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While traditionally the computerized tomography of a func-
tion f ∈ L2(R2) depends on the samples of its Radon trans-
form at multiple angles, the real-time imaging sometimes re-
quires the reconstruction of f by the samples of its Radon 
transform Rpf at a single angle θ, where p = (cos θ, sin θ) is 
the direction vector. This naturally leads to the question of 
identifying those functions that can be determined by their 
Radon samples at a single angle θ. The shift-invariant space 
V (ϕ, Z2) generated by ϕ is a type of function space that 
has been widely considered in many fields including wavelet 
analysis and signal processing. In this paper we examine the 
single-angle reconstruction problem for compactly supported 
functions f ∈ V (ϕ, Z2). The central issue for the problem is 
to identify the eligible p and sampling set Xp ⊆ R such that f
can be determined by its single-angle Radon (w.r.t. p) samples 
at Xp. For the general generator ϕ, we address the eligible p
for the two cases: (1) ϕ being nonvanishing (

∫
R2 ϕ(x)dx �= 0) 

and (2) being vanishing (
∫
R2 ϕ(x)dx = 0). We prove that eligi-
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ble Xp exists for general ϕ. In particular, Xp can be explicitly 
constructed if ϕ ∈ C1(R2). Positive definite functions form 
an important class of functions that have been widely applied 
in scattered data interpolation. For the case that ϕ is pos-
itive definite, the corresponding single-angle problem in SIS 
V (ϕ, Z2) is addressed such that Xp can be constructed easily. 
Besides using the samples of the single-angle Radon trans-
form, another common feature for our recovery results is that 
the number of the required samples is minimum.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

1.1. CT and Radon transform

We start with the X-ray computerized tomography (CT) on R2.
Its core mathematics includes the Radon transform and its inversion. For a function 

f : R2 −→ C its Radon transform at t ∈ R, w.r.t. a direction vector p = (cos θ, sin θ), is 
defined as the integral of f along the line (x, y) = tp + s(− sin θ, cos θ) on R2:

Rpf(t) :=
∞∫

−∞

f(t cos θ − s sin θ, t sin θ + s cos θ)ds. (1.1)

If f ∈ L1(R2) then we can prove that Rpf ∈ L1(R):

∞∫
−∞

|Rpf(t)|dt =
∞∫

−∞

∣∣∣ ∞∫
−∞

f((t, s)A)ds
∣∣∣dt

≤
∞∫

−∞

∞∫
−∞

|f((t, s)A)|dsdt

= ‖f‖L1(R2)

(1.2)

where A =
(

cos θ sin θ

− sin θ cos θ

)
. If f ∈ L2(R2) is compactly supported, then by the 

Cauchy-Schwarz inequality one can check that

Rpf ∈ L2(R). (1.3)

The Fourier transforms of Rpf and f are correlated via

R̂pf(ξ) = f̂(pT ξ), ξ ∈ R, (1.4)
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where ĝ(γ) :=
∫
Rd g(x)e−ix·γdx is the Fourier transform of any function g ∈ Lp(Rd). It 

follows from (1.4) that R̂pf is essentially obtained by taking the cross-section of f̂ on 
the subspace (slice) {pT ξ : ξ ∈ R}.

The central problem of CT is to use the Radon transform to reconstruct the source 
function f . The most classical reconstruction approach is the filtered backprojection 
(FBP) (cf. [31,32]). It states that if f is bandlimited then it can be reconstructed via 
(cf. S. Helgason [19]):

f(x, y) = 1
4π2

2π∫
0

∞∫
0

R̂pf(ξ)eiξ(x cos θ+y sin θ)ξdξdθ, (1.5)

where p = (cos θ, sin θ).

1.2. Traditional reconstruction approaches conducted by Radon transform at multiple 
angles and our single angle-based problem

Theoretically, the reconstruction of f via (1.5) requires the cross-sections R̂pf(ξ) =
f̂(pT ξ) for all angles θ ∈ [0, 2π). In practice, however, what one can observe are the 
samples of a limited number of cross-sections. Therefore, the essential problem of CT is 
to reconstruct f by the samples of finitely many cross-sections. Based on (1.5), many 
reconstruction algorithms have been designed (cf. [9,10,24]). Some recent alternatives to 
FBP have been introduced (e.g. [29,43]). Unlike FBP, they are conducted by the sam-
ples of Radon transforms. For example, based on the Chebyshev orthogonal polynomial 
system, Xu [43] established the approach to CT. McCann and Unser [29] established a 
spline-based reconstruction.

Note that the samples required for the above approaches are derived from Radon 
transforms at multiple angles, and naturally we confront the following problem:

Q : Can a function be exactly reconstructed by its Randon (transform) samples
at a single angle (SA)?

(1.6)

Such a single-angle problem is essentially the injectivity problem of Radon transform 
(cf. S. Helgason [19]). Due to (1.5), we do not anticipate the injectivity can be achieved 
for any function in L2(R2). Instead it follows from [19] that it can be achieved in some 
subspaces of L2(R2). While there are some results on such an injectivity problem (e.g. 
[7,12,19,21,23]), the related sampling problem in (1.6) remains less explored. In what 
follows we briefly explain why such a sampling problem is significant from the real-time 
imaging perspective.
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1.3. SACT is required for real-time imaging

Optical imaging has been widely used in observing biological objects, such as blood 
cells (thin objects) and bones (thick objects). The thin objects are commonly imaged 
directly by refractive-index distributions, which is achieved by holographic tomography 
(HT) ([26]). However, for imaging thick objects, CT is usually employed.

CT commonly requires samples (measurements) of the light fields penetrating through 
the object from different angles (views). To do so, the object needs to be rotated by a 
rotation motor ([44]) or the illumination needs to be scanned by a beam steering device, 
which not only causes instability for the imaging system, but makes the system bulky 
([3,22]). More importantly, limited by the time of recording fields, rotating objects or 
scanning illuminations become not suitable for real-time imaging, especially for observ-
ing fast dynamic events ([22]). Therefore this naturally leads to the following imaging 
problem:

Under what condition can CT be achieved by the samples of Radon transform at SA?
(1.7)

Most recently, R. Horisaki, K. Fujii, and J. Tanida [22] established a SA method for HT 
by inserting a diffuser. Note that the samples used in [22] are required to contain the 
diffraction information while the Radon samples for CT commonly do not contain (cf.
[30, section 1]). Here the diffraction of light waves at an aperture is computed by the 
Fresnel integral

U(x, y) = 1
iλz

∫
R2

U(x0, y0)ei κ
2z [(x−x0)2+(y−y0)2]dx0dy0,

where U(x0, y0) is the transmission field, U(x, y) is the field on the view plane, z is the 
distance between the aperture and the view plane, and λ and κ are the wavelength and 
wave number, respectively. Therefore, the SA method in [22] is not applicable for CT. 
To the best of our knowledge, the theoretical study of sampling problem (1.7) (or (1.6)) 
has not been fully explored yet in optics.

1.4. The SACT problem in shift-invariant space (SIS)

The shift-invariant space (SIS) is a type of function space that is widely applied in 
approximation theory, wavelet analysis and signal processing (e.g. [1,2,4,6,11,18,37,38,
40]). Throughout this paper, the SIS is denoted by

V (ϕ,Z2) =
{ ∑

k∈Z2

ckϕ(· − k) :
∑

k∈Z2

|ck|2 < ∞
}

, (1.8)

where ϕ ∈ L2(R2) is referred to as the generator.
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Note 1.1. SIS-based multiple-angle CT models. There are many multiple-angle CT ap-
proaches (e.g. [8,33–35]) modeling the continuous-domain representations of biomedical 
images as the functions in SISs. The generators for these SISs are compactly supported 
functions including box splines ([8]), Kaiser-Bessel window functions ([34]) and refinable 
functions ([33,35]).

Our purpose in this paper is to examine the SACT problem (1.6) in the SIS setting:

Q : How can a compactly supported function f ∈ V (ϕ,Z2) be exactly reconstructed
by its Randon (transform) samples at a single angle (SA)?

(1.9)

1.5. Assumption on the support of source function, and definition of positive definite 
function

Before introducing our main contributions, some denotations are necessary. Through-
out this paper, suppose that the generator ϕ ∈ L2(R2) is compactly supported such 
that

supp(ϕ) ⊆ [N1, M1] × [N2, M2], (1.10)

and the shift system {ϕ(· − k) : k ∈ Z2} is linearly independent in L2(R2). Moreover, 
the arbitrary source function f ∈ V (ϕ, Z2) is compactly supported such that

supp(f) ⊆ [a1, b1] × [a2, b2]. (1.11)

By (1.10) and (1.11), there exists a finite sequence {ckl
, l = 1, . . . , #E} ⊆ C such that f

can be expressed as

f =
#E∑
l=1

ckl
ϕ(· − kl), (1.12)

where E := {k1, . . . , k#E} =
{[

�a1 − M1	, 
b1 − N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2, 

#E is the cardinality of E, and �x	 (
x�) is the smallest (largest) integer that is not 
smaller (larger) than x ∈ R, respectively. In what follows we explain that the assumption 
in (1.11) is reasonable.

Remark 1.1. Throughout this paper, as in (1.11) we assume that the function to be 
reconstructed is compactly supported and its support is contained in a known rectangle. 
Such an assumption is reasonable for CT (e.g. [43]) since from the optical perspective, 
the function to be reconstructed in CT is the difference between the refractive index 
distribution of the object and that of the surrounding medium (cf. [30]), and consequently 
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it is generally compactly supported. Moreover, the support of the function is known when 
the boundary of the object is clear.

In what follows we recall the definition of positive definite functions which have been 
extensively applied to scattered data interpolation, approximation theory and harmonic 
analysis (e.g. [14,20,25,42]).

Definition 1.1. We say that a function φ : Rd −→ C is positive semi-definite if for all 
N ∈ N, all sets X = {x1, x2, . . . , xN } ⊆ Rd, and all vectors 0 
= (α1, . . . , αN )T ∈ CN , 
the quadratic form∑N

j=1
∑N

k=1 αjαkφ(xj − xk)

= (ᾱ1, ᾱ2, . . . , ᾱN )

⎛⎜⎜⎜⎜⎝
φ(0) φ(x1 − x2) · · · φ(x1 − xN )

φ(x2 − x1) φ(0) · · · φ(x2 − xN )
...

...
. . .

...
φ(xN − x1) φ(xN − x2) · · · φ(0)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

α1
α2
...

αN

⎞⎟⎟⎟⎟⎠
≥ 0.

(1.13)

Furthermore, the function φ is positive definite if the above quadratic form is positive 
for all 0 
= (α1, . . . , αN )T . We will recall more properties of positive definite functions in 
subsection 5.3.

1.6. Main contributions and their common features

Our central task is summarized as follows.

We prove the existences of the vectors p and the corresponding sampling set 
Xp such that the compactly supported source function f ∈ V (ϕ, Z2) can be 
determined by the samples of Rpf at Xp. Moreover, the designing problem of p
and Xp is also addressed. These problems are investigated from the perspective: 
(1) The nonvanishing case: ϕ̂(0) =

∫
R2 ϕ(x)dx 
= 0; (2) The vanishing case: ϕ̂(0) =∫

R2 ϕ(x)dx = 0. In particular, we address the case that ϕ is positive definite such 
that p and Xp can be constructed easily.

There are five main results in this paper. They will be established in subsections 4.3, 
4.4, 5.2, 5.4 and 5.5. From the perspective of the properties satisfied by the generator ϕ, 
these main results are organized briefly as follows.

• The nonvanishing case (ϕ̂(0) =
∫
R2 ϕ(x)dx 
= 0). The set Λ of eligible direction 

vectors is constructed for the SACT of any f ∈ V (ϕ, Z2) satisfying (1.11). It is proved 
that for any p ∈ Λ, there exists a sampling set Xp ⊆ R (having the cardinality #E) 
such that f can be determined uniquely by its SA Radon samples at Xp, where the set 
E is correlated with f via (1.12). Additionally, if ϕ ∈ C1(R2) then Xp is constructed 
explicitly.



Y. Li et al. / Journal of Functional Analysis 285 (2023) 110151 7
• The vanishing case (ϕ̂(0) =
∫
R2 ϕ(x)dx = 0). As in the nonvanishing case, the 

set Ω of eligible direction vectors is constructed for the SACT of any f ∈ V (ϕ, Z2)
satisfying (1.11). The set Ω is different from the above Λ in the nonvanishing case. For 
any p ∈ Ω, the existence of the eligible sampling set Xp ⊆ R (also having the cardinality 
#E) is proved such that f can be determined uniquely by its SA Radon samples at Xp. 
Additionally, for the case that ϕ ∈ C1(R2) the sampling set Xp is constructed explicitly.

• The positive definite generator case. Suppose that ϕ is positive definite. Eligible di-
rection vector sets are constructed for the nonvanishing and vanishing cases, respectively. 
For any eligible direction vector p, the source function f ∈ V (ϕ, Z2) satisfying (1.11) can 
be determined uniquely by its SA samples at {pk1, . . . , pk#E}, where {k1, . . . , k#E} = E

is correlated with f via (1.12).

Remark 1.2. There are two common features of the above three main contributions. (1) 
The samples for CT are derived from the SA Radon transform but not from multiple-
angle Radon transforms. (2) Note that #E Radon samples are used to determined f . 
Recall again that {ϕ(· − k) : k ∈ Z2} is linearly independent, and by (1.12), f =∑#E

l=1 ckl
ϕ(· − kl). Then f is determined uniquely by the #E coefficients: ck1 , . . . , ck#E

. 
Therefore we only use the minimum number of samples in our SA-based reconstruction.

1.7. Outline of the paper

In Theorem 3.1 a sufficient and necessary condition is established on the pair (ϕ, p)
such that, an arbitrary compactly supported source function f ∈ V (ϕ, Z2) satisfying 
(1.11) can be determined uniquely by its SA Radon transform Rpf . With the help of 
Paley-Wiener theorem, it will be explained in subsection 3.2 that such a determina-
tion problem is absolutely nontrivial. Based on Theorem 3.1 we will address the SACT 
sampling problem (1.9) in section 4 and section 5.

Section 4 concerns on the problem (1.9) for compactly supported functions in V (ϕ, Z2)
where ϕ is a general generator. Theorem 4.1 establishes a sufficient and necessary condi-
tion on (ϕ, p, Xp) such that the SACT sampling (1.9) can be achieved by the SA Radon 
samples at Xp. For the general generator ϕ case, a natural problem is the existence of p
and Xp. The answer to this problem will be addressed in Theorem 4.3 for the nonvan-
ishing (ϕ̂(0) 
= 0) case and in Theorem 4.5 for the vanishing (ϕ̂(0) = 0) case, where a set 
of eligible direction vectors Λ (respectively, Ω) is provided in Theorem 4.3 (respectively, 
Theorem 4.5) such that for any p ∈ Λ (or p ∈ Ω) there exists a sampling set Xp, and 
consequently f can be determined uniquely by its SA Radon samples at Xp. In partic-
ular, an explicit construction of a sampling set Xp was presented in Theorem 4.4 and 
Proposition 4.6 for the case when ϕ ∈ C1(R2).

The purpose of Section 5 is to address the condition on (ϕ, p) such that the compactly 
supported f ∈ V (ϕ, Z2) satisfying (1.11) can be determined uniquely by its SA Radon 
samples at {pk1, . . . , pk#E}, where {k1, . . . , k#E} = E. Such a condition is established 
in Theorem 5.1. Based on Theorem 5.1, we address the case that ϕ is positive definite 
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in Theorems 5.4 and 5.6. In particular, Theorem 5.4 applies to the nonvanishing case 
while Theorem 5.6 applies to the vanishing case. A numerical example is provided in 
Example 5.1 to check the recovery result.

2. Preliminary

2.1. On the support of Rpf

For a function f ∈ L1(R2) and a direction vector p = (cos θ, sin θ), motivated by 
[16,18] we next address the relationship between Rpf and f in the spatial domain. 
Denote the singular value decomposition (SVD) of p by p = ΣV T , where V is a 2 × 2
real-valued unitary matrix and Σ = (1, 0). Now it follows from [16,18] that

Rpf = Σ(V T f), (2.1)

where V T f(x) = f((V T )−1x) with x = (x1, x2)T ∈ R2, and for any g on R2 the function 
Σg on R is defined by

Σg(x1) =
∫
R

g(x1, x2)dx2. (2.2)

The following remark is derived from [16, section 1].

Remark 2.1. If f ∈ L2(R2) is compactly supported then its Radon transform Rpf can 
be expressed as Σ(V T f) in (2.1).

It has been stated in (1.3) that if f ∈ L2(R2) is compactly supported then Rpf ∈
L2(R). We include its proof together with support information in the following lemma.

Lemma 2.1. Suppose that f ∈ L2(R2) with supp(f) ⊆ [a1, b1] × [a2, b2]. Then

supp(Rpf) ⊆ [−
√

2 max{|bi|, |ai| : i = 1, 2},
√

2 max{|bi|, |ai| : i = 1, 2}], (2.3)

and Rpf ∈ L2(R).

Proof. Let V be the real unitary matrix from the SVD of p such that p = ΣV T with 
Σ = (1, 0). Denote V T f by g. Then for any x1 ∈ R, we have
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Rpf(x1) = Σg(x1)

=
∫
R

g(x1, x2)dx2

=
∫
R

[V T f ](x1, x2)dx2

=
∫
R

f(V (x1, x2)T )dx2, (2.4A)

(2.4)

where the first and second equalities are derived from Remark 2.1 and (2.2), respectively. 
It follows from supp(f) ⊆ [a1, b1] × [a2, b2] that for any x ∈ supp(f), we have

‖x‖2 ≤
√

2 max{|bi|, |ai| : i = 1, 2}. (2.5)

It follows from (2.4) and the fact that V is a unitary matrix, we have |x1| ≤√
2 max{|bi|, |ai| : i = 1, 2}. Then (2.3) holds.
Define G(x1, x2) := f(V (x1, x2)T ). By (2.5) and V being a real unitary matrix, we 

have

|x2| ≤
√

2 max{|bi|, |ai| : i = 1, 2} (2.6)

for any (x1, x2)T ∈ supp(G). Moreover,

‖Rpf‖2
L2(R) = ‖Σ(V T f)‖2

L2(R)

=
∫
R

∣∣ ∫
R

[V T f ](x1, x2)dx2
∣∣2dx1

≤
√

2 max{|bi|, |ai| : i = 1, 2}
∫
R

∫
R

|[V T f ](x1, x2)|2dx2dx1

=
√

2 max{|bi|, |ai| : i = 1, 2}‖f‖2
L2(R2)

< ∞,

(2.7)

where the first inequality is derived from (2.6) and the Cauchy-Schwarz inequality. This 
completes the proof. �
2.2. (Quasi) shift-invariant space

For a generator ϕ ∈ L2(R2), as in (1.8) its associated shift-invariant space (SIS) 
V (ϕ, Z2) is defined to be

V (ϕ,Z2) :=
{ ∑

k∈Z2

ckϕ(· − k) : {ck}k∈Z2 ∈ �2(Z2)
}

, (2.8)

where �2(Z2) is the space of square summable sequences such that any {ck}k∈Z2 ∈ �2(Z2)
satisfies ‖{ck}k∈Z2‖�2(Z2) = (

∑
k∈Z2 |ck|2)1/2 < ∞. As mentioned in section 1, throughout 
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the paper the system {ϕ(· −k) : k ∈ Z2} is required to be linearly independent in L2(R2). 
A sufficient condition for the linear independence is that {ϕ(· − k) : k ∈ Z2} satisfies the 
so called Riesz basis condition, namely, there exist constants 0 < C1 ≤ C2 < ∞ such 
that for any {ck}k∈Z2 ∈ �2(Z2) there holds

C1‖{ck}k∈Z2‖2
�2(Z2) ≤

∥∥ ∑
k∈Z2

ckϕ(· − k)
∥∥2

L2(R2) ≤ C2‖{ck}k∈Z2‖2
�2(Z2). (2.9)

For a generator ϕ ∈ L2(R2) and the shift set X = {xk}k∈Z2 ⊆ R2, its associated quasi 
shift-invariant space (QSIS) is defined as

V (ϕ, X ) :=
{ ∑

k∈Z2

ckϕ(· − xk) : {ck}k∈Z2 ∈ �2(Z2)
}

. (2.10)

If X = Z2 then V (ϕ, X ) degenerates to a SIS. As implied in [14], the recovery for the 
functions in V (ϕ, X ) (X 
= Z2) is much more complicated than that for the SIS. For 
such a recovery, by [14, section 3.1(A1)] it is required that ϕ is positive definite.

2.3. Sobolev smoothness of a function

For any ς ∈ R, the Sobolev space Hς(Rd) (cf. [15,27,28]) is defined as

Hς(Rd) :=
{

f :
∫
Rd

|f̂(ξ)|2(1 + ‖ξ‖2
2)ςdξ < ∞

}
. (2.11)

Clearly, if ς ≥ 0 then Hς(Rd) ⊆ L2(Rd). The deduced norm is defined by

‖f‖Hς(Rd) := 1
(2π)d/2

( ∫
Rd

|f̂(ξ)|2(1 + ‖ξ‖2
2)ςdξ

)1/2
, ∀f ∈ Hς(Rd).

The Sobolev smoothness of f is defined as ν2(f) := sup{ς : f ∈ Hς(Rd)}. The following 
lemma is derived from [17, Lemma 2.4]. It states that for a compactly supported f ∈
L2(R2), the Sobolev smoothness of Rpf is not smaller than ν2(f).

Lemma 2.2. Suppose that f ∈ Hς(R2), ς ≥ 0 is compactly supported. Then ν2(Rpf) ≥
ν2(f) for any direction vector p.

With the help of Lemma 2.2 we next address the continuity of the Radon transform.

Proposition 2.3. Suppose that f ∈ Hς(Rd) such that ς > d/2. Then we have
(1) f is continuous.

Suppose that g ∈ Hs(R2) with s > 1/2 is compactly supported. Then we have
(2) the Radon transform Rpg is continuous for any direction vector p.
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Proof. The first part of the proposition is the standard result on Sobolev space (cf. [27, 
section 1.1], [37, Chapter 9.1]). For any compactly supported g ∈ Hs(R2) with s > 1/2, 
by Lemma 2.2 the Sobolev smoothness ν2(Rpg) ≥ ν2(g) > 1/2. By the first part of the 
present proposition, Rpg is continuous. The proof is concluded. �
Remark 2.2. For f ∈ Hς(Rd) with ς > d/2, by Proposition 2.3 (1) we have f ∈ C(Rd). 
But it does not necessarily imply that f ∈ C1(Rd). For example, define f(x1, x2) =
[χ(0,1] � χ(0,1]](x1)[χ(0,1] � χ(0,1]](x2), where � is the convolution and χ(0,1] is the charac-
teristic function on the interval (0, 1]. By direct calculation we have

[χ(0,1] � χ(0,1]](xj) =

⎧⎪⎨⎪⎩
xj , 0 < xj ≤ 1,

2 − xj , 1 < xj ≤ 2,

0, else.

(2.12)

On the other hand, one can check that

χ̂(0,1](ξj) = e−iξj/2 sin ξj/2
ξj/2 . (2.13)

Therefore,

f̂(ξ1, ξ2) = e−iξ1 [ sin ξ1/2
ξ1/2 ]2e−iξ2 [ sin ξ2/2

ξ2/2 ]2.

From this, one can check that f ∈ Hς(R2) for any ς < 3/2. But it is clear from (2.12)
that f /∈ C1(R2).

Remark 2.3. The purpose here is to state that there exist functions which are discon-
tinuous but their Radon transforms are continuous. For example, define f(x1, x2) =
χ(0,1](x1)χ(0,1](x2). It is clear that f is discontinuous. It follows from (2.13) that 
f̂(ξ1, ξ2) = e−iξ1/2 sin ξ1/2

ξ1/2 e−iξ2/2 sin ξ2/2
ξ2/2 . Now for any p = (cos θ, sin θ) such that 

cos θ sin θ 
= 0, we have

R̂pf(ξ) = f̂(ξ cos θ, ξ sin θ) = e−i ξ cos θ
2

sin ξ cos θ
2

ξ cos θ
2

e−i ξ sin θ
2

sin ξ sin θ
2

ξ sin θ
2

.

For |ξ| > 1, |R̂pf(ξ)| ≤ | 2
cos θ || 2

sin θ |
ξ2 . From this and the continuity of R̂pf , one can prove 

that the Sobolev smoothness ν2(Rpf) > 1/2. By Proposition 2.3 (1), Rpf is continuous.

3. A necessary and sufficient condition for the SA Radon transform-based 
determination

The following establishes a necessary and sufficient condition on the pair (ϕ, p) such 
that any compactly supported function f ∈ V (ϕ, Z2) can be determined by its SA Radon 
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transform Rpf . Although such a determination depends on Rpf and does not use its 
samples directly, it will be helpful for answering the SACT sampling problem (1.9). As 
previously, the vectors in Rd are considered as column vectors, while the direction vector 
p is a row vector.

3.1. Determination result

The following is the main result of the present section.

Theorem 3.1. Suppose that ϕ ∈ L2(R2) such that supp(ϕ) ⊆ [N1, M1] × [N2, M2]. More-
over, {ϕ(· − k) : k ∈ Z2} is linearly independent in L2(R2). Then any f ∈ V (ϕ, Z2)
such that supp(f) ⊆ [a1, b1] × [a2, b2] can be determined uniquely by its SA Radon trans-
form Rpf if and only if {Rpϕ(· − pk) : k ∈ E} is linearly independent in L2(R), where 
E =

{[
�a1 − M1	, 
b1 − N1�

]
×

[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2.

Proof. We first prove that Rp(ϕ(· − k)) = Rpϕ(· − pk) for any k ∈ Z2. Actually, the 
Fourier transform of ϕ(· − k) at x ∈ R2 is e−ik·xϕ̂(x). Then by the Radon transform 
representation (1.4) in the Fourier domain, the Fourier transform of the Radon transform 
Rp(ϕ(· − k)) at ξ ∈ R is e−ik·pT ξϕ̂(pT ξ). Clearly,

e−ik·pT ξϕ̂(pT ξ) = e−ipkξR̂pϕ(ξ). (3.1)

Stated another way,

Rp(ϕ(· − k)) = Rpϕ(· − pk). (3.2)

Since ϕ ∈ L2(R2) is compactly supported, then it follows from Lemma 2.1 that Rp(ϕ) ∈
L2(R). Consequently, Rpϕ(· − pk) ∈ L2(R) for any k ∈ E.

For convenient narration, denote E by {k1, . . . , k#E}. It follows from {ϕ(· − k) :
k ∈ Z2} being linearly independent, supp(ϕ) ⊆ [N1, M1] × [N2, M2] and supp(f) ⊆
[a1, b1] × [a2, b2] that there exists uniquely a finite sequence {ck1 , . . . , ck#E

} ⊆ C such 
that

f =
#E∑
l=1

ckl
ϕ(· − kl). (3.3)

Now by (3.3) and (3.2), we have

Rpf =
#E∑
l=1

ckl
Rpϕ(· − pkl). (3.4)

(⇐=): Since {Rpϕ(· − pkl) : l = 1, . . . , #E} is linearly independent in L2(R), then 
{ckl

: l = 1, . . . , #E} can be determined uniquely by Rpf . Note that {ϕ(· − k)}k∈Z2
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is linearly independent. Then with the sequence {ckl
: l = 1, . . . , #E} at hand, f =∑#E

l=1 ckl
ϕ(· − kl) can be determined uniquely.

(=⇒): If {Rpϕ(· − pkl) : l = 1, . . . , #E} is linearly dependent, then there exists a 
nonzero sequence {ĉkl

: l = 1, . . . , #E} such that ‖ 
∑#E

l=1 ĉkl
Rpϕ(· − pkl)‖L2(R) = 0. 

Recall that {ϕ(· − k) : k ∈ Z2} is linearly independent. Then f̃ :=
∑#E

l=1 ĉkl
ϕ(· − kl) 
≡ 0

but Rpf̃ ≡ 0. Now f̃ is not distinguishable from g ≡ 0 ∈ V (ϕ, Z2) since their Radon 
transforms (w.r.t. the direction vector p) are both zero. This leads to a contradiction. �
Remark 3.1. (1) The sampling problem is not considered in Theorem 3.1. Therefore Rpϕ

is not required to be continuous therein. (2) If the set {pk : k ∈ E} is not contained in 
Z, then it follows from (3.4) that Rpf sits in the quasi-SIS (QSIS) generated by Rpϕ. 
As addressed in section 2.2, the recovery problem in QSIS is absolutely not the trivial 
generalization of that in SIS.

The following subsection states that the SA Radon-based determination problem in 
Theorem 3.1 is absolutely not trivial.

3.2. A nontrivial problem: what pair (ϕ, p) ensures the system {Rpϕ(· − pk) : k ∈ E}
being linearly independent

Note that in Theorem 3.1 the system {Rpϕ(· − pk) : k ∈ E} is required to be linearly 
independent in L2(R). Our purpose of this subsection is to explain that such a require-
ment is absolutely not trivial. The following lemma is necessary for our discussion. It is 
derived from [42, Lemma 6.7].

Lemma 3.2. Suppose that xk ∈ Rd, k = 1, . . . , N are pairwise distinct. Then the set 
{eixk·ξ}N

k=1 is linearly independent on any interval I ⊆ Rd, namely, for any vector 
(α1, . . . , αN ) ∈ CN if 

∑N
k=1 αkeixk·ξ ≡ 0 then (α1, . . . , αN ) = 0.

In what follows, we establish the equivalent characterizations for the linear indepen-
dence of {Rpϕ(· − pk) : k ∈ E}.

Proposition 3.3. Let the compactly supported ϕ and E = {k1, . . . , k#E} ⊆ Z2 be as in 
Theorem 3.1. Then the following statements are equivalent:

(1) The system {Rpϕ(· − pkj) : j = 1, . . . , #E} is linearly independent in L2(R).
(2) For any vector 0 
= (c1, . . . , c#E)T ∈ C#E it holds that

∫
R

|
#E∑
j=1

cje−ipkjξ|2|ϕ̂(pT ξ)|2dξ > 0. (3.5)

(3) ϕ̂(pT ·) 
≡ 0, and if #E > 1 then for any j 
= n ∈ {1, . . . , #E} we have pkj 
= pkn.
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Proof. By (3.1) we can check that the Fourier transform of 
∑#E

j=1 cjRpϕ(· − pkj) is ∑#E
j=1 cje−ipkjξϕ̂(pT ξ). From this we have (1) ⇐⇒ (2). If ϕ̂(p·) ≡ 0 then the integral 

in (3.5) is zero. On the other hand, if #E > 1 and pki1 = pki2 for some i1, i2 ∈
{1, 2, . . . , #E} then the integral is zero when choosing 0 
= ci1 = −ci2 and cj = 0
for j 
= i1, i2. Then (2) =⇒ (3). Next we prove that (3) =⇒ (2). Actually, since ϕ is 
compactly supported, it follows from Lemma 2.1 that Rpϕ is also compactly supported. 
Then 0 
≡ R̂pϕ = ϕ̂(pT ·) ∈ C∞(R), and consequently there exists an interval denoted by 
[ξ0 −δ0, ξ0 +δ0] such that for any ξ ∈ [ξ0 −δ0, ξ0 +δ0] we have |R̂pϕ(ξ)| > 0. Additionally, 
it follows from Lemma 3.2 that {e−ipkl : l = 1, . . . , #E} is linearly independent on 
[ξ0 − δ0, ξ0 + δ0]. Then

∫
R

|
#E∑
j=1

cje−ipkjξ|2|ϕ̂(pT ξ)|2dξ ≥
ξ0+δ0∫

ξ0−δ0

|
#E∑
j=1

cje−ipkjξ|2|ϕ̂(pT ξ)|2dξ > 0. (3.6)

Consequently, (3.5) holds. This completes the proof. �
The following is a counterexample such that the condition in Proposition 3.3 is not 

satisfied. Therefore, the problem of the linear independence of {Rpϕ(· − pk) : k ∈ E} is 
not trivial.

Example 3.1. The generator ϕ is defined such that

ϕ̂(ξ1, ξ2) = sin(ξ1 − ξ2)ĝ(ξ1, ξ2), (3.7)

where 0 
≡ g ∈ L2(R2) is compactly supported. One can check that ϕ(x1, x2) = 1
2i g(x1 +

1, x2 − 1) − 1
2i g(x1 − 1, x2 + 1) and is compactly supported as well. Clearly, ϕ̂(pT ·) ≡ 0

if choosing p = (
√

2
2 , 

√
2

2 ).

Analysis with the help of Paley-Wiener theorem. From the perspective of zero distri-
bution, ϕ̂ in Example 3.1 has zeros along the line ξ1 −ξ2 = 0 on R2 = {(ξ1, ξ2)T : ξ1, ξ2 ∈
R}. This implies that ϕ̂ has non-isolated zeros on R2. For better understanding this issue, 
in what follows we explain it from the perspective of zero distribution of entire functions. 
The classical Paley-Wiener theorem (cf. [36]) states that a function g ∈ L2(Rd) is the 
Fourier transform of a square integrable function with compact support if and only if it 
is the boundary value on Rd of an entire function on Cd of exponential type. Now for the 
compactly supported generator ϕ ∈ L2(Rd), by the Paley-Wiener theorem we conclude 
that its Fourier transform ϕ̂ is the boundary value on Rd of an entire function on Cd. It is 
well-known that for d ≥ 2 an entire function on Cd may have non-isolated zeros (cf. [13]). 
Therefore, it is no wonder that there exists a pair (ϕ, p) such that ϕ̂(pT ξ) = 0 for any 
ξ ∈ R. Correspondingly, the system {Rpϕ(· − pkj) : j = 1, . . . , #E} in Proposition 3.3
is linearly dependent.
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4. SA-Radon samples based reconstruction for compactly supported functions in SIS

This section concerns on the SACT sampling problem (1.9) for compactly supported 
functions in the SIS generated by a compactly supported generator ϕ. The main results 
will be organized in Theorems 4.3, 4.4 and 4.5. For the better readability, we quickly 
sketch the structure of this section. A necessary and sufficient condition on (ϕ, p) and 
the sampling set X ⊆ R will be established in Theorem 4.1, such that a compactly 
supported function f ∈ V (ϕ, Z2) can be determined uniquely by its SA Radon samples 
at X. Based on Theorem 4.1, our two main results are organized in Theorems 4.3, 4.4, 
and Theorem 4.5 and Proposition 4.6. Theorems 4.3 and 4.4 hold for the nonvanishing 
case (ϕ̂(0) 
= 0) while Theorem 4.5 and Proposition 4.6 hold for the vanishing case 
(ϕ̂(0) = 0).

4.1. A sufficient and necessary condition on the pair (ϕ, p) and the sampling set X
such that the SACT sampling (1.9) can be achieved

As previously, any x ∈ R2 is considered as a column vector while the direction vector 
p is a row vector.

Theorem 4.1. Suppose that ϕ ∈ L2(R2) such that supp(ϕ) ⊆ [N1, M1] × [N2, M2] and 
{ϕ(· −k) : k ∈ Z2} is linearly independent, and p = (cos θ, sin θ) is a direction vector such 
that Rpϕ is continuous. Moreover, f ∈ V (ϕ, Z2) is an arbitrary source function such that 
supp(f) ⊆ [a1, b1] ×[a2, b2]. Let E =

{[
�a1−M1	, 
b1−N1�

]
×
[
�a2−M2	, 
b2−N2�

]}
∩Z2

and denote it by {k1, . . . , k#E}. Then f can be determined uniquely by its SA Radon 
(w.r.t. p) samples at X = {x1, . . . , x#E} ⊆ R if and only if the #E × #E matrix

Aϕ,p,X :=

⎛⎜⎜⎜⎜⎝
Rpϕ(x1 − pk1) Rpϕ(x1 − pk2) · · · Rpϕ(x1 − pk#E)
Rpϕ(x2 − pk1) Rpϕ(x2 − pk2) · · · Rpϕ(x2 − pk#E)

...
...

. . .
...

Rpϕ(x#E − pk1) Rpϕ(x#E − pk2) · · · Rpϕ(x#E − pk#E)

⎞⎟⎟⎟⎟⎠ (4.1)

is invertible.

Proof. (⇐=) We first prove that if Aϕ,p,X is invertible then {Rpϕ(· − pkn) : n =
1, . . . , #E} is linearly independent in L2(R). Otherwise, there exists a nonzero vector 
(d̂1, . . . , d̂#E)T ∈ C#E such that

‖
#E∑
n=1

d̂nRpϕ(· − pkn)‖2
L2(R) =

∫
R

|
#E∑
n=1

d̂nRpϕ(x − pkn)|2dx = 0. (4.2)

It follows from (4.2) and the continuity of Rpϕ that for any xl ∈ X we have ∑#E
n=1 d̂nRpϕ(xl − pkn) = 0, which implies that the matrix Aϕ,p,X is singular. This 
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is a contradiction. Next we prove that Rpf can be determined by its samples at X if 
Aϕ,p,X is invertible.

As in (3.3) and (3.4), there exists uniquely (ck1 , . . . , ck#E
)T ∈ C#E such that

f =
#E∑
n=1

ckn
ϕ(· − kn) (4.3)

and consequently,

Rpf =
#E∑
n=1

cknRpϕ(· − pkn). (4.4)

Now it follows from (4.4) that

Aϕ,p,X(ck1 , . . . , ck#E
)T = (Rpf(x1), . . . , Rpf(x#E))T . (4.5)

Since Aϕ,p,X is invertible then (ck1 , . . . , ck#E
)T can be determined uniquely by the 

SA Radon samples Rpf(x1), . . . , Rpf(x#E). Since {Rpϕ(· − pkn) : n = 1, . . . , #E}
is linearly independent, Rpf represented via (4.4) can be determined from the vec-
tor (ck1 , . . . , ck#E

)T . Now by Theorem 3.1, f =
∑#E

n=1 ckn
ϕ(· − kn) can be determined 

uniquely.
(=⇒) If Aϕ,p,X is not invertible then (ck1 , . . . , ck#E

)T can not be determined uniquely 
by (4.5). Recall again that {ϕ(· − k) : k ∈ E} is linearly independent, then f in (4.3) can 
not be determined uniquely. �
Remark 4.1. For the sampling problem in the SIS V (ϕ, Z2), it is required that ϕ is 
continuous (cf. Aldroubi and Gröchenig [1]). Therefore, if ϕ is discontinuous then the 
sampling in V (ϕ, Z2) is not well-defined. On the other hand, it follows from Remark 2.3
that even though ϕ is discontinuous, the Radon transform Rpϕ may be continuous. 
From this perspective, when ϕ is discontinuous Theorem 4.1 may provide an alternative 
sampling-based recovery for compactly supported functions in V (ϕ, Z2).

4.2. Direction vector set and null set

The concepts of direction vector set and null set will be necessary for SACT sampling.

Definition 4.1. (1) Suppose that S ⊆ R2 such that S\{0} is not empty. Define its direction 
vector set as

dvS = {(cos θ, sin θ) : all 0 
= x = ‖x‖2(cos θ, sin θ)T ∈ S}. (4.6)

The direction vector sets of the empty set ∅ and {0} are both simply defined as ∅.
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(2) For S ⊆ R2 such that S\{0} is not empty, its null set NS is defined as

{0 
= y ∈ R2 : there exists 0 
= x ∈ S such that xT y = 0}. (4.7)

The null sets of ∅ and {0} are both simply defined as ∅. Correspondingly, if S\{0} is not 
empty then the direction vector set dvNS is defined via (4.6).

Remark 4.2. (1) For x0 ∈ R2 and its open disc

D̊(x0, δ) := {x ∈ R2 : ‖x − x0‖2 < δ}, (4.8)

if 0 ∈ D̊(x0, δ) then dvD̊(x0,δ) is the unit circle {(cos θ, sin θ) : θ ∈ [0, 2π)}. (2) Suppose 
that S ⊆ R2 is finite such that S\{0} is not empty. The null set NS of S is defined via 
(4.7). Then its cardinality #dvNS < ∞.

Proof. Item (1) is obvious. We just need to prove item (2). Denote S\{0} by {x1, . . . , xL}. 
For any 0 
= xl = (xl,1, xl,2)T ∈ S, suppose that 0 
= y = ‖y‖2(cos θy, sin θy)T such that 
xT

l y = 0. Without loss of generality, let xl,2 
= 0. Then tan θy = − xl,1
xl,2

. By S being finite, 
the proof can be completed. �

The following direction vector set is related to a function.

Definition 4.2. Suppose that 0 
≡ g : R2 → C is continuous. For x0 ∈ R2 such that g(x0) 
=
0, let δg

x0,max > 0 be the maximum value in (0, ∞] such that for any x ∈ D̊(x0, δg
x0,max) we 

have g(x) 
= 0, where D̊(x0, δg
x0,max) is defined via (4.8). Following Definition 4.1 (4.6), 

the set of direction vectors dvD̊(x0,δg
x0,max) of D̊(x0, δg

x0,max) is defined as

{(cos θ, sin θ) : 0 
= x = ‖x‖2(cos θ, sin θ)T ∈ D̊(x0, δg
x0,max)}. (4.9)

Definition 4.3. Suppose that 0 
≡ ϕ ∈ L2(R2) is compactly supported and vanishing (i.e. 
ϕ̂(0) = 0). Denote the nonzero set of ϕ̂ by Gϕ̂ such that ϕ̂(x) 
= 0 for any x ∈ Gϕ̂. Define

DVϕ̂ =
⋃

x∈Gϕ̂

dvD̊(x,δϕ̂
x,max), (4.10)

where dvD̊(x,δϕ̂
x,max) is defined via Definition 4.2. Correspondingly, the angle set of DVϕ̂

is defined as

argDVϕ̂
= {θ ∈ [0, 2π) : (cos θ, sin θ) ∈ DVϕ̂}. (4.11)

Proposition 4.2. Let ϕ and argDVϕ̂
be as in Definition 4.3. Then (1) the Lebesgue measure 

μ(argDVϕ̂
) of argDVϕ̂

on R is positive; (2) R̂pϕ = ϕ̂(pT ·) 
≡ 0 for p = (cos θ, sin θ) with 
any θ ∈ argDV .
ϕ̂
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Proof. We first prove item (1). Since 0 
≡ ϕ ∈ L2(R2) is compactly supported, 0 
≡
ϕ̂ ∈ C∞(R2). Then the nonzero set Gϕ̂ of ϕ̂ is not empty. Choose any x ∈ Gϕ̂ and 
consider dvD̊(x,δϕ̂

x,max). As in (4.11), define the angle set of dvD̊(x,δϕ̂
x,max) as argdv

D̊(x,δ
ϕ̂
x,max)

=

{θ ∈ [0, 2π) : (cos θ, sin θ) ∈ dvD̊(x,δϕ̂
x,max)}. Since δϕ̂

x,max > 0, the Lebesgue measure 
μ(argdv

D̊(x,δ
ϕ̂
x,max)

) > 0. Therefore, μ(argDVϕ̂
) > 0.

Next we prove item (2). For any θ ∈ argDVϕ̂
, by (4.11) the corresponding direction 

vector p = (cos θ, sin θ) ∈ DVϕ̂. Now by (4.10) there exists x ∈ Gϕ̂ such that ϕ̂(x) 
= 0
and p ∈ dvD̊(x,δϕ̂

x,max). By the definition of D̊(x, δϕ̂
x,max) in Definition 4.2, there exists 

γ > 0 such that ϕ̂(γpT ) 
= 0. Therefore, R̂pϕ(γ) = ϕ̂(γpT ) 
= 0. By Lemma 2.1, Rpϕ is 
compactly supported and consequently R̂pϕ ∈ C∞(R). Now by the continuity of R̂pϕ

one can prove that R̂pϕ 
≡ 0. This completes the proof. �
4.3. The first main result: SACT sampling for compactly supported functions in a SIS 
generated by a non-vanishing generator ϕ

The following is the first main theorem in this section.

Theorem 4.3. Suppose that ϕ ∈ L2(R2) is compactly supported such that supp(ϕ) ⊆
[N1, M1] × [N2, M2], {ϕ(· − k) : k ∈ Z2} is linearly independent and

(i) the Sobolev smoothness ν2(ϕ) > 1/2,
(ii) ϕ̂(0) =

∫
R2 ϕ(x)dx 
= 0 (non-vanishing property).

As previously, suppose that f ∈ V (ϕ, Z2) is an arbitrary source function such that 
supp(f) ⊆ [a1, b1] × [a2, b2]. Correspondingly, define two sets

E =
{[

�a1 − M1	, 
b1 − N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2

and

E+ =
{

∅, #E = 1,

{x − y : x 
= y ∈ E}, #E > 1.
(4.12)

Then for any p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \dvNE+ , there exists a sampling set Xp ⊆ R

having the cardinality #Xp = #E such that f can be determined by its SA Radon (w.r.t.
p) samples at Xp.

Proof. Denote E = {k1, . . . , k#E}. We first prove {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+

is not empty. It is sufficient to prove that #dvNE+ < ∞. If #E = 1 then E+ = ∅
and by Definition 4.1 (1) we have dvNE+ = ∅ and #dvNE+ = 0. If #E > 1 then 
#E+ = #E(#E − 1) < ∞. By Proposition 4.2 (2) we have #dvNE+ < ∞.

Since supp(ϕ) ⊆ [N1, M1] × [N2, M2] and supp(f) ⊆ [a1, b1] × [a2, b2], as in (4.3) we 
denote f =

∑#E
l=1 ckl

ϕ(· − kl) for (ck1 , . . . , ck#E
) ∈ C#E . Consequently, by (4.4) we have
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Rpf =
#E∑
l=1

ckl
Rpϕ(· − pkl). (4.13)

We first prove that for any p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ , the system 
{Rpϕ(· − pkl) : l = 1, . . . , #E} is linearly independent. For the equivalence of the linear 
independence established in Proposition 3.3 for the above system, we just need to prove 
that Proposition 3.3 (3) is satisfied any p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ . Clearly, 
R̂pϕ(0) = ϕ̂(0) 
= 0 for any p. Then

R̂pϕ = ϕ̂(pT ·) 
≡ 0. (4.14)

On the other hand, if E+ = ∅ then dvNE+ = ∅. This combining (4.14) implies that item 
(3) of Proposition 3.3 is naturally satisfied for any p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)}. If 
E+ 
= ∅ then it follows from the definition of NE+ in Definition 4.1 (2) that for any 
p /∈ dvNE+ we have pkl 
= pkn for any l 
= n ∈ {1, . . . , #E}. That is, for the case that 
E+ 
= ∅ item (3) of Proposition 3.3 is also satisfied. Then it follows from Proposition 3.3
that {Rpϕ(· − pkl) : l = 1, . . . , #E} is linearly independent.

By the above independence there exist constants 0 < C1,p ≤ C2,p < ∞ such that

C1,p

#E∑
l=1

|dkl
|2 ≤

∫
R

|
#E∑
l=1

dkl
Rpϕ(x − pkl)|2dx ≤ C2,p

#E∑
l=1

|dkl
|2 (4.15)

for any (dk1 , . . . , d#E)T ∈ R#E . On the other hand, it follows from Proposition 2.1
(2.3) that supp(Rpϕ) ⊆ [−Lϕ, Lϕ], where Lϕ =

√
2 max{|Ni|, |Mi| : i = 1, 2}. Denote 

ap,1 = min{pkl : l = 1, . . . , #E} and ap,2 = max{pkl : l = 1, . . . , #E}. One can check 
that

supp
( #E∑

l=1

dkl
Rpϕ(· − pkl)

)
⊆ [Lp,1, Lp,2],

where Lp,1 = −Lϕ + ap,1 and Lp,2 = Lϕ + ap,2. Then (4.15) is equivalent to

C1,p

#E∑
l=1

|dkl
|2 ≤

Lp,2∫
Lp,1

|
#E∑
l=1

dkl
Rpϕ(x − pkl)|2dx ≤ C2,p

#E∑
l=1

|dkl
|2. (4.16)

The rest of the proof is to find a sampling set Xp ⊆ R with the cardinality #Xp =
#E such that f can be determined by its SA Radon (w.r.t. p) samples at Xp. Since 
ν2(ϕ) > 1/2, by Proposition 2.3 (2) we have that Rpϕ is continuous. Consequently, all 
Rpϕ(· − pkl), l = 1, . . . , #E are uniformly continuous on the interval [Lp,1, Lp,2]. Then 
there exists δp ≤ (Lp,2 − Lp,1) such that for any l ∈ {1, . . . , #E} and any x′, x′′ ∈
[Lp,1, Lp,2] satisfying |x′ − x′′| < δp we have
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|Rpϕ(x′ − pkl) − Rpϕ(x′′ − pkl)| ≤
√

C1,p

3#E(Lp,2 − Lp,1) . (4.17)

Now let Kp = �Lp,2−Lp,1
δp

	. Construct

Yp = {xk = Lp,1 + Lp,2 − Lp,1

Kp
(k − 1) : k = 1, . . . , Kp + 1}

such that

|xk − xj | ≤ δp (4.18)

for any xk, xj . Define an approximation to Rp(· − pkl) as hl(x) =
∑Kp

k=1 Rpϕ(xk −
pkl)χ[xk,xk+1)(x). Then one can check that

Lp,2∫
Lp,1

|
#E∑
l=1

dkl
(Rpϕ(x − pkl) − hl(x))|2dx

≤
#E∑
j=1

|dkj
|2

Lp,2∫
Lp,1

#E∑
l=1

|Rpϕ(x − pkl) − hl(x)|2dx (4.19A)

=
#E∑
j=1

|dkj
|2

Kp∑
n=1

xn+1∫
xn

#E∑
l=1

|Rpϕ(x − pkl) − hl(x)|2dx

(4.19)

where (4.19A) is derived from the Cauchy-Schwart inequality. We continue to estimate 
(4.19) as follows,

Lp,2∫
Lp,1

|
#E∑
l=1

dkl
(Rpϕ(x − pkl) − hl(x))|2dx

≤
#E∑
j=1

|dkj
|2

Kp∑
n=1

xn+1∫
xn

#E∑
l=1

|Rpϕ(x − pkl) − hl(x)|2dx

=
#E∑
j=1

|dkj
|2

Kp∑
n=1

xn+1∫
xn

#E∑
l=1

|Rpϕ(x − pkl) − Rpϕ(xn − pk)|2dx (4.20A)

≤
#E∑
j=1

|dkj
|2#E

C1,p

3#E(Lp,2 − Lp,1)Kpδp (4.20B)

≤ C1,p

3

#E∑
j=1

|dkj |2, (4.20C)

(4.20)
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where (4.20A) is from the definition of hl(x), (4.20B) is from (4.17) and (4.18), and 
(4.20C) is from Kpδp ≤ Lp,2 − Lp,1. Then

(
Lp,2∫

Lp,1

|
#E∑
l=1

dkl
hl(x)|2dx)1/2 ≥ −(

Lp,2∫
Lp,1

|
#E∑
l=1

dkl
(Rpϕ(x − pkl) − hl(x))|2dx)1/2 (4.21A)

+(
Lp,2∫

Lp,1

|
#E∑
l=1

dkl
Rpϕ(x − pkl)|2dx)1/2

≥ (1 −
√

1/3)
√

C1,p(
#E∑
l=1

|dkl
|2)1/2, (4.21B)

(4.21)

where (4.21A) is from the triangle inequality, and (4.21B) is from (4.15) and (4.20). Then 
for any (dk1 , . . . , dk#E

) 
= 0 we have

0 < C1,p(1 −
√

1/3)2
#E∑
l=1

|dkl
|2 ≤

Lp,2∫
Lp,1

|
#E∑
l=1

dkl
hl(x)|2dx

=
Kp∑
j=1

xj+1∫
xj

|
#E∑
l=1

dkl
hl(x)|2dx

=
Kp∑
j=1

|
#E∑
l=1

dkl
Rpϕ(xj − pkl)|2.

(4.22)

By (4.22), we conclude that there exists Xp := {xj1 , . . . , xj#E
} ⊆ Yp such that the 

corresponding #E × #E matrix

Aϕ,p,Xp =

⎛⎜⎜⎜⎜⎝
Rpϕ(xj1 − pk1) Rpϕ(xj1 − pk2) · · · Rpϕ(xj1 − pk#E)
Rpϕ(xj2 − pk1) Rpϕ(xj2 − pk2) · · · Rpϕ(xj2 − pk#E)

...
...

. . .
...

Rpϕ(xj#E
− pk1) Rpϕ(xj#E

− pk2) · · · Rpϕ(xj#E
− pk#E)

⎞⎟⎟⎟⎟⎠
(4.23)

is invertible. Now by Theorem 4.1, the source function f can be determined uniquely 
by its Radon (w.r.t. p) samples at Xp. Specifically, the vector (cpk1 , . . . , cpk#E

)T can be 
determined by

(cpk1 , . . . , cpk#E
)T = A−1

ϕ,p,Xp
(Rpf(xj1), . . . , Rpf(xj#E

))T . (4.24)

This completes the proof. �
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In what follows we explain why the condition ν2(ϕ) > 1/2 in Theorem 4.3 is required.

Remark 4.3. Since ν2(ϕ) > 1/2, by Proposition 2.3 (2) we conclude that Rpϕ is con-
tinuous. If such a condition is not satisfied, then Rpϕ may be discontinuous for some 
p. As in Remark 2.3, let ϕ(x1, x2) = χ(0,1](x1)χ(0,1](x2). Through the direct calculation 

we have ϕ̂(ξ1, ξ2) = 1−e−iξ1

iξ1
1−e−iξ2

iξ2
. By the Sobolev smoothness definition in subsection 

2.3 one can check that ν2(ϕ) = 1/2. If p = (1, 0) or (0, 1) then Rpϕ = χ(0,1] which is 
discontinuous. As a result, there may not exist δp such that (4.17) holds.

Remark 4.4. Define the #E × #E Gram matrix

Gϕ,p =
(

〈Rpϕ(· − pkj), Rpϕ(· − pkn)〉
)#E

j,n=1
, (4.25)

where the inner product 〈Rpϕ(· −pkj), Rpϕ(· −pkn)〉 =
∫
R Rpϕ(x −pkj)Rpϕ(x −pkn)dx. 

Then (4.15) or (4.16) is equivalent to

C1,p‖(dk1 , . . . , dk#E
)‖2

2 ≤ (dk1 , . . . , dk#E
)Gϕ,p(dk1 , . . . , dk#E

)∗ ≤ C2,p‖(dk1 , . . . , dk#E
)‖2

2,

(4.26)

where D∗ is the conjugate and transpose of a matrix D. Note that Gϕ,p is a Hermitian 
matrix. Then (4.26) implies that Gϕ,p is a positive definite matrix, and consequently 0 <
C1,p ≤ λmin(Gϕ,p) and λmax(Gϕ,p) ≤ C2,p < ∞, where λmax(Gϕ,p) > 0 and λmin(Gϕ,p) >
0 are the maximum and minimum eigenvalues of Gϕ,p, respectively. Particularly, in (4.17)
one can choose

C1,p = λmin(Gϕ,p). (4.27)

The following states that if ϕ ∈ C1(R2) then δp in the proof of Theorem 4.3 can be 
chosen explicitly. Consequently, the SA Radon sampling point set Xp in Theorem 4.3
can be constructed explicitly.

Theorem 4.4. Let the compactly supported generator ϕ ∈ C1(R2) such that ϕ̂(0) 
= 0 and 
the source function f ∈ V (ϕ, Z2). As in Theorem 4.3 suppose that supp(ϕ) ⊆ [N1, M1] ×
[N2, M2] and supp(f) ⊆ [a1, b1] × [a2, b2]. Define two sets

E =
{[

�a1 − M1	, 
b1 − N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2

and

E+ =
{

∅, #E = 1,

{x − y : x 
= y ∈ E}, #E > 1.
(4.28)
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Choose a direction vector p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ , and correspondingly 
denote ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Lp,1 = −
√

2 max{|Ni|, |Mi| : i = 1, 2} + min{pk : k ∈ E},

Lp,2 =
√

2 max{|Ni|, |Mi| : i = 1, 2} + max{pk : k ∈ E},

δp =
√

λmin(Gϕ,p)
3#E(Lp,2−Lp,1)

/(
2(‖ϕ1‖∞ + ‖ϕ2‖∞) max{|Ni|, |Mi| : i = 1, 2}

)
,

Kp = �Lp,2−Lp,1
δp

	,

(4.29)

where λmin(Gϕ,p) is the minimum eigenvalue of the Gram matrix Gϕ,p defined in (4.25), 
ϕ1(x1, x2) and ϕ2(x1, x2) are the partial derivatives of ϕ(x1, x2) w.r.t. the variables x1
and x2, respectively such that

‖ϕ1‖∞ = max
(x1,x2)∈[N1,M1]×[N2,M2]

|ϕ1(x1, x2)|, ‖ϕ2‖∞ = max
(x1,x2)∈[N1,M1]×[N2,M2]

|ϕ2(x1, x2)|.

Explicitly construct

Yp = {xk = Lp,1 + Lp,2 − Lp,1

Kp
(k − 1) : k = 1, . . . , Kp + 1}. (4.30)

Then there exists Xp = {xi1 , . . . , xi#E
} ⊆ Yp such that the matrix Aϕ,p,Xp in (4.23) is 

invertible and consequently, f can be determined uniquely by its SA Radon samples at 
Xp.

Proof. By Remark 4.4 (4.27), C1,p in (4.26) can be chosen as λmin(Gϕ,p). If (4.17) holds 
with C1,p replaced by λmin(Gϕ,p), then by the similar procedures ((4.19)-(4.22)) in the 
proof of Theorem 4.3 one can prove that there exists Xp = {xi1 , . . . , xi#E

} ⊆ Yp such that 
Aϕ,p,Xp in (4.23) is invertible. Consequently, f can be determined by (4.24). Therefore, 
we just need to prove that (4.17) holds.

The SVD of p = (cos θ, sin θ) is ΣV T such that V =
(

cos θ sin θ

sin θ − cos θ

)
and Σ = (1, 0). 

Since ϕ ∈ C1(R2) is compactly supported, we have

|Rpϕ
(
x′ − pkl) − Rpϕ

(
x′′ − pkl

)
|

=
∣∣∣ ∫
R

ϕ
(
(x′ − pkl) cos θ + x2 sin θ, (x′ − pkl) sin θ − x2 cos θ

)
−ϕ((x′′ − pkl) cos θ + x2 sin θ, (x′′ − pkl) sin θ − x2 cos θ)dx2

∣∣∣ (4.31A)

=
∣∣∣ max{|Ni|,|Mi|:i=1,2}∫

ϕ
(
(x′ − pkl) cos θ + x2 sin θ, (x′ − pkl) sin θ − x2 cos θ

)

− max{|Ni|,|Mi|:i=1,2}
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−ϕ
(
(x′′ − pkl) cos θ + x2 sin θ, (x′′ − pkl) sin θ − x2 cos θ

)
dx2

∣∣∣ (4.31B)

≤ |x′ − x′′|
max{|Ni|,|Mi|:i=1,2}∫

− max{|Ni|,|Mi|:i=1,2}

(‖ϕ1‖∞ + ‖ϕ2‖∞)dx2 (4.31C)

= 2|x′ − x′′|(‖ϕ1‖∞ + ‖ϕ2‖∞) max{|Ni|, |Mi| : i = 1, 2}, (4.31)

where the (4.31A) and (4.31B) are derived from (2.4A) and (2.6), respectively, and 
(4.31C) is from the differential mean value theorem. It is required that |x′ − x′′| ≤ δp. 
Then it follows from (4.31) that

|Rpϕ
(
x′ − pkl) − Rpϕ

(
x′′ − pkl

)
| ≤ 2δp(‖ϕ1‖∞ + ‖ϕ2‖∞) max{|Ni|, |Mi| : i = 1, 2}.

(4.32)

Now by (4.32) we can choose

δp =

√
λmin(Gϕ,p)

3#E(Lp,2 − Lp,1)

/(
2(‖ϕ1‖∞ + ‖ϕ2‖∞) max{|Ni|, |Mi| : i = 1, 2}

)
such that (4.17) holds with C1,p replaced by λmin(Gϕ,p). The proof is completed. �
4.4. The second main result: SACT sampling for compactly supported functions in a 
SIS generated by a vanishing generator ϕ

In this subsection suppose that the generator ϕ is vanishing, namely, ϕ̂(0) =∫
R2 ϕ(x)dx = 0.

Theorem 4.5. Suppose that ϕ ∈ L2(R2) is compactly supported such that supp(ϕ) ⊆
[N1, M1] × [N2, M2], the system {ϕ(· − k) : k ∈ Z2} is linearly independent, and

(i) the Sobolev smoothness ν2(ϕ) > 1/2,
(ii) ϕ̂(0) =

∫
R2 ϕ(x)dx = 0 (vanishing property).

Moreover, as previously suppose that f ∈ V (ϕ, Z2) is an arbitrary source function such 
that supp(f) ⊆ [a1, b1] × [a2, b2]. Define

E =
{[

�a1 − M1	, 
b1 − N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2

and

E+ =
{

∅, #E = 1,

{x − y : x 
= y ∈ E}, #E > 1.
(4.33)

Then for any direction vector p ∈ DVϕ̂ \ dvNE+ , there exists a sampling set Xp ⊆ R

having the cardinality #Xp = #E such that f can be determined uniquely by its SA 
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Radon (w.r.t. p) samples at Xp, where DVϕ̂ and dvNE+ are defined via Definitions 4.3
and 4.1.

Proof. Denote E by {k1, . . . , k#E}. It has been proved in the proof of Theorem 4.3
that #dvNE+ < ∞. Now by Proposition 4.2 (1) one can prove that DVϕ̂ \ dvNE+ is not 
empty. It follows from Proposition 4.2 (2) that R̂pϕ 
≡ 0 for any direction vector p ∈ DVϕ̂. 
Moreover, as in the proof of Theorem 4.3 one can prove that for any direction vector 
p ∈ DVϕ̂ \ dvNE+ the system {Rpϕ(· − pkl) : l = 1, . . . , #E} is linearly independent. 
Through the similar procedures of the proof of Theorem 4.3, one can prove there exists 
a sampling set Xp such that #Xp = #E and f can be determined uniquely by its SA 
Radon samples at Xp. �

If ϕ ∈ C1(R2), by the similar proof of Theorem 4.4 one can prove the following result.

Proposition 4.6. If ϕ ∈ C1(R2), then for p ∈ DVϕ̂ \ dvNE+ the sampling point set Xp in 
Theorem 4.5 can be constructed explicitly through the similar procedures in Theorem 4.4
(4.29) and (4.30).

5. Pairs of (ϕ, p) such that the corresponding SACT can be achieved by the sampling 
set {pk1, . . . , pk#E}

5.1. Motivation

If the Sobolev smoothness ν2(ϕ) > 1/2, it has been proved in Theorems 4.3 and 4.5
that there exists a sampling set Xp such that the source function f ∈ V (ϕ, Z2) can be 
determined uniquely by its SA samples at Xp. Moreover, if ϕ ∈ C1(R2) then it is stated 
in Theorem 4.4 and Proposition 4.6 that Xp can be constructed explicitly. On the other 
hand, however, it follows from Remark 2.2 that ν2(ϕ) > 1/2 does not necessarily imply 
that ϕ ∈ C1(R2). Then a natural problem is, without the C1 condition how can one 
explicitly construct the sampling set Xp. Before introducing our scheme, let us recall 
(4.13) as

Rpf =
#E∑
l=1

ckl
Rpϕ(· − pkl). (5.1)

Note that Xp in Theorem 4.4 and Proposition 4.6 is not necessarily {pk1, . . . , pk#E}. 
Naturally, one asks:

Under what condition on the pair (ϕ, p), can f be determined uniquely by its SA 
samples at {pk1, . . . , pk#E}?
If such a determination can be achieved then compared with those in Theorem 4.4 and 
Proposition 4.6, it is more efficient to conduct SACT of f since we do not require to 
consider the sampling set.
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We quickly describe the structure of this section. In subsection 5.2 we give a condition 
on the pair (ϕ, p) such that the above determination can be achieved. We also address 
the determination in subsections 5.4 and 5.5 for the case that ϕ being positive definite.

5.2. The third main result: a condition on (ϕ, p) such that {pk1, . . . , pk#E} is eligible 
for the SACT

From the perspective of the signs of the real and imaginary parts of R̂pϕ, a condition 
is given in the following theorem such that the sampling set Xp = {pk1, . . . , pk#E} is 
eligible for the SACT. Incidentally, for 0 
= y ∈ R its sign sgn(y) takes 1 and −1 for y > 0
and y < 0, respectively. For a function 0 
≡ g : R −→ R we say that its sign function 
sgn(g(x)) is unchanged if g(x) ≥ 0 for any x ∈ R (or g(x) ≤ 0 for any x ∈ R).

Theorem 5.1. As previously, suppose that the generator ϕ ∈ L2(R2) satisfies supp(ϕ)
⊆ [N1, M1] × [N2, M2], and f ∈ V (ϕ, Z2) is an arbitrary source function such that 
supp(f) ⊆ [a1, b1] × [a2, b2]. Additionally, suppose that p = (cos θ, sin θ) is a direction 
vector such that Rpϕ is continuous. Define E = {k1, . . . , k#E} =

{[
�a1 − M1	, 
b1 −

N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2. If R̂pϕ = R̂pϕ� + iR̂pϕ� satisfies the following 

item (i) or (ii), and E satisfies item (iii):
(i) the real part R̂pϕ� 
≡ 0 and its sign function sgn(R̂pϕ�) is unchanged;
(ii) the imaginary part R̂pϕ� 
≡ 0 and its sign function sgn(R̂pϕ�) is unchanged;
(iii) if #E > 1 then pkl 
= pkn for any l 
= n;

then the matrix Aϕ,p,Xp defined via (4.1) is invertible where Xp = {pk1, . . . , pk#E};
Consequently, f can be determined uniquely by its SA Radon samples at Xp.

Proof. The requirement for the continuity of Rpϕ in Theorem 4.1 is satisfied here. 
If the corresponding matrix Aϕ,p,Xp defined via (4.1) is invertible, then it follows 
from Theorem 4.1 that f can be determined uniquely by its SA Radon samples at 
Xp = {pk1, . . . , pk#E}. We next prove that Aϕ,p,Xp is invertible. For any nonzero vector 
(α1, . . . , α#E)T ∈ C#E we have

#E∑
j=1

#E∑
n=1

αjαnRpϕ(pkj − pkn) = 1
2π

#E∑
j=1

#E∑
n=1

αjαn

∫
R

R̂pϕ(ξ)ei(pkj−pkn)ξdξ

= 1
2π

∫
R

R̂pϕ(ξ)|
#E∑
j=1

αjeipkjξ|2dξ (5.2A)

(5.2)

where (5.2A) is derived from the quadratic form 
∑#E

j=1
∑#E

n=1 αjeipkjξαne−ipknξ =
| 
∑#E

j=1 αjeipkjξ|2. By R̂pϕ(ξ) = R̂pϕ�(ξ) + iR̂pϕ�(ξ), (5.2) can be further expressed 
as
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#E∑
j=1

#E∑
n=1

αjαnRpϕ(pkj − pkn) = 1
2π

∫
R

R̂pϕ�(ξ)|
#E∑
j=1

αjeipkjξ|2dξ

+ i
2π

∫
R

R̂pϕ�(ξ)|
#E∑
j=1

αjeipkjξ|2dξ.

(5.3)

Since ϕ ∈ L2(R2) is compactly supported, it follows from Lemma 2.1 that Rpϕ is com-
pactly supported as well and belongs to L2(R). Then R̂pϕ ∈ C∞(R). Item (i) or (ii) 
implies that R̂pϕ 
≡ 0. Without loss of generality it is assumed that R̂pϕ� 
≡ 0 and 
R̂pϕ� ≥ 0. By the continuity of R̂pϕ� there is δ > 0 and ζ ∈ R such that

R̂pϕ�(ξ) > 0 (5.4)

for any ξ ∈ [ζ − δ, ζ + δ]. We next prove that {eipknξ}#E
n=1 is linearly independent on 

[ζ − δ, ζ + δ]. If #E = 1 then the linear independence is clear. If #E > 1 then it follows 
from item (iii) that pkn 
= pkj for any n 
= j. By Lemma 3.2 we have that {eipknξ}#E

n=1 is 
linearly independent on [ζ − δ, ζ + δ]. Consequently, there exists ξ0 ∈ [ζ − δ, ζ + δ] such 
that for the above nonzero vector (α1, . . . , α#E)T ∈ C#E we have 

∑#E
n=1 αneipknξ0 
= 0. 

By the continuity of the functions in {eipknξ}#E
n=1 we conclude that

ζ+δ∫
ζ−δ

|
#E∑
n=1

αneipknξ|2dξ > 0. (5.5)

Now it follows from (5.4) and (5.5) that

1
2π

∫
R

R̂pϕ�(ξ)|
#E∑
n=1

αneipknξ|2dξ ≥ 1
2π

ζ+δ∫
ζ−δ

R̂pϕ�(ξ)|
#E∑
n=1

αkeipknξ|2dξ

≥ 1
2π

min
ξ∈[ζ−δ,ζ+δ]

{R̂pϕ�(ξ)}
ζ+δ∫

ζ−δ

|
#E∑
n=1

αneipknξ|2dξ

> 0.

(5.6)

This combining with (5.3) leads to that

#E∑
j=1

#E∑
n=1

αjαnRpϕ(pkj − pkn) > 0. (5.7)

Recall that
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#E∑
j=1

#E∑
n=1

αjαnϕ(pkj − pkn) = (ᾱ1, . . . , ᾱ#E)Aϕ,p,Xp(α1, . . . , α#E)T (5.8)

and (α1, . . . , α#E)T ∈ C#E is an arbitrary nonzero vector. Now it follows from (5.7) and 
(5.8) that Aϕ,p,Xp is invertible. By Theorem 4.1, f can be determined uniquely by its SA 
Radon samples at {pk1, . . . , pk#E}. �
5.3. Preliminary on positive (semi-)definite function

The positive semi-definite function has been defined in Definition 1.1. The celebrated 
result on positive semi-definite functions is their characterization in terms of Fourier 
transform, which was established by Bochner [5]. It is as follows.

Lemma 5.2. A continuous function φ : Rd −→ C is positive semi-definite if and only 
if it is the Fourier transform of a finite nonnegative Borel measure μ on Rd such that 
φ(x) =

∫
Rd e−ix·ξdμ(ξ).

Based on Lemma 5.2, Wendland [42, Theorem 6.11] established the following tool for 
checking the positive definite property, which will be used in Theorems 5.4 and 5.6 for 
SACT sampling.

Lemma 5.3. Suppose that φ ∈ L1(Rd) is continuous. Then φ is positive definite if and 
only if φ is bounded and its Fourier transform φ̂ is nonnegative and nonvanishing. Here 
φ̂ being nonvanishing means that 

∫
Rd φ̂(ξ)dξ = (2π)d/2φ(0) 
= 0.

The following remark concerns on the determination of functions by the positive 
definite property.

Remark 5.1. If φ : Rd −→ C is positive definite and continuous, then the system {φ(· −
xk)}N

k=1 is linearly independent for any set X = {x1, x2, . . . , xN } ⊆ Rd. Moreover, any 
function f =

∑N
k=1 ckφ(· − xk) can be determined uniquely by its samples at X.

Proof. If {φ(· − xk)}N
k=1 is linearly dependent then there exists a nonzero vector 

(α1, . . . , αN ) ∈ CN such that 
∑N

k=1 αkφ(· − xk) ≡ 0. Particularly, for any xj ∈
{x1, . . . , xN } we have 

∑N
k=1 αkφ(xj − xk) = 0. Then the quadratic form

N∑
j=1

N∑
k=1

αjαkφ(xj − xk) = 0.

This contradicts with the positive definite property

N∑
j=1

N∑
k=1

αjαkφ(xj − xk) > 0. (5.9)
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Therefore, {φ(· − xk)}N
k=1 is linearly independent. Additionally,

⎛⎜⎜⎜⎜⎝
φ(0) φ(x1 − x2) · · · φ(x1 − xN )

φ(x2 − x1) φ(0) · · · φ(x2 − xN )
...

...
. . .

...
φ(xN − x1) φ(xN − x2) · · · φ(0)

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

c1
c2
...

cN

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
f(x1)
f(x2)

...
f(xN )

⎞⎟⎟⎟⎟⎠ . (5.10)

Since φ is positive definite, it follows from (5.9) that the above matrix is invert-
ible. Then the coefficient vector (c1, c2, . . . , cN )T can be determined by the sam-
ples f(x1), f(x2), . . . , f(xN ). Recall that {φ(· − xk)}N

k=1 is linearly independent. With 
(c1, . . . , cN )T at hand, f can be determined uniquely. �
5.4. The fourth main result: pairs of (ϕ, p) such that {pk1, . . . , pk#E} is eligible for 
SACT sampling, where ϕ is positive definite and nonvanishing

The following is the main result in this subsection. It applies to the case that ϕ is 
positive definite and nonvanishing (ϕ̂(0) 
= 0).

Theorem 5.4. Suppose that ϕ ∈ C(R2) is compactly supported and positive definite such 
that its Sobolev smoothness ν2(ϕ) > 1/2, ϕ̂(0) > 0 and supp(ϕ) ⊆ [N1, M1] × [N2, M2]. 
Moreover, the arbitrary source function f ∈ V (ϕ, Z2) is compactly supported such that 
supp(f) ⊆ [a1, b1] ×[a2, b2]. As previously, define E = {k1, . . . , k#E} =

{[
�a1−M1	, 
b1−

N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2, and correspondingly

E+ =
{

∅, #E = 1,

{x − y : x 
= y ∈ E}, #E > 1.
(5.11)

Then f can be determined uniquely by its SA Radon (w.r.t. p) samples at {pk1, . . ., 
pk#E}, where p is an arbitrary direction vector from {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+

with NE+ defined in Definition 4.1.

Proof. Recall that it has been proved in the proof of Theorem 4.3 that {(cos θ, sin θ) :
θ ∈ [0, 2π)} \ dvNE+ is not empty. Next we prove the following three items.

(1) If #E > 1 then for any l 
= n ∈ {1, . . . , #E} and any direction vector p ∈
{(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ , we have pkl 
= pkn.

(2) For any direction vector p, the Radon transform Rpϕ is continuous.
(3) Suppose that p is any fixed direction vector. Then we have R̂pϕ 
≡ 0 and R̂pϕ ≥ 0.

Clearly, if the above three items are satisfied then the requirements in Theorem 5.1 are 
satisfied for any direction vector p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ . Consequently, 
it follows from Theorem 5.1 that f can be determined uniquely by its SA Radon (w.r.t.
p) samples at {pk1, . . . , pk#E}.
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We first prove (1). One can check that, for any l 
= n ∈ {1, 2, . . . , #E} it holds that 
pkl 
= pkn if and only if p /∈ NE+ . Then for any p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ , 
item (1) holds.

Next we prove item (2). Recall that ν2(ϕ) > 1/2. Then it follows from Proposition 2.3
(2) that Rpϕ is continuous.

Finally, we need to prove item (3). Since ϕ ∈ C(R2) is positive definite, by Lemma 5.3
we have ϕ̂ ≥ 0. Now for any direction vector p = (cos θ, sin θ) we have that R̂pϕ =
ϕ̂(pT ·) ≥ 0. Additionally, ϕ ∈ C(R2) is compactly supported then ϕ̂ ∈ C∞(R2). This 
together with ϕ̂(0) =

∫
R2 ϕ(x)dx > 0 leads to that exists a closed disc D(0, δ) = {ξ ∈

R2 : ‖ξ‖2 ≤ δ} such that for any ξ ∈ D(0, δ) we have ϕ̂(ξ) > 0. For any γ ∈ R such 
that |γ| ≤ δ we have γpT ∈ U(0, δ) and consequently R̂pϕ(γ) = ϕ̂(γpT ) > 0. That is, 
R̂pϕ 
≡ 0.

Now by Theorem 5.1 the source function f can be determined uniquely by its SA 
Radon samples at {pk1, . . . , pk#E}. The proof is completed. �
Remark 5.2. As addressed in item (3) of the proof of Theorem 5.4, the nonvanishing 
property ϕ̂(0) =

∫
R2 ϕ(x)dx > 0 guarantees that R̂pϕ 
≡ 0 for any direction vector p. 

Such a property brings great flexibility of p for the SACT sampling. Next we introduce 
a class of box-splines which are positive and nonvanishing.

The mth cardinal B-spline Bm is defined by Bm :=
m copies︷ ︸︸ ︷

χ(0,1] � . . . � χ(0,1] (cf. [39,41]), 
where m ∈ N, as in Remark 2.2 χ(0,1] is the characteristic function of (0, 1] and � is the 
convolution. Through the simple calculation (cf. [6]) we have supp(Bm) = (0, m], and

B̂m(ξ) = e−imξ/2[ sin ξ/2
ξ/2 ]m. (5.12)

Remark 5.3. For s < m − 1/2, one can check that 
∫
R |B̂m(ξ)|2(1 + ξ2)sdξ < ∞. Then 

the Sobolev smoothness ν2(Bm) = m − 1/2. By Proposition 2.3, Bm is continuous for 
m ≥ 2.

Proposition 5.5. Through the tensor product we define the box-spline ϕ : R2 −→ R by 
ϕ(x1, x2) =

∏2
k=1 B2nk

(xk + nk), nk ∈ N. Then ϕ is compactly supported, continuous 
and positive definite such that ϕ̂(0) =

∫
R2 ϕ(x)dx > 0. Moreover, the Sobolev smoothness 

ν2(ϕ) ≥ 1. Consequently, it satisfies the requirement in Theorem 5.4.

Proof. By Remark 5.3, both B2n1 and B2n2 are continuous. So are B2n1(· + n1) and 
B2n2(· + n2). Then their tensor product ϕ is also continuous. Through the direct 
calculation one can check that ϕ̂(ξ1, ξ2) =

∏2
k=1

[
sin ξk/2

ξk/2

]2nk

, and it follows from 

supp(B2ni
) = (0, 2ni] that supp(ϕ) = (−n1, n1] × (−n2, n2]. Clearly, ϕ̂ ≥ 0 and 

ϕ̂(0) =
∫
R2 ϕ(x)dx = 1. As in (5.2A), for any nonzero (α1, . . . , αN ) ∈ CN and any 

set {x1, . . . , xN } ⊆ R2 one can check that
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N∑
j=1

N∑
k=1

αjαkϕ(xj − xk) = 1
2π

∫
R2

ϕ̂(ξ)|
N∑

k=1

αkeixk·ξ|2dξ. (5.13)

From this and ϕ̂ ≥ 0 we have that ϕ is positive semi-definite. By Lemma 3.2, the set of 
continuous functions {eixk·ξ : k = 1, . . . , N} are linearly independent. Since ϕ ∈ C(R2)
is compactly supported then ϕ̂ ∈ C∞(R2). Now combining the continuities of ϕ̂ and 
{eixk·ξ : k = 1, . . . , N}, the above linear independence and ϕ̂(0) > 0, through the similar 
procedures in (5.5) and (5.6) one can prove the integral in (5.13) is positive. Consequently, 
ϕ is positive definite.

In what follows, we prove that ν2(ϕ) ≥ 1. First, we have∫
R2

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2 ≤
∫

|ξ1|≤1,ξ2∈R

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

+
∫

|ξ2|≤1,ξ1∈R

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

+
∫

|ξ1|>1,ξ2>1

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

:= I1 + I2 + I3.

(5.14)

We first estimate I1 as follows,

I1 =
∫

|ξ1|≤1,ξ2∈R

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

=
∫

|ξ1|≤1,|ξ2|≤
√

2

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

+
∫

|ξ1|≤1,|ξ2|>
√

2

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

:= I11 + I12.

(5.15)

Recall that ϕ̂ ∈ C∞(R2). By the continuity of ϕ̂ we have I11 < ∞. Moreover,

I12 =
∫

|ξ1|≤1,|ξ2|>
√

2

|ϕ̂(ξ1, ξ2)|2(1 + ξ2
1 + ξ2

2)dξ1dξ2

≤ 2
∫

|ξ1|≤1

[ sin ξ1/2
ξ1/2

]2n1
dξ1

∫
|ξ2|>1

[sin ξ2/2
ξ2/2

]4n2
ξ2

2dξ2 (5.16A)

< ∞,

(5.16)
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where (5.16A) is from 1 + ξ2
1 ≤ ξ2

2 . Consequently, I1 = I11 + I12 < ∞. Similarly, one can 
prove that I2 < ∞. Additionally,

I3 ≤ 2
∫

|ξ1|>1,ξ2>1

|ϕ̂(ξ1, ξ2)|2(ξ2
1 + ξ2

2)dξ1dξ2

≤ 2 × 22(n1+n2)
[ ∫

|ξ1|>1,ξ2>1

1
ξ4n1−2

1 ξ4n1
2

dξ1dξ2 +
∫

|ξ1|>1,ξ2>1

1
ξ4n1−2

2 ξ4n1
1

dξ1dξ2

]
< ∞.

(5.17)

Now by (5.14), we have 
∫
R2 |ϕ̂(ξ1, ξ2)|2(1 +ξ2

1 +ξ2
2)dξ1dξ2 < ∞, and consequently, ν2(ϕ) ≥

1. This completes the proof. �
Example 5.1. As mentioned previously, the SISs generated from box splines are used in 
[8] to model the continuous-domain representations of biomedical images. Motivated by 
this, we check the single-angle Radon samples-based recovery result in Theorem 5.4 for 
the function in a SIS generated from a positive definite box spline. Let φB(x1, x2) =
B2(x1 − 1)B2(x2 − 1) where B2 = χ(0,1] � χ(0,1] is the cardinal B-spline of order 2. 
By Proposition 5.5, φB is positive definite. By (5.12) we have B̂2(ξ) = e−iξ( sin ξ/2

ξ/2 )2. 
From this, φ̂B(0) = 1. That is, φB is nonvanishing. For any fixed direction vector p =
[cos θ, sin θ], its Radon transform RpφB can be calculated directly from (2.4). Without 
loss of generality, we choose p = [cos θ, sin θ] such that 0 < θ < π/2 and tan θ ≥ 2. From 
(2.4) we calculate that

RpφB(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(tan θ− x
cos θ )

[
( x

cos θ −tan θ− 3
2 )2+ 3

4
]
+1

6 cos θ tan2 θ , x ∈ (sin θ, sin θ + cos θ)

3
(

x
cos θ −tan θ

)2+
(

x
cos θ −tan θ

)3+3 tan θ− 3x
cos θ +1

6 cos θ tan2 θ , x ∈ (sin θ − cos θ, sin θ]

tan θ− x
cos θ

cos θ tan2 θ , x ∈ [cos θ, sin θ − cos θ]

x
cos θ

( 2x2
cos2 θ

− 6x
cos θ +3

)
+6 tan θ− 3x

cos θ −2
6 cos θ tan2 θ , x ∈ [0, cos θ)

RpφB(−x), x ∈ (− cos θ, 0]
RpφB(−x), x ∈ [− sin θ + cos θ, − cos θ]
RpφB(−x), x ∈ [− sin θ, − sin θ + cos θ)
RpφB(−x), x ∈ (− sin θ − cos θ, − sin θ)
0, else.

(5.18)

Without bias, we choose a source function
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Fig. 5.1. Left: the plot of φB . Right: the plot of RpφB(x) with p = [cos(1.2208), sin(1.2208)].

f =
∑

k=(i,j)∈{0,1,2,3,4}2

ckφB(· − k) ∈ V (φB), (5.19)

where the coefficient matrix

C =
(
c(i,j)

)4
i,j=0 =

⎛⎜⎜⎜⎜⎜⎝
0.5377 −1.3077 −1.3499 −0.2050 0.6715
1.8339 −0.4336 3.0349 −0.1241 −1.2075

−2.2588 0.3426 0.7254 1.4897 0.7172
0.8622 3.5784 −0.0631 1.4090 1.6302
0.3188 2.7694 0.7147 1.4172 0.4889

⎞⎟⎟⎟⎟⎟⎠ . (5.20)

By (5.1) we have

Rpf =
25∑

l=1

ckl
RpφB(· − pkl) (5.21)

where {k1, . . . , k25} = {0, 1, 2, 3, 4}2 is arranged in the lexicographical order. By Theo-
rem 5.4, f can be determined exactly by its single-angle Radon samples {Rpf(pkl) : l =
1, . . . , 25} if and only if

pkl 
= pkn for any l 
= n. (5.22)

Without bias, we choose θ = 1.2208 such that (5.22) holds. The function f (or 
the sequence {ckl

}25
l=1) can be determined by the equation system (4.5) with X =

{pk1, . . . , pk25}. We found that the recovery error is

error = ‖{ckl
− ĉkl

}25
l=1‖2

‖{ckl
}25

l=1‖2
= 3.1206e − 13 (5.23)
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Fig. 5.2. Top left: the plot of f ; Top right: the plot of Rpf ; Bottom left: the plot of recovery version f̃ of f ; 
Bottom right: the plot of f − f̃ .

where {ĉkl
}25

l=1 is the recovery version of {ckl
}25

l=1. The graphs of φB and RpφB are 
plotted in Fig. 5.1, and the graphs f , Rpf , the recovery version f̃ and f − f̃ are plotted 
in Fig. 5.2. From Fig. 5.2, f can be recovered by its single-angle Radon samples.

5.5. The fifth main result: pairs of (ϕ, p) such that {pk1, . . . , pk#E} is eligible for 
SACT sampling, where ϕ is positive definite and vanishing

It follows from Lemma 5.3 that for a continuous positive definite function ϕ, its Fourier 
transform ϕ̂ is necessarily nonvanishing, namely, ϕ(0) 
= 0. But ϕ itself is not necessarily 
nonvanishing, namely, ϕ̂(0) 
= 0 does not necessarily hold. That is, there exist positive 
definite and vanishing functions. We next provide an example to explain this. It is the 
motivation for this subsection.

5.5.1. A motivation example

Example 5.2. Let

φ1(x1) = B2(x1 + 1) =

⎧⎪⎨⎪⎩
x1 + 1, −1 < x1 ≤ 0,

1 − x1, 0 < x1 < 1,

0, |x1| ≥ 1.

(5.24)
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By (5.12) we have φ̂1(ξ1) = ( sin ξ1/2
ξ1/2 )2. Define ϕ1 via

ϕ̂1(ξ1) = (eiξ1/2 − e−iξ1/2

2i
)2φ̂1(ξ1/2) = sin2(ξ1/2)(sin(ξ1/4)

ξ1/4 )2 ≥ 0.

Additionally, in the time-domain ϕ1(x1) = −1
2φ1(2x1 + 1) + φ1(2x1) − 1

2φ1(2x1 − 1). 
It is straightforward to check that ϕ1 is continuous and bounded, and ϕ1(0) = 1. By 
Lemma 5.3, ϕ1 is positive definite. But it is clear that ϕ̂1(0) = 0. Now through the tensor 
product we define

ϕ(x1, x2) = ϕ1(x1)ϕ2(x2). (5.25)

Using Lemma 5.3 again, one can check that ϕ is also positive definite. But ϕ̂(0) = 0. 
That is, ϕ is vanishing.

As summarized in Remark 5.2 the nonvanishing property is key in Theorem 5.4 for 
providing great flexibility for the choice of direction vector p. On the other hand, Ex-
ample 5.2 confirms the existence of positive definite but vanishing functions, and such 
functions do not reach the requirement of Theorem 5.4. As such, for the vanishing case 
we need to address what direction vector p is eligible for the SACT sampling.

5.5.2. The SACT sampling result when ϕ is positive definite and vanishing
Now it is ready to establish the fifth main result in the following Theorem 5.6. On the 

generator, the difference between the Theorem 5.6 and Theorem 5.4 is that the generator 
ϕ here is vanishing here, namely, ϕ̂(0) = 0 while that in Theorem 5.4 is nonvanishing. 
The following definition will be necessary for Theorem 5.6.

Definition 5.1. Let ϕ : R2 → C be positive definite and compactly supported. For x0 ∈ R2

such that ϕ̂(x0) > 0, as in Definition 4.2, δϕ̂
x0,max ∈ (0, ∞] is supposed to be the maximum 

value such that ϕ̂(x) > 0 for any x ∈ D̊(x0, δϕ̂
x0,max). Denote the nonzero set of ϕ̂ by Gϕ̂

such that ϕ̂(x) > 0 for any x ∈ Gϕ̂. As in Definition 4.3, define

DVϕ̂ =
⋃

x∈Gϕ̂

dvD̊(x,δϕ̂
x,max), (5.26)

where dvD̊(x,δϕ̂
x,max) is defined via Definition 4.2.

Theorem 5.6. Suppose that ϕ : R2 −→ C is compactly supported, continuous, positive 
and vanishing such that supp(ϕ) ⊆ [N1, M1] × [N2, M2], its Sobolev smoothness ν2(ϕ) >
1/2 and ϕ̂(0) = 0. Moreover, f ∈ V (ϕ, Z2) is an arbitrary source function such that 
supp(f) ⊆ [a1, b1] ×[a2, b2]. As previously, define E = {k1, . . . , k#E} =

{[
�a1−M1	, 
b1−

N1�
]

×
[
�a2 − M2	, 
b2 − N2�

]}
∩ Z2, and
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E+ =
{

∅, #E = 1,

{x − y : x 
= y ∈ E}, #E > 1.
(5.27)

Then f can be determined uniquely by its SA Radon (w.r.t. p) samples at {pk1, . . ., 
pk#E}, where p is an arbitrary direction vector from DVϕ̂ \ dvNE+ , with dvNE+ defined 
in Definition 4.1.

Proof. It has been proved in the proof of Theorem 4.5 that DVϕ̂ \ dvNE+ is not empty. 
Since the only difference between the generator ϕ here and that in Theorem 5.4 is the 
vanishing property ϕ̂(0) = 0, we simplify the proof and focus on something related to the 
difference. Firstly, since ν2(ϕ) > 1/2 then it follows from Proposition 2.3 (2) that Rpϕ is 
continuous for any p. Secondly, for the case that #E > 1 as in the proof of Theorem 5.4
one can check that for any direction vector p ∈ {(cos θ, sin θ) : θ ∈ [0, 2π)} \ dvNE+ , we 
have pkl 
= pkn for any l 
= n ∈ {1, . . . , #E}. Then item (iii) of Theorem 5.1 holds. Now 
we focus on the proof that R̂pϕ ≥ 0 and R̂pϕ 
≡ 0 for any p ∈ DVϕ̂. By ϕ̂ ≥ 0 we have 
R̂pϕ(ξ) = ϕ̂(pT ξ) ≥ 0 for any p ∈ DVϕ̂. Since p ∈ DVϕ̂, it follows from Proposition 4.2
(2) that Rpϕ 
≡ 0. Then item (i) of Theorem 5.1 holds. Now by Theorem 5.1, the proof 
is completed. �
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