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The abundance of refractory elements in giant planets can provide key insights into
their formation histories'. Owing to the low temperatures of the Solar System giants,
refractory elements condense below the cloud deck, limiting sensing capabilities to
only highly volatile elements?. Recently, ultra-hot giant exoplanets have allowed for
some refractory elements to be measured, showing abundances broadly consistent
with the solar nebula with titanium probably condensed out of the photosphere®*.
Here we report precise abundance constraints of 14 major refractory elements onthe
ultra-hot giant planet WASP-76b that show distinct deviations from proto-solarand a
sharp onset in condensation temperature. In particular, we find nickel to be enriched,

apossible sign of the accretion of the core of a differentiated object during the
evolution of the planet. Elements with condensation temperatures below 1,550 K
otherwise closely match those of the Sun® before sharply transitioning to being
strongly depleted above 1,550 K, which is well explained by nightside cold-trapping.
We further unambiguously detect vanadium oxide on WASP-76b, amolecule long
suggested to drive atmospheric thermal inversions®, and also observe aglobal east-
west asymmetry’ inits absorption signals. Overall, our findings indicate that giant
planets have a mostly stellar-like refractory elemental content and suggest that
temperature sequences of hotJupiter spectra can show abrupt transitions wherein a
mineral species is either present or completely absent if a cold trap exists below its
condensation temperature®,

We observed three transits of the ultra-hot Jupiter WASP-76b (ref. 9)
using the M dwarf Advanced Radial velocity Observer Of Neighbor-
ing eXoplanets (MAROON-X) high-resolution optical spectrograph™®
at the 8.1-m Gemini North Observatory in Hawaii. With a continuous
wavelength coverage between 490 and 920 nmataspectral resolution
of A/AA1= 85,000, MAROON-X is well suited for investigating atomic
species in planetary atmospheres. Two transits of WASP-76b were
observedon3and12September 2020 and a third transit on 28 October
2021. Each transit observation consists of a time series of between 36
and 47 high-resolution spectra, each with integration times between
5and 8 min.

The observed spectra contain contributions from WASP-76b (the
planet), WASP-76 (the host star) and from the atmosphere of the Earth.
The last two dominate the spectra and must be removed to uncover
the comparatively much fainter planetary signal. We achieve this by
using a principal component analysis (PCA)-based algorithm that
removes the relatively stationary-in-velocity stellar (<1 km s™) and
telluric (0 km s™) contributions from the data while leaving the rapidly
Doppler shifting (about 100 km s™) planetary signal largely unaffected

(see Methods and Extended Data Fig. 1). To uncover the atmospheric
signature of WASP-76b, we cross-correlate the resulting cleaned-up
spectra with transit-model templates as a function of radial velocity.
Ifamodel matches the datawell, the cross-correlation function (CCF)
of each in-transit spectrum should peak at the exact Doppler shift
matching the orbital velocity of WASP-76b at that moment". Viewing
the cross-correlation as a function of time should then produce a trail
thatis centred at the velocity of the system (V) with aslope matching
theradial velocity semi-amplitude of WASP-76b (K,,). The CCFs ateach
phase canthen be summed for different configurations of K,and V,, to
produce two-dimensional signal-to-noise maps for agiven atmospheric
model.Ifaspeciesisdetectedin the atmosphere of WASP-76b, astrong
peak will be observed in the resulting map near the expected K, and
V,s- We repeat this cross-correlation process using model templates
containing absorption lines of only a single metal, ion or molecule
(Extended DataFig. 2) atatime to produce achemicalinventory of the
atmosphere of WASP-76b.

We detect Fe, Na, Ca’, Cr, Li, H, V, VO, Mn, Ni, Mg, Ca, Kand Ba*in
the atmosphere of WASP-76b, as well as tentatively detect O and Fe*,
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Fig.1|Cross-correlationresults for species detected in the atmosphere of
WASP-76b. In each panel, the signal-to-noise velocity map of anelement is
shown, with the black cross indicating the expected location of the signal
assumingasymmetric planet with astatic atmosphere. Deviations from the

providing an unprecedentedly complete measurement of the chemical
inventory of agas giant planet (Fig.1). We also notably do not find evi-
dence of absorption from neutral or oxidized titanium (Extended Data
Fig. 3), despite being highly sensitive to those species if they were in
chemical-equilibrium abundances. The observed presence or absence
of these species provides us with key insight into the conditions of the
highly irradiated atmosphere of WASP-76b. Vanadium oxide (VO), in
particular, is a strong optical absorber that has long been sought in
ultra-hot Jupiter atmospheres owing to its theorized role as a driver
of thermal inversions®. We detect the VO signal in all three individual
MAROON-X transits and also with an independent analysis of two
ESPRESSO transits of WASP-76b (see Methods and Extended DataFig. 4).
Our detection thus confirms that VO is present in hot Jupiter atmos-
pheresasasource of atmospheric heating, alongside other shortwave
absorbers, such as H" and atomic metals™. Especially in the absence
of titanium oxide, another highly potent optical absorber presentin
some even hotter exoplanets®, the VO molecules are directly exposed
to theincoming short-wavelength stellar irradiation and become the
dominant optical broadband absorbers above the H continuum, add-
ing hundreds of Kelvins to the upper atmosphere of WASP-76b (ref. 14).
The detection of ionized barium, with an atomic number Z= 56, also
shows that, like Jupiter”, the atmosphere of WASP-76b is not notably
fractionated by mass. Furthermore, the combined presence of V/VO, Ca/
Ca*andFe/Fe"* provides a physicaland chemical thermometer wherein
the atmosphere of WASP-76b must have temperature regionsin which
these combinations of species can coexist, albeit potentially at differ-
ent altitudes and/or longitudes. Most detections are slightly offset in
velocity space from literature predictions for a symmetric and static
atmosphere, indicative of dynamical’ and chemical inhomogeneities™
and/or three-dimensional effects' on WASP-76b.

Beyond identifying which species are present in the atmosphere of
WASP-76b, we apply a high-resolution Bayesian atmospheric retrieval
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black crossinthe K-V, space can be indicative of chemical asymmetries and
dynamics on WASP-76b. Clear signals, many of which are slightly offset, can be
seen as bright-white blobs near the expected position for all 16 species shown.

framework" to the MAROON-X data and infer the presence of a strat-
osphere, bounded abundance constraints for 13 elements and mol-
ecules, as well as upper limits on several other species (see Extended
DataFig.5and Extended Data Table 1). We find that WASP-76b reaches
temperatures substantially hotter than its equilibrium temperature
of T, = 2,228 K assuming zero albedo’. The hot stratosphere is also
consistent with the presence of ionized species such as Ca*and Ba* at
high altitude (Extended DataFig. 6).

Comparingtheinferred elemental abundances on WASP-76b to host
star’® and proto-solar® values, we find that the abundances of Mn, Cr,
Mg, Ni, V, Ba and Ca all follow a remarkably similar trend, especially
whentakenrelative to Fe (Fig.2a). This agreement between chemically
unfractionated materials and planetary relative abundances spans
several orders of magnitude and sharply contrasts compositions of
highly differentiated bodies, such as the Earth’s crust®. This indicates
that the present-day atmosphere of WASP-76b, to the first order, has
asimilar refractory composition to the parent protoplanetary disk
from which it was formed, similarly to what was found for a subset
of these elements on another ultra-hot Jupiter, WASP-121b (refs. 3,4).
We measure the abundance of neutral alkali metals Li, Naand Kin the
photosphere of WASP-76b to be markedly sub-solar, whichis naturally
explained by their relatively low ionization potentials causing these ele-
mentstobe heavilyionized at the investigated temperatures and pres-
sures. Withtheir respectiveions (Li*, Na*, K*) lacking spectral features
because of not having any valence electrons, they cannot be remotely
examined with MAROON-X. This naturally leads to their abundances
being underpredicted from only considering their neutral forms and
therefore not being representative of the bulk atmosphere.

The ultra-refractory elements Ti, Sc and Al, on the other hand, are
severely depleted relative to proto-solar. Unlike alkali metals, these are
not expected to be notablyionized. Instead, with their higher condensa-
tion temperatures® (T,,,4), we conclude that a cold trap on WASP-76b
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Fig.2|Retrieved elemental composition of the atmosphere of WASP-76b
relative toiron. a, Elemental-abundance ratios relative to iron on WASP-76b
compared with proto-solar?, stellar'® and Cl chondrites?® compositions. Other
than alkali metals and ultra-refractories, elements in the atmosphere of WASP-
76b follow a notably similar trend as these primitive, unprocessed materials.
For comparison, we also show the crustal composition of Earth®, whichis
highly processed and—unsurprisingly—poorly represents the data. Alkali
metals are measured to be underabundant owing to being strongly ionized at
thelow pressures and high temperatures examined and thus probably do not
represent the true atmosphericabundance. b, Measured refractory abundance

must cause these highly refractory elements to be removed from the
gas phase of the upper atmosphere?. Indeed, the measured abundance
ratios relative to solar show a steep transition, with elements having
condensationtemperatures below about 1,550 K being roughlyinline
withsolarand elements with T, > 1,550 K being substantially depleted
(Fig. 2b). Such a cold-trap mechanism has also been proposed on the
similar ultra-hotJupiter WASP-121b (7, = 2,350 K) to explain the lack of
Tiand TiO (refs. 3,4). Measuring a wide range of refractory abundance
ratios in other giant exoplanets progressively hotter and colder than
WASP-76b will be necessary to better understand the condensation
sequence of mineral speciesin exoplanet atmospheres and indirectly
examine cloud compositions?*?. For example, if nucleation is efficient
inhotJupiter atmospheres, we may expect their transmission spectra
to show sharp transitions as mineral species are depleted one by one
as a function of their condensation temperature®. Similarly, hotter
planets would progressively ‘unlock’ elements, as in the case of the
similar but even warmer ultra-hot Jupiter WASP-189b (T, = 2,650 K),
which shows absorption from Ti and Sc species®. On the other hand,
the condensation sequence of different mineral species is probably
less straightforward, given that heterogeneous nucleationis strongly
dependentontheavailability of cloud seed particles, their nucleation
rates® and their gravitational settling timescales®. Identifying and
quantifying similar abundance transitions at which species become
depletedinrelationtotheir condensation temperatures will also serve
as anindirect exploration of the nightside temperature profiles of
hotJupiters®.

Although most elements on WASP-76b are either consistent with
proto-solar and stellar abundances or substantially depleted owing

ratiosinthe atmosphere of WASP-76b relative to proto-solar. The atmospheric
enrichment of WASP-76b is near proto-solar (blue line) for elements with
condensationtemperatures up toabout1,550 K, before sharply transitioning
and showing orders of magnitude depletion levels. With their higher
condensation temperatures, ultra-refractory elements (Ti, Sc, Al) probably
seem depleted because of being cold-trapped on the colder nightside of the
planet. Fromthe near-proto-solar abundance of V/Ba/Caand severe depletion
of Ti/Al/Sc, we can constrain the cold-trap temperature to be between roughly
1,520and 1,580 K. All error bars represent 1o uncertainties.

to ionization/condensation, Cr, Ni and V do show differences at the
approximately 2-3olevel, even when using different model parameteri-
zations (Extended Data Fig. 7). If representative of the bulk envelope,
abundance ratios that deviate from proto-solar/stellar can shed light
onto the composition of materials accreted during the formationand
evolution of WASP-76b. For example, one possibility is that WASP-76b
accreted anotable proportion of differentiated, non-solar-like material
throughout its history. To quantify this hypothetical scenario, we use
atoy model that calculates the final abundancesin the atmosphere of
WASP-76b post-accreting a body with a given composition and mass
(see Methods). We find that measured refractory elemental ratios
can be reasonably well matched if, for example, WASP-76b accreted
Mercury-like material with a total mass halfthat of Earth (see Extended
DataFig. 8). If caused by a single accretion occurrence, such an event
during the evolution of WASP-76b could resemble the giant collision
that Jupiter has been considered to have undergone to explain its
diluted core”. However, we notably are unable to perfectly match all
measured abundance ratios on WASP-76b with the scenarios explored
by our model (see Methods), highlighting the importance of precisely
measuring a wide range of elements to help constrain the composi-
tionof any accreted material. We also cannot rule out that the inferred
non-solar elemental-abundance ratios are instead the result of other
physical or chemical atmospheric processes. For instance, if Nispectral
lines examine deeper, colder atmospheric layers on average, it may be
that all other species are slightly more ionized, making Ni seem more
abundantincomparison. Meanwhile, Crand V could plausibly also seem
underabundantbecause of being partially condensed® or partly bound
inother compounds (forexample, CrO, VO,; see Extended Data Fig. 6).
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Fig.3|Rest-frame absorptionsignals on WASP-76b. a, Cross-correlation
signature of iron absorption showing aleftward ‘kink’ (dotted white line)

occurring during transit. The dark trail represents the absorption signature of

the planet, whichis only present during the transit event. The dashed black
linesrepresentingressand egress contact points, whereas the grey-shaded
areaisaregioninradial velocity space not considered in the analysis owing to
overlapping with the stellar Rossiter-Mclaughlin effect ‘RM mask’ region).
Auniformand staticatmosphere on WASP-76b would produce an absorption
trail centred at zero. Instead, the planetary signature is kinked, starting ata

Doppler shift close to zero and becoming progressively more blueshifted during
thefirsthalfofthetransit before holding steady. b, Same asabut for other species

includedintheretrieval excludingiron (Na, K, Li, Mn, Cr, Mg, Ni, V, VO, Ba*, Ca
and Ca*), alsoshowing asimilar asymmetric absorption trace (see Extended
DataFig. 9 for theindividual contribution of each species). The asymmetry of

thesignalis notunique toiron, indicating thataglobal process affecting many
elements similarly, such as an uneven temperature or distribution of clouds on

the easternand western limbs of WASP-76b, is causing this behaviour.

Finally,the MAROON-X data also show a ‘kinked’ signal in the phase-
resolved absorption of bothiron and other speciesin the atmosphere
of WASP-76b, with the absorption trails being progressively more
blueshifted over the first half of transit before holding steady (Fig. 3).
Previous observations of WASP-76b showing such akinkiniron absorp-
tion were interpreted asiron condensing out of the atmosphere from
the dayside to the nightside as the cooler morning terminator rotated
into view’. Given that we detect several species with differing conden-
sation temperatures that all behave similarly (see also Extended Data
Fig.9), we conclude that, instead of rainout, a global process affecting
most species systematically must be responsible. We thus argue that
asubstantial temperature asymmetry' and/or unevenly distributed
high-altitude optically thick clouds® between the east and west termi-
nators of the planet are more probable explanations. Inthese scenarios,
most of the signal originates from the east terminator of WASP-76b, with
contributions from the western limb damped resulting from a smaller
scale height and/or clouds®. Although condensation ofironand other
species may indeed be occurring from the dayside to the nightside, it
isunlikely to be the sole cause of the observed asymmetric absorption

trails of species in the atmosphere of WASP-76b.
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Methods

MAROON-X observations of WASP-76b

WASP-76bis a tidally locked ultra-hot Jupiter orbiting the F7-type star
WASP-76 (V=9.5, T, = 6,329 £ 65 K). Withashort orbital period of only
1.81 days, WASP-76b has a mass slightly less than that of Jupiter
(0.894*0:014 M) butaradius thatis much larger (1.854:0-07; R,,,,)’. We
used the MAROON-X spectrograph to obtain three continuous time
series observations of WASP-76b asit transited its host star. The obser-
vations were part of Gemini North programmes GN-2020B-Q-122
(principalinvestigator:S.P.) and GN-2021B-Q-138 (principal investiga-
tor: F.D.). MAROON-X covers the full 491-678-nm wavelength range
across 34 spectral ordersinits ‘blue’armand the full 647-921-nm wave-
length range across 28 spectral ordersinits ‘red’arm. As the detectors
in the blue and red arms have different readout times, we integrated
on the blue arm 40 s longer per exposure to maintain a constant
cadence for the first two transits. The third transit maintained a fixed
exposure time of 480 s for both channels. With the exception of the
first transit, which misses the first 2-3 min of ingress, all three nights
cover the entire transit, including start and end baseline, all under
photometric sky conditions. For the analysis, we use the most up-to-date
full-orbital solution’, revised with the latest ephemeris from TESS>..
WASP-76 is part of a binary system*?, with a companion near the limit
ofthe 0.77” field of view of MAROON-X. However, as the companion is
effectively stationary in velocity space over the course of the observa-
tions, any starlight contamination is removed along with the primary
star during the data detrending.

Datareduction and detrending
We used the standard MAROON-X pipeline® to extract detector images
into one-dimensional wavelength-calibrated spectra, order by order for
eachexposure. The pipeline outputs a Ne, X Noder X Npixes high-resolution
spectral time series for each channel of each transit sequence, with
Nexpr Norderand N being the number of exposures, number of spectral
orders and number of pixels for each detector, respectively. The data
contain the stellar spectrum, absorption from the transiting planet,
Earth’s tellurics and noise. Our objective is to remove the stellar and
telluric contributions that dominate the observed spectra, without
removing the relatively much fainter planetary signal. This is possible
to achieve because the absorption features of WASP-76b experience
achange in radial velocity of about 100 km s™ over the duration of a
fulltransit, whereas telluricand stellar spectral lines remain relatively
stationaryinwavelength. We apply aPCA-based reduction algorithmto
remove allunwanted wavelength-stationary contributions and uncover
the atmospheric signature of WASP-76b. The data-detrending pro-
cedure broadly follows ref. 17, with some minor alterations. Here we
provide a summary of the steps applied to each order of the transit
time series independently.

1. Outliersinthe spectroscopic time series deviating by more than 5o
from the median of their spectral channel are flagged and corrected
through interpolation of neighbouring wavelengths.

2. All observed spectra are aligned in velocity space to remove both
the barycentric motion of Earth and the reflex motion of WASP-76.
This procedure ensures that stellar lines are well wavelength-aligned
and can be properly removed.

3. Blaze and throughput variations are removed by bringing each spec-
trumin the time series to the same continuum level. This consists of
firstdividing each pixel by its medianin time, smoothing the residuals
with alow-pass filter and then dividing the original spectra by this
filter>***, The smoothing is done by passing amedianbox filter with
awidth of 501 pixels that is subsequently convolved by a Gaussian
with a standard deviation of 100 pixels. The large box kernel width
and Gaussian standard deviation used relative to the 1.1 km s " average
velocity dispersion per pixel of MAROON-X are necessary to avoid
altering the signal of the exoplanet®.

4.Each spectrum is divided by a second-order polynomial fit of the
median of all out-of-transit exposures.

5. APCAreconstruction of the first ten principal components summed
isdivided out of each spectrum. The choice to remove ten principal
componentsisrelatively arbitrary, as removing anywhere between
approximately three and 20 components does not markedly change
our results. At least a few must be removed to properly eliminate
stellar and telluric contributions, but too many would remove the
atmospheric signal of the planet.

6. Spectral channels that have a standard deviation greater than four
times that of the median of their spectral order are masked and re-
moved from the analysis.

7. Anuncertainty of the form g, = (aF, + b)°*is estimated for every flux
value. Here F, is the measured flux for each data point n, whereas a
and b arefitted through alikelihood minimization of the data residu-
alsafteraPCAreduction. Thisis the same procedure usedinrefs. 3,35,
to which thereader is referred for more details.

An overview of these steps applied on an example spectral order
isshown in Extended Data Fig. 1. Although not all spectral orders are
equalintermsof telluricand stellar line content, and may benefit from
different levels of detrending, we refrain from optimizing the number
of principal components removed in each order so as to notintroduce
further degrees of freedom that could potentially bias the analysis®**.
The 760-770-nmwavelength range dominated by deep telluric absorp-
tionis masked out and not considered in the analysis. The telluric-free
and stellar-free cleaned dataresiduals and their associated uncertain-
tiesare then used to uncover the atmospheric trace of WASP-76b hidden
in the noise by means of cross-correlation with atmosphere models.

Atmospheric modelling

To properly study the atmosphere of WASP-76b, it is crucial to have
a representative model. For our analysis, we generate synthetic
high-resolution transmission spectra using the SCARLET frame-
work”*®*with cross-sections computed using HELIOS-K (https://chal-
dene.unibe.ch/)**. Opacities used for thiswork include AlO (ref. 45),
CrH (refs. 46,47), K (ref. 48), Na (ref. 49), TiO (ref. 50), VO (ref. 51) and
all other atoms and ions available in the VALD*, Kurucz®® or NIST**
databases. Our main results use the VALD database, but we use the
Kuruczand NIST databases to verify the retrieved refractory abundance
ratios (Extended Data Fig. 7a). The absorption cross-sections for a
subset of these species that are of interest for this work are shown in
Extended DataFig. 5. Although the atomic cross-sections do notinclude
pressure broadening (other than Na and K), this is unlikely to have a
notable impact owing to low (sub-millibar) pressures at which metal-
liclines are investigated in this dataset. SCARLET models also include
collision-induced absorption from H,-H, and H,-He interactions®,
aswell as Rayleigh scattering®. An optically thick grey cloud deck ata
freely parameterized cloud-top pressure P.is also included. Although
H~is probably the dominant continuum opacity source on WASP-76b,
because H™ opacity®** is nearly flat over the MAROON-X bandpass
(Extended DataFig.2) and therefore affects modelled spectrasimilarly
to a cloud deck, we opt to fit for P, rather than H because of its more
easily interpretable effect on the resulting transmission spectrum. We
use H,, He and H asfiller gases such that the volume-mixing ratio of all
speciesincluded inthe model always sumto oneinevery atmospheric
layer. The relative amounts of H,, He and H added depend on the tem-
perature-pressure profile and is determined using FastChem®®, with H,
typically being most abundant deeper in the atmosphere and H domi-
nating at higher altitudes (see Extended Data Fig. 6b). Accounting for
the transition between atomic and molecular hydrogenis important,
asit traces anotable change in mean molecular weight in the atmos-
phere.Models are generated ataresolution of R = 250,000 over the full
MAROON-X wavelength range and later broadened to theinstrumental
resolution of R =85,000.
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Cross-correlation analysis

We performaclassical cross-correlation analysis to search forindividual
speciesinthe atmosphere of WASP-76b. Given cleaned dataresidualsd,,
with uncertainties o, (see Extended Data Fig.1) and amodel transmis-
sion spectrum m,, the cross-correlation function is defined as

CCF(v) = Y M)

n ofl

andis calculated at agiven radial velocity shift (v) for each spectrum of
the time series by summing over every wavelength bin (n). Computed
forawiderange of velocities and summing all spectral orders, this pro-
ducesa CCF time series inwhich the absorption from the atmosphere
ofthe planet should follow a distinct trail along the expected orbital
path™. One canthenintegrate in time by phase-folding the data, sum-
ming contributions fromall exposures for different combinations of
K,and V,, effectively generating a velocity-velocity map that should
produce a peak near the known position of the planetif the modelled
atmosphere matches the true signal (see Fig.1). Deviations from the
expected K, and V,,, may then be indicative of dynamical or asym-
metric chemical processes at play in the atmosphere of WASP-76b
(ref. 13). Signal-to-noise values for a given map are computed by
dividing summed CCF values by the standard deviation of all values
away from the expected position of the signal of WASP-76b. As in
previous work for this target®, values falling within 10 km s™ of V,,
are masked out (see Fig. 3) and not included in the CCF or retrieval
analyses to avoid contamination from the Rossiter-McLaughlin
effect®°,

Bayesian inference framework

Although a cross-correlation analysis is the method of choice for inves-
tigating whether a given element or molecule is present in the atmos-
pherebeing examined, it provides only limited quantitativeinformation
on their abundances. We detect iron on WASP-76b for example, but
how much ironis there? To further characterize the atmosphere of
WASP-76b, we perform a Bayesian high-resolution retrieval analysis
using the likelihood prescription of refs. 3,35 given by

_ 2
In(L) = - };ln[i’ y (d"";’"")]

in which Nis the total number of data points and a is a model-scaling
parameter. We do not include a noise-scaling term 3, which has a
negligible impact on large, well-behaved datasets™.

To accurately infer atmospheric parameters, we mimic the effects
that boththe rotation of WASP-76b and the reduction steps applied to
the data have onthe underlying signal to the model. For this, the model
m, is convolved with a rotational broadening kernel assuming tidally
locked rotation, projected in time for a given combination of K, and
Vs and multiplied by a stellar quadratic limb-darkening model. We
follow the approach outlined inref. 61to compute the limb-darkening
model (see their equations16-22) but assume the planet to be uniform.
We use an impact parameter b = 0.027 and quadratic limb-darkening
coefficients i, = 0.393 and p1, = 0.219 (ref. 7). The model is then injected
intheremoved PCAreconstruction of the data (step 5of the datareduc-
tion) and the PCA algorithm is run once again on this mock dataset
including the injected model”. The output is a modified m, better
representative of what we would expect the true signal to be after the
application of the detrending algorithm. This modified m, is used as
aninput to the equation and ensures that accurate parameters can
beinferred®>,

For the retrieval, we fit the log volume-mixing ratio (log,.y, prior
between-14 and 0) of all 20 species simultaneously, making no a priori
assumptions on the chemistry and instead setting abundances to be

uniform in pressure. We also simultaneously fit for the temperature
structure (T,—T,, prior between 0 and 7,000 K), log continuum pres-
sure (log,,P., prior between -8 and 2 bar), log scale factor (log,,a, prior
between-2and2)and orbital and systemic velocities K, (prior between
166.5and 226.5 km s™) and V, (prior between-21.1and18.9 kms™). The
temperature—pressure profile is freely fit as parameterized in ref. 17
(see their equation 11) using ten temperature points uniformly distrib-
uted in log pressure between 107° (7,,) and 1 (T,) bar and a smoothing
prior o,=160 K dex . All parameters are fit simultaneously to ensure
that all degeneracies are marginalized in the parameter inference®.
The Bayesian inference and parameter exploration is done using the
emcee® Markov chain Monte Carlo Python package. We run the Markov
chain Monte Carlo for 30,000 steps with 200 walkers and use the last
10,000 steps (2,000,000 samples) to compute posterior distributions.
The retrievals are computationally expensive, needing approximately
three months to run when using 18 CPU cores in parallel. We test con-
vergence by using the Gelman-Rubin diagnostic for each chain. We
also supplement our retrieval with the white-light-curve transit depth
fromexisting HST/STIS data® toanchor models at the correct planetary
radius.

To estimate total elemental abundances in the atmosphere of
WASP-76b, vanadium is calculated from the sum of Vand VO, titanium
from Tiand TiO, calcium from Caand Ca*, chromium from Crand CrH,
aluminium from Al and AlO, barium from Ba* and other species from
their neutral forms (for example, magnesium from Mg). In most cases,
the speciesincluded in the retrieval make up the dominant portion of
the expected chemical inventory at the pressures studied (Extended
DataFig. 6). We note that a limitation of our atmospheric model is
thatitdoes notaccount for abundance variations in pressure owing to
ionization, which can potentially bias inferred volume-mixing ratios, as
is evidently the case for the alkali metals. For example, iron may seem
less abundant than in reality because of partial ionization, especially
giventhe tentative Fe*signal observed in the data—although this signal
probably originates from higher altitudes than those examined by
neutral Fe. Similarly, retrieved abundances might be underestimated
owingto partial condensation or from not considering further species.
Forexample, Vand Ti may be partly bound in VO, and TiO, molecules
that we cannot measure because of the lack of suitable line lists®®.

We note that the retrieved velocity parameters are driven by the
strongest absorber (that is, Fe) and that other species can have small
relative offsets in K, and V.. However, we refrain from fitting K, and
Vs freely for each species to obtain meaningful abundance ratios. The
extreme examples, H, O and Fe*, are excluded from the retrieval as their
peaks are substantially offset from the other detected species (Fig.1),
potentially because of strong vertical winds or outflows***, Similarly,
some absorption featuresinvestigate up to non-hydrostaticlayers of the
atmosphere**® (for example, Ca*) and may not be well represented by
ourmodel, which could bias the abundances we retrieve. We also note
thatour retrieval isbased ona one-dimensional atmospheric model and
only captures average properties of the inherently three-dimensional
planet, which could result in further biases of inferred parameters®’.
However, ref. 61shows that the retrieved iron abundance on WASP-76b
from one-dimensional retrievalsis roughly consistent with results from
two-dimensional retrievals. Nevertheless, we chose not to overinterpret
retrieved absolute abundances and rather focus on relative abundance
measurements, which canbe constrained much more precisely and are
less sensitive to systematic biases>.

We recover orbital velocity parameters K, =180.7 + 0.6 km s and
Vs ==7.0 £ 0.1km s™. The discrepancy between these and the known
literature values results from the planetary rotation, day-to-night
atmospheric winds and an artefact of fitting a kinked absorption trail
with a traditional planetary orbit and should be interpreted as an
indicator of an asymmetry in the eastern and western limbs of
WASP-76D (ref. 7). Similarly, the retrieved continuum pressure level
(inbar) oflog, P, = -2.21*927 and temperature profile are an average



of both hemispheres, when—inreality—this value is probably different
on each terminator®’, We also recover a scaling factor of a = 0.52:3-95,
which may be decreasing the amplitude of the models to compensate
for an evening terminator signal that is damped owing to a colder
temperature and/or clouds'®?**, The retrieved temperature profile
is consistent with previous findings of the upper atmosphere of
WASP-76b being hotter than expected from model predictions®®¢-¢8¢,
We estimate the total refractory metallicity of WASP-76b (that is, the
sumof all retrieved absolute abundances) tobelog, (3 X;) =-3.45'037
slightly enriched relative to both solar® (+0.62 dex) and stellar™®
(+0.28 dex) compositions (Extended Data Fig. 5b). We further test the
robustness of our results by performing separate retrievals using both
differentline lists and temperature-structure parameterizations. We
find that, regardless of the atomic line lists used (VALD®, Kurucz® or
NIST**) and assumed temperature-pressure profile form (free”, Guil-
lot’ or isothermal), the inferred elemental-abundance ratios are all
relatively consistent (Extended Data Fig. 7a). However, we warn that
fitted temperature profiles with less flexibility can lead to the shape
of the temperature structure being overconstrained (Extended
Data Fig. 7b).

Notable non-detections

We notably do not detect Ti, TiO, Ti*, V¥, Sc, CrH, AlO or Al (Extended
Data Fig. 3). A previous analysis of ESPRESSO data® has also shown
Sr"and Co detections on WASP-76b; however, MAROON-X does not
cover the bluer wavelengths at which these species have most of their
absorption features. We therefore cannot confirm or exclude their
presence in the atmosphere of WASP-76b owing to lack of sensitiv-
ity. Onthe other hand, MAROON-X can very effectively investigate Ti,
TiO, Sc and AlO. The absence of detections and derived strict upper
limits for these species indicate that they are indeed depleted from
the upper atmosphere of WASP-76b. Given that Ti, Sc and Al com-
pounds all seem to be heavily underabundant, and that these ele-
ments have a higher condensation temperature than other metals
that are readily detected, we concluded that these species must be
condensed out of the upper atmosphere and be cold-trapped on the
nightside.

VO detection

The detection of VO on WASP-76b is, to our knowledge, the first time
this molecule has been unambiguously observed using high-resolution
spectroscopy on an exoplanet. VO, along with TiO, have long been
theorized to be drivers for thermal inversions in ultra-hot Jupiter
atmospheres owing to the very strong opacity of these molecules at
optical wavelengths®” (see also Extended Data Fig. 2). Despite this
interest, VO has proved to be notoriously difficult to robustly detect
in exoplanet atmospheres. For example, VO was tentatively observed
on a different ultra-hot Jupiter, WASP-121b (refs. 72-74), but further
observations later refuted this claim™ 7. The ambiguity arises because,
at low resolution, the broad absorption bands of VO can be hard to
distinguish from other opacity sources or from systematic noise in the
data**”, High-resolution spectroscopy can mitigate these difficulties,
butis also more sensitive to the accuracy of the theoretical opacities
used to generate the modelled spectra’. Owing to the most up-to-date
high-temperature VO linelist being known to haveinaccuracies in some
wavelength ranges’®°, we confirm our results using an independent
analysis method applied on a different dataset. We analysed existing
WASP-76b ESPRESSO® transit data’ (programme 1102.C-744) using the
same methodology outlinedinref. 13and also recover aclear VO detec-
tion (Extended DataFig. 4b). This means that the VO signal on WASP-76b
isespecially strong such that we are able to detect it, even with animper-
fectlinelist. Wewarnthat ourinferred abundance of VO is only as good
as the cross-sections used, which may bias our results®2. We note that
anew VO linelist s, at present, being computed by the ExoMol group
(J. Tennyson, private communication), which—once released—may

increase our capabilities of detecting VO on other less favourable
exoplanets.

Accretion model

Weexplore theoretical scenariosin which the atmospheric composition
of WASP-76b may have been enriched by the accretion of non-solar,
differentiated materials. For this, we build a chemical composition
toy model that takes the following parameters as input: the envelope
mass of WASP-76b, its pre-merger volatile and refractory abundances
and the accreted body’s core and mantle masses and their chemical
composition. The model then outputs the predicted post-merger
atmospheric composition, assuming the accreted body is well mixed
into the envelope of WASP-76b and to the low pressures examined
by these data (for example, through strong winds both predicted by
general circulation models®? and observationally inferred® to exist on
WASP-76b). The chemistry of the core of the accreted object is sampled
from the range of abundances found in iron meteorites®, which are
thought to be representative of the core composition of Mercury®*.
For the mantle, we explore different chemical compositions, namely
those of Clchondrites?®, CB meteorites® and the surface of Mercury®*.
On the basis of a thorough exploration of parameter space, we find
no single model that perfectly matches all of the observational data.
Models accreting at least about 0.1-0.5 Mg, (Mg being the mass of the
Earth) of purely iron-meteorite-like material (resembling the core of
Mercury) can fit well Cr, Mg, Ni, V and Ba but not Mn or Ca. Adding
material representative of the surface of Mercury on top allows us
to fit Ca as well without losing the other good fits but not Mn, whose
abundanceintheaccreted materials is always toolow and thusis never
fitted. Keeping theiron corebut accreting asolar-composition mantle
insteadis practically identical to the pure-core case. The assumed initial
C/O ratio and metallicity of the parent-body atmosphere only affect
the mass needed to be accreted to match observed abundance ratios
and otherwise have noimpact on the final composition. The accreted
mass is inversely correlated with the abundance of Niin the accreted
material, in which assuming a high Ni abundance decreases the total
mass necessary to obtain the same enrichment levels. We note that,
although our model assumes the enrichment of WASP-76b to have come
from a single accreted body, other scenarios in which the equivalent
material instead originated from upwards dredging of a dilute core®**”
or aninflux of smaller comets and meteorites are similarly plausible.

Data availability

The MAROON-X data used in this work are available at https://
udemontreal-my.sharepoint.com/:f:/g/personal/stefan_pelletier_
umontreal_ca/EKYThK-JMKFHIclyx7RnlIABySi6V60HuUZCOc_9m6LfE6
Q?e=vGErBT. The ESPRESSO data used to confirm the VO detection are
publicly available on Dace (https://dace.unige.ch/dashboard/). Source
data are provided with this paper.

Code availability

The MAROON-X reduction pipeline® used by the instrument team to
perform the data extraction is public software available from Gemini
at https://github.com/GeminiDRSoftware/MAROONXDR. The atmos-
pheric modelling and retrievals use SCARLET#°, HELIOS-K** (https://
helios-k.readthedocs.io), FastChem®® (https://github.com/exoclime/
FastChem), emcee®* (https://emcee.readthedocs.io/en/stable/) and
corner.py® (https://corner.readthedocs.io/en/latest/). The ESPRESSO
data analysis was performed using Tayph®® (https://github.com/Hoei-
jmakers/tayph). The main analysis routines written for this work and
using the astropy®**°, matplotlib®, numpy®, scipy®® and scikit-learn®*
Python libraries are available at https://udemontreal-my.sharepoint.
com/:f:/g/personal/stefan_pelletier_umontreal_ca/EmXMwsPp2JFCn
ckKJNWkf7ABrEomiSEqmadxK4Hofd71tQ?e=73Gblp.
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Extended DataFig.1|Datadetrending steps and noise model. a, Asingle removingall telluricand stellar lines, as well as the continuum, whereas the
MAROON-X spectral order for the 5.3-h transit time series obtained on12 noise model serves todownweighregions of the spectrum that are noisier. The
September2020.b, After continuum alignment. ¢, With the median out-of- end product of the datareduction (d) contains the planetary trace buriedin
transitspectrumdivided out.d, Post-removal of stellarand telluriccontaminants ~ noise and serves astheinputforthelater cross-correlation and retrieval
using PCA, with ten principal components removed in this case. e, The noise analyses.

modelused for anexample exposure. The reduction steps take care of
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Extended DataFig. 5|Retrieved constraints on the atmospheric and orbital
properties of WASP-76b obtained from three MAROON-X transits. a, Corner

plotofthe marginalized posterior distributions for the abundance of included

species, cloud-top pressure P, (in bar), scaling parameter a, temperature of

differentatmosphericlayers, Keplerian velocity K, and systemic velocity V.

Theshadedregionsrespectively depict the 39.3%, 86.5%, and 98.9% confidence

intervals.b, The sum ofthe volume-mixingratio of individual metals, ions and
moleculesincludedinthe model. The equivalent sums for solar and stellar
compositions (dashed lines) are also shown for comparison, with WASP-76b
being consistent with slightly (+0.28 dex) super-stellar. ¢, Theresulting vertical
temperature structure from the ten temperature points (7,-T,, black dots),
showing the presence of astratosphere.
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Extended DataFig. 6| Chemical-equilibrium predictions of the atmospheric
composition of WASP-76b. a, Theretrieved temperature-pressure profile
and cloud-top continuum pressure. b, Chemical-equilibrium-abundance
predictions®® forawide range of elements given theretrieved temperature-
pressure structure (a) and assuming a stellar atmospheric composition'®,
Measured abundances for WASP-76b at the estimated investigated altitudes
arealso shown for comparison. Mostrefractory species (for example, Fe, Mg,

volume mixing ratio volume mixing ratio

Ni, Mnand Cr) are not expected to be substantially ionized below the microbar
level and are relatively well approximated by a constant-with-altitude volume-
mixing-ratio model. With the exception of Vand Ti, most elements are only
expected tobeboundin molecular formintraceamounts. Alkali metals,
calciumand barium allionize more readily and have deep spectral features and,
thus, areexpected tobe substantially ionized at the lower pressures analysed.
Errorbarsandshaded regions representlouncertainties.
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Extended DataFig. 8| Accretion toy model exploring the scenario of WASP-
76baccretingabody with aMercury-like composition. a, The changein
enrichment of elemental-abundance ratios relative to proto-solar as afunction
oftheaccreted mass (V/Fe and Ba/Fe behave similarly to Mn/Fe and are not
shown for clarity). In this example, the accreted body has a core-mass fraction
0f1.95,amantle composition matching that of the surface of Mercury® and a
core composition 0f15% Niand predominantly Fe as the rest®>. The horizontal
blueline denotes a proto-solar composition and the vertical dashed lines show
the masses of Mercury, Mars and Venus for reference. If toosmallabody is

accreted (0.1 My) onto the initial 284 M of WASP-76b, the composition does
not change greatly from proto-solar.Iftoolargeabodyis accreted (=3 M),

the overall composition begins to change too exceptionally. Althoughall
abundance ratios require different masses to be perfectly matched under this
assumed enrichment material composition, the overall best fit occursifalarge
objectbetweenroughly the size of Mars and Venus isadded to WASP-76b.

b, Acomparisonbetween the dataand the toy model assuming anaccreted
mass of 0.5 Mg, in which the data points except Mn/Fe are reasonably well
matched. Allerror bars denote 1o uncertainties.
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Extended DataFig. 9 |Rest-frame absorption signals ofindividual species
onWASP-76b. Shownin each panel are the cross-correlation trails for the
species combined in Fig.3b. Despite their wide range in condensation
temperature, most species have asimilar ‘kinked” absorption trail as Fe (dotted
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whiteline), probablyindicatingthat condensationis not the sole culprit for the
asymmetric signature. One notable exceptionisionized calcium, which does
notshow such anasymmetry, probably because of Ca* triplethaving an
absorption depth consistent with analysing an escaping atmosphere’®.



Extended Data Table 1| Retrieved abundance constraints for species on WASP-76b

Element  log(x;)  log(xi/Xre) log(%) log(%) Trona > [K]
Na  —6.107037 —2.31701%  —1.06701;  —1.20%015 958
K —8.04103)  —4.257043  —1.857043  —1.90%0%% 1006
Li  —9.65%70% 5857021 —1.657520 - 1142
Mn  —5.70%03%  —1.91%01 014752 0.16702 1158
Cr  —6.157035 —2.35%013  —0.51101%  —0.55%01% 1296
CrtH <-924 < -552 < —3.68 < -3.71 1296
Fe  —3.79702 0 0 0 1334
Mg  —3.87%0% —0.08T931  —0.177037  —0.157033 1336
Ni  —4.547035  —0.73%32%  0.54701 0.5370:20 1353
Vo —7.80703%  _400018  _(.447020 - 1429
VO 8727030 —4.947012  —1.37703%8 - 1429
Ba  —9.07%03¢ 5271022 _0.07M03 - 1455
Ca  —7.07%03% 3287015 2117015 2187019 1517
Cat  —4.87704% —1.09701¢  0.07701% —0.0070:29 1517
Ti <-978 < —597 < —3.47 < —3.48 1582
Ti0O < -1010 < —6.32 < —3.83 < —3.83 1582
Tit <861 < —479 < =230 < -231 1582
Al < =777 < -=3.96 < —2.92 - 1653
A0 < -1067 < —6.88 < —5.84 - 1653
Sc <—11.67 < -7.88 < —3.56 - 1659

® Proto-solar
* Stellar
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