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We present the first lattice calculation of the nucleon isovector helicity parton distribution function (PDF) in the 
framework of large-momentum effective theory (LaMET) that uses the hybrid scheme with self-renormalization. 
We use ensembles generated by the MILC collaboration at lattice spacings 𝑎 = {0.1207, 0.0888, 0.0582} fm, 
with 𝑁𝑓 = 2 + 1 + 1 flavors of highly improved staggered quarks at sea pion mass of 𝑀𝜋 ≈ 315 MeV. We 
use clover-improved action for our valence quarks with nucleon boost momentum 𝑃𝑧 ≈ 1.75 GeV and high-
statistics measurements for the LaMET matrix elements. We perform an extrapolation to the continuum limit 
and improve the handling of systematic errors using renormalization-group resummation (RGR) and leading-
renormalon resummation (LRR). Our final nucleon helicity PDF is renormalized in the MS scheme at energy 
scale 𝜇 = 2.0 GeV. We compare our results with and without the two systematic improvements of RGR and LRR 
at each lattice spacing as well as the continuum limit, and we see that the application of RGR and LRR greatly 
reduces the systematic errors across the whole 𝑥 range. Our continuum results with both RGR and LRR show a 
small positive antiquark region for the nucleon helicity PDF as well as a change of as much as a factor of two 
in the central values compared to results with neither RGR or LRR. By contrast, the application of RGR and LRR 
only changes the central values by about 5% in the quark region. We compare our lattice results with the global 
fits by the JAM, NNPDF and DSSV collaborations, and we observe some tension between our results.

1. Introduction

Parton distribution functions (PDFs) describe non perturbatively the 
probability distribution of specific longitudinal momentum fractions, 
𝑥, of a hadron’s constituent quarks and gluons. Among them, helic-
ity PDFs provide information on the difference between the parton 
having its spin aligned and opposite to the hadron’s spin. Experimen-
tally, great progress has been made in the study of nucleon helicity 
PDFs through semi-inclusive deep-inelastic scattering and high-energy 
muon scattering experiments, such as by the HERMES [13] and COM-
PASS [14,15] collaborations at DESY and CERN, respectively. Other 
experiments, such as the STAR [6–8,12] and PHENIX [9–11] collabo-
rations which study proton-proton collisions at the Relativistic Heavy 
Ion Collider (RHIC) are able to probe the antiquark contribution to the 
helicity PDF. Future experiments such as those that have been proposed 
at the Electron Ion Collider (EIC) [2–5,28] in the United States as well 
as the Electron Ion Collider in China (EicC) [20] and the AMBER ex-
periment at CERN [60] will probe the spin structure of the nucleon 

* Corresponding author.
E-mail addresses: holligan@msu.edu (J. Holligan), hwlin@pa.msu.edu (H.-W. Lin).

with even greater accuracy and help refine the global fits of the helicity 
PDFs.

Progress in global fits has been made in extracting helicity PDFs 
from experimental data by the DSSV [37], NNPDF [58] and JAM [34]
collaborations. DSSV [37] showed that there is a positive antiquark re-
gion for the proton helicity PDF (Δ𝑢(𝑥) − Δ𝑑(𝑥) > 0) as well as that 
quarks and antiquarks only contribute up to one third of the pro-
ton’s spin. NNPDF [58] extended the proton helicity PDF calculation 
to the small-𝑥 region for polarized gluons as well as performed a cal-
culation of the individual unpolarized light quark and antiquark PDFs. 
JAM [34] determined that the contribution to the proton’s spin from 
strange quarks is compatible with zero, which provided more informa-
tion about the total spin content of the proton. However, assumptions 
often have to be made in the global analysis of helicity PDFs, such as 
the antiquark region being zero, the functional form of the PDF, or 
exact SU(3) flavor symmetry. Both the DSSV [37] and NNPDF [58] col-
laborations made the assumption Δ𝑠 = Δ𝑠 in their calculations. JAM 
relaxed this assumption by including semi-inclusive deep inelastic scat-
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tering (SIDIS) data [34] but found that any deviation from zero was 
unable to rise above background noise. While global fitting has the ad-
vantage of using experimental data from real events, it does not perform 
a direct PDF calculation from the first principles of quantum chromo-
dynamics (QCD) and is limited by the quality of experimental data that 
is available.

A direct calculation of PDFs became possible with the advent of 
large-momentum effective theory (LaMET) in 2013 [49,50,52], which 
allowed parton physics to be studied on the Euclidean lattice. By study-
ing the behavior of spatially separated correlators boosted to large 
momentum, parton physics can then be recovered through perturba-
tive matching. The bare matrix elements extracted from the lattice 
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⟨
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is the Wilson line connecting the two spacetime 

coordinates (0, 0, −𝑧∕2, 0) and (0, 0, 𝑧∕2, 0), 𝜓 is the fermion field, and 
Γ is a Dirac structure which for helicity matrix elements is Γ = 𝛾𝑧𝛾5. To 
extract the ground-state matrix element, we use a two-state fit on the 
two-point correlators and a two-sim fit on the three-point correlators, 
following, for example, Ref. [36]. The extraction of the matrix element 
can be visualized by plotting the ratio of the three-point and two-point 
correlation functions at multiple values of source-sink separation 𝑡sep. 
The ratio is observed to approach the computed ground-state matrix ele-
ment as 𝑡sep increases. In addition, we vary the minimum and maximum 
values of 𝑡sep (denoted by 𝑡

min
sep and 𝑡

max
sep ), again following the example of 

Ref. [36]. We find that the ground-state matrix elements are compatible 
for these different values. This shows that excited-state contamination 
is under control and not a significant source of systematic error. The 
LaMET method has been used for a numerical determination of the nu-
cleon helicity PDF in Refs. [16–19,29,35,53–55]. The very first helicity 
PDF calculation was done in 2016 [29] using 310 MeV pion mass at 
lattice spacing 𝑎 = 0.12 fm with boost momenta 𝑃𝑧 = {0.43, 0.86, 1.29}
GeV. Mass correction and one-loop matching was used to better align 
the behavior of the quasi-PDF with that of the lightcone. This was the 
first time the antiquark section had been studied and showed an asym-
metry 𝑢(𝑥) > 𝑑(𝑥). Soon after, there were many followup LaMET cal-
culations by different collaborations with different fermion actions and 
even physical pion masses [16–19,33,35,53,54]. Most LaMET-method 
helicity PDFs have been renormalized nonperturbatively only in the 
RI/MOM and similar renormalization schemes [16,17,19,35,53,54]. 
The latest hybrid- or self-renormalization schemes [47,51] have not 
been applied to the helicity PDF yet.

In this work, we make the first calculation of the isovector nucleon 
helicity PDF using matrix elements renormalized in the hybrid scheme 
with self-renormalization (HSR). The hybrid scheme was introduced in 
Ref. [51] and the self-renormalization in Ref. [47]. We use this method 
to address two sources of divergence in the matrix elements: the linear 
divergence which arises from the self-energy in the Wilson line of the 
bare matrix elements and the renormalon divergence which arises from 
the asymptotic nature of the perturbation series. This is done by fit-
ting the matrix elements to a functional form derived from perturbative 
QCD which has the added advantage of accounting for discretization 
effects. It extracts the renormalization factor and the remaining non-
perturbative physics directly from the matrix elements. It also reduces 
the dependence on lattice spacing 𝑎 during the renormalization pro-
cess, which allows for a reliable extrapolation to the continuum limit. 
These two sources of divergence can also be addressed using the hy-
brid scheme introduced in Ref. [51]. However, this method does not 
account directly for discretization effects, and the removal of the linear 
divergence in this scheme is a very delicate exercise and a significant 
source of systematic error, as shown in Ref. [47]. The HSR method has 
been used in the calculation of nucleon transversity PDFs [63] as well 
as the calculation of pion and kaon distribution amplitudes [43,46]. In 

both cases, the HSR process greatly reduces the dependence on lattice 
spacing compared with pure RI/MOM scheme.

We can further improve our calculation by augmenting both the 
renormalization scheme and the lightcone matching with the methods 
of renormalization-group resummation (RGR) [43,61,64] and leading-
renormalon resummation (LRR) [64]. RGR involves resumming the 
large logarithms that arise from the difference in renormalization scale 
and the intrinsic physical scale. The method involves setting the renor-
malization scale such that the logarithms vanish and then evolving 
to the desired energy scale using the renormalization-group equa-
tion (RGE). The perturbation series also contains a renormalon diver-
gence [1], which is enhanced by the use of RGR on its own. We account 
for this effect by including LRR in the calculations which resums the 
series to account for the renormalon divergence. We present the first 
application of these methods to the nucleon helicity PDF.

2. Self-renormalization in hybrid scheme

In this work, we use clover lattice fermion action for the valence 
quarks on top of 2+1+1 flavors (degenerate up and down quarks plus 
strange and charm quarks at their physical masses in the QCD vac-
uum) of hypercubic (HYP)-smeared [42] HISQ [23,38], generated by 
MILC Collaboration. The lattice parameters include lattice spacings 
𝑎 ∈ [0.06, 0.12] fm, pion mass 𝑀𝜋 ≈ 310 MeV and 𝑀𝜋𝐿 ≈ 4.5. The 
quark masses for the clover action are tuned to reproduce the light-
est sea HISQ pseudoscalar meson masses, and the clover parameters 
are set to the tree-level tadpole-improved values. We carefully moni-
tor for signatures of exceptional configurations due to the non-unitary 
lattice-QCD formulation of mixed-action approach and found excep-
tional configurations to be absent for these three MILC ensembles [23]. 
This mixed-action setup is the same as the one used in works done by 
PNDME Collaboration in many studies of nucleon structure [24–26,41].

On the lattice, we calculate the time-independent, nonlocal matrix 
elements stated in Sec. 1. We use Gaussian momentum smearing [22]
for the quark field. Such a momentum source is designed to increase the 
overlap with nucleons of the desired boost momentum, and we are able 
to reach higher boost momentum for the nucleon states. We use multi-
grid algorithm [21,59] in the Chroma software package [32] to speed 
up the inversion of the quark propagator for the clover fermions. To 
make sure excited-state contamination is under control, we measure at 
least four nucleon three-point source-sink separations, and we perform 
simultaneously two-state extraction of ground-state nucleon matrix ele-
ments. Details of our calculation parameters can be found in Table 1.

To renormalize the nucleon matrix elements for helicity PDFs, the 
renormalization factors in the RI/MOM scheme [56] are calculated in 
Ref. [65]. The real renormalization factors as a function of 𝑧 are shown 
in the leftmost panel of Fig. 1 while the imaginary ones are consistent 
with zero for 𝑝𝑅

𝑧
= 0 with lattice spacings 𝑎 ≈ {0.12, 0.09, 0.06} fm de-

noted by red circles, green squares and blue triangles, respectively. We 
can see that the RI/MOM factor decays more quickly as 𝑎 decreases 
across the whole 𝑧 range; this is due to the linear divergence becom-
ing more severe as lattice spacing decreases. The same behavior was 
also observed by ETMC [16], in which the inverse renormalization fac-
tors in the RI′-MOM scheme for the helicity operator were calculated 
as a function of 𝑧 at lattice spacings 0.09, 0.08 and 0.06 fm. This linear 
divergence can be quantified as the 𝑘𝑧∕𝑎 ln

(
𝑎ΛQCD

)
term mentioned 

in Eqs. (1) and (3) in Sec. 2, which becomes larger as 𝑎 decreases at 
fixed 𝑧. Later in this work, we will remove this divergence with the 
HSR procedure. In Fig. 1, we show the matrix elements renormalized 
in the pure-RI/MOM scheme with lattice spacings 𝑎 ≈ {0.12, 0.09, 0.06}
fm shown as red circles, green squares and blue triangles, respectively, 
with the real (imaginary) part in the middle (rightmost) panel. Our 
renormalized matrix elements are also normalized to 1 at 𝑧 = 0. This 
is equivalent to dividing the renormalized matrix elements by the axial 
charge 𝑔𝐴 which can be determined both on the lattice and experimen-
tally.
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Table 1
Ensemble information and parameters used in this work. 𝑁meas is the total number of measurements of the three-point 
correlators for different values of 𝑡sep . 𝐿 indicates the spatial length which is 𝑎𝑁𝑠 (in fm).

Ensemble ID 𝑎 (fm) 𝑁3
𝑠
×𝑁𝑡 𝑀val

𝜋
(MeV) 𝑡sep∕𝑎 𝑃𝑧 (GeV) 𝑁meas

a12m310 0.1207(11) 243 × 64 310(3) {6,7,8,9} 1.71 {50904,50904,101808,203616}

a09m310 0.0888(08) 323 × 96 313(1) {8,9,10,12} 1.75 {109616,109616,219232,328848}

a06m310 0.0582(4) 483 × 96 320(2) {12,14,16,18} 1.78 {179520,269280,359040,538560}

Fig. 1. RI/MOM factors (leftmost figure) at lattice spacings 𝑎 ≈ {0.12, 0.09, 0.06} fm denoted by red circles, green squares and blue triangles, respectively, as a 
function of Wilson length, 𝑧; the imaginary parts are compatible with zero. The middle (rightmost) figure shows the real (imaginary) matrix elements renormalized 
in the pure RI/MOM scheme at the same lattice spacings and the same color scheme as the leftmost plot, as functions of Ioffe time 𝜆 = 𝑧𝑃𝑧.

LaMET calculations use matrix elements boosted to large momen-
tum, and we renormalize them in HSR [47]. The method involves 
fitting bare matrix elements at 𝑃𝑧 = 0 to a functional form dictated 
by perturbative QCD and the fitting parameters determined in this 
process can then be used to divide out the sources of divergence in 
the large-momentum matrix elements relevant for LaMET. The case 
of NLO can be supplemented with the systematic improvements of 
RGR and LRR, which we denote by NLR. The renormalization fac-
tor (𝑧, 𝑎) fitted to the functional form can either be an RI/MOM 
factor 𝑍RI(𝑧, 𝑎, 𝜇𝑅, 𝑝

𝑅
𝑧
= 0) or a hadron matrix element evaluated at 

zero boost momentum. The two functional forms are equally valid, as 
was demonstrated in Ref. [45], where the hybrid-RI/MOM and hybrid-
ratio schemes were compared. The 𝑚0 parameter was extracted in the 
same way for both schemes by demanding the short-distance behav-
ior (𝑧 ≲ 0.3 fm) agree with perturbation theory. It was demonstrated 
that the renormalized matrix elements are compatible well within error 
bars between these two schemes. This shows that we can choose either 
an RI/MOM factor or a zero–boost-momentum matrix element without 
introducing additional systematic uncertainties. In our calculation, we 
choose the RI/MOM factor. In addition, the matching kernels coincide 
at NLO for the hybrid-ratio scheme and the hybrid-RI/MOM scheme for 
RI/MOM matrix elements evaluated at zero-momentum, as was shown 
in Ref. [31]. We follow the procedure of Refs. [46,47,63] for NLO and 
of Ref. [43] for NLR.

We describe, first, the self-renormalization procedure at NLO. The 
logarithm of the renormalization factors is fitted to the functional form 
Huo et al. [47]

ln

(
1

(𝑧, 𝑎)

)|||||NLO
=

𝑘𝑧

𝑎 ln
(
𝑎ΛQCD

) + 𝑔1(𝑧) + 𝑓1(𝑧)𝑎+

3𝐶𝐹

4𝜋𝛽0
ln

(
ln
(
1∕𝑎ΛQCD

)

ln
(
𝜇∕ΛQCD

)
)

+ ln

(
1 +

𝑑

ln
(
𝑎ΛQCD

)
)
, (1)

where 𝑧 is the Wilson length; 𝑘 is the linear divergence arising from 
the self-energy of the Wilson link. The linear divergence contains a 
renormalon ambiguity [47] which is accounted for later in the HSR 
procedure. 𝑎 is the lattice spacing; ΛQCD is the cutoff scale for QCD; 
𝑓1(𝑧) is a function describing the discretization effects of the lattice. 
The ensembles generated in Ref. [23] use clover-improved action for 
the valence quarks and highly improved staggered quarks (HISQ) for 
the sea, so the discretization terms are (𝑎). 𝜇 is the final desired renor-
malization scale; 𝑑 is a parameter determined by demanding that the 

short-distance behavior (𝑧 ≲ 0.3 fm as suggested by Ref. [51]) of the 
renormalized matrix element agrees with perturbation theory; 𝐶𝐹 is 
the quadratic Casimir for the fundamental representation of SU(3) and 
𝛽0 is the first coefficient of the QCD beta-function. The expression 𝑔1(𝑧)
is the residual term that describes the non perturbative physics after the 
divergences and discretization effects are removed. We, thus, have an 
expression for the bare matrix element from which the different sources 
of divergence can be divided out.

We interpolate the renormalization factors of Wilson length 𝑧 ∈
[0, 1.20] fm in uniform steps of 0.06 fm for all three ensembles. Next, we 
determine the linear divergence and QCD scale (𝑘 and ΛQCD) by setting 
the parameter 𝑑 to zero initially and fitting to Eq. (1) for multiple pairs 
of 𝑘 and ΛQCD. For this work, we choose ΛQCD = 0.2 GeV at minimum 
𝜒2 = 1.04 at 𝑘 = 0.795 when 𝑑 = 0.

The next step is to remove the logarithmic divergence and renor-
malon divergence by setting the short-distance renormalized matrix 
elements to agree with the Wilson coefficient 𝐶NLO

0
(𝑧, 𝜇). The helicity 

Wilson coefficients have been computed to NLO [48,62]: 𝐶NLO
0

(𝑧, 𝜇) =

1 + 𝛼𝑠(𝜇)𝐶𝐹
4𝜋

(
3 ln

(
𝑧2𝜇2𝑒2𝛾𝐸

4

)
+ 7

)
, where 𝛼𝑠(𝜇) is the strong coupling 

at energy scale 𝜇, and 𝛾𝐸 is the Euler-Mascheroni constant. Since we 
tabulated the RI/MOM factors in steps of 𝑧 = 0.06 fm, we fit to per-
turbation theory in the interval 𝑧 ∈ [0.06, 0.18] fm. We demand that 
𝑔1,2(𝑧) − ln

(
𝐶NLO
0

(𝑧,𝜇)
)
=𝑚0𝑧 + 𝑐 (a linear function) whose 𝑦-intercept 

is less than 10−3 to ensure good matching to perturbation theory. 
We tune the 𝑑 parameter to match 𝐶NLO

0
(𝑧, 𝜇) and we find the value 

𝑑 = 0.497 gives a 𝑦-intercept of (10−5). We now have a minimum 
𝜒2 = 1.02 at 𝑘 = 0.798, which is a change of less than 0.5% in the value 
of 𝑘 compared to 𝑑 = 0. We then construct a full renormalization factor

1

𝑍NLO
self

(𝑧, 𝑎)
= exp

[
𝑘𝑧

𝑎 ln
(
𝑎ΛQCD

) +𝑚NLO
0

𝑧+ 𝑓1(𝑧)𝑎+

3𝐶𝐹

4𝜋𝛽0
ln

(
ln
(
1∕𝑎ΛQCD

)

ln
(
𝜇∕ΛQCD

)
)

+ ln

(
1 +

𝑑

ln
(
𝑎ΛQCD

)
)]

. (2)

To perform HSR at NLR, we first modify the fitting function to Hol-
ligan et al. [43]

ln

(
1

(𝑧, 𝑎)

)|||||NLR
=Δ +

𝑘𝑧

𝑎 ln
(
𝑎ΛQCD

) + 𝑔2(𝑧)
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Fig. 2. ℎ𝑅
self

(𝑧, 𝑎) at lattice spacings 𝑎 ≈ {0.12, 0.09, 0.06} fm are shown as red circles, green squares and blue triangles, respectively; the left (right) plot shows NLO 
(NLR). All but the largest 𝑎 have been offset slightly to the right from their true 𝑧 value to allow for readability. We also plot the Wilson coefficient 𝐶X

0
(𝑧, 𝜇) as a 

dotted black line, which agrees with the renormalized data for short distances. The purple band shows the term exp
(
𝑔(𝑧) −𝑚0𝑧

)
.

+ 𝑓2(𝑧)𝑎+
3𝐶𝐹

4𝜋𝛽0
ln

(
ln

(
1

𝑎ΛQCD

))
+ ln

(
1 +

𝑑

ln
(
𝑎ΛQCD

)
)
, (3)

where the 𝜇 dependence has been removed since it will be resummed 
with the RGE and we include the conversion constant Δ. We use 
the same values for 𝑘, ΛQCD and 𝑑 from the NLO case as was done 
in Ref. [44] since the first two are global parameters that depend on 
the bare matrix elements regardless of whether we use RGR or LRR. 
This time, the conversion constant is tuned so as to match the short-
distance behavior with 𝐶NLR

0
(𝑧, 𝜇) Wilson coefficient which is defined 

in Ref. [64]. We find Δ = −0.330 has a corresponding 𝑦-intercept of 
(10−3). The full self-renormalization factor for NLR is

1

𝑍NLR
self

(𝑧, 𝑎)
= exp

[
Δ +

𝑘𝑧

𝑎 ln
(
𝑎ΛQCD

) +𝑚NLR
0

𝑧

+𝑓2(𝑧)𝑎+
3𝐶𝐹

4𝜋𝛽0
ln

(
ln

(
1

𝑎ΛQCD

))
+ ln

(
1 +

𝑑

ln
(
𝑎ΛQCD

)
)]

. (4)

We perform the continuum extrapolation on the quantity
𝑍X
self

(𝑧, 𝑎)ℎ𝐵(𝑧, 𝑎), where X is NLO or NLR and finally convert to the 
hybrid scheme with self-renormalization with the factor

𝑍X
HSR(𝑧, 𝑎) =

𝑍X
self

(𝑧, 𝑎)

𝐶X
0
(𝑧,𝜇)

𝜃(𝑧𝑠 − 𝑧) +
𝑍X
self

(𝑧, 𝑎)

𝐶X
0
(𝑧𝑠, 𝜇)

𝜃(𝑧− 𝑧𝑠); (5)

where 𝑧𝑠 ≈ 0.3 fm is the maximum distance at which perturbation 
theory is valid. Thus, the full hybrid-renormalized matrix element is 
ℎ
𝑅,X
HSR(𝑧, 𝑎) =𝑍

X
HSR(𝑧, 𝑎)ℎ

𝐵(𝑧, 𝑎).
The matrix elements renormalized in the self-renormalization 

scheme, ℎ𝑅,X
self

(𝑧), for both X being NLO and NLR are shown in Fig. 2
to demonstrate the effectiveness of self-renormalization. We show the 
renormalization factors at 𝑎 ≈ {0.12, 0.09, 0.06} fm in red circles, green 
squares and blue triangles, respectively, and the corresponding Wilson 
coefficient as a black-dotted line. Note that the dependence on lattice 
spacing 𝑎 is almost completely removed by the self-renormalization pro-
cess. The results at the smallest and largest lattice spacings differ by no 
more than 6% for 𝑧 ∈ [0, 1.0] fm. In addition, the matrix elements agree 
with the corresponding Wilson coefficient for short distances, plotted 
as a black dashed line. The systematic errors are estimated using the 
method of “scale variation” as in Refs. [44,64]. When we use the RGR 
for the matrix elements, we set the initial scale 𝜇 = 𝚣

−1 so as to elim-
inate the logarithms and then evolve to the final desired energy scale 
𝜇 = 2.0 GeV. Scale variation involves setting the initial scale to 𝑐′ × 𝚣

−1

for 𝑐′ = 0.75 and 𝑐′ = 1.5, as was used in Ref. [64]; the central value cor-
responds to 𝑐′ = 1.0. This corresponds to a variation of approximately 
15% on either side of 𝛼𝑠(𝜇 = 2.0 GeV) in the strong coupling.

The first thing we notice is that there is a significant decrease in 
systematic errors when going from NLO to NLR for all lattice spacings 
in the real and imaginary parts. The relative systematic errors for the 
real part decrease by up to a factor of eight for 𝑎 = 0.1207 fm and 

𝑎 = 0.0582 fm, and up to a factor of seventeen at 𝑎 = 0.0888 fm. The 
effect on the imaginary part is even greater with a decrease of as much 
as a factor of twenty for all lattice spacings.

The continuum extrapolation is performed on the quantity ℎ𝑅,X
self

(𝜆, 𝑎)

by fitting to a linear function ℎ𝑅,X
self

(𝜆, 𝑎) = 𝑐(𝜆) ×𝑎 +ℎ𝑅,X
self

(𝜆, 𝑎 = 0) where 
𝜆 = 𝑧𝑃𝑧 is Ioffe time. In the continuum case, the relative systematic 
errors for the real part decrease by as much as a factor of six when 
NLO is supplemented with both RGR and LRR; the same quantities for 
the imaginary part decrease by as much as a factor of eight. This is 
the same effect observed in Ref. [44], in which the systematic errors 
are drastically reduced with the RGR and LRR improvements, as well 
as the fact that the large logarithms and renormalon divergence are 
significant sources of systematic errors. In Fig. 3 we show the renormal-
ized matrix elements at fixed X and variable 𝑎. The top (bottom) row 
shows the hybrid-renormalized matrix elements at NLO (NLR) while 
the left (right) column shows the real (imaginary) part with those from 
lattice spacings 𝑎 = {0.1207, 0.0888, 0.0582} fm shown in red circles, 
green squares and blue points and continuum-extrapolated ones shown 
as a purple band, respectively. We show both statistical errors (solid 
inner lines) and statistical and systematic errors combined with quadra-
ture (dashed outer lines). We also see that the relative systematic errors 
vary by as much as a factor of two between the largest and smallest lat-
tice spacings for both NLR and NLO in the real and imaginary parts. The 
scale of the systematics at NLO and NLR affect the systematics of the 
corresponding continuum extrapolation. The smaller systematic errors 
in the 𝑎 ≠ 0 data at NLR compared to NLO results in smaller systematics 
in the continuum extrapolation. Comparing both NLO and NLR renor-
malized matrix elements from 𝑎 = 0.0888 fm and 0.0582 fm (the results 
with the smallest statistical errors), we see that the real parts differ by 
at most one sigma across the full range of 𝜆. The imaginary parts show 
some tension in the region 𝜆 ∈ [4, 6] but elsewhere are also compati-
ble within two sigma. By contrast, the matrix elements renormalized in 
the pure-RI/MOM scheme shown in Fig. 1 show compatibility for both 
real and imaginary parts within two sigma but have much larger error 
bars than the matrix elements renormalized with the HSR. In the con-
tinuum limit, the real part of the central values in the region 𝜆 ∈ [0, 4]
differ by up to 10% with those at 𝑎 = 0.0582 fm and up to 20% with 
those at 𝑎 = 0.1207 fm. The imaginary part of the central values in the 
same 𝜆 range differ by no more than 5% with those at 𝑎 = 0.0582 fm 
and 7% with those at 𝑎 = 0.1207 fm. Both of these demonstrate good 
convergence in the continuum limit.

3. Helicity parton distribution function

To obtain the nucleon isovector helicity PDF, we first need to Fourier 
transform the HSR matrix elements ℎ𝑅,XHSR(𝑧, 𝑎) to momentum space 

to obtain the quasi-PDF Δ𝑞X(𝑥, 𝑃𝑧) = ∫ ∞

−∞

𝑃𝑧 d 𝑧

2𝜋
𝑒𝑖𝑥𝑧𝑃𝑧ℎ

𝑅,X
HSR(𝑧, 𝑎). How-

ever, simply truncating the integral at the limit of the Wilson length 
extent on the lattice will cause unphysical oscillations in the quasi-
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Fig. 3. Real (left column) and imaginary (right column) matrix elements renormalized in the HSR at lattice spacings 𝑎 = {0.1207, 0.0888, 0.0582} fm and the 
continuum limit plotted in red, green, blue and purple, respectively. Data are shown at both NLO (top row) and NLR (bottom row). The continuum extrapolation is 
computed by performing a weighted fit to a function linear in 𝑎 of the discrete data at fixed 𝑧-value. The solid error bars are statistical and the dotted error bars are 
combined statistical and systematic errors the latter of which are derived from scale variation as described earlier in this section.

PDF [30,40,51]. To prevent this, we extrapolate the renormalized ma-
trix elements to infinite distance. The large-distance behavior of the 
renormalized matrix element determines the small-𝑥 behavior of the 
lightcone PDF; the extrapolation model for infinite distance is derived 
from a model assumption 𝑥𝑘1 , commonly used in the global-fit commu-
nity, for naive small-𝑥 region of PDFs. We adopt the large-𝑧 extrapo-
lation model previously used in Refs. [39,40,44,51]: ℎ𝑅,XHSR(𝑧, 𝑎)∕𝑔𝐴 →

𝐴𝑒−𝑚𝑧

|𝑧𝑃𝑧|𝑛
as 𝑧 → ∞, where 𝐴, 𝑚 and 𝑛 are fitting parameters. The range 

of 𝑧 values used must be large enough to realistically capture the long-
distance behavior but not so large that the matrix elements are too 
noisy. In all cases, the 𝜒2∕dof value is less than 1 which demonstrates 
that the large distance behavior is well captured by the fitting model. 
We can then use combined renormalized matrix elements directly from 
the lattice and those large-𝑧 extrapolation to Fourier transform to ob-
tain quasi-PDFs.

The final stage in the calculation is the perturbative matching which 
is used to align the UV behavior of the quasi-PDF with the light-
cone. The lightcone PDF is related to the quasi-PDF via Δ𝑞X(𝑥, 𝜇) =

∫ ∞

−∞
d 𝑦

|𝑦|
−1,X(𝑥, 𝑦, 𝜇, 𝑃𝑧, 𝑧𝑠)Δ𝑞

X(𝑦, 𝑃𝑧) +  
(

Λ2
QCD

𝑃 2
𝑧 𝑥

2(1−𝑥)

)
where −1,X is 

the matching kernel for case X, which has been derived up to one-
loop for helicity PDFs renormalized in the hybrid scheme [31,62] with 
finite-𝑃𝑧 corrections [27,40]. To make the matching kernel at NLR, we 
first add the LRR modification term ΔLRR defined in Refs. [43,64]
to the matching kernel to make NLO+LRR =NLO + ΔLRR. The pro-
cess of RGR in the matching follows the same philosophy as in the 
case of renormalization. The matching is performed with the kernel 
NLO+LRR at energy scale 𝜇 = 2𝑥𝑃𝑧 (such that the scale dependence 
vanishes from matching formula). We then evolve the matched PDF 
to the final desired energy scale (in our case, 𝜇 = 2.0 GeV), this time 
using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation: 
d Δ𝑞X(𝑥,𝜇)

d ln
(
𝜇2

) = ∫ 1

𝑥

d 𝑧

|𝑧|(𝑧)Δ𝑞X
(
𝑥

𝑧
, 𝜇

)
, where (𝑧) is the DGLAP kernel, 

which has been calculated up to three loops [57]. It should be noted 
that the DGLAP evolution formula begins to break down at |𝑥| ≲ 0.2

where 𝛼𝑠(𝜇 = 2𝑥𝑃𝑧) becomes nonperturbative. We use the same algo-
rithm for RGR matching as was detailed in Appendix D of Ref. [61].

We compare the lattice-spacing dependence of NLO (left) and NLR 
(right) helicity PDFs in Fig. 4 with 𝑎 = {0.1207, 0.0888, 0.0582, 0.0} fm 
bands shown in solid red, solid green, horizontally-hatched blue and 
vertically-hatched purple, respectively. We can see that at the NLO an-
tiquark region has the greatest deviation from zero at 𝑎 = 0.1207 fm, 
the largest lattice spacing, but tends towards zero as lattice spacing 
decreases, including in the continuum limit. All NLO antiquark distribu-
tions are compatible with zero with full error bars for 𝑥 = [−1, −0.15]. 
By contrast, in the NLR case, the antiquark region does not show de-
pendence on lattice spacing and shows a small positive value. In the 
quark region, the relative systematic errors of the NLO helicity PDF are 
not correlated with lattice spacing: the largest systematic error occurs 
at 𝑎 = 0.0888 fm in the interval 𝑥 = [0.3, 0.5] and at 𝑎 = 0.0582 fm in the 
interval 𝑥 = [0.5, 0.85]. For 𝑥 = [0.15, 0.4] the smallest systematic error 
occurs at the largest lattice spacing. However, with NLR PDF, both the 
upper and lower systematic errors decrease with lattice spacing in the 
range 𝑥 = [0.3, 0.7]. The correlation disappears at small 𝑥 and large 𝑥
where the RGR matching and LaMET calculations begin to break down, 
and the results become unreliable. This suggests that the discretization 
effects are the dominant source of systematics in the NLR case. We also 
compare the PDFs at 𝑎 = 0.1207 fm and 𝑎 = 0.0582 fm (the largest and 
smallest lattice spacings): in the interval 𝑥 = [0.2, 0.8], the central values 
differ by no more than 12% for both NLO and NLR. The lattice-spacing 
dependence of the helicity PDF by ETMC [16] with RI′-MOM and RI-
xMOM renormalization schemes shows a greater difference across a 
narrower range of lattice spacings: 𝑎 ∈ {0.06, 0.08, 0.09} fm. Our own 
relatively small variation between our largest and smallest lattice spac-
ings compared to the above shows that more of the lattice-spacing 
dependence is removed by the HSR procedure compared to RI′-MOM 
and RI-xMOM.

In Fig. 5 we compare our continuum-limit NLR 𝑥-dependent PDFs 
(green) with the global fits of the NNPDFpol1.1 [58] (red), JAM [34]
(cyan) and DSSV [37] (blue) collaborations with the quark-region 
(antiquark-region) shown in the left (right) panel. Up until now, our 
results have been divided by the axial charge 𝑔𝐴. The global fits do 
not use normalization so we multiply our helicity PDFs by the value 
𝑔𝐴 = 1.218(25)(30) computed in Ref. [41]. We use this value since the 
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Fig. 4. Lightcone PDFs at variable lattice spacing with pion mass 𝑀𝜋 = 310 MeV renormalized in the HSR scheme at NLO (left) and NLR (right). PDFs from lattice 
spacings 𝑎 = {0.1207, 0.0888, 0.0582} fm are plotted in solid-red, solid-green and horizontally hatched blue, respectively. The continuum extrapolation is plotted in 
vertically hatched purple. The inner error bars are statistical, and the outer error bars are combined statistical and systematic errors.

Fig. 5. Comparison of our 𝑥-dependent PDFs (“MSULat’24”) at NLR (green) with global fits computed in Refs. [37] (“DSSV’08”, blue), [34] (“JAM’17”, cyan) and 
[58] (“NNPDFpol1.1”, red). The left (right) plot shows the quark (antiquark) region. Our results use the axial charge 𝑔𝐴 = 1.218(25)(30) from Ref. [41].

calculation was performed on the same lattices as our LaMET calcu-
lation. In the quark region, we note that there is tension between the 
global fits of JAM’17 and each of DSSV’08 and NNPDFpol1.1 from 
mid to large 𝑥, which suggests that there are other sources of system-
atic errors that may have been ignored or underestimated, likely due 
to the difference in the experimental cuts, theory inputs, parametriza-
tion, and so on. For example, JAM excludes SIDIS data; DSSV and 
NNPDFpol1.1 rely on assumptions such as SU(3) symmetry to constrain 
the analysis and add a very small symmetry-breaking term. These as-
sumptions are needed due to the difficulties in constraining data from 
polarized experiments. Future experiments with neutral- and charged-
current DIS (such as at the EIC) will provide useful measurements to 
constrain our understanding of the antiquark helicity distribution. Our 
lattice PDF result also has significant tension with each of the global 
fits at large 𝑥 and do not become compatible with zero as 𝑥 → 1. 
This is in contrast to the global fits, which use a (1 − 𝑥)𝑏 term in the 
parametrization form, enforcing that the PDF goes to zero as 𝑥 → 1. 
Similar behavior was observed in the past LaMET lattice calculations 
of the nucleon helicity PDF [16,18,29] at heavy quark mass where no 
parametrization form is used. Turning to the antiquark region, we re-
flect our 𝑥-dependent PDFs in the vertical to allow a direct comparison 
with global fits. Our NLR result for antiquark helicity favors more polar-
ized up than down flavor (whereas NLO does not). This agrees with the 
results of the STAR [7] and PHENIX [11] collaborations which mea-
sured Δ𝑢(𝑥) > Δ𝑑(𝑥) and the global fits who use these experimental 
data as inputs. The total antiquark flavor asymmetry from this work is 
∫ 1

0.2
d 𝑥(Δ𝑢(𝑥) −Δ𝑑(𝑥)) = 0.037+0.019

−0.023
.

4. Conclusion

In this paper we perform the first LaMET calculation of the isovector 
nucleon helicity PDF using the hybrid scheme with self renormalization 
and the first lattice-QCD helicity PDF results with the RGR and LRR 
improvements in both the renormalization and the lightcone match-
ing process. We use lattice spacings 𝑎 = {0.1207, 0.0888, 0.0582} fm and 

perform a continuum extrapolation with a pion mass of 𝑀𝜋 ≈ 315 MeV. 
We demonstrate the use of the hybrid-self renormalization scheme in 
its application to the isovector nucleon helicity PDF. We show the 
fine-tuning procedure for 𝑑 and Δ to match the renormalized ma-
trix elements to perturbation theory at 𝑧 ≲ 0.2 fm for NLO and NLR, 
respectively.

Our matrix elements renormalized in the hybrid-self scheme show 
a reduced dependence on lattice spacing compared to pure-RI/MOM 
allowing for a more accurate extrapolation to the continuum. Both 
renormalized matrix elements and quasi-PDFs have their systematic er-
rors due to scale variation reduced by the LRR and RGR procedures by 
as much as a factor of 10, but the central values by only about 10%. We 
compared the central values of the NLO and NLR 𝑥-dependent helicity 
PDFs and found that the application of RGR and LRR has a minor impact 
on the PDF in the quark region but a significant one in the antiquark 
region, where it changes sign. We then use the NLR PDF to compare 
with global fits, since it is more reliable, due to its accounting for large 
logarithms and the renormalon divergence. Our results in quark region 
do show some tension with the global fits of DSSV’08 [37], JAM’17 
[34] and NNPDFpol1.1 [58], but so are the JAM’17 and NNPDFpol1.1, 
for example. Our antiquark NLR PDF shows agreement with STAR [7]
and PHENIX [11] results in that 𝑢(𝑥) > 𝑑(𝑥) and contribute to asym-
metry of ∫ 1

0.2
d 𝑥(Δ𝑢(𝑥) − Δ𝑑(𝑥)) = 0.037+0.019

−0.023
. Our calculation can be 

supplemented with future improvements in lattice-QCD calculation sys-
tematics for the LaMET method, such as a higher boost momentum and 
a physical pion mass.
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