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ARTICLE INFO ABSTRACT

Editor: A. Schwenk We present the first lattice calculation of the nucleon isovector helicity parton distribution function (PDF) in the
framework of large-momentum effective theory (LaMET) that uses the hybrid scheme with self-renormalization.
We use ensembles generated by the MILC collaboration at lattice spacings a = {0.1207,0.0888,0.0582} fm,
with N, =2+ 1+ 1 flavors of highly improved staggered quarks at sea pion mass of M, ~ 315 MeV. We
use clover-improved action for our valence quarks with nucleon boost momentum P, ~ 1.75 GeV and high-
statistics measurements for the LaMET matrix elements. We perform an extrapolation to the continuum limit
and improve the handling of systematic errors using renormalization-group resummation (RGR) and leading-
renormalon resummation (LRR). Our final nucleon helicity PDF is renormalized in the MS scheme at energy
scale 4 =2.0 GeV. We compare our results with and without the two systematic improvements of RGR and LRR
at each lattice spacing as well as the continuum limit, and we see that the application of RGR and LRR greatly
reduces the systematic errors across the whole x range. Our continuum results with both RGR and LRR show a
small positive antiquark region for the nucleon helicity PDF as well as a change of as much as a factor of two
in the central values compared to results with neither RGR or LRR. By contrast, the application of RGR and LRR
only changes the central values by about 5% in the quark region. We compare our lattice results with the global
fits by the JAM, NNPDF and DSSV collaborations, and we observe some tension between our results.
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1. Introduction with even greater accuracy and help refine the global fits of the helicity
PDFs.
Progress in global fits has been made in extracting helicity PDFs

Parton distribution functions (PDFs) describe non perturbatively the ”
from experimental data by the DSSV [37], NNPDF [58] and JAM [34]

probability distribution of specific longitudinal momentum fractions,

x, of a hadron’s constituent quarks and gluons. Among them, helic-
ity PDFs provide information on the difference between the parton
having its spin aligned and opposite to the hadron’s spin. Experimen-
tally, great progress has been made in the study of nucleon helicity
PDFs through semi-inclusive deep-inelastic scattering and high-energy
muon scattering experiments, such as by the HERMES [13] and COM-
PASS [14,15] collaborations at DESY and CERN, respectively. Other
experiments, such as the STAR [6-8,12] and PHENIX [9-11] collabo-
rations which study proton-proton collisions at the Relativistic Heavy
Ion Collider (RHIC) are able to probe the antiquark contribution to the
helicity PDF. Future experiments such as those that have been proposed
at the Electron Ion Collider (EIC) [2-5,28] in the United States as well
as the Electron Ion Collider in China (EicC) [20] and the AMBER ex-
periment at CERN [60] will probe the spin structure of the nucleon
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collaborations. DSSV [37] showed that there is a positive antiquark re-
gion for the proton helicity PDF (Au(x) — Ad(x) > 0) as well as that
quarks and antiquarks only contribute up to one third of the pro-
ton’s spin. NNPDF [58] extended the proton helicity PDF calculation
to the small-x region for polarized gluons as well as performed a cal-
culation of the individual unpolarized light quark and antiquark PDFs.
JAM [34] determined that the contribution to the proton’s spin from
strange quarks is compatible with zero, which provided more informa-
tion about the total spin content of the proton. However, assumptions
often have to be made in the global analysis of helicity PDFs, such as
the antiquark region being zero, the functional form of the PDF, or
exact SU(3) flavor symmetry. Both the DSSV [37] and NNPDF [58] col-
laborations made the assumption As = Ay in their calculations. JAM
relaxed this assumption by including semi-inclusive deep inelastic scat-
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tering (SIDIS) data [34] but found that any deviation from zero was
unable to rise above background noise. While global fitting has the ad-
vantage of using experimental data from real events, it does not perform
a direct PDF calculation from the first principles of quantum chromo-
dynamics (QCD) and is limited by the quality of experimental data that
is available.

A direct calculation of PDFs became possible with the advent of
large-momentum effective theory (LaMET) in 2013 [49,50,52], which
allowed parton physics to be studied on the Euclidean lattice. By study-
ing the behavior of spatially separated correlators boosted to large
momentum, parton physics can then be recovered through perturba-
tive matching. The bare matrix elements extracted from the lattice

are hB(z,a) = <Pz u‘/(—g)FW(—g,%)y/(g) PZ>, where |P,) is a

hadron state at boost momentum P, in the z direction, W(—%, g) =

exp [ig f_zz/ /22 dz'A, (2 )] is the Wilson line connecting the two spacetime
coordinates (0,0,—z/2,0) and (0,0, z/2,0), y is the fermion field, and
I' is a Dirac structure which for helicity matrix elements is I'=y,y5. To
extract the ground-state matrix element, we use a two-state fit on the
two-point correlators and a two-sim fit on the three-point correlators,
following, for example, Ref. [36]. The extraction of the matrix element
can be visualized by plotting the ratio of the three-point and two-point
correlation functions at multiple values of source-sink separation fg,.
The ratio is observed to approach the computed ground-state matrix ele-
ment as f,,, increases. In addition, we vary the minimum and maximum
values of t,, (denoted by t;‘;g‘ and t;‘ég"), again following the example of
Ref. [36]. We find that the ground-state matrix elements are compatible
for these different values. This shows that excited-state contamination
is under control and not a significant source of systematic error. The
LaMET method has been used for a numerical determination of the nu-
cleon helicity PDF in Refs. [16-19,29,35,53-55]. The very first helicity
PDF calculation was done in 2016 [29] using 310 MeV pion mass at
lattice spacing a = 0.12 fm with boost momenta P, = {0.43, 0.86, 1.29}
GeV. Mass correction and one-loop matching was used to better align
the behavior of the quasi-PDF with that of the lightcone. This was the
first time the antiquark section had been studied and showed an asym-
metry u(x) > E(x). Soon after, there were many followup LaMET cal-
culations by different collaborations with different fermion actions and
even physical pion masses [16-19,33,35,53,54]. Most LaMET-method
helicity PDFs have been renormalized nonperturbatively only in the
RI/MOM and similar renormalization schemes [16,17,19,35,53,54].
The latest hybrid- or self-renormalization schemes [47,51] have not
been applied to the helicity PDF yet.

In this work, we make the first calculation of the isovector nucleon
helicity PDF using matrix elements renormalized in the hybrid scheme
with self-renormalization (HSR). The hybrid scheme was introduced in
Ref. [51] and the self-renormalization in Ref. [47]. We use this method
to address two sources of divergence in the matrix elements: the linear
divergence which arises from the self-energy in the Wilson line of the
bare matrix elements and the renormalon divergence which arises from
the asymptotic nature of the perturbation series. This is done by fit-
ting the matrix elements to a functional form derived from perturbative
QCD which has the added advantage of accounting for discretization
effects. It extracts the renormalization factor and the remaining non-
perturbative physics directly from the matrix elements. It also reduces
the dependence on lattice spacing a during the renormalization pro-
cess, which allows for a reliable extrapolation to the continuum limit.
These two sources of divergence can also be addressed using the hy-
brid scheme introduced in Ref. [51]. However, this method does not
account directly for discretization effects, and the removal of the linear
divergence in this scheme is a very delicate exercise and a significant
source of systematic error, as shown in Ref. [47]. The HSR method has
been used in the calculation of nucleon transversity PDFs [63] as well
as the calculation of pion and kaon distribution amplitudes [43,46]. In
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both cases, the HSR process greatly reduces the dependence on lattice
spacing compared with pure RI/MOM scheme.

We can further improve our calculation by augmenting both the
renormalization scheme and the lightcone matching with the methods
of renormalization-group resummation (RGR) [43,61,64] and leading-
renormalon resummation (LRR) [64]. RGR involves resumming the
large logarithms that arise from the difference in renormalization scale
and the intrinsic physical scale. The method involves setting the renor-
malization scale such that the logarithms vanish and then evolving
to the desired energy scale using the renormalization-group equa-
tion (RGE). The perturbation series also contains a renormalon diver-
gence [1], which is enhanced by the use of RGR on its own. We account
for this effect by including LRR in the calculations which resums the
series to account for the renormalon divergence. We present the first
application of these methods to the nucleon helicity PDF.

2. Self-renormalization in hybrid scheme

In this work, we use clover lattice fermion action for the valence
quarks on top of 2+1+1 flavors (degenerate up and down quarks plus
strange and charm quarks at their physical masses in the QCD vac-
uum) of hypercubic (HYP)-smeared [42] HISQ [23,38], generated by
MILC Collaboration. The lattice parameters include lattice spacings
a € [0.06,0.12] fm, pion mass M, ~ 310 MeV and M, L = 4.5. The
quark masses for the clover action are tuned to reproduce the light-
est sea HISQ pseudoscalar meson masses, and the clover parameters
are set to the tree-level tadpole-improved values. We carefully moni-
tor for signatures of exceptional configurations due to the non-unitary
lattice-QCD formulation of mixed-action approach and found excep-
tional configurations to be absent for these three MILC ensembles [23].
This mixed-action setup is the same as the one used in works done by
PNDME Collaboration in many studies of nucleon structure [24-26,41].

On the lattice, we calculate the time-independent, nonlocal matrix
elements stated in Sec. 1. We use Gaussian momentum smearing [22]
for the quark field. Such a momentum source is designed to increase the
overlap with nucleons of the desired boost momentum, and we are able
to reach higher boost momentum for the nucleon states. We use multi-
grid algorithm [21,59] in the Chroma software package [32] to speed
up the inversion of the quark propagator for the clover fermions. To
make sure excited-state contamination is under control, we measure at
least four nucleon three-point source-sink separations, and we perform
simultaneously two-state extraction of ground-state nucleon matrix ele-
ments. Details of our calculation parameters can be found in Table 1.

To renormalize the nucleon matrix elements for helicity PDFs, the
renormalization factors in the RI/MOM scheme [56] are calculated in
Ref. [65]. The real renormalization factors as a function of z are shown
in the leftmost panel of Fig. 1 while the imaginary ones are consistent
with zero for pf = 0 with lattice spacings a ~ {0.12,0.09,0.06} fm de-
noted by red circles, green squares and blue triangles, respectively. We
can see that the RI/MOM factor decays more quickly as a decreases
across the whole z range; this is due to the linear divergence becom-
ing more severe as lattice spacing decreases. The same behavior was
also observed by ETMC [16], in which the inverse renormalization fac-
tors in the RI’-MOM scheme for the helicity operator were calculated
as a function of z at lattice spacings 0.09, 0.08 and 0.06 fm. This linear
divergence can be quantified as the kz/aln(aAQCD) term mentioned
in Egs. (1) and (3) in Sec. 2, which becomes larger as a decreases at
fixed z. Later in this work, we will remove this divergence with the
HSR procedure. In Fig. 1, we show the matrix elements renormalized
in the pure-RI/MOM scheme with lattice spacings a ~ {0.12,0.09,0.06}
fm shown as red circles, green squares and blue triangles, respectively,
with the real (imaginary) part in the middle (rightmost) panel. Our
renormalized matrix elements are also normalized to 1 at z = 0. This
is equivalent to dividing the renormalized matrix elements by the axial
charge g, which can be determined both on the lattice and experimen-
tally.
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Table 1

Ensemble information and parameters used in this work. N

eas
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is the total number of measurements of the three-point

correlators for different values of #,,,. L indicates the spatial length which is aN (in fm).

Ensemble ID  a (fm) N3XN, M,‘{’al MeV)  t,/a P, (GeV) N
a12m310 0.1207(11) 24*x64  310(3) {6,7,8,9} 171 {50904, 50904, 101808, 203616}
a09m310 0.0888(08) 323x96  313(1) {8,9,10,12} 1.75 {109616,109616,219232, 328848 }
a06m310 0.0582(4)  483x96  320(2) (12,14,16,18}  1.78 {179520, 269280, 359040, 538560}
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Fig. 1. RI/MOM factors (leftmost figure) at lattice spacings a ~ {0.12,0.09,0.06} fm denoted by red circles, green squares and blue triangles, respectively, as a
function of Wilson length, z; the imaginary parts are compatible with zero. The middle (rightmost) figure shows the real (imaginary) matrix elements renormalized
in the pure RI/MOM scheme at the same lattice spacings and the same color scheme as the leftmost plot, as functions of Ioffe time 1= zP,.

LaMET calculations use matrix elements boosted to large momen-
tum, and we renormalize them in HSR [47]. The method involves
fitting bare matrix elements at P, =0 to a functional form dictated
by perturbative QCD and the fitting parameters determined in this
process can then be used to divide out the sources of divergence in
the large-momentum matrix elements relevant for LaMET. The case
of NLO can be supplemented with the systematic improvements of
RGR and LRR, which we denote by NLR. The renormalization fac-
tor Z(z,a) fitted to the functional form can either be an RI/MOM
factor Zyi(z,a,p R,pf =0) or a hadron matrix element evaluated at
zero boost momentum. The two functional forms are equally valid, as
was demonstrated in Ref. [45], where the hybrid-RI/MOM and hybrid-
ratio schemes were compared. The m, parameter was extracted in the
same way for both schemes by demanding the short-distance behav-
ior (z $0.3 fm) agree with perturbation theory. It was demonstrated
that the renormalized matrix elements are compatible well within error
bars between these two schemes. This shows that we can choose either
an RI/MOM factor or a zero-boost-momentum matrix element without
introducing additional systematic uncertainties. In our calculation, we
choose the RI/MOM factor. In addition, the matching kernels coincide
at NLO for the hybrid-ratio scheme and the hybrid-RI/MOM scheme for
RI/MOM matrix elements evaluated at zero-momentum, as was shown
in Ref. [31]. We follow the procedure of Refs. [46,47,63] for NLO and
of Ref. [43] for NLR.

We describe, first, the self-renormalization procedure at NLO. The
logarithm of the renormalization factors is fitted to the functional form
Huo et al. [47]

(z52)
In[{ ———
Z(z,a)

kz

NLO - aln(aAQCD)

3y, In(1/aAqep) +hm(1+—2 ). @

4By In(p/Aoep) In(aAgep)
where z is the Wilson length; k is the linear divergence arising from
the self-energy of the Wilson link. The linear divergence contains a
renormalon ambiguity [47] which is accounted for later in the HSR
procedure. a is the lattice spacing; Agcp is the cutoff scale for QCD;
f1(2) is a function describing the discretization effects of the lattice.
The ensembles generated in Ref. [23] use clover-improved action for
the valence quarks and highly improved staggered quarks (HISQ) for
the sea, so the discretization terms are O(a). u is the final desired renor-
malization scale; d is a parameter determined by demanding that the

+g1(2)+ f1(2)a+

short-distance behavior (z < 0.3 fm as suggested by Ref. [51]) of the
renormalized matrix element agrees with perturbation theory; Cr is
the quadratic Casimir for the fundamental representation of SU(3) and
Py is the first coefficient of the QCD beta-function. The expression g(z)
is the residual term that describes the non perturbative physics after the
divergences and discretization effects are removed. We, thus, have an
expression for the bare matrix element from which the different sources
of divergence can be divided out.

We interpolate the renormalization factors of Wilson length z €
[0,1.20] fm in uniform steps of 0.06 fm for all three ensembles. Next, we
determine the linear divergence and QCD scale (k and Aggp) by setting
the parameter d to zero initially and fitting to Eq. (1) for multiple pairs
of k and Agcp. For this work, we choose Agcp = 0.2 GeV at minimum
x> =1.04 at k=0.795 when d = 0.

The next step is to remove the logarithmic divergence and renor-
malon divergence by setting the short-distance renormalized matrix
elements to agree with the Wilson coefficient C(I)\”“O(z, ). The helicity
Wilson coefficients have been computed to NLO [48,62]: CSILO(Z, u) =

1+ ““'(::[CF <3ln<12”24€2y£ ) +7), where a,(u) is the strong coupling
at energy scale u, and yj is the Euler-Mascheroni constant. Since we
tabulated the RI/MOM factors in steps of z = 0.06 fm, we fit to per-
turbation theory in the interval z € [0.06,0.18] fm. We demand that
g12(2) - ln(C(l)\”“o(z, 1)) = moz + c (a linear function) whose y-intercept
is less than 1073 to ensure good matching to perturbation theory.
We tune the d parameter to match C(I)"Lo(z, ) and we find the value
d = 0.497 gives a y-intercept of ()(1077). We now have a minimum
2 =1.02 at k=0.798, which is a change of less than 0.5% in the value
of k compared to d = 0. We then construct a full renormalization factor

1 —exp kz
Zsl\glf(z, a) aln (a/\QCD)

4y 1H(M/AQCD) ln(aAQCD)

To perform HSR at NLR, we first modify the fitting function to Hol-
ligan et al. [43]

(z22)
In( ———
Z(z,a)

+ m(l;"“oz + f1(z)a+

kz

= + 8(2)
NLR a ln(aAQCD)
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Fig. 2. hself(z, a) at lattice spacings a ~
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{0.12,0.09,0.06} fm are shown as red circles, green squares and blue triangles, respectively; the left (right) plot shows NLO

(NLR). All but the largest a have been offset slightly to the right from their true z value to allow for readability. We also plot the Wilson coefficient C(’)((z, u) as a

dotted black line, which agrees with the renormalized data for short distances. The purple band shows the term exp(g(z) — moz).

3C 1 d
In{ —— Inf1+—— ), (@3
+hG@a+ oo 4 ﬁ ( n<aAQcD >> " n< * ln(aAQCD)> ®)

where the y dependence has been removed since it will be resummed
with the RGE and we include the conversion constant AZ. We use
the same values for k, Agcp and d from the NLO case as was done
in Ref. [44] since the first two are global parameters that depend on
the bare matrix elements regardless of whether we use RGR or LRR.
This time, the conversion constant is tuned so as to match the short-
distance behavior with C(I)\ILR(Z, 1) Wilson coefficient which is defined
in Ref. [64]. We find AT = —0.330 has a corresponding y-intercept of
(1073). The full self-renormalization factor for NLR is

1 kz NLR
———=exp |AT+ —————+m; "z
NLR(, 0
Zo (229 [ aln(aAgcp)
3Cr 1 d
+fr(z)a+ ln<ln< >>+ln 1+ — )
: Az py algep In ( algep )

We perform the continuum extrapolation on the quantity
ZX (z,a)hP(z,a), where X is NLO or NLR and finally convert to the
hybrid scheme with self-renormalization with the factor

ZX (z,q) ZX (z,a)
ZX (o)== =2 0z, - z2)+ =2 p(z - z,); 5)
HSR X Co (25 1) ‘
where z; ~ 0.3 fm is the maximum distance at which perturbation

theory is valid. Thus, the full hybrid-renormalized matrix element is
hi2 (z,0) = ZX (2, a)hB(z, a).

The matrix elements renormalized in the self-renormalization
scheme, hi’l)f((z), for both X being NLO and NLR are shown in Fig. 2
to demonstrate the effectiveness of self-renormalization. We show the
renormalization factors at a ~ {0.12,0.09,0.06} fm in red circles, green
squares and blue triangles, respectively, and the corresponding Wilson
coefficient as a black-dotted line. Note that the dependence on lattice
spacing a is almost completely removed by the self-renormalization pro-
cess. The results at the smallest and largest lattice spacings differ by no
more than 6% for z € [0, 1.0] fm. In addition, the matrix elements agree
with the corresponding Wilson coefficient for short distances, plotted
as a black dashed line. The systematic errors are estimated using the
method of “scale variation” as in Refs. [44,64]. When we use the RGR
for the matrix elements, we set the initial scale y = z~! so as to elim-
inate the logarithms and then evolve to the final desired energy scale
1 =2.0 GeV. Scale variation involves setting the initial scale to ¢’ X z~!
for ¢/ =0.75 and ¢’ = 1.5, as was used in Ref. [64]; the central value cor-
responds to ¢’ = 1.0. This corresponds to a variation of approximately
15% on either side of a (u =2.0 GeV) in the strong coupling.

The first thing we notice is that there is a significant decrease in
systematic errors when going from NLO to NLR for all lattice spacings
in the real and imaginary parts. The relative systematic errors for the
real part decrease by up to a factor of eight for a = 0.1207 fm and

a =0.0582 fm, and up to a factor of seventeen at a = 0.0888 fm. The
effect on the imaginary part is even greater with a decrease of as much
as a factor of twenty for all lattice spacings.

The continuum extrapolatlon is performed on the quantity hself 4, a)

by fitting to a linear function h f(/l a)=c(A)xa+ hself(ﬂ a=0) where
A = zP, is Ioffe time. In the contlnuum case, the relative systematic
errors for the real part decrease by as much as a factor of six when
NLO is supplemented with both RGR and LRR; the same quantities for
the imaginary part decrease by as much as a factor of eight. This is
the same effect observed in Ref. [44], in which the systematic errors
are drastically reduced with the RGR and LRR improvements, as well
as the fact that the large logarithms and renormalon divergence are
significant sources of systematic errors. In Fig. 3 we show the renormal-
ized matrix elements at fixed X and variable a. The top (bottom) row
shows the hybrid-renormalized matrix elements at NLO (NLR) while
the left (right) column shows the real (imaginary) part with those from
lattice spacings a = {0.1207,0.0888,0.0582} fm shown in red circles,
green squares and blue points and continuum-extrapolated ones shown
as a purple band, respectively. We show both statistical errors (solid
inner lines) and statistical and systematic errors combined with quadra-
ture (dashed outer lines). We also see that the relative systematic errors
vary by as much as a factor of two between the largest and smallest lat-
tice spacings for both NLR and NLO in the real and imaginary parts. The
scale of the systematics at NLO and NLR affect the systematics of the
corresponding continuum extrapolation. The smaller systematic errors
in the a # 0 data at NLR compared to NLO results in smaller systematics
in the continuum extrapolation. Comparing both NLO and NLR renor-
malized matrix elements from a = 0.0888 fm and 0.0582 fm (the results
with the smallest statistical errors), we see that the real parts differ by
at most one sigma across the full range of 1. The imaginary parts show
some tension in the region A € [4,6] but elsewhere are also compati-
ble within two sigma. By contrast, the matrix elements renormalized in
the pure-RI/MOM scheme shown in Fig. 1 show compatibility for both
real and imaginary parts within two sigma but have much larger error
bars than the matrix elements renormalized with the HSR. In the con-
tinuum limit, the real part of the central values in the region A € [0,4]
differ by up to 10% with those at @ = 0.0582 fm and up to 20% with
those at a = 0.1207 fm. The imaginary part of the central values in the
same A range differ by no more than 5% with those at a = 0.0582 fm
and 7% with those at a = 0.1207 fm. Both of these demonstrate good
convergence in the continuum limit.

3. Helicity parton distribution function

To obtain the nucleon isovector helicity PDF, we first need to Fourier
transform the HSR matrix elements hg;’;{{(z a) to momentum space
to obtain the quasi-PDF AG¥(x,P,) = [ Pzdz ixzP SR(z a). How-
ever, simply truncating the integral at the limit of the Wilson length
extent on the lattice will cause unphysical oscillations in the quasi-
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Fig. 3. Real (left column) and imaginary (right column) matrix elements renormalized in the HSR at lattice spacings a = {0.1207,0.0888,0.0582} fm and the
continuum limit plotted in red, green, blue and purple, respectively. Data are shown at both NLO (top row) and NLR (bottom row). The continuum extrapolation is
computed by performing a weighted fit to a function linear in a of the discrete data at fixed z-value. The solid error bars are statistical and the dotted error bars are
combined statistical and systematic errors the latter of which are derived from scale variation as described earlier in this section.

PDF [30,40,51]. To prevent this, we extrapolate the renormalized ma-
trix elements to infinite distance. The large-distance behavior of the
renormalized matrix element determines the small-x behavior of the
lightcone PDF; the extrapolation model for infinite distance is derived
from a model assumption x¥1, commonly used in the global-fit commu-
nity, for naive small-x region of PDFs. We adopt the large-z extrapo-
lation model previously used in Refs. [39,40,44,51]: hg’s);(z, a)/gy —
Ae M=
[zP|"
of z values used must be large enough to realistically capture the long-
distance behavior but not so large that the matrix elements are too
noisy. In all cases, the y?/dof value is less than 1 which demonstrates
that the large distance behavior is well captured by the fitting model.
We can then use combined renormalized matrix elements directly from
the lattice and those large-z extrapolation to Fourier transform to ob-
tain quasi-PDFs.

The final stage in the calculation is the perturbative matching which
is used to align the UV behavior of the quasi-PDF with the light-
cone. The lightcone PDF is related to the quasi-PDF via AgX(x, u) =

s TTTIC’I’X(x, v, 1, Pz )AGK(y, P,) + O

as z — oo, where A, m and n are fitting parameters. The range

Aden
Pfxz(l—x)
the matching kernel for case X, which has been derived up to one-
loop for helicity PDFs renormalized in the hybrid scheme [31,62] with
finite- P, corrections [27,40]. To make the matching kernel at NLR, we
first add the LRR modification term AKMRR defined in Refs. [43,64]
to the matching kernel to make JCNVOFLRR — joNLO 4 A gCLRR The pro-
cess of RGR in the matching follows the same philosophy as in the
case of renormalization. The matching is performed with the kernel
JCNLOHLRR ot energy scale y = 2xP, (such that the scale dependence
vanishes from matching formula). We then evolve the matched PDF
to the final desired energy scale (in our case, u = 2.0 GeV), this time
using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation:
% = fxl 92 p(z)AgX (%,y), where P(z) is the DGLAP kernel,

Iz|

which has been calculated up to three loops [57]. It should be noted
that the DGLAP evolution formula begins to break down at |x| < 0.2
where a (4 =2xP,) becomes nonperturbative. We use the same algo-
rithm for RGR matching as was detailed in Appendix D of Ref. [61].

where £~1X is

We compare the lattice-spacing dependence of NLO (left) and NLR
(right) helicity PDFs in Fig. 4 with a = {0.1207,0.0888,0.0582,0.0} fm
bands shown in solid red, solid green, horizontally-hatched blue and
vertically-hatched purple, respectively. We can see that at the NLO an-
tiquark region has the greatest deviation from zero at a = 0.1207 fm,
the largest lattice spacing, but tends towards zero as lattice spacing
decreases, including in the continuum limit. All NLO antiquark distribu-
tions are compatible with zero with full error bars for x = [—1,—0.15].
By contrast, in the NLR case, the antiquark region does not show de-
pendence on lattice spacing and shows a small positive value. In the
quark region, the relative systematic errors of the NLO helicity PDF are
not correlated with lattice spacing: the largest systematic error occurs
at a = 0.0888 fm in the interval x = [0.3,0.5] and at a = 0.0582 fm in the
interval x = [0.5,0.85]. For x = [0.15,0.4] the smallest systematic error
occurs at the largest lattice spacing. However, with NLR PDF, both the
upper and lower systematic errors decrease with lattice spacing in the
range x = [0.3,0.7]. The correlation disappears at small x and large x
where the RGR matching and LaMET calculations begin to break down,
and the results become unreliable. This suggests that the discretization
effects are the dominant source of systematics in the NLR case. We also
compare the PDFs at a =0.1207 fm and a = 0.0582 fm (the largest and
smallest lattice spacings): in the interval x = [0.2, 0.8], the central values
differ by no more than 12% for both NLO and NLR. The lattice-spacing
dependence of the helicity PDF by ETMC [16] with RI’-MOM and RI-
xMOM renormalization schemes shows a greater difference across a
narrower range of lattice spacings: a € {0.06,0.08,0.09} fm. Our own
relatively small variation between our largest and smallest lattice spac-
ings compared to the above shows that more of the lattice-spacing
dependence is removed by the HSR procedure compared to RI’-MOM
and RI-xMOM.

In Fig. 5 we compare our continuum-limit NLR x-dependent PDFs
(green) with the global fits of the NNPDFpoll.1 [58] (red), JAM [34]
(cyan) and DSSV [37] (blue) collaborations with the quark-region
(antiquark-region) shown in the left (right) panel. Up until now, our
results have been divided by the axial charge g,. The global fits do
not use normalization so we multiply our helicity PDFs by the value
g4 = 1.218(25)(30) computed in Ref. [41]. We use this value since the
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Fig. 4. Lightcone PDFs at variable lattice spacing with pion mass M, =310 MeV renormalized in the HSR scheme at NLO (left) and NLR (right). PDFs from lattice
spacings a = {0.1207,0.0888,0.0582} fm are plotted in solid-red, solid-green and horizontally hatched blue, respectively. The continuum extrapolation is plotted in
vertically hatched purple. The inner error bars are statistical, and the outer error bars are combined statistical and systematic errors.
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Fig. 5. Comparison of our x-dependent PDFs (“MSULat ' 24”) at NLR (green) with global fits computed in Refs. [37] (“DSSV’ 087, blue), [34] (“JAM’ 177, cyan) and
[58] (“NNPDFpoll.1”, red). The left (right) plot shows the quark (antiquark) region. Our results use the axial charge g, = 1.218(25)(30) from Ref. [41].

calculation was performed on the same lattices as our LaMET calcu-
lation. In the quark region, we note that there is tension between the
global fits of JaM’ 17 and each of DSSV’ 08 and NNPDFpoll.1 from
mid to large x, which suggests that there are other sources of system-
atic errors that may have been ignored or underestimated, likely due
to the difference in the experimental cuts, theory inputs, parametriza-
tion, and so on. For example, JAM excludes SIDIS data; DSSV and
NNPDFpoll.1 rely on assumptions such as SU(3) symmetry to constrain
the analysis and add a very small symmetry-breaking term. These as-
sumptions are needed due to the difficulties in constraining data from
polarized experiments. Future experiments with neutral- and charged-
current DIS (such as at the EIC) will provide useful measurements to
constrain our understanding of the antiquark helicity distribution. Our
lattice PDF result also has significant tension with each of the global
fits at large x and do not become compatible with zero as x — 1.
This is in contrast to the global fits, which use a (1 — x)? term in the
parametrization form, enforcing that the PDF goes to zero as x — 1.
Similar behavior was observed in the past LaMET lattice calculations
of the nucleon helicity PDF [16,18,29] at heavy quark mass where no
parametrization form is used. Turning to the antiquark region, we re-
flect our x-dependent PDFs in the vertical to allow a direct comparison
with global fits. Our NLR result for antiquark helicity favors more polar-
ized up than down flavor (whereas NLO does not). This agrees with the
results of the STAR [7] and PHENIX [11] collaborations which mea-
sured Au(x) > Ag(x) and the global fits who use these experimental
data as inputs. The total antiquark flavor asymmetry from this work is
/sz d x(Au(x) — Ad(x)) = 0.037+007°.

4. Conclusion

In this paper we perform the first LaMET calculation of the isovector
nucleon helicity PDF using the hybrid scheme with self renormalization
and the first lattice-QCD helicity PDF results with the RGR and LRR
improvements in both the renormalization and the lightcone match-
ing process. We use lattice spacings a = {0.1207,0.0888,0.0582} fm and

perform a continuum extrapolation with a pion mass of M ~ 315 MeV.
We demonstrate the use of the hybrid-self renormalization scheme in
its application to the isovector nucleon helicity PDF. We show the
fine-tuning procedure for d and AZ to match the renormalized ma-
trix elements to perturbation theory at z < 0.2 fm for NLO and NLR,
respectively.

Our matrix elements renormalized in the hybrid-self scheme show
a reduced dependence on lattice spacing compared to pure-RI/MOM
allowing for a more accurate extrapolation to the continuum. Both
renormalized matrix elements and quasi-PDFs have their systematic er-
rors due to scale variation reduced by the LRR and RGR procedures by
as much as a factor of 10, but the central values by only about 10%. We
compared the central values of the NLO and NLR x-dependent helicity
PDFs and found that the application of RGR and LRR has a minor impact
on the PDF in the quark region but a significant one in the antiquark
region, where it changes sign. We then use the NLR PDF to compare
with global fits, since it is more reliable, due to its accounting for large
logarithms and the renormalon divergence. Our results in quark region
do show some tension with the global fits of DSSV’08 [37], JAM’17
[34] and NNPDFpoll.1 [58], but so are the JAM’17 and NNPDFpoll.1,
for example. Our antiquark NLR PDF shows agreement with STAR [7]
and PHENIX [11] results in that #(x) > d(x) and contribute to asym-
metry of /0%2 d x(Au(x) — Ag(x)) = 0.037f818£. Our calculation can be
supplemented with future improvements in lattice-QCD calculation sys-
tematics for the LaMET method, such as a higher boost momentum and
a physical pion mass.
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