+1ω

(i+N−B+1)m j

ŵi+N−Bω(i+N−B)m j

∣

∣, j = 1, 2, 3

degenerates to

N |̂yw� N
2 �−1−(i+N−B),m j

|
|ŵi+N−Bω(i+N−B)m j | = ∣

∣̂z̊� N
2 �−1

∣

∣, j = 1, 2, 3.

Clearly, the above system is underdetermined and ẑ� N
2 �−1 cannot be determined. (2)

The overall requirements for the window w in Theorem 2 are that

ŵi = · · · = ŵi+N−B−1 = 0, ŵi+N−B �= 0, ŵi+N−B+1 �= 0. (26)

From this, using the DFT it is easy to construct the required window.
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3.3 The SecondMain Result:Window Bandlimit B = �N
2 � + 1 Case

Suppose that the window w ∈ C
N is (� N

2 � + 1)-bandlimited. Consequently, there
exists i ∈ {0, . . . , N − 1} such that

ŵi = · · · = ŵi+� N
2 �−2 = 0, ŵi+� N

2 �−1 �= 0. (27)

We are interested in the STFT measurements at (2 − i + N − n,m):

∣

∣ŷw2−i+N−n,m

∣

∣ = 1

N

∣

∣

N−1
∑

l=0

ẑ2−i+N−n+lŵlω
lm

∣

∣, (28)

where n = 1, . . . , � N
2 �.

Again the following is a motivation example for the structure of the summation in
(28).

Example 3 Let N = 6 and the window bandlimit B = � N
2 � + 1 = 4. For an analytic

signal z ∈ C
6, it follows from Proposition 2 (i) that its DFT ẑ = (̂z0, ẑ1, ẑ2, ẑ3, 0, 0).

Choose a 4-bandlimited window w ∈ C
6 such that ŵ = (ŵ0, ŵ1, ŵ2, ŵ3, 0, 0) and

correspondingly i = 4 in (27). For n = 1, 2, 3, |̂yw4−n,0| in (28) are expressed as:

|̂yw3,0| = 1
6 |̂z3ŵ0 + ẑ0ŵ3|, |̂yw2,0| = 1

6 |̂z2ŵ0 + ẑ3ŵ1|, |̂yw1,0| = 1
6 |̂z1ŵ0 + ẑ2ŵ1 + ẑ3ŵ2|.

The terms ẑkŵl on which ŷw4−n,0 is dependent are arranged as follows,

n = 1 ẑ0ŵ3 ẑ3ŵ0
n = 2 ẑ2ŵ0 ẑ3ŵ1
n = 3 ẑ1ŵ0 ẑ2ŵ1 ẑ3ŵ2

(29)

Based on (29), the terms ẑkŵlω
lm of ŷw4−n,m can be arranged similarly.

For the general case when the window bandlimit B = � N
2 � + 1, as in (29), it

follows from (27) and Proposition 2 that the terms ẑkŵl on which |̂yw2−i+N−n,0| in
(28) is dependent are arranged as follows,

ẑ0ŵi−1+N ẑ� N
2 �ŵi+� N

2 �−1

ẑ� N
2 �−1ŵi+� N

2 �−1 ẑ� N
2 �ŵi+� N

2 �

. . . ...

ẑ1ŵi+� N
2 �−1 ẑ2ŵi+� N

2 � · · · ẑ� N
2 �ŵi+2� N

2 �−2

(30)

An observation on (28) gives us that, for
∣

∣ŷw2−i+N−n,m

∣

∣ the related terms ẑkŵlω
lm are

arranged as in (30). Motivated by such a structure, we next use the (multi-window)
measurements

{|̂yw(s)
2−i+N−n,m | : s = 1, 2, 3, 4

}

to do the PR for z, which is stated
below as our second main theorem.
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Theorem 3 Assume that the STFT separation parameter L satisfies �N/L� ≥ 3.
Suppose that the four windows w(s) ∈ C

N , s = 1, . . . , 4 are (� N
2 � + 1)-bandlimited

such that they satisfy (27) with i ∈ {0, . . . , N −1}, ŵ(1)
i+� N

2 � �= 0, and let m1,m2,m3 ∈
{0, 1, . . . , �N/L� − 1} be three distinct numbers. If the matrix

A0 :=

⎛

⎜

⎜

⎜

⎝

a(1)
11 a(1)

12 a(1)
21 a(1)

22

a(2)
11 a(2)

12 a(2)
21 a(2)

22

a(3)
11 a(3)

12 a(3)
21 a(3)

22

a(4)
11 a(4)

12 a(4)
21 a(4)

22

⎞

⎟

⎟

⎟

⎠

(31)

is invertible, where

⎧

⎪

⎨

⎪

⎩

a(s)
11 = |ŵ(s)

i+� N
2 �−1

|2, a(s)
12 = ŵ(s)

i+� N
2 �−1

ŵ(s)
i−1+N ,

a(s)
21 = ŵ(s)

i−1+N ŵ
(s)
i+� N

2 �−1
, a(s)

22 = |ŵ(s)
i−1+N |2,

(32)

then any generic analytic signal z ∈ C
N can be determined (up to a global sign) by

its (3� N
2 � + 1) number of STFT measurements

{

|̂yw(1)
1−i+N ,0|, |̂yw(2)

1−i+N ,0|, |̂yw(3)
1−i+N ,0|, |̂yw(4)

1−i+N ,0|, |̂yw(1)
k−(i+� N

2 �−1),m j
| : k = 1, . . . , � N

2 � − 1,

j = 1, 2, 3
}

.

(33)

Proof Consider the equation system w.r.t (̂z̊0,̂z̊� N
2 �):

|̂yw(s)
1−i+N ,0| = 1

N
|̂z̊� N

2 �ŵ
(s)
i+� N

2 �−1
+̂z̊0ŵ

(s)
i−1+N |, s = 1, 2, 3, 4. (34)

Note that (34) is equivalent to

(

̂z̊� N
2 �ŵ

(s)
i+� N

2 �−1
+̂z̊0ŵ

(s)
i−1+N

)(

̂z̊� N
2 �ŵ

(s)
i+� N

2 �−1
+̂z̊0ŵ

(s)
i−1+N

) = N 2 |̂yw(s)
1−i+N ,0|2,

s = 1, 2, 3, 4.
(35)

Through the direct calculation, (35) is equivalent to

A0

⎛

⎜

⎜

⎜

⎜

⎝

|̂z̊� N
2 �|2

̂z̊� N
2 �̂z̊0

̂z̊� N
2 �̂z̊0

̂z̊
2
0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

N 2 |̂yw(1)
1−i+N ,0|2

N 2 |̂yw(2)
1−i+N ,0|2

N 2 |̂yw(3)
1−i+N ,0|2

N 2 |̂yw(4)
1−i+N ,0|2

⎞

⎟

⎟

⎟

⎠

. (36)
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Since A0 is invertible and ẑ0 ∈ R, (̂z0, ẑ� N
2 �) can be determined up to a sign by

the four measurements in (34). We denote such a recovery result by ε(̂z0, ẑ� N
2 �) with

ε ∈ {1,−1}.
We first consider the equation system w.r.t̂z̊� N

2 �−1:

|̂yw(1)
N−i,m j

| = 1

N

∣

∣̂z̊� N
2 �−1ŵ

(1)
i+� N

2 �−1
ω(i+� N

2 �−1)m j + ε̂z� N
2 �ŵ

(1)
i+� N

2 �ω
(i+� N

2 �)m j
∣

∣, j = 1, 2, 3.

(37)

Note that (37) is equivalent to

N |̂yw(1)
N−i,m j

|
|ŵ(1)

i+� N
2 �−1

ω(i+� N
2 �−1)m j |

= ∣

∣̂z̊� N
2 �−1 + v j,� N

2 �−1

∣

∣, j = 1, 2, 3, (38)

where v j,� N
2 �−1 :=

ε̂z� N
2 �ŵ

(1)

i+� N
2 �ω

(i+� N
2 �)m j

ŵ(1)

i+� N
2 �−1

ω
(i+� N

2 �−1)m j
. For the generic analytic signal z ∈ C

N , we

have ẑ� N
2 � �= 0. Therefore, for j = 1, 2, 3 we have

v1,� N
2 �−1 − v2,� N

2 �−1

v1,� N
2 �−1 − v3,� N

2 �−1
= ωm1 − ωm2

ωm1 − ωm3
. (39)

By (39) and Lemma 3, we have �
(v1,� N

2 �−1 − v2,� N
2 �−1

v1,� N
2 �−1 − v3,� N

2 �−1

)

�= 0. Now it follows from

Lemma 1 that there exists a unique solution to the equation system (38) w.r.t̂z̊� N
2 �−1.

Clearly, ε̂z� N
2 �−1 is a solution. Then it is the unique solution. Suppose that for any

k ∈ {� N
2 �, � N

2 �−1, . . . , k0, 0} where k0 ∈ {� N
2 �, � N

2 �−1, . . . , 2}, the component ẑk
has been determined by the measurements

{|̂yw(s)
1−i+N ,0|, |̂yw(1)

�−(i+� N
2 �−1),m j

| : � = � N
2 � − 1, . . . , k0, s = 1, 2, 3, 4, j = 1, 2, 3

}

.

We next recover ẑk0−1. Consider the equation system w.r.t̂z̊k0−1:

|̂yw(1)
k0−1−(i+� N

2 �−1),m j
| = 1

N

∣

∣̂z̊k0−1ŵ
(1)
i+� N

2 �−1
ω(i+� N

2 �−1)m j

+
� N
2 �−k0+1
∑

l=1

ε̂zk0−1+l ŵ
(1)
i+� N

2 �−1+l
ω(i+� N

2 �−1+l)m j
∣

∣, j = 1, 2, 3.
(40)

Note that (40) is equivalent to

N |̂yw(1)
k0−1−(i+� N

2 �−1),m j
|

|ŵ(1)
i+� N

2 �−1
ω(i+� N

2 �−1)m j |
= ∣

∣̂z̊k0−1 + v j,k0−1
∣

∣, j = 1, 2, 3, (41)
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where

v j,k0−1 :=
ε̂zk0 ŵ

(1)
i+� N

2 �ω
(i+� N

2 �)m j +
� N
2 �−k0+1
∑

l=2

ε̂zk0−1+l ŵ
(1)
i+� N

2 �−1+l
ω(i+� N

2 �−1+l)m j

ŵ(1)
i+� N

2 �−1
ω(i+� N

2 �−1)m j
.

(42)

Define

f (̂zk0) := v1,k0−1 − v2,k0−1

v1,k0−1 − v3,k0−1

= âzk0 + b

ĉzk0 + d
, (43)

where
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

a = εŵ(1)
i+� N

2 �(ω
m1 − ωm2),

b =
� N
2 �−k0+1

∑

l=2
ε̂zk0−1+lŵ

(1)
i+� N

2 �−1+l
(ωlm1 − ωlm2),

c = εŵ(1)
i+� N

2 �(ω
m1 − ωm3),

d =
� N
2 �−k0+1

∑

l=2
ε̂zk0−1+lŵ

(1)
i+� N

2 �−1+l
(ωlm1 − ωlm3).

(44)

Since ŵ(1)
i+� N

2 � �= 0, ac �= 0. For the generic analytic signal z, we have ad − bc �= 0.

That is, f (̂zk0) meets the requirements in Lemma 2. Then �[ f (̂zk0)] �= 0. By Lemma
1, ε̂zk0−1 can be determined. This completes the proof. ��
Remark 6 Thecondition ŵ(1)

i+� N
2 � �= 0 inTheorem3 is also important since if otherwise,

then the equation system w.r.t̂z̊� N
2 �−1:

N |̂yw(1)
N−i,m j

|
|ŵ(1)

i+� N
2 �−1

ω(i+� N
2 �−1)m j |

= ∣

∣̂z̊� N
2 �−1 +

ẑ� N
2 �ŵ

(1)
i+� N

2 �ω
(i+� N

2 �)m j

ŵ(1)
i+� N

2 �−1
ω(i+� N

2 �−1)m j

∣

∣, j = 1, 2, 3

degenerates to

N |̂yw(1)
N−i,m j

|
|ŵ(1)

i+� N
2 �−1

ω(i+� N
2 �−1)m j |

= ∣

∣̂z̊� N
2 �−1

∣

∣, j = 1, 2, 3.

Clearly, the above system is underdetermined and ẑ� N
2 �−1 cannot be recovered exactly.
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Remark 7 The overall requirements for the four windowsw(s) ∈ C
N , s = 1, . . . , 4 are

as follows: (1) w(s) ∈ C
N , s = 1, . . . , 4 are (� N

2 � + 1)-bandlimited. (2) Associated
with the four matrices, the matrix

A0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a(1)
11 a(1)

12 a(1)
21 a(1)

22

a(2)
11 a(2)

12 a(2)
21 a(2)

22

a(3)
11 a(3)

12 a(3)
21 a(3)

22

a(4)
11 a(4)

12 a(4)
21 a(4)

22

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(45)

is invertible. Uniformly choose the first and fourth columns of A0 from R
4, and the

second and third columns from C
4. Since invertible matrices are dense in C

4×4 (or in
R
4×4), A0 is invertible with probability one.

The following provides a design for the windows in Theorem 3.

Example 4 Choose a (� N
2 � + 1)-bandlimited window ŵ(1) such that (27) holds with

i ∈ {0, . . . , N − 1}. Consequently, ŵ(1)
i+� N

2 � �= 0. Now choose the other three

(� N
2 �+1)-bandlimitedwindows ŵ(s), s = 2, 3, 4 such that ŵ(2)

i+� N
2 �−1

= (ŵ(1)
i+� N

2 �−1
)2,

ŵ(3)
i+� N

2 �−1
= (ŵ(1)

i+� N
2 �−1

)3, ŵ(4)
i+� N

2 �−1
= (ŵ(1)

i+� N
2 �−1

)4, ŵ(2)
i−1+N = (ŵ(1)

i−1+N )2,

ŵ(3)
i−1+N = (ŵ(1)

i−1+N )3 and ŵ(4)
i−1+N = (ŵ(1)

i−1+N )4. Additionally, it is required

that ŵ(1)
i+� N

2 �−1
�= ŵ(1)

i−1+N , ŵ
(1)
i+� N

2 �−1
ŵ(1)
i−1+N /∈ R, |ŵ(1)

i+� N
2 �−1

| �= |ŵ(1)
i−1+N | and

ŵ(1)
i+� N

2 �−1
ŵ(1)
i−1+N �= 0. Then A0 in (31) can be expressed as

A0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

|ŵ(1)
i+� N

2 �−1
|2 ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N |ŵ(1)

i−1+N |2

|ŵ(1)
i+� N

2 �−1
|4 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )2 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )2 |ŵ(1)

i−1+N |4

|ŵ(1)
i+� N

2 �−1
|6 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )3 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )3 |ŵ(1)

i−1+N |6

|ŵ(1)
i+� N

2 �−1
|8 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )4 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )4 |ŵ(1)

i−1+N |8

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(46)

Clearly,

A0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1

|ŵ(1)
i+� N

2 �−1
|2 ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N |ŵ(1)

i−1+N |2

|ŵ(1)
i+� N

2 �−1
|4 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )2 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )2 |ŵ(1)

i−1+N |4

|ŵ(1)
i+� N

2 �−1
|6 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )3 (ŵ(1)

i+� N
2 �−1

ŵ(1)
i−1+N )3 |ŵ(1)

i−1+N |6

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠
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×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

|ŵ(1)
i+� N

2 �−1
|2 0 0 0

0 ŵ(1)
i+� N

2 �−1
ŵ(1)
i−1+N 0 0

0 0 ŵ(1)
i+� N

2 �−1
ŵ(1)
i−1+N 0

0 0 0 |ŵ(1)
i−1+N |2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (47)

ThenA0 is invertible, and the four windowsw(s), s = 1, 2, 3, 4 meet the requirements
in Theorem 3. As an example for (N , B, i) = (48, 25, 25), the graphs of w(s), s =
1, 2, 3, 4 and their DFTs are plotted in Fig. 2.

3.4 The Third Main Result: The AnalyticWindow Case

Themain purpose of this subsection is to show that if N is even and all the windows are
analytic, then fewer measurements than Theorem 2 and 3 are required for the recovery.

Lemma 5 Suppose that N is even, and z, z̃ ∈ C
N are both generic analytic signals

with DFTs ẑ = (̂z0, ẑ1, . . . , ẑ N
2
, 0, . . . , 0) and̂z̃ = (̂z̃0,̂z̃1, . . . ,̂z̃ N

2
, 0, . . . , 0). Assume

that the STFT separation parameter 0 < L < N satisfies �N/L� ≥ 3, and w(1) is an
analytic window such that ŵ(1)

1 ŵ(1)
0 �= 0. Let m1,m2,m3 ∈ {0, 1, . . . , �N/L� − 1} be

three distinct parameters. If |̂z̃ N
2
| �= |̂z N

2
| and z̃ has the same STFT (associated with

the window w(1)) magnitudes as z at ( N2 − 1,m j ), j = 1, 2, 3, then

̂z̃
2
N
2

|̂z N
2 −1|2

= (ŵ(1)
0 )2

|ŵ(1)
1 |2

. (48)

Proof By Proposition 2, both ẑ N
2
and̂z̃ N

2
are real-valued. Suppose that̂z̃ N

2
= λz,z̃ẑ N

2

such that±1 �= λz,z̃ ∈ R. Since the STFT magnitudes of z at ( N2 −1,m j ), j = 1, 2, 3
are identical to those of z̃, we have that

1

N
|̂z N

2 −1ŵ
(1)
0 + ẑ N

2
ŵ(1)
1 ωm j | = |̂yw(1)

N
2 −1,m j

| = 1

N
|̂z̃ N

2 −1ŵ
(1)
0 +̂z̃ N

2
ŵ(1)
1 ωm j |, j = 1, 2, 3. (49)

Sincêz̃ N
2

= λz,z̃ẑ N
2
,

|̂z N
2 −1ŵ

(1)
0 + ẑ N

2
ŵ(1)
1 ωm j |2 = |̂z̃ N

2 −1ŵ
(1)
0 + λz,z̃ẑ N

2
ŵ(1)
1 ωm j |2. (50)



Circuits, Systems, and Signal Processing

Fig. 2 (a-d)Real and imaginary parts of the four windowsw(s); (e-h)Real and imaginary parts of ŵ(s), s =
1, 2, 3, 4
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Using Proposition 2 again, ŵ(1)
0 is real-valued. Then (50) is equivalent to

(λ2z,z̃ − 1)̂z2N
2
|ŵ(1)

1 |2 + (|̂z̃ N
2 −1|2 − |̂z N

2 −1|2)(ŵ(1)
0 )2

+2
{ωm j ŵ(1)
1 ŵ(1)

0 ẑ N
2
(λz,z̃̂z̃ N

2 −1 − ẑ N
2 −1)} = 0.

(51)

Multiplying by ωm j on both sides of (51) leads to

[(λ2z,z̃ − 1)̂z2N
2
|ŵ(1)

1 |2 + (|̂z̃ N
2 −1|2 − |̂z N

2 −1|2)(ŵ(1)
0 )2]ωm j

+(λz,z̃̂z̃ N
2 −1 − ẑ N

2 −1)ŵ
(1)
1 ŵ(1)

0 ẑ N
2
ω2m j + (λz,z̃̂z̃ N

2 −1 − ẑ N
2 −1)ŵ

(1)
0 ŵ(1)

1 ẑ N
2

= 0.

(52)

Consider the following equation w.r.t x :

[(λ2z,z̃ − 1)̂z2N
2
|ŵ(1)

1 |2 + (|̂z̃ N
2 −1|2 − |̂z N

2 −1|2)(ŵ(1)
0 )2]x

+(λz,z̃̂z̃ N
2 −1 − ẑ N

2 −1)ŵ
(1)
1 ŵ(1)

0 ẑ N
2
x2 + (λz,z̃̂z̃ N

2 −1 − ẑ N
2 −1)ŵ

(1)
0 ŵ(1)

1 ẑ N
2

= 0.
(53)

If the polynomial on the left-hand side of (53) is a nonzero polynomial, then there are
at most two solutions to the above equation. By (52), ωm j , j = 1, 2, 3 are the three
distinct solutions to (53). Therefore, all the coefficients in (53) are zero. Then

(λz,z̃̂z̃ N
2 −1 − ẑ N

2 −1)ŵ
(1)
0 ŵ(1)

1 ẑ N
2

= 0 (54)

and

(λ2z,z̃ − 1)̂z2N
2
|ŵ(1)

1 |2 + (|̂z̃ N
2 −1|2 − |̂z N

2 −1|2)(ŵ(1)
0 )2 = 0. (55)

Since z and z̃ are generic analytic signals, we get that ẑ N
2
, ẑ N

2 −1,
̂z̃ N

2 −1, λz,z̃ are

nonzero. From (54), we havêz̃ N
2 −1 = 1

λz,z̃
ẑ N

2 −1. Combining this with (55), we have
that

(λ2z,z̃ − 1)̂z2N
2
|ŵ(1)

1 |2 + (
1

λ2z,z̃

− 1)|̂z N
2 −1|2(ŵ(1)

0 )2 = 0, (56)

which implies that

ẑ2N
2

= −
( 1
λ2z,z̃

− 1)|̂z N
2 −1|2(ŵ(1)

0 )2

(λ2z,z̃ − 1)|ŵ(1)
1 |2

= 1

λ2z,z̃

|̂z N
2 −1|2(ŵ(1)

0 )2

|ŵ(1)
1 |2

. (57)
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It follows from λz,z̃ =
̂z̃ N

2
ẑ N
2

and (57) that

̂z̃
2
N
2

|̂z N
2 −1|2

= (ŵ(1)
0 )2

|ŵ(1)
1 |2

, (58)

which completes the proof. ��
Now we are ready to prove our third main result.

Theorem 4 Assume that N is even and the STFT separation parameter L satisfies
�N/L� ≥ 3. Let m1,m2,m3 ∈ {0, 1, . . . , �N/L� − 1} be distinct. If the two windows
w(1) and w(2) are analytic such that ŵ(1)

1 ŵ(1)
0 �= 0, ŵ(1)

N
2
ŵ(2)

N
2

�= 0 and ŵ(1)
0 ŵ(2)

N
2

−
ŵ(2)
0 ŵ(1)

N
2

�= 0, then any generic analytic signal z ∈ C
N can be determined (up to a

sign) by its ( 3N2 − 1) number of STFT magnitudes

{|̂yw(1)
N
2 ,0

|, |̂yw(2)
N
2 ,0

|, |̂yw(1)
k,m j

| : k = 1, . . . ,
N

2
− 1, j = 1, 2, 3

}

. (59)

Proof Since z, w(1) and w(2) are all analytic, it follows from Proposition 2 (i) that the
six numbers ẑ0, ẑ N

2
, ŵ(1)

0 , ŵ(2)
0 , ŵ(1)

N
2

and ŵ(2)
N
2

are all real-valued.

Step 1: The determination of (̂z0, ẑ N
2
, ẑ N

2 −1).

In this step, we prove that (̂z0, ẑ N
2
, ẑ N

2 −1) can be determined, up to a sign, by the

five measurements {|̂yw(1)
N
2 ,0

|, |̂yw(2)
N
2 ,0

|, |̂yw(1)
N
2 −1,m j

| : j = 1, 2, 3}. Consider the equation
system w.r.t the variable (̂z̊0,̂z̊ N

2
) ∈ R

2:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|̂yw(1)
N
2 ,0

| = 1

N
|̂z̊ N

2
ŵ(1)
0 +̂z̊0ŵ

(1)
N
2

|,

|̂yw(2)
N
2 ,0

| = 1

N
|̂z̊ N

2
ŵ(2)
0 +̂z̊0ŵ

(2)
N
2

|.
(60)

It follows from ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

�= 0 that the solutions (up to a global sign ε) to

(60) are

(̂z̊0,̂z̊ N
2
) =

(
N (−|̂yw(1)

N
2 ,0

|ŵ(2)
0 + |̂yw(2)

N
2 ,0

|ŵ(1)
0 )

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

,

N (|̂yw(1)
N
2 ,0

|ŵ(2)
N
2

− |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

)

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

)

(61)

and

(̂z̊0,̂z̊ N
2
) =

(
N (−|̂yw(1)

N
2 ,0

|ŵ(2)
0 − |̂yw(2)

N
2 ,0

|ŵ(1)
0 )

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

,

N (|̂yw(1)
N
2 ,0

|ŵ(2)
N
2

+ |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

)

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

)

. (62)
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For anŷz̊ N
2
given through (61) or (62), the following equations w.r.t̂z̊ N

2 −1:

|̂yw(1)
N
2 −1,m j

| = 1
N |̂z̊ N

2 −1ŵ
(1)
0 +̂z̊ N

2
ŵ(1)
1 ωm j |, j = 1, 2, 3 (63)

have a unique solution if and only if the three circles w.r.t the variablêz̊ N
2 −1:

N
∣

∣ŷw(1)
N
2 −1,m j

∣

∣

∣

∣ŵ(1)
0

∣

∣

= ∣

∣̂z̊ N
2 −1 +

̂z̊ N
2
ŵ(1)
1 ωm j

ŵ(1)
0

∣

∣, j = 1, 2, 3 (64)

have only one intersection point. We next prove that for the two choices of̂z̊ N
2
given

by (61) and (62):

̂z̊ N
2

=
N (|̂yw(1)

N
2 ,0

|ŵ(2)
N
2

− |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

)

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

and̂z̊ N
2

=
N (|̂yw(1)

N
2 ,0

|ŵ(2)
N
2

+ |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

)

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

, (65)

there is only one choice such that the corresponding three circles in (64) have only
one intersection point. By Lemma 5, we just need to prove the two aspects: (1) the
two numbers in (65) do not have the same absolute values; (2) Lemma 5 (48) does not
hold.

If (1) does not hold then

|̂yw(1)
N
2 ,0

|ŵ(2)
N
2

= 0 or |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

= 0. (66)

For the generic analytic signal z, it follows from (60) that |̂yw(1)
N
2 ,0

| �= 0 and |̂yw(2)
N
2 ,0

| �= 0.

This combining with ŵ(1)
N
2
ŵ(2)

N
2

�= 0 leads to that (66) does not hold. Therefore, (1)

hold.
Next we prove (2). Without loss of generality, denote

̂z̃ N
2

=
N (|̂yw(1)

N
2 ,0

|ŵ(2)
N
2

− |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

)

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

, ẑ N
2

=
N (|̂yw(1)

N
2 ,0

|ŵ(2)
N
2

+ |̂yw(2)
N
2 ,0

|ŵ(1)
N
2

)

ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

. (67)

It follows from (1) that |̂z N
2
| �= |̂z̃ N

2
|. By (61) and (62), (48) is equivalent to

A1ẑ4N
2

+ A2ẑ2N
2
ẑ20 + A3ẑ3N

2
ẑ0 + A4ẑ N

2
ẑ30 − A5ẑ2N

2
|̂z N

2 −1|2 (68)

−A6ẑ20 |̂z N
2 −1|2 − A7ẑ N

2
ẑ0 |̂z N

2 −1|2 + C2K 4 |̂z N
2 −1|4 = 0,
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where all the coefficients Ai depend only on ŵ(1)
0 , ŵ(2)

0 , ŵ(1)
N
2

and ŵ(2)
N
2
, and K =

ŵ(1)
0 ŵ(2)

N
2

− ŵ(1)
N
2
ŵ(2)
0 , C = (ŵ(1)

0 )2

|ŵ(1)
1 |2 . Clearly, K �= 0 and C �= 0. Define a polynomial as

follows

H(x0, x1, x2, x3) = A1x
4
3 + A2x

2
3 x

2
0 + A3x

3
3 x0 + A4x3x

3
0 − A5x

2
3 x1x2 (69)

−A6x
2
0 x1x2 − A7x3x0x1x2 + C2K 4x21 x

2
2 .

Since K �= 0 and C �= 0, H is a nonzero polynomial. Replacing ẑk by
∑N−1

n=0 zne−2π ikn/N , then it follows from (69) that there exists a polynomial
H̃(z0, . . . , zN−1) such that H̃(z0, . . . , zN−1) = H (̂z0, ẑ N

2 −1, ẑ N
2 −1, ẑ N

2
). Since H

is a nonzero polynomial, H̃ is also a nonzero polynomial. Moreover, as those of H the
coefficients of H̃ depend only on ŵ(1)

0 , ŵ(2)
0 , ŵ(1)

N
2

and ŵ(2)
N
2
. Now it follows from (68)

that H̃(z0, . . . , zN−1) = H (̂z0, ẑ N
2 −1, ẑ N

2 −1, ẑ N
2
) = 0. But for the generic signal z,

we have H̃(z0, . . . , zN−1) �= 0. This is a contradiction.
Summarizingwhat addressed above, (1) and (2) hold.Consequently, only one of two

choices of ẑ N
2
in (65) is feasible. Combining (61) or (62), (̂z0, ẑ N

2
) can be determined

up to a sign. With ε(̂z0, ẑ N
2
) at hand, (63) is equivalent to

N
∣

∣ŷw(1)
N
2 −1,m j

∣

∣

∣

∣ŵ(1)
0

∣

∣

= ∣

∣̂z̊ N
2 −1 + v j, N2 −1

∣

∣, j = 1, 2, 3 (70)

where v j, N2 −1 =
ε̂z N

2
ŵ(1)
1 ω

m j

ŵ(1)
0

.For the generic analytic signal z ∈ C
N , we have ẑ N

2
�= 0.

Therefore,

v1, N2 −1 − v2, N2 −1

v1, N2 −1 − v3, N2 −1

= ωm1 − ωm2

ωm1 − ωm3
.

By Lemma 3, we have

�
(v1, N2 −1 − v2, N2 −1

v1, N2 −1 − v3, N2 −1

)

�= 0.

Now it follows from Lemma 1 that there exists a unique solution to the equation
system (70) w.r.t̂z̊ N

2 −1. Clearly, ε̂z N
2 −1 is a solution to (70). Then ε̂z N

2 −1 is the unique
solution. Summarizing what has been addressed above, from the five measurements
{|̂yw(1)

N
2 ,0

|, |̂yw(2)
N
2 ,0

|, |̂yw(1)
N
2 −1,m j

| : j = 1, 2, 3} the vector ε(̂z0, ẑ N
2
, ẑ N

2 −1)with ε ∈ {1,−1}
can be obtained.
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Step 2: The determination of other components ẑ1, . . . , ẑ N
2 −2.

Having ε(̂z0, ẑ N
2
, ẑ N

2 −1) at hand, through the similar procedures in the proof of
Theorem 3, other components ẑ1, . . . , ẑ N

2 −2 can be determined (up to the sign ε) by

the ( 3N2 − 6) measurements

{

|̂yw(1)
k,m j

| = 1

N
|
N−1
∑

l=0

ẑk+lŵ
(1)
l ωlm j | : k = 1, . . . ,

N

2
− 2, j = 1, 2, 3

}

. (71)

This completes the proof. ��

Remark 8 Overall, the two windows w(1) and w(2) in Theorem 4 are analytic such
that ŵ(1)

1 ŵ(1)
0 �= 0, ŵ(1)

N
2
ŵ(2)

N
2

�= 0 and ŵ(1)
0 ŵ(2)

N
2

− ŵ(2)
0 ŵ(1)

N
2

�= 0. Through the similar

analysis in Remark 7, any two generic analytic windows satisfy these requirements.

4 Conclusion

This paper concerns the phase retrieval of analytic signals in C
N by using very few

STFT measurements. There are three main contributions. (1) If the windows are B-
bandlimitedwith 2 ≤ B ≤ � N

2 �, ourmain results state that a generic analytic signal can
bedeterminedup to a signby (3� N

2 �+1)measurements. (2) Suppose thatwl ∈ C
N , l =

1, . . . , 4 are the structured B-bandlimited windows for STFT where B = � N
2 � + 1.

Then for a generic analytic signal z ∈ C
N , it can be recovered (up to a sign) by its

(3� N
2 � + 1) number of STFT measurements. (3) If N is even and the windows are

also analytic, then a generic analytic signal can be determined (up to a sign) by its
( 3N2 − 1) STFT measurements.

Phase derivative is a feature that characterizes the changing rate of phase. It is
widely applied in optics such as phase unwrapping (cf. [47]) and the approximation
to the effect of a changing pulse frequency (cf. [24]). On the other hand, it follows
from Remark 1 (2) that for real-valued signals their phase distributions are defined via
their analytic signals and phase derivatives. Therefore, our results have the potential
merit for phase unwrapping and the approximation to the effect of a changing pulse
frequency.
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