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Abstract

Analytic signals constitute a class of signals that are widely applied in time—frequency
analysis such as extracting instantaneous frequency (IF) or phase derivative in the
characterization of ultrashort laser pulse. The purpose of this paper is to investigate
the phase retrieval (PR) problem for analytic signals in CV by short-time Fourier
transform (STFT) measurements since such measurements enjoy some nice structures.
Since generic analytic signals are not sparse in the time domain, the existing PR results
for sparse (in time domain) signals do not apply to analytic signals. In this paper, the
windows are required to be bandlimited such that they usually have the full support
length N and allow us to get much better resolutions on low frequencies. By exploiting
the structure of the STFT associated with bandlimited windows for analytic signals,
we prove that the STFT-based phase retrieval (STFT-PR for short) of generic analytic
signals can be achieved by their (3 L%J + 1) measurements, where | x| denotes the
largest integer that is not larger than x. Since the generic analytic signals are ( L%J +1)-
sparse in the Fourier domain, such a number of measurements is lower than 4N +O(1)
and O(k>) which are required in the literature for STFT-PR of all signals and of k-
sparse (in the Fourier domain) signals in CV 2, respectively. Moreover, we also prove
that if the length N is even and the windows are also analytic, then the number of
measurements can be reduced to (% — 1). As an application of this, we get that the
instantaneous frequency (IF) of a generic analytic signal can be exactly recovered
from the STFT measurements.
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1 Introduction

Phase retrieval (PR) is a nonlinear sampling problem (c.f. [3, 4, 12, 21, 45, 48, 49])
that asks to recover a signal z € CN, up to the potential ambiguity, from the magnitude
measurements

[z, a)|, k T,

where a; € CV is referred to as a measurement vector. PR problem is of great interest
since it has been widely applied in many applications including coherent diffraction
imaging (CDI) ( [38, 43]), quantum tomography ( [28]) and holography ( [32]). The
most classical PR problem is to recover a signal by its Fourier transform measurements
([16, 21]).

Associated with a window w € CV and a separation parameter 0 < L < N, the
short-time Fourier transform (STFT) or Gabor transform of a signal z € CV at (k, m)
is defined as (c.f. [7, 33]):

N-—1
—2mikn/N
Sj\l?:m = Z ZyWmL—n€ wikn/ , (1)
n=0

wherek =0,1,..., N—landm =0, 1, ..., [N/L]—1. Compared with the Fourier
transform, STFT is more effective for time—frequency localization since its associated
window enjoys great flexibility (c.f. [13, 19, 26, 44]), and many deeper theoretical
results related to Gabor frame analysis have been established in the literature (c.f. [15,
22, 23)).

Finding the required number of measurements to do phase retrieval is always a fun-
damental issue, especially for practical applications including quantum tomography
(c.f. [28]). For STFT-PR we refer to, e.g., [1, 5-7, 27, 33, 34, 42] for many recent
results on this issue. Bojarovska and Flinth [10] characterized all the windows when
N?-number of STFT measurements can recover all the signals in CV . With the help of
graph theory, Pfander and Salanevich [40] proved that the recovery of any signal in C
can be achieved by O(N log N) STFT measurements. From the perspective of frame
theory (c.f. [27]), the STFT-PR is essentially the PR problem by the frame measure-
ment vectors in CV. There exist many phase retrievable frames of 4N + O(1)-length
(e.g.,[2,29,46]). As for the STFT-PR, the recovery can be also achieved by 4N +O(1)
measurements (c.f. [2, 9, 30, 31]). Note that the above mentioned results hold for all the
signals in CV . By appropriately choosing the window w and the separation parameter
L, Jaganathan, Eldar and Hassibi [31] proved that almost all nonvanishing signals in
CN can be determined by their 3N + O(1) number of STFT measurements. Recently,
the STFT-PR for structured signals has attracted much attention (e.g., [10, 20, 31]). In
particular, it was proved in [10] that a kz—sparse (in the Fourier domain) signal can be
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recovered by O(k?) number of STFT measurements. In this paper, we will investigate
the phase retrieval problem for analytic signals that appear in many important applica-
tions such as time—frequency analysis ( [14]), instantaneous frequency (IF) extracting
in holography (e.g., [25]) and the characterization of a changing pulse frequency (e.g.,
[24]). As a proper subset of CV, we are interested in finding fewer number of STFT
measurements than the above mentioned number to guarantee the recovery of any
generic analytic signal.

The definition of an analytic signal was given by Marple [36]. As in [36] the
space CV is supposed to consist of N-periodic and complex-valued signals z =
(zg, - .., ZN—1) such that the subscripts are considered modulo N. For a real-valued
signal x € RY | its analytic signal A(x) = (A(X)o, ..., A(X)y_1) is defined through
its discrete Fourier transform (DFT) A/(x\) = ((X(?))o, ceey (A/(x\)) N—1), wWhere for
even length N,

X0, k=0,
(AX)k = Ry, k=1, 2)
2
0, Y+1<k=<N-1,
and for odd length N,
o /)z()a k—O,
(A ={ 2%, 1 <k < %51, 3)
0, Yl <k<N-1

From now on, the entire set of analytic signals on C¥ is denoted by (CX .Forx e RV,
its discrete Hilbert transform Hx is defined to be

(AX) —x)
—

“

Remark 1 (1) By [36], we know that (Cx = {x +iHx : x € RV}, i.e, the real part
N(A(x)) = x and the imaginary part J(A(x)) is Hx, where H is the discrete Hilbert

transform. (2) For a real-valued signal x = (xo, ..., xy_1) € R, it is commonly
accepted that its phase (g, ...,0y—1) is defined via its analytic signal z = x +
iHx = (20,...,2v-1) = (oo + 20,5, ..., 2v—1.9 + izn—1,3) € CV such that

Ox = arctan % (cf. [17, 18]).

We say that z € CV is B-bandlimited if its DFT contains N — B consecutive zeros.
For0 # z = (2o, ...,zy—1) € C",its supportis defined tobe & = {i € {0,..., N —
1} :z; # O}. Then the support length of z is defined as the cardinality #=. We also say
that z is # E-sparse. For a polynomial f in N (real or complex) variables, its vanishing
locus is V(f) = {(x0....,xy_1) € RN(resp. CV) : f(x0,...,xy_1) = 0}. The
complement of V (f) in RV (resp. CV) is dense (c.f. [7]). For x € R, we will use the
notation [x7] (respectively, |x]) to denote the smallest (respectively, largest) integer
that is not smaller (respectively, larger) than x.
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1.1 Main Result

We start with the definition of a generic analytic signal in CV.

Definition 1 When saying that a generic analytic signal is uniquely determined by
a collection of polynomial measurements, we mean that the analytic signals which
cannot be determined by these measurements lie in the vanishing locus of a nonzero
polynomial on CV.

The main results will be stated in Theorems 2, 3 and 4 which can be summarized
as follows.

Theorem 1 Suppose that w; € CN.,l1 =1,..., M are the structured B-bandlimited
windows for STFT such that their bandlimits 2 < B < [%1 + 1. Moreover, the STFT
separation parameter O < L < N satisfies [N/L1] > 3. Then for a generic analytic
signal z € CN, it can be recovered (up to a sign) by its (3 L%J + 1) number of STFT
measurements. Moreover; if the length N is even and the windows are analytic then
the above number of measurements can be reduced to (3TN —1).

The STFT in Theorem 1 requires multiple bandlimited windows. The following
concerns the application background of such a type of STFT.

Remark 2 (1) The window w; in Theorem 1 is bandlimited. By the discrete uncertainty
principle (c.f. [10, section 3.2]) its support length is generally N. That is, w; is generally
a long window. By [37, 41], longer windows on low frequencies allow getting better
frequency resolution, and they have been used in some STFT-PR approaches (e.g.,
[39]). (2) Multiple-window measurements were used in Theorem 1, and such a type of
STFT measurements were also used for STFT-PR in [33]. We point out that multiple-
window approach is particularly useful in coded diffraction patterns (c.f. [11]).

Remark 3 (1) Since any generic analytic signal is (L%J + 1)-sparse in the Fourier
domain, as mentioned previously it is generally not sparse in the time domain. There-
fore, the existing PR results for sparse (in time domain) signals do not hold for analytic
signals. (2) A generic analytic signal is (L%J + 1)-sparse (in the Fourier domain) or
equivalently has bandlimit B = L%J + 1. Theorem 1 implies that it can be determined
(up to a sign) by its (3B — 2) STFT measurements. When the windows are analytic,
such a required number of measurements can be reduced to (3B — 4).

An immediate consequence of Theorem 1 is the exact recovery of instantaneous fre-
quency (IF) for generic analytic signals. Given an analytic signal z = (zg, ..., Zy—1),
denote its element z; by |z |e! @) with arg(z;) € [0, 277). Define

¢ (k) == (arg(z) — arg(z¢—1)) mod 27. (&)

Then z, := (¢*(0), ..., ¢*(N — 1)) is referred to as the phase derivative (PD) or IF
of z (c.f. [18]).

Proposition 1 Suppose that z € CV is a generic analytic signal. Then its IF can
be exactly recovered from the same number of STFT measurements as specified in
Theorem 1.
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Proof By Theorem 1, we get z or —z. Since the k-th element of —z is expressed
as |zg|el(@e@)—m) mod 2m) ' [(aro(z;) — ) mod 27 — (arg(zxk—1) — ) mod 2]
mod 27 = (arg(zx) — arg(zx—1)) mod 2m. That is, the IF of —z is identical to that
of z. This completes the proof. O

1.2 Comparisons with the Existing Results

In this subsection, we make some comparisons between Theorem 1 and the results in
[10, 35].

measurement number It was proved by [10] that the STFT-PR of a kz—sparse (in the Fourier domain)
signal in cN : can be achieved by 0 (k%) measurements. Theorem 1 implies
that its STFT-PR can be achieved by using only 3 L%J + O(1) number of
measurements.

condition The main result in [35] only applies to the case when N is even and the
separation parameter 0 < L < N is odd with the property that [N /L] > 5.
However, Theorem 1 only requires [N /L7 > 3 in this case, and the odevity
of L, N is not required.

ambiguities The ambiguity for FROG-PR in [35] is different from that in Theorem 1 since
it additionally contains shift and reflection.

application The IFs of only a few analytic signals can be extracted from FROG-PR ( [35,
section 4]). However, Proposition 1 applies to every generic analytic signal.

Remark 4 As mentioned previously, the required number of measurements for PR (or
the uniqueness problem) is fundamental not only for the mathematical theory ( [2—4])
but also for practical applications including quantum tomography ( [28]). Compared
with the existing result for PR of all signals in CN (cf. [2, 9, 30, 31]) or that for the
(Fourier transform) sparse signals in CN ([10]), our required number of measurements

for generic analytic signals is reduced approximately by % and 1 — #.

2 Preliminary

A complex number 0 # z € C is traditionally denoted by |z|e'2€(@) where i, |z| and
arg(z) are the imaginary unit, modulus and phase, respectively. The real and imaginary
parts, and conjugation of z are denoted by N(z), J(z) and z, respectively. For N sets
Si, ..., Sy their Cartesian product is defined to be

Sy x - xSy ={(s1,...,5N) : Sk € Sk}

The discrete Fourier transform (DFT) of z € CV is defined by Z := (Zo, Z1, ..., Zy_1)
such that Z; = Zf,v:_ol Zye Zkn/N The inverse discrete Fourier transform (IDFT)
admits the formula

N-1
7 = — ’Z\neZHIkn/N. (6)

N n=0
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By the IDFTs of z and w, the STFT ’y\,j‘fm in (1) can be expressed as
N—
Z B Wi (M
1=0

where w = e = . The following is a characterization of the DFT structure for an
analytic 51gna1.

Proposition 2 (c.f. [35]) Suppose that z € CN. Denote the Cartesian product of sets
by x. Then z is analytic if and only if the following two items holds:
771)6‘0[7165

—
(i) for even length N, 7 € R x C%_l X R x {0} x ... x {0},
T_lcopies
_ ———
(ii) for odd length N, 7 € R x Cc'T x {0} x ... x{0O}.
The following gives a characterization of the generic analytic signals.

Proposition 3 Let © be a set of generic analytic signals in CN such that any signal in
® can be determined by a collection of polynomial STFT measurements. Meanwhile,
all the signals in the complement (C]X \ ® cannot be determined by these measurements
and they lies in the vanishing locus of a nonzero polynomial f on CN:

V(f)={(x0,....xn—-1) € CV : f(x0,...,xn_1) = O}.

Denote CY} \ © by {A(x) = x +iHx : x € A € RN} where Hx defined in (4) is
the discrete Hilbert transform of x. Then A lies in the vanishing locus of a nonzero
polynomial g on RV,

A(x} —X

Proof For any analytic signal A(x), it follows from Remark 1 that Hx = =5

Consequently, Hx = A(XT)i .By (2) and (3), forany x, y € RY we have H(/x?y) =
Hx+ Hy. From this and the linearity of IDFT we have that H (x+y) = Hx+ Hy. That
is, the discrete Hilbert transform H is linear. Then there exists a matrix He € RV*N
such that Hx = Hex for any x € R". Consequently,

A(x) = (I +iHe)x, (8)
where [ is the identity matrix. For any x 4+ iHx € (CX \® it follows from (8) that
f(x+iHx) = f((I +iHe)x) = 0. By choosing g(x) := f((I 4+ iHe)x), the proof
is completed. O
3 Main Results

3.1 Several Lemmas

This section starts with an auxiliary result from [8, Lemma 3.2].
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Lemma 1 Consider an equation system w.r.t z € C:

|Z+Ul| =ny,
|z + v2| = no, 9
|z + v3| = n3,

where vy, vy, v3 € C are distinct. If there exists a solution 7 = a + ib to the above
V] — V)
v — V3

a _1 cd\ ! n%—n%—i—|v2|2—|vl|2
b) 2\ef ni—n3+v3* —ju|* )’

where ¢ = N(v; — v2), d = J(v] — v2), e = R(v] — v3) and f = I(v] — v3).

system and S( ) =% 0, then it is the unique one. Moreover, it is given by

The following two lemmas will be needed in the proofs of Theorems 2 and 3.

az+b

+d
the conditions ad — bc # 0,ac # 0, a,b,c,d € C. Then the set {(x,y) € R? .
I(f(z)) =0, z = x +iy)} lies in the vanishing locus of a nonzero polynomial on R>.

Lemma 2 Suppose that a rational function f(z) = , z =x +1iy € C satisfies

Proof Let z = x 4+ iy. We have

N _(az+b)E+d)  _ aclz* +adz + béz + bd
3(f(@) = ( ————) =( 3
(cz+d)(cz+d) lcz + d|
I(ac)(x? + y?) + (J(ad) + I(bé))x + R(ad) — R(bE))y + I(bd)
B lcz 4 d|? '

(10)

Now the proof can be completed by choosing the polynomial F(x,y) :=

J(@d)(x? 4+ y?) + (S(ad) + 3(be))x + (R(ad) — R(bE))y + I(bd). O

Lemma3 Let L and N be suchthat0 < L < Nand [N/L1 > 3.If0 < m,my, m3 <
M — M2 il

.. ~ w j—
[N/L1 — 1 are distinct, then As(m) #0wherew =e N .

Proof Since

W™ — M2 (@™ — ™) (™M — ™3) 1 — @MI=M3 _ gyM2=mi 4 ,Mm2—ms3

Cl)ml _a)m3 - |Cl)m1 _ wm3|2 - |wm1 _ wm3|2

’

we get that the condition S(%) # 0 1is equivalent to the condition

S(l — wmlfm3 — a)mZ*ml + a)mZ*m})

) Birkhduser
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Ml gy

Assume to the contrary that ‘3(‘;’ ,,é ) = 0. Then we have

ULy p—

- (M) = sin (M) +sin (M)

which implies that

sin (ﬂ(m;jm)L)cos <n(m21:rm3)L> —in (H(M2;’m3)L>COS (ﬂ(2m1 *In\’?*mz)L).

Since my # m3 and 0 < ma,m3 < [N/L] — 1, we get that sin (M) £0
and hence

o8 (n(mz ];m3)L) — cos (n(2m1 —::1,3 — mz)L).

This implies that ”(mlem)L = Z@m—m3—mp)L . wlmyg—mz)L _ _ﬂ(2m1—%3—mz)L.

Thus we have either m| = my or m; = m3, which leads to a contradiction. The proof
is completed. O

3.2 The First Main Result: Window Bandlimit 2 < B < [¥] Case

Suppose that the window w € CV is B-bandlimited such that 2 < B < [%1. Conse-
quently, there exists i € {0, ..., N — 1} such that

W= =Wiin-p-1=0Winp#0. 12)

For such a subscript i, we consider the following measurements

N—-1
1
~W _ - =~ & 0 0m
|yL%j7(i+NfB)7n+l,m| = N} > 2% )~ G+N=B)—n+ 141D | (13)
=0

wheren =1,..., [§]+ 1.
The following is a 2-bandlimited window in C*® such that (12) holds with i = 2.

Example 1 For N = 48, we design a window w such that its bandlimit B = 2. Its real
and imaginary parts are plotted in Fig. 1 (a) while the real and imaginary parts of W
are plotted in Fig. 1 (b).

The following example on the summation in (13) for the case N = 6 and B = 3

o ~w
exhibits the structure of |y[%]—(i+N—B)—n+1,m| for general N and B.

Example2 Let N = 6, B = (%1 = 3. For an analytic signal z € CO, it follows
from Proposition 2 (i) that its DFT Z = (Zo, Z|, Z2, Z3, 0, 0). Choose a 3-bandlimited
window w € €9 such that W = (Wo, W1, W2, 0, 0, 0) and correspondingly i = 3 in

Birkhauser
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0.1 1.5 n
e real 1 wereal | |
---*---‘imag "-*"-imag
0.05 ,.*‘m v, 05} ]
—_ *, —_— H
% r *’*‘ “‘, % ol H
£ WM E ¥
= 0 = i
© o‘m- ©-057 ¢
o o* ..o e
o -~ . |
005" Mo, AT
H
15f%
-0.1 L L L L -2 L L L "
0 10 20 30 40 50 0 10 20 30 40 50
N N
(a) w (b) W

Fig. 1 (a) Graph of the real and imaginary parts of w; (b) graph of the real and imaginary parts of W

(12). Forn = 1,...,4, [3}", ol in (13) are expressed as: [}| = H1z3Wol, 1330l =

1 o o o 1 o oo o oa 1o on oo
51 22Wo+23W1 |, [V ol = 5121 Wo+Z2W1 +23W2| and [35 | = §[ZoWo+Z1 W1 +Z2W2|.
The terms Z;W; on which yJ' is dependent are arranged as follows,

n=1 Z3Wo
n=2 ZHWo Z3W] (14)
n=23 ’i] W() /izW] /Z\3/VV2

n =4 ZoWo ZIW| ZaW>
Based on (14), the terms Z; W; '™ for YA, can be arranged similarly.

For the general case, similar to (14), it follows from2 < B < {%1 , (12) and Propo-

sition 2 that the terms Z;W; on which |y | in (13) is dependent are

L5 J—G+N—B)—n+1,0
arranged as follows,

Z N WitN-B
7]
Z\N\_WitN-B Z N WitrN—B+
7] 7]

(15)
2N pWiN-B 2N o pWieN-BH - 2y Wisn-1
ZoWitN—B ZIWitN—B+1 e Zp1WisN-1

For n = 1, as implied on the first row of (15) the corresponding measurement

|37‘L”ﬂ N 0| is involved with only the term ’iL N JWi+N_ B. An observation on
2 i)
=W

(13) gives us that, for ]yL%J_(HN_B)_nH’m

as in (15). The following is on the determination of ’Z\L% |-

| the related terms Z; W;w!™ are arranged

Lemma4 Suppose that the window w € CV is B-bandlimited such that 2 <
B < f%]. Consequently, there exists i € {0,..., N — 1} such that w; = --- =

Birkhauser
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Wisn_B_1 = 0 and Wi n_p # 0. Then for any analytic signal z € CV with DFT
Z7=(20.21, ... ’,Z\L%J’ 0,...,0), we have the following:
Case I: If N is even, then the component'iL ycan be determined (up to a sign) by

LY ]-G+N-B).0 l
Casell: If N is odd then the compomznt’iL ycan be determined (up to a unimodular

the measurement [y*,,

scalar) by|yL N _gen—Byol

Proof 1t follows from (12) and (13) that [y%,

NYy |,
'iL N = Llel +(N+[:.;| D9 ¢ifo, The proof for the odd case is completed. By Proposition
|

1 ~
L 1-G+N— B)O er\\_%Jwi+N—B|.Then

NIYY
2 for N being even, we have Z ZN € R.ThenZy =€ : A(HrN DO withe e {1, —1}.
5 [WitN—Bl

This completes the proof for the even case. O
Now it is ready to establish the first main theorem.

Theorem 2 Suppose that the window w € CV is B-bandlimited such that 2 < B <
f%} and there exists i € {0,..., N — 1} such that (12) holds and Wi n_p+1 #
0. Moreover, we assume that the STFT separation parameter 0 < L < N
satisfies [N/L1 > 3, and choose any three distinct numbers mi, my, m3 from
{0,1,...,[N/L] — 1}. Then any generic analytic signal z € CV can be determined,
up to a global sign, by its (3 L%J + 1) number of STFT measurements

N
=W . — _ 5 —
(5% o vemol e aen—pm, | k=00 15 ] =1 j =123} (16)

Proof We mainly prove for the case when N is even since the proof for the odd N
case is very similar. We will complete it by induction. By Lemma 4, the component

Z y can be determined up to a sign by the measurement |y N iN-B), O| Denote such

a determmatlon result by ezN with € € {1, —1}. In what follows we discuss how to
recover other components zo, oIy
2

We first address the recovery of ’z\% _, by the STFT measurements

~w L . . =
{|y%_l_(i+N_B)’mj| : j = 1,2, 3}. Consider the equation system w.r.t zy i

o~

|/y\\§,l,(i+,v73) m/_| = %|i%—1wi+N—Bw(i+N_B)mf + €’Z\gwi+N—B+1w(i+N_B+l)m’ B
y .
i=1,2,3.
(17)
Note that (17) is equivalent to
N[yy |
N 1—(+N-B),m; ~
2 P .
(Wigpy—polTN=Bm;| ot vgal /=123 1o
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where
€EZNWipN_py1TN=BFDm;
2
V. N_, = o . (19)
N —~ — .
Jz Wiin_pgot+tN=Bm,;

For the generic analytic signal z, we have 'z\% # 0. Therefore, for Vi N in (19) we
have

VUV, N — Uy N mp __ ym2
1,5—1 2,5—1 [ 0]
2 2 — (20)

_ miy _ ,ym3
VN Ty 1

2

VN~V ¥y
By (20) and Lemma 3, we have 3(;

) # 0. Then it follows from
Vi N~ V38
i 2 9 2

Lemma 1 that there exists a unique solution to the equation system (18) w.r.t Zy 1
_~ . . . . . 2
Clearly, €zy _, isasolution. Then it is the unique one. In what follows, we address how
2

to recover the other components ’z\% _5»---» 2. Suppose that €z has been obtained
for any k € {%, % —1,...,ko} with kg € {%, % — 1, ..., 1} by the measurements
i D = N 1 ko, j=1,2,3
{|Y%7U+N73)’0|,|)’/g_(i+N_B),mj| . _5_ y e KOy J =1, 4, }

Now we discuss how to recover Zg,—1. Consider the equation system w.r.t Zx,—;:

w _1 & (i+N—B)m;
|yko—l—(i+N—B),mj| =W |21 Wit N B !
S —ko+1

+ Y €Ty 11 WigN—pp@ TN TETOm | =123,
I=1

(21
Note that (21) is equivalent to
NIV aN—Bym|
|wi+]j37;c§<i++]va—3;’>n':f| = ot 4 viko-t], = 12,3, @y
where
¥ —ko+1
€z WipN—pr1 TN =BTDm) 4 Z €Ty 1 11WipN—p TN TBHDIm, (23)
Vjko—1 = Wi+N7;;(%+NfB)mj
Motivated by Lemma 1, define
U1, kg—1 — V2,ko—1

f @, =

V1 kg—1 — U3 ko—1

) Birkhduser



Circuits, Systems, and Signal Processing

Az, + b
=0 (24)
CZj, + d
where
a=eWiyN_pt1 (@™ — ™),
¥ —ko+1
o~ o~ l
b= Y €l 1:WirN-B+ (@™ — ™),
€= €eWiyN-_pt1 (0" — 0"3),
Y —ko+1
d= Y €Zpy-14Wisn—p1(@™ — &™),
=2

Recall that W,, .., # 0 and my, my, m3 are distinct. Then ac # 0. For the generic
analytic signal z, we have ad — bc # 0. That is, f(z,) meets the requirements in
Lemma 2. Then [ f (zx,)] # 0. Therefore, by Lemma 1 the component €Z, | can be
determined by the equation system (22). Through the induction procedures, the proof
can be completed.

For N being odd, as in the even case the recovery starts with ’Z\NTfl . Suppose that

what we get is Zy—1 ¢'®. Through the similar recursive procedures as in (22), what we
2

get is €% (Zy, ..., Zn-1). Recall that Zg is real. Then one needs to choose a phase 6
2
such that €' ¢i%% is real. That is, what we get is €(Zp, ..., Zn-1) with € € {1, —1}.
2
This completes the proof. O

Remark 5 (1) In Theorem 2, it is required that W; . y _p11 # 0. Such a requirement is
crucial for the determination of 'iL Ny g If it is not satisfied, then the equation system

w.r.tzL%_lz

e~ -~ o~ i+N—B-+1 .
Ny v, 2 2y Wien-p@ VBN 1,2,3
— - — = |Z,N,_; t — - - ,J =12,
|wi+N_Bw(z+N—B)mJ| [5]1-1 Wi+N_Bw(l+N—B)mJ

degenerates to

oW
N|yL%J—1—<i+N—B),m,«| _ F 123
Wern—_pot v By~ gt /=05

Clearly, the above system is underdetermined and /Z\L Ny cannot be determined. (2)
The overall requirements for the window w in Theorem 2 are that

Wi=-=Wiyn-B-1=0Wyn p#0,Wirn_ps1 #0. (26)

From this, using the DFT it is easy to construct the required window.
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3.3 The Second Main Result: Window Bandlimit B = [%"I + 1 Case

Suppose that the window w € CV is ((%1 + 1)-bandlimited. Consequently, there
exists i € {0, ..., N — 1} such that

Wi=“'=Wi+L%J—2:O’Wi+L%J—1 7&0. (27)

We are interested in the STFT measurements at (2 —i + N — n, m):

e ~
VN | = ﬁ} > BiinonnWio™]. (28)
=0

wheren =1, ..., L%J.
Again the following is a motivation example for the structure of the summation in
(28).

Example 3 Let N = 6 and the window bandlimit B = (%] + 1 = 4. For an analytic
signal z € C9, it follows from Proposition 2 (i) that its DFT Z = (Zo, Z1, 22, Z3, 0, 0).
Choose a 4-bandlimited window w € C° such that W = (Wy, W, W, W3, 0, 0) and
correspondingly i = 4 in (27). For n = 1,2, 3, |')7rfn)0| in (28) are expressed as:
90l = §1Z3Wo0 +Z0Wsl, [3Yo| = ¢ [Z2Wo +Z3Wil, [3T| = §[Z1Wo +Z2W1 +Z3W2 .
The terms ZxW; on which y}"  , is dependent are arranged as follows,

n = 17Zygws Z3Wo
n=2 THowWo Z3W) 29)
n=23 ZIWo ZoW| Z3W)

Based on (29), the terms ZyW; '™ of i, can be arranged similarly.

For the general case when the window bandlimit B = {%1 + 1, as in (29), it
follows from (27) and Proposition 2 that the terms Z;W; on which [y}, N_nolin
(28) is dependent are arranged as follows,

ZoW;—1+N ZL%J i+L%J*]
2y aWir Y1 By Ve 8 30)
LW ¥ -1 22Wig | 4 21y Wiz ¥ )2

An observation on (28) gives us that, for |§?§Vﬂ. AN—nm | the related terms Z;W;o'™ are

arranged as in (30). Motivated by such a structure, we next use the (multi-window)
measurements {|’y\;v_(i)+N_n | s =1,2,3,4} to do the PR for z, which is stated
below as our second main theorem.
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Theorem 3 Assume that the STFT separation parameter L satisfies [N/L] > 3.
Suppose that the four windows w) € (CN s=1,...,4are ((%] + 1)-bandlimited

such that they satisfy (27) withi € {0, .. -1}, w A(EL v

{0,1,...,[N/L7 — 1} be three distinct numbers. If the matrix

# 0, and letmy, my, m3 €

AO = ap ap dy ar (31)

is invertible, where

(s)

a)y = |w(9) |2 (s) =(s) A(Y)

a =W
+|. |- > Y12 +|. 1-1 l 1+N>

(5) _ =(s) =~(5) (s) =(s)
Gr =WictanWip o 922 = Wi n s

(32)

then any generic analytic signal z € CN can be determined (up to a global sign) by
its (3 L%J + 1) number of STFT measurements

RSN N A N A R TI ELE S RO E I
J
_,::1,2,3}
(33)
Proof Consider the equation system w.r.t (EO,EL N ):
~w(s) o A(S‘) < () _
[y —i+N, 0| | L%J il J71+ZOWZ-_1+N|,S—1,2,3,4- (34)
Note that (34) is equivalent to
o (s) T As) o =(5) 215w (s) 2
(Z\L%JWH_L%J 0w1—1+N (AL Nw Y- ZOWi—H—N) N7V Zidn ol
s=1,2,3,4.
(35)
Through the direct calculation, (35) is equivalent to
1z x| N2
Lzl [y 1(5;FN,0|
7 7 2 =W 2
Ao /Z\I-iio — Ny Y- z+N,0| (36)
v i N2 2
L) %o Y1—i+N.0
2 N2|AW(4) |2
7 Y1 i+N,0
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Since Ay is invertible and Zy € R, ('z\o,’z\L y)) can be determined up to a sign by
2
the four measurements in (34). We denote such a recovery result by € (Zp, Z N J) with
2
eef{l,—1}
We first consider the equation system w.r.t ZL -1
) =) W+ 3 1=Dm 1 UFLE hm _
NZim | = |ZLJ11+LJ1 ’+€ZLJ F? i, j=123.

(37

Note that (37) is equivalent to

NN |
YN i,mj .
= |Z N +U' N ) =1’273’ (38)
|A(1) w(iﬂ%—l)m” 711 jl3-1lJ
i+ 5]
G v @l LY hm;
L J i+ . ..
wherev, v | == ———2 . For the generic analytic signal z € CV, we
Jilzl= Q) LS 1=Dm;
i+15 11

have Z Zy, # 0. Therefore for j = 1,2,3 we have

Vi ¥ o1 — V% ¥ 01 o™ — o™
L5 L5] _ . (39)

Ml — ™3

Vi ¥ -1 7 Y3141

VLY -1 7 V2,14 -1

By (39) and Lemma 3, we have Qs( ) # 0. Now it follows from

Vi ¥ -1~ U3 -1
Lemma 1 that there exists a unique solution to the equation system (38) w.r.t iL Ny
Clearly, eiL Ny is a solution. Then it is the unique solution. Suppose that for any
ke{l¥), 15]—1.....ko, 0} where ko € {L5 ], [ 5] —1..... 2}, the component Z
has been determined by the measurements

AW(s) sw(l) g N _ _ L
I ol 17 I (H%H)ymﬂ.e_m l,....ko,s =1,2,3,4,j=1,2,3}.

We next recover Zg,—1. Consider the equation system w.r.t Z,—i:

~w(l) _ 1 a0 G+ Y ]=1m;
Dot 1Y =y | = N B0t W @ !
LY J—ko+1 ~ " v (40)
Tl By @ =120
=1
Note that (40) is equivalent to
=w(l)
|yw N |
ko=1=G+1 % |=1).m; = _
: = |Zky—1 + Vjko—1]. ] = 1,2, 3, (41)
|,\(1) w(zﬂ%j—l)m” | 0 Jjsko J
i+15]-1
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where
L5 1—ko+1
~ () i+ ym; ~ Q) i+ Y | =14D)m;
Ezkowi-ﬂ%jw 2 7 4 ; sz0’1+lwi+L%J—l+zw 2 J
Uj»k()_l = (1) — . N
W (i+L51=Dm;
Wirly1®
(42)
Define
Ul,kg—1 — V2,kg—1
f @) = —————
Ul,kg—1 — U3,kp—1
Az, + b
_ Ao T0 (43)
CZj, + d
where
(1) i mo
a = €W o™ — @™?),
i+L%J( )
L2 ot ) I I
— 'i _ fs mp __ my
b > €z 1+1Wl.+L%J_l+l(w ™),

457 (44)

C = €W o™ — ™),

i+L%J( )

LY 1—ko+1 0
d= €Zky_1+IW o™ — @lm3y,
1222 ko—1+1 i+[%j71+l( )

Since WEELNJ # 0, ac # 0. For the generic analytic signal z, we have ad — bc # 0.
2

That is, f (zx,) meets the requirements in Lemma 2. Then J[ f (zi,)] # 0. By Lemma
1, €Z,—1 can be determined. This completes the proof. O

Remark 6 The condition WfBL N # 0in Theorem 3 is also important since if otherwise,
2

=

then the equation system w.r.t iLﬂj—lz
2

~w(l) = o wd (+15 hm;
NISNZim)] G wMay” T
WD w(i+L%J—1)mj| — A5 O Wi+ E1=Dm; =5
i+15]-1 i+15]-1

degenerates to
~w(l)
N|yN7i,mj |

Y (+151-1m;
|wi+L¥J—1w : d

By |j=1.23

Clearly, the above system is underdetermined and’z\L | cannot be recovered exactly.
2
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Remark 7 The overall requirements for the four windows w® eCN s=1,..., 4are
as follows: (1) W& € CN,s =1,...,4 are ((%1 + 1)-bandlimited. (2) Associated
with the four matrices, the matrix

(1) (1) (1 (1)

ayp 4y 4y ap

2) 2) () (2)

4 @2 Gy Ay

Ao 5 45)

ORRE R C) RN )

11 12 21 2

4 4) 4) 4)

ayp 4y 4y ap

is invertible. Uniformly choose the first and fourth columns of 4y from R*, and the
second and third columns from C*. Since invertible matrices are dense in C**# (or in
R**%), A is invertible with probability one.

The following provides a design for the windows in Theorem 3.

Example 4 Choose a ([5] + 1)-bandlimited window W(!) such that (27) holds with

i e {0,.. — 1}. Consequently, F)L oy # 0. Now choose the other three
({ 1+41)-bandlimited windows W), s = 2, 3, 4suchth;’:1tw(3_)L N = (WI(L_)L N 1)2,
WETL%H B (A(BL 5= ) A(i)t -1 (Az(i)t J*1)4 AEZ—)HN B (Wl(l—)HN)’
Wy = @ +N)3 and w(4)1 o= @ +N)4 Additionally, it is required
that W)y # W WEBL%* Wy ¢ B |W(2L g1l # W2yl and
WEBL%J lVAV(I)H_N # 0. Then A in (31) can be expressed as

<M 2 ¢WM <M < <M <M 2
|wi+|_ J—ll i+ ¥ J_lwi—l—i-N WH_LNJ_lwi—l—I—N Iwi—1+N|
|A(1) |4 (A(l) A(l) )2 (A(l) A(l) )2 IA(I) |4
Ay = l+|_ = l'H_ -1 Wil+n l‘H_ = Wi 14N i—1+N
0= |A(1) |6 (A(l) A(l) )3 (A(l) (1) )3 IW(I) |6
l+|_ = l'H_ = Wil+n l‘H_ - Wi 14N i—1+N
<M 8 (D A(l) 4 M A(l) 4 50 8
|wi+|_%] > (w 'H_ |- Wi 1+N) (WH_L%J_lwi—l+N) I 1+N|
(46)
Clearly,
1 1 1 1
=0y 2 &M < <D <D < 2
|Wi+LNJ 1| Wi+LNJ— Wict+n wi+LNJ—lwi*1+N Wi 1wl
Ao = |A<1) 4 (Aa) Am )2 (Am A<1> 2w
+|_ 1-1 +|_ = Wili+nN +|_ = Wilil4nN i—14+N
) 6 (oD A(l) 3 o A(l) 3 1 6
| i+L%J—1| (W +L |- Wi*]‘HV) W +L -1 i71+N) Iw Wi ]+N|
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& 2

AP 0 0

s =D
«° Wisry o Mimten 0 0 . (47)
a0 &
0 0 Wi_i_\_%J_]wi—l-l-N 0
(1
0 0 0 Wi

Then Ay is invertible, and the four windows w® s =1,2,3, 4 meet the requirements
in Theorem 3. As an example for (N, B,i) = (48, 25, 25), the graphs of wl s =
1, 2, 3, 4 and their DFTs are plotted in Fig.2.

3.4 The Third Main Result: The Analytic Window Case

The main purpose of this subsection is to show that if NV is even and all the windows are
analytic, then fewer measurements than Theorem 2 and 3 are required for the recovery.

Lemma5 Suppose that N is even, and z, Z € cN _are both generic analytic signals
with DFTs 7 = (20,2, zl,...,z% 0,. O)andZ—(zO zl,...,z% 0,...,0). Assume

that the STFT separation parameter 0 < L < N satisfies [N/L] > 3, and w is an
analytic window such thatw(l)A(]) # 0. Letmy,mp,m3 € {0,1,...,[N/L]— 1} be
three distinct parameters. If |zN | # |AN | and 7 has the same STF T ( associated with

the window w(l)) magnitudes as 7 at ( > — l,mj), j =1,2,3, then

=2
7 >(0y2
2y (wg )

Byt R

(48)

Proof By Proposition 2, bothZ. zy and Z Zy are real-valued. Suppose that z. zy = = Aqg, ZZN

such that £1 # A, ; € R. Since the STFT magnitudes of z at (X >—1lmj),j=12, 3
are identical to those of Z, we have that

() m]| |"w(1)

1 ~(1)
ﬁﬁﬂ Wo +ZNW ——1m,

1~ ~ .
= 1y Wi +12y whomi|, j=1,2,3. (49)
Slnce’i\ﬁ = Ag3ZN,
2 2
Zy lw(”+A%W§”w’"f|2= @ w4+, zzNw(“ 2, (50)
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N
(&) & () W

Fig.2 (a-d)Real and imaginary parts of the four windows w(); (e-h) Real and imaginary parts of W%, s =
1,2,3,4
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Using Proposition 2 again, w( ) is real-valued. Then (50) is equivalent to
o~ ~(1
(g = DEY W W2+ 2y P - By DE)?
A(l)A(l)A GD
20" W, W, ZN()»ZjZ%il — 1%71)} =0.
Multiplying by @™/ on both sides of (51) leads to
~ ~(1 " ~(1 .
(675 = D2, W17 + 2y P = 2y ) e
= ~(Da (D . = ~(D(l
+(kz,iz%_1 - z%_l)w(1 )W(() )z%a)sz + (Az,iz¥ | —ZN _ W, v )Az 0.
(52)
Consider the following equation w.r.t x:
~(1 ~(1
(G5 = DBy WP + (2 P = By &)1
(53)

+(Kz’ii% I—ZN I)WEI)W(()I)A x2+()»zii% 1 ZN l)A(l)/\(l)/\2 =0.

If the polynomial on the left-hand side of (53) is a nonzero polynomial, then there are
at most two solutions to the above equation. By (52), o™/, j = 1,2, 3 are the three
distinct solutions to (53). Therefore, all the coefficients in (53) are zero. Then

= a(Da(l
Oniiy_, ~y W3 % 2y =0 (54)

and
Oz = D2 W + (Zy_,I* = By, (@) = (55)

o~

Since z and Z are generic analytlc signals, we get that Z, 2y 1,2% _|» Mgz are

nonzero. From (54), we have 7 y_, = )Ll ~“ZN _ . Comblnmg thlS with (55), we have
2 Y )
that

(2, — DE4 W |A“>|2+<Az - DEy_ @) =0, (56)

ZZ

which implies that

1 2 ()52 —~
Lo G T DE GOy my P (57)
Iy = — = —
2 (2, — DI Ao WpR

) Birkhduser



Circuits, Systems, and Signal Processing

iy

It follows from A, ; = ,z% and (57) that
7
=2
Zy . * w012
which completes the proof. O

Now we are ready to prove our third main result.

Theorem 4 Assume that N is even and the STFT separation parameter L satisfies

[N/L1 > 3.Letmy,mp,m3 € {0, 1,..., [N/L] — 1} be distinct. If the two windows

wD and w?® are analytic such that w(l)A(l) # 0, w A(I)A(z) # 0 and A(I)A(z)
2

2 2
W((EWN” £ 0, then any generic analytic signal 7 € CN can be determined (up to a
7

sign) by its (37N — 1) number of STFT magnitudes

N
(D) =w(2) (1) _ N
(73O By Tl k=1, 5 = 1 j=1,2,3}. (59)

Proof Since z, w») and w® are all analytic, it follows from Proposition 2 (i) that the

) (2 (l) <2)

six numbers Z, ZN Wy, Wy, and W w are all real-valued.

Step 1: The determmatlon of (’\ 7, z/%/ ZN -

In this step, we prove that (Zo, Zw , ZN ) can be determined, up to a sign, by the
2

w(l) (2)| |AW(1)
,0

five measurements {|y N ol I, [y N : j = 1,2, 3}. Consider the equation

Lm; |

system w.r.t the varlable (zo Z N) e R%:

~ L=y, 24
Ty ol = oy + 20wyl
|~ o (60)

~W(2) > A(z)
Yy M | = —|zyWwy," + ZoW [
N 5

[N

(I)A(Z)

It follows from W A(Z) A(l) ~' # 0 that the solutions (up to a global sign €) to

(60) are
~w(l) ~(2) ~w(2) (1) ~w(l) A(2) ~w(2) A(l)
5 <N( yx o IWo +|y 0% ) N(Iy olv Iyz’ol 2)) o
Zy),ZN) = ,
2 W(()l)w&m — Wgz)w(;) W(()I)W(ED — o080
and
~w(l) =(2) w(2) (1) w(l) A(2) w(2) A(l)
P (N( e R R IR (Y )) -
Zy),ZN) = , .
’ wgnwg ~wewY wg%% _7080

2 2 2
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For any /z\% given through (61) or (62), the following equations w.r.t /z\% _

~w(l) _ 1y (1) (1) _
%71,m,~|_ﬁ|z% 1w0 +z wi o™, j=1,2,3 (63)

have a unique solution if and only if the three circles w.r.t the variable Zy _,:
2

N[F¥D ? A(l)

ZNW mj

Yim - y .
;Aa>|] =iy =1 (64

have only one intersection point. We next prove that for the two choices of ’z\% given
by (61) and (62):

~w(l),~(2 w(2),~(1) ~w(l), A2 w(2) (1
_ o NGYIRY YOI NG R YWY
iﬂ = and iﬂ = 2 (65)
2 Wél)w(lg) _ Wff)w([\}) 2 W(()I)W(AZ,) _ W(()Z)W(Alz)
2 2 2 2

there is only one choice such that the corresponding three circles in (64) have only
one intersection point. By Lemma 5, we just need to prove the two aspects: (1) the
two numbers in (65) do not have the same absolute values; (2) Lemma 5 (48) does not
hold.

If (1) does not hold then

1), ~2 w(2),~(1
w$ﬁ‘>—0mwyﬁw9—o (66)

For the generic analytic signal z, it follows from (60) that |yw(1)| # 0 and |§w(2)| #0.

This combining with W%)W(ﬁ) # 0 leads to that (66) does not hold. Therefore (D)

hold. :
Next we prove (2). Without loss of generality, denote

A 1 A 2 A 2 A l A l A 2 2 A l
Zy = Iy = . (67)
2 W(()l)w(l\zl) _ W(()Z)W(I\}) 2 W(()l)w(lg) _ W(()Q)W(All)
2 2 2 2

It follows from (1) that li% | # |’i\% |. By (61) and (62), (48) is equivalent to

AZY + AT zo + A3zN20 + A4zNz0 A5zN Zy_ | (68)
2
—A6/Z\(2)|’Z\% — A7ZNZ()[AN 24 C2K4IAN =0,
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where all the coefficients A; depend only on ng), W(()z)’ W(,\}) and ’VV(AZ,) ,and K =
2

2

’v?'(()l)W(,g) A(I)A(z) ,C = (W" Clearly, K # 0and C # 0. Define a polynomial as
2 2 W
follows i

H(xo, x1, x2,x3) = A1x3 + A2x3x0 + A3x3xo + A4x3x0 A5x3x1x2 (69)

—A6x0x1x2 — A7x3xpx1xy + C K4x1x%.

Since K # 0 and C # 0, H is a nonzero polynomial. Replacing Z; by

Zf,v:_@l z,e” 7 /N - then it follows from (69) that there exists a polynomial
H(zg,...,zZy_1) such that H(zg,...,Zy_1) = H@o,’z\%_l,’z\%_l,’z\%). Since H
is a nonzero polynomial H is also a nonzero polynomial. Moreover, as those of H the
coefficients of H depend only on w(l) w(()z), #'" and w(z) Now it follows from (68)
that H(zo, oo ZIN—1) = HZy,Z Z%qu%q’ zz%) =0. i%ut for the generic signal z,
we have H(zg, ...,zy—1) # 0. This is a contradiction.

Summarizing what addressed above, (1) and (2) hold. Consequently, only one of two
choices of ’z\% in (65) is feasible. Combining (61) or (62), ('z\o,'z\%) can be determined

up to a sign. With e(’z\o,’z\% ) at hand, (63) is equivalent to

~w(l)
N %_l»mj’ A .
— 2 =y v ] i =1,2.3 (70)
|W(1)| 0] Js7
0
ayw "
where VN = —*—q— For the generic analytic signal z € CVN,wehaveZy # 0.
i) W, 2
0
Therefore,
Vi d g~ 0Ny
LS I L |
" — o™
= Wl — M3 :

By Lemma 3, we have

Now it follows from Lemma 1 that there exists a unique solution to the equation
system (70) w.r.t z Ny Clearly, e’z\% _, isasolution to (70). Then e’z\% _ is the unique
solution. Summarizing what has been addressed above, from the five measurements
{|yN(”| I3 (2)| |AW(” j = 1.2,3) the vectore (@, Zy  Zy _,) withe € {1, —1)

can be obtalned.

,m.,~|
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Step 2: The determination of other componentsz;, ... ,’z\% s
Having e(’z\o,’z\% ,’z\% _,) at hand, through the similar procedures in the proof of
Theorem 3, other components Z1, . . . ,’z\% _, can be determined (up to the sign €) by

the (3TN — 6) measurements

1 = N

~w(l 1 : .

{| ,j”fnj| |Z T o ”"1|:k=1,...,3—2,1=1,2,3}. (71)
=0

This completes the proof. O

Remark 8 Overall, the two windows w1 and w® in Theorem 4 are analytic such
that w A(I)A(l) # 0, A(N”Wﬁ? # 0 and W(I)W%) A(()z)ﬁ(ﬂl) # 0. Through the similar

2 2
analy51s in Remark 7, any two generic analytic windows satisfy these requirements.

4 Conclusion

This paper concerns the phase retrieval of analytic signals in CV by using very few
STFT measurements. There are three main contributions. (1) If the windows are B-
bandlimited with2 < B < (%] ,our main results state that a generic analytic signal can
be determined up to asignby (3 L%J +1) measurements. (2) Suppose thatw; € CV, [ =
1, ..., 4 are the structured B-bandlimited windows for STFT where B = {%] + 1.
Then for a generic analytic signal z € CV, it can be recovered (up to a sign) by its
(3L%J + 1) number of STFT measurements. (3) If N is even and the windows are
also analytic, then a generic analytic signal can be determined (up to a sign) by its
(37N — 1) STFT measurements.

Phase derivative is a feature that characterizes the changing rate of phase. It is
widely applied in optics such as phase unwrapping (cf. [47]) and the approximation
to the effect of a changing pulse frequency (cf. [24]). On the other hand, it follows
from Remark 1 (2) that for real-valued signals their phase distributions are defined via
their analytic signals and phase derivatives. Therefore, our results have the potential
merit for phase unwrapping and the approximation to the effect of a changing pulse
frequency.
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