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While traditionally the computerized tomography of a func-
tion f € L?(R?) depends on the samples of its Radon trans-
form at multiple angles, the real-time imaging sometimes re-
quires the reconstruction of f by the samples of its Radon
transform Rpf at a single angle 0, where p = (cos6,sin ) is
the direction vector. This naturally leads to the question of
identifying those functions that can be determined by their
Radon samples at a single angle 6. The shift-invariant space
V(p,Z?) generated by ¢ is a type of function space that
has been widely considered in many fields including wavelet
analysis and signal processing. In this paper we examine the
single-angle reconstruction problem for compactly supported
functions f € V (g, Z?). The central issue for the problem is
to identify the eligible p and sampling set X, C R such that f
can be determined by its single-angle Radon (w.r.t. p) samples
at X,. For the general generator ¢, we address the eligible p
for the two cases: (1) ¢ being nonvanishing (. ©(x)dx # 0)
and (2) being vanishing ([, ©(x)dx = 0). We prove that eligi-
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ble X, exists for general . In particular, X, can be explicitly
constructed if ¢ € C'(R?). Positive definite functions form
an important class of functions that have been widely applied
in scattered data interpolation. For the case that ¢ is pos-
itive definite, the corresponding single-angle problem in SIS
V (i, Z?) is addressed such that X, can be constructed easily.
Besides using the samples of the single-angle Radon trans-
form, another common feature for our recovery results is that
the number of the required samples is minimum.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction
1.1. CT and Radon transform

We start with the X-ray computerized tomography (CT) on R?.

Its core mathematics includes the Radon transform and its inversion. For a function
f:R? — C its Radon transform at t € R, w.r.t. a direction vector p = (cos 6, sin 6), is
defined as the integral of f along the line (x,y) = tp + s(—sin 6, cos#) on R:

Rpf(t) := /f(tcosﬂfssiné),tsin0+scosﬂ)ds. (1.1)

— 00

If f € L'(R?) then we can prove that R,f € L*(R):

/Oo ‘ /Oof((t, s)A)ds|

/Oo 7 £ ((t, s)A)|dsdt (1.2)

/ R ()t

<
= £l (m2)
cosf sinf 2/ .
where A = . If f € L*(R?) is compactly supported, then by the

—sinf cosé
Cauchy-Schwarz inequality one can check that

Rpf € L*(R). (1.3)

The Fourier transforms of R, f and f are correlated via

— ~

Rpf(f) = (pT§>7 £ € Rv (14)
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where () := [ga 9(x)e”*7dx is the Fourier transform of any function g € LP(R?). It
follows from (1.4) that R, f is essentially obtained by taking the cross-section of fAOH
the subspace (slice) {pT¢: € € R}.

The central problem of CT is to use the Radon transform to reconstruct the source
function f. The most classical reconstruction approach is the filtered backprojection
(FBP) (cf. [31,32]). It states that if f is bandlimited then it can be reconstructed via
(cf. S. Helgason [19]):

21 oo
1 — . .
— = 13 //Rpf(f)elg(mCOS0+yS1n6)€d§d9, (15)
00

where p = (cos 6, sin 0).

1.2. Traditional reconstruction approaches conducted by Radon transform at multiple
angles and our single angle-based problem

Theoretically, the reconstruction of f via (1.5) requires the cross-sections 7€p\f(§) =
f(pr) for all angles 6 € [0,27). In practice, however, what one can observe are the
samples of a limited number of cross-sections. Therefore, the essential problem of CT is
to reconstruct f by the samples of finitely many cross-sections. Based on (1.5), many
reconstruction algorithms have been designed (cf. [9,10,24]). Some recent alternatives to
FBP have been introduced (e.g. [29,43]). Unlike FBP, they are conducted by the sam-
ples of Radon transforms. For example, based on the Chebyshev orthogonal polynomial
system, Xu [43] established the approach to CT. McCann and Unser [29] established a
spline-based reconstruction.

Note that the samples required for the above approaches are derived from Radon
transforms at multiple angles, and naturally we confront the following problem:

Q : Can a function be exactly reconstructed by its Randon (transform) samples
at a single angle (SA)?
(1.6)

Such a single-angle problem is essentially the injectivity problem of Radon transform
(cf. S. Helgason [19]). Due to (1.5), we do not anticipate the injectivity can be achieved
for any function in L?(R?). Instead it follows from [19] that it can be achieved in some
subspaces of L?(R?). While there are some results on such an injectivity problem (e.g.
[7,12,19,21,23]), the related sampling problem in (1.6) remains less explored. In what
follows we briefly explain why such a sampling problem is significant from the real-time
imaging perspective.



4 Y. Li et al. / Journal of Functional Analysis 285 (2023) 110151

1.8. SACT is required for real-time imaging

Optical imaging has been widely used in observing biological objects, such as blood
cells (thin objects) and bones (thick objects). The thin objects are commonly imaged
directly by refractive-index distributions, which is achieved by holographic tomography
(HT) ([26]). However, for imaging thick objects, CT is usually employed.

CT commonly requires samples (measurements) of the light fields penetrating through
the object from different angles (views). To do so, the object needs to be rotated by a
rotation motor ([44]) or the illumination needs to be scanned by a beam steering device,
which not only causes instability for the imaging system, but makes the system bulky
([3,22]). More importantly, limited by the time of recording fields, rotating objects or
scanning illuminations become not suitable for real-time imaging, especially for observ-
ing fast dynamic events ([22]). Therefore this naturally leads to the following imaging
problem:

Under what condition can CT be achieved by the samples of Radon transform at SA?
(1.7)

Most recently, R. Horisaki, K. Fujii, and J. Tanida [22] established a SA method for HT
by inserting a diffuser. Note that the samples used in [22] are required to contain the
diffraction information while the Radon samples for CT commonly do not contain (cf.
[30, section 1]). Here the diffraction of light waves at an aperture is computed by the
Fresnel integral

Uz, y) = Ul(xo, yo)eii[(I_IO)QHy_yO)z]dﬂ?odyo,

ilz

RQ
where U(zo,yo) is the transmission field, U(z,y) is the field on the view plane, z is the
distance between the aperture and the view plane, and A and x are the wavelength and
wave number, respectively. Therefore, the SA method in [22] is not applicable for CT.
To the best of our knowledge, the theoretical study of sampling problem (1.7) (or (1.6))
has not been fully explored yet in optics.

1.4. The SACT problem in shift-invariant space (SIS)

The shift-invariant space (SIS) is a type of function space that is widely applied in
approximation theory, wavelet analysis and signal processing (e.g. [1,2,4,6,11,18,37,38,
40]). Throughout this paper, the SIS is denoted by

V(e,22) = { 3 el =0 D lad® < o0}, (1.8)

keZ2 kez?

where ¢ € L?(R?) is referred to as the generator.
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Note 1.1. SIS-based multiple-angle CT models. There are many multiple-angle CT ap-
proaches (e.g. [8,33-35]) modeling the continuous-domain representations of biomedical
images as the functions in SISs. The generators for these SISs are compactly supported
functions including box splines ([8]), Kaiser-Bessel window functions ([34]) and refinable
functions ([33,35]).

Our purpose in this paper is to examine the SACT problem (1.6) in the SIS setting:

Q : How can a compactly supported function f € V(p,Z?) be exactly reconstructed
by its Randon (transform) samples at a single angle (SA)?

(1.9)

1.5. Assumption on the support of source function, and definition of positive definite
function

Before introducing our main contributions, some denotations are necessary. Through-
out this paper, suppose that the generator ¢ € L?(R?) is compactly supported such
that

supp(p) € [N1, M1] x [Na, My], (1.10)

and the shift system {¢(- — k) : k € Z?} is linearly independent in L?(R?). Moreover,
the arbitrary source function f € V (¢, Z?) is compactly supported such that

supp(f) C [a1,b1] X [az, ba]. (1.11)

By (1.10) and (1.11), there exists a finite sequence {c,,l =1,...,#E} C C such that f
can be expressed as

#E
=Y cne(-— k), (1.12)
=1

where E := {ky,... . kyg} = {Hal — My, b1 — Nlj] X Hag — Ms], [be — Ngj]} nZ2,
#E is the cardinality of E, and [z] (|z]) is the smallest (largest) integer that is not
smaller (larger) than « € R, respectively. In what follows we explain that the assumption
in (1.11) is reasonable.

Remark 1.1. Throughout this paper, as in (1.11) we assume that the function to be
reconstructed is compactly supported and its support is contained in a known rectangle.
Such an assumption is reasonable for CT (e.g. [43]) since from the optical perspective,
the function to be reconstructed in CT is the difference between the refractive index
distribution of the object and that of the surrounding medium (cf. [30]), and consequently
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it is generally compactly supported. Moreover, the support of the function is known when
the boundary of the object is clear.

In what follows we recall the definition of positive definite functions which have been
extensively applied to scattered data interpolation, approximation theory and harmonic
analysis (e.g. [14,20,25,42]).

Definition 1.1. We say that a function ¢ : R? — C is positive semi-definite if for all
N € N, all sets X = {x1,%2,...,xy} € R% and all vectors 0 # (ay,...,ay)T € CV,
the quadratic form

Z;‘V:I Zszl o0 P(x; — X)

¢(0) p(x1 —x2) - d(x — xN) o
X0 — X 0 Xo — X 8]

_ g aw) | g 1) ¢(: ) } o | v) M NERE)
P(xn —x1) d(xn —X2) - $(0) an

Furthermore, the function ¢ is positive definite if the above quadratic form is positive
for all 0 # (aq,...,axn)T. We will recall more properties of positive definite functions in
subsection 5.3.

1.6. Main contributions and their common features

Our central task is summarized as follows.

We prove the existences of the vectors p and the corresponding sampling set
X, such that the compactly supported source function f € V(p,Z?) can be
determined by the samples of Rpf at X,. Moreover, the designing problem of p
and X, is also addressed. These problems are investigated from the perspective:
(1) The nonvanishing case: 3(0) = [g. ¢(x)dx # 0; (2) The vanishing case: ¢(0) =
Jg:2 ¢(x)dx = 0. In particular, we address the case that ¢ is positive definite such
that p and X, can be constructed easily.

. J

There are five main results in this paper. They will be established in subsections 4.3,
4.4, 5.2, 5.4 and 5.5. From the perspective of the properties satisfied by the generator ¢,
these main results are organized briefly as follows.

e The nonvanishing case ($(0) = [g. @(x)dx # 0). The set A of eligible direction
vectors is constructed for the SACT of any f € V(p, Z?) satisfying (1.11). It is proved
that for any p € A, there exists a sampling set X;, C R (having the cardinality #F)
such that f can be determined uniquely by its SA Radon samples at X, where the set
E is correlated with f via (1.12). Additionally, if ¢ € C'(R?) then X, is constructed
explicitly.
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e The vanishing case ($(0) = [g. ¢(x)dx = 0). As in the nonvanishing case, the
set  of eligible direction vectors is constructed for the SACT of any f € V(p,Z?)
satisfying (1.11). The set 2 is different from the above A in the nonvanishing case. For
any p € (2, the existence of the eligible sampling set X, C R (also having the cardinality
#FE) is proved such that f can be determined uniquely by its SA Radon samples at X,.
Additionally, for the case that ¢ € C*(R?) the sampling set X, is constructed explicitly.

e The positive definite generator case. Suppose that ¢ is positive definite. Eligible di-
rection vector sets are constructed for the nonvanishing and vanishing cases, respectively.
For any eligible direction vector p, the source function f € V (¢, Z?) satisfying (1.11) can
be determined uniquely by its SA samples at {pki, ...,pkzr}, where {ki,... , kug} =F
is correlated with f via (1.12).

Remark 1.2. There are two common features of the above three main contributions. (1)
The samples for CT are derived from the SA Radon transform but not from multiple-
angle Radon transforms. (2) Note that #F Radon samples are used to determined f.
Recall again that {p(- — k) : k € Z?} is linearly independent, and by (1.12), f =
fo cip(- — k). Then f is determined uniquely by the #E coefficients: c,, ..., Cr,p-
Therefore we only use the minimum number of samples in our SA-based reconstruction.

1.7. Outline of the paper

In Theorem 3.1 a sufficient and necessary condition is established on the pair (¢, p)
such that, an arbitrary compactly supported source function f € V(p,Z?) satisfying
(1.11) can be determined uniquely by its SA Radon transform Rpf. With the help of
Paley-Wiener theorem, it will be explained in subsection 3.2 that such a determina-
tion problem is absolutely nontrivial. Based on Theorem 3.1 we will address the SACT
sampling problem (1.9) in section 4 and section 5.

Section 4 concerns on the problem (1.9) for compactly supported functions in V (i, Z2)
where ¢ is a general generator. Theorem 4.1 establishes a sufficient and necessary condi-
tion on (¢, p, X;) such that the SACT sampling (1.9) can be achieved by the SA Radon
samples at X,,. For the general generator ¢ case, a natural problem is the existence of p
and X,. The answer to this problem will be addressed in Theorem 4.3 for the nonvan-
ishing ($(0) # 0) case and in Theorem 4.5 for the vanishing ($(0) = 0) case, where a set
of eligible direction vectors A (respectively, ) is provided in Theorem 4.3 (respectively,
Theorem 4.5) such that for any p € A (or p € Q) there exists a sampling set X, and
consequently f can be determined uniquely by its SA Radon samples at X,. In partic-
ular, an explicit construction of a sampling set X, was presented in Theorem 4.4 and
Proposition 4.6 for the case when ¢ € C1(R?).

The purpose of Section 5 is to address the condition on (¢, p) such that the compactly
supported f € V (i, Z?) satisfying (1.11) can be determined uniquely by its SA Radon
samples at {pki,...,pkyr}, where {ki,... , kyr} = E. Such a condition is established
in Theorem 5.1. Based on Theorem 5.1, we address the case that ¢ is positive definite
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in Theorems 5.4 and 5.6. In particular, Theorem 5.4 applies to the nonvanishing case
while Theorem 5.6 applies to the vanishing case. A numerical example is provided in
Example 5.1 to check the recovery result.

2. Preliminary
2.1. On the support of Ry f

For a function f € L'(R?) and a direction vector p = (cos#,sinf), motivated by
[16,18] we next address the relationship between R,f and f in the spatial domain.
Denote the singular value decomposition (SVD) of p by p = V7, where V is a 2 x 2
real-valued unitary matrix and ¥ = (1,0). Now it follows from [16,18] that

Rpf =E(VTS), (2.1)

where VT f(x) = f(VT)"1x) with x = (1, 22)T € R?, and for any g on R? the function
3g on R is defined by

Eg(z1) :/g(xl,zg)de. (2.2)
R

The following remark is derived from [16, section 1].

Remark 2.1. If f € L?(R?) is compactly supported then its Radon transform R,f can
be expressed as (VT f) in (2.1).

It has been stated in (1.3) that if f € L?(R?) is compactly supported then R,f €
L?(R). We include its proof together with support information in the following lemma.

Lemma 2.1. Suppose that f € L*(R?) with supp(f) C [a1,b1] X [ag,b2]. Then

supp(Rpf) C [—vV2max{|b;|,|a;| : i = 1,2}, V2max{|b;],|a;| : i = 1,2}], (2.3)
and Ry f € L*(R).

Proof. Let V be the real unitary matrix from the SVD of p such that p = V7T with
¥ = (1,0). Denote VT f by g. Then for any z; € R, we have
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Rpf(z1) =Xg(z1)
2/9(171796‘2)65962

/VTf .%’1,.%'2 dQEQ (24)

R
:/f {L'l,{L'Q deu (24A)
R

where the first and second equalities are derived from Remark 2.1 and (2.2), respectively.
It follows from supp(f) C [a1,b1] X [az, ba] that for any x € supp(f), we have

Ix]]2 < \/imax{|bi|, la;| -3 =1,2}. (2.5)

It follows from (2.4) and the fact that V is a unitary matrix, we have |z1]
V2 max{|b;|,|a;| : i = 1,2}. Then (2.3) holds.

Define G(x1,22) := f(V(z1,72)T). By (2.5) and V being a real unitary matrix, we
have

|zo| < V2max{|b;|, |a;| :i =1,2} (2.6)
for any (z1,72)T € supp(G). Moreover,
IRpf 22y = IRV w)
— / | /[VTfKZL'l,IEQ)dI2|2dI1

R R

< V2 max{|bi], |as] :i:1,2}//|[VTf](x1,x2)|2da:2dx1 (2.7)
R R
= V2max{|bi|, [ai| : i = 1, 2}]| f]|72ro)

< o0,

where the first inequality is derived from (2.6) and the Cauchy-Schwarz inequality. This
completes the proof. O

2.2. (Quasi) shift-invariant space

For a generator ¢ € L?(R?), as in (1.8) its associated shift-invariant space (SIS)
V(p,Z?) is defined to be

V(e.2%) = { 3 el =B : {eihies € (27}, (2.8)

keZ?

where (2(Z?) is the space of square summable sequences such that any {cx}reze € (?(Z?)
satisfies || {cxtrez2 ||e2(z2) = (Creze lekl?)'/? < 0. As mentioned in section 1, throughout
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the paper the system {¢(-—k) : k € Z?} is required to be linearly independent in L?(R?).
A sufficient condition for the linear independence is that {¢(- — k) : k € Z?} satisfies the
so called Riesz basis condition, namely, there exist constants 0 < C; < Cy < oo such
that for any {cx}rezz € €2(Z?) there holds

2
Cil{extrezzllfozey < || D cxp( =B age) < Coll{eidhezellfzzey.  (29)
keZ?

For a generator ¢ € L*(R?) and the shift set X = {zx}rez2: C R?, its associated quasi
shift-invariant space (QSIS) is defined as

Vip, X) = { 3 (- — @) < {endrezs € £2(z2)}. (2.10)

keZ?

If X = Z? then V (g, X) degenerates to a SIS. As implied in [14], the recovery for the
functions in V (g, X) (X # Z?) is much more complicated than that for the SIS. For
such a recovery, by [14, section 3.1(A1)] it is required that ¢ is positive definite.

2.83. Sobolev smoothness of a function

For any ¢ € R, the Sobolev space H(R?) (cf. [15,27,28]) is defined as

@)= {f: [IFQPQ+ Ielde <}, e.11)
R4

Clearly, if ¢ > 0 then H<(R%) C L?(R?). The deduced norm is defined by

- 1/2
sy = gmyars ([ FOPQ+ Ielrae) ™ v e meceed.
R4

The Sobolev smoothness of f is defined as vo(f) := sup{s : f € H*(R%)}. The following
lemma is derived from [17, Lemma 2.4]. It states that for a compactly supported f €
L?(R?), the Sobolev smoothness of R, f is not smaller than v (f).

Lemma 2.2. Suppose that f € H*(R?),¢ > 0 is compactly supported. Then vo(Rpf) >
va(f) for any direction vector p.

With the help of Lemma 2.2 we next address the continuity of the Radon transform.

Proposition 2.3. Suppose that f € HS(R?) such that ¢ > d/2. Then we have
(1) f is continuous.

Suppose that g € H*(R?) with s > 1/2 is compactly supported. Then we have
(2) the Radon transform Rpg is continuous for any direction vector p.
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Proof. The first part of the proposition is the standard result on Sobolev space (cf. [27,
section 1.1], [37, Chapter 9.1]). For any compactly supported g € H*(R?) with s > 1/2,
by Lemma 2.2 the Sobolev smoothness v2(Rpg) > v2(g) > 1/2. By the first part of the
present proposition, Rpg is continuous. The proof is concluded. O

Remark 2.2. For f € H(R?) with ¢ > d/2, by Proposition 2.3 (1) we have f € C(R%).
But it does not necessarily imply that f € C'(R?). For example, define f(z1,2) =
[X(0,1 * X(0,1](%1)[X (0,1) * X(0,17](z2), Where x is the convolution and x(o,1) is the charac-
teristic function on the interval (0, 1]. By direct calculation we have

Zj, 0< Z; S 1,
X0 * Xo.)(xj) =4 2—z5, 1<z; <2, (2.12)
0, else.

On the other hand, one can check that

oi€i/28mE/2 (2.13)

X&) = &2

Therefore,

~ e, SINE1/25 e sinéy/2
f(€17§2)_€ 5[ 51/2 ]26 f[ 52/2 ]2‘

From this, one can check that f € H(R?) for any ¢ < 3/2. But it is clear from (2.12)
that f ¢ C1(R?).

Remark 2.3. The purpose here is to state that there exist functions which are discon-
tinuous but their Radon transforms are continuous. For example, define f(x1,22) =
X0,1](T1)X(0,1)(z2). It is clear that f is discontinuous. It follows from (2.13) that
f(fl,fg) = e*ifl/z%e*i&/z%. Now for any p = (cosf,sinf) such that
cosfsin @ # 0, we have

£cosf cos 6 £sin 6 bln [
— ~ . _y8eos0 0 sin j€sino 0 sin
Rpf(f) = (E COs 97§S1n 0) =e ! gcose e §sm9

2 2

For |¢| > 1, \@(fﬂ < ‘“%"Elﬁ From this and the continuity of @, one can prove
that the Sobolev smoothness v2(R,f) > 1/2. By Proposition 2.3 (1), R, f is continuous.

3. A necessary and sufficient condition for the SA Radon transform-based
determination

The following establishes a necessary and sufficient condition on the pair (¢, p) such
that any compactly supported function f € V (¢, Z?) can be determined by its SA Radon
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transform R, f. Although such a determination depends on R,f and does not use its
samples directly, it will be helpful for answering the SACT sampling problem (1.9). As
previously, the vectors in R? are considered as column vectors, while the direction vector
p is a row vector.

3.1. Determination result

The following is the main result of the present section.

Theorem 3.1. Suppose that ¢ € L*(R?) such that supp(p) C [Ny, M;] x [N, Ms]. More-
over, {o(- —k) : k € Z?} is linearly independent in L?*(R?). Then any f € V(p,Z?)
such that supp(f) C [a1,b1] X [ag, ba] can be determined uniquely by its SA Radon trans-

form Ry f if and only if {Rpe(- — pk) : k € E} is linearly independent in L?(R), where
E = {[[ar = My], [by = Ni]] x [[az = Ma], [b2 = No|]} N Z2.

Proof. We first prove that Rp(o(- — k)) = Rpp(- — pk) for any k € Z?2. Actually, the
Fourier transform of ¢(- — k) at x € R? is e ***((x). Then by the Radon transform
representation (1.4) in the Fourier domain, the Fourier transform of the Radon transform
Rp(p(- — k) at £ € R is e kP £5(pT¢). Clearly,

e—ikaf@(pTg) _ e—ipkﬁﬁ(g)' (3.1)
Stated another way,
Rp(p(- = k) = Ryp(- — pk). (3.2)

Since ¢ € L?(R?) is compactly supported, then it follows from Lemma 2.1 that R,(¢) €
L*(R). Consequently, Rpp(- — pk) € L*(R) for any k € E.

For convenient narration, denote E by {ki,...,kgg}. It follows from {¢(- — k) :
k € Z?*} being linearly independent, supp(p) C [Ny, M;] x [Na, Ms] and supp(f) C

[a1,b1] x [ag, bo] that there exists uniquely a finite sequence {c,,...,ck,,} € C such
that
#E
F=> el k). (3.3)
I=1

Now by (3.3) and (3.2), we have

#E
Rpf =Y _ ciRpp(- — pki). (3.4)
=1

(<=): Since {Rpp(- — pki) : | = 1,...,#FE} is linearly independent in L?*(R), then
{c, : 1 = 1,...,#FE} can be determined uniquely by R,f. Note that {¢(- — k) }rez>
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is linearly independent. Then with the sequence {cy, : I = 1,...,#F} at hand, f =
Zz#:b; ¢k, (- — ki) can be determined uniquely.

(=): If {Rpp(- —pk;) : 1 =1,...,#FE} is linearly dependent then there exists a
nonzero sequence {¢x, : | = 1,...,#E} such that || Zz 161(1 Rpe(- = pky)||L2r) = 0.
Recall that {¢(- — k) : k € Z?} is linearly independent. Then f := > bicklgo( —k)#0
but R,f = 0. Now f is not distinguishable from g = 0 € V(y,Z?) since their Radon
transforms (w.r.t. the direction vector p) are both zero. This leads to a contradiction. 0O

Remark 3.1. (1) The sampling problem is not considered in Theorem 3.1. Therefore Rpe
is not required to be continuous therein. (2) If the set {pk : k € E} is not contained in
Z, then it follows from (3.4) that R, f sits in the quasi-SIS (QSIS) generated by Rpe.
As addressed in section 2.2, the recovery problem in QSIS is absolutely not the trivial
generalization of that in SIS.

The following subsection states that the SA Radon-based determination problem in
Theorem 3.1 is absolutely not trivial.

3.2. A nontrivial problem: what pair (p,p) ensures the system {Rpp(- —pk) : k € E}
being linearly independent

Note that in Theorem 3.1 the system {Rpp(- — pk) : k € E} is required to be linearly
independent in L?(R). Our purpose of this subsection is to explain that such a require-

ment is absolutely not trivial. The following lemma is necessary for our discussion. It is
derived from [42, Lemma 6.7].

Lemma 3.2. Suppose that x;, € Rk = 1,...,N are pairwise distinct. Then the set
{e®= YN s linearly independent on any interval I C R, namely, for any vector
(a1,...,an) € CN if Zﬁzl are™ ¢ =0 then (aq,...,ay) = 0.

In what follows, we establish the equivalent characterizations for the linear indepen-
dence of {Rpp(- — pk) : k€ E}.

Proposition 3.3. Let the compactly supported ¢ and E = {ki,...,kgg} C Z* be as in
Theorem 3.1. Then the following statements are equivalent:

(1) The system {Rpp(- — Pk;) : j = 1,...,#E} is linearly independent in L?(R).

(2) For any vector 0% (c1,...,cur)T € C*E it holds that

#E
[1 e e pipeT o > o 5.5)
R =1

(3) 2(pT) £ 0, and if #E > 1 then for any j # n € {1,...,#E} we have pk; # pk,,.
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Proof. By (3.1) we can check that the Fourier transform of fol ¢;iRpp(- — pkj) is
fol cje PkiS5(pT'¢). From this we have (1) <= (2). If ¢(p-) = 0 then the integral
in (3.5) is zero. On the other hand, if #F > 1 and pk;, = pk;, for some i1,iy €
{1,2,...,#FE} then the integral is zero when choosing 0 # ¢;, = —¢;, and ¢; = 0
for j # i1,42. Then (2) = (3). Next we prove that (3) = (2). Actually, since ¢ is
compactly supported, it follows from Lemma 2.1 that R is also compactly supported.
Then 0 # 7€p\<p = @(p’-) € C=(R), and consequently there exists an interval denoted by
[€0 — d0, &0+ d0] such that for any & € [{g — do, {o+ 0o we have |7€;0(§)| > 0. Additionally,

it follows from Lemma 3.2 that {e_ipkl 2l =1,...,#E} is linearly independent on
[€0 — d0, &0 + o). Then
#E £o+do #E
/ D e PREPIB(pTE) Pdg > / 1D e PHEPIB(PTE)PdE > 0. (3.6)
R J=t €o—do i=1

Consequently, (3.5) holds. This completes the proof. O

The following is a counterexample such that the condition in Proposition 3.3 is not
satisfied. Therefore, the problem of the linear independence of {Rpp(- — pk) : k € E} is
not trivial.

Example 3.1. The generator ¢ is defined such that

(&1, &2) = sin(&1 — £2)9(&1,&2), (3.7)

where 0 # g € L?(R?) is compactly supported. One can check that p(xq,72) = %g(ml +
1,zp — 1) — 5 g(z1 — 1,22 4+ 1) and is compactly supported as well. Clearly, §(p”-) =0
if choosing p = (@, @)

Analysis with the help of Paley-Wiener theorem. From the perspective of zero distri-
bution, @ in Example 3.1 has zeros along the line £; —& = 0 on R? = {(£1,&)7 1 61,6 €
R}. This implies that @ has non-isolated zeros on R?. For better understanding this issue,
in what follows we explain it from the perspective of zero distribution of entire functions.
The classical Paley-Wiener theorem (cf. [36]) states that a function g € L?(R?) is the
Fourier transform of a square integrable function with compact support if and only if it
is the boundary value on R¢ of an entire function on C? of exponential type. Now for the
compactly supported generator ¢ € L?(R?), by the Paley-Wiener theorem we conclude
that its Fourier transform @ is the boundary value on R? of an entire function on C%. It is
well-known that for d > 2 an entire function on C¢ may have non-isolated zeros (cf. [13]).
Therefore, it is no wonder that there exists a pair (i, p) such that @(p’¢) = 0 for any
¢ € R. Correspondingly, the system {Rpp(- — pk;) : 5 = 1,...,#E} in Proposition 3.3
is linearly dependent.
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4. SA-Radon samples based reconstruction for compactly supported functions in SIS

This section concerns on the SACT sampling problem (1.9) for compactly supported
functions in the SIS generated by a compactly supported generator ¢. The main results
will be organized in Theorems 4.3, 4.4 and 4.5. For the better readability, we quickly
sketch the structure of this section. A necessary and sufficient condition on (¢, p) and
the sampling set X C R will be established in Theorem 4.1, such that a compactly
supported function f € V (i, Z?) can be determined uniquely by its SA Radon samples
at X. Based on Theorem 4.1, our two main results are organized in Theorems 4.3, 4.4,
and Theorem 4.5 and Proposition 4.6. Theorems 4.3 and 4.4 hold for the nonvanishing
case (p(0) # 0) while Theorem 4.5 and Proposition 4.6 hold for the vanishing case

(#(0) = 0).

4.1. A sufficient and necessary condition on the pair (p,p) and the sampling set X
such that the SACT sampling (1.9) can be achieved

As previously, any x € R? is considered as a column vector while the direction vector
P is a row vector.

Theorem 4.1. Suppose that ¢ € L*(R?) such that supp(p) C [Ni, My] X [Na, Ma] and
{p(-—k) : k € Z?} is linearly independent, and p = (cos 0, sin 0) is a direction vector such
that Ry is continuous. Moreover, f € V (e, 72) is an arbitrary source function such that
supp(f) C [a1,b1]x[az,bo]. Let E = {[[a1 —Mi], [b1— N1 || x [[ae—Ms], [bo— N2 || }NZ?2
and denote it by {ki,...,kyr}. Then f can be determined uniquely by its SA Radon
(w.r.t. p) samples at X = {x1,...,24p} C R if and only if the #E x #E matriz

Rpp(r1 —pki)  Rpp(ri —pk2) - Rpp(r: — pkyr)
Rpp(ra —pk1)  Rpp(rz —pk2) -+ Rpp(rz2 — pkyr)
App.x = . . . . (4.1)
Rpo(ryre —pki) Rpp(zsr —pke) -+ Rpp(r4r — Pkyr)

1s invertible.

Proof. (<) We first prove that if Ay, x is invertible then {Rpp(- — pk,) : n =
1,...,#FE} is linearly independent in L?*(R). Otherwise, there exists a nonzero vector
(di,...,dgr)T € C*F such that

#E #E
I3 @R~ bl ey = [ 13 bRyl ~ ple)Pdz=0. (1.2
n=1 R n=1

It follows from (4.2) and the continuity of Rpp that for any z; € X we have
fol dnRpp(x; — pk,) = 0, which implies that the matrix A, , x is singular. This
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is a contradiction. Next we prove that R,f can be determined by its samples at X if
A, p x is invertible.
As in (3.3) and (3.4), there exists uniquely (ck,, ..., ¢k, )" € C#F such that

#E
= el —k) (4.3)
n=1
and consequently,
#E
Rpf =Y i, Rpp(- — pkn). (4.4)
n=1
Now it follows from (4.4) that
A¢7p7x(ck1, ey Ck#E)T = (Rpf(azl), [N ,Rpf(a:#E))T. (45)
Since A, p x is invertible then (ck,,..., ck#E)T can be determined uniquely by the

SA Radon samples Rpf(z1),...,Rpf(z4E). Since {Rpp(- — pk,) : n = 1,...,#E}
is linearly independent, R,f represented via (4.4) can be determined from the vec-
tor (k,,..-,Ckyp)’ . Now by Theorem 3.1, f = fol ck, ¢(- — k) can be determined
uniquely.

(=) If A, p,x is not invertible then (ck,, ..., ck,,)" can not be determined uniquely
by (4.5). Recall again that {¢(- — k) : k € E'} is linearly independent, then f in (4.3) can
not be determined uniquely. O

Remark 4.1. For the sampling problem in the SIS V(p,Z?), it is required that ¢ is
continuous (cf. Aldroubi and Grochenig [1]). Therefore, if ¢ is discontinuous then the
sampling in V (¢, Z?) is not well-defined. On the other hand, it follows from Remark 2.3
that even though ¢ is discontinuous, the Radon transform Rp¢ may be continuous.
From this perspective, when ¢ is discontinuous Theorem 4.1 may provide an alternative
sampling-based recovery for compactly supported functions in V (¢, Z?).

4.2. Direction vector set and null set

The concepts of direction vector set and null set will be necessary for SACT sampling.

Definition 4.1. (1) Suppose that S C R? such that S\ {0} is not empty. Define its direction
vector set as

dvs = {(cosf,sinf) : all 0 # x = ||x]|2(cos 0,sin )" € S}. (4.6)

The direction vector sets of the empty set () and {0} are both simply defined as (.
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(2) For S C R? such that S\{0} is not empty, its null set Ns is defined as
{0 # y € R? : there exists 0 # x € S such that x' y = 0}. (4.7)

The null sets of @ and {0} are both simply defined as §). Correspondingly, if S\{0} is not
empty then the direction vector set dvas, is defined via (4.6).

Remark 4.2. (1) For xy € R? and its open disc
D(xp,0) == {x € R?: ||x — x0||2 < 0}, (4.8)

if 0 € D(xg,d) then dvp (s, 5 18 the unit circle {(cosf,sind) : 6 € [0,2m)}. (2) Suppose
that S C R? is finite such that S\{0} is not empty. The null set Ns of S is defined via
(4.7). Then its cardinality #dvy, < oo.

Proof. Item (1) is obvious. We just need to prove item (2). Denote S\{0} by {x1,...,x.}.
For any 0 # x;, = (x,1,%,2)7 € S, suppose that 0 # y = ||y||2(cos 0y, sinf,)T such that
xI'y = 0. Without loss of generality, let x; 2 # 0. Then tan 6, = 72—; By S being finite,
the proof can be completed. O

The following direction vector set is related to a function.

Definition 4.2. Suppose that 0 # g : R2 — C is continuous. For xy € R? such that g(xq) #
0, let 0%, max > 0 be the maximum value in (0, o] such that for any x € ﬁ(xo, 0%, max) We
have g(x) # 0, where D(x0, 6%, max) is defined via (4.8). Following Definition 4.1 (4.6),

the set of direction vectors dVﬁ(XU 5 ) of ﬁ(XO, 0%, max) is defined as

g
X0 ,max

{(cos0,sind) : 0 # x = ||x]|2(cos 0, sin )T € D(xq, 67 )} (4.9)

X0 ,max

Definition 4.3. Suppose that 0 # ¢ € L?(R?) is compactly supported and vanishing (i.e.
©(0) = 0). Denote the nonzero set of ¢ by G5 such that @(x) # 0 for any x € G5. Define

DV@ = U dvﬁ(x,(sfmax)’ (410)
x€Gs

where dvﬁ(X’ 5% ma) is defined via Definition 4.2. Correspondingly, the angle set of DV
is defined as

argpy, = {0 € [0,27) : (cos0,sin6) € DV} (4.11)

Proposition 4.2. Let ¢ and argpy, be as in Definition 4.5. Then (1) the Lebesgue measure
mlargpy, ) of argpy, on R is positive; (2) @ = o(pT) £ 0 for p = (cosb,sin 0) with
any 0 € argpy, -
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Proof. We first prove item (1). Since 0 # ¢ € L?*(R?) is compactly supported, 0 #
@ € C°°(R?). Then the nonzero set G5 of @ is not empty. Choose any x € G5 and

consider dvg s . Asin (4.11), define the angle set of AV iy 52,00 38 AMay o =

0 € [0,2m) : (cosf,sinf) € dve, s . Since 5fmax > 0, the Lebesgue measure
D(x,0 ) >
wulargg, ) > 0. Therefore, p(argpy.) > 0.
D @ @

%,0x, max)

Next we prove item (2). For any 6 € argpy by (4.11) the corresponding direction
vector p = (cosf,sinf) € DV5. Now by (4.10) there exists x € G5 such that §(x) # 0
and p € dvﬁ(x 5% )’ By the definition of ’lc)(x, d%max) in Definition 4.2, there exists
v > 0 such that @(yp?) # 0. Therefore, 7€p\go('y) = o(yp") # 0. By Lemma 2.1, R,p is

compactly supported and consequently Ryp € C*°(R). Now by the continuity of Rpe
one can prove that Ry # 0. This completes the proof. O

4.8. The first main result: SACT sampling for compactly supported functions in a SIS
generated by a non-vanishing generator ¢

The following is the first main theorem in this section.

Theorem 4.3. Suppose that ¢ € L?(R?) is compactly supported such that supp(p) C
[N1, Mi] X [Ny, Ma], {o(- — k) : k € Z?} is linearly independent and

(i) the Sobolev smoothness va(p) > 1/2,

(i) $(0) = [go ©(x)dx # 0 (non-vanishing property).
As previously, suppose that f € V(p,Z?) is an arbitrary source function such that
supp(f) C la1, b1] X [az,ba]. Correspondingly, define two sets

E= {Hal — Mli‘, I_bl — N1J] X UVCLQ — ]\42]7 I_b2 — NQH} QZ2
and

0 #E =1
Et = ’ ’ 4.12
{{x—y:x;«éyeE}, #E > 1. (4.12)
Then for any p € {(cos@,sin @) : 0 € [0,27)}\ dun,, , there exists a sampling set X, C R
having the cardinality #X, = #E such that f can be determined by its SA Radon (w.r.1.
p) samples at X,.

Proof. Denote ' = {ki,...,kyr}. We first prove {(cos@,sin6) : 6 € [0,27)} \ dva,,
is not empty. It is sufficient to prove that #dvy,, < oco. If #E = 1 then Et =10
and by Definition 4.1 (1) we have dvy,_, = ¢ and #dvy,, = 0. If #FE > 1 then
#ET = #E(#E — 1) < co. By Proposition 4.2 (2) we have #dvy,, < oc.

Since supp(y) C [N1, Mi] x [N2, Ma] and supp(f) C [a1,b1] X [az,be], as in (4.3) we
denote f = Zf:b; (- — k) for (cky, ..., cr,p) € C*E. Consequently, by (4.4) we have
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#E
Rpf = Z%Rpsﬁ(' - pk). (4.13)

=1

We first prove that for any p € {(cos@,sinf) : 6 € [0,2m)} \ dva_,, the system
{Rpe(- —pky) : L =1,...,#FE} is linearly independent. For the equivalence of the linear
independence established in Proposition 3.3 for the above system, we just need to prove
that Proposition 3.3 (3) is satisfied any p € {(cos6,sinf) : 6 € [0,27)} \ dvy_, . Clearly,

—

Rpe(0) = $(0) # 0 for any p. Then

Rop = 3(p"-) #0. (4.14)

On the other hand, if E* = @ then dvar_, = (). This combining (4.14) implies that item
(3) of Proposition 3.3 is naturally satisfied for any p € {(cosf,sinf) : § € [0,2m)}. If
E* # ) then it follows from the definition of N+ in Definition 4.1 (2) that for any
p & dvy,, we have pk; # pk, for any | # n € {1,...,#FE}. That is, for the case that
E* = () item (3) of Proposition 3.3 is also satisfied. Then it follows from Proposition 3.3
that {Rpp(- — pk;) : 1 =1,...,#FE} is linearly independent.

By the above independence there exist constants 0 < C , < C3 , < 0o such that

#E #E #E
Ciod_ldul* < [ 13 duRypla ~ phi)Pdo < Cop - ldwP (115)
=1 R =1 =1

for any (dy,,...,dgr)T € R#E. On the other hand, it follows from Proposition 2.1
(2.3) that supp(Rpp) C [~Ly, Ly], where L, = v2max{|N;|,|M;| : i = 1,2}. Denote
ap1 = min{pk; : l = 1,...,#FE} and ap2 = max{pk; : | = 1,...,#E}. One can check
that
#E
SUPP(deZRp@(' _Pkl)) C [Lpa, Lp2l,
=1

where Lp1 = —Ly, + ap1 and Lpo = Ly, + ap 2. Then (4.15) is equivalent to

#E Lp2 yp 4E
Crp > Jdi[? < / 3 di Ryl — pho)Pde < Cop S Jdi 2. (4.16)
=1 L, =1 =1

The rest of the proof is to find a sampling set X, C R with the cardinality #X, =
#E such that f can be determined by its SA Radon (w.r.t. p) samples at X,. Since
va(p) > 1/2, by Proposition 2.3 (2) we have that Rpp is continuous. Consequently, all
Rpe(- —pk;),l = 1,...,#FE are uniformly continuous on the interval [Lp 1, Lp2]. Then
there exists 0, < (Lp2 — Lp1) such that for any [ € {1,...,#E} and any 2/,2" €
[Lp,1, Lp 2] satistying |2’ — 2’| < §, we have
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Gy
Rpp(z' — pk)) — Rpp(z” — pky)| < 2 : 4.17
Rpp(z’ — pki) — Rpe( pz)l\/g#E( - (4.17)
L,o—L,1
Now let K = [=22=2+]. Construct
L,o—L
Yo={ap=Lps+ 22 _"PLk—1):k=1,...,K,+ 1}
P
such that
|z — ;] < dp (4.18)

for any z,x;. Define an approximation to Ry(- — pk;) as hi(x) = Z,ﬁl Rpo(zy —
Pki) X[z, ,2,..1) (). Then one can check that

Ly> 4p
/ |3 diy (Ryp( — pla) — hu() [2da
prl =1
# br2yp
§2|dk,.|2 / S [Rppl — plt) — hu(a)Pdz (4.19A) (4.19)
J L =1

P
p Tn41 #E

- Z|dk ° Z / Z|Rp80 z — pk;) — ly(z)[*dz

where (4.19A) is derived from the Cauchy-Schwart inequality. We continue to estimate

(4.19) as follows,

Lp2 #E
1D i (Rpp(a — phi) — hu())[*de
=1

L
p,l X, In+1#E
< Z\dk |2 Z / Z|Rpcp x — pk) — hy(x)|*dx
n=1
K, iz“#E
—Z\dk| S / Z|Rp<pa:—pkl) Ryp(wn — ph)|2dz (4.204)  (420)
n=1
#E o o
< Z |y, |P#E Lp K0, (4.20B)

3#E(Lps — Lp,)
OLP & 2
> i, 7, (4.20C)

Jj=1
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where (4.20A) is from the definition of hj(x), (4.20B) is from (4.17) and (4.18), and
(4.20C) is from Kpép < Lpo — Lp1. Then

Loz up Loz yp
@) 2 ([ 13t Rolo = ph) = o)) (121
=1

Ly Ly
L

P2 4R
1> di Rpp(x — pky)[*dz)'/?
Lpa =1
#E

> (1= v/1/3)y/Cip(Y_ ldil)'/?, (1.21B)

- (4.21)

where (4.21A) is from the triangle inequality, and (4.21B) is from (4.15) and (4.20). Then
for any (dy,,...,dk,,) # 0 we have

“E Lp2 up
0<Crp(l=V1/3)>> ldi > < / 1> dighi(z) Pde
=1

=1 Ly
Titl up

KP
= / |delhl )|Pda (4.22)
J=1 4.

J
K, #E

=3 1) diRpp(x; — pki)|*.

j=1 I=1

By (4.22), we conclude that there exists X, := {z;,,...,7;,,} C Y}, such that the
corresponding #F x #E matrix

Rpp(xj, —pki)  Rpp(rj, —pke) -+ Rpp(xj, — pkyr)
Rpp(zj, —pki)  Rpp(rj, —pka) -+ Rpe(xj, — pkyr)

A@vP,Xp = . . . .
Rpcp(zj#E - pkl) Rpw(xj#}; - ka) to RPQP(LL’]'#E - pk#E)

(4.23)
is invertible. Now by Theorem 4.1, the source function f can be determined uniquely

by its Radon (w.r.t. p) samples at X,,. Specifically, the vector (cpkl,...,cpk#E)T can be
determined by

(Cpkn s acpk#E)T = A;,;,Xp(Rpf(le)v ce 7Rpf(xj#E))T' (4'24)

This completes the proof. 0O
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In what follows we explain why the condition v2(¢) > 1/2 in Theorem 4.3 is required.

Remark 4.3. Since v»(¢) > 1/2, by Proposition 2.3 (2) we conclude that Rpp is con-
tinuous. If such a condition is not satisfied, then Rpp may be discontinuous for some
p- As in Remark 2.3, let ¢(x1,22) = X(0,1)(%1)X(0,1(72). Through the direct calculation
we have p(£1,&2) = 1‘:;“ 1_16;{2 . By the Sobolev smoothness definition in subsection
2.3 one can check that vo(¢) = 1/2. If p = (1,0) or (0,1) then Ry = x(0,1] Which is

discontinuous. As a result, there may not exist J, such that (4.17) holds.

Remark 4.4. Define the #F x #F Gram matrix

#E
Gop = ((Rpel- = kj), Ry (- = pka)) (4.25)

7,mn=1

where the inner product (Rpo(-—pk;), Rp@(-—pkn)) = g Rpw(z—pk;)Rpp(x—pky, )d.
Then (4.15) or (4.16) is equivalent to

CLPH(de R dk#E)”% < (dk17' ER] dk#E)GSO7P(dk1’ R dk#E)* < CQ,PH(dkw' L] dk#E)H§7
(4.26)

where D* is the conjugate and transpose of a matrix D. Note that G, , is a Hermitian
matrix. Then (4.26) implies that G, p is a positive definite matrix, and consequently 0 <
Cip < Amin(Goy,p) and Amax (G p) < Cop < 00, where Apax(Gy p) > 0 and Amin(Gypp) >
0 are the maximum and minimum eigenvalues of G, p, respectively. Particularly, in (4.17)
one can choose

C1p = Amin(Gyp)- (4.27)

The following states that if ¢ € C*(R?) then 4, in the proof of Theorem 4.3 can be
chosen explicitly. Consequently, the SA Radon sampling point set X, in Theorem 4.3
can be constructed explicitly.

Theorem 4.4. Let the compactly supported generator p € C1(R?) such that $(0) # 0 and
the source function f € V(p,Z?*). As in Theorem /.3 suppose that supp(p) C [Ny, Mq] x
[Na, Ms] and supp(f) C [a1,b1] X [az,b2]. Define two sets

E= {Hal — Ml—‘, I_bl — N1J] X U—ag — ]\42]7 |_b2 — NQH} ﬂZ2

and

_ 0, #E =1,
EJF_{{xy:x;éyEE}, #E > 1. (4.28)
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Choose a direction vector p € {(cos®,sinf) : 0 € [0,27)} \ duy, ., and correspondingly
denote

Lp1 = —V2max{|N;|,|M;| : i = 1,2} + min{pk : k € E},

Lpo = v2max{|N;|,|M;| : i = 1,2} + max{pk : k € F},
et [ (21e1lloo + 2lloo) max{|Nil, [M;] 6 = 1,2}),
D, LP,

Kp: %"l’

(4.29)

where Amin (G p) is the minimum eigenvalue of the Gram matriz G, p defined in (4.25),
v1(z1,22) and po(x1,x) are the partial derivatives of p(x1,x2) w.r.t. the variables x4
and xo, respectively such that

o = max 21, 22)|, o = max 1, 22)|.
(=] (wwz)e[Nl’Ml]X[Nz’Mz]|901( 1,72)], |2l (Il’mz)e[NhMl]X[szMz]\<P2( 1,72)]

Ezxplicitly construct

LP»Q — Lp,l

p

Y, ={zkx =Lp1 + (k—1):k=1,..., K, +1}. (4.30)
Then there exists Xy = {xi,,...,Ti, 5} C Yy such that the matriz Ay p x, in (4.23) is
invertible and consequently, f can be determined uniquely by its SA Radon samples at
Xp.

Proof. By Remark 4.4 (4.27), C p in (4.26) can be chosen as Amin(Gy p). If (4.17) holds
with C p replaced by Amin(Gy,p), then by the similar procedures ((4.19)-(4.22)) in the
proof of Theorem 4.3 one can prove that there exists X, = {x;,,..., %, } C Y} such that
Ay p.x, in (4.23) is invertible. Consequently, f can be determined by (4.24). Therefore,
we just need to prove that (4.17) holds.

cosf  sind

The SVD of p = (cos®,sin ) is V7T such that V = | .
sinf —cosd

> and ¥ = (1,0).
Since ¢ € C*(R?) is compactly supported, we have
[Rpe(a" — pki) — Rpp (2" — pki)|

= ‘ /Lp((m’ — pk;) cosf + zosin b, (2" — pk;) sin§ — 5 cos 6)

—o((2" — pk;) cos 0 + z2sin 0, (" — pk;) sin @ — x5 cos G)dwg) (4.31A)
max{|N;|,|M;|:i=1,2}
= ‘ ©((«" — pky) cos 0 + x2sin 6, (2’ — pk;) sin @ — x5 cos 0)

— max{|N;|,| M;|:1=1,2}
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—¢((a" — pk;) cos 0 + z2sin 0, (2" — pk;) sin 6 — 5 cos H)dm’ (4.31B)
max{|N;|,|M;|:i=1,2}
<-a'l [ Uit leel)do (1310)
— max{|N;|,|M;|:i=1,2}

= 2|2" — 2"|(lle1lloo + [lp2lo0) max{| N[, [M;] : i = 1,2}, (4.31)

where the (4.31A) and (4.31B) are derived from (2.4A) and (2.6), respectively, and
(4.31C) is from the differential mean value theorem. It is required that |z' — 2| < dp.
Then it follows from (4.31) that

[Rpp (2" — pki) — Rpp (2" — pki)| < 20p([[ 1 [loc + [l2loo) max{[N;], [M;] - i = 1,2}
(4.32)

Now by (4.32) we can choose

— )‘min(Gw,p> _ I
by = \/ SFE( 5 o7/ 2l + eall) ma{INil [04] = 1,2))

such that (4.17) holds with Ci , replaced by Amin(Ge p). The proof is completed. O

4.4. The second main result: SACT sampling for compactly supported functions in a
SIS generated by a vanishing generator ¢

In this subsection suppose that the generator ¢ is vanishing, namely, »(0) =
fR2 p(x)dx = 0.

Theorem 4.5. Suppose that ¢ € L?*(R?) is compactly supported such that supp(p) C
[Ny, Mq] x [Na, Ms), the system {¢(- — k) : k € Z?} is linearly independent, and

(i) the Sobolev smoothness va(p) > 1/2,

(i) §(0) = [g2 ©(x)dx = 0 (vanishing property).
Moreover, as previously suppose that f € V(p,Z?) is an arbitrary source function such
that supp(f) C [a1,b1] X [ag, bs]. Define

FE = {Hal — Ml-‘, Lbl — NlJ] X U—ag — Mg—l, |_b2 — NQH} ﬂZQ

and

= g #E =1,
E+_{{XY¢X#yeE}, 4E > 1. (4.33)

Then for any direction vector p € DV \ dun,, , there exists a sampling set X, C R
having the cardinality #X, = #E such that f can be determined uniquely by its SA
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Radon (w.r.t. p) samples at Xy, where DV and duy,. are defined via Definitions /.3
and /.1.

Proof. Denote E by {ki,...,kgp}. It has been proved in the proof of Theorem 4.3
that #dva,, < oo. Now by Proposition 4.2 (1) one can prove that DV \ dvar,_, is not
empty. It follows from Proposition 4.2 (2) that @ # 0 for any direction vector p € DV .
Moreover, as in the proof of Theorem 4.3 one can prove that for any direction vector
p € DV \ dvy,, the system {Rpo(- — pky) : [ = 1,...,#FE} is linearly independent.
Through the similar procedures of the proof of Theorem 4.3, one can prove there exists
a sampling set X, such that #X, = #FE and f can be determined uniquely by its SA
Radon samples at X,. O

If ¢ € C1(R?), by the similar proof of Theorem 4.4 one can prove the following result.

Proposition 4.6. If p € C'(R?), then for p € DV \ dun,, the sampling point set X, in
Theorem 4.5 can be constructed explicitly through the similar procedures in Theorem /.
(4.29) and (4.30).

5. Pairs of (¢, p) such that the corresponding SACT can be achieved by the sampling
set {pkl, e ,pk#E}

5.1. Motivation

If the Sobolev smoothness v2(p) > 1/2, it has been proved in Theorems 4.3 and 4.5
that there exists a sampling set X, such that the source function f € V (g, Z?) can be
determined uniquely by its SA samples at X,. Moreover, if ¢ € C*(R?) then it is stated
in Theorem 4.4 and Proposition 4.6 that X, can be constructed explicitly. On the other
hand, however, it follows from Remark 2.2 that v2(¢) > 1/2 does not necessarily imply
that ¢ € C'(R?). Then a natural problem is, without the C* condition how can one
explicitly construct the sampling set X,. Before introducing our scheme, let us recall
(4.13) as

#E

Rpf = Z%Rpsﬂt - pk;). (5.1)
=1

Note that X, in Theorem 4.4 and Proposition 4.6 is not necessarily {pki,...,pkyg}.
Naturally, one asks:

Under what condition on the pair (g, p), can f be determined uniquely by its SA
samples at {pki, ..., pkyg}?
If such a determination can be achieved then compared with those in Theorem 4.4 and
Proposition 4.6, it is more efficient to conduct SACT of f since we do not require to
consider the sampling set.
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We quickly describe the structure of this section. In subsection 5.2 we give a condition
on the pair (¢, p) such that the above determination can be achieved. We also address
the determination in subsections 5.4 and 5.5 for the case that ¢ being positive definite.

5.2. The third main result: a condition on (¢, p) such that {pk,...,pkur} is eligible
for the SACT

From the perspective of the signs of the real and imaginary parts of ’Ep\go, a condition
is given in the following theorem such that the sampling set X, = {pki,...,pkyr} is
eligible for the SACT. Incidentally, for 0 # y € R its sign sgn(y) takes 1 and —1 for y > 0
and y < 0, respectively. For a function 0 # g : R — R we say that its sign function
sgn(g(z)) is unchanged if g(z) > 0 for any € R (or g(x) <0 for any = € R).

Theorem 5.1. As previously, suppose that the generator ¢ € L?(R?) satisfies supp(ip)
C [Ni, My] x [Na, Ms], and f € V(p,Z?) is an arbitrary source function such that
supp(f) C [a1,b1] X [az,be]. Additionally, suppose that p = (cos,sin@) is a direction
vector such that Rpp is continuous. Deﬁne E = {kl,.. k#E} = {[ ay — M7, by —
Nlj] Hag — Ms], |ba — N2| }} NZ2. If Rpgp Rpgom + ’LRPQOC\ satisfies the following
item (i) or (ii), and E satisfies item (iii):

(i) the real part @% % 0 and its sign function sgn(@%) s unchanged;

(ii) the imaginary part @S % 0 and its sign function sgn(?ip\tp%) is unchanged;

(iii) if #E > 1 then pk; # pk,, for any | # n;
then the matriz A, p x, defined via (4.1) is invertible where X, = {pki,...,pkyr};
Consequently, f can be determined uniquely by its SA Radon samples at X,,.

Proof. The requirement for the continuity of R,¢ in Theorem 4.1 is satisfied here.
If the corresponding matrix Ay, p x, defined via (4.1) is invertible, then it follows
from Theorem 4.1 that f can be determined uniquely by its SA Radon samples at

Xp = {pk1,...,pkyp}. We next prove that A, p x, is invertible. For any nonzero vector
(a1,...,axp)T € C*F we have
#E #E #E #E
Z Z a;an,Rpe(pk; — pk,) = Z Z a;an, /anp 1(pkj —Pkn )¢ ¢
j=1n=1 ] 1n=1
(5.2)

—ﬂ/@(fﬂzweip"fﬂ?dg (5.2A)
R J=1

where (5.2A) is derived from the quadratic form Z Zn 1ajelpkﬂfane_“’k"é =

|ZjiE1 ajetPkit|2. By Rpgo(g) = ’Rp@%(ﬁ) + 1Rpgpg\y(§), (5.2) can be further expressed
as
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Do) o Raglpks — phi) = o [ Ron(O) Y s e
j=1n=1 2 j=1

(5.3)

. #E
1 5 ipk;
tor [ Reval€)) Y aseimoe s
R J=1

Since ¢ € L?(R?) is compactly supported, it follows from Lemma 2.1 that R, is com-
pactly supported as well and belongs to L3(R). Then @ € C*(R). Item (i) or (ii)
1mphes that Rpcp # 0. Without loss of generality it is assumed that @m # 0 and
anp% > 0. By the continuity of ’Rpgo% there is 6 > 0 and ¢ € R such that

—

Rppp(§) >0 (5.4)

for any £ € [ — 6, 4 6]. We next prove that {eP¥&€}#E s linearly independent on
[ —0,( +6]. If #F = 1 then the linear independence is clear. If #E > 1 then it follows
from item (iii) that pk, # pk; for any n # j. By Lemma 3.2 we have that {eipkng}fffl is
linearly independent on [¢ — 4, + ¢]. Consequently, there exists & € [( — ,¢ + d] such
that for the above nonzero vector (as,...,axp)’ € C#*E we have fol upetPkndo o£ (),
By the continuity of the functions in {e*P%¢}#% e conclude that

C+6 up
1> anetPrrE2dg > 0. (5.5)
s n=1
Now it follows from (5.4) and (5.5) that
1 1 ¢+6
o p%ﬁ; |ZO‘ etPkn 6| ¢ > o / pP5 (& |Zakelpk §| dg
R =
. 5 up
> " ipk, & 2d
> et Foon(©} [ 135 anemsia
(=6 "7
> 0.
(5.6)
This combining with (5.3) leads to that
#E #E
ZZO‘JO‘” »¢(pk; — pky,) > 0. (5.7)
j=1n=1

Recall that
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#E #E
DY a@np(pk; — Pka) = (a1, a8) App x, (a1, ax) (5.8)
j=1n=1

and (o, ...,axp)T € C#F is an arbitrary nonzero vector. Now it follows from (5.7) and

(5.8) that A, p x, is invertible. By Theorem 4.1, f can be determined uniquely by its SA
Radon samples at {pki,...,pksg}. O

5.8. Preliminary on positive (semi-)definite function

The positive semi-definite function has been defined in Definition 1.1. The celebrated
result on positive semi-definite functions is their characterization in terms of Fourier
transform, which was established by Bochner [5]. It is as follows.

Lemma 5.2. A continuous function ¢ : RY — C is positive semi-definite if and only
if it is the Fourier transform of a finite nonnegative Borel measure i on R% such that

$(x) = Jga €= du(€).

Based on Lemma 5.2, Wendland [42, Theorem 6.11] established the following tool for
checking the positive definite property, which will be used in Theorems 5.4 and 5.6 for
SACT sampling.

Lemma 5.3. Suppose that ¢ € L'(R?) is continuous. Then ¢ is positive definite if and
only if ¢ is bounded and its Fourier tmnsform (b s monnegative and nonvanishing. Here
qf) being nonvanishing means that [, (;3 (6)de = (2m)2p(0) # 0.

The following remark concerns on the determination of functions by the positive
definite property.

Remark 5.1. If ¢ : R — C is positive definite and continuous, then the system {¢(- —
x;) 1Y, is linearly independent for any set X = {x1,Xa,...,xy} C R% Moreover, any
function f = Zgil ek (- — x3) can be determined uniquely by its samples at X.

Proof. If {¢(- — x)}Y_, is linearly dependent then there exists a nonzero vector
(a1,...,an) € C¥N such that Zszl ard(- — x;) = 0. Particularly, for any x; €
{x1,...,xn} we have Z,ivzl ar¢(x; — xi) = 0. Then the quadratic form

ajopd(x; — x3) = 0.

WE
] =

<

Il
-
™~

Il
—

This contradicts with the positive definite property

ajaRp(x; — xi) > 0. (5.9)

M=
M) =

<
Il
—_
o
Il
—_
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Therefore, {¢(- — xx)}2_, is linearly independent. Additionally,

»(0) (x1 —x2) -+ Bd(x1— xN) C1 f(x1)

d(x2 — x1) #(0) o o(xe — xn) &) f(x2)
. . . . | = . (5.10)

o(xn —x1) O(xn —x2) - »(0) cN f(xn)
Since ¢ is positive definite, it follows from (5.9) that the above matrix is invert-
ible. Then the coefficient vector (01,02,...,CN)T can be determined by the sam-
ples f(x1), f(x2),..., f(xn). Recall that {¢(- — x;)}_, is linearly independent. With

(c1,...,cen)T at hand, f can be determined uniquely. 0O

5.4. The fourth main result: pairs of (¢, p) such that {pka,...,pkag} is eligible for
SACT sampling, where @ is positive definite and nonvanishing

The following is the main result in this subsection. It applies to the case that ¢ is
positive definite and nonvanishing (©(0) # 0).

Theorem 5.4. Suppose that ¢ € C(R?) is compactly supported and positive definite such
that its Sobolev smoothness va(p) > 1/2, $(0) > 0 and supp(y) C [N1, Mi] X [Na, Ms].
Moreover, the arbitrary source function f € V(p,Z?) is compactly supported such that
supp(f) C [a1, b1] % [az, ba]. As previously, define E = {kq,... kup} = {[[ar—M], [br—
Ni]] x [[az — M2], [ba — N2J|} N Z2, and correspondingly

= 9, #E =1,
E+{{X_Y:X7AY€E}, #E > 1. (5.11)

Then f can be determined uniquely by its SA Radon (w.r.t. p) samples at {pky,...,
pkyp}, where p is an arbitrary direction vector from {(cos,sin@) : 6 € [0,27)}\ dun,,
with Ng+ defined in Definition 4.1.

Proof. Recall that it has been proved in the proof of Theorem 4.3 that {(cos#,sin6) :
0 €[0,2m)} \ dvy,, is not empty. Next we prove the following three items.

(1) If #E > 1 then for any | # n € {1,...,#FE} and any direction vector p €
{(cos@,sinf) : 6 € [0,2m)} \ dvn,, , we have pk; # pk,.

(2) For any direction vector p, the Radon transform Rpe is continuous.

(3) Suppose that p is any fixed direction vector. Then we have ﬁp\cp # 0 and 7€p\<p > 0.
Clearly, if the above three items are satisfied then the requirements in Theorem 5.1 are
satisfied for any direction vector p € {(cosf,sinf) : 0 € [0,27)} \ dv,, . Consequently,
it follows from Theorem 5.1 that f can be determined uniquely by its SA Radon (w.r.t.

p) samples at {pki,...,pksg}.
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We first prove (1). One can check that, for any [ #n € {1,2,...,#FE} it holds that
pk; # pk, if and only if p ¢ Ng+. Then for any p € {(cosf,sinf) : 0 € [0,27)} \ dvar, ,
item (1) holds.

Next we prove item (2). Recall that v5(¢) > 1/2. Then it follows from Proposition 2.3
(2) that Rpep is continuous.

Finally, we need to prove item (3). Since ¢ € C(R?) is positive definite, by Lemma 5.3
we have @ > 0. Now for any direction vector p = (cos®,sinf) we have that ﬁp\ga =
@(pT+) > 0. Additionally, ¢ € C(R?) is compactly supported then § € C°(R?). This
together with $(0) = [, ¢(x)dx > 0 leads to that exists a closed disc D(0,9) = {£ €
R? : ||€]l2 < &} such that for any & € D(0,5) we have $(£) > 0. For any v € R such
that |v| < & we have yp? € U(0,6) and consequently @(’y) = @(yp’) > 0. That is,
Rpp # 0.

Now by Theorem 5.1 the source function f can be determined uniquely by its SA
Radon samples at {pki, ..., pkyg}. The proof is completed. O

Remark 5.2. As addressed in item (3) of the proof of Theorem 5.4, the nonvanishing
property $(0) = [r. @(x)dx > 0 guarantees that @ % 0 for any direction vector p.
Such a property brings great flexibility of p for the SACT sampling. Next we introduce
a class of box-splines which are positive and nonvanishing.

m copies
The mth cardinal B-spline B,, is defined by By, := X(01] * --- * X(0,1] (cf. [39,41]),
where m € N, as in Remark 2.2 x(g,1] is the characteristic function of (0, 1] and * is the

convolution. Through the simple calculation (cf. [6]) we have supp(B,,) = (0, m], and

Bal) = e 2812

Remark 5.3. For s < m — 1/2, one can check that [p |§;(§)|2(1 + £%)*d¢ < oo. Then
the Sobolev smoothness v(B,,) = m — 1/2. By Proposition 2.3, B,, is continuous for
m > 2.

™. (5.12)

Proposition 5.5. Through the tensor product we define the boz-spline ¢ : R2 — R by
o(x1,22) = Hizl Boy,, (xr + ng), ng € N. Then ¢ is compactly supported, continuous
and positive definite such that $(0) = [ p(x)dx > 0. Moreover, the Sobolev smoothness
va(p) > 1. Consequently, it satisfies the requirement in Theorem 5.4.

Proof. By Remark 5.3, both Bg,, and Bs,, are continuous. So are Bay, (- + n1) and
Bon, (- + n2). Then their tensor product ¢ is also continuous. Through the direct

sin &y, /2 2
/2
supp(Ban,) = (0,2n;] that supp(p) = (—n1,n1] X (—ng2,ng]. Clearly, > 0 and

calculation one can check that ©(&1,&) = Hi:l [ , and it follows from

P(0) = [p» p(x)dx = 1. As in (5.2A), for any nonzero (ay,...,ayn) € CV and any
set {x1,...,xy} C R? one can check that
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iia ape(x; — xp) = : /@(E)Iiakei’”‘ﬂ?df (5.13)
j=1k=1 27TR2 k=1
From this and ¢ > 0 we have that ¢ is positive semi-definite. By Lemma 3.2, the set of
continuous functions {e**€ : k = 1,..., N} are linearly independent. Since ¢ € C(R?)
is compactly supported then ¢ € C°°(R?). Now combining the continuities of ¢ and
{et*€ : k =1,..., N}, the above linear independence and $(0) > 0, through the similar
procedures in (5.5) and (5.6) one can prove the integral in (5.13) is positive. Consequently,
 is positive definite.
In what follows, we prove that vo(p) > 1. First, we have

/ 1861, &) P(1+ € + ) derdey < / 1861, £2)P(1+ € + €3)derde

[€1]<1,62€R
[ Ra@Parg@ade
[€2]<1,61€R
b [ BP0+ Bdads,
[€1]>1,82>1
=L+ 1+ Is.
(5.14)
We first estimate I; as follows,
no= [ BaePar e+ guds
[€11<1,62€R
= / 1561, &2)1P(1 + & + £3)d&rdés
[FESRIAEVE (5.15)
v [ REerarg+duad
l€11<1,]62]>v2
= I + 1.
Recall that € C*°(R?). By the continuity of @ we have I1; < co. Moreover,
no= [ E@eP0+E+ Qe
l€11<1,]62]>v2
sin & /2712m / singy/274n2 o _ (5.16)
<2 5.16A
= / { /2 } & [ /2 } §2d8 (5-164)
[€1]<1 [&2]>1

< 00,
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where (5.16A) is from 1+ &7 < €3. Consequently, Iy = I11 + 12 < oo. Similarly, one can
prove that Is < oo. Additionally,

L <2 / 1861, €2)[2(E2 + €2)derde

[€1]>1,62>1 ) .
2(n1+n
<2 x 22(m z)[ / RT=rT dé1déo + / O dgld@}
&[> 16051 2 1 ]>1,62>1 !
< 0.

(5.17)

Now by (5.14), we have [g, [@(&1,&2)|?(14+EF+£3)dE1dés < oo, and consequently, vo(p) >
1. This completes the proof. 0O

Example 5.1. As mentioned previously, the SISs generated from box splines are used in
[8] to model the continuous-domain representations of biomedical images. Motivated by
this, we check the single-angle Radon samples-based recovery result in Theorem 5.4 for
the function in a SIS generated from a positive definite box spline. Let ¢p(x1,x2) =
By(x1 — 1)Ba(wa — 1) where By = X(0,1] * X(0,1] is the cardinal B-spline of order 2.
By Proposition 5.5, ¢p is positive definite. By (5.12) we have E\g(f) = e_if(%)z.
From this, (ZE;(O) = 1. That is, ¢p is nonvanishing. For any fixed direction vector p =
[cos §,sin §], its Radon transform R,¢p can be calculated directly from (2.4). Without
loss of generality, we choose p = [cos ), sin §] such that 0 < § < 7/2 and tan 6 > 2. From
(2.4) we calculate that

(tan0— 25 [(Ep—tan 0—5)>+4]+1
6 cos 6 tan? 0 ’

x € (sinf,sin + cos )

S(Lftan9)2+(iftan 6‘)3+3 tan chgﬁJrl

cos 6 cos 60
6 cos 0 tan? 6 ’

x € (sinf — cos 0, sin 0]

tan 0— 2y .
vy yeee ol x € [cosf,sinf — cosb]

7?/p(/ﬁB (:C) = ey (%783509522;6?%7 covg 727 rc [0, cos 9)
Rpop(—2), x € (—cos6,0]
RpdB(—2), x € [—sin 6 + cos 6, — cos 0]
RpdB(—2), x € [—sin@, —sin @ + cos f)
Rpop(—2), z € (—sinf — cos 0, —sin )
0, else.

(5.18)

Without bias, we choose a source function
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o.2 -
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Fig. 5.1. Left: the plot of ¢. Right: the plot of Rp¢p(x) with p = [cos(1.2208), sin(1.2208)].

f= > capp(-— k) € V(dp), (5.19)

k=(i,j)€{0,1,2,3,4}>

where the coefficient matrix

0.5377 —1.3077 —1.3499 —0.2050 0.6715

1.8339  —0.4336 3.0349 —0.1241 —1.2075
O:(c(i,j))jj:o: —2.2588 0.3426  0.7254 14897  0.7172 |. (5.20)

0.8622  3.5784 —0.0631 1.4090  1.6302

0.3188  2.7694  0.7147  1.4172  0.4889

By (5.1) we have

25
Rpf = ciRpods(- — pki) (5.21)
=1

where {kj, ..., kos} = {0,1,2,3,4}2 is arranged in the lexicographical order. By Theo-
rem 5.4, f can be determined exactly by its single-angle Radon samples {R,f(pk;) : | =
1,...,25} if and only if

pk; # pk,, for any [ # n. (5.22)

Without bias, we choose 6 = 1.2208 such that (5.22) holds. The function f (or
the sequence {ck, }7°,) can be determined by the equation system (4.5) with X =
{pki, ..., pkos}. We found that the recovery error is

”{Ckl - Ekl }l231 ”2

error =
{2 1l2

= 3.1206¢ — 13 (5.23)
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Fig. 5.2. Top left: the plot of f; Top right: the plot of R, f; Bottom left: the plot of recovery version f of f;
Bottom right: the plot of f — f.

where {Cy, }72, is the recovery version of {ck }?,. The graphs of ¢p and Rp¢p are
plotted in Fig. 5.1, and the graphs f, Rpf, the recovery version f and f — f are plotted
in Fig. 5.2. From Fig. 5.2, f can be recovered by its single-angle Radon samples.

5.5. The fifth main result: pairs of (p,p) such that {pka,...,pkug} is eligible for
SACT sampling, where @ is positive definite and vanishing

It follows from Lemma 5.3 that for a continuous positive definite function ¢, its Fourier
transform @ is necessarily nonvanishing, namely, ©(0) # 0. But ¢ itself is not necessarily
nonvanishing, namely, $(0) # 0 does not necessarily hold. That is, there exist positive
definite and vanishing functions. We next provide an example to explain this. It is the
motivation for this subsection.

5.5.1. A motivation example
Example 5.2. Let
I1+1, 71<$1S0,

¢1(1‘1)=BQ(Z‘1+1): 1—z, 0<a <1, (524)
O, |1‘1| 2 1.
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By (5.12) we have g/b;(fl) = (%)2 Define ¢; via

ef1/2 _ emi&1/2 sin(&1/4)

o )61(€1/2) = sin®(€1/2)( & /4 )2 > 0.

P1(61) =

Additionally, in the time-domain ¢1(z1) = —3¢1(221 + 1) + ¢1(221) — 361 (221 — 1).
It is straightforward to check that ¢; is continuous and bounded, and ¢;(0) = 1. By
Lemma 5.3, ¢ is positive definite. But it is clear that ©1(0) = 0. Now through the tensor
product we define

p(z1,22) = 1(z1)p2(22). (5.25)

Using Lemma 5.3 again, one can check that ¢ is also positive definite. But ¢(0) = 0.
That is, ¢ is vanishing.

As summarized in Remark 5.2 the nonvanishing property is key in Theorem 5.4 for
providing great flexibility for the choice of direction vector p. On the other hand, Ex-
ample 5.2 confirms the existence of positive definite but vanishing functions, and such
functions do not reach the requirement of Theorem 5.4. As such, for the vanishing case
we need to address what direction vector p is eligible for the SACT sampling.

5.5.2. The SACT sampling result when @ is positive definite and vanishing

Now it is ready to establish the fifth main result in the following Theorem 5.6. On the
generator, the difference between the Theorem 5.6 and Theorem 5.4 is that the generator
 here is vanishing here, namely, $(0) = 0 while that in Theorem 5.4 is nonvanishing.
The following definition will be necessary for Theorem 5.6.

Definition 5.1. Let ¢ : R? — C be positive definite and compactly supported. For xy € R?
such that @(xg) > 0, as in Definition 4.2, 5XO max € (0, 00] is supposed to be the maximum
value such that @(x) > 0 for any x € D(xy, 6%, max). Denote the nonzero set of 3 by Gs
such that $(x) > 0 for any x € Gg. As in Definition 4.3, define

DVy = | J dvp . se ) (5.26)

0% max)
x€G;

where dvﬁ(x 5% rmax) is defined via Definition 4.2.

Theorem 5.6. Suppose that ¢ : R? — C s compactly supported, continuous, positive
and vanishing such that supp(yp) C [N1, M1] X [Na, Ms], its Sobolev smoothness va(p) >
1/2 and $(0) = 0. Moreover, f € V(p,Z?) is an arbitrary source function such that
supp(f) C [a1, b1] % [az, be]. As previously, define E = {ki,... . kup} = {[[a1—M], b1 —
Nlj] X Hag — Ms], |be — NQH} NZ2, and
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0, #E =1,

Et =
{x—y:x#y€E}, #E>1.

(5.27)

Then f can be determined uniquely by its SA Radon (w.r.t. p) samples at {pky,...,
pkyr}, where p is an arbitrary direction vector from DV \ dun,, , with duy,, defined
in Definition 4.1.

Proof. It has been proved in the proof of Theorem 4.5 that DV \ dvar,, is not empty.
Since the only difference between the generator ¢ here and that in Theorem 5.4 is the
vanishing property $(0) = 0, we simplify the proof and focus on something related to the
difference. Firstly, since v2(p) > 1/2 then it follows from Proposition 2.3 (2) that Ry is
continuous for any p. Secondly, for the case that #F > 1 as in the proof of Theorem 5.4
one can check that for any direction vector p € {(cos6,sin®) : 6 € [0,27)} \ dvnr_, , we
have pk; # pk,, for any l #n € {1,...,#FE}. Then item (iii) of Theorem 5.1 holds. Now
we focus on the proof that @ >0 and 7€p\<p # 0 for any p € DVs. By ¢ > 0 we have
@(5) = p(pT¢) > 0 for any p € DV. Since p € DV, it follows from Proposition 4.2
(2) that Rpp # 0. Then item (i) of Theorem 5.1 holds. Now by Theorem 5.1, the proof
is completed. O
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