
Nucleon isovector axial form factors

Yong-Chull Jang ,
1,2,3,*

Rajan Gupta ,
4,†

Tanmoy Bhattacharya ,
4,‡

Boram Yoon,
5,§

and Huey-Wen Lin
6,∥

(Precision Neutron Decay Matrix Elements (PNDME) Collaboration)

1
Electron-Ion Collider, Brookhaven National Laboratory, Upton, New York 11973, USA
2
Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

3
Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027, USA
4
Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, New Mexico 87545, USA

5
NVIDIA Corporation, Santa Clara, California 95051, USA

6
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

(Received 29 June 2023; accepted 5 December 2023; published 5 January 2024)

We present results for the isovector axial vector form factors obtained using thirteen 2þ 1þ 1-flavor

highly improved staggered quark (HISQ) ensembles generated by the MILC collaboration. The calculation

of nucleon two- and three-point correlation functions has been done using Wilson-clover fermions. In the

analysis of these data, we quantify the sensitivity of the results to strategies used for removing excited

state contamination and invoke the partially conserved axial current relation between the form factors to

choose between them. Our data driven analysis includes removing contributions from multihadron Nπ

states that make significant contributions. Our final results are gA ¼ 1.292ð53Þstatð24Þsys for the axial

charge; gS ¼ 1.085ð50Þstatð103Þsys and gT ¼ 0.991ð21Þstatð10Þsys for the scalar and tensor charges; hr2Ai ¼
0.439ð56Þstatð34Þsys fm2 for the mean squared axial charge radius, g�P ¼ 9.03ð47Þstatð42Þsys for the induced
pseudoscalar charge; and gπNN ¼ 14.14ð81Þstatð85Þsys for the pion-nucleon coupling. We also provide a

parametrization of the axial form factor GAðQ2Þ over the range 0 ≤ Q2 ≤ 1 GeV2 for use in phenom-

enology and a comparison with other lattice determinations. We find that the various lattice data

agree within 10% but are significantly different from the extraction of GAðQ2Þ from the ν-deuterium

scattering data.

DOI: 10.1103/PhysRevD.109.014503

I. INTRODUCTION

In ongoing neutrino scattering experiments (T2K,NOvA,

MINERνA, MicroBooNE, SBN), the lack of precise recon-

struction of the final state of the struck nucleus gives rise to

uncertainty in the cross section. Theoretical calculations of

the cross section for targets, such as 12C, 16O, and 40Ar, being
used in experiments take as input axial-vector form factor of

the nucleon and build in nuclear effects using nuclear many

body theory [1–3]. Both of these steps, calculating nucleon

axial form factors using lattice QCD and including nuclear
effects using many-body theory, have uncertainties.
Incorporating nuclear effects involves modeling of the
complex physical phenomena (quasi-elastic, resonance,

deep inelastic scattering) that contribute when considering
incoming neutrino energies up to 5 GeV relevant for
ongoing and future (DUNE) experiments. These complex

phenomenamake it hard to reconstruct the incident neutrino
energy or the cross-section from the imprecise knowledge of
the final state of the struck nucleus. On the other hand, the
cleanest experimental measurements of the nucleon axial-

vector form factor from scattering neutrinos off liquid
hydrogen targets are not being carried out due to safety
concerns.

TheMINERνAexperiment [4] has recently shown that the

axial-vector form factor of the nucleon can be extracted from

the charged current elastic scattering process ν̄μH → μþn in

which the free proton in hydrogen (H) gets converted into a

neutron. This opens the door to direct measurements of

the nucleon axial-vector form factor without the need for

extraction from scattering off nuclei, whose analysis involves
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nuclear corrections which have unresolved systematics,

and making detailed comparisons with predictions from

lattice QCD. For example, our result for the axial charge

radius, hr2Ai ¼ 0.439ð56Þstatð34Þsys fm2, given in Eq. (36), is

consistent, within one combined sigma, with the MINERνA

result,
ffiffiffiffiffiffiffiffiffi

hr2Ai
p

¼ 0.73� 0.17 fm.

Similarly, recent advances in simulations of lattice QCD

have enabled robust results for the nucleon charges that

have been reviewed by the Flavor Lattice Averaging Group

(FLAG) in their 2019 and 2021 reports [5,6]). Results for

axial-vector form factors [7] are now available with ≲10%
uncertainty as we show in this work. At the same time,

there continues to be progress in nuclear many-body theory

for the calculation of the neutrino-nucleus cross section [1].

In this work, we present lattice QCD results for the

isovector axial, GAðQ2Þ, induced pseudoscalar, G̃PðQ2Þ,
and pesudoscalarGPðQ2Þ form factors, the axial, scalar and

tensor isovector charges gu−dA , gu−dS and gu−dT , the axial

charge radius squared hr2Ai, the induced pseudoscalar

coupling g�P, and the pion-nucleon coupling gπNN .

The calculation has been done using thirteen ensembles

generated with 2þ 1þ 1-flavors of highly improved stag-

gered quarks (HISQ) by the MILC collaboration [8]. The

construction of nucleon two- and three-point correlation

functions has been done using Wilson-clover fermions

as described in [9]. The analysis of the data generated

using this clover-on-HISQ formulation includes a study

of excited state contributions (ESC) in the extraction of

ground state matrix elements (GSME) and a simultaneous

chiral-continuum-finite-volume (CCFV) fit to obtain

results at the physical point, which throughout the paper

will be defined as taking the continuum (a ¼ 0) and infinite

volume (MπL→ ∞) limits at physical light quark masses

in the isospin symmetric limit, mu ¼ md, which are set

using the neutral pion mass (Mπ0 ¼ 135 MeV). The masses

of the strange and charm quarks in the lattice generation

have been tuned to be close to their physical values in each

of the thirteen ensembles [8].

The three form factors GAðQ2Þ, G̃PðQ2Þ and GPðQ2Þ
must, up to discretization errors, satisfy the constraint in

Eq. (16) imposed by the partially conserved axial cur-

rent (PCAC) relation ∂μAμ ¼ 2mP between the axial and

pseudoscalar currents. The decomposition of the matrix

elements (ME) into form factors, given in Eqs. (1) and (2),

assumes that they are GSME. Post-facto, deviations from

the PCAC relation larger than those expected due to lattice

discretization artifacts are indicative of residual ESC in the

extraction of ME from the spectral decomposition of the

three-point correlation functions. They point to the need for

reevaluation of the key inputs in this analysis—the number

and energies of the excited states that contribute signifi-

cantly to the three-point functions. The strategies used to

remove ESC are described in Secs. II B and V, and the use

of the PCAC relation to evaluate how well ESC have been

controlled is discussed in Sec. II C.

In Ref. [10], we showed that the standard method of

taking the excited-state spectrum from fits to the nucleon

two-point correlation function to analyze the three-point

functions lead to form factors that fail the PCAC test by

almost a factor of two on the physical pion mass ensemble

a09m130W, and identified the cause as enhanced contri-

butions to ME from multihadron, Nπ, excited states that

have mass gaps smaller than of radial excitations [11,12].

These contributions had been missed in all prior lattice

calculations. Including Nπ excited states in the analysis

reduces the disagreement to within 10%, an amount that

can be attributed to discretization effects. In this paper, we

include Nπ states in the analysis of all thirteen ensembles

described in Table I. Data from various analyses discussed

in Secs. III A, III B, and IV B are then extrapolated to the

physical point using simultaneous CCFV fits and results

compared to understand systematics.

In order to extract gA and hr2Ai, we parametrize the Q2

behavior of GAðQ2Þ using the dipole and the model

independent z-expansion. We find that the dipole ansatz

does not provide a good fit and our final results are obtained

using the model independent z-expansion. We show that

the pion-pole dominance (PPD) hypothesis, Eq. (20), tracks

the improvement observed in satisfying the PCAC relation

when Nπ states are included in the analysis. We, therefore,

use it to parametrize G̃PðQ2Þ and extract g�P and gπNN in

Sec. IV. Similarly, the analysis of the ESC in isovector

charges extracted from the forward matrix elements is

carried out using information from both the 2- and 3-point

correlation functions and the noninteracting energy of the

lowest Nπ state.
Our final result for the axial form factor, parametrized

using the z2 truncation, is given in Eq. (34); the axial charge

obtained from extrapolating it to Q2 ¼ 0 in Eq. (30), and

the charge radius in Eq. (31). The results for the induced

pseudoscalar charge g�P and gπNN are given in Eqs. (44) and

(45). Lastly, the results for the three isovector charges gu−dA;S;T

from the forward matrix elements are given in Eq. (50).

This paper is organized as follows. In Sec. II, we briefly

review the notation and the methodology for the extrac-

tion of the three form factors: the axial, GA, the induced

pseudoscalar G̃P, and the pseudoscalar, GP, from matrix

elements of the axial and pseudoscalar currents within

ground state nucleons. In Sec. II B, we explain the three

strategies used to remove the ESC to the three-point

functions. The analysis of the form factors with respect

to how well they satisfy the relations imposed between

them by PCAC relation and the PPD hypothesis is

presented in Sec. II C. Based on this analysis, we present

our understanding of the excited states that contribute in

Sec. II D. The parametrization of the axial form factors

as a function of Q2 and the extraction of the axial charge

gA and the charge radius squared hr2Ai is carried out in

Sec. III. Parametrization of the induced pseudoscalar form

factor, G̃P, and the extraction of the induced pseudoscalar
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coupling g�P and the pion-nucleon coupling gπNN is carried

out in Sec. IV. The calculation of the isovector charges

gu−dA;S;T from forward matrix elements is described in Sec. V.

A summary of our results and a comparison with previous

lattice calculations is presented in the concluding Sec. VI.

Six Appendices give further details of the analysis and

the data.

II. METHODOLOGY FOR EXTRACTING

THE FORM FACTORS

The matrix elements of the axial Aμ ¼ ūγμγ5d and

pseudoscalar P ¼ ūγ5d currents between the ground state

of the nucleon can be decomposed, in the isospin sym-

metric limit, into the axial GA, induced pseudoscalar G̃P,

and pseudoscalar GP form factors as

hNðp⃗fÞjAμðQ⃗ÞjNðp⃗iÞi

¼ ūðp⃗fÞ
�

GAðQ2Þγμγ5 þ qμγ5
G̃PðQ2Þ
2M

�

uðp⃗iÞ; ð1Þ

hNðp⃗fÞjPðq⃗ÞjNðp⃗iÞi ¼ ūðp⃗fÞ½GPðQ2Þγ5�uðp⃗iÞ; ð2Þ

where uðp⃗iÞ is the nucleon spinor with momentum p⃗i, q ¼
pf − pi is the momentum transferred by the current,

Q2 ¼ −q2 ¼ p⃗2
f − ðEðpfÞ − EðpiÞÞ2 is the spacelike four

momentum squared transferred. The spinor normalization

used is

X

s

uðp; sÞūðp; sÞ ¼ EðpÞγ4 − iγ · pþM

2EðpÞ : ð3Þ

The process of obtaining the GSME needed in Eqs. (1)

and (2) from fits to 2- and 3-point correlation functions is

described next.

A. Two- and three-point correlation functions

The lattice calculation starts with the measurement and

analysis of the two- and three-point correlation functions

C2ptðp; τÞ and CJðq; t; τÞ constructed using the nucleon

interpolating operator N ,

N ðxÞ ¼ ϵabc
�

qaT1 ðxÞCγ5
1� γ4

2
qb2ðxÞ

�

qc1ðxÞ; ð4Þ

where the � sign give positive parity states propagating

forward/backward in time. The spectral decompositions of

the two time-ordered correlation functions are

C2ptðp; τÞ≡ hΩjT ðN ðτÞN̄ ð0ÞÞjΩi ¼
X

i¼0

jA0
ij2e−Eiτ; ð5Þ

and

CJðq; t; τÞ≡ hΩjT ðN ðτÞJΓðtÞN̄ ð0ÞÞjΩi;
¼

X

i;j¼0

A0�
i Ajhi0jJΓjjie−Eit−Mjðτ−tÞ; ð6Þ

where JΓ ¼ Aμ or P is the quark bilinear current inserted

at time t with momentum q, and jΩi is the vacuum state.

TABLE I. The parameters of the 2þ 1þ 1-flavor HISQ ensembles generated by the MILC collaboration and analyzed in this study

are quoted from Ref. [8]. On two ensembles, a06m310 and a06m220, a second set of calculations labeled a06m310W and a06m220W,

have been done with a larger smearing size σ as described in Ref. [13]. In this clover-on-HISQ study, all fits are made versusMval
π , which

is tuned to be close to the Goldstone pion mass Msea
π . The finite-size effects are analyzed in terms of Mval

π L. Columns 7–10 give the

values of the source-sink separation τ used in the calculation of the three-point functions, the number of configurations analyzed, and the

number of measurements made using the high precision (HP) and the low precision (LP) truncation of the inversion of the Wilson-clover

operator [14]. The last column gives the value of Q2jmax for two cuts, n2 ≤ 6 (n2 ≤ 5 for the four a06m310 and a06m220 ensembles)

and n2 ≤ 10 used in the analysis. The full set of Q2 values simulated on each ensemble are given in Tables X–XXII.

Ensemble ID a (fm) Msea
π (MeV) Mval

π (MeV) L3 × T Mval
π L τ=a Nconf NHP

meas NLP
meas Q2jn2¼6

max ðGeVÞ2 Q2jn2¼10
max

a15m310 0.1510(20) 306.9(5) 320.6(4.3) 163 × 48 3.93 f5; 6; 7; 8; 9g 1917 7668 122,688 1.297 1.92

a12m310 0.1207(11) 305.3(4) 310.2(2.8) 243 × 64 4.55 f8; 10; 12g 1013 8104 64,832 0.920 1.435

a12m220S 0.1202(12) 218.1(4) 225.0(2.3) 243 × 64 3.29 f8; 10; 12g 946 3784 60,544 0.909 1.358

a12m220 0.1184(10) 216.9(2) 227.9(1.9) 323 × 64 4.38 f8; 10; 12g 744 2976 47,616 0.568 0.884

a12m220L 0.1189(09) 217.0(2) 227.6(1.7) 403 × 64 5.49 f8; 10; 12; 14g 1000 4000 128,000 0.374 0.595

a09m310 0.0888(08) 312.7(6) 313.0(2.8) 323 × 96 4.51 f10; 12; 14; 16g 2263 9052 114,832 0.961 1.421

a09m220 0.0872(07) 220.3(2) 225.9(1.8) 483 × 96 4.79 f10; 12; 14; 16g 964 7712 123,392 0.470 0.736

a09m130W 0.0871(06) 128.2(1) 138.1(1.0) 643 × 96 3.90 f8; 10; 12; 14; 16g 1290 5160 165,120 0.277 0.443

a06m310 0.0582(04) 319.3(5) 319.6(2.2) 483 × 144 4.52 f16; 20; 22; 24g 1000 8000 64,000 0.840

a06m310W f18; 20; 22; 24g 500 2000 64,000 0.846

a06m220 0.0578(04) 229.2(4) 235.2(1.7) 643 × 144 4.41 f16; 20; 22; 24g 650 2600 41,600 0.504

a06m220W f18; 20; 22; 24g 649 2596 41,546 0.509

a06m135 0.0570(01) 135.5(2) 135.6(1.4) 963 × 192 3.7 f16; 18; 20; 22g 675 2700 43,200 0.294 0.475
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In our set up, the nucleon state jji is, by construction,

projected to zero momentum, i.e., pj ¼ ðM; 0Þ, whereas
hi0j is projected onto definite momentum pi ¼ ðE; pÞ with
p ¼ −q by momentum conservation. Consequently, the

states on the two sides of the inserted operator J are

different for all q ≠ 0. The prime in hi0j indicates that this
state can have nonzero momentum.

For large time separations, τ and τ − t, only the ground

state contributes and the GSME, h00jJj0i, whose Lorentz

covariant decomposition is given in Eqs. (1) and (2), can be

extracted reliably. Assuming this is the case, and choosing

the nucleon spin projection to be in the “3” direction, the

decompositions become

CAi
ðqÞ→ K−1

�

−qiq3
G̃P

2M
þ δi3ðM þ EÞGA

�

; ð7Þ

CA4
ðqÞ → K−1q3

�

ðM − EÞ G̃P

2M
þGA

�

; ð8Þ

CPðqÞ → K−1q3GP; ð9Þ

where i∈ 1, 2, 3 and the kinematic factor K≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðEþMÞ
p

. These correlation functions are complex

valued, and the signal, for the CP symmetric theory, is in

ImCAi
, ReCA4

, and ReCP.

For a given q2 ≠ 0, the correlators with momentum

combinations q ¼ ð2π=LÞn≡ ð2π=LÞðn1; n2; n3Þ related

by cubic symmetry can be averaged to increase the statistics

before making fits. We construct the following averages

Āμ and P̄:

Aiðq2Þ≡
1

α1q
2

X

q

sgnðqiq3ÞCAi
ðqÞ

→ K−1
G̃P

2M
; ði ¼ 1; 2Þ; ð10Þ

A3;Lðq2Þ≡
1

α3q
2

X

q3≠0

CA3
ðqÞ

→ K−1

�

−
G̃P

2M
þ ðN − βÞ

α3q
2

ðM þ EÞGA

�

; ð11Þ

A3;Tðq2Þ≡
1

β

X

q3¼0

CA3
ðqÞ → K−1ðM þ EÞGA; ð12Þ

Ā4ðq2Þ≡
1

α3q
2

X

q

q3CA4
ðqÞ

→ K−1

�

ðM − EÞ G̃P

2M
þGA

�

; ð13Þ

P̄ðq2Þ≡ 1

α3q
2

X

q

q3CPðqÞ→ K−1GP; ð14Þ

where sgnðxÞ ¼ x=jxj is a sign function with sgnð0Þ ¼ 0,

α1 ≡
P jn1n3j=n2, α3≡

P

q3
n23=n

2 ¼N=3, q ¼ ð2π=LÞn,
β≡

P

q3¼0 1, and N ≡
P

q 1 is the number of equivalent

(under the cubic group) momenta averaged.

The pseudoscalar form factor, GP, is given uniquely by

Eq. (14). For a subset of momenta, GA and G̃P are deter-

mined uniquely from Eqs. (10) and (12). In general, we

solve the over-determined system of equations, Eqs. (10)–

(13). Of these, correlators Ā3;L and Ā4 are nonvanishing

for all q, and are thus sufficient to solve for GA and G̃P.

In practice, the A4 correlator has a poor signal and is

dominated by excited states contributions, which we

exploit to determine the relevant low-lying excited states.

These turn out to be towers of multihadron Nπ and Nππ

states. We find that including these states in fits to the

spectral decompositions given in Eqs. (5) and (6) is

essential for extracting the GSME. With the GSME in

hand, the form factors GA and G̃P are determined using

Eqs. (10)–(12).

B. Strategies to extract ground state matrix elements

Calculations of nucleon correlation functions face two

key challenges. First, the statistical signal-to-noise ratio

decays exponentially with the source-sink separation τ as

e−ðMN−1.5MπÞτ [15,16]. This limits current measurements

of two-point (three-point) functions to ≲2 ð≲1.5Þ fm.

Second, at these τ, the residual contribution of many

theoretically allowed radial and multihadron excited states

can be significant. These states arise because the standard

nucleon interpolating operator N , defined in Eq. (4), used

to construct the correlation functions in Eqs. (5) and (6),

couples to nucleons and all its excitations with positive

parity including multihadron states, the lowest of which are

NðpÞπð−pÞ and Nð0Þπð0Þπð0Þ. The goal is to remove the

contributions of all these excited states to three-point

functions to obtain the GSME, h00jJj0i, which we do by

fitting the averaged correlators Āμ and P̄ using Eq. (6).

An important note applicable to all fits used to remove

excited states. For all our ensembles, the energy of the two

lowest in these towers of positive parity states, Nðp ¼ 1Þ×
πðp ¼ −1Þ andNð0Þπð0Þπð0Þ, are approximately the same.

Since fits to Eqs. (5) and (6) depend only on Ei and not on

the nature of the states, the contribution of both states is

taken into account using the E1 calculated for either state.

Thus, the reader should understand that the contribution

of both states are being included when, for brevity, we say

Nπ state.

To extract the GSME, we need to address two questions:

(i) which excited states make large contributions and

(ii) how large is this contribution to various observables.

The most direct (and statistically the best motivated

assuming that a common set of states dominate the ESC

in all correlators) way to get the ground-state matrix

element that addresses these questions is to simultaneously
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fit, with the full covariance matrix, all five nucleon three-

point functions including two or more excited states, and

then solve the linear set of Eqs. (10)–(14).

In general, simultaneous fits to the current data (3-point

or a combination of 2- and 3-point) do not resolve the

excited states, i.e., there are large regions of parameter

space where fits give similar χ2=d.o.f. The one exception is
fits to the correlation functions hNA4Ni that, as discussed
below, play a central role in our analysis as they expose the

large contribution of Nπ states. Unfortunately, even 2-state

simultaneous fits to all five nucleon three-point functions

are not stable for all momentum channels and ensembles.

We, therefore, resort to taking the energies and amplitudes,

especially those of the ground state, from separate, but

within a single overall jackknife process, fits to the 2-point

function.

The analysis of the nucleon two-point functions and the

extraction of the spectrum is presented in Appendix A and

the extrapolation of the data for the nucleon mass, MN , to

the continuum limit in Appendix B. Results for the excited

state parameters, i.e., the energies EiðqÞ, the masses Mi,

and the amplitudes Ai, have large uncertainty. For example,

in a four state fit, there is a large region of parameter space

where fits have similar χ2=d.o.f.
In short, statistical precision of current data does not

allow simultaneous fits to all five nucleon three-point

functions using a 3-state (or higher) fit with the full

covariance matrix. Even a robust determination of the

energies, Ei, and amplitudes, Ai, of excited states that make

significant contributions from fits to 2-point functions is

lacking. Our best approach is a hybrid of using informa-

tion from fits to 2- and 3-point functions. To this end, we

construct three strategies with different estimates of excited-

state parameters to fit the three-point data using Eq. (6).

These are described next.

In the standard approach, labeled S2pt, we take Ei,Mj, A
0
0

and A0 from 4-state fits to C2pt, and input them into an

m-state truncation (m ≤ n) of Eq. (6) to extract the matrix

element h00jJj0i. In this paper, we truncate the spectral

decompositions given in Eqs. (5) and (6) at m ¼ 3 and

n ¼ 4, respectively.

The second strategy, labeled SA4, was proposed in

Ref. [10]. Again E0, M0, A0
0 and A0 are taken from

4-state fits to C2pt, however, E1 and M1 are determined

from two-state fits to the three-point correlator Ā4. The

output E1 and M1 are then fed into the fits to the other

four correlation functions defined in Eqs. (10)–(12), and

(14). This strategy assumes that the same [first] excited

state parameters apply to all five correlation functions, and

these are given by fits to Ā4.

The third strategy Ssim is similar to SA4 except that E1

and M1 are outputs of simultaneous two-state fits to all

five three-point correlators defined in Eqs. (10)–(14). It is,

from a statistical point of view, better motivated than SA4

because the underlying assumption in both cases is that the

same excited states contribute to all five correlators. It

avoids the two-step procedure used in SA4, i.e., first obtain

E1 and M1 from fits to Ā4 and then use them in fits to the

other four correlators. In Ssim, we used the averaged

correlator Āxy ¼ ðĀ1 þ Ā2Þ=2, since these two correlators

are equivalent under cubic rotational symmetry, thus

reducing the number of correlators fit simultaneously

to four.

We used the full covariance matrix for all fits to the

2-point and 3-point functions with the S2pt and SA4

strategies. In the Ssim strategy, the covariance matrix was

restricted to be block diagonal in each correlation function.

In the Oð1000Þ fits made to remove ESC (ensembles⊗ Q2

values ⊗ correlation functions ⊗ strategies) the selection

of parameters was done individually due to the large

differences in ESC behavior versus ensembles, Q2 values,

and correlation functions.

We emphasize from the very outset that in all fits with

each of the three strategies, the excited state amplitudes,

A
ð0Þ
i and Aj, are not needed since these arise only in the

combinations jA0
ijjAjjhi0jJjji, which are fit parameters but

are not used thereafter in the analysis. Second, the ground

state parameters, M0, E0, A
0
0 and A0 are common for all

three strategies and are taken from four-state fits to the two-

point correlators.

The unrenormalized values of the three form factors at

various values ofQ2 simulated, for each of the three strategies

and for the 13 ensembles are given in Tables X–XXII in

Appendix C. The size of the effect of Nπ state can already be

inferred from the difference between the S2pt and Ssim data

even thoughSsim includes only the lowestNð−1Þπð1Þ state in
the fit. Overall, this comparison shows that the contribution of

theNπ state to G̃P andGP is enhanced, reaching∼45% at the

physical pion mass. The roughly 5% effect observed inGA is

important phenomenologically and needs to be made more

precise. Later, in Sec. II C, we choose the Ssim strategy to

present the final results based on the three form factors

satisfying the PCAC relation.

A comparison ofGAðQ2Þ and the combination G̃PðQ2Þ×
ðQ2 þM2

πÞ=ð4M2
NÞ, which should be proportional to GA

according to the PPD hypothesis, obtained using the three

strategies S2pt, SA4, and Ssim, is shown in Fig. 1. Results for

both form factors are consistent between SA4 and Ssim for

each of thirteen ensembles with errors from Ssim being

slightly larger. On the other hand G̃P (and GP) from

strategy S2pt show noticeable differences that increase as

Q2
→ 0 andMπ → 135 MeV (see also the data in X–XXII

in Appendix C). This effect is correlated with the increase

in the difference betweenΔE
2pt
1 (used in S2pt fits) compared

to ΔEA4
1 and ΔMA4

1 (output of Ssim fits) in the same two

limits as shown later in Fig. 6. Also, from Eq. (6) it is

obvious that a smaller ΔE1 implies a larger ESC.

The same data for GAðQ2Þ and G̃PðQ2Þ × ðQ2 þM2
πÞ=

ð4M2
NÞ from the 13 ensembles with the Ssim strategy are
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plotted in Fig. 2. Remarkably, they show no significant

variation with respect to the lattice spacing a or Mπ except

for a 1σ lower values on the a06m135 ensemble, which we

identify to be statistics limited.

In Appendix C we summarize why, with the metho-

dology for momentum insertion through the operator

used in this work, improving the lattice calculations

(Mπ → 135 MeV, increasing MπL > 4, and reducing a)

will increasingly give data at Q2 < 0.5 GeV2. Even in this

work, most of the data for Q2 > 0.7 GeV2 comes from the

Mπ ≈ 310 MeV ensembles. If the optimistic scenario

presented by the current data, mild dependence on

fa;Mπg as shown in Fig. 2 and in Ref. [7], holds then

one will have confidence in the final result for GA also for

FIG. 1. Data from the 13 ensembles with a ≈ 0.15, 0.12, 0.09, and 0.06 fm for the unrenormalized axial form factor GAðQ2Þ (first and
third columns) and ðQ2 þM2

πÞG̃PðQ2Þ=ð4M2
NÞ (second and fourth columns) plotted versus Q2. Each panel compares the data obtained

using the three strategies S2pt, SA4, and Ssim for controlling ESC.
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0.5≲Q2 ≲ 1.5 GeV2 even though its extraction in that

region will be from data onMπ > 200 MeV ensembles. To

push precision to Q2 ∼ 5 GeV2 to meet the needs of the

DUNE experiment will need further algorithmic develop-

ments and much higher statistics data.

A detailed analysis of the extrapolation of these GA to

Q2
→ 0 to get the axial charge gA is presented in Sec. III.

The marked improvement in satisfying the PCAC relation

and the PPD hypothesis shown by the GA, G̃P, and GP

obtained with the SA4 and Ssim strategies (which include

the Nπ state) is discussed next in Sec. II C.

C. The PCAC relation and pion-pole dominance

In this section, we evaluate how well the form factors

from the three strategies, tabulated in Appendix C, satisfy

the PCAC relation, which in terms of the bare axial, AμðxÞ,
and pseudoscalar, PðxÞ, currents is

∂μAμ ¼ 2m̂P; ð15Þ

where the quarkmass parameter m̂≡ ZmmudZPZ
−1
A includes

all the renormalization factors, andmud¼ðmuþmdÞ=2¼ml

is the light quark mass in the isospin symmetric limit. Using

the decomposition in Eqs. (1) and (2) of GSME, the PCAC

relation requires that the three form factors GA, G̃P, and GP

satisfy, up to discretization errors, the relation

2MNGAðQ2Þ − Q2

2MN

G̃PðQ2Þ ¼ 2m̂GPðQ2Þ; ð16Þ

which we rewrite as

R1 þ R2 ¼ 1; ð17Þ

with

R1 ¼
Q2

4M2
N

G̃PðQ2Þ
GAðQ2Þ ; ð18Þ

R2 ¼
m̂

MN

GPðQ2Þ
GAðQ2Þ : ð19Þ

The PPD hypothesis relates G̃P to GA as

R3 ≡
Q2 þM2

π

4M2
N

G̃PðQ2Þ
GAðQ2Þ ¼ 1: ð20Þ

Tests of whether the form factors satisfy the PCAC

(R1 þ R2 ¼ 1) and PPD (R3 ¼ 1) relations are presented in

Figs. 3 and 4, respectively. Data with the S2pt strategy show

about 10% deviation for both the PPD and PCAC relations

for Q2 > 0.3 GeV2. Below it, the deviation grows to about

40% at the lowest Q2 point on the two physical pion mass

ensembles. See also the discussion in Appendix C on the

differences in data for the form factors obtained using the

three ESC strategies.

There is a very significant reduction in the deviations for

both the SA4 and Ssim strategies forQ2 < 0.3 GeV2. In fact,

except for three Mπ ≈ 220 MeV ensembles, data below

Q2 ¼ 1 GeV2 is essentially independent of Q2 and the

deviations from unity and the variations between ensembles

is in most cases within about 5%, which can be due to

possible discretization errors. The differences between data

with Ssim and SA4 are much smaller. Also, the improvement

in the PPD relation, Eq. (20), tracks that in PCAC, Eq. (17).

We point out a caveat in our clover-on-HISQ calculation

of the quark mass m̂ used in Eq. (16). For four ensembles,

a12m310, a09m130W, a06m220, and a06m135 we have

calculated m̂2pt using the following ratio of pion two-point

correlators,

2m̂2pt ¼ hΩj∂μAμðtÞPð0ÞjΩi
hΩjPðtÞPð0ÞjΩi : ð21Þ

For the other ensembles, the data for these two-point

functions were not collected, so we use the HISQ sea

FIG. 2. The data for renormalized GAðQ2Þ (left) and F̃PðQ2Þ≡ G̃PðQ2Þ × ðQ2 þM2
πÞ=ð4M2

NÞ (right) from the 13 HISQ ensembles

analyzed. No significant variation with respect to the lattice spacing a or Mπ is observed except for the a06m135 ensemble, which we

consider statistics limited.
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quark mass amsea
ud for m̂ since for staggered fermions, in fact

all lattice fermions with chiral symmetry, ZmZPZ
−1
A ¼ 1.

These quark masses are given in Table II and we find that

m̂2pt is 5–20% larger than amsea
ud , which is not unexpected

for our clover-on-HISQ calculation. Noting thatR2 ≈ 0.5R1

(see Fig. 15 in Ref. [9]), such a 20% systematic error would

increase R1 þ R2 by about 7%. This would bring the data

from the physical mass ensembles, a09m130W and

a06m135, in better agreement but would not alter our

conclusion that form factors obtained with SA4 and Ssim

strategies show better agreement with the PCAC relation

compared to S2pt. Also, m̂ does not enter in the PPD

relation, Eq. (20), and the deviation from unity of the PPD

relation with SA4 and Ssim data is observed to be smaller

than seen in the PCAC relation as shown in Fig. 4. Equally

important, this caveat does not impact the extraction of

individual form factors or their subsequent analysis since m̂
only enters in the test of how well the three form factors

satisfy the PCAC relation, Eq. (16).

We further examine whether the deviation from unity in

Fig. 3 at smallQ2 is a discretization error. TheOðaÞ impro-

vement affects only the axial current, Aμ→AμþcAa∂μP,

and adds to the left hand side in Eq. (16) the term

−Q2acAGP, i.e., under improvement, Eq. (16) can be

written as

FIG. 3. The data for R1 þ R2, which should equal unity to

satisfy PCAC relation, is plotted versus Q2 for analysis strategies

S2pt (top), SA4 (middle), and Ssim (bottom). The PCAC relation,

Eqs. (15) and (16), requires R1 þ R2 ¼ 1 up to discretization

errors. The dashed lines give the �5% deviation band.

FIG. 4. The ratio R3, which should be unity for the pion-pole

dominance hypothesis to be satisfied, is plotted versus Q2 for

analysis strategies S2pt (top), SA4 (middle), and Ssim (bottom).

The dashed lines mark the �5% deviation band.
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MN

GA

GP

−
Q2

4MN

G̃P

GP

¼ m̂þ 1

2
acAQ

2; ð22Þ

where the improvement coefficient, cA, is typically

Oð10−2Þ and negative. Thus, this effect is expected to be

small for Q2 < 1 GeV2, and will not change our conclu-

sions. On the other hand, effects due to possible mistuning

of the clover coefficient, cSW , and cA, and Oða2Þ correc-

tions are likely to increase with Q2. Similarly, artifacts are

expected to increase with the quark mass since the improve-

ment coefficient bm is not included.

The PPD relation [Eq. (20)] can be derived from PCAC

[Eq. (16)] provided

R4 ≡
4m̂MN

M2
π

GP

G̃P

¼ 1: ð23Þ

In this case, R1 þ R2 ¼ 1 would also imply R3 ¼ 1. In

Fig. 5, we compare R4 from the three strategies for all

ensembles except a06m220W, a06m310, and a06m310W
where GP is not available. We note a roughly linear

increase in R4 with Q2, which is consistent with the

behavior observed in Ref. [7] and with the analysis of

the Goldberger-Trieman discrepancy using χPT in Ref. [17].

Lastly, we note that the data for R4 from all three strategies,

S2pt, SA4 and Ssim, overlap implying that the changes in G̃P

and GP, both of which have a pion pole, between different

treatments of ESC (S2pt versusSA4 orSsim) cancel in the ratio

R4 within our statistics. This observation supports our

hypothesis that the same excited states contribute to all five

correlation functions.

D. Excited states spectrum

In Fig. 6 we show data for the energy gaps, ΔE1 and

ΔM1 on the two sides of the operator insertion for the

various ensembles, including the two physical pion mass

ones, a09m130W and a06m135. The results for ΔEA
1 and

ΔMA
1 , outputs of the simultaneous fits to all five correlators

(insertions of Aμ and P) at a given momentum transfer

p ¼ 2πn=L overlap with the results ΔEA4
1 and ΔMA4

1

obtained from fits to just CA4
. This indicates that the

energy gaps in the Ssim fits are essentially controlled by

CA4
. The momentum dependence of the data is consistent

with the expectation that the relevant excited states on the

two sides are NðnÞ þ πð−nÞ and Nð0Þ þ πð−nÞ. This is

based on the rough agreement between the data and the

corresponding noninteracting energies of these states, ΔM1

and ΔE1, shown by the dashed red and blue lines,

respectively, and consistent with the PPD hypothesis that

the currents inject a pion with momentum q⃗.
The data with open circles in Fig. 6 are the energy gaps

ΔE
2pt
1 obtained from the nucleon two-point correlators.

These are roughly independent of momentum and larger

than those from SA4 or Ssim fits, especially for the

smaller Q2 points. The difference increases as Q2
→ 0

TABLE II. The HISQ sea quark mass is given in the second

column. The quark mass m̂ is calculated from Eq. (21).

ID amsea
ud am̂2pt

a15m310 0.013 � � �
a12m310 0.0102 0.0121

a12m220L 0.00507 � � �
a12m220 0.00507 � � �
a12m220S 0.00507 � � �
a09m310 0.0074 � � �
a09m220 0.00363 � � �
a09m130W 0.0012 0.0015

a06m220 0.0024 0.0028

a06m135 0.00084 0.00088

FIG. 5. Results for the ratio R4 ¼ ðGP=G̃PÞ × ð4m̂MN=M
2
πÞ.

For the pion-pole dominance hypothesis to be exact (derivable

from the PCAC relation), R4 should be unity independent of Q2.

The data show an approximate linear increase with Q2, which is

consistent with the Goldberger-Trieman discrepancey as dis-

cussed in Refs. [7,17].
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and Mπ → 0. This behavior is consistent with ΔE
2pt
1

corresponding to a mixture of radial and higher multi-
particle excitation whereas the energy of the interme-
diate excited states identified by the SA4 and Ssim fits,

NðnÞ þ πð−nÞ and Nð0Þ þ πð−nÞ, decreases with decreas-
ing n and Mπ. A word of caution when making these

identifications: it is very important to qualify that the ΔE1

and ΔM1 from the two-state fits in SA4 and Ssim strategies

FIG. 6. Results for the energy (mass) gapsΔE1 (ΔM1) for the first excited state extracted from (i) simultaneous fits to axial three-point

correlators C½Aμ� and the pseudoscalar correlator CP (Ssim strategy and labeled ΔEA
1 and ΔMA

1 ), and (ii) from fits to the C½A4� correlator
(SA4 strategy and labeled ΔE

A4
1 and ΔMA4

1 ). These mass gaps are compared with the first excited state energy ΔE
2pt
1 from four-state fits

to the nucleon two-point correlator. Note that the difference between them (black circles versus blue triangles), and consequently the

difference between the form factors extracted, increases as Mπ → 135 MeV and n2
→ 0 (equivalently Q2

→ 0).
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are effectively trying to account for all the intermediate

states that make significant contributions and not just

the lowest or the most intuitive ones. Given the size of

the effect, identifying and improving control over all the

excited states that make significant contribution to these

correlation functions will be key to obtaining, in the future,

higher precision results for the form factors.

E. Renormalization constant ZA

The renormalization constant ZA for the axial current

needed for the form factors GA and G̃P and the charges gA,
g�P and gπNN was determined nonperturbatively using the

RI-sMOM intermediate scheme in Ref. [13]. We use the

results given in Table V there.

III. PARAMETERIZATION OF GAðQ2Þ,
AND THE EXTRACTION OF gA AND hr2Ai

In this section, we present the analysis of GAðQ2Þ
without including the values of the axial charge gA obtained
from the forward matrix element. Its extraction is discussed

separately in Sec. V. This is done to keep the two extrac-

tions of gA—from the forward matrix element (50) and by

extrapolating GAðQ2Þ to Q2
→ 0 [Eq. (36)]—separate. The

final result, given in Table VI, is taken to be the average of

the two.

The axial-vector form factor GAðQ2Þ can be parame-

trized, near Q2 ¼ 0, by the axial charge gA and the axial

charge radius squared hr2Ai:

GAðQ2Þ ¼ gA

�

1 −
hr2Ai
6

Q2 þ � � �
�

; ð24Þ

where gA ≡GAð0Þ and

hr2Ai≡ −
6

gA

dGAðQ2Þ
dQ2

�

�

�

�

Q2¼0

: ð25Þ

To extract these from lattice data obtained atQ2 ≳ 0.1 GeV2,

one parametrizes theQ2 dependence ofGAðQ2Þ. Among the

various parametrizations, we study the dipole ansatz and the

model-independent z-expansion. The dipole ansatz

GAðQ2Þ ¼ gA

ð1þQ2=M2
AÞ2

: ð26Þ

has two free parameters, the axial charge gA and the axial

mass MA. The z-expansion is the series

GAðQ2Þ ¼
X

∞

k¼0

akz
k; ð27Þ

in terms of the variable

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tc þQ2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi

tc þ t0
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tc þQ2
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

tc þ t0
p with tc ≡ 9M2

π ð28Þ

thatmaps the kinematically allowed analytical regionQ2 ≥ 0

to that within a unit circle, jzj < 1 [18]. The parameter t0 is
discussed later. For sufficiently small z, fits with the first few
terms should suffice. In practice, to stabilize the fits we

impose the condition jakj ≤ 5 for all zk≥1 truncations [18].
With increasingly precise data over a sufficiently large range

ofQ2, our goal is to demonstrate that a data-driven choice can

be made between the various parametrizations.

In the data presented here, the statistical signal is good

for momentum transfer with n2 ≤ 6 but often poor in the

four points with 8 ≤ n2 ≤ 10. To test the stability of

the dipole and zk fits with such few points, we compare

the output of the fits to the lowest six versus all ten Q2

points on nine ensembles where data on all ten Q2 values

exist. Observing consistency, the final results are taken

from fits to six (five in 4 cases) points, i.e., to data up to the

Q2jn2≤6max given in Table I. This implies that results for form

factors presented forQ2 ≳ 0.5 GeV2 come mainly from the

Mπ ∼ 310 MeV ensembles, and, a priori, could have an

large systematic uncertainty. In practice, however, the

observed weak dependence of form factors on Mπ (see

Fig. 2 and similar results from a clover-on-clover calcu-

lation presented in Ref. [7]) suggests that the uncertainty is

likely within the quoted errors. Readers should, never-

theless, keep in mind that results at Q2 ≳ 0.5 GeV2 are

based mainly on data from the Mπ ≈ 310 MeV ensembles.

Estimates of GA from the dipole fit to data from the three

ESC strategies are consistent, however, on six ensembles

these dipole fits to Ssim and SA4 data have poor p-values.
Our evaluation of the failure is that the dipole ansatz does

not have enough parameters to capture the change in the

curvature over the range of Q2 studied. A consequence is

that estimates for gA and hr2Ai are smaller than those from z2

fits to the same Ssim and SA4 data. Since agreement with

PCAC is essential and Ssim data do the best job, while the

dipole fits are poor,we rule out the dipole ansatz.Henceforth,

our final results are obtained using the z-expansion, and the

dipole results are given only for comparison.

In the z-expansion fits, the free parameter t0 in Eq. (28) is
used to adjust the maximum value of z within the unit

circle jzj ≤ 1. We take t0 ¼ 0.4, 0.2, 0.12 for Mπ ≈ 310;
220; 130 MeV ensembles, which gives jzj≲ 0.2. We have

checked that using t0 ¼ 0 does not change the fits or the

values significantly.

To ensure that the form factors satisfy the expected 1=Q4

perturbative behavior in the limit Q2
→ ∞, sum rules can

be imposed as was done in Ref. [9]. However, to obtain the

behavior near Q2 ¼ 0 from six or ten data points with

Q2
max ≈ 1 GeV2, we choose to make fits without the sum

rules [19], i.e., to not increase the weight of the larger error

high Q2 points by imposing the sum rules. The z1 and z2

fits to GAðQ2Þ from the Ssim strategy are shown in Fig. 13.

The resulting bare axial charge gA ≡GAð0Þ and the charge

radius squared hr2Ai from the z2 fits are shown in Fig. 7,
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and the data are summarized in Table XXIII in Appendix D.

From these data and the z-expansion fits, we conclude the

following:

(i) There is agreement in results between z2 and z3 fits
in all cases. To account for the small curvature

observed in the data shown in Fig. 13 and yet avoid

overparametrization, evaluated using the Akaika

information criteria (AIC) [20], we will present final

results with the z2 truncation.

(ii) The errors in the data from the two physical mass

ensembles a09m130W and especially a06m135 are

large and underscore the need for higher statistics.

(iii) Results for both gA and hr2Ai from the SA4 and

Ssim analyses overlap and increase in value as

Mπ → 135 MeV. This increase is correlated with

the increasing ESC of the Nπ state.

We take the final results from the Ssim strategy in which a

simultaneous fit is made to all five correlators and the form

factors come closest to satisfying the PCAC relation as

shown in Fig. 3. This is a 2-state fit and we find that stable

3-state fits require higher statistics. Thus, with the current

data, we do not have a reliable way of estimating the syste-

matic uncertainty associated with possible residual ESC.

The analysis of gA obtained from the forward matrix

elements is postponed to Sec. V.

A. Extrapolation of gA and hr2Ai to the physical point

Extrapolation of the renormalized axial charge gA and

the axial charge radius squared hr2Ai to the physical point

(a → 0, Mπ → 135 MeV, L → ∞) is performed using a

simultaneous CCFV fit keeping only the lowest order

corrections in the ansatz

Y ¼ bY0 þ bY1aþ bY2M
2
π þ bY3M

2
π exp ð−MπLÞ; ð29Þ

whereY ¼ hr2Ai or gA and fbYi g denote the corresponding set
of fit parameters. The discretization artifacts are taken to start

atOðaÞ since the clover action used is only tadpole improved

and the axial and pseudoscalar currents are unimproved [21].

Similarly, only the lowest order term in the chiral expansion

is kept to avoid over-parametrization as data at only three

values of the pion mass have been simulated.
We have performed four CCFV fits to (i) the full set of

thirteen ensembles (13-pt); and three “12-pt” fits that

exclude (ii) the coarsest lattice point a15m310, (iii) the

smallest volume point a12m220S that also has large errors,

and (iv) the point a06m135 that has large statistical errors

and shows the largest difference from the other 12 points.

The three 12-pt fits are used to estimate systematics due to

discretization and finite volume effects, and the impact of

the a06m135 point. Results of the 13-point CCFVextrapo-

lation for gA and hr2Ai are summarized in Table III for six

FIG. 7. Left: results for bare gA from the strategy Ssim and the differencesΔðSA4Þ ¼ gAjSA4
− gAjSsim

andΔðS2ptÞ ¼ gAjS2pt
− gAjSsim

. To

facilitate visualization of the spread, the errors plotted for ΔðXÞ are those in gAðXÞ. Results are shown for the dipole fit labeled “D” and
z1;2;3-truncations. Right: analogous results for hr2Ai.

TABLE III. gA and hr2Ai from the 13-point CCFV fit. Results

are given for the z2 and dipole fits to GAðQ2 ≠ 0Þ, and for the

three strategies used to control ESC. In each case, in addition to

the central value and the total analysis error, the two systematic

errors are the difference between the z2 and z3 estimates, and the

difference from the 12-pt CCFV fits explained in the Sec. III A.

gA z2 Dipole

Ssim 1.296(50)(13)(11) 1.239(43)(� � �)(39)
SA4 1.281(51)(11)(21) 1.204(44)(� � �)(21)
S2pt 1.213(39)(02)(� � �) 1.228(37)(� � �)(� � �)

hr2Ai z2 Dipole

Ssim 0.418(33)(29)(18) 0.305(13)(� � �)(06)
SA4 0.428(31)(21)(19) 0.305(15)(� � �)(06)
S2pt 0.282(27)(16)(� � �) 0.275(14)(� � �)(� � �)
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cases: the three strategies used for removing ESC, Ssim,

SA4, and S2pt, and the two Q2 parametrizations, z2 and

dipole. The parameters of the 13-point CCFVextrapolation

of the z2 fit to the Ssim data, used to get the final central

values, are given in Table XXVI in Appendix E for both gA
and hr2Ai. Results for all the other cases can be constructed

using the data for the form factors given in Tables X–XXII

in Appendix C.

1. gA

The result for gA, taken from the 13-point CCFV

extrapolation of z2 fits to the Ssim data, shown in Fig. 8, is

gA ¼ 1.296ð50Þstatð13Þð11Þ
¼ 1.296ð50Þstatð17Þsys; ½z2�: ð30Þ

The first error is the total analysis uncertainty given by the

overall bootstrap process, and the next two are additional

systematic uncertainties: (i) the difference between using z2

and z3 fits and (ii) the difference of this central value from

the average of the three 12-point CCFV fits. The two syste-

matics are added in quadrature to get the total systematic

error given in the second line in Eq. (30). In Sec. V, this result

is compared with an independent analysis of gA obtained

from the forward matrix element, i.e., from the zero

momentum correlator, CA3
ðp ¼ 0Þ, as defined in Eq. (7).

FIG. 8. The axial charge gA given by the 13-pt CCFV fit to Ssim data using the z2 fit toGAðQ2 ≠ 0Þ. The pink band in each panel gives
the result of the CCFV fit [Eq. (29)] versus the x-axis variable with the other two variables set to their physical values. The data points in

each panel have been shifted in the other two variables using the same CCFV fit, however, the size of errors are not changed. The final

result at the physical point is shown by the red cross.

FIG. 9. Top: the axial charge radius squared hr2Ai given by the 13-pt CCFV fit to data obtained using the z2 fit to GAðQ2 ≠ 0Þwith the
Ssim strategy. Bottom: the 12-pt fit without the a06m135 point (open blue square in the three panels on the top) that has large errors. The

pink band in each panel gives the result of the CCFV fit [Eq. (29)] versus the x-axis variable with the other two variables set to their

physical values. The data points in each panel have been shifted using the same CCFV fit, however, the size of errors are not changed.

The final result at the physical point is shown by the red cross.
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2. hr2Ai
The CCFV fit to hr2Ai, obtained from the Ssim data with

z2 fit, is shown in Fig. 9 (top panels). It gives

hr2Ai ¼ 0.418ð33Þstatð29Þð18Þ fm2

¼ 0.418ð33Þstatð34Þsysfm2; ½z2� ð31Þ

with the errors derived in the same way as for gA.
For both gA and hr2Ai, the largest dependence in the

CCFV fit is onM2
π for the Ssim and SA4 strategies. This is a

consequence of the increasing influence of the Nπ state

as its mass gap decreases well below the N(1440) as

Mπ → 135 MeV. In contrast, the S2pt data, which do not

include the Nπ state in the analysis, show mild dependence

on all three variables fa;Mπ;MπLg.
Estimates from the 12-pt CCFV fit excluding the

a06m135 point, shown in the bottom panels of Fig. 9, are

consistentwith the13-point results. This is expected since the

errors in the a06m135 point are large. Clearly, to further

improve the estimates of both gA and hr2Ai requires much

higher statistics data at small Q2 on the physical pion-mass

ensembles.

B. GAðQ2Þ at the physical point

TheQ2 dependence of the axial form factor up to 1 GeV2,

obtained at the physical point, is shown inFig. 10 for the three

strategies S2pt, SA4, and Ssim. The pink band in these figures

was obtained using the following three step process starting

with the renormalized lattice data for GAðQ2Þ=gA, which on
each of the thirteen ensembles are at different discrete values

ofQ2. First the data on each ensemble were fit using the z2-
ansatz [see Eq. (27)] and the result is taken to specify

GAðQ2Þ=gA for 0 < Q2 ≤ 1 GeV2. Second,we chose a set of

eleven Q2 values evenly distributed over this range, and for

the thirteen data points at each of theseQ2 values carry out a

13-point CCFVextrapolation using Eq. (29). The result was

taken to be the physical point value of GA=gA at that Q2. In

each of these CCFV fits, the thirteen points from the thirteen

ensembles are uncorrelated as these are independent calcu-

lations. Lastly, these eleven extrapolated points were fit by

the z2 ansatz to obtain the final parametrization valid in the

interval 0 ≤ Q2 ≤ 1.0 GeV2 and shown by the pink band in

Fig. 10. The errors in the original lattice data were fully

propagated through this three step process carried out within

a single bootstrap setup. This gives the central value and

error. Possible uncertainty due to incomplete removal of ESC

or due to using only the leading orderCCFV fit ansatz is to be

estimated separately.

Figure 10 also shows the experimental bubble chamber

data and the dipole ansatz with MA ¼ 1.026ð21Þ GeV
extracted from it (green band) [17]. A recent z-expansion
analysis of the ν-deuterium data [22] finds a ≈10X larger

uncertainty. In our analysis, only the S2pt data are roughly

consistent with a dipole ansatz with MA ≈ 1.30 GeV,

however, the three form factors extracted using S2pt fail

to satisfy the PCAC relation. We, therefore, reemphasize

that the dipole curves with MA ¼ 1.026, 1.2 and 1.35 GeV

are shown only for comparison.

The data from the SA4 and Ssim strategies are consistent,

and show a more rapid fall until Q2 ≈ 0.3 GeV2, and give

FIG. 10. Results for GA=gA at the physical point for the three

strategies S2pt, SA4 and Ssim (labeled “2pt,” “A4,” and “sim,”

respectively) used to control the excited-state contamination. The

three step process used to get these results shown by the pink band

is described in the text. In each case, the error band represents the

full analysis error for that strategy but with the value at Q2 ¼ 0

fixed to unity. The label 1 ⊕ a ⊕ M2
π ⊕ FV specifies that all 4

terms in the CCFV ansatz, Eq. (29), were kept. The experimental

ν-deuterium data (gray crosses labeled Exp.) were provided by Ulf

Meissner and the dipole resultMA ¼ 1.026ð21Þ GeV is taken from

Ref. [17]. This and the two other dipole fit with MA ¼ 1.20 and

1.35 GeV are shown only for comparison.
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results roughly consistent with the dipole values MA ¼
1.026ð21Þ GeV [and hr2Ai ¼ 0.444ð28Þ fm2)] in Ref. [17].

They then level out falling more slowly, however, note that

for Q2 > 0.5 GeV2 our results are mainly from the heavier

Mπ ≈ 310 MeV ensembles. On the heavier Mπ ensembles,

the mass gaps in the Nπ analyses (blue triangles and red

squares in Fig. 6) increase rapidly towards those from the

S2pt fit (black circles). Consequently, as shown in Fig. 10,

the GA=gA from the Ssim analysis moves towards the S2pt

result for Q2 ≳ 0∶5 GeV2.

To obtain data for Q2 > 0.5 GeV2 on physical pion

mass ensembles with MπL > 4 requires simulations at

much larger values of q where statistical and discretiza-

tion errors are large with the methodology used in this

work. A more promising method for generating data at

large Q2 is momentum smearing [23]. Also, when

including points with larger Q2, the z-expansion fits

with and without sum-rules should be compared since it

is not known, a priori, when the expected 1=Q4

asymptotic behavior becomes significant. Alternately, as

shown in Ref. [7], one can analyze the data using a Padé

parametrization. Our fits to the final GA using the Padé

ansatz gA=ð1þ b1Q
2 þ b2Q

4Þ, which has the 1=Q4

behavior built in, gave estimates consistent with

Eqs. (30) and (31).

The coefficients bi in the CCFV fit using Eq. (29) are

shown in Fig. 11 for the three strategies S2pt, SA4, and Ssim.

The coefficients b1ðQ2Þ and b2ðQ2Þ are similar within errors

for Ssim and SA4, significantly different from zero, and

qualitatively different from the case S2pt. The bi for Ssim and

SA4 showa change in behavior atQ2 ≈ 0.3 GeV2, coincident

with the region where the curvature inGA changes as shown

in Fig. 10. This could be due to the fact that most of the raw

data controlling the parametrization at Q2 ≳ 0.3 GeV2

comes from the Mπ ≈ 220 and 310 MeV ensembles. On

the other hand, support for the parametrization comes from

the observation that the data, plotted in Fig. 2, do not show a

significant variation versus fa;Mπg. Cutting out the data

with Q2 > 0.3 GeV2 to see if fits change, unfortunately

eliminates most of theMπ ≈ 220 and 310MeVensembles—

they do not have enough points to perform even a z2 fit. We

are, therefore, not able to resolve the reason for the change in

parametrization around Q2 ≈ 0.3 GeV2.

To provide our best parametrization of GAðQ2Þ for phe-
nomenology, we repeated the above 3-step procedure using

the Ssim strategy data. Again, the data after extrapolation

to the continuum limit (at Q2 ¼ 0; 0.1; 0.2;…; 1.0 GeV2)

were fit with a z2 ansatz, tc ¼ 9M2
π with Mπ ¼ 135 MeV,

and t0 ¼ 0.25 GeV2. The result, shown in Fig. 12, has the

parametrization

FIG. 11. The fit coefficients bi, i ¼ 0, 1, 2, 3, defined in Eq. (29), for the CCFV extrapolation of the axial form factor GAðQ2Þ=gA
obtained with strategy Ssim (left), SA4 (middle) and S2pt (right) and fit with the z2 truncation. The extrapolated GAðQ2Þ=gA with Ssim is

shown in Fig. 10. The hatched blue curves correspond to b0;1;2 obtained neglecting the finite-volume term in the analysis.
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GAðQ2Þ ¼ a0þa1zþa2z
2

¼ 0.876ð28Þ− 1.669ð99Þzþ 0.483ð498Þz2; ð32Þ

with the correlation matrix:

a0

a1

a2

a0 a1 a2
0

B

@

1.0 −0.45170 −0.02966

−0.45170 1.0 −0.24394

−0.02966 −0.24394 1.0

1

C

A

ð33Þ

This fit gives

gA ¼ 1.281ð53Þ;
hr2Ai ¼ 0.498ð56Þ fm2; ð34Þ

which are consistent with the estimates in Eqs. (30) and (31),

albeit with a hr2Ai larger by roughly 1σ.

We also carried out this final z2 fit setting t0 ¼ 0 in the

definition of z. The results are

gA ¼ 1.282ð54Þ
hr2Ai ¼ 0.505ð66Þ fm2: ð35Þ

While consistent, the coefficient c2 in this fit is essentially

undetermined. We, therefore, choose the results given

in Eq. (34).

For our final results from the analysis of GA, we take the

average weighted by the “stat” errors of values given in

Eqs. (30), (31), and (34) to get

gA ¼ 1.289ð53Þstatð17Þsys
hr2Ai ¼ 0.439ð56Þstatð34Þsys fm2: ð36Þ

For errors, we take the larger of the “stat” error and keep the

“sys” errors given in Eqs. (30) and (31).

We now return to two related issues that arise because

the majority of the data used to get the parametrization

in Eq. (32) are at Q2 ≲ 0.5 GeV2 as shown in Fig. 1. The

first is whether this parametrization is compatible with

GAðQ2 ¼ ∞Þ ¼ 0 since the sum rule constraints needed

to build in the perturbative 1=Q4 behavior have not been

imposed? And the second is—how reliable is this GA for

Q2 > 0.5 GeV2 since most of the data in this region

are from the Mπ ≈ 310 MeV ensembles? Regarding the

first issue, the parametrization in Eq. (32) at z ¼ 1

(⇒ Q2 ¼ ∞) gives

GA ¼ −0.31ð48Þ
dGAðzÞ
dz

¼ −0.70ð98Þ: ð37Þ

These are consistent with zero within one sigma. For the

second issue, data in Fig. 2 show that GAðQ2Þ extracted

on 12 ensembles show little dependence on fa;Mπg. The
one exception, a06m135, where the data lie about one

sigma lower, has already been identified as statistics

limited. As stated before, if future data continue to show

little dependence on a and Mπ, then even data from the

Mπ ≈ 310 MeV ensembles would provide a good approxi-

mation to the continuum GA and increase confidence in the

result for Q2 > 0.5 GeV2.

Lastly, we made a z2 fit to the same continuum

extrapolated data but imposed a prior, GAðQ2 ¼ ∞Þ ¼ 0

with width 0.3 based on the value in Eq. (37). The

result is

GAðQ2Þ ¼ 0.872ð28Þ − 1.705ð109Þzþ 0.767ð102Þz2;
ð38Þ

with GA ¼ −0.07ð10Þ and dGA=dz ¼ −0.17ð17Þ at z ¼ 1.

The main difference from the result in Eq. (32) is the

tightening of the estimate of the z2 term. Overall, in all

these fits, the coefficients a0 and a1, defined in Eq. (32) are
stable, whereas higher precision data are needed to

improve a2.

IV. COUPLINGS g�P AND g
πNN FROM THE

INDUCED PSEUDOSCALAR FORM FACTOR

The induced pseudoscalar coupling g�P is defined as

g�P ≡
mμ

2MN

G̃PðQ�2Þ; ð39Þ

where mμ is the muon mass and Q�2 ¼ 0.88m2
μ is the

energy scale of muon capture. Similarly, the pion-nucleon

coupling gπNN is obtained from the residue of G̃PðQ2Þ at
the pion pole, i.e., through the relation

FIG. 12. The final estimate of GAðQ2Þ at the physical point.

The eleven fiducial points used to make the fit are shown in blue

and their errors are obtained from the one overall bootstrap

analysis covering the three step process described in the text. The

parametrization versus z is given in Eq. (32).
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FIG. 13. Comparison of GA and F̃P ≡ G̃P × f−1pole from strategy Ssim for a ≈ 0.15; 0.120.09; 0.06 fm lattices. The z2 (magenta lines

with error band) is compared to the z1 fit (blue dash dot). The four largest z points are excluded from the fits to theMπ ≈ 310 MeV and

a12m220S data. The vertical black dotted line corresponds to Q2 ¼ 0. The value of t0 and ensemble name are given in the labels.
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gπNN ≡ lim
Q2
→−M2

π

M2
π þQ2

4MNFπ

G̃PðQ2Þ

¼ F̃Pð−M2
πÞMN

Fπ

; ð40Þ

where Fπ ¼ 92.9 MeV is the pion decay constant. The

function F̃P defined as

F̃PðQ2Þ≡Q2 þM2
π

4M2
N

G̃PðQ2Þ: ð41Þ

is G̃P without the pion pole and should equal GA if PPD

were exact. This requires R3 ≡ F̃P=GA, plotted in Fig. 4, to

be unity. Deviations for S2pt are significant, while those for

Ssim and SA4 are one within the size of discretization errors

and/or violations of PPD expected.

To extract g�P and gπNN from the lattice data, a para-

metrization of the Q2 behavior of G̃P and F̃P was carried

out. A comparison of the z1 and z2 fits to GA and F̃P from

the Ssim strategy is shown in Fig. 13 for the thirteen

ensembles. Results from z2 and z3 fits are consistent,

indicating convergence, while z1 fits miss the small

curvature seen. To avoid over parametrization, we again

take the z2 results as the central values.

A. Parametrization of G̃PðQ2Þ and F̃P

Based on the analysis of PCAC (see Fig. 3), we focus on

the G̃PðQ2Þ data from the Ssim and SA4 strategies and again

give the S2pt results only for comparison.

We consider two ways to parametrize G̃PðQ2Þ, both of

which build in the pion-pole dominance hypothesis. The

first is the expansion

G̃PðQ2Þ ¼ c0

Q2 þM2
π

þ c1 þ c2Q
2; ð42Þ

where the ci (i ¼ 0, 1, 2) are fit parameters, and we have

kept as many terms in the polynomial as can be resolved by

the data. Results for g�P, gπNNFπ and gπNNFπ=MN using this

fit (labeled PD) to the Ssim data are given in Table XXIV

along with the χ2=d.o.f. and p-value for the fits.

In the second way, we treat F̃PðQ2Þ as an analytic

function that can be fit using either the dipole ansatz

(with free parameters F̃Pð0Þ and M̃P) or the z-expansion,
Eq. (27), with z again defined by Eq. (28). Results for g�P,
gπNNFπ and gπNNFπ=MN , from z2 fits to F̃PðQ2Þ obtained
with the Ssim strategy are given in Table XXV and agree

with those in Table XXIV.

Results for the bare g�P from the Ssim strategy for five Q2

parametrizations of G̃P are shown in Fig. 14 (left) along

with their differences from results obtained using the SA4

and S2pt strategies. The analogous results for unrenormal-

ized gπNNFπ are shown in Fig. 14 (right).

B. Extrapolation of g�P and g
πNN

to the physical point

1. g�P
Renormalized g�P is extrapolated to the physical point

in twoways. In the first method 2mμMNF̃PðQ�2Þ is extrapo-
lated using the CCFV fit function given in Eq. (29) and

multiplied by the pion-pole factor at the physical point:

g�P ¼ 2mμMNF̃PðQ�2Þj
extrap

×
1

Q�2 þM2
π

�

�

�

�

phys

: ð43Þ

FIG. 14. Left: results for the bare g�P from the strategy Ssim and the differencesΔðXÞ ¼ g�PðXÞ − g�PðSsimÞ. To facilitate visualization of
the spread, the errors plotted for ΔðXÞ are those in g�PðXÞ. The fits used to parametrize the Q2 behavior are labeled “PD” defined in

Eq. (42); “D” for the dipole fit, and zk for various truncations of the z-expansion. Right: results for bare values of gπNNFπ obtained with

the strategy Ssim and the differences ΔðXÞ ¼ gπNNFπðXÞ − gπNNFπðSsimÞ.

JANG, GUPTA, BHATTACHARYA, YOON, and LIN PHYS. REV. D 109, 014503 (2024)

014503-18



In the second method, extrapolation of g�P is carried out by

adding a pion-pole term, b
g�
P

4 =ðQ�2 þM2
πÞ, to the CCFV fit

function in Eq. (29). The two methods give consistent

estimates and their unweighted average is used to get the

final results summarized in Table IV for each of the three

strategies, Ssim, SA4, and S2pt.

The error obtained from the overall analysis is quoted as

the first “stat” uncertainty. The systematical errors asso-

ciated with truncation of the z-expansion, and the largest

difference of the central value from the three 12-pt CCFV

fits are quoted as the second and third errors. The difference

between the two extrapolation methods described above is

quoted as the fourth error. For the final result, we take the

Ssim with z2 fits value:

g�P ¼ 9.03ð47Þstatð01Þð32Þð27Þ; ½z2�;
¼ 9.03ð47Þstatð42Þsys: ð44Þ

In the second line, the three systematic errors are combined

in quadrature. The 13-pt CCFV fit to the Ssim data on each

ensemble fit with z2, is shown in Fig. 15.

2. g
πNN

The CCFV extrapolation to obtain gπNN is carried out

using Eq. (29) for (i) the product gπNNFπ ¼ MNF̃Pð−M2
πÞ,

and the result, in the continuum, divided by Fπ ¼
92.9 MeV; and (ii) F̃Pð−M2

πÞ and the result multiplied

by MNð¼ 939 MeVÞ=Fπð¼ 92.9 MeVÞ. It turns out that

these two extrapolations have different systematics: the

slopes with respect to M2
π of gπNNFπ and F̃Pð−M2

πÞ are

different as shown in Fig. 15. The two estimates are,

FIG. 15. The chiral-continuum-finite-volume extrapolation of the ðQ�2 þM2
πÞ × g�P (top row), g�P (middle row), and gπNNFπ (bottom

row) data using the 13-point fit. In each case the data were obtained using the z2 parametrization of F̃PðQ2 ≠ 0Þ with strategy Ssim. The

black solid line with the pink error band represents a hyperplane obtained by taking the physical limit of all CCFV fit variables except

the one shown on the x-axis. The plotted data points have been shifted by using the fit coefficients, while the errors are unchanged.

TABLE IV. g�P from the z2-expansion, dipole, and pion-pole

dominance (PD) fits. The first column gives the strategy used for

extracting the matrix elements. In each value, the first error is the

total analysis error and the rest are systematic errors explained in

the text.

g�P z2 Dipole PD

Ssim 9.03(47)(01)(32)(27) 8.61(39)(� � �)(19)(23) 8.92(45)(� � �)(38)(33)
SA4 8.92(44)(04)(20)(23) 8.70(37)(� � �)(17)(15) 8.94(43)(� � �)(28)(33)
S2pt 4.50(26)(02)(� � �)(22) 5.36(25)(� � �)(� � �)(12) 4.73(27)(� � �)(� � �)(10)
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however, consistent and we take their average to get the

gπNN for the nine cases summarized in Table V: the three

strategies and the three types of Q2 fits.

The central value

gπNN ¼ 14.14ð81Þstatð1Þð77Þð35Þ
¼ 14.14ð81Þstatð85Þsys: ½z2� ð45Þ

is taken from the Ssim data with z2 fits and the errors are

estimated as for g�P.

C. F̃PðQ2Þ at the physical point

The F̃PðQ2Þ at the physical point was obtained following
the same three step procedure used for extrapolating

GAðQ2Þ that is described in Sec. III B. This F̃PðQ2Þ is

compared with the GAðQ2Þ already shown in Fig. 12 in

Fig. 16. If PPD were exact, then F̃P should equal GA.

The overlap of the two bands turns out to be surprisingly

good over the whole Q2 interval. Results for the four fit

parameters, biðQ2Þ, versus Q2 obtained in the CCFV

extrapolation process are shown up to 1 GeV2 in Fig. 17

for data obtained with the Ssim strategy.

Similar to GAðQ2Þ, the two physical mass ensembles

impact the coefficients biðQ2Þ shown in Fig. 17 only for

Q2 ≲ 0.4 GeV2. The plots show some pion mass depend-

ence for Q2 < 0.2 GeV2, i.e., b2ðQ2Þ ≠ 0. The coefficients

for the lattice spacing dependence, b1ðQ2Þ, and for finite

volume, b3ðQ2Þ, have large uncertainty. Also, neglecting

the finite volume term does not change b1ðQ2Þ and b2ðQ2Þ
significantly. Overall, the shape of these coefficients

versus Q2 is somewhat different from those for GA shown

in Fig. 11.

The z2 fit to the physical point F̃P, shown in Fig. 16, with

tc ¼ 9M2
π and t0 ¼ 0.25 GeV2 has the parametrization

F̃PðQ2Þ ¼ a0þa1zþa2z
2

¼ 0.868ð30Þ− 1.702ð136Þzþ 0.587ð601Þz2; ð46Þ

with the correlation matrix:

a0

a1

a2

a0 a1 a2
0

B

@

1.0 −0.45085 −0.05106

−0.45085 1.0 −0.23890

−0.05106 −0.23890 1.0

1

C

A

ð47Þ

The agreement, within errors, with the parametrization of

GAðQ2Þ given in Eqs. (32) and (33) is very good. This is

not unexpected based on the overlap between the two

shown in Fig. 16, nevertheless, one should keep in mind

the Q2 dependence shown in Fig. 5, and the Goldberger-

Trieman discrepancy [7,17].

V. NUCLEON CHARGES FROM FORWARD

MATRIX ELEMENTS

The spectral decomposition of the forward, q ¼ 0, three-

point function truncated at three states, jii with i ¼ 0, 1, 2,

can be written as

C
3pt
Γ
ðt; τÞ

¼
X

i;j¼0

jAjjjAijhjjOΓjiie−Mit−Mjðτ−tÞ

¼ jA0j2gΓe−M0τ × ½1þ r21b11e
−ΔM1τ

þ r22b22e
−ðΔM1þΔM2Þτ þ 2r1b01e

−ΔM1τ=2 coshðΔM1tsÞ
þ 2r2b02e

−ðΔM1þΔM2Þτ=2 cosh fðΔM1 þ ΔM2Þtsg
þ 2r1r2b12e

−ð2ΔM1þΔM2Þτ=2 coshðΔM2tsÞ� þ � � � ; ð48Þ

where ts ≡ t − τ=2, h0jOΓj0i is the bare charge gΓ, the
transition matrix elements are bij ≡ hijOΓjji=h0jOΓj0i, the
ratios of amplitudes are ri ¼ jAij=jA0j, and the successive

mass gaps are ΔMi ≡Mi −Mi−1. The prefactors in terms

involving the excited states are products such as r22b22.

These products are simply parameters in the fits and are not

TABLE V. Results for gπNN from the z2, dipole, and pion-pole

dominance (PD) fits. The first column gives the ESC strategy

used to extract the matrix elements. The first error is statistical

and the rest are systematic as explained in the text.

z2 Dipole PD

Ssim 14.14(81)(01)(77)(35) 13.03(67)(� � �)(41)(28) 13.80(81)(� � �)(99)(33)
SA4 13.77(79)(07)(33)(29) 13.06(64)(� � �)(38)(26) 13.90(79)(� � �)(57)(31)
S2pt 05.76(57)(00)(� � �)(10) 07.57(46)(� � �)(� � �)(09) 06.24(57)(� � �)(� � �)(05)

FIG. 16. The close overlap in the physical point results for

F̃PðQ2Þ, defined in Eq. (41), with GAðQ2Þ (black lines) repro-

duced from Fig. 12. Both were obtained using the three step

process described in Sec. III B and the Ssim strategy data. The full

CCFV fits to the F̃P data are shown with the solid red line and

pink error band and the fit without the FV term with dashed blue

line and hatched error band. These error bands show only the

central analysis uncertainty.
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used subsequently. Thus the ratios ri for the excited states

are, by themselves, not needed.

To remove excited states contributions, we made three

kinds of fits to the 3-point functions using Eq. (48):

(i) 3�: This is a 3-state fit with b22 set to zero. The four

parameters A0,M0,M1,M2 are taken from four-state

fits to the two-point function, leaving only h0jOΓj0i,
and products such as r21b11 as free parameters. This

strategy (along with its two-state version) was used

to get the results presented in Ref. [13] that are

reproduced in Eq. (49).

(ii) 3-RD: This is a 3-state fit with b01, b11 and b22 set to
zero, otherwise the fits become unstable. The three

parameters A0, M0, M1 are again taken from four-

state fits to the two-point function. The value of the

second mass gap, ΔM2, is left as a free parameter in

the fit. The sign of ΔM2 for a given charge

determines whether j1i lies above or below j2i as

shown pictorially in Fig. 18.

(iii) 3-RD-Nπ: In this fit, M1 is fixed to the non-

interacting energy of the NðnÞπð−nÞ state with

n ¼ ð1; 0; 0Þ. For the value ofM2, we use a Bayesian

prior with a narrow width centered about the first

excited state mass determined from the two-point

correlator as given in Table XXX in Appendix F.

We also tried two-state fits with ΔM1 left as a free para-

meter. For the axial charge, we found large fluctuations in

ΔM1 between the jackknife samples leading to unreliable

values. So we do not present these estimates.

Results for unrenormalized isovector nucleon charges,

gA, gT , and gS, using the 3
�, 3-RD, and the 3-RD-Nπ fits are

given in Table XXXI, and the other parameters of the 3-RD

fits are given in Table XXXII in Appendix F.

The final renormalized charges are presented in the MS

scheme at 2 GeV. We carry out the renormalization using

the RI-sMOM intermediate scheme as described inRef. [13].

To understand systematics, we use three methods: (i) gX ¼
ZXg

ðbareÞ
X , where X ¼ A, T, S; and (ii) gX ¼ ZX=ZV ×

g
ðbareÞ
X =g

ðbareÞ
V with the relation ZAgV ¼ 1. Empirically, some

of the systematics cancel in each ratio in the second method,

giving slightly smaller overall errors. In method three, we

take the average of the first twowithin the jackknife process,

and use it to get the final estimates. The renormalization

factorsZX and ZX=ZV used in this study are given in Table V

in Ref. [13].

We use the same leading order CCFV ansatz, given in

Eq. (29), for extrapolating results to the physical point for

all three strategies: 3�, 3-RD, and 3-RD-Nπ.

FIG. 17. The behavior of the four CCFV fit coefficients, b0, b1, b2, and b3 defined in Eq. (29) versusQ
2 obtained in the extrapolation

of F̃PðQ2Þ to the physical point. The rest is the same as in Fig. 16.

FIG. 18. A pictorial representation of the standard 2-state fit

(left) and the 3-RD fit (right). In the 3-RD fit, the M0 and M1 are

taken from the nucleon two-point correlator fit but ΔM2 is

determined from the fit to the three-point correlator. Negative

values for ΔM2 in Table XXXII indicate that j2i lies below j1i.
Both fits include only two transitions, j0i → j1i (yellow) and

j1i → j1i (green) in the 2-state fit and j0i → j2i (yellow) and

j1i → j2i (green) in the 3-RD fit. The transitions turned off with

respect to the full 3-state ansatz given in Eq. (48) are represented

by dashed lines.
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Results from the 3� (or 2-state for gS) analysis, have

already been published in Ref. [13], and reproduced here to

facilitate comparison.
1
These are:

gA ¼ 1.218ð25Þstatð30Þsys ð3�-stateÞ
gT ¼ 0.989ð32Þstatð10Þsys ð3�-stateÞ
gS ¼ 1.022ð80Þstatð60Þsys ð2-stateÞ: ð49Þ

We now focus on the 3-RD analysis and make three

CCFV extrapolation with the following cuts on the data

(i) “13-point” CCFV fit uses all thirteen points.

(ii) “11-point” CCFV fit: This fit excludes the

a06m310W and a06m220W points obtained with

larger smearing radius for sources used to calculate

the quark propagators [13]. Larger smearing radius

reduces the ESC at smaller values of τ but gives

larger statistical errors at the values of τ used in our

excited-state fits to get the τ →∞ values as dis-

cussed in Ref. [14]. Also, we expect significant

correlations between the two pairs, (a06m310,
a06m310W) and (a06m220, a06m220W), since

they use the same gauge configurations. Comparing

the pairs, the results for the three charges agree

except for gS between a06m220 and a06m220W,

which can be accounted for by the larger statistical

errors, especially in the a06m220W data. Conse-

quently, the “11-point” CCFV fit is used to get the

central value for gS, which is shown in Fig. 19.

(iii) “10-point”CCFV fit excludes a15m310, a06m310W
and a06m220W points. Since the variation with the

lattice spacing is the dominant systematic, removing

thea15m310 point (coarsest latticewitha ∼ 0.15 fm)

aims to provide a handle on higher order, Oða2Þ,
corrections neglected in Eq. (29).

Results from these three CCFV extrapolations, different

truncations of the CCFV ansatz, and the three renor-

malization methods are given in Tables XXXIII–XXXV

in Appendix F and used to assess the various systematics.

The central values are taken from the “13-point fit” for

gA and gT and the “11-pt fit” for gS with the 3-RD data

renormalized using the third (average of the first two)

method. Note that we find a systematic shift of ≈0.03, 0.02

and 0.03 between the first two renormalization methods for

the three charges, gA, gT , and gS, respectively.
These CCFV fits are shown in Fig. 19. Each panel in a

given row shows the fit result versus one of the three

variables with the other two set to their physical point

values. In the left two panels, we show two fits: (i) using the

full ansatz given in Eq. (29) (pink band), and (ii) assuming

there is dependence only on the x-axis variable (gray band).

For example, in the left panels the gray band corresponds to

a fit with b
gX
2 ¼ b

gX
3 ¼ 0. The data show that the discre-

tization errors are the dominant systematic, i.e., there is an

almost complete overlap of the two fits (pink and gray

bands) for gA and a significant overlap for gS and gT . The
variation with a over the range 0 < a ≤ 0.15 fm is about

10%, 5%, and 30% for gA, gT , and gS, respectively. The
large variation with a in gS is similar to that found in the

clover-on-clover calculation [7].

The final results of the 3-RD analysis are

gA ¼ 1.294ð42Þstatð18ÞCCFVð16ÞZ ð3-RDÞ
gT ¼ 0.991ð21Þstatð04ÞCCFVð09ÞZ ð3-RDÞ
gS ¼ 1.085ð50Þstatð102ÞCCFVð13ÞZ ð3-RDÞ: ð50Þ

The first error quoted (labeled stat) is the total uncertainty

from the central analysis. The second error is an estimate of

the uncertainty in the CCFV extrapolation. For gA and gT ,
this is taken to be the average of the differences |11-pt –

13-pt| and |10-pt – 13-pt|. For gS, it is the difference

|10-pt – 11-pt|. The third error is half the difference in

estimates between the first two renormalization methods.

The gA from the 3-RD fit is in good agreement with

the result obtained from the extrapolation of the axial

form factor GAðQ2Þ to Q2 ¼ 0 given in Eq. (30). It is also

consistent with the experimental value gA ¼ 1.2766ð20Þ
but has much larger errors. The difference between the 3�

(PNDME [13]) value reproduced in Eq. (49), and the 3-RD

is due to different excited state energies used in the fits

to the spectral decomposition in Eq. (48). The data in

Table XXXII show that the fit parameter M2 when left free

satisfiesMπ ≲M2 −M0 ≲ 3Mπ for all but the a ≈ 0.12 fm

lattices. In [10], we showed evidence that the Nðp1Þ þ
πð−p1Þ with p1 ¼ ð1; 0; 0Þ2π=La state makes a significant

contribution on the zero momentum side of the operator

insertion in the calculation of the form factors, and the

noninteracting energy of this state is MNπ −M0 ≈ 2Mπ. In

short, the M2 output by the 3-RD fit has a mass lower than

M1 obtained from the two-point correlator and broadly

consistent with the hypothesis that the Nπ states contribute.

We again caution the reader that these excited state masses

should only be regarded as effective fit parameters that

encapsulate the effect of the full tower of NðpÞ þ πð−pÞ
states with momenta p ¼ ð2π=LÞn as well as other multi-

hadron and radial excitations that can contribute.

For gS and gT , the 3-RD fit reduces to a 2-state fit if

ΔM2ð¼ M2 −M1Þ ¼ 0, i.e., M2 ≃M1. This is the case for

many of the ensembles as shown in Table XXXII. Results

given in Eq. (50) are consistent with those in Eq. (49)

indicating that sensitivity to excited state energies input into

the analysis is small.

Based on the 3-RD fits, which indicate that the data for

gA prefer a low-mass excited state with ΔM ≈ 2Mπ , the

3-RD-Nπ fit defined above, with the mass gaps summa-

rized in Table XXX, were performed. Charges from this fit

are compared with the 3-RD and the 3�-state fits (or the

1
The statistics in the a06m135 and a12m310 ensembles

have been increased, however, the changes in the estimates are
insignificant, so we continue to quote the results from Ref. [13].
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2-state fit for the gS) in Table XXXI for the thirteen

ensembles. The p-value for many of the 3-RD-Nπ fits

are low. To stabilize the 3-RD-Nπ fits, we increased the

width of the priors forM2, however, this still did not lead to

stable fits for several ensembles. The 3-RD-Nπ results are,

therefore, not included in the final analysis.

Results for gA;S;T in Eq. (50) are compared with those

from other collaborations in Table VI. This comparison

complements the latest FLAG review that considered

results published prior to 2021 [5,6]. Overall, results for

gA and gT from all calculations are consistent within five

percent and for gS at ten percent. Their precision will

continue to improve steadily as higher statistics data are

generated at additional fa;Mπg points with MπL≳ 4.

Our conclusion is that, with current statistics, fits for the

axial charge are more stable with input ofM0 andM1 from

FIG. 19. The simultaneous chiral-continuum-finite-volume (CCFV) fit to the axial gA (top, 13-point), tensor gT (middle, 13-point), and

scalar gS (bottom, 11-point) charges. The data are extracted using the 3-RD fit described in the text and are the average over the two

renormalization methods ZX × g
ðbareÞ
X and ZX=ZV × g

ðbareÞ
X =g

ðbareÞ
V where the gV is the vector charge. In each panel, the pink bend with

black solid line represents the full CCFV fit. In the left (middle) panels, the gray band shows the fit to the date keeping only the a (M2
π)

dependent term in Eq. (29). The value at the physical point is marked by the red star. The data in each panel have not been shifted to the

physical point in the other two fit variables.

TABLE VI. Comparison of gA;S;T , hr2Ai, g�P and gπNN from recent calculations labeled as: PNDME 23 is this work, RQCD [24] (here

we list values obtained with the !z4þ3 fit, and take gA;S;T from their recent work [25]), ETMC [26,27], NME [7], Mainz [28], and PACS

[29]. All results for gA;S;T are in the MS scheme at scale 2 GeV. For completeness, we also give results for gS;T from the Mainz

collaboration [30] and from the ETMC collaboration [27,31]. These and earlier results are reviewed by the FLAG [5,6].

Collaboration gA gS gT hr2Ai fm2 g�P gπNN

PNDME 23 1.292(53)(24) 1.085(50)(103) 0.991(21)(10) 0.439(56)(34) 9.03(47)(42) 14.14(81)(85)

RQCD 19=23 1.2842827 1.111416 0.9841929 0.449(88) 8.68(45) 12.93(80)

ETMC 20=22 1.283(22) 1.35(17) 0.924(54) 0.343(42)(16)

NME 21 1.32(6)(5) 1.06(9)(7) 0.97(3)(2) 0.428(53)(30) 7.9(7)(9) 12.4.(1.2)

Mainz 22 1.225(39)(25) 1.13ð11Þð76Þ 0.965ð38Þð1341Þ 0.370(63)(16)

PACS 22 1.288(14)(9) 0.927(83)(22) 1.036(6)(20)
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the 4-state fit to the 2-point function and letting the 3-point

function determine M2 (corresponding roughly to the Nπ

state), i.e., the 3-RD fit. In futureworkswith higher statistics,

we expect results from 3-RD and 3-RD-Nπ fits to come

together as the same three states provide the dominant

contributions. Only the details of their inclusion are different.

VI. CONCLUSIONS AND COMPARISON WITH

PREVIOUS CALCULATIONS

We have presented results for the axial, GAðQ2Þ, the
induced pseudoscalar, G̃PðQ2Þ, and the pseudoscalar,

GPðQ2Þ, form factors of nucleons using thirteen ensembles

of 2þ 1þ 1-flavors of HISQ ensembles generated by the

MILC collaboration [8]. A large part of the focus of this work

is on understanding the nature of the excited states that

contribute significantly to the relevant correlation functions

and removing their contributions. The analysis presented

here strengthens the case for including multihadron excited

states, such as Nπ, made in Ref. [10]. Our data driven

analysis strategy, labeled Ssim, identifies the contributions

fromNπ state in the extraction of the GSME. The three form

factors obtained includingNπ state satisfy the PCAC relation

towithin 10% as opposed to a∼50% deviationwithout them.

For the final results, we therefore choose the data obtained

with the Ssim strategy for removing ESC, parametrize theQ2

behavior using themodel-independent z2 fit; and extrapolate
the data to the physical point using a simultaneous chiral-

continuum-finite-volume (CCFV) ansatz including the lead-

ing order corrections given in Eq. (29). For errors, we quote

two estimates: the first labeled “stat” is the total error

obtained from the analysis used to produce the central value,

and the second, labeled “sys,” includes thevarious systematic

uncertainties combined in quadrature as discussed in the

appropriate sections.

Our final results are

(i) The axial charge is gA ¼ 1.292ð53Þstatð24Þsys. This is
the unweighted average of the value from the

extrapolation of GAðQ2Þ to Q2 ¼ 0 [Eq. (36)] and

from the forward matrix element [Eq. (50)]. The

“stat” and “sys” errors quoted are the larger of those

from the two determinations. This result is consis-

tent with the experimental value but has much larger

errors.

(ii) The scalar charge gS ¼ 1.085ð50Þstatð103Þsys and the
tensor gT ¼ 0.991ð21Þstatð10Þsys are given in Eq. (50).

(iii) The extraction of the axial charge radius squared is

discussed in Sec. III B, and the result from Eq. (36)

is hr2Ai ¼ 0.439ð56Þstatð34Þsys fm2.

(iv) The extraction of the induced pseudoscalar charge

is discussed in Sec. IV B 1 with the result g�P ¼
9.03ð47Þstatð42Þsys given in Eq. (44).

(v) The pion-nucleon coupling is discussed in Sec. IV B 2

with the result gπNN ¼ 14.14ð81Þstatð85Þsys given

in Eq. (45).

(vi) Our procedure for obtaining the axial form factor,

GAðQ2Þ, in the continuum limit is discussed in

Sec. III B. The final parametrization is given in

Eq. (32), the covariance matrix of the fit in Eq. (33),

and the corresponding values of gA ¼ 1.281ð53Þ and
hr2Ai ¼ 0.498ð56Þ fm2 in Eq. (34). The overall final

values from the analysis of GA are given in Eq. (36).

A comparison of lattice results from various collabora-

tions for all the above quantities was presented recently in

Ref. [7]. The charges gA;S;T have also been reviewed by

FLAG [5,6]. Since then, new results have been presented in

Refs. [27–29,32]. The full list of relevant publications

that have included Nπ states in the analysis of ESC and

checked whether form-factors satisfy the PCAC relation

are [7,10,24,26,28,29]. We first summarize the results and

the important features in each of these calculations, and

then show a comparison of GAðQ2Þ obtained by the various
collaborations in Fig. 20. Results for the charges are

compared in Table VI.

The observation that the form factors extracted using

the spectrum from the nucleon 2-point function fail to

satisfy the PCAC relation Eq. (17) was made in Ref. [9].

The possible cause, enhanced contributions of multihadron

(Nπ) excited states in the axial channel was proposed by

Bär [12] using a χPT analysis. This was confirmed using

the data for the three-point function with the insertion of the

A4 current in Ref. [10]. This data-driven analysis, including

only the lowest Nπ excited state, found that the ESC to the

G̃PðQ2Þ and GPðQ2Þ form factors were about 35%, while

that in GAðQ2Þ could be Oð5%Þ as the latter is affected

only at one-loop in χPT [11,12]. The smallest Q2 data in

Tables XVII and XXII in Appendix C for the two physical

mass ensembles a09m130W and a06m135 show ∼5%,

∼45% and ∼45% difference between the S2pt and Ssim

values. A ∼ 5% level of effect in GAðQ2Þ is also consistent

with what is observed in the axial charge gA extracted from

the forward matrix element as shown in Table XXXI in

Appendix F.

A brief comparison of our results with other lattice

calculations published in [7,24,26–29] is as follows.

The RQCD collaboration [24] has extracted GAðQ2Þ
from a two-state fit to thirty-six 2þ 1-flavor Wilson-clover

ensembles generated by the coordinated lattice simulations

(CLS) collaboration. The G̃PðQ2Þ and GPðQ2Þ are, on the

other hand, extracted using a 3-state fit in which the first

excited state energies are fixed to be the noninteracting

energies of the lowest Nπ state and the second excited

state energies are taken to be the first excited state (values

higher than Nð1440Þ) given by fits to the 2-point nucleon

correlators. While their form factors satisfy the PCAC

relation, they are equally well fit by the dipole ansatz and

z4þ3 (i.e., z3 with sum rule constraints). The axial charge

gA ¼ 1.302ð86Þ from z-expansion (fit labeled !z4þ3) is

larger than gA ¼ 1.229ð30Þ from dipole (labeled !2P)
with the latter agreeing with that from the forward matrix
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element. The corresponding difference in hr2Ai is 0.449(88)
versus 0.272ð33Þ fm2. Results for g�P [8.68(45) versus 8.30

(24)] and for gπNN [12.93(80) versus 14.78(1.81)] are

consistent. They have recently [25] updated their results

for gA;S;T based on the analysis of 47 ensembles. We quote

these new values in Table VI.

The preferred estimates from the ETM collabora-

tion [26] are from a single 2þ 1þ 1-flavor physical

mass 643 × 128 ensemble at a ≈ 0.8 fm. For the analy-

sis of GAðQ2Þ, they take excited-state energies from the

2-point function and find hr2Ai ¼ 0.343ð42Þð16Þ fm2.

Their result for gA ¼ 1.283ð22Þ is obtained from the

forward matrix element extracted without including

possible contamination from Nπ states. When results

from the direct calculations of G̃PðQ2Þ and GPðQ2Þ are

used, the three form factors show large deviations from

the PCAC relation which they attribute partially to

large discretization errors in their twisted mass formu-

lation [33]. Consequently, they quote final estimates of

G̃PðQ2Þ derived from GAðQ2Þ using the pion-pole

dominance hypothesis, i.e., the quoted G̃P is not

independently determined.

The NME collaboration [7] analyzed seven ensembles

generated with 2þ 1-flavors of Wilson-clover fermions.

They make a simultaneous fit to all five correlation

functions with insertion of the axial, Aμ, and pseudoscalar,

P, currents, i.e., same as the Ssim strategy used in this

work. The A4 correlator provides the dominant contribution

to fixing the excited-state energies which turn out to be

close to the lowest Nπ states as also discussed in this

paper and in Ref. [10]. The resulting form factors satisfy

the PCAC relation to within ten percent. Observing only

a small dependence of GAðQ2Þ on a and Mπ , they

provide a continuum parametrization of GAðQ2Þ neglect-

ing these effects, and thus underestimate the uncertainty.

This GAðQ2Þ is reproduced in Fig. 20. The value of the

axial charge without including Nπ state is gA ¼
1.242ð46Þð42Þ and including it gives 1.32(6)(5). Their

other results are hr2Ai¼0.428ð53Þð30Þ fm2, g�P¼7.9ð7Þð9Þ
and gπNN ¼ 12.4.ð1.2Þ.
The Mainz Collaboration [28] analyze fourteen 2þ

1-flavor Wilson-clover ensembles also generated by the

coordinated lattice simulations (CLS) collaboration. They

obtain a parametrization of GAðQ2Þ in the continuum from

a single combined fit—summation method for dealing

with ESC and the z2 fit for the Q2 behavior. This result

is shown in Fig. 20 and from it they get gA ¼ 1.225ð39Þð25Þ
and hr2Ai ¼ 0.370ð63Þð16Þ fm2.

The PACS collaboration [29] has analyzed one physical

pion mass ensemble with a large volume (1284, i.e.,

ð10.9 fmÞ4) at a ¼ 0.085 fm and get gA ¼ 1.288ð14Þð9Þ.
Remarkably, they find that sources with exponential

smearing for the generation of quark propagators, in

contrast to Gaussian smearing used by all other calcula-

tions, leads to essentially no excited-state effects. The

limitation of this calculation is only 20 configurations,

each separated by 10 molecular dynamics trajectories,

were analyzed. Most likely, this total of 200 trajec-

tories represents less than one unit of autocorrelation

time. Consequently, the errors are likely underestimated.

FIG. 20. A comparison of the isovector axial form factor

GAðQ2Þ at the physical point obtained using a z-expansion fit

by the RQCD [24] (light faun band), ETMC [26] (light tan band),

NME [7] (tan band), Mainz [28] (brown band) collaborations

and this work (turquoise band). The GA extracted using the

ν-deuterium bubble chamber scattering experiments data [22] is

shown by the gray band and labeled νD in the lower panel.
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Since no parametrization of GAðQ2Þ was presented, we do
not include their results in the comparison.

Phenomenologically, the most important quantity needed

for the analysis of neutrino oscillation experiments is

GAðQ2Þ, and we show a comparison of results from various

lattice collaborations in Fig. 20 along with the extraction

from the ν-deuteriumbubble chamber scattering experiments

[22]. In all cases, except ETM, the data are extrapolated to the

physical point and then fit using a truncated z-expansion. The
bands in Fig. 20 overlap indicating that the lattice results are

consistent within one sigma and the envelope of the bands

suggests a roughly 10% uncertainty throughout the range

0 < Q2 < 1.0 GeV2. The other significant observation is

that the lattice results fall slower than the phenomenological

extraction (the νN band) for Q2 ≳ 0.3 GeV2.

When comparing these lattice data, it is important to

note that the various collaborations handle various sys-

tematics differently. These systematic effects will become

clearer and the analysis more robust as the precision of

the data increases. Similarly, recent calculations including

Nπ states in a variational basis of interpolating operators

[34] is a step forward in providing further insight into the

excited states contributions and developing better meth-

ods for removing them.

What has become clear is that Nπ states need to be

included in the analysis for the three form factors, and

satisfying the PCAC relation (17) is an essential and

necessary condition. The questions that remain for higher

precision are howmanymultihadron states need to be kept in

the spectral decomposition for a given precision and the size

of their contributions. The roughly 10% spread in the lattice

results compared in Fig. 20will be reducedwithmuch higher

statistics data that will be available over the next few years,

and better analyses of excited states contributions.
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APPENDIX A: DETERMINING THE NUCLEON

SPECTROM FROM C2ptðtÞ
To extract the nucleon spectrum, we make two kinds of

fits to the spectral decomposition of C2ptðtÞ. The first is a

frequentist (labeled F) multiexponential fit, i.e., without

any priors. It is a three-state fit for a ≈ 0.06; 0.09 fm

ensembles, and two-state for a ≈ 0.12; 0.15 fm ensembles.

These frequentist results (ns ¼ 2 or 3) are compared against

empirical Bayesian four-state fits (ns ¼ 4) in Table VII, and

TABLE VII. Comparison of the ground state nucleon mass

obtained from fits to the dispersion relation, E2
p ¼ ðMDisp

0 Þ2 þ
c2p2 with M

2pt
0 from zero-momentum two-point correlator. Here

ns is the number of states kept in the fits with ns ¼ 2 or 3

implying a frequentist fit and ns ¼ 4 implying an empirical

Bayesian fit. The speed of light c2, the χ2=d.o.f. and p-value are
for the fits to the dispersion relation, which are shown for the

a09m130W and a06m135 ensembles in Fig. 22.

ID ns aM
2pt
0 aM

Disp
0 c2 χ̂2=d.o.f. p

a15m310 4 0.8302(21) 0.8304(21) 0.930(12) 1.37 0.195

a15m310 2 0.8315(20) 0.8319(19) 0.936(11) 0.96 0.474

a12m310 4 0.6660(27) 0.6662(26) 1.001(14) 0.62 0.777

a12m310 2 0.6715(13) 0.6716(13) 1.001(09) 0.73 0.685

a12m220L 4 0.6125(21) 0.6135(17) 0.995(15) 0.39 0.940

a12m220L 2 0.6187(10) 0.6187(10) 1.013(07) 0.67 0.741

a12m220 4 0.6080(31) 0.6086(30) 0.989(27) 0.33 0.967

a12m220 2 0.6151(14) 0.6152(14) 1.001(10) 0.91 0.515

a12m220S 4 0.6039(52) 0.6110(41) 0.970(29) 1.19 0.297

a12m220S 2 0.6194(26) 0.6204(24) 0.997(21) 0.69 0.718

a09m310 4 0.4951(14) 0.4959(13) 1.027(13) 1.72 0.078

a09m310 3 0.4952(15) 0.4961(13) 1.024(14) 0.96 0.473

a09m220 4 0.4495(20) 0.4513(15) 1.020(16) 0.36 0.955

a09m220 3 0.4514(16) 0.4528(13) 1.021(14) 0.53 0.857

a09m130W 4 0.4208(17) 0.4221(16) 0.978(31) 0.77 0.647

a09m130W 3 0.4213(18) 0.4225(17) 0.981(31) 1.12 0.342

a06m310 4 0.3248(30) 0.3257(28) 0.996(42) 0.97 0.422

a06m310 3 0.3305(21) 0.3319(19) 1.059(25) 0.80 0.524

a06m310W 4 0.3277(18) 0.3296(16) 1.025(22) 2.11 0.077

a06m310W 3 0.3289(16) 0.3303(14) 1.030(19) 2.14 0.073

a06m220 4 0.3036(19) 0.3035(19) 0.926(52) 0.26 0.902

a06m220 3 0.3065(17) 0.3060(16) 0.987(42) 1.22 0.299

a06m220W 4 0.3030(21) 0.3045(17) 1.033(40) 0.51 0.730

a06m220W 3 0.3047(14) 0.3053(13) 1.027(25) 0.33 0.858

a06m135 4 0.2714(24) 0.2716(22) 0.857(48) 0.48 0.886

a06m135 3 0.2735(16) 0.2737(16) 1.008(35) 0.33 0.967
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their difference is shown in Fig. 21 (bottom panel). We

observe that

(i) The ground state masses from the F- and B-fits
given in Table VII are consistent within one com-

bined σ. There is, however, a small but systematic

shift withM
ð4Þ
0 < M

ð3Þ
0 , indicating near convergence.

The deviations are≈10 MeVon all excepta12m220S
and a06m310 ensembles, where they are 20–30MeV.

Overall, the B-fit values are smaller.

(ii) For all except the a15m310 and a06m135 ensem-

bles, the E2 obtained from the four-state Bayesian

fit satisfy the relativistic dispersion relation, i.e.,

the speed of light, c2, is consistent with unity to

within 1σ. The fits for the a09m130W and a06m135

ensembles are shown in Fig. 22.

The analysis of the first excited state mass from fits to the

three-point correlations functions has been presented in

Sec. II D. Here we study its extraction from the spectral

decomposition of C2ptðtÞ:

C2ptðtÞ ¼ a0e
−E0t

�

1þ
X

∞

k¼1

bke
−ðEk−E0Þt

	

; ðA1Þ

where the coefficients a0 and bk are positive definite since
the same interpolating operator is used at the source and the

sink. Starting from the definition of the effective mass

meffðtÞ ¼ log
CðtÞ

Cðtþ 1Þ ðA2Þ

one can derive, using the symmetric lattice derivative

dfðtÞ=dt → ðfðtþ 1Þ − fðt − 1ÞÞ=2, a series of effective

masses m
ðnÞ
eff

m
ð0Þ
eff ≡ −

d

dt
logC2ptðtÞ ðA3Þ

FIG. 22. The plot of E2 obtained from the Bayesian four-state

fit versus p2 for the a09m130W (squares) and a06m135 (circles)

ensembles. The slope gives the speed of light, c2 listed in

Table VII. It shows significant deviation from unity for the

a06m135 ensemble. Note that the blue line lying above most

square points is a consequence of including the full covariance

matrix.

FIG. 21. Top: the first excited state mass, M
ð3Þ
1 , from the

frequentist 3-state (or 2-state) fit. The mass differences M
ð4Þ
2 −

M
ð3Þ
1 and M

ð4Þ
1 −M

ð3Þ
1 are shown in the second and third panels.

The difference in the ground state mass, M
ð4Þ
0 −M

ð3Þ
0 , is given in

the bottom panel.

NUCLEON ISOVECTOR AXIAL FORM FACTORS PHYS. REV. D 109, 014503 (2024)

014503-27



m
ðnÞ
eff ≡m

ðn−1Þ
eff −

d

dt
logðmðn−1Þ

eff − En−1Þ ðA4Þ

¼ En −
d

dt
log

�

1þ
X

∞

k¼nþ1

bk

bn

ðEk − E0Þ � � � ðEk − En−1Þ
ðEn − E0Þ � � � ðEn − En−1Þ

e−ðEk−EnÞt
	

; ðn ¼ 1; 2;…Þ: ðA5Þ

that should approach a plateau from above at a sufficiently

large time t and give the energy levels En. To determine

m
ðnÞ
eff ðtÞ, one could take the En from a multi-exponential fit,

with n limited by the statistical quality of the data. Note that

no prior information of the overlap factors a0 and bk is

required to calculate m
ðnÞ
eff ðtÞ.

These effective masses for the a06m135 ensemble are

shown in Fig. 23 for the lowest two momenta and compared

with when the Ei are taken from a four- (left panels) versus

three-state (right panels) fits with values given by the black

dashed lines with yellow error bands. The fit parameters

and the first excited state masses, M
ð4Þ
1 and M

ð3Þ
1 , are given

in Table VIII. We note that

(i) The estimate of E1 is slightly larger from the 3-state
fits. Again, this is expected since the fits give
“effective” Ei that partly incorporate the contribu-
tions of all the higher states neglected in the fits.

(ii) The time t1 when m
ð1Þ
eff ðtÞ reaches the estimate E1 is

roughly constant, ≈0.7 fm.

(iii) The signal in m
ð1Þ
eff ðtÞ becomes noisy for t≳ t1, i.e.,

before confirmation of it having plateaued.

(iv) Estimates ofM
ð4Þ
1 andM

ð3Þ
1 for the two physical pion

mass ensembles (see Table VIII and M
ð4Þ
1 −M

ð3Þ
1

plotted in Fig. 21) are consistent with the Nð1710Þ
excited state, or a combination of the Nð1440Þ and
Nð1710Þ as they overlap within their widths, Γ ≈

300 and 100 MeV.

FIG. 23. Data for the effective masses m
ðnÞ
eff , defined in Eq. (A4), from the a06m135 two-point correlators. Top panel shows results for

p ¼ 0 with the En−1 in Eq. (A4) taken from the four-state fit (left) and three-state fit (right). These input energy levels En are shown by

the dashed lines with yellow error bands. The red plus, green square, and blue circle symbols correspond to m
ðnÞ
eff with n ¼ 0, 1, 2,

respectively. The bottom panel showsm
ðnÞ
eff for p ¼ 2πn=L, n ¼ ð1; 0; 0Þ. In the bottom right panel, E0 is taken from the four-state fit and

E1 ¼ E0 þ 2Mπ (solid black line) is assumed.
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(v) Estimates of E2 and m
ð2Þ
eff ðtÞ from 3-state fits are not

reliable.

(vi) In the bottom right panel of Fig. 23, we input E1 ¼
E0 þ 2Mπ (solid black line) to study impact on

m
ðnÞ
eff ðtÞ. Estimates of m

ð1Þ
eff ðtÞ are not changed but

m
ð2Þ
eff ðtÞ shows a much more rapid fall. The signal is,

however, poor and dies before any conclusion can be

reached.

Overall, this analysis highlights the challenge of deter-

mining the excited state energies Ei from fits to C2ptðtÞ and
making an association with physical states.

APPENDIX B: EXTRAPOLATION OF THE

NUCLEON MASS MN TO THE PHYSICAL POINT

Here we revisit the extrapolation of the nucleon mass

MNða;M2
π;MπLÞ given in Table VII to the physical point

and extend the discussion in the Appendix B in Ref. [19].

We use the following CCFV ansatz:

MN ¼ c0 þ c1aþ c2a
2 þ c3M

2
π þ c4M

3
π þ c5M

2
πe

−MπL:

ðB1Þ

Results and the fit parameters ci for various truncations

of this ansatz are given in Table IX. The AIC score is

defined as AIC¼ 2k−2 logðLÞ¼ 2kþ χ2þ constant where

k is the number of parameters and L is the likelihood

function. When quoting AIC scores, we drop the irrelevant

constant. The CCFV fits F1 and B1 are shown in Fig. 24.

Our analysis indicates

(i) The CCFV fits, F1-F4, to the M
ð3Þ
0 data give slightly

smaller continuumMN than fits toM
ð4Þ
0 even though

M
ð3Þ
0 > M

ð4Þ
0 as shown in Fig. 21 (bottom panel) for

each of the thirteen ensembles.

(ii) Only F1 (MN ¼ 0.939ð12Þ GeV) and B1

(MN ¼ 0.945ð16Þ GeV) fits give estimates consis-

tent with the physical value ofMN ¼ 939 GeV. The

other fits give ≈25 MeV higher values.

(iii) The F3 and B3 fits, which include the higher order

M3
π term give a c4 that is roughly consistent with the

χPT prediction c4 ¼ 3g2A=ð32πF2
πÞ ¼ −5.716. On

including a2 and/or finite volume correction terms

in addition to the M3
π term, c4 remains consistent

with the χPT prediction for F1, F2, and F4 fits but

becomes smaller for B1, B2, and B4.

(iv) The finite volume coefficient, c5, is not well deter-
mined in any of the fits. Without it, fits F1 and B1

have small p-value but give results consistent with

TABLE VIII. Results for M1 from the four-state empirical

Bayesian fit (4s) and the three-state frequentist fit (3s). For

ensembles with a ≈ 0.12; 0.15 fm, a two-state frequentist fit is

performed, nevertheless, we keep the label “3s” for brevity. The

second column gives the approximate time t1 at which the m
ð1Þ
eff

reaches the first excited state energy E1 given by the four-state fit.

The time interval used in the four- (three-) state fits to C2ptðtÞ is
given in the third (fourth) column. These fit ranges were chosen

individually for each case balancing between keeping the

maximum number of points with signal in the effective mass

plot and the χ2=d.o.f.

Ensemble ID t1=a 4s ½tmin; tmax� 3s ½tmin; tmax� M
ð4Þ
1 GeV M

ð3Þ
1 GeV

a15m310 4 [1, 10] [1, 10] 2.04(06) 2.22(03)

a12m310 6 [2, 15] [2, 10] 1.58(09) 2.51(05)

a12m220S 6 [2, 15] [2, 10] 1.50(08) 2.40(08)

a12m220 6 [2, 15] [1, 12] 1.63(12) 2.39(02)

a12m220L 7 [2, 15] [2, 14] 1.69(18) 2.40(03)

a09m310 7 [2, 18] [2, 18] 2.06(13) 2.09(16)

a09m220 9 [3, 14] [2, 20] 1.72(09) 2.00(10)

a09m130W 7 [4, 20] [2, 20] 1.76(09) 1.82(09)

a06m310 12 [7, 30] [3, 30] 1.65(11) 2.09(14)

a06m310W 8 [4, 25] [2, 25] 2.05(15) 2.37(15)

a06m220 13 [7, 30] [3, 30] 1.87(08) 2.10(06)

a06m220W 11 [4, 20] [2, 25] 1.82(15) 2.21(11)

a06m135 12 [6, 30] [2, 25] 1.69(11) 1.85(05)

TABLE IX. Summary of CCFV fits to MNða;M2
π ;MπLÞ using Eq. (B1). Fits F1-F4 are to the frequentist (3-state or 2-state) data

labeled M
ð3Þ
0 in the text, and B1-B4 are to the 4-state empirical Bayesian fit data and labeled M

ð4Þ
0 . To make the interpretation of

coefficients ci defined in Eq. (B1) easier, we give both the functional dependance within square parentheses and the units. The results for

M
ð4Þ
0 are the same as in Ref. [19], except for a small change in a06m135 value due to increased statistics. Fits corresponding to the B2

and B4 were given in Table XV in Ref. [19] (labeled B1 and B2 there) and led toMN ¼ 0.976ð20Þ GeV and 0.972(6) GeV, respectively.

The table also gives the AIC score and the p value of the fits.

Fit MN GeV χ2=d.o.f. p AIC c0½1� GeV c1½a� GeV fm−1 c2½a2� GeV fm−2 c3½M2
π� GeV−1 c4½M3

π� GeV−2 c5½FV� GeV−1

F1 0.939(12) 2.187 0.025 27.5 0.878(013) 0.41(25) −3.2ð1.2Þ 4.24(38) −6.5ð1.0Þ � � �
F2 0.954(14) 1.758 0.091 24.3 0.895(015) 0.11(28) −1.6ð1.4Þ 4.07(38) −5.9ð1.0Þ −6.0ð2.6Þ
F3 0.968(04) 2.686 0.004 32.2 0.904(008) −0.23ð04Þ � � � 4.53(36) −7.3ð9Þ � � �
F4 0.969(04) 1.686 0.096 23.5 0.908(008) −0.19ð04Þ � � � 4.13(38) −6.0ð1.0Þ −7.4ð2.3Þ
B1 0.945(16) 1.109 0.353 18.9 0.896(017) 0.27(32) −2.6ð1.5Þ 3.18(46) −3.6ð1.2Þ � � �
B2 0.968(20) 0.675 0.693 16.7 0.922(021) −0.16ð38Þ −0.2ð1.9Þ 2.86(48) −2.5ð1.3Þ −10.4ð5.1Þ
B3 0.972(05) 1.318 0.221 19.9 0.921(009) −0.28ð04Þ � � � 3.35(44) −4.2ð1.2Þ � � �
B4 0.970(05) 0.592 0.785 14.7 0.924(009) −0.20ð05Þ � � � 2.86(48) −2.5ð1.3Þ −10.7ð4.0Þ
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the experimental value. Including it, the p-value of

F2 and B2 fits improves to an acceptable level, but

the coefficients of the lattice spacing dependence,

c1 and c2, become less well determined. Neglecting

thec2 term (F4 andB4 fits), thec1 becomeswell deter-

mined, while the other ci are essentially unchanged.

In these cases, the ∼25 MeV shifts in the MN from

the F1 or B1 fits persist.

Overall, with the current data, we are not able to determine

whether M
ð3Þ
0 or M

ð4Þ
0 give better estimates of the ground

state nucleon mass. Also, we can at best make four-state

fits to the two-point function and three-state fits to the

three-point functions.

APPENDIX C: DATA FOR THE FORM

FACTORS VERSUS Q2

The unrenormalized values of the form factors GA, G̃P,

and GP at the various Q2 values simulated on the thirteen
ensembles and extracted using the three excited-state
analysis strategies Ssim, SA4, and S2pt defined in Sec. II

are given in Tables X–XXII. Since the behavior of the data
for the four correlation functions varies significantly with

Q2 and the 13 ensembles, we could not develop a simple
prescription for making the fits. These Oð1000Þ fits were
done individually over a three year period. In addition to the
energies Ei and amplitudes Ai, one has to select two
additional parameters in each of the fits: (i) the number
of points, tskip, skipped next to the source and sink at which

the ESC are the largest and (ii) the values of source-sink
separation τ used in the fit. For these we made the following
common choices: (i) tskip was taken to be the same for all

values of τ used in a given fit; (ii) in all fits we used data
with the largest three values of τ for which the errors were
comparable to or smaller than the difference between the
central values. In most cases these were the largest three
values of τ simulated.

The full covariance matrix was used for all fits to the

3-point functions with the S2pt and SA4 strategies and for

the 2-point functions. In the simultaneous fits (Ssim

strategy), we restricted the covariance matrix to be block

diagonal in each correlation function.

A rough estimate of the size of contributions of the Nπ

state can be obtained from the difference between results

with S2pt and Ssim (or SA4) strategies in the following

tables. In particular, the smallest Q2 data for the two

FIG. 24. The result of the chiral-continuum (CC) fit (no finite

volume term) to the nucleon mass M
ð4Þ
0 (B1 fit in Table IX) (top

panel) and M
ð3Þ
0 (F1 fit in Table IX) (bottom panel) is shown by

the red line with the error band. The data for B1 and F1 fits given

in Table VIII are plotted versus M2
π after shifting them in a to

a ¼ 0 using the CC fits. The CC fit is also shown versusM2
π with

a set to a ¼ 0.06 fm (blue dashed line), 0.09 fm (orange dotted

line), 0.12 fm (green dotted line), and 0.15 fm (purple dash-dot

line). In a perfect fit, these curves should pass through points with

the same color, i.e., with the same lattice spacing a.

TABLE X. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a15m310.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.252(00) 1.007(008) 1.010(009) 0.993(006) 12.53(22) 12.89(23) 11.01(14) 15.12(24) 15.56(23) 13.14(15)

0.483(01) 0.842(007) 0.842(007) 0.822(007) 6.388(126) 6.433(102) 5.827(093) 8.115(143) 8.162(105) 7.386(097)

0.703(02) 0.720(007) 0.720(010) 0.690(008) 3.967(071) 4.046(104) 3.647(072) 5.255(095) 5.357(105) 4.939(081)

0.911(06) 0.648(017) 0.657(020) 0.614(017) 2.890(132) 2.915(148) 2.553(094) 4.080(172) 4.071(160) 3.559(097)

1.102(07) 0.593(011) 0.587(013) 0.561(011) 2.144(082) 2.065(090) 1.978(061) 3.184(133) 3.046(105) 2.856(088)

1.297(09) 0.520(006) 0.524(011) 0.491(013) 1.560(045) 1.613(076) 1.590(078) 2.341(063) 2.418(090) 2.369(117)

1.637(22) 0.450(017) 0.476(025) 0.469(023) 1.018(062) 1.119(087) 1.119(103) 1.662(082) 1.793(118) 1.640(121)

1.803(22) 0.439(029) 0.449(034) 0.452(023) 0.999(106) 1.028(124) 1.050(104) 1.444(133) 1.489(148) 1.290(207)

1.790(29) 0.543(114) 0.458(039) 0.395(056) 1.215(356) 1.002(135) 0.959(204) 1.557(428) 1.121(319) 0.995(972)

1.917(31) 0.428(108) 0.437(024) 0.379(046) 0.911(353) 0.938(085) 1.225(153) 1.455(505) 1.354(166) 1.293(322)
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physical mass ensembles a09m130W and a06m135 in

Tables XVII and XXII show ∼5%, ∼45%, and ∼45%

differences between the S2pt and Ssim values for GA, G̃P,

and GP, respectively. A ∼ 5% level of effect in GAðQ2Þ
is also consistent with what is observed in the axial charge

gA extracted from the forward matrix element between

“3-RD” and “3�” strategies as shown in Table XXXI

in Appendix F.

The values of Q2 ¼ jp⃗j2 − ðE −MÞ2 given in the

first column show that for a given gauge coupling β

(approximately constant a) and keeping MπL constant,

for example, in the three a ≈ 0.09 fermi ensembles, the

values of Q2 decrease as Mπ → 135 MeV. This is because

p⃗ ¼ 2πn⃗=La decreases as L is increased to keep the

parameter controlling the finite-volume effects, MπL,
constant. The same decrease happens if L is increased at

TABLE XI. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a12m310.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.176(00) 1.086(011) 1.086(011) 1.050(014) 18.01(29) 17.84(38) 16.51(56) 22.32(36) 22.08(41) 21.15(86)

0.342(01) 0.948(010) 0.937(009) 0.905(013) 9.817(153) 9.501(169) 9.493(281) 12.67(20) 12.27(19) 12.02(33)

0.498(02) 0.844(011) 0.842(012) 0.787(016) 6.505(106) 6.411(155) 5.954(199) 8.635(154) 8.499(206) 8.309(252)

0.646(03) 0.764(013) 0.763(014) 0.686(022) 4.664(087) 4.600(138) 4.124(189) 6.478(133) 6.385(194) 5.863(191)

0.787(04) 0.694(011) 0.691(012) 0.639(016) 3.504(088) 3.454(113) 3.246(123) 4.957(127) 4.891(157) 4.301(162)

0.920(05) 0.649(011) 0.666(013) 0.576(019) 2.882(118) 3.006(076) 2.399(168) 4.015(150) 4.161(106) 3.424(180)

1.178(09) 0.533(010) 0.550(017) 0.506(025) 1.684(068) 1.818(110) 1.651(126) 2.606(074) 2.731(163) 2.433(222)

1.293(10) 0.472(031) 0.463(040) 0.465(025) 1.296(193) 1.295(214) 1.469(150) 2.056(173) 2.048(221) 1.659(259)

1.315(19) 0.462(016) 0.538(047) 0.482(336) 1.175(083) 1.609(253) 1.264(1.241) 2.104(152) 2.446(317) 1.680(546)

1.435(18) 0.471(013) 0.488(032) 0.462(044) 1.224(066) 1.293(138) 1.438(258) 1.908(087) 1.984(223) 0.840(515)

TABLE XII. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a12m220S.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.175(01) 1.129(033) 1.123(034) 1.084(020) 19.73(92) 19.75(1.08) 16.14(69) 26.03(1.19) 26.27(1.49) 21.67(96)

0.339(03) 0.918(037) 0.920(033) 0.912(020) 9.517(656) 9.580(552) 8.373(527) 14.44(1.11) 14.83(98) 12.60(91)

0.490(06) 0.814(031) 0.821(044) 0.766(027) 5.271(346) 5.634(304) 5.165(360) 8.344(603) 9.064(487) 8.620(681)

0.636(09) 0.749(120) 0.749(044) 0.705(037) 4.284(877) 4.166(328) 3.744(288) 6.528(1.027) 6.563(449) 6.237(399)

0.773(10) 0.629(039) 0.646(041) 0.640(024) 3.016(409) 3.123(268) 2.743(171) 7.386(2.229) 6.484(705) 5.342(341)

0.909(13) 0.587(069) 0.627(045) 0.593(028) 2.568(343) 2.763(309) 2.276(212) 4.458(804) 4.516(556) 3.919(353)

1.178(23) 0.461(144) 0.514(062) 0.502(041) 1.110(705) 1.689(269) 1.515(176) 2.710(222) 3.422(587) 3.156(390)

1.307(25) 0.467(115) 0.571(059) 0.511(039) 1.116(1.966) 1.810(250) 1.480(193) 2.183(5.142) 2.986(644) 2.890(476)

1.238(33) 0.509(049) 0.551(077) 0.555(068) 1.247(181) 1.605(316) 1.499(288) 2.975(858) 3.966(821) 3.586(682)

1.358(36) 0.415(037) 0.425(135) 0.440(050) 0.771(163) 0.712(764) 0.890(225) 2.597(424) 3.625(1.536) 2.818(614)

TABLE XIII. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a12m220.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.105(00) 1.174(020) 1.169(021) 1.145(017) 28.84(1.16) 28.37(1.27) 24.11(1.40) 38.36(1.42) 37.84(1.55) 32.00(2.09)

0.206(02) 1.033(014) 1.041(017) 1.031(022) 15.55(42) 15.93(52) 14.53(97) 21.95(58) 22.23(66) 20.38(1.43)

0.301(02) 0.954(017) 0.956(017) 0.930(021) 10.75(34) 10.93(34) 9.99(48) 15.17(47) 15.30(49) 13.78(59)

0.391(03) 0.908(017) 0.911(017) 0.900(021) 7.975(219) 8.011(221) 7.498(345) 11.51(34) 11.43(34) 10.44(41)

0.482(04) 0.834(014) 0.836(016) 0.812(021) 6.182(192) 6.168(240) 5.752(262) 9.135(300) 9.236(356) 8.444(356)

0.568(05) 0.784(018) 0.787(021) 0.749(024) 4.988(200) 5.142(246) 4.601(249) 7.746(282) 7.955(344) 6.803(348)

0.732(08) 0.690(015) 0.730(029) 0.671(028) 3.404(152) 3.746(303) 3.246(219) 5.518(262) 6.051(497) 5.145(361)

0.808(10) 0.686(028) 0.705(033) 0.644(031) 3.213(252) 3.323(218) 2.850(237) 5.606(475) 5.833(388) 4.690(377)

0.806(12) 0.676(043) 0.711(035) 0.643(045) 3.147(203) 3.077(357) 2.885(321) 5.421(360) 5.058(541) 4.995(556)

0.884(12) 0.655(023) 0.671(025) 0.622(036) 2.579(184) 2.562(240) 2.693(266) 4.085(261) 4.115(295) 3.753(470)
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fixed a andMπ to reduce finite-volume effects as is evident

from the data on the three ensembles, a12m220S,
a12m220, and a12m220L. This is a simple kinematic

effect, i.e., the Q2 for a given n decreases as the lattice

volume is increased. For fixed Mπ and MπL, the Q2

remains roughly the same when a is decreased toward

the continuum limit as we keep La, the lattice size in

physical units (fermi) constant. This can be deduced from

the data on the a12m310, a09m310 and a06m310

ensembles. In short, as lattice QCD calculations improve

(larger L, Mπ ≈ 135 MeV, and a → 0), the Q2 values (and

Q2jmax for fixed n⃗jmax ¼ ð3; 1; 0Þ in our case) decrease.

Thus, the standard method for calculations of form factors

used in this work will increasingly give more precise form

factors in the Q2 < 0.5 GeV2 region. Further algorithmic

developments are needed to push calculations with momen-

tum transfer squared up to Q2 ∼ 5 GeV2 to meet the needs

of the DUNE experiment.

TABLE XIV. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a12m220L.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.067(0) 1.235(20) 1.259(16) 1.199(09) 39.90(1.21) 40.42(1.12) 30.88(2.09) 52.61(1.52) 52.68(1.37) 40.29(3.15)

0.132(0) 1.129(10) 1.150(09) 1.118(08) 24.34(55) 24.51(45) 20.55(1.17) 32.11(63) 32.17(53) 27.08(1.63)

0.195(0) 1.061(09) 1.078(08) 1.052(09) 17.24(36) 17.22(26) 15.09(68) 23.01(42) 23.01(32) 20.17(95)

0.257(1) 0.982(11) 1.008(09) 0.983(13) 12.68(41) 13.01(19) 11.58(44) 17.74(41) 17.98(27) 16.02(68)

0.316(1) 0.944(08) 0.961(09) 0.936(12) 10.34(21) 10.40(18) 9.30(27) 14.34(27) 14.43(22) 12.98(37)

0.374(1) 0.907(10) 0.921(13) 0.890(14) 8.719(155) 8.623(250) 7.765(203) 12.19(24) 12.11(31) 10.99(29)

0.487(2) 0.822(29) 0.839(09) 0.808(14) 6.264(153) 6.239(091) 5.576(124) 9.003(302) 9.046(132) 8.146(154)

0.541(3) 0.782(15) 0.802(12) 0.771(16) 5.503(129) 5.347(173) 4.894(126) 8.083(176) 7.852(241) 7.260(159)

0.541(3) 0.776(15) 0.797(10) 0.770(17) 5.152(168) 5.075(130) 4.883(130) 7.922(237) 7.606(199) 7.429(190)

0.595(3) 0.739(13) 0.766(09) 0.741(16) 4.549(105) 4.477(110) 4.264(120) 6.992(210) 6.920(168) 6.565(145)

TABLE XV. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a09m310.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.183(00) 1.043(06) 1.043(06) 1.053(04) 17.38(22) 17.27(20) 14.60(30) 21.90(21) 21.76(18) 18.35(35)

0.356(01) 0.894(06) 0.894(07) 0.907(06) 9.238(099) 9.231(105) 8.316(185) 12.36(14) 12.37(12) 11.24(25)

0.520(04) 0.793(09) 0.794(09) 0.795(12) 6.027(123) 6.047(103) 5.594(178) 8.372(148) 8.399(126) 7.931(253)

0.673(04) 0.714(09) 0.715(09) 0.717(09) 4.325(084) 4.313(082) 4.042(077) 6.225(108) 6.208(103) 5.776(086)

0.819(08) 0.647(07) 0.659(10) 0.652(09) 3.284(067) 3.370(079) 3.115(091) 4.889(103) 4.989(111) 4.620(103)

0.961(13) 0.602(07) 0.609(12) 0.591(13) 2.612(057) 2.710(084) 2.482(079) 3.938(082) 4.059(114) 3.834(106)

1.197(09) 0.531(14) 0.565(25) 0.521(09) 1.906(082) 2.028(121) 1.676(046) 3.116(126) 3.198(114) 2.781(063)

1.323(13) 0.498(10) 0.506(16) 0.489(08) 1.513(076) 1.601(093) 1.455(047) 2.535(120) 2.663(131) 2.455(123)

1.325(17) 0.449(12) 0.529(34) 0.482(24) 1.352(080) 1.687(162) 1.438(104) 2.312(138) 2.783(174) 2.319(131)

1.421(14) 0.481(23) 0.513(30) 0.470(11) 1.430(141) 1.519(146) 1.296(052) 2.435(240) 2.560(197) 2.216(111)

TABLE XVI. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a09m220.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.086(0) 1.185(17) 1.181(17) 1.169(10) 34.73(1.00) 34.12(92) 27.06(88) 47.06(1.16) 46.25(1.03) 36.91(1.17)

0.169(0) 1.063(11) 1.060(11) 1.074(09) 19.29(39) 19.16(38) 17.17(48) 27.19(45) 27.01(45) 23.67(66)

0.248(1) 0.978(10) 0.974(10) 0.986(09) 13.11(25) 13.04(25) 11.99(30) 18.90(31) 18.85(30) 17.25(48)

0.324(1) 0.925(11) 0.922(11) 0.920(11) 9.940(202) 9.784(217) 8.960(227) 14.41(28) 14.19(27) 13.22(33)

0.398(2) 0.862(08) 0.859(09) 0.858(10) 7.665(141) 7.563(146) 7.158(154) 11.59(19) 11.46(19) 10.67(24)

0.470(2) 0.807(09) 0.806(09) 0.802(11) 6.165(119) 6.086(124) 5.736(134) 9.556(168) 9.451(172) 8.847(189)

0.608(4) 0.726(10) 0.725(10) 0.719(12) 4.401(081) 4.379(090) 4.142(101) 7.007(131) 7.020(136) 6.462(159)

0.674(4) 0.687(11) 0.694(11) 0.683(13) 3.807(084) 3.772(088) 3.532(104) 6.187(137) 6.169(135) 5.456(160)

0.671(5) 0.706(09) 0.711(14) 0.690(16) 3.882(070) 3.935(095) 3.538(131) 6.299(162) 6.333(165) 5.616(208)

0.736(5) 0.664(11) 0.677(12) 0.654(13) 3.351(105) 3.362(111) 3.147(102) 5.480(177) 5.473(176) 4.962(178)
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TABLE XVII. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a09m130W.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.049(0) 1.284(37) 1.281(35) 1.197(11) 66.90(4.61) 67.10(3.01) 38.95(1.00) 98.55(6.16) 98.65(4.23) 57.55(1.44)

0.097(0) 1.153(19) 1.152(20) 1.141(10) 36.15(1.21) 34.92(94) 25.08(55) 55.27(1.97) 53.17(1.32) 38.23(92)

0.143(0) 1.091(17) 1.092(17) 1.094(10) 24.32(73) 23.94(58) 18.69(42) 36.65(1.08) 36.14(80) 28.41(65)

0.189(1) 1.014(13) 1.022(17) 1.044(10) 17.42(36) 17.56(41) 14.58(32) 26.35(65) 26.32(59) 22.00(50)

0.234(1) 0.971(12) 0.976(13) 0.997(09) 13.80(31) 13.76(28) 11.88(26) 21.34(49) 21.09(38) 18.08(34)

0.277(1) 0.942(13) 0.945(13) 0.957(10) 11.57(29) 11.55(24) 10.00(23) 17.75(37) 17.70(33) 15.51(32)

0.361(2) 0.877(11) 0.867(13) 0.881(12) 8.244(191) 8.044(197) 7.399(168) 12.84(24) 12.85(28) 11.71(26)

0.403(3) 0.839(13) 0.839(13) 0.847(13) 7.165(179) 7.100(180) 6.517(170) 11.25(28) 11.22(26) 10.30(25)

0.404(4) 0.824(18) 0.822(17) 0.827(19) 6.833(225) 6.806(241) 6.315(216) 11.02(41) 10.97(41) 10.21(35)

0.443(4) 0.804(14) 0.800(13) 0.804(15) 6.399(169) 6.150(203) 5.797(148) 10.24(25) 9.999(276) 9.110(269)

TABLE XVIII. The bare form factorsGA, G̃P, andGP versusQ2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a06m310W. Data

for GP were, by accident, not saved.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.190(1) 1.022(21) 1.010(23) 1.033(17) 16.99(64) 17.19(68) 14.40(49) � � � � � � � � �
0.365(2) 0.868(15) 0.857(18) 0.870(15) 8.793(230) 8.997(256) 7.911(221) � � � � � � � � �
0.528(3) 0.780(22) 0.774(22) 0.770(20) 6.151(188) 6.149(210) 5.048(228) � � � � � � � � �
0.690(5) 0.669(36) 0.696(34) 0.670(25) 3.913(403) 4.303(242) 3.543(257) � � � � � � � � �
0.840(6) 0.599(29) 0.614(26) 0.614(19) 3.080(168) 3.243(205) 2.932(192) � � � � � � � � �

TABLE XIX. The bare form factorsGA, G̃P, and GP versusQ2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a06m310. Data for

GP were, by accident, not saved.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.189(01) 1.001(15) 1.007(23) 1.020(17) 15.67(72) 16.28(84) 15.11(64) � � � � � � � � �
0.365(03) 0.853(10) 0.856(14) 0.880(17) 8.451(313) 8.635(228) 8.236(291) � � � � � � � � �
0.532(07) 0.743(12) 0.745(17) 0.723(29) 5.441(168) 5.546(188) 4.964(297) � � � � � � � � �
0.683(10) 0.677(12) 0.718(28) 0.663(32) 3.926(125) 4.409(216) 3.967(368) � � � � � � � � �
0.846(12) 0.599(14) 0.618(21) 0.554(42) 2.929(088) 3.120(105) 2.762(240) � � � � � � � � �

TABLE XX. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a06m220W. Data

for GP were, by accident, not saved.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.109(0) 1.161(48) 1.152(37) 1.124(21) 29.89(1.99) 30.67(1.62) 22.81(89) � � � � � � � � �
0.213(1) 1.022(29) 0.999(23) 1.008(20) 15.51(71) 15.35(56) 13.64(40) � � � � � � � � �
0.313(2) 0.909(24) 0.898(25) 0.901(27) 9.762(387) 10.030(490) 8.987(396) � � � � � � � � �
0.412(6) 0.860(34) 0.860(31) 0.801(52) 7.669(431) 7.993(393) 6.817(437) � � � � � � � � �
0.504(6) 0.777(27) 0.774(27) 0.762(35) 5.701(264) 5.694(253) 5.539(305) � � � � � � � � �
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APPENDIX D: RESULTS FOR gA, hr2Ai, g�P, AND g
πNN

The results for gA, hr2Ai, g�P, gπNNFπ , and
gπNNFπ

MN
from the thirteen ensembles are given in Tables XXIII–XXV.

TABLE XXI. The bare form factors GA, G̃P, and GP versus Q2 for the strategies Ssim, SA4, and S2pt on ensemble a06m220.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.110(0) 1.186(36) 1.149(34) 1.124(16) 30.75(1.54) 30.47(1.37) 21.36(66) 43.30(2.01) 42.85(1.66) 29.59(67)

0.216(1) 1.005(15) 0.973(20) 1.007(15) 16.04(47) 15.59(46) 13.08(36) 22.74(66) 22.14(54) 18.43(36)

0.318(2) 0.910(24) 0.862(20) 0.918(18) 10.53(42) 10.08(31) 9.228(312) 14.83(52) 14.93(41) 13.39(32)

0.414(5) 0.823(23) 0.807(22) 0.850(22) 7.449(289) 7.439(259) 6.917(272) 11.14(33) 10.98(35) 10.37(32)

0.509(6) 0.757(18) 0.754(19) 0.777(20) 5.807(188) 5.781(186) 5.295(199) 8.463(317) 8.621(274) 8.081(259)

TABLE XXII. The bare form factors GA, G̃P, and GP versus Q2 for the 3 strategies Ssim, SA4, and S2pt on ensemble a06m135.

GA G̃P GP

Q2½GeV� Ssim SA4 S2pt Ssim SA4 S2pt Ssim SA4 S2pt

0.051(0) 1.201(51) 1.211(56) 1.179(20) 59.23(4.34) 61.92(4.15) 35.54(1.42) 94.52(6.52) 99.18(6.04) 56.03(2.10)

0.102(1) 1.075(33) 1.075(34) 1.109(16) 32.30(1.88) 32.17(1.48) 22.04(64) 54.37(2.91) 54.56(2.25) 37.84(1.41)

0.151(2) 0.966(31) 0.966(34) 1.041(17) 20.25(1.02) 20.52(97) 16.21(55) 36.14(1.68) 36.60(1.55) 28.47(1.20)

0.198(2) 0.940(24) 0.948(25) 1.008(18) 15.71(74) 15.95(57) 13.47(48) 26.73(1.01) 26.96(85) 22.41(73)

0.246(3) 0.876(20) 0.877(22) 0.940(20) 11.82(47) 11.75(41) 10.33(31) 21.32(60) 21.32(66) 18.53(59)

0.294(4) 0.836(17) 0.838(21) 0.876(32) 9.153(297) 9.397(327) 8.750(352) 16.88(49) 17.34(54) 15.85(55)

0.386(6) 0.778(19) 0.782(18) 0.788(37) 6.977(212) 6.977(182) 6.705(320) 12.84(37) 12.83(37) 11.73(44)

0.431(5) 0.755(19) 0.755(18) 0.740(34) 5.883(182) 5.862(188) 5.665(321) 11.17(34) 11.25(35) 10.39(46)

0.432(5) 0.739(22) 0.750(21) 0.753(37) 6.129(219) 6.163(202) 5.909(331) 11.38(41) 11.33(39) 10.79(56)

0.475(6) 0.718(21) 0.736(19) 0.707(28) 5.386(184) 5.369(168) 4.757(193) 9.941(344) 9.931(313) 9.117(407)

TABLE XXIII. Results for gA and hr2Ai given by z2 fits to the

axial form factor, GAðQ2Þ, obtained with the Ssim strategy. The

χ2=d.o.f. and p-value of the fits are also given.

ID gA hr2Ai χ2=d.o.f. p

a15m310 1.211(30) 0.229(11) 1.07 0.38

a12m310 1.209(40) 0.221(17) 0.29 0.94

a12m220L 1.246(43) 0.300(25) 2.39 0.01

a12m220 1.234(46) 0.292(28) 0.87 0.56

a12m220S 1.331(80) 0.331(59) 0.25 0.96

a09m310 1.188(49) 0.250(11) 0.81 0.56

a09m220 1.233(54) 0.297(21) 1.33 0.21

a09m130W 1.272(65) 0.446(72) 1.30 0.22

a06m310 1.158(44) 0.239(18) 0.56 0.74

a06m310W 1.165(48) 0.221(24) 0.59 0.71

a06m220 1.300(59) 0.368(45) 0.69 0.63

a06m220W 1.261(70) 0.311(50) 0.42 0.83

a06m135 1.349(85) 0.74(13) 0.63 0.71

TABLE XXIV. Results for g�P, gπNNFπ , and gπNNFπ=MN given

by the “PD” fits [defined in Eq. (42)] to G̃P obtained using Ssim

strategy. The χ2=d.o.f. and p-value of the fits are also given, and

Fπ and MN are in units of GeV.

ID g�P gπNNFπ
gπNNFπ

MN
χ2=d.o.f. p

a15m310 2.16(07) 1.24(05) 1.15(04) 0.92 0.43

a12m310 2.44(09) 1.33(06) 1.22(05) 0.61 0.61

a12m220L 4.02(16) 1.23(05) 1.21(05) 1.34 0.23

a12m220 3.73(18) 1.14(06) 1.13(06) 0.68 0.69

a12m220S 4.71(36) 1.47(13) 1.48(13) 0.46 0.71

a09m310 2.37(10) 1.32(06) 1.20(05) 0.86 0.46

a09m220 3.98(18) 1.21(06) 1.19(06) 1.15 0.33

a09m130W 8.38(46) 1.19(07) 1.25(07) 1.05 0.39

a06m310 2.20(13) 1.28(09) 1.16(07) 0.01 0.99

a06m310W 2.31(16) 1.34(12) 1.20(11) 3.48 0.03

a06m220 4.38(29) 1.48(12) 1.43(12) 0.27 0.77

a06m220W 4.16(38) 1.41(16) 1.37(15) 1.36 0.26

a06m135 8.35(70) 1.16(11) 1.23(11) 1.44 0.23
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APPENDIX E: SUMMARY OF CCFV FITS

This appendix presents results after chiral-continuum-

finite-volume extrapolation for gA and hr2Ai in

Table XXVI; g�P in Tables XXVII and XXVIII; and

gπNN in Table XXIX. All the data for GAðQ2Þ and

G̃PðQ2Þ used were obtained with the Ssim strategy to

remove ESC, and the Q2 behavior was fit using either

the z2 truncation [GAðQ2Þ] or the PD fit (G̃PðQ2Þ) given
in Eq. (42). The four parameters, b0;1;2;3, define the

CCFV ansatz given in Eq. (29). The tables also give

the χ2=d.o.f., the p-value, and the Akaika information

criteria (AIC and AICc) [20] scores for the CCFV fit.

The definition of AIC is given in Appendix B, and

including correction for small sample sizes, AICc is

defined as rmAICc ¼ AICþ ð2k2 þ 2kÞ=ðn − k − 1Þ
where n is the number of data points and k is the

number of parameters.

TABLE XXV. The values of g�P, gπNNFπ , and gπNNFπ=MN

given by z2 fits to Ssim strategy data for F̃P defined in Eq. (41).

The χ2=d.o.f. and p-value of the fits are also given, and Fπ and

MN are in units of GeV.

ID g�P gπNNFπ
gπNNFπ

MN
χ2=d.o.f. p

a15m310 2.22(08) 1.30(06) 1.20(05) 0.46 0.84

a12m310 2.46(09) 1.36(06) 1.25(06) 0.45 0.85

a12m220L 4.06(16) 1.26(06) 1.24(05) 0.92 0.52

a12m220 3.81(20) 1.18(08) 1.16(07) 0.47 0.91

a12m220S 4.62(32) 1.47(12) 1.48(12) 0.79 0.58

a09m310 2.42(10) 1.38(06) 1.25(06) 0.43 0.86

a09m220 4.11(20) 1.28(07) 1.26(07) 0.66 0.76

a09m130W 8.78(58) 1.28(10) 1.34(10) 0.73 0.70

a06m310 2.20(13) 1.29(09) 1.17(07) 0.23 0.95

a06m310W 2.29(11) 1.34(08) 1.20(07) 1.49 0.19

a06m220 4.28(23) 1.45(09) 1.40(09) 0.42 0.84

a06m220W 3.95(26) 1.33(10) 1.29(09) 0.91 0.48

a06m135 8.39(73) 1.18(13) 1.25(13) 0.83 0.55

TABLE XXVI. Summary of the parameters in the 13-point CCFV fit [Eq. (29)] to gA and hr2Ai. The data used are given in Table XXIII.
These were obtained by fitting the Q2 behavior of GA, obtained with the Ssim strategy, using the z2 truncation. Details are given in

Sec. III A.

χ2=d.o.f. p AIC AICc b0½1� b1½a� fm−1 b2½M2
π� GeV−2 b3½FV� GeV−2

gA (obtained from GA with Ssim and z2 fit) extrapolated using the 13-point CCFV fit

1.296(050) 0.254 0.986 10.3 15.3 1.332(058) 0.002(477) −1.967ð719Þ 41.370(37.926)

1.277(047) 0.348 0.968 9.5 12.1 1.303(052) 0.284(402) −1.402ð498Þ � � �
1.219(042) 1.037 0.410 15.4 16.6 1.219(042) 0.039(392) � � � � � �
1.302(032) 0.361 0.971 8.0 9.2 1.326(040) � � � −1.325ð486Þ � � �
1.248(027) 0.940 0.500 14.3 15.5 1.248(027) � � � � � � −23.153ð22.360Þ
1.223(013) 0.951 0.494 13.4 13.8 1.223(013) � � � � � � � � �

hr2Ai (obtained from GA with Ssim and z2 fit) extrapolated using the 13-point CCFV fit

0.418(033) 1.310 0.225 19.8 24.8 0.457(040) −0.489ð260Þ −2.169ð449Þ 34.126(20.944)

0.384(025) 1.445 0.154 20.4 23.1 0.413(029) −0.168ð170Þ −1.596ð280Þ � � �
0.287(019) 4.267 0.000 50.9 52.1 0.287(019) −0.332ð167Þ � � � � � �
0.369(021) 1.403 0.164 19.4 20.6 0.399(025) � � � −1.643ð276Þ � � �
0.298(013) 3.241 0.000 39.6 40.8 0.298(013) � � � � � � −38.490ð9.863Þ
0.251(006) 4.240 0.000 52.9 53.2 0.251(006) � � � � � � � � �

TABLE XXVII. Summary of parameters values in the 13-point CCFV fit [see Eq. (29)] for obtaining g�P. The data used are given in

Tables XXIVand XXV. In the top half, the quantity ðQ�2 þM2
πÞg�P ¼ 2mμMNF̃PðQ�2Þ, with F̃P is defined in Eq. (41) and fit using z2, is

extrapolated, while in the bottom half ðQ�2 þM2
πÞg�P ¼ ðQ�2 þM2

πÞðmμ=2MNÞG̃PðQ�2Þ is used. The extrapolated results are then

converted to g�P by dividing by the physical value of ðQ�2 þM2
πÞ. Details are given in Sec. IV.

g�P χ2=d.o.f. p AIC AICc b0½1� b1½a� fm−1 b2½M2
π � GeV−2 b3½FV� GeV−2

g�P (obtained from F̃P with Ssim and fit using z2) extrapolated using the 13-point CCFV fit

9.300(459) 0.897 0.527 16.1 21.1 0.261(015) −0.117ð124Þ −0.018ð180Þ 6.359(9.373)

9.213(441) 0.853 0.577 14.5 17.2 0.257(013) −0.079ð110Þ 0.067(129) � � �
9.301(408) 0.800 0.640 12.8 14.0 0.261(011) −0.066ð107Þ � � � � � �
8.969(281) 0.822 0.618 13.0 14.2 0.251(010) � � � 0.047(126) � � �
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TABLE XXVIII. Summary of parameters values in the 13-point CCFV fit [Eq. (29)] plus an additional “pole” term b4=ðQ�2 þM2
πÞ)

for obtaining g�P. The data used are given in Tables XXIVand XXV. In the top half, the quantity g�P ¼ ðmμ=2MNÞF̃PðQ�2Þ=ðQ�2 þM2
πÞ,

is extrapolated, while in the bottom half g�P ¼ ðmμ=2MNÞG̃PðQ�2Þ is used. Details are given in Sec. IV.

g�P χ2=d.o.f. p AIC AICc b0½1� b1½a� fm−1 b2½M2
π � GeV−2 b3½FV� GeV−2 b4½pole� GeV2

g�P (obtained from F̃PðQ�2Þ using Ssim data and fit using z2) extrapolated using the 13-point CCFV plus pole fit

8.763(479) 0.978 0.451 17.8 26.4 0.917(944) −1.327ð1.523Þ −6.027ð6.740Þ 83.890(129.644) 0.223(035)

8.770(479) 0.916 0.510 16.2 21.2 0.692(878) −0.655ð1.114Þ −3.825ð5.817Þ � � � 0.228(034)

9.019(292) 0.867 0.563 14.7 17.3 0.127(182) −0.679ð1.113Þ � � � � � � 0.249(011)

8.714(469) 0.859 0.572 14.6 17.3 0.631(872) � � � −3.935ð5.814Þ � � � 0.229(034)

8.950(294) 0.900 0.532 15.0 17.7 0.086(226) � � � � � � −18.315ð86.479Þ 0.249(014)

8.969(281) 0.822 0.618 13.0 14.2 0.047(126) � � � � � � � � � 0.250(011)

g�P [obtained from G̃P with Ssim and “PD” fit, Eq. (42)] extrapolated using the 13-point CCFV plus pole fit

8.590(418) 1.273 0.252 20.2 28.8 1.075(905) −2.081ð1.715Þ −6.246ð6.684Þ 83.651(136.326) 0.214(031)

8.585(418) 1.174 0.307 18.6 23.6 0.813(798) −1.322ð1.186Þ −3.821ð5.390Þ � � � 0.220(030)

8.806(277) 1.107 0.352 17.1 19.7 0.265(195) −1.376ð1.184Þ � � � � � � 0.240(011)

8.468(404) 1.180 0.298 17.8 20.5 0.698(791) � � � −4.209ð5.378Þ � � � 0.220(030)

8.645(279) 1.191 0.291 17.9 20.6 0.219(222) � � � � � � −58.710ð82.451Þ 0.236(013)

8.708(264) 1.129 0.333 16.4 17.6 0.086(119) � � � � � � � � � 0.242(010)

TABLE XXVII. (Continued)

g�P χ2=d.o.f. p AIC AICc b0½1� b1½a� fm−1 b2½M2
π � GeV−2 b3½FV� GeV−2

g�P (obtained from F̃P with Ssim and fit using z2) extrapolated using the 13-point CCFV fit

8.968(240) 0.815 0.625 13.0 14.2 0.251(007) � � � � � � 2.739(5.929)

9.062(124) 0.765 0.687 11.2 11.5 0.254(003) � � � � � � � � �
g�P (obtained from G̃P with Ssim and PD fit, Eq. (42) extrapolated using the 13-point CCFV fit

9.248(484) 1.182 0.301 18.6 23.6 0.258(015) −0.178ð135Þ 0.075(181) 4.550(9.448)

9.167(454) 1.087 0.368 16.9 19.5 0.255(013) −0.148ð119Þ 0.138(127) � � �
9.274(443) 1.096 0.360 16.1 17.3 0.260(012) −0.105ð112Þ � � � � � �
8.708(264) 1.129 0.333 16.4 17.6 0.243(009) � � � 0.086(119) � � �
8.793(228) 1.159 0.310 16.7 17.9 0.247(006) � � � � � � 2.360(5.527)

8.876(123) 1.078 0.374 14.9 15.3 0.249(003) � � � � � � � � �

TABLE XXIX. Summary of the 13-point CCFV fit parameters for the extraction of gπNN as described in Sec. IV B 2. The data used are

given in Tables XXIVand XXV. In the top table, the product gπNNFπ ¼ MNF̃Pð−M2
πÞ is extrapolated, and the result, in the continuum, is

divided by Fπ ¼ 92.9 MeV. In the bottom table, F̃Pð−M2
πÞ is extrapolated and the result in the continuum multiplied by MN=Fπ.

gπNN χ2=d.o.f. p AIC AICc b0½1� b1½a� fm−1 b2½M2
π � GeV−2 b3½FV� GeV−2

gπNN (obtained with Ssim and fit using z2) extrapolated using the 13-point CCFV fit

14.491(857) 0.878 0.544 15.9 20.9 1.330(090) −0.942ð752Þ 0.339(1.093) 55.002(56.824)

14.273(827) 0.884 0.547 14.8 17.5 1.296(083) −0.637ð683Þ 1.080(779) � � �
14.713(764) 0.979 0.463 14.8 16.0 1.357(070) −0.448ð669Þ � � � � � �
13.666(511) 0.883 0.556 13.7 14.9 1.243(060) � � � 0.935(763) � � �
13.777(435) 0.886 0.553 13.7 14.9 1.270(040) � � � � � � 44.246(36.550)

14.225(228) 0.934 0.511 13.2 13.6 1.312(021) � � � � � � � � �

gπNN [obtained from G̃P with Ssim and PD fit, Eq. (42)] extrapolated using the 13-point CCFV fit

14.135(852) 1.202 0.288 18.8 23.8 1.283(087) −1.230ð786Þ 1.098(1.026) 28.874(53.442)

13.975(799) 1.111 0.349 17.1 19.8 1.261(077) −1.036ð699Þ 1.497(711) � � �
14.240(788) 1.412 0.159 19.5 20.7 1.313(073) −0.519ð655Þ � � � � � �
12.986(438) 1.209 0.274 17.3 18.5 1.177(051) � � � 1.127(666) � � �
13.271(381) 1.349 0.190 18.8 20.0 1.224(035) � � � � � � 35.810(31.073)

13.637(210) 1.347 0.184 18.2 18.5 1.257(019) � � � � � � � � �
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APPENDIX F: DATA AND FITS FOR THE

EXTRACTION OF ISOVECTOR CHARGES gA;S;T
FROM FORWARD MATRIX ELEMENTS

This appendix gives the mass gaps of excited state for the

3-RD-Nπ fit in units of the lattice pion mass for each

ensemble. The M1 is fixed to the noninteracting energy

of the NðnÞ þ πð−nÞ state with n ¼ ð1; 0; 0Þ. The M2 is

constrained to be near the first excited state mass given by

the two-point correlator by using the narrow prior shown in

the last column in Table XXX. The results for the bare

isovector charges gA;S;T;V from the forward matrix elements

and the p-value of the fit are given in Table XXXI for the

three strategies 3-RD, 3�, and 3-RD-Nπ.

The parameters of the fits defined in Eq. (48) and the

mass gaps for the 3-RD strategy are given in Table XXXII.

Summary of the various CCFV fits to the 3-RD data

for the renormalized isovector charges gA;S;T are given in

Tables XXXIII, XXXIV, and XXXV. The extraction of

the final values at the physical point from these data are

discussed in the main text.

TABLE XXX. Mass gaps of excited state for the 3-RD-Nπ fit in units of the lattice pion mass for each ensemble.

TheM1 is fixed to the noninteracting energy of the NðnÞ þ πð−nÞ state with n ¼ ð1; 0; 0Þ. TheM2 is constrained to

be near the first excited state mass given by the two-point correlator by using the narrow prior shown in the last

column. These mass gaps can be compared with the 3-RD fit results given in the Table XXXII.

M2 −M0

ID M1 −M0 Axial Scalar Tensor Vector Prior

a15m310 2.2 3.50(01) 3.52(01) 3.52(03) 3.50(02) 3.52(12)

a12m310 2.0 4.32(11) 4.51(07) 3.78(14) 4.46(08) 4.55(26)

a12m220L 1.7 5.19(30) 6.26(11) 6.01(17) 6.01(08) 6.05(44)

a12m220 2.0 5.93(12) 6.02(08) 5.55(23) 5.88(12) 6.00(44)

a12m220S 2.5 6.09(04) 6.12(03) 5.97(12) 6.10(05) 6.13(36)

a09m310 2.0 2.91(16) 3.24(11) 3.29(08) 3.43(10) 3.15(21)

a09m220 1.8 3.90(66) 4.43(20) 4.49(14) 2.07(07) 4.35(40)

a09m130W 2.1 5.83(39) 7.27(29) 6.48(23) 2.37(05) 5.84(66)

a06m310 2.0 3.01(02) 3.03(02) 3.11(03) 3.05(01) 3.04(11)

a06m310W 2.0 3.95(04) 3.94(03) 3.89(06) 3.95(02) 3.94(21)

a06m220 2.0 4.20(13) 4.40(06) 4.50(11) 4.47(06) 4.49(29)

a06m220W 2.0 4.91(06) 4.96(04) 5.04(10) 4.95(03) 4.98(29)

a06m135 2.2 6.43(07) 6.84(16) 6.93(27) 6.71(08) 6.60(51)

TABLE XXXI. Summary of bare charges gA, gS, gT , and gV obtained from forward matrix elements along with the

p-value of the three fits used to remove ESC: 3-RD (first row), 3� (or 2-state for gS) (second row), and 3-RD-Nπ

(third row) described in the text. The mass gapM2 −M0 output by the 3-RD-Nπ fits is summarized in Table XXX.

ID gA p gS p gT p gV p

a15m310 1.266(017) 0.780 0.834(018) 0.040 1.133(006) 0.819 1.073(004) 0.528

1.250(007) 0.591 0.868(028) 0.002 1.121(006) 0.641 1.069(004) 0.000

1.243(005) 0.607 0.838(019) 0.031 1.132(004) 0.811 1.070(003) 0.394

a12m310 1.256(006) 0.247 0.929(031) 0.180 1.068(009) 0.089 1.055(005) 0.097

1.283(018) 0.436 1.091(083) 0.007 1.034(020) 0.060 1.061(008) 0.106

1.241(005) 0.047 0.910(015) 0.215 1.083(005) 0.000 1.053(002) 0.069

a12m220L 1.275(005) 0.175 0.829(025) 0.038 1.090(007) 0.679 1.068(003) 0.053

1.289(013) 0.410 0.873(042) 0.000 1.069(011) 0.194 1.067(004) 0.165

1.266(007) 0.005 0.865(016) 0.089 1.092(003) 0.690 1.064(002) 0.035

a12m220 1.253(010) 0.252 0.987(056) 0.561 1.080(011) 0.363 1.063(004) 0.892

1.265(021) 0.173 1.113(095) 0.401 1.048(018) 0.243 1.071(009) 0.622

1.239(007) 0.157 0.929(029) 0.445 1.084(006) 0.266 1.061(003) 0.846

a12m220S 1.257(017) 0.715 0.908(213) 0.113 1.103(027) 0.982 1.065(006) 0.775

1.266(044) 0.631 1.003(260) 0.015 1.065(039) 0.754 1.081(018) 1.000

1.245(012) 0.627 0.967(097) 0.100 1.110(011) 0.861 1.061(004) 0.713
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TABLE XXXI. (Continued)

ID gA p gS p gT p gV p

a09m310 1.275(017) 0.593 1.000(019) 0.305 1.029(004) 0.620 1.047(002) 0.034

1.238(008) 0.426 1.016(027) 0.170 1.027(007) 0.375 1.036(004) 0.080

1.212(004) 0.000 1.006(011) 0.291 1.025(004) 0.463 1.067(008) 0.000

a09m220 1.282(016) 0.173 0.987(025) 0.570 1.018(004) 0.809 1.051(002) 0.449

1.279(013) 0.440 1.056(046) 0.222 1.001(011) 0.634 1.049(004) 0.325

1.216(006) 0.000 0.989(015) 0.531 1.007(005) 0.379 1.040(007) 0.000

a09m130W 1.320(034) 0.132 1.049(023) 0.542 1.010(006) 0.869 1.054(002) 0.045

1.271(015) 0.021 1.049(061) 0.069 1.000(011) 0.648 1.052(006) 0.090

1.231(006) 0.006 1.135(024) 0.068 0.990(007) 0.250 1.011(008) 0.000

a06m310 1.271(057) 0.439 1.172(082) 0.873 0.992(007) 0.217 1.041(005) 0.823

1.243(027) 0.840 1.239(108) 0.352 0.982(020) 0.738 1.033(010) 0.773

1.181(008) 0.098 1.121(003) 0.829 0.980(006) 0.058 1.054(011) 0.586

a06m310W 1.264(089) 0.397 1.115(065) 0.288 0.979(016) 0.438 1.036(005) 0.886

1.216(021) 0.669 1.122(073) 0.501 0.975(016) 0.094 1.035(011) 0.413

1.208(012) 0.358 1.144(049) 0.280 0.985(009) 0.407 1.036(005) 0.883

a06m220 1.336(065) 0.009 1.183(157) 0.625 0.975(011) 0.668 1.048(005) 0.373

1.235(018) 0.012 1.109(066) 0.275 0.975(012) 0.372 1.050(007) 0.328

1.190(011) 0.000 1.026(028) 0.484 0.975(007) 0.664 1.059(007) 0.359

a06m220W 1.383(079) 0.751 0.818(065) 0.539 0.977(012) 0.078 1.039(006) 0.908

1.257(024) 0.643 0.769(089) 0.770 0.962(022) 0.084 1.039(009) 0.724

1.212(012) 0.303 0.866(055) 0.454 0.971(008) 0.104 1.037(004) 0.882

a06m135 1.281(061) 0.518 1.025(050) 0.460 0.966(010) 0.277 1.039(005) 0.354

1.242(021) 0.641 1.108(110) 0.382 0.950(014) 0.208 1.039(006) 0.303

1.198(010) 0.272 1.154(073) 0.312 0.942(009) 0.072 1.075(007) 0.003

TABLE XXXII. Outputs r2b02, r1r2b12, and the excited state mass gap aΔM2 of the 3-RD fit for the axial (A),

scalar (S), tensor (T) and vector (V) charges. The mass gaps in columns 6–8 are in units ofMπ for that ensemble. The

mass gapMðNπÞ −M0 ≡MNðnÞ þMπð−nÞ −M0 with n ¼ ð1; 0; 0Þ is close toM2 −M0 for the axial channel and

much smaller for the other charges. Note that M1 −M0 and MðNπÞ −M0 are the same for the four charges.

Ensemble ID Charge r2b02 r1r2b12 aΔM2
M1−M0

Mπ

M2−M0

Mπ

MðNπÞ−M0

Mπ

a15m310 A −0.063ð008Þ −0.00ð00Þ −0.37ð11Þ 3.5(1) 2.0(4) 2.2

a12m310 A −0.047ð008Þ −4.0ð2.9Þ −0.15ð10Þ 4.6(2) 3.7(5) 2.0

a12m220L A −0.051ð011Þ −3.4ð1.7Þ −0.16ð08Þ 6.1(1) 4.9(6) 1.7

a12m220 A −0.055ð011Þ −2.9ð3.4Þ −0.07ð19Þ 6.0(1) 5.5(1.4) 2.0

a12m220S A −0.041ð021Þ −2.7ð4.8Þ −0.18ð23Þ 6.1(3) 4.8(1.7) 2.5

a09m310 A −0.076ð013Þ 0.12(03) −0.26ð06Þ 3.2(5) 1.3(1) 2.0

a09m220 A −0.091ð012Þ 0.18(03) −0.23ð04Þ 4.3(4) 2.0(1) 1.8

a09m130W A −0.111ð024Þ 0.20(04) −0.19ð03Þ 5.8(6) 2.8(3) 2.1

a06m310 A −0.127ð038Þ 0.12(14) −0.17ð06Þ 3.0(4) 1.2(3) 2.0

a06m310W A −0.070ð073Þ 0.19(29) −0.27ð06Þ 3.9(5) 1.1(5) 2.0

a06m220 A −0.191ð041Þ 0.17(15) −0.19ð03Þ 4.5(2) 1.7(2) 2.0

a06m220W A −0.183ð058Þ 0.42(30) −0.24ð03Þ 5.0(4) 1.5(2) 2.0

a06m135 A −0.149ð052Þ 0.32(09) −0.13ð03Þ 6.6(3) 3.3(5) 2.2

(Table continued)

JANG, GUPTA, BHATTACHARYA, YOON, and LIN PHYS. REV. D 109, 014503 (2024)

014503-38



TABLE XXXII. (Continued)

Ensemble ID Charge r2b02 r1r2b12 aΔM2
M1−M0

Mπ

M2−M0

Mπ

MðNπÞ−M0

Mπ

a15m310 S −0.190ð026Þ 1.13(66) 0.04(08) 3.5(1) 3.7(3) 2.2

a12m310 S −0.273ð045Þ −5.6ð5.7Þ −0.14ð16Þ 4.6(2) 3.8(8) 2.0

a12m220L S −0.224ð050Þ 10(13) 0.07(03) 6.1(1) 6.5(2) 1.7

a12m220 S −0.242ð034Þ −27ð18Þ 0.04(07) 6.0(1) 6.3(5) 2.0

a12m220S S −0.256ð086Þ 18(56) −0.12ð34Þ 6.1(3) 5.3(2.5) 2.5

a09m310 S −0.325ð007Þ −0.04ð11Þ 0.03(09) 3.2(5) 3.4(3) 2.0

a09m220 S −0.324ð009Þ 0.43(18) −0.00ð00Þ 4.3(4) 4.3(4) 1.8

a09m130W S −0.316ð037Þ −0.35ð55Þ 0.36(10) 5.8(6) 11.8(1.5) 2.1

a06m310 S −0.402ð026Þ −0.9ð1.3Þ −0.06ð08Þ 3.0(4) 2.4(7) 2.0

a06m310W S −0.401ð086Þ 7(17) −0.02ð06Þ 3.9(5) 3.8(7) 2.0

a06m220 S −0.482ð079Þ 0.2(1.3) −0.12ð06Þ 4.5(2) 2.7(9) 2.0

a06m220W S −0.424ð351Þ 57(64) 0.09(13) 5.0(4) 6.3(1.8) 2.0

a06m135 S −0.130ð267Þ −14.0ð8.7Þ 0.33(10) 6.6(3) 15.0(2.5) 2.2

a15m310 T 0.136(007) 0.10(13) 0.03(07) 3.5(1) 3.6(3) 2.2

a12m310 T 0.172(007) −1.17ð69Þ −0.30ð05Þ 4.6(2) 3.0(2) 2.0

a12m220L T 0.190(020) −2.06ð92Þ −0.12ð10Þ 6.1(1) 5.2(7) 1.7

a12m220 T 0.187(008) −2.3ð1.2Þ −0.18ð08Þ 6.0(1) 4.7(6) 2.0

a12m220S T 0.189(033) −4.4ð2.7Þ −0.25ð12Þ 6.1(3) 4.3(9) 2.5

a09m310 T 0.200(002) 0.33(07) 0.04(07) 3.2(5) 3.4(1) 2.0

a09m220 T 0.206(003) 0.62(08) 0.07(04) 4.3(4) 5.0(2) 1.8

a09m130W T 0.214(006) 0.61(07) 0.11(03) 5.8(6) 7.6(3) 2.1

a06m310 T 0.215(029) 1.25(71) 0.11(05) 3.0(4) 4.2(6) 2.0

a06m310W T 0.227(026) 0.15(43) −0.05ð07Þ 3.9(5) 3.4(7) 2.0

a06m220 T 0.191(014) 0.17(54) 0.01(04) 4.5(2) 4.7(6) 2.0

a06m220W T 0.230(028) −0.15ð78Þ −0.01ð06Þ 5.0(4) 4.8(9) 2.0

a06m135 T 0.226(016) 1.91(67) 0.12(04) 6.6(3) 9.7(1.1) 2.2

a15m310 V −0.012ð001Þ 0.16(08) −0.23ð07Þ 3.5(1) 2.6(3) 2.2

a12m310 V −0.008ð001Þ −0.2ð2.1Þ −0.17ð22Þ 4.6(2) 3.7(1.1) 2.0

a12m220L V −0.009ð001Þ 0.04(07) −0.45ð13Þ 6.1(1) 2.7(9) 1.7

a12m220 V −0.009ð001Þ 0.06(18) −0.26ð12Þ 6.0(1) 4.1(9) 2.0

a12m220S V −0.009ð002Þ 0.04(18) −0.36ð25Þ 6.1(3) 3.5(1.9) 2.5

a09m310 V −0.006ð000Þ 0.36(08) 0.02(01) 3.2(5) 3.3(5) 2.0

a09m220 V −0.006ð000Þ 0.53(08) 0.01(00) 4.3(4) 4.5(4) 1.8

a09m130W V −0.006ð000Þ 0.48(03) 0.01(00) 5.8(6) 6.0(7) 2.1

a06m310 V −0.005ð001Þ 0.66(28) 0.01(04) 3.0(4) 3.2(7) 2.0

a06m310W V −0.006ð004Þ −0.4ð1.3Þ 0.13(14) 3.9(5) 5.3(1.5) 2.0

a06m220 V −0.009ð002Þ 1.29(42) 0.07(02) 4.5(2) 5.5(5) 2.0

a06m220W V −0.004ð001Þ 0.03(17) −0.17ð16Þ 5.0(4) 2.6(2.3) 2.0

a06m135 V −0.003ð001Þ 0.78(16) 0.01(02) 6.6(3) 6.8(6) 2.2

TABLE XXXIII. Summary of CCFV fits to gA using Eq. (29). We show results for (i) four different trunctions

of the four-parameter CCFV ansatz; (ii) fits with three different cuts on the 13 points labeled “13-pt,” “11-pt,” and

“10-pt”; and (iii) fits to data obtained with three different renormalization procedures defined in the text.

gA χ2=d.o.f. p-value AIC AICc c0½1� c1½a� fm−1 c2½M2
π� GeV−2 c½FV� GeV−2

ZAg
ðbareÞ
A , 13-pt

1.281(052) 0.296 0.987 7.3 8.5 1.281(052) −0.59ð45Þ � � � � � �
1.228(029) 0.430 0.943 8.7 9.9 1.232(036) � � � −0.22ð48Þ � � �
1.281(052) 0.325 0.975 9.3 11.9 1.280(054) −0.60ð49Þ 0.03(52) � � �
1.285(054) 0.348 0.959 11.1 16.1 1.287(057) −0.69ð55Þ −0.08ð60Þ 10.0(28.7)

(Table continued)
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TABLE XXXIII. (Continued)

gA χ2=d.o.f. p-value AIC AICc c0½1� c1½a� fm−1 c2½M2
π� GeV−2 c½FV� GeV−2

ZAg
ðbareÞ
A , 11-pt

1.264(057) 0.214 0.993 5.9 7.4 1.264(057) −0.45ð49Þ � � � � � �
1.222(029) 0.295 0.976 6.7 8.2 1.225(037) � � � −0.18ð49Þ � � �
1.264(057) 0.241 0.983 7.9 11.4 1.263(058) −0.47ð55Þ 0.04(55) � � �
1.268(059) 0.265 0.967 9.9 16.5 1.269(062) −0.54ð62Þ −0.04ð62Þ 7.7(28.8)

ZAg
ðbareÞ
A , 10-pt

1.308(072) 0.112 0.999 4.9 6.6 1.308(072) −0.93ð68Þ � � � � � �
1.226(031) 0.313 0.961 6.5 8.2 1.232(040) � � � −0.32ð60Þ � � �
1.316(074) 0.105 0.998 6.7 10.7 1.320(078) −0.90ð68Þ −0.25ð61Þ � � �
1.317(075) 0.115 0.995 8.7 16.7 1.321(078) −0.88ð69Þ −0.20ð64Þ −6.7ð31.8Þ

ZA=ZV × g
ðbareÞ
A =g

ðbareÞ
V , 13-pt

1.317(037) 0.334 0.979 7.7 8.9 1.317(037) −0.62ð33Þ � � � � � �
1.252(014) 0.651 0.786 11.2 12.4 1.253(018) � � � −0.09ð26Þ � � �
1.317(038) 0.367 0.961 9.7 12.3 1.317(039) −0.62ð33Þ 0.00(26) � � �
1.316(038) 0.403 0.934 11.6 16.6 1.315(040) −0.61ð34Þ 0.03(31) −3.0ð13.8Þ

ZA=ZV × g
ðbareÞ
A =g

ðbareÞ
V , 11-pt

1.310(039) 0.268 0.983 6.4 7.9 1.310(039) −0.56ð34Þ � � � � � �
1.250(014) 0.555 0.835 9.0 10.5 1.252(018) � � � −0.07ð26Þ � � �
1.309(039) 0.302 0.966 8.4 11.8 1.309(040) −0.56ð35Þ 0.01(27) � � �
1.308(040) 0.335 0.939 10.3 17.0 1.307(041) −0.54ð36Þ 0.05(31) −3.7ð13.8Þ

ZA=ZV × g
ðbareÞ
A =g

ðbareÞ
V , 10-pt

1.320(044) 0.266 0.977 6.1 7.8 1.320(044) −0.66ð39Þ � � � � � �
1.250(014) 0.617 0.764 8.9 10.7 1.251(019) � � � −0.05ð28Þ � � �
1.321(045) 0.302 0.953 8.1 12.1 1.322(047) −0.66ð39Þ −0.03ð28Þ � � �
1.323(045) 0.312 0.931 9.9 17.9 1.322(047) −0.65ð39Þ 0.03(31) −7.3ð14.8Þ

ðZAg
ðbareÞ
A þ ZA=ZV × g

ðbareÞ
A =g

ðbareÞ
V Þ=2, 13-pt

1.292(041) 0.354 0.973 7.9 9.1 1.292(041) −0.56ð36Þ � � � � � �
1.238(019) 0.551 0.869 10.1 11.3 1.241(024) � � � −0.18ð33Þ � � �
1.292(041) 0.389 0.952 9.9 12.6 1.292(042) −0.56ð38Þ 0.00(35) � � �
1.294(042) 0.429 0.920 11.9 16.9 1.294(044) −0.59ð41Þ −0.03ð39Þ 3.0(17.6)

ðZAg
ðbareÞ
A þ ZA=ZV × g

ðbareÞ
A =g

ðbareÞ
V Þ=2, 11-pt

1.280(044) 0.268 0.983 6.4 7.9 1.280(044) −0.46ð38Þ � � � � � �
1.235(019) 0.411 0.930 7.7 9.2 1.238(024) � � � −0.15ð33Þ � � �
1.280(044) 0.301 0.966 8.4 11.8 1.280(044) −0.46ð41Þ −0.00ð36Þ � � �
1.281(045) 0.343 0.934 10.4 17.1 1.282(047) −0.48ð44Þ −0.02ð40Þ 1.5(17.7)

ðZAg
ðbareÞ
A þ ZA=ZV × g

ðbareÞ
A =g

ðbareÞ
V Þ=2, 10-pt

1.311(054) 0.183 0.993 5.5 7.2 1.311(054) −0.77ð49Þ � � � � � �
1.237(020) 0.456 0.888 7.6 9.4 1.240(026) � � � −0.20ð38Þ � � �
1.316(056) 0.187 0.988 7.3 11.3 1.319(058) −0.75ð49Þ −0.15ð39Þ � � �
1.317(056) 0.195 0.978 9.2 17.2 1.319(058) −0.73ð50Þ −0.10ð41Þ −7.1ð19.3Þ
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TABLE XXXIV. Summary of CCFV fits to gT using Eq. (29). The rest is same as in Table XXXIII.

gT χ2=d.o.f. p-value AIC AICc c0½1� c1½a� fm−1 c2½M2
π� GeV−2 c½FV� GeV−2

ZTg
ðbareÞ
T , 13-pt

0.990(029) 0.281 0.989 7.1 8.3 0.990(029) 0.35(32) � � � � � �
1.001(019) 0.270 0.991 7.0 8.2 0.994(024) � � � 0.38(33) � � �
0.980(031) 0.222 0.994 8.2 10.9 0.974(033) 0.29(33) 0.32(34) � � �
0.982(031) 0.145 0.998 9.3 14.3 0.982(034) 0.11(38) 0.02(46) 30.4(31.8)

ZTg
ðbareÞ
T , 11-pt

0.983(034) 0.329 0.966 7.0 8.5 0.983(034) 0.40(35) � � � � � �
0.999(020) 0.303 0.974 6.7 8.2 0.991(026) � � � 0.45(36) � � �
0.978(034) 0.266 0.977 8.1 11.6 0.971(036) 0.29(37) 0.35(38) � � �
0.981(034) 0.176 0.990 9.2 15.9 0.980(037) 0.10(42) 0.05(49) 30.1(31.9)

ZTg
ðbareÞ
T , 10-pt

1.012(040) 0.156 0.996 5.2 7.0 1.012(040) 0.00(46) � � � � � �
1.004(020) 0.117 0.999 4.9 6.6 1.000(026) � � � 0.22(39) � � �
1.005(042) 0.133 0.996 6.9 10.9 1.001(045) −0.02ð47Þ 0.22(40) � � �
1.000(044) 0.124 0.993 8.7 16.7 0.998(046) −0.04ð47Þ 0.09(50) 16.3(37.5)

ZT=ZV × g
ðbareÞ
T =g

ðbareÞ
V , 13-pt

1.008(025) 0.172 0.999 5.9 7.1 1.008(025) 0.38(28) � � � � � �
1.024(015) 0.208 0.997 6.3 7.5 1.018(019) � � � 0.33(27) � � �
0.999(026) 0.089 1.000 6.9 9.6 0.994(028) 0.33(28) 0.27(27) � � �
1.000(026) 0.072 1.000 8.7 13.7 0.997(029) 0.27(31) 0.14(38) 13.1(26.7)

ZT=ZV × g
ðbareÞ
T =g

ðbareÞ
V , 11-pt

1.002(029) 0.192 0.995 5.7 7.2 1.002(029) 0.43(30) � � � � � �
1.024(016) 0.227 0.991 6.0 7.5 1.017(020) � � � 0.37(29) � � �
0.997(029) 0.105 0.999 6.8 10.3 0.992(031) 0.35(32) 0.28(30) � � �
0.998(029) 0.088 0.999 8.6 15.3 0.995(031) 0.28(35) 0.15(40) 12.8(26.8)

ZT=ZV × g
ðbareÞ
T =g

ðbareÞ
V , 10-pt

1.009(033) 0.198 0.991 5.6 7.3 1.009(033) 0.34(38) � � � � � �
1.026(016) 0.188 0.993 5.5 7.2 1.020(021) � � � 0.29(31) � � �
1.000(035) 0.118 0.997 6.8 10.8 0.995(037) 0.32(39) 0.27(31) � � �
0.995(037) 0.099 0.997 8.6 16.6 0.992(038) 0.30(39) 0.14(41) 15.3(31.7)

ðZTg
ðbareÞ
T þ ZT=ZV × g

ðbareÞ
T =g

ðbareÞ
V Þ=2, 13-pt

0.998(020) 0.383 0.963 8.2 9.4 0.998(020) 0.37(22) � � � � � �
1.012(013) 0.387 0.962 8.3 9.5 1.005(016) � � � 0.36(22) � � �
0.989(021) 0.249 0.991 8.5 11.2 0.984(023) 0.30(23) 0.30(23) � � �
0.991(021) 0.167 0.997 9.5 14.5 0.990(024) 0.19(25) 0.08(32) 21.8(22.0)

ðZTg
ðbareÞ
T þ ZT=ZV × g

ðbareÞ
T =g

ðbareÞ
V Þ=2, 11-pt

0.993(023) 0.440 0.914 8.0 9.5 0.993(023) 0.41(24) � � � � � �
1.011(013) 0.432 0.919 7.9 9.4 1.004(017) � � � 0.41(24) � � �
0.987(023) 0.296 0.967 8.4 11.8 0.982(025) 0.31(25) 0.32(25) � � �
0.990(024) 0.202 0.985 9.4 16.1 0.988(026) 0.19(28) 0.10(34) 21.5(22.1)

ðZTg
ðbareÞ
T þ ZT=ZV × g

ðbareÞ
T =g

ðbareÞ
V Þ=2, 10-pt

1.012(028) 0.303 0.965 6.4 8.1 1.012(028) 0.16(32) � � � � � �
1.014(013) 0.214 0.989 5.7 7.4 1.009(018) � � � 0.26(26) � � �
1.003(029) 0.217 0.982 7.5 11.5 0.999(031) 0.14(32) 0.25(26) � � �
0.998(030) 0.205 0.975 9.2 17.2 0.996(031) 0.13(32) 0.13(34) 14.7(27.1)
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TABLE XXXV. Summary of CCFV fits to gS using Eq. (29). The rest is same as in Table XXXIII.

gS χ2=d.o.f. p-value AIC AICc c0½1� c1½a� fm−1 c2½M2
π� GeV−2 c½FV� GeV−2

ZSg
ðbareÞ
S , 13-pt

0.991(046) 2.073 0.019 26.8 28.0 0.991(046) −1.37ð46Þ � � � � � �
0.876(021) 2.809 0.001 34.9 36.1 0.882(027) � � � −0.32ð37Þ � � �
0.991(046) 2.278 0.012 28.8 31.4 0.990(047) −1.40ð49Þ 0.07(40) � � �
1.001(047) 2.435 0.009 29.9 34.9 1.008(050) −1.61ð54Þ −0.37ð62Þ 38.7(41.6)

ZSg
ðbareÞ
S , 11-pt

1.044(051) 1.055 0.393 13.5 15.0 1.044(051) −1.83ð50Þ � � � � � �
0.888(022) 2.317 0.013 24.9 26.4 0.897(028) � � � −0.52ð38Þ � � �
1.045(051) 1.180 0.307 15.4 18.9 1.043(051) −1.88ð56Þ 0.10(42) � � �
1.066(053) 1.056 0.389 15.4 22.1 1.076(056) −2.27ð62Þ −0.56ð63Þ 60.4(42.2)

ZSg
ðbareÞ
S , 10-pt

1.077(070) 1.130 0.339 13.0 14.8 1.077(070) −2.20ð75Þ � � � � � �
0.882(022) 2.179 0.026 21.4 23.1 0.886(028) � � � −0.21ð42Þ � � �
1.076(070) 1.288 0.251 15.0 19.0 1.075(071) −2.23ð77Þ 0.06(43) � � �
0.993(086) 1.043 0.395 14.3 22.3 1.016(080) −1.67ð84Þ −1.23ð89Þ 132.3(79.7)

ZS=ZV × g
ðbareÞ
S =g

ðbareÞ
V , 13-pt

0.999(053) 2.456 0.005 31.0 32.2 0.999(053) −1.43ð49Þ � � � � � �
0.832(027) 3.202 0.000 39.2 40.4 0.826(034) � � � 0.31(47) � � �
0.988(054) 2.396 0.008 30.0 32.6 0.973(055) −1.73ð52Þ 0.87(50) � � �
0.994(054) 2.513 0.007 30.6 35.6 0.990(057) −1.78ð52Þ 0.21(76) 44.6(38.6)

ZS=ZV × g
ðbareÞ
S =g

ðbareÞ
V , 11-pt

1.072(064) 1.696 0.084 19.3 20.8 1.072(064) −2.03ð56Þ � � � � � �
0.846(027) 3.132 0.001 32.2 33.7 0.846(035) � � � 0.04(48) � � �
1.083(064) 1.443 0.173 17.5 21.0 1.064(064) −2.59ð63Þ 1.05(54) � � �
1.093(064) 1.312 0.240 17.2 23.8 1.090(066) −2.68ð64Þ 0.16(79) 59.8(38.9)

ZS=ZV × g
ðbareÞ
S =g

ðbareÞ
V , 10-pt

1.103(074) 1.825 0.067 18.6 20.3 1.103(074) −2.35ð69Þ � � � � � �
0.837(028) 3.211 0.001 29.7 31.4 0.829(037) � � � 0.40(54) � � �
1.097(074) 1.630 0.122 17.4 21.4 1.079(075) −2.71ð72Þ 1.00(56) � � �
0.981(089) 0.987 0.432 13.9 21.9 1.001(082) −1.69ð84Þ −1.10ð1.05Þ 174.6(74.5)

ðZSg
ðbareÞ
S þ ZS=ZV × g

ðbareÞ
S =g

ðbareÞ
V Þ=2, 13-pt

1.004(043) 2.563 0.003 32.2 33.4 1.004(043) −1.46ð40Þ � � � � � �
0.867(022) 3.727 0.000 45.0 46.2 0.871(028) � � � −0.24ð37Þ � � �
1.003(043) 2.737 0.002 33.4 36.0 0.996(044) −1.62ð44Þ 0.37(41) � � �
1.014(044) 2.883 0.002 33.9 38.9 1.017(047) −1.81ð47Þ −0.17ð60Þ 40.7(34.1)

ðZSg
ðbareÞ
S þ ZS=ZV × g

ðbareÞ
S =g

ðbareÞ
V Þ=2, 11-pt

1.057(048) 1.547 0.125 17.9 19.4 1.057(048) −1.90ð44Þ � � � � � �
0.880(022) 3.408 0.000 34.7 36.2 0.888(028) � � � −0.47ð38Þ � � �
1.064(049) 1.600 0.119 18.8 22.2 1.055(049) −2.18ð51Þ 0.47(44) � � �
1.085(050) 1.420 0.192 17.9 24.6 1.090(053) −2.49ð55Þ −0.28ð62Þ 58.2(34.4)

ðZSg
ðbareÞ
S þ ZS=ZV × g

ðbareÞ
S =g

ðbareÞ
V Þ=2, 10-pt

1.095(063) 1.636 0.109 17.1 18.8 1.095(063) −2.32ð64Þ � � � � � �
0.870(023) 3.294 0.001 30.4 32.1 0.871(029) � � � −0.04ð43Þ � � �
1.093(063) 1.755 0.092 18.3 22.3 1.085(064) −2.47ð66Þ 0.40(45) � � �
0.983(080) 1.212 0.296 15.3 23.3 1.007(073) −1.63ð76Þ −1.32ð89Þ 163.2(72.9)
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