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We present results for the isovector axial vector form factors obtained using thirteen 2 4+ 1 + 1-flavor
highly improved staggered quark (HISQ) ensembles generated by the MILC collaboration. The calculation
of nucleon two- and three-point correlation functions has been done using Wilson-clover fermions. In the
analysis of these data, we quantify the sensitivity of the results to strategies used for removing excited
state contamination and invoke the partially conserved axial current relation between the form factors to
choose between them. Our data driven analysis includes removing contributions from multihadron Nz
states that make significant contributions. Our final results are g, = 1.292(53),(24),,, for the axial

charge; gg = 1.085(50), (103) 5 and g7 = 0.991(21),,(10)
0.439(56) 41a (34) 5y fm? for the mean squared axial charge radius, g = 9.03(47) ., (42)
pseudoscalar charge; and g,yy = 14.14(81),,(85)

oys for the scalar and tensor charges; (r;) =

oys for the induced
os for the pion-nucleon coupling. We also provide a
parametrization of the axial form factor G,(Q?) over the range 0 < Q> < 1 GeV? for use in phenom-
enology and a comparison with other lattice determinations. We find that the various lattice data

agree within 10% but are significantly different from the extraction of G,(Q?) from the v-deuterium

6.

scattering data.
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I. INTRODUCTION

In ongoing neutrino scattering experiments (T2K, NOvA,
MINERvA, MicroBooNE, SBN), the lack of precise recon-
struction of the final state of the struck nucleus gives rise to
uncertainty in the cross section. Theoretical calculations of
the cross section for targets, such as '’C, 1°0, and “°Ar, being
used in experiments take as input axial-vector form factor of
the nucleon and build in nuclear effects using nuclear many
body theory [1-3]. Both of these steps, calculating nucleon
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axial form factors using lattice QCD and including nuclear
effects using many-body theory, have uncertainties.
Incorporating nuclear effects involves modeling of the
complex physical phenomena (quasi-elastic, resonance,
deep inelastic scattering) that contribute when considering
incoming neutrino energies up to 5 GeV relevant for
ongoing and future (DUNE) experiments. These complex
phenomena make it hard to reconstruct the incident neutrino
energy or the cross-section from the imprecise knowledge of
the final state of the struck nucleus. On the other hand, the
cleanest experimental measurements of the nucleon axial-
vector form factor from scattering neutrinos off liquid
hydrogen targets are not being carried out due to safety
concerns.

The MINERvA experiment [4] has recently shown that the
axial-vector form factor of the nucleon can be extracted from
the charged current elastic scattering process 7, H — u*n in
which the free proton in hydrogen (H) gets converted into a
neutron. This opens the door to direct measurements of
the nucleon axial-vector form factor without the need for
extraction from scattering off nuclei, whose analysis involves

Published by the American Physical Society



JANG, GUPTA, BHATTACHARYA, YOON, and LIN

PHYS. REV. D 109, 014503 (2024)

nuclear corrections which have unresolved systematics,
and making detailed comparisons with predictions from
lattice QCD. For example, our result for the axial charge
radius, (r3) = 0.439(56),,(34), fm?, given in Eq. (36), is
consistent, within one combined sigma, with the MINERvA

result, \/(r3) = 0.73 +0.17 fm.

Similarly, recent advances in simulations of lattice QCD
have enabled robust results for the nucleon charges that
have been reviewed by the Flavor Lattice Averaging Group
(FLAG) in their 2019 and 2021 reports [5,6]). Results for
axial-vector form factors [7] are now available with <10%
uncertainty as we show in this work. At the same time,
there continues to be progress in nuclear many-body theory
for the calculation of the neutrino-nucleus cross section [1].

In this work, we present lattice QCD results for the
isovector axial, G,(Q?), induced pseudoscalar, Gp(Q?),
and pesudoscalar Gp(Q?) form factors, the axial, scalar and
tensor isovector charges ¢4~?, ¢4~ and ¢4, the axial
charge radius squared (r3), the induced pseudoscalar
coupling g5, and the pion-nucleon coupling g,yy-

The calculation has been done using thirteen ensembles
generated with 2 + 1 + 1-flavors of highly improved stag-
gered quarks (HISQ) by the MILC collaboration [8]. The
construction of nucleon two- and three-point correlation
functions has been done using Wilson-clover fermions
as described in [9]. The analysis of the data generated
using this clover-on-HISQ formulation includes a study
of excited state contributions (ESC) in the extraction of
ground state matrix elements (GSME) and a simultaneous
chiral-continuum-finite-volume (CCFV) fit to obtain
results at the physical point, which throughout the paper
will be defined as taking the continuum (¢ = 0) and infinite
volume (ML — oo) limits at physical light quark masses
in the isospin symmetric limit, m, = m,, which are set
using the neutral pion mass (M , = 135 MeV). The masses
of the strange and charm quarks in the lattice generation
have been tuned to be close to their physical values in each
of the thirteen ensembles [8].

The three form factors G4(Q?), Gp(Q?) and Gp(Q?)
must, up to discretization errors, satisfy the constraint in
Eq. (16) imposed by the partially conserved axial cur-
rent (PCAC) relation d,A, = 2mP between the axial and
pseudoscalar currents. The decomposition of the matrix
elements (ME) into form factors, given in Egs. (1) and (2),
assumes that they are GSME. Post-facto, deviations from
the PCAC relation larger than those expected due to lattice
discretization artifacts are indicative of residual ESC in the
extraction of ME from the spectral decomposition of the
three-point correlation functions. They point to the need for
reevaluation of the key inputs in this analysis—the number
and energies of the excited states that contribute signifi-
cantly to the three-point functions. The strategies used to
remove ESC are described in Secs. II B and V, and the use
of the PCAC relation to evaluate how well ESC have been
controlled is discussed in Sec. II C.

In Ref. [10], we showed that the standard method of
taking the excited-state spectrum from fits to the nucleon
two-point correlation function to analyze the three-point
functions lead to form factors that fail the PCAC test by
almost a factor of two on the physical pion mass ensemble
a09m130W, and identified the cause as enhanced contri-
butions to ME from multihadron, Nz, excited states that
have mass gaps smaller than of radial excitations [11,12].
These contributions had been missed in all prior lattice
calculations. Including Nz excited states in the analysis
reduces the disagreement to within 10%, an amount that
can be attributed to discretization effects. In this paper, we
include N7 states in the analysis of all thirteen ensembles
described in Table I. Data from various analyses discussed
in Secs. Il A, III B, and IV B are then extrapolated to the
physical point using simultaneous CCFV fits and results
compared to understand systematics.

In order to extract g4 and (r}), we parametrize the Q?
behavior of G,(Q?) using the dipole and the model
independent z-expansion. We find that the dipole ansatz
does not provide a good fit and our final results are obtained
using the model independent z-expansion. We show that
the pion-pole dominance (PPD) hypothesis, Eq. (20), tracks
the improvement observed in satisfying the PCAC relation
when N7 states are included in the analysis. We, therefore,
use it to parametrize Gp(Q?) and extract g5 and g,yy in
Sec. IV. Similarly, the analysis of the ESC in isovector
charges extracted from the forward matrix elements is
carried out using information from both the 2- and 3-point
correlation functions and the noninteracting energy of the
lowest Nx state.

Our final result for the axial form factor, parametrized
using the z? truncation, is given in Eq. (34); the axial charge
obtained from extrapolating it to Q? = 0 in Eq. (30), and
the charge radius in Eq. (31). The results for the induced
pseudoscalar charge g5, and g,y are given in Egs. (44) and
(45). Lastly, the results for the three isovector charges gﬁ"s‘fT
from the forward matrix elements are given in Eq. (50).

This paper is organized as follows. In Sec. I, we briefly
review the notation and the methodology for the extrac-
tion of the three form factors: the axial, G4, the induced
pseudoscalar Gp, and the pseudoscalar, Gp, from matrix
elements of the axial and pseudoscalar currents within
ground state nucleons. In Sec. II B, we explain the three
strategies used to remove the ESC to the three-point
functions. The analysis of the form factors with respect
to how well they satisfy the relations imposed between
them by PCAC relation and the PPD hypothesis is
presented in Sec. II C. Based on this analysis, we present
our understanding of the excited states that contribute in
Sec. II D. The parametrization of the axial form factors
as a function of Q2 and the extraction of the axial charge
ga and the charge radius squared (r3) is carried out in
Sec. III. Parametrization of the induced pseudoscalar form
factor, Gp, and the extraction of the induced pseudoscalar
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TABLE L.

The parameters of the 2 4+ 1 4 1-flavor HISQ ensembles generated by the MILC collaboration and analyzed in this study

are quoted from Ref. [8]. On two ensembles, a06m310 and a06m220, a second set of calculations labeled a06m310W and a06m220W,
have been done with a larger smearing size o as described in Ref. [13]. In this clover-on-HISQ study, all fits are made versus M}, which
is tuned to be close to the Goldstone pion mass M. The finite-size effects are analyzed in terms of M} L. Columns 7-10 give the
values of the source-sink separation z used in the calculation of the three-point functions, the number of configurations analyzed, and the
number of measurements made using the high precision (HP) and the low precision (LP) truncation of the inversion of the Wilson-clover

operator [14]. The last column gives the value of Q>

| max

for two cuts, n? < 6 (n? < 5 for the four a06m310 and a06m220 ensembles)

and n? < 10 used in the analysis. The full set of Q> values simulated on each ensemble are given in Tables X—XXII.

Ensemble ID  a (fm) M (MeV) MY (MeV) L3xT MPL t/a Negwe NHP NEP O Q2m=6 (GeV)2 Q2|m=10
al5m310 0.1510(20)  306.9(5) 320.6(4.3) 16> x48 3.93 {5,6,7,8,9} 1917 7668 122,688 1.297 1.92
al2m310 0.1207(11)  305.3(4) 310.2(2.8) 243 x 64 455 {8,10, 12} 1013 8104 64,832 0.920 1.435
al2m?220S 0.1202(12)  218.1(4) 225.02.3) 24> x64 3.29 {8,10, 12} 946 3784 60,544 0.909 1.358
al2m?220 0.1184(10)  216.9(2) 227.9(1.9) 323 x64 438 {8,10, 12} 744 2976 47,616 0.568 0.884
al2m220L  0.1189(09)  217.0(2) 227.6(1.7) 40° x 64 5.49 {8,10, 12, 14} 1000 4000 128,000 0.374 0.595
a09m310 0.0888(08)  312.7(6) 313.02.8) 323 x96 4.51 {10,12,14,16} 2263 9052 114,832 0.961 1.421
a09m220 0.0872(07)  220.3(2) 2259(1.8) 483 x96 479  {10,12,14,16} 964 7712 123,392 0.470 0.736
a09m130W  0.0871(06)  128.2(1) 138.1(1.0) 64°x96 3.90 {8,10,12,14,16} 1290 5160 165,120 0.277 0.443
a06m310 0.0582(04)  319.3(5) 319.6(2.2) 483 x 144 452  {16,20,22,24} 1000 8000 64,000 0.840

a06m310W {18,20,22,24} 500 2000 64,000 0.846

a06m220 0.0578(04)  229.2(4) 2352(1.7) 64° x 144 441 {16,20,22,24} 650 2600 41,600 0.504

a06m220W {18,20,22,24} 649 2596 41,546 0.509

a06m135 0.0570(01)  135.5(2) 135.6(1.4) 96° x 192 3.7 {16, 18,20,22} 675 2700 43,200 0.294 0.475
coupling gj and the pion-nucleon coupling g,y is carried Ep)ys—iy-p+M (3)

out in Sec. IV. The calculation of the isovector charges
g4~ from forward matrix elements is described in Sec. V.
A summary of our results and a comparison with previous
lattice calculations is presented in the concluding Sec. VI.
Six Appendices give further details of the analysis and
the data.

II. METHODOLOGY FOR EXTRACTING
THE FORM FACTORS

The matrix elements of the axial A, = iy,ysd and
pseudoscalar P = uysd currents between the ground state
of the nucleon can be decomposed, in the isospin sym-
metric limit, into the axial G, induced pseudoscalar G p,
and pseudoscalar Gp form factors as

Gp(Q%)

Ga(Q?)7,7s + 4urs 501

where u(p;) is the nucleon spinor with momentum p;, ¢ =
ps— p; is the momentum transferred by the current,
0* = —¢* = p; — (E(ps) — E(p;))* is the spacelike four
momentum squared transferred. The spinor normalization
used is

ZS:u(p,s)ﬁ(p,s) = AED)

The process of obtaining the GSME needed in Egs. (1)
and (2) from fits to 2- and 3-point correlation functions is
described next.

A. Two- and three-point correlation functions

The lattice calculation starts with the measurement and
analysis of the two- and three-point correlation functions
C*(p;7) and C,(q,t;7) constructed using the nucleon
interpolating operator A/,

1+
2

N(x) = esbe [qa”(x)(sys 74 g (x)] £, @

where the 4 sign give positive parity states propagating

forward/backward in time. The spectral decompositions of
the two time-ordered correlation functions are

CP(p;7) = (QIT (N (D)N(0))|Q) = > _|AjPeEr,  (5)
i=0
and

Cy(g:1.7) = (QAT (N (2)Jr ()N (0))|2),

= ST A A (i j) e B M),
i.j=0

(6)

where Jr = A, or P is the quark bilinear current inserted
at time ¢ with momentum ¢, and |Q) is the vacuum state.
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In our set up, the nucleon state |j) is, by construction,
projected to zero momentum, i.e., p; = (M,0), whereas
(i'| is projected onto definite momentum p; = (E,p) with
p = —q by momentum conservation. Consequently, the
states on the two sides of the inserted operator J are
different for all q # 0. The prime in (/| indicates that this
state can have nonzero momentum.

For large time separations, 7 and 7 — ¢, only the ground
state contributes and the GSME, (0/|J|0), whose Lorentz
covariant decomposition is given in Egs. (1) and (2), can be
extracted reliably. Assuming this is the case, and choosing
the nucleon spin projection to be in the “3” direction, the
decompositions become

G
Cylq) > K™ [—C]i613—P+ 53(M + E)GA]a (7)

2M
Cula) = K- val.  ®
Cr(q) = K7'q3Gp, )
where i€l, 2, 3 and the kinematic factor K=

/2E(E + M). These correlation functions are complex
valued, and the signal, for the CP symmetric theory, is in
ImC,, ReCy,, and ReCp.

For a given ¢ # 0, the correlators with momentum
combinations q = (2z/L)n = (2z/L)(n;, n,, n3) related
by cubic symmetry can be averaged to increase the statistics
before making fits. We construct the following averages
A, and P:

— 1
2\
Ai(q*) :—a1q2 Eq Sgn(Qi‘]S)CA,-(q)

G
K122 =1,2 1
Ko (i=12), (10)
_ 1
A3L(¢1)57§ Cy (4)
g
Gp  (N-P)
K-|-=L M+ E 11
- &t =g E P06, an

A;7(q%) EEZCAAQ) - K ' (M+ E)G,, (12)

azq
—1 GP
- 1
P(g*) = WZ%CP(Q) - K~'Gp, (14)
q

where sgn(x) = x/|x| is a sign function with sgn(0) = 0,
ay = Z |n1n3‘/n2’ az = Zq; n%/nZ :N/?’v q= (2”/L)n’
B=>4—0l,and N=}_ 1 is the number of equivalent
(under the cubic group) momenta averaged.

The pseudoscalar form factor, Gp, is given uniquely by
Eq. (14). For a subset of momenta, G, and Gp are deter-
mined uniquely from Egs. (10) and (12). In general, we
solve the over-determined system of equations, Egs. (10)-
(13). Of these, correlators AB,L and A, are nonvanishing
for all ¢, and are thus sufficient to solve for G, and Gp.
In practice, the A, correlator has a poor signal and is
dominated by excited states contributions, which we
exploit to determine the relevant low-lying excited states.
These turn out to be towers of multihadron Nz and Nzz
states. We find that including these states in fits to the
spectral decompositions given in Egs. (5) and (6) is
essential for extracting the GSME. With the GSME in
hand, the form factors G, and G, are determined using
Egs. (10)—(12).

B. Strategies to extract ground state matrix elements

Calculations of nucleon correlation functions face two
key challenges. First, the statistical signal-to-noise ratio
decays exponentially with the source-sink separation 7 as
e~(My=15Mz)z 115 16]. This limits current measurements
of two-point (three-point) functions to <2 (<1.5) fm.
Second, at these 7, the residual contribution of many
theoretically allowed radial and multihadron excited states
can be significant. These states arise because the standard
nucleon interpolating operator NV, defined in Eq. (4), used
to construct the correlation functions in Egs. (5) and (6),
couples to nucleons and all its excitations with positive
parity including multihadron states, the lowest of which are
N(p)z(—p) and N(0)7z(0)z(0). The goal is to remove the
contributions of all these excited states to three-point
functions to obtain the GSME, (0'|J|0), which we do by
fitting the averaged correlators Aﬂ and P using Eq. (6).

An important note applicable to all fits used to remove
excited states. For all our ensembles, the energy of the two
lowest in these towers of positive parity states, N(p = 1) x
z(p = —1)and N(0)z(0)x(0), are approximately the same.
Since fits to Egs. (5) and (6) depend only on E; and not on
the nature of the states, the contribution of both states is
taken into account using the E; calculated for either state.
Thus, the reader should understand that the contribution
of both states are being included when, for brevity, we say
Nr state.

To extract the GSME, we need to address two questions:
(i) which excited states make large contributions and
(i1) how large is this contribution to various observables.
The most direct (and statistically the best motivated
assuming that a common set of states dominate the ESC
in all correlators) way to get the ground-state matrix
element that addresses these questions is to simultaneously
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fit, with the full covariance matrix, all five nucleon three-
point functions including two or more excited states, and
then solve the linear set of Egs. (10)—(14).

In general, simultaneous fits to the current data (3-point
or a combination of 2- and 3-point) do not resolve the
excited states, i.e., there are large regions of parameter
space where fits give similar y/d.o.f. The one exception is
fits to the correlation functions (NA4N) that, as discussed
below, play a central role in our analysis as they expose the
large contribution of Nz states. Unfortunately, even 2-state
simultaneous fits to all five nucleon three-point functions
are not stable for all momentum channels and ensembles.
We, therefore, resort to taking the energies and amplitudes,
especially those of the ground state, from separate, but
within a single overall jackknife process, fits to the 2-point
function.

The analysis of the nucleon two-point functions and the
extraction of the spectrum is presented in Appendix A and
the extrapolation of the data for the nucleon mass, My, to
the continuum limit in Appendix B. Results for the excited
state parameters, i.e., the energies E;(q), the masses M;,
and the amplitudes A;, have large uncertainty. For example,
in a four state fit, there is a large region of parameter space
where fits have similar y?/d.o.f.

In short, statistical precision of current data does not
allow simultaneous fits to all five nucleon three-point
functions using a 3-state (or higher) fit with the full
covariance matrix. Even a robust determination of the
energies, E;, and amplitudes, A;, of excited states that make
significant contributions from fits to 2-point functions is
lacking. Our best approach is a hybrid of using informa-
tion from fits to 2- and 3-point functions. To this end, we
construct three strategies with different estimates of excited-
state parameters to fit the three-point data using Eq. (6).
These are described next.

In the standard approach, labeled S 2pt> WE take E;, M, A
and A, from 4-state fits to C>®, and input them into an
m-state truncation (m < n) of Eq. (6) to extract the matrix
element (0'|J]0). In this paper, we truncate the spectral
decompositions given in Egs. (5) and (6) at m = 3 and
n = 4, respectively.

The second strategy, labeled S44, was proposed in
Ref. [10]. Again E,, M,, Aj and A, are taken from
4-state fits to C?P', however, E, and M, are determined
from two-state fits to the three-point correlator A,. The
output £, and M, are then fed into the fits to the other
four correlation functions defined in Egs. (10)—(12), and
(14). This strategy assumes that the same [first] excited
state parameters apply to all five correlation functions, and
these are given by fits to A,.

The third strategy S, is similar to Sy4 except that E,
and M, are outputs of simultaneous two-state fits to all
five three-point correlators defined in Eqs. (10)-(14). It is,
from a statistical point of view, better motivated than Sy,
because the underlying assumption in both cases is that the

same excited states contribute to all five correlators. It
avoids the two-step procedure used in Sy, i.e., first obtain
E, and M, from fits to A, and then use them in fits to the
other four correlators. In S, we used the averaged
correlator Axy = (A, + A,)/2, since these two correlators
are equivalent under cubic rotational symmetry, thus
reducing the number of correlators fit simultaneously
to four.

We used the full covariance matrix for all fits to the
2-point and 3-point functions with the &, and Sy
strategies. In the Sg;,, strategy, the covariance matrix was
restricted to be block diagonal in each correlation function.
In the O(1000) fits made to remove ESC (ensembles ® Q2
values ® correlation functions @ strategies) the selection
of parameters was done individually due to the large
differences in ESC behavior versus ensembles, Q2 values,
and correlation functions.

We emphasize from the very outset that in all fits with
each of the three strategies, the excited state amplitudes,

Agl) and A;, are not needed since these arise only in the
combinations |Af||A;|(i'|J|j), which are fit parameters but
are not used thereafter in the analysis. Second, the ground
state parameters, M, E, A{) and A, are common for all
three strategies and are taken from four-state fits to the two-
point correlators.

The unrenormalized values of the three form factors at
various values of Q? simulated, for each of the three strategies
and for the 13 ensembles are given in Tables X-XXII in
Appendix C. The size of the effect of Nz state can already be
inferred from the difference between the S, and S, data
even though S, includes only the lowest N(—1)z(1) state in
the fit. Overall, this comparison shows that the contribution of
the N7 state to G » and G p is enhanced, reaching ~45% at the
physical pion mass. The roughly 5% effect observed in G4 is
important phenomenologically and needs to be made more
precise. Later, in Sec. I C, we choose the S, strategy to
present the final results based on the three form factors
satisfying the PCAC relation.

A comparison of G, (Q?) and the combination Gp(Q?) x
(Q* + M2)/(4M%), which should be proportional to G,
according to the PPD hypothesis, obtained using the three
strategies Sop, Sas» and S, is shown in Fig. 1. Results for
both form factors are consistent between S,y and Sy, for
each of thirteen ensembles with errors from S, being
slightly larger. On the other hand Gp (and Gp) from
strategy Sy, show noticeable differences that increase as
Q% - 0and M, — 135 MeV (see also the data in X—XXII
in Appendix C). This effect is correlated with the increase
in the difference between AE%pt (used in Sy fits) compared
to AE* and AM%* (output of Sy, fits) in the same two
limits as shown later in Fig. 6. Also, from Eq. (6) it is
obvious that a smaller AE; implies a larger ESC.

The same data for G,4(Q?) and Gp(Q?) x (Q*> + M2)/
(4M%) from the 13 ensembles with the S, strategy are
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FIG. 1. Data from the 13 ensembles with a ~ 0.15, 0.12, 0.09, and 0.06 fm for the unrenormalized axial form factor G, (Q?) (first and

third columns) and (Q? + M2)Gp(Q?)/(4M%) (second and fourth columns) plotted versus Q?. Each panel compares the data obtained

using the three strategies Sy, Sas, and Sy, for controlling ESC.

plotted in Fig. 2. Remarkably, they show no significant
variation with respect to the lattice spacing a or M, except
for a 1o lower values on the a06m135 ensemble, which we
identify to be statistics limited.

In Appendix C we summarize why, with the metho-
dology for momentum insertion through the operator
used in this work, improving the lattice calculations

(M, — 135 MeV, increasing M,L > 4, and reducing a)
will increasingly give data at Q> < 0.5 GeV?. Even in this
work, most of the data for Q% > 0.7 GeV? comes from the
M, ~310 MeV ensembles. If the optimistic scenario
presented by the current data, mild dependence on
{a,M,} as shown in Fig. 2 and in Ref. [7], holds then
one will have confidence in the final result for G, also for
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FIG. 2. The data for renormalized G4(Q?) (left) and Fp(Q?) = Gp(Q?) x (Q* + M2)/(4M3,) (right) from the 13 HISQ ensembles
analyzed. No significant variation with respect to the lattice spacing a or M, is observed except for the a06m 135 ensemble, which we

consider statistics limited.

0.5 < 0% < 1.5 GeV? even though its extraction in that
region will be from data on M, > 200 MeV ensembles. To
push precision to Q%> ~5 GeV? to meet the needs of the
DUNE experiment will need further algorithmic develop-
ments and much higher statistics data.

A detailed analysis of the extrapolation of these G4 to
0Q? = 0 to get the axial charge g, is presented in Sec. III.
The marked improvement in satisfying the PCAC relation
and the PPD hypothesis shown by the G4, Gp, and Gp
obtained with the Sy, and S, strategies (which include
the Nz state) is discussed next in Sec. I C.

C. The PCAC relation and pion-pole dominance

In this section, we evaluate how well the form factors
from the three strategies, tabulated in Appendix C, satisfy
the PCAC relation, which in terms of the bare axial, A, (x),
and pseudoscalar, P(x), currents is

d,A, = 2mP, (15)
where the quark mass parameter i = Z,,m, ;ZpZ5" includes
all the renormalization factors, and m,; = (m, +my) /2 =m,
is the light quark mass in the isospin symmetric limit. Using
the decomposition in Egs. (1) and (2) of GSME, the PCAC
relation requires that the three form factors G4, Gp, and Gp
satisfy, up to discretization errors, the relation

2MNGA Q) ~ 32 Gr(0) = 20G4(0). (16
which we rewrite as
R +R, =1, (17)
with
2 2
Caneier W

m Gp(Q?
= GH2) (19)
My GA(Q%)
The PPD hypothesis relates Gp to G, as
2 M2 G (02

AM3, Ga(Q%)

Tests of whether the form factors satisfy the PCAC
(R; + R, = 1) and PPD (R3 = 1) relations are presented in
Figs. 3 and 4, respectively. Data with the S, strategy show
about 10% deviation for both the PPD and PCAC relations
for 0> > 0.3 GeV?. Below it, the deviation grows to about
40% at the lowest Q2 point on the two physical pion mass
ensembles. See also the discussion in Appendix C on the
differences in data for the form factors obtained using the
three ESC strategies.

There is a very significant reduction in the deviations for
both the Sy4 and Sy, strategies for Q> < 0.3 GeV?. In fact,
except for three M, =220 MeV ensembles, data below
Q% =1 GeV? is essentially independent of Q? and the
deviations from unity and the variations between ensembles
is in most cases within about 5%, which can be due to
possible discretization errors. The differences between data
with S, and S 4 are much smaller. Also, the improvement
in the PPD relation, Eq. (20), tracks that in PCAC, Eq. (17).

We point out a caveat in our clover-on-HISQ calculation
of the quark mass /1 used in Eq. (16). For four ensembles,
al2m310, a09m130W, a06m?220, and a06m135 we have
calculated /%P using the following ratio of pion two-point
correlators,

(©[0,A4,(1)P(0)|€2)
(Q[P(1)P(0)[€)

2wt =

(21)

For the other ensembles, the data for these two-point
functions were not collected, so we use the HISQ sea
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FIG. 3. The data for R; + R,, which should equal unity to

satisfy PCAC relation, is plotted versus Q for analysis strategies
Sope (top), Sau (middle), and Sy, (bottom). The PCAC relation,
Egs. (15) and (16), requires R; + R, =1 up to discretization
errors. The dashed lines give the +5% deviation band.

quark mass am:; for i since for staggered fermions, in fact
all lattice fermions with chiral symmetry, Z,,ZpZ;' = 1.
These quark masses are given in Table II and we find that
M is 5-20% larger than am, which is not unexpected
for our clover-on-HISQ calculation. Noting that R, =~ 0.5R,
(see Fig. 15 in Ref. [9]), such a 20% systematic error would
increase R; + R, by about 7%. This would bring the data
from the physical mass ensembles, a09m130W and
a06m135, in better agreement but would not alter our
conclusion that form factors obtained with Sy4 and S,
strategies show better agreement with the PCAC relation
compared to Syy. Also, /1 does not enter in the PPD

0.7 al2m310 == a09m220 o |a06m220W o 7

al2m220L +&+ a09m130W +=| | a06m135 -
0.6 al2m220 e~ a06m310 £ ]

: al2m2208 ++ a06m310W w2
5 ]
4

I i 1 +
0.7 | ]
0.6 [ e i

0.7 ]

0.6 | ]

0 02

0.4 06 0.8 1 1.2 14 16 138 2
Q2 [Gev?]

FIG. 4. The ratio R;3, which should be unity for the pion-pole
dominance hypothesis to be satisfied, is plotted versus Q> for
analysis strategies Sy (top), Sy4 (middle), and Sy, (bottom).
The dashed lines mark the +5% deviation band.

relation, Eq. (20), and the deviation from unity of the PPD
relation with S,y and S, data is observed to be smaller
than seen in the PCAC relation as shown in Fig. 4. Equally
important, this caveat does not impact the extraction of
individual form factors or their subsequent analysis since 7
only enters in the test of how well the three form factors
satisfy the PCAC relation, Eq. (16).

We further examine whether the deviation from unity in
Fig. 3 at small Q? is a discretization error. The O(a) impro-
vement affects only the axial current, A, > A, +c4ad,P,
and adds to the left hand side in Eq. (16) the term
—Q%ac,Gp, i.e., under improvement, Eq. (16) can be
written as
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TABLE II. The HISQ sea quark mass is given in the second
column. The quark mass 7 is calculated from Eq. (21).
D am’s am®
al5m310 0.013 e
al2m310 0.0102 0.0121
al2m220L 0.00507 e
al2m?220 0.00507
al2m?2208 0.00507
a09m310 0.0074
a09m220 0.00363 e
a09m130W 0.0012 0.0015
a06m220 0.0024 0.0028
a06m135 0.00084 0.00088
Gy, 0*Gp , 1 5
My G, "amy G, ~ T3 (22)

where the improvement coefficient, c,, is typically
O(1072) and negative. Thus, this effect is expected to be
small for Q> < 1 GeV?, and will not change our conclu-
sions. On the other hand, effects due to possible mistuning
of the clover coefficient, cgy, and ¢4, and O(a?) correc-
tions are likely to increase with Q2. Similarly, artifacts are
expected to increase with the quark mass since the improve-
ment coefficient b,, is not included.

The PPD relation [Eq. (20)] can be derived from PCAC
[Eq. (16)] provided

4imMy Gop
4 = 5 = =
M G,

1. (23)

In this case, Ry + R, =1 would also imply R; = 1. In
Fig. 5, we compare R, from the three strategies for all
ensembles except a06m220W, a06m310, and a06m310W
where Gp is not available. We note a roughly linear
increase in R, with Q2, which is consistent with the
behavior observed in Ref. [7] and with the analysis of
the Goldberger-Trieman discrepancy using yPT in Ref. [17].
Lastly, we note that the data for R, from all three strategies,
Sopt» Sas and Sgir,, overlap implying that the changes in Gp
and Gp, both of which have a pion pole, between different
treatments of ESC (S, versus S 4 or S, ) cancel in the ratio
R, within our statistics. This observation supports our
hypothesis that the same excited states contribute to all five
correlation functions.

D. Excited states spectrum

In Fig. 6 we show data for the energy gaps, AE; and
AM, on the two sides of the operator insertion for the
various ensembles, including the two physical pion mass
ones, a09m130W and a06m135. The results for AE{ and
AM?, outputs of the simultaneous fits to all five correlators
(insertions of A, and P) at a given momentum transfer
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FIG. 5. Results for the ratio Ry, = (Gp/Gp) x (4My/M?2).
For the pion-pole dominance hypothesis to be exact (derivable
from the PCAC relation), R, should be unity independent of Q2.
The data show an approximate linear increase with Q2, which is
consistent with the Goldberger-Trieman discrepancey as dis-
cussed in Refs. [7,17].

p =2zn/L overlap with the results AE{* and AM}*
obtained from fits to just C,,. This indicates that the
energy gaps in the Sy, fits are essentially controlled by
C,,. The momentum dependence of the data is consistent
with the expectation that the relevant excited states on the
two sides are N(n) + z(—n) and N(0) + z(—n). This is
based on the rough agreement between the data and the
corresponding noninteracting energies of these states, AM;
and AFE;, shown by the dashed red and blue lines,
respectively, and consistent with the PPD hypothesis that
the currents inject a pion with momentum g.

The data with open circles in Fig. 6 are the energy gaps
AE%pt obtained from the nucleon two-point correlators.
These are roughly independent of momentum and larger
than those from S, or S, fits, especially for the
smaller Q? points. The difference increases as Q> — 0
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FIG. 6. Results for the energy (mass) gaps AE| (AM,) for the first excited state extracted from (i) simultaneous fits to axial three-point

correlators C|.

Aﬂ] and the pseudoscalar correlator Cp (S, strategy and labeled AE} and AM?), and (ii) from fits to the C[A,] correlator

(S,4 strategy and labeled AE4* and AM%4). These mass gaps are compared with the first excited state energy AE;™ from four-state fits
to the nucleon two-point correlator. Note that the difference between them (black circles versus blue triangles), and consequently the
difference between the form factors extracted, increases as M, — 135 MeV and n”> — 0 (equivalently Q> — 0).

and M, — 0. This behavior is consistent with AE]
correspondmg to a mixture of radial and higher multl-
particle excitation whereas the energy of the interme-
diate excited states identified by the Sy, and Sy, fits,

2pt

014503-10
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identifications: it is very important to qualify that the AF,
and AM, from the two-state fits in S,4 and S, strategies
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are effectively trying to account for all the intermediate
states that make significant contributions and not just
the lowest or the most intuitive ones. Given the size of
the effect, identifying and improving control over all the
excited states that make significant contribution to these
correlation functions will be key to obtaining, in the future,
higher precision results for the form factors.

E. Renormalization constant Z,

The renormalization constant Z, for the axial current
needed for the form factors G, and Gp and the charges g,,
gp and g,yy was determined nonperturbatively using the
RI-sMOM intermediate scheme in Ref. [13]. We use the
results given in Table V there.

III. PARAMETERIZATION OF G, (0?),
AND THE EXTRACTION OF g, AND (r2)

In this section, we present the analysis of G4(Q?)
without including the values of the axial charge g, obtained
from the forward matrix element. Its extraction is discussed
separately in Sec. V. This is done to keep the two extrac-
tions of g4—from the forward matrix element (50) and by
extrapolating G4 (Q?) to Q%> — 0 [Eq. (36)]—separate. The
final result, given in Table VI, is taken to be the average of
the two.

The axial-vector form factor G,(Q?) can be parame-
trized, near Q> = 0, by the axial charge g, and the axial
charge radius squared (r3):

2y — Ry
G0 =a(1-"2o ).
where g4, = G4(0) and

6 dG,(Q?)
ga dQ?
To extract these from lattice data obtained at 92 > 0.1 GeV?2,
one parametrizes the Q* dependence of G ,(Q?). Among the

various parametrizations, we study the dipole ansatz and the
model-independent z-expansion. The dipole ansatz

%) =

: (25)
0*=0

ga
1+ 0 /M (26)

has two free parameters, the axial charge g, and the axial
mass M. The z-expansion is the series

GA(QZ) =

GA(Q%) =, (27)
k=0
in terms of the variable

1 2 i ¥t
7= c+Q c+ 0 with
Vie+0*+ Vi, + 1

t.=9M2  (28)

that maps the kinematically allowed analytical region Q% > 0
to that within a unit circle, |z| < 1 [18]. The parameter 7, is
discussed later. For sufficiently small z, fits with the first few
terms should suffice. In practice, to stabilize the fits we
impose the condition |a,| < 5 for all z¥=! truncations [18].
With increasingly precise data over a sufficiently large range
of 02, our goal is to demonstrate that a data-driven choice can
be made between the various parametrizations.

In the data presented here, the statistical signal is good
for momentum transfer with n> < 6 but often poor in the
four points with 8 <n? <10. To test the stability of
the dipole and z* fits with such few points, we compare
the output of the fits to the lowest six versus all ten Q2
points on nine ensembles where data on all ten Q? values
exist. Observing consistency, the final results are taken
from fits to six (five in 4 cases) points, i.e., to data up to the
Q2|<6 given in Table I. This implies that results for form
factors presented for Q? > 0.5 GeV? come mainly from the
M, ~ 310 MeV ensembles, and, a priori, could have an
large systematic uncertainty. In practice, however, the
observed weak dependence of form factors on M, (see
Fig. 2 and similar results from a clover-on-clover calcu-
lation presented in Ref. [7]) suggests that the uncertainty is
likely within the quoted errors. Readers should, never-
theless, keep in mind that results at Q%> > 0.5 GeV? are
based mainly on data from the M, ~ 310 MeV ensembles.

Estimates of G, from the dipole fit to data from the three
ESC strategies are consistent, however, on six ensembles
these dipole fits to S, and Su4 data have poor p-values.
Our evaluation of the failure is that the dipole ansatz does
not have enough parameters to capture the change in the
curvature over the range of Q? studied. A consequence is
that estimates for g4 and (r3) are smaller than those from z?
fits to the same Sg;,, and S,4 data. Since agreement with
PCAC is essential and Sg;,,, data do the best job, while the
dipole fits are poor, we rule out the dipole ansatz. Henceforth,
our final results are obtained using the z-expansion, and the
dipole results are given only for comparison.

In the z-expansion fits, the free parameter 7, in Eq. (28) is
used to adjust the maximum value of z within the unit
circle |z| < 1. We take t, = 0.4, 0.2, 0.12 for M, ~ 310,
220, 130 MeV ensembles, which gives |z| < 0.2. We have
checked that using ¢, = 0 does not change the fits or the
values significantly.

To ensure that the form factors satisfy the expected 1/Q*
perturbative behavior in the limit Q> — co, sum rules can
be imposed as was done in Ref. [9]. However, to obtain the
behavior near Q? = 0 from six or ten data points with
0%, ~1 GeV?, we choose to make fits without the sum
rules [19], i.e., to not increase the weight of the larger error
high Q? points by imposing the sum rules. The z' and 7>
fits to G, (Q?) from the Sy, strategy are shown in Fig. 13.
The resulting bare axial charge g4 = G4(0) and the charge
radius squared (r3) from the z? fits are shown in Fig. 7,
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FIG.7. Left: results for bare g4 from the strategy S, and the differences A(Sa4) = gals,, — 9als,, and A(Syy) = g4 ‘Szpl —gals. - To

sim

facilitate visualization of the spread, the errors plotted for A(X) are those in g4 (X). Results are shown for the dipole fit labeled “D” and

z!23-truncations. Right: analogous results for (r3).

and the data are summarized in Table XXIII in Appendix D.
From these data and the z-expansion fits, we conclude the
following:

(i) There is agreement in results between z> and z3 fits
in all cases. To account for the small curvature
observed in the data shown in Fig. 13 and yet avoid
overparametrization, evaluated using the Akaika
information criteria (AIC) [20], we will present final
results with the z? truncation.

(i1) The errors in the data from the two physical mass
ensembles a09m130W and especially a06m135 are
large and underscore the need for higher statistics.

(iii) Results for both g, and (r}) from the S, and
Sim analyses overlap and increase in value as
M, — 135 MeV. This increase is correlated with
the increasing ESC of the N state.

We take the final results from the S, strategy in which a
simultaneous fit is made to all five correlators and the form
factors come closest to satisfying the PCAC relation as
shown in Fig. 3. This is a 2-state fit and we find that stable
3-state fits require higher statistics. Thus, with the current
data, we do not have a reliable way of estimating the syste-
matic uncertainty associated with possible residual ESC.

The analysis of g4 obtained from the forward matrix

elements is postponed to Sec. V.

A. Extrapolation of g4 and (r2) to the physical point

Extrapolation of the renormalized axial charge g, and
the axial charge radius squared (r3) to the physical point
(a—0, M, - 135 MeV, L — o) is performed using a
simultaneous CCFV fit keeping only the lowest order
corrections in the ansatz

Y = by +b{a+byM; + biMzexp (-M,L),  (29)

where Y = (r%) or g, and {b! } denote the corresponding set
of fit parameters. The discretization artifacts are taken to start
at O(a) since the clover action used is only tadpole improved
and the axial and pseudoscalar currents are unimproved [21].
Similarly, only the lowest order term in the chiral expansion
is kept to avoid over-parametrization as data at only three
values of the pion mass have been simulated.

We have performed four CCFV fits to (i) the full set of
thirteen ensembles (13-pt); and three “12-pt” fits that
exclude (ii) the coarsest lattice point al5m310, (iii) the
smallest volume point a12m220S that also has large errors,
and (iv) the point a06m 135 that has large statistical errors
and shows the largest difference from the other 12 points.
The three 12-pt fits are used to estimate systematics due to
discretization and finite volume effects, and the impact of
the a06m 135 point. Results of the 13-point CCFV extrapo-
lation for g, and (r%) are summarized in Table III for six

TABLE 1II. g, and (r}) from the 13-point CCFV fit. Results
are given for the z> and dipole fits to G,(Q? # 0), and for the
three strategies used to control ESC. In each case, in addition to
the central value and the total analysis error, the two systematic
errors are the difference between the z2 and z3 estimates, and the
difference from the 12-pt CCFV fits explained in the Sec. IIT A.

9a z Dipole

Sgim 1.296(50)(13)(11) 1.239(43)(- - -)(39)
S 1281511 21) 1.204(44)(-- )(21)
Sopt 1.213(39)(02)(- - -) 1.228B7)(- - )(- - )
(r3) 2 Dipole

Sgim 0.418(33)(29)(18) 0.305(13)(- - -)(06)
Sus 0.428(31)(21)(19) 0.305(15)(- - -)(06)
Sopt 0.28227)(16)(- - -) 0.275(14)(- - )(- - -)
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FIG.8. The axial charge g, given by the 13-pt CCFV fit to S, data using the z2 fit to G, (Q? # 0). The pink band in each panel gives
the result of the CCFV fit [Eq. (29)] versus the x-axis variable with the other two variables set to their physical values. The data points in
each panel have been shifted in the other two variables using the same CCFV fit, however, the size of errors are not changed. The final

result at the physical point is shown by the red cross.

cases: the three strategies used for removing ESC, Sy,
Sp4» and Sy, and the two Q? parametrizations, z* and
dipole. The parameters of the 13-point CCFV extrapolation
of the 2 fit to the S, data, used to get the final central
values, are given in Table XX VI in Appendix E for both g4
and (r%). Results for all the other cases can be constructed
using the data for the form factors given in Tables X—-XXII
in Appendix C.

1. 8A
The result for g,, taken from the 13-point CCFV
extrapolation of z? fits to the Sy, data, shown in Fig. 8, is

ga = 1.296(50) 4 (13)(11)

= 1'296(50)stat(17)sys’ [ZQ]' (30)

The first error is the total analysis uncertainty given by the
overall bootstrap process, and the next two are additional
systematic uncertainties: (i) the difference between using z*
and Z° fits and (ii) the difference of this central value from
the average of the three 12-point CCFV fits. The two syste-
matics are added in quadrature to get the total systematic
error given in the second line in Eq. (30). In Sec. V, this result
is compared with an independent analysis of g, obtained
from the forward matrix element, i.e., from the zero
momentum correlator, Cy, (p = 0), as defined in Eq. (7).

al5m310 4 al2m220L -H  al2m220S &+ a09m220 +@H a06m310 A4 a06m220 =4 a06m135 H=H
al2m310 FH al2m220 @+ a09m310 w44  a09m130W HEH  a06m310W A4 a06m220W HH extrap
0.8 T T T T T T 0.8 r T T T g T T T 0.8 T T T
T T T sim
— 06 1 =~ 06 1 ~ 06F -
p E o 5
0.2 F sim | . . . = 02 sim | L AIK\— 0.2} . . =
0 0.03 0.06 0.09 0.12 0.15 0.02 0.04 0.06 0.08 0.1 3 4 5 6
a [fm] M2 [GeV? ML
0.8 T T T T T 0.8 T T T T T T T 0.8 T T —T
L sim
— 06 1 = 1 ~ 06F -
p 5 5
04 *—\i\i \*\v-_ x 1 Foaf " -
0.2 -I Slm 1 1 1 1 1 ] 0'2 C |Slm " 1 1 1 " sﬁh 0'2 C 1 1 1 ]
0 0.03 0.06 0.09 0.12 0.15 0.02 0.04 0.06 0.08 0.1 3 4 5 6
a [fm] M2 [GeV? M,.L

FIG.9. Top: the axial charge radius squared (r3) given by the 13-pt CCFV fit to data obtained using the z? fit to G4 (Q? # 0) with the
Sqim strategy. Bottom: the 12-pt fit without the a06m 135 point (open blue square in the three panels on the top) that has large errors. The
pink band in each panel gives the result of the CCFV fit [Eq. (29)] versus the x-axis variable with the other two variables set to their
physical values. The data points in each panel have been shifted using the same CCFV fit, however, the size of errors are not changed.

The final result at the physical point is shown by the red cross.
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2. (r3)
The CCFV fit to (r}), obtained from the Sy, data with
2% fit, is shown in Fig. 9 (top panels). It gives

(ri) = 0-418(33)stat(29)(18) fm?
= 0418(33)btdt<34) fm ’ [Zz] (31)

sys
with the errors derived in the same way as for g,.

For both g4 and (r3), the largest dependence in the
CCFV fit is on M2 for the S, and S4y strategies. This is a
consequence of the increasing influence of the Nz state
as its mass gap decreases well below the N(1440) as
M, — 135 MeV. In contrast, the Szpt data, which do not
include the Nz state in the analysis, show mild dependence
on all three variables {a, M, M, L}.

Estimates from the 12-pt CCFV fit excluding the
a06m135 point, shown in the bottom panels of Fig. 9, are
consistent with the 13-pointresults. This is expected since the
errors in the a06m135 point are large. Clearly, to further
improve the estimates of both g, and (r3) requires much
higher statistics data at small Q% on the physical pion-mass
ensembles.

B. G,(Q?) at the physical point

The Q? dependence of the axial form factor upto 1 GeV?,
obtained at the physical point, is shown in Fig. 10 for the three
strategies Syp, Sqa, and Sgip,. The pink band in these figures
was obtained using the following three step process starting
with the renormalized lattice data for G ,(Q?)/g,, which on
each of the thirteen ensembles are at different discrete values
of Q. First the data on each ensemble were fit using the z>-
ansatz [see Eq. (27)] and the result is taken to specify
GA(0Q?)/gafor0 < Q% <1 GeV?. Second, we chose a set of
eleven Q? values evenly distributed over this range, and for
the thirteen data points at each of these Q? values carry out a
13-point CCFV extrapolation using Eq. (29). The result was
taken to be the physical point value of G, /g, at that Q2. In
each of these CCFV fits, the thirteen points from the thirteen
ensembles are uncorrelated as these are independent calcu-
lations. Lastly, these eleven extrapolated points were fit by
the z? ansatz to obtain the final parametrization valid in the
interval 0 < Q% < 1.0 GeV? and shown by the pink band in
Fig. 10. The errors in the original lattice data were fully
propagated through this three step process carried out within
a single bootstrap setup. This gives the central value and
error. Possible uncertainty due to incomplete removal of ESC
or due to using only the leading order CCFV fit ansatz is to be
estimated separately.

Figure 10 also shows the experimental bubble chamber
data and the dipole ansatz with M, = 1.026(21) GeV
extracted from it (green band) [17]. A recent z-expansion
analysis of the v-deuterium data [22] finds a ~#10X larger
uncertainty. In our analysis, only the S, data are roughly
consistent with a dipole ansatz with M, ~ 1.30 GeV,

1.0 : ‘ N
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i pheno: 1.026(21) GeV ——
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i 1.35GeV -
s | b 1@ DM PFV — ;
< 06 L ]
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FIG. 10. Results for G, /g, at the physical point for the three
strategies Spp, Sasq and Sg, (labeled “2pt,” “A4.” and “sim
respectively) used to control the excited-state contamination. The
three step process used to get these results shown by the pink band
is described in the text. In each case, the error band represents the
full analysis error for that strategy but with the value at Q% =
fixed to unity. The label 1 @ a @ M2 @ FV specifies that all 4
terms in the CCFV ansatz, Eq. (29), were kept. The experimental
v-deuterium data (gray crosses labeled Exp.) were provided by Ulf
Meissner and the dipole result M, = 1.026(21) GeV is taken from
Ref. [17]. This and the two other dipole fit with M, = 1.20 and
1.35 GeV are shown only for comparison.

however, the three form factors extracted using S, fail
to satisfy the PCAC relation. We, therefore, reemphasize
that the dipole curves with M, = 1.026, 1.2 and 1.35 GeV
are shown only for comparison.

The data from the Sy, and S, strategies are consistent,
and show a more rapid fall until Q%> ~ 0.3 GeV?, and give
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The fit coefficients b;, i = 0, 1, 2, 3, defined in Eq. (29), for the CCFV extrapolation of the axial form factor G4(Q?)/ga

obtained with strategy S, (left), S44 (middle) and Sy (right) and fit with the 72 truncation. The extrapolated G4 (Q?)/g, with S, is
shown in Fig. 10. The hatched blue curves correspond to by |, obtained neglecting the finite-volume term in the analysis.

results roughly consistent with the dipole values M, =
1.026(21) GeV [and (r}) = 0.444(28) fm?)] in Ref. [17].
They then level out falling more slowly, however, note that
for Q% > 0.5 GeV? our results are mainly from the heavier
M, ~ 310 MeV ensembles. On the heavier M, ensembles,
the mass gaps in the N analyses (blue triangles and red
squares in Fig. 6) increase rapidly towards those from the
Sy fit (black circles). Consequently, as shown in Fig. 10,
the G,/g, from the S, analysis moves towards the S,
result for Q2 > 0:5 GeV?2.

To obtain data for Q% > 0.5 GeV? on physical pion
mass ensembles with M L > 4 requires simulations at
much larger values of q where statistical and discretiza-
tion errors are large with the methodology used in this
work. A more promising method for generating data at
large Q° is momentum smearing [23]. Also, when
including points with larger Q2 the z-expansion fits
with and without sum-rules should be compared since it
is not known, a priori, when the expected 1/ o4
asymptotic behavior becomes significant. Alternately, as
shown in Ref. [7], one can analyze the data using a Padé
parametrization. Our fits to the final G, using the Padé
ansatz g,/(1 + b, Q>+ b,0*), which has the 1/0*
behavior built in, gave estimates consistent with
Egs. (30) and (31).

The coefficients b; in the CCFV fit using Eq. (29) are
shown in Fig. 11 for the three strategies Sy, Sas, and Sgip,.
The coefficients b, (Q?) and b, (Q?) are similar within errors
for S and S,4, significantly different from zero, and
qualitatively different from the case Sy, The b; for S, and
S 44 show a change in behavior at 9% ~ 0.3 GeV?, coincident
with the region where the curvature in G, changes as shown
in Fig. 10. This could be due to the fact that most of the raw
data controlling the parametrization at Q> 0.3 GeV?
comes from the M, =~ 220 and 310 MeV ensembles. On
the other hand, support for the parametrization comes from
the observation that the data, plotted in Fig. 2, do not show a
significant variation versus {a, M, }. Cutting out the data
with Q% > 0.3 GeV? to see if fits change, unfortunately
eliminates most of the M, ~ 220 and 310 MeV ensembles—
they do not have enough points to perform even a z> fit. We
are, therefore, not able to resolve the reason for the change in
parametrization around Q? ~ 0.3 GeV>.

To provide our best parametrization of G ,(Q?) for phe-
nomenology, we repeated the above 3-step procedure using
the S, strategy data. Again, the data after extrapolation
to the continuum limit (at Q> = 0,0.1,0.2, ..., 1.0 GeV?)
were fit with a z? ansatz, t, = 9M2 with M, = 135 MeV,
and f, = 0.25 GeV?2. The result, shown in Fig. 12, has the
parametrization
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FIG. 12. The final estimate of G,(Q?) at the physical point.
The eleven fiducial points used to make the fit are shown in blue
and their errors are obtained from the one overall bootstrap
analysis covering the three step process described in the text. The
parametrization versus z is given in Eq. (32).

GA(Q2) =day + az + azzz
—0.876(28) — 1.669(99)z + 0.483(498)22,  (32)

with the correlation matrix:

ao a a
ay 1.0 —0.45170 —0.02966 (33)
a —0.45170 1.0 —0.24394
a —0.02966 —0.24394 1.0
This fit gives
ga = 1.281(53),
(r3) = 0.498(56) fm?, (34)

which are consistent with the estimates in Egs. (30) and (31),
albeit with a (r}) larger by roughly 1o.

We also carried out this final z* fit setting #, = 0 in the
definition of z. The results are

ga = 1.282(54)
(r3) = 0.505(66) fm?. (35)

While consistent, the coefficient ¢, in this fit is essentially
undetermined. We, therefore, choose the results given
in Eq. (34).

For our final results from the analysis of G4, we take the
average weighted by the “stat” errors of values given in
Egs. (30), (31), and (34) to get

9a = 1'289(53)stat(17)sys
(r}) = 0.4.’)9(56)Sm(.“54)Sys fm?. (36)

For errors, we take the larger of the “stat” error and keep the
“sys” errors given in Eqgs. (30) and (31).

We now return to two related issues that arise because
the majority of the data used to get the parametrization
in Eq. (32) are at Q% < 0.5 GeV? as shown in Fig. 1. The
first is whether this parametrization is compatible with
GA(Q? = o) = 0 since the sum rule constraints needed
to build in the perturbative 1/Q* behavior have not been
imposed? And the second is—how reliable is this G, for
0? > 0.5 GeV? since most of the data in this region
are from the M, ~ 310 MeV ensembles? Regarding the
first issue, the parametrization in Eq. (32) at z=1
(= 0% = ») gives

G, = —0.31(48)
dG,(z)
;Z = —0.70(98). (37)

These are consistent with zero within one sigma. For the
second issue, data in Fig. 2 show that G,(Q?) extracted
on 12 ensembles show little dependence on {a, M, }. The
one exception, a06m135, where the data lie about one
sigma lower, has already been identified as statistics
limited. As stated before, if future data continue to show
little dependence on a and M, then even data from the
M, ~ 310 MeV ensembles would provide a good approxi-
mation to the continuum G, and increase confidence in the
result for Q2 > 0.5 GeV>2.

Lastly, we made a z> fit to the same continuum
extrapolated data but imposed a prior, G,(Q? = ) =0
with width 0.3 based on the value in Eq. (37). The
result is

G4(0%) = 0.872(28) — 1.705(109)z + 0.767(102)z2,
(38)

with G4, = —0.07(10) and dG,/dz = —0.17(17) at z = 1.
The main difference from the result in Eq. (32) is the
tightening of the estimate of the z> term. Overall, in all
these fits, the coefficients a, and a;, defined in Eq. (32) are
stable, whereas higher precision data are needed to
improve a,.

IV. COUPLINGS g; AND g,yy FROM THE
INDUCED PSEUDOSCALAR FORM FACTOR

The induced pseudoscalar coupling gj is defined as

* — mﬂ a *2
0 = 3= Gr(0), (39)

where m,, is the muon mass and 0?2 = O.SSmﬁ is the
energy scale of muon capture. Similarly, the pion-nucleon
coupling g,yy is obtained from the residue of G»(Q?) at
the pion pole, i.e., through the relation

014503-16



NUCLEON ISOVECTOR AXIAL FORM FACTORS PHYS. REV. D 109, 014503 (2024)

L4t _ ‘sim' 14F ‘sim' L4 F ~ ‘sim'
12F Gr x fraie ] 12F Gad 1ot Gp X fye ]
of i ] 10F 10F
08 | ] 08 f 08 |
06 F ] 0.6 | 1 o6l 3
04| . 04F 4 o190 1 o4 ]
0.2 L L 0.2 LB ISOW, L 02 L L
14 F T T 14F 14F T ]
12F Gr % fraie ] 12F 12F Gp X foe
10 F 1 10f ] 10 F 10 F ]
0.8 | 1 ost ] 08 | 08 | ]
06 F 1 1 o6f ] 06 F 06 F ]
04 F 4 4o o o4t ] 04 Fy o 04 | ]
0.2 0.2 £4% 0.2
14 F B ‘sim' 14 F T ) ‘sim-
12} Gp X ook ] 12} Gp X Jooke ]
10| 10F ]
08 | 08 | ]
06 F 06 | ]
04| 04l ]
0.2 02
14 ‘ B ‘sim' L4F ‘ _ ‘sim'
12 i Gr X fle 12 Grx fre ]
10| 10F
08 [ 08 [
0.6 0.6 F
04 F 04 F
0.2 al2in220 ) 0.2 ) ) 02 a067220 Y 02 ‘ L
L4 F ‘ B ‘sim' 14 F ‘ ‘sim' L4 F ‘ _ ‘sim'
12 Gp X ook 3 12 12F Gp X foole 3
10 F 10F 10
08 08 F 08
06 F 0.6 F 06 F
04| 04 F 4 Zoo N 04
02 0.2 F2067220W o o ‘ LN
14F T T 14 F 14F T ]
12F Ge X fre 12 12 Gr x fraie ]
10| 1 10} ] 10F 10F
08k 1 osf ] 08 f 08 |
06 | . 1 o6l ] 0.6 | < o6f ]
044204 7 04 N 04 F4i=0.12 1 04r ]
0.2 L% 0.2 L i 0.0 La¥om13y L 02 L L
T4 F 14F w T 202 0.0 0.2 202 0.0 0.2
12F 12F Gr % foe ] : :
10 10F
08| 08 |
06 F 06 F
04 Fy o 04| :
0.2 £ 0.2 ‘ ‘
202 20.2 0.0 0.2
z z

FIG. 13. Comparison of G, and Fp = Gp x f;ol]e from strategy S, for a = 0.15,0.120.09, 0.06 fm lattices. The z?> (magenta lines

with error band) is compared to the z! fit (blue dash dot). The four largest z points are excluded from the fits to the M, ~ 310 MeV and
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FIG. 14. Left: results for the bare g}, from the strategy S;,,, and the differences A(X) = g5 (X) — g5 (Ssim)- To facilitate visualization of
the spread, the errors plotted for A(X) are those in g5 (X). The fits used to parametrize the Q% behavior are labeled “PD” defined in
Eq. (42); “D” for the dipole fit, and z* for various truncations of the z-expansion. Right: results for bare values of g,yyF, obtained with

the strategy Sy, and the differences A(X) = gwnFz(X) — gann Fz(Ssim)-

_ pm Mt Qe o Gp(0?) = =52 4 c) + ¢, 02 42
gy = i, (@) A =g tate “
- FP(_M%)MN (40) where the ¢; (i =0, 1, 2) are fit parameters, and we have
- F, ’ kept as many terms in the polynomial as can be resolved by

where F, =92.9 MeV is the pion decay constant. The

function Fp defined as

Q>+ M;
am3

Fp(Q?) Gp(0). (41)
is Gp without the pion pole and should equal G, if PPD
were exact. This requires Ry = Fp/G 4, plotted in Fig. 4, to
be unity. Deviations for S, are significant, while those for
Sqim and Sy, are one within the size of discretization errors
and/or violations of PPD expected.

To extract gp and g,yy from the lattice data, a para-
metrization of the Q2 behavior of Gp and Fp was carried
out. A comparison of the z' and z? fits to G, and Fp from
the Sy, strategy is shown in Fig. 13 for the thirteen
ensembles. Results from z> and z* fits are consistent,
indicating convergence, while z' fits miss the small
curvature seen. To avoid over parametrization, we again
take the z> results as the central values.

A. Parametrization of G,(Q?) and F,

Based on the analysis of PCAC (see Fig. 3), we focus on
the Gp(Q?) data from the Sy;,, and S, strategies and again
give the S, results only for comparison.

We consider two ways to parametrize Gp(Q?), both of
which build in the pion-pole dominance hypothesis. The
first is the expansion

the data. Results for ¢}, g,ynFr and g,yyF /My using this
fit (labeled PD) to the Sg;,, data are given in Table XXIV
along with the y?/d.o.f. and p-value for the fits.

In the second way, we treat Fp(Q?) as an analytic
function that can be fit using either the dipole ansatz
(with free parameters F»(0) and M) or the z-expansion,
Eq. (27), with z again defined by Eq. (28). Results for gp,
GovnFr and goynF /My, from 22 fits to Fp(Q?) obtained
with the S, strategy are given in Table XXV and agree
with those in Table XXIV.

Results for the bare g} from the S, strategy for five Q>
parametrizations of Gp are shown in Fig. 14 (left) along
with their differences from results obtained using the Sy4
and S, strategies. The analogous results for unrenormal-
ized g,ynF, are shown in Fig. 14 (right).

B. Extrapolation of g}, and g,y
to the physical point

1. gp
Renormalized g is extrapolated to the physical point
in two ways. In the first method 2m, M y F p(Q*?) is extrapo-
lated using the CCFV fit function given in Eq. (29) and
multiplied by the pion-pole factor at the physical point:

1

“orvml,, *

g = ZmﬂMNFP(Q*ZHextrap
phys
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TABLE IV. g} from the z?-expansion, dipole, and pion-pole
dominance (PD) fits. The first column gives the strategy used for
extracting the matrix elements. In each value, the first error is the
total analysis error and the rest are systematic errors explained in
the text.

2

gp z Dipole PD

Sgim 9.03(47)(01)(32)(27) 8.61(39)(- - -)(19)(23) 8.92(45)(- - -)(38)(33)

Sas 8.92(44)(04)(20)(23) 8.70(37)(- - -)(17)(15) 8.94(43)(---)(28)(33)
Sope 4.50(26)(02)(- - -)(22) 5.36(25)(- - )(- - )(12) 4.73(27)(- - -)(- - -)(10)

In the second method, extrapolation of g}, is carried out by

adding a pion-pole term, bZ; /(Q** + M?2), to the CCFV fit
function in Eq. (29). The two methods give consistent
estimates and their unweighted average is used to get the
final results summarized in Table IV for each of the three
strategies, Sgm, Sas, and Sypy.

The error obtained from the overall analysis is quoted as
the first “stat” uncertainty. The systematical errors asso-
ciated with truncation of the z-expansion, and the largest
difference of the central value from the three 12-pt CCFV

fits are quoted as the second and third errors. The difference
between the two extrapolation methods described above is
quoted as the fourth error. For the final result, we take the
Sym With z2 fits value:

gp = 9:03(47)5,(01)(32)(27),
= 9.03(47) 4 (42)

2]

’

(44)

sys*

In the second line, the three systematic errors are combined
in quadrature. The 13-pt CCFV fit to the Sg;,,, data on each
ensemble fit with z2, is shown in Fig. 15.

2. 8anN

The CCFV extrapolation to obtain g,yy is carried out
using Eq. (29) for (i) the product g,y Fr = MyFp(—M?2),
and the result, in the continuum, divided by F, =
92.9 MeV; and (ii) Fp(—M?2) and the result multiplied
by My(=939 MeV)/F,(=92.9 MeV). It turns out that
these two extrapolations have different systematics: the
slopes with respect to M2 of g,yvF, and Fp(—M?2) are
different as shown in Fig. 15. The two estimates are,

| al5m310 /5 al2m220L 4  al2m220S &+ a09m220 &+ a06m310 A a06m220 =51 a06m135 H=H
al2m310 FAH al2m?220 A a09m310 v+ a09m130W HEi a06m310W HA4  a06m220W o+ extrap
S 028 | S 028 | 1 Sozs
X X X
&3 o \ T
S S BE1 S
+ + T +
S o24f S o024 1 GSo24
Il SIm Il Il Il Il \SIm Il Il Il Il
0 003 006 009 012 002 004 006 _ 0.08 0.1
a [fm)] M? [GeV?
T 9 T T E
8 oy 3
7 - 3
o 6F ERRLY
S 5E ER)
4E E
3 £ 3
) ) 2F sim )
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i
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a [fm] M2 [GeV?
FIG. 15. The chiral-continuum-finite-volume extrapolation of the (Q*> + M2) x g, (top row), g (middle row), and g,yyF, (bottom

row) data using the 13-point fit. In each case the data were obtained using the z*> parametrization of F p(Q? # 0) with strategy Sginm. The
black solid line with the pink error band represents a hyperplane obtained by taking the physical limit of all CCFV fit variables except
the one shown on the x-axis. The plotted data points have been shifted by using the fit coefficients, while the errors are unchanged.
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TABLE V. Results for g,y from the z2, dipole, and pion-pole
dominance (PD) fits. The first column gives the ESC strategy
used to extract the matrix elements. The first error is statistical
and the rest are systematic as explained in the text.

z Dipole PD

Sam 14.14@1OD(T7)(35) 13.03(67)(- - )A1)(28) 13.80(81)( - -)(99)(33)
Saa 13.77(79)07)(33)(29) 13.06(64)(- - -)(38)(26) 13.90(79)(- - }(57)(31)
Sap 05.76(57)(00)(- - )(10) 07.57(46)(- - )(- - -)(09) 06.24(57)(- - (- - -)(03)

however, consistent and we take their average to get the
g.ny for the nine cases summarized in Table V: the three
strategies and the three types of Q7 fits.

The central value

oy = 14.14(81) 3, (1)(77)(35)
= 14.14(81)3(85)gys  [] (45)

is taken from the Sy, data with z* fits and the errors are
estimated as for gj.

C. Fp(Q?) at the physical point

The F»(Q?) at the physical point was obtained following
the same three step procedure used for extrapolating
GA(Q?) that is described in Sec. IIIB. This Fp(Q?) is
compared with the G,(Q?) already shown in Fig. 12 in
Fig. 16. If PPD were exact, then F, should equal G,.
The overlap of the two bands turns out to be surprisingly
good over the whole Q? interval. Results for the four fit
parameters, b;(Q?), versus Q” obtained in the CCFV
extrapolation process are shown up to 1 GeV? in Fig. 17
for data obtained with the Sg;,, strategy.

15 ‘ ‘ ———
L GA I
2 1PaPM2PFV — |
2 1PaP M? ---- |

FIG. 16. The close overlap in the physical point results for
Fp(Q?), defined in Eq. (41), with G4(Q?) (black lines) repro-
duced from Fig. 12. Both were obtained using the three step
process described in Sec. III B and the Sg;,,, strategy data. The full
CCFYV fits to the £ data are shown with the solid red line and
pink error band and the fit without the FV term with dashed blue
line and hatched error band. These error bands show only the
central analysis uncertainty.

Similar to G,(Q?), the two physical mass ensembles
impact the coefficients b;(Q*) shown in Fig. 17 only for
0? £0.4 GeV?. The plots show some pion mass depend-
ence for 0% < 0.2 GeV?, i.e., b,(Q?) # 0. The coefficients
for the lattice spacing dependence, b,(Q?), and for finite
volume, b3(Q?), have large uncertainty. Also, neglecting
the finite volume term does not change b, (Q?) and b,(Q?)
significantly. Overall, the shape of these coefficients
versus Q2 is somewhat different from those for G, shown
in Fig. 11.

The z? fit to the physical point F », shown in Fig. 16, with
t. = 9M2 and t, = 0.25 GeV? has the parametrization

Fp(Q®) =ay+az+az’
—0.868(30) — 1.702(136)z + 0.587(601)22, (46)

with the correlation matrix:

ag a a,
ao 1.0 —0.45085 —0.05106 (7)
a —0.45085 1.0 —0.23890

a —0.05106 —0.23890 1.0

The agreement, within errors, with the parametrization of
GA(Q?) given in Egs. (32) and (33) is very good. This is
not unexpected based on the overlap between the two
shown in Fig. 16, nevertheless, one should keep in mind
the Q? dependence shown in Fig. 5, and the Goldberger-
Trieman discrepancy [7,17].

V. NUCLEON CHARGES FROM FORWARD
MATRIX ELEMENTS

The spectral decomposition of the forward, g = 0, three-
point function truncated at three states, |i) with i =0, 1, 2,
can be written as

C%pt(t; 7)
= STIAA(IO i) eMisMit=0
=0

= |AgPgre™o" x [1 + r2bj e 2M®
+ 13byy e WMFAM)T 4 D by e~ AMIT/2 cosh(AM 1)
+ 2rybope” AMITAM)T/2 cosh {(AM, + AM,)t,}
+ 27 7y b pe” CAMIHAML)T2 cosh (AM, )] + - -+, (48)

where t, =1—1/2, (0|Or|0) is the bare charge gr, the
transition matrix elements are b;; = (i|Or|;)/(0|Or|0), the
ratios of amplitudes are r; = |A;|/|Ag|, and the successive
mass gaps are AM; = M; — M;_,. The prefactors in terms
involving the excited states are products such as r3b,,.
These products are simply parameters in the fits and are not
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FIG. 17. The behavior of the four CCFYV fit coefficients, by, b;, b,, and b5 defined in Eq. (29) versus Q? obtained in the extrapolation
of Fp(Q?) to the physical point. The rest is the same as in Fig. 16.

used subsequently. Thus the ratios r; for the excited states
are, by themselves, not needed.

To remove excited states contributions, we made three

kinds of fits to the 3-point functions using Eq. (48):

(1) 3*: This is a 3-state fit with b,, set to zero. The four
parameters Ay, My, M, M, are taken from four-state
fits to the two-point function, leaving only (0|Or|0),
and products such as r7b;; as free parameters. This
strategy (along with its two-state version) was used
to get the results presented in Ref. [13] that are
reproduced in Eq. (49).

(i) 3-RD: This is a 3-state fit with b, b;; and by, set to
zero, otherwise the fits become unstable. The three
parameters A,, My, M, are again taken from four-
state fits to the two-point function. The value of the
second mass gap, AM,, is left as a free parameter in

N ————

0)

FIG. 18. A pictorial representation of the standard 2-state fit
(left) and the 3-RD fit (right). In the 3-RD fit, the M, and M are
taken from the nucleon two-point correlator fit but AM, is
determined from the fit to the three-point correlator. Negative
values for AM, in Table XXXII indicate that |2) lies below |1).
Both fits include only two transitions, |0) — |1) (yellow) and
[1) - |1) (green) in the 2-state fit and |0) — |2) (yellow) and
[1) = |2) (green) in the 3-RD fit. The transitions turned off with
respect to the full 3-state ansatz given in Eq. (48) are represented
by dashed lines.

the fit. The sign of AM, for a given charge
determines whether |1) lies above or below |2) as
shown pictorially in Fig. 18.

3-RD-Nz: In this fit, M; is fixed to the non-
interacting energy of the N(n)z(—n) state with
n = (1,0,0). For the value of M,, we use a Bayesian
prior with a narrow width centered about the first
excited state mass determined from the two-point
correlator as given in Table XXX in Appendix F.
We also tried two-state fits with AM left as a free para-
meter. For the axial charge, we found large fluctuations in
AM, between the jackknife samples leading to unreliable
values. So we do not present these estimates.

Results for unrenormalized isovector nucleon charges,
Ja» 97» and gg, using the 3%, 3-RD, and the 3-RD-N fits are
given in Table XXXI, and the other parameters of the 3-RD
fits are given in Table XXXII in Appendix F.

The final renormalized charges are presented in the MS
scheme at 2 GeV. We carry out the renormalization using
the RI-sMOM intermediate scheme as described in Ref. [13].
To understand systematics, we use three methods: (i) gy =
Zygt™, where X =A, T, S; and (i) gy = Zy/Zy x

ggfare) / ggjare) with the relation Z, gy, = 1. Empirically, some

of the systematics cancel in each ratio in the second method,
giving slightly smaller overall errors. In method three, we
take the average of the first two within the jackknife process,
and use it to get the final estimates. The renormalization
factors Zy and Zy/Zy, used in this study are given in Table V
in Ref. [13].

We use the same leading order CCFV ansatz, given in
Eq. (29), for extrapolating results to the physical point for
all three strategies: 3*, 3-RD, and 3-RD-Nuz.

(iii)
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Results from the 3* (or 2-state for gg) analysis, have
already been published in Ref. [13], and reproduced here to
facilitate comparison.' These are:

ga = 1.218(25),(30)ys  (3"-state)
gr = 0.989(32) 4, (10),,  (3*-state)
gs = 1.022(80),,(60),,,  (2-state). (49)

We now focus on the 3-RD analysis and make three
CCFV extrapolation with the following cuts on the data

(1) “13-point” CCFYV fit uses all thirteen points.

(i) “11-point” CCFV fit: This fit excludes the
a06m310W and a06m220W points obtained with
larger smearing radius for sources used to calculate
the quark propagators [13]. Larger smearing radius
reduces the ESC at smaller values of 7 but gives
larger statistical errors at the values of 7 used in our
excited-state fits to get the 7 — oo values as dis-
cussed in Ref. [14]. Also, we expect significant
correlations between the two pairs, (a06m310,
a06m310W) and (a06m220, a06m220W), since
they use the same gauge configurations. Comparing
the pairs, the results for the three charges agree
except for gg between a06m220 and a06m220W,
which can be accounted for by the larger statistical
errors, especially in the a06m220W data. Conse-
quently, the “11-point” CCFV fit is used to get the
central value for gg, which is shown in Fig. 19.

(iii) ““10-point” CCFV fit excludes a15m310, a06m310W
and a06m220W points. Since the variation with the
lattice spacing is the dominant systematic, removing
the a15m310 point (coarsest lattice with @ ~ 0.15 fm)
aims to provide a handle on higher order, O(a?),
corrections neglected in Eq. (29).

Results from these three CCFV extrapolations, different
truncations of the CCFV ansatz, and the three renor-
malization methods are given in Tables XXXIII-XXXV
in Appendix F and used to assess the various systematics.

The central values are taken from the *“13-point fit” for
gs and gr and the “11-pt fit” for g¢ with the 3-RD data
renormalized using the third (average of the first two)
method. Note that we find a systematic shift of ~0.03, 0.02
and 0.03 between the first two renormalization methods for
the three charges, g4, gr, and gg, respectively.

These CCFV fits are shown in Fig. 19. Each panel in a
given row shows the fit result versus one of the three
variables with the other two set to their physical point
values. In the left two panels, we show two fits: (i) using the
full ansatz given in Eq. (29) (pink band), and (ii) assuming
there is dependence only on the x-axis variable (gray band).
For example, in the left panels the gray band corresponds to

"The statistics in the a06m135 and al2m310 ensembles
have been increased, however, the changes in the estimates are
insignificant, so we continue to quote the results from Ref. [13].

a fit with b3* = b§* = 0. The data show that the discre-
tization errors are the dominant systematic, i.e., there is an
almost complete overlap of the two fits (pink and gray
bands) for g, and a significant overlap for g5 and gr. The
variation with a over the range 0 < a < 0.15 fm is about
10%, 5%, and 30% for g4, gr, and gg, respectively. The
large variation with a in gg is similar to that found in the
clover-on-clover calculation [7].
The final results of the 3-RD analysis are

9a = 1.294(42) 1, (18)ccry (16) - (3-RD)
gr = 0.991(21) 510 (04)ccry (09) - (3-RD)
gs = 1.085(50) 4y (102)ccpy (13)z - (3-RD). (50

The first error quoted (labeled stat) is the total uncertainty
from the central analysis. The second error is an estimate of
the uncertainty in the CCFV extrapolation. For g4 and g7,
this is taken to be the average of the differences |11-pt —
13-ptl and [10-pt — 13-ptl. For gg, it is the difference
[10-pt — 11-ptl. The third error is half the difference in
estimates between the first two renormalization methods.

The g, from the 3-RD fit is in good agreement with
the result obtained from the extrapolation of the axial
form factor G, (Q?) to Q* = 0 given in Eq. (30). It is also
consistent with the experimental value g, = 1.2766(20)
but has much larger errors. The difference between the 3*
(PNDME [13]) value reproduced in Eq. (49), and the 3-RD
is due to different excited state energies used in the fits
to the spectral decomposition in Eq. (48). The data in
Table XXXII show that the fit parameter M, when left free
satisfies M, < M, — My < 3M,, for all but the ¢ =~ 0.12 fm
lattices. In [10], we showed evidence that the N(p;) +
z(—=p,) with p; = (1,0,0)27z/La state makes a significant
contribution on the zero momentum side of the operator
insertion in the calculation of the form factors, and the
noninteracting energy of this state is My, — My~ 2M,. In
short, the M, output by the 3-RD fit has a mass lower than
M obtained from the two-point correlator and broadly
consistent with the hypothesis that the Nz states contribute.
We again caution the reader that these excited state masses
should only be regarded as effective fit parameters that
encapsulate the effect of the full tower of N(p) + z(—p)
states with momenta p = (2z/L)n as well as other multi-
hadron and radial excitations that can contribute.

For gy and g7, the 3-RD fit reduces to a 2-state fit if
AM,(=M, —M,) =0,ie., M, ~ M,. This is the case for
many of the ensembles as shown in Table XXXII. Results
given in Eq. (50) are consistent with those in Eq. (49)
indicating that sensitivity to excited state energies input into
the analysis is small.

Based on the 3-RD fits, which indicate that the data for
ga prefer a low-mass excited state with AM ~2M,, the
3-RD-Nr fit defined above, with the mass gaps summa-
rized in Table XXX, were performed. Charges from this fit
are compared with the 3-RD and the 3*-state fits (or the
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FIG. 19. The simultaneous chiral-continuum-finite-volume (CCFV) fit to the axial g4 (top, 13-point), tensor gy (middle, 13-point), and

scalar gg (bottom, 11-point) charges. The data are extracted using the 3-RD fit described in the text and are the average over the two

renormalization methods Zy x g™ and Zy/Zy x g™ /g\"™ where the gy is the vector charge. In each panel, the pink bend with

black solid line represents the full CCFV fit. In the left (middle) panels, the gray band shows the fit to the date keeping only the a (M2)
dependent term in Eq. (29). The value at the physical point is marked by the red star. The data in each panel have not been shifted to the
physical point in the other two fit variables.

2-state fit for the gg) in Table XXXI for the thirteen = complements the latest FLAG review that considered
ensembles. The p-value for many of the 3-RD-Nz fits  results published prior to 2021 [5,6]. Overall, results for
are low. To stabilize the 3-RD-Nz fits, we increased the g, and gy from all calculations are consistent within five
width of the priors for M,, however, this still did notlead to  percent and for gg at ten percent. Their precision will
stable fits for several ensembles. The 3-RD-N7 results are,  continue to improve steadily as higher statistics data are
therefore, not included in the final analysis. generated at additional {a, M} points with ML = 4.
Results for g4 g7 in Eq. (50) are compared with those Our conclusion is that, with current statistics, fits for the
from other collaborations in Table VI. This comparison  axial charge are more stable with input of M, and M, from

TABLE VI. Comparison of g4 57, (r3), gp and g,yy from recent calculations labeled as: PNDME 23 is this work, RQCD [24] (here
we list values obtained with the !z**3 fit, and take ga.s.r from their recent work [25]), ETMC [26,27], NME [7], Mainz [28], and PACS

[29]. All results for g, g7 are in the MS scheme at scale 2 GeV. For completeness, we also give results for gg7 from the Mainz
collaboration [30] and from the ETMC collaboration [27,31]. These and earlier results are reviewed by the FLAG [5,6].

Collaboration Ja s gr (r3) fm? gp JaNN
PNDME 23 1.292(53)(24) 1.085(50)(103) 0.991(21)(10) 0.439(56)(34) 9.03(47)(42) 14.1481)(85)
RQCD 19/23 1.284%8 L11}¢ 0.984%3 0.449(88) 8.68(45) 12.93(80)
ETMC 20/22 1.283(22) 1.35(17) 0.924(54) 0.343(42)(16)

NME 21 1.32(6)(5) 1.06(9)(7) 0.97(3)(2) 0.428(53)(30) 7.9(1)(9) 12.4.(1.2)
Mainz 22 1.225(39)(25) 113(11)(}) 0.965(38) (4 0.370(63)(16)

PACS 22 1.288(14)(9) 0.927(83)(22) 1.036(6)(20)
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the 4-state fit to the 2-point function and letting the 3-point
function determine M, (corresponding roughly to the Nz
state), i.e., the 3-RD fit. In future works with higher statistics,
we expect results from 3-RD and 3-RD-Nr fits to come
together as the same three states provide the dominant
contributions. Only the details of their inclusion are different.

VI. CONCLUSIONS AND COMPARISON WITH
PREVIOUS CALCULATIONS

We have presented results for the axial, G4(Q?), the
induced pseudoscalar, GP(Q2), and the pseudoscalar,
Gp(Q?), form factors of nucleons using thirteen ensembles
of 2 4+ 1 + 1-flavors of HISQ ensembles generated by the
MILC collaboration [8]. A large part of the focus of this work
is on understanding the nature of the excited states that
contribute significantly to the relevant correlation functions
and removing their contributions. The analysis presented
here strengthens the case for including multihadron excited
states, such as Nz, made in Ref. [10]. Our data driven
analysis strategy, labeled Sy, identifies the contributions
from Nz state in the extraction of the GSME. The three form
factors obtained including N7 state satisfy the PCAC relation
to within 10% as opposed to a ~50% deviation without them.
For the final results, we therefore choose the data obtained
with the S, strategy for removing ESC, parametrize the Q?
behavior using the model-independent z? fit; and extrapolate
the data to the physical point using a simultaneous chiral-
continuum-finite-volume (CCFV) ansatz including the lead-
ing order corrections given in Eq. (29). For errors, we quote
two estimates: the first labeled ‘“stat” is the total error
obtained from the analysis used to produce the central value,
and the second, labeled “sys,” includes the various systematic
uncertainties combined in quadrature as discussed in the
appropriate sections.

Our final results are

(i) The axial charge is g4 = 1.292(53 ), (24)ys- This is

the unweighted average of the value from the
extrapolation of G,(Q?) to Q* =0 [Eq. (36)] and
from the forward matrix element [Eq. (50)]. The
“stat” and “‘sys” errors quoted are the larger of those
from the two determinations. This result is consis-
tent with the experimental value but has much larger
errors.

(ii) The scalar charge gg = 1.085(50),, (103),, and the
tensor gy = 0.991(21),,(10),, are given in Eq. (50).

(iii) The extraction of the axial charge radius squared is
discussed in Sec. III B, and the result from Eq. (36)
is () = 0.439(56) 00 (34) gy fm?.

(iv) The extraction of the induced pseudoscalar charge
is discussed in Sec. IVB 1 with the result g, =
9.03(47) a1 (42)y given in Eq. (44).

(v) The pion-nucleon coupling is discussed in Sec. IV B 2
with the result gy = 14.14(81)y, (85)y, given
in Eq. (45).

(vi) Our procedure for obtaining the axial form factor,
GA(0Q?%), in the continuum limit is discussed in
Sec. III B. The final parametrization is given in
Eq. (32), the covariance matrix of the fit in Eq. (33),
and the corresponding values of g, = 1.281(53) and
(r3) = 0.498(56) fm? in Eq. (34). The overall final
values from the analysis of G4 are given in Eq. (36).

A comparison of lattice results from various collabora-
tions for all the above quantities was presented recently in
Ref. [7]. The charges g, 7 have also been reviewed by
FLAG [5,6]. Since then, new results have been presented in
Refs. [27-29,32]. The full list of relevant publications
that have included Nz states in the analysis of ESC and
checked whether form-factors satisfy the PCAC relation
are [7,10,24,26,28,29]. We first summarize the results and
the important features in each of these calculations, and
then show a comparison of G4 (Q?) obtained by the various
collaborations in Fig. 20. Results for the charges are
compared in Table VI.

The observation that the form factors extracted using
the spectrum from the nucleon 2-point function fail to
satisfy the PCAC relation Eq. (17) was made in Ref. [9].
The possible cause, enhanced contributions of multihadron
(Nr) excited states in the axial channel was proposed by
Bar [12] using a yPT analysis. This was confirmed using
the data for the three-point function with the insertion of the
A, current in Ref. [10]. This data-driven analysis, including
only the lowest Nz excited state, found that the ESC to the
Gp(Q?) and Gp(Q?) form factors were about 35%, while
that in G4(Q?) could be O(5%) as the latter is affected
only at one-loop in yPT [11,12]. The smallest Q> data in
Tables XVII and XXII in Appendix C for the two physical
mass ensembles a09m130W and a06m135 show ~5%,
~45% and ~45% difference between the Sy, and Sgp,

values. A ~ 5% level of effect in G, (Q?) is also consistent
with what is observed in the axial charge g, extracted from
the forward matrix element as shown in Table XXXI in
Appendix F.

A brief comparison of our results with other lattice
calculations published in [7,24,26-29] is as follows.

The RQCD collaboration [24] has extracted G,(Q?)
from a two-state fit to thirty-six 2 + 1-flavor Wilson-clover
ensembles generated by the coordinated lattice simulations
(CLS) collaboration. The G»(Q?) and Gp(Q?) are, on the
other hand, extracted using a 3-state fit in which the first
excited state energies are fixed to be the noninteracting
energies of the lowest Nz state and the second excited
state energies are taken to be the first excited state (values
higher than N(1440)) given by fits to the 2-point nucleon
correlators. While their form factors satisfy the PCAC
relation, they are equally well fit by the dipole ansatz and
7413 (i.e., 2> with sum rule constraints). The axial charge
ga = 1.302(86) from z-expansion (fit labeled !z*3) is
larger than g, = 1.229(30) from dipole (labeled !2P)
with the latter agreeing with that from the forward matrix
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FIG. 20. A comparison of the isovector axial form factor
GA(Q?) at the physical point obtained using a z-expansion fit
by the RQCD [24] (light faun band), ETMC [26] (light tan band),
NME [7] (tan band), Mainz [28] (brown band) collaborations
and this work (turquoise band). The G, extracted using the
v-deuterium bubble chamber scattering experiments data [22] is
shown by the gray band and labeled vD in the lower panel.

element. The corresponding difference in (%) is 0.449(88)
versus 0.272(33) fm?. Results for g}, [8.68(45) versus 8.30
(24)] and for g vy [12.93(80) versus 14.78(1.81)] are
consistent. They have recently [25] updated their results
for g4 s based on the analysis of 47 ensembles. We quote
these new values in Table VI.

The preferred estimates from the ETM collabora-
tion [26] are from a single 2 + 1 4 1-flavor physical
mass 64° x 128 ensemble at a ~ 0.8 fm. For the analy-
sis of G4(Q?), they take excited-state energies from the
2-point function and find (r3) = 0.343(42)(16) fm?.
Their result for g, = 1.283(22) is obtained from the
forward matrix element extracted without including
possible contamination from Nz states. When results
from the direct calculations of Gp(Q?) and Gp(Q?) are
used, the three form factors show large deviations from
the PCAC relation which they attribute partially to
large discretization errors in their twisted mass formu-
lation [33]. Consequently, they quote final estimates of
Gp(Q?) derived from G,(Q?) using the pion-pole
dominance hypothesis, i.e., the quoted G, is not
independently determined.

The NME collaboration [7] analyzed seven ensembles
generated with 2 + 1-flavors of Wilson-clover fermions.
They make a simultaneous fit to all five correlation
functions with insertion of the axial, A,, and pseudoscalar,
P, currents, i.e., same as the S, strategy used in this
work. The A4 correlator provides the dominant contribution
to fixing the excited-state energies which turn out to be
close to the lowest Nz states as also discussed in this
paper and in Ref. [10]. The resulting form factors satisfy
the PCAC relation to within ten percent. Observing only
a small dependence of G,(Q?) on a and M,, they
provide a continuum parametrization of G,(Q?) neglect-
ing these effects, and thus underestimate the uncertainty.
This G4(Q?) is reproduced in Fig. 20. The value of the
axial charge without including Nz state is g4 =
1.242(46)(42) and including it gives 1.32(6)(5). Their
other results are (r5) =0.428(53)(30) fm?, g5 =7.9(7)(9)
and g,y = 12.4.(1.2).

The Mainz Collaboration [28] analyze fourteen 2 +
1-flavor Wilson-clover ensembles also generated by the
coordinated lattice simulations (CLS) collaboration. They
obtain a parametrization of G 4(Q?) in the continuum from
a single combined fit—summation method for dealing
with ESC and the z? fit for the Q? behavior. This result
is shown in Fig. 20 and from it they get g, = 1.225(39)(25)
and (r3) = 0.370(63)(16) fm?.

The PACS collaboration [29] has analyzed one physical
pion mass ensemble with a large volume (1284, ie.,
(10.9 fm)*) at @ = 0.085 fm and get g, = 1.288(14)(9).
Remarkably, they find that sources with exponential
smearing for the generation of quark propagators, in
contrast to Gaussian smearing used by all other calcula-
tions, leads to essentially no excited-state effects. The
limitation of this calculation is only 20 configurations,
each separated by 10 molecular dynamics trajectories,
were analyzed. Most likely, this total of 200 trajec-
tories represents less than one unit of autocorrelation
time. Consequently, the errors are likely underestimated.
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Since no parametrization of G,(Q?) was presented, we do
not include their results in the comparison.

Phenomenologically, the most important quantity needed
for the analysis of neutrino oscillation experiments is
G4 (0Q?), and we show a comparison of results from various
lattice collaborations in Fig. 20 along with the extraction
from the v-deuterium bubble chamber scattering experiments
[22]. In all cases, except ETM, the data are extrapolated to the
physical point and then fit using a truncated z-expansion. The
bands in Fig. 20 overlap indicating that the lattice results are
consistent within one sigma and the envelope of the bands
suggests a roughly 10% uncertainty throughout the range
0 < 0% < 1.0 GeV?. The other significant observation is
that the lattice results fall slower than the phenomenological
extraction (the vN band) for Q° > 0.3 GeV>.

When comparing these lattice data, it is important to
note that the various collaborations handle various sys-
tematics differently. These systematic effects will become
clearer and the analysis more robust as the precision of
the data increases. Similarly, recent calculations including
Nr states in a variational basis of interpolating operators
[34] is a step forward in providing further insight into the
excited states contributions and developing better meth-
ods for removing them.

What has become clear is that Nz states need to be
included in the analysis for the three form factors, and
satisfying the PCAC relation (17) is an essential and
necessary condition. The questions that remain for higher
precision are how many multihadron states need to be kept in
the spectral decomposition for a given precision and the size
of their contributions. The roughly 10% spread in the lattice
results compared in Fig. 20 will be reduced with much higher
statistics data that will be available over the next few years,
and better analyses of excited states contributions.

ACKNOWLEDGMENTS

We thank the MILC collaboration for providing the
241+ 1-flavor HISQ lattices used in this study.
The calculations used the Chroma software suite [35]. This
research used resources at (i) the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-ACO02-
05CH11231; (i) the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility
supported under Contract No. DE-AC05-000R22725,
through awards under the ASCR Leadership Computing
Challenge (ALCC) program Project No. LGT107 and
Innovative and Novel Computational Impact on Theory
and Experiment (INCITE) Grant No. HEP133; (iii) the
USQCD collaboration, which is funded by the Office of
Science of the U.S. Department of Energy; and
(iv) Institutional Computing at Los Alamos National
Laboratory. T. B. and R. G. were partly supported by the
U.S. Department of Energy, Office of Science, Office of High

Energy Physics under Contract No. DE-AC52-06NA25396.
T.B., R.G., and B. Y. were partly supported by the LANL
Laboratory Directed Research and Development (LDRD)
program.

APPENDIX A: DETERMINING THE NUCLEON
SPECTROM FROM C?(f)

To extract the nucleon spectrum, we make two kinds of
fits to the spectral decomposition of C?(¢). The first is a
frequentist (labeled F) multiexponential fit, i.e., without
any priors. It is a three-state fit for a =~ 0.06,0.09 fm
ensembles, and two-state for a ~ 0.12,0.15 fm ensembles.
These frequentist results (n, = 2 or 3) are compared against
empirical Bayesian four-state fits (n, = 4) in Table VII, and

TABLE VII. Comparison of the ground state nucleon mass
obtained from fits to the dispersion relation, E; = (M2 +
¢2p? with M{?" from zero-momentum two-point correlator. Here
ng is the number of states kept in the fits with n, =2 or 3
implying a frequentist fit and n, =4 implying an empirical
Bayesian fit. The speed of light ¢2, the y>/d.o.f. and p-value are
for the fits to the dispersion relation, which are shown for the
a09m130W and a06m135 ensembles in Fig. 22.

D ng  aMP aMy*P & pJdof. p
al5m310 4 0.830221) 0.8304(21) 0.930(12) 137  0.195
al5m310 2 0.8315(20) 0.8319(19) 0.936(11) 096  0.474
al2m310 4 0.6660(27) 0.6662(26) 1.001(14) 0.62  0.777
al2m310 2 0.6715(13) 0.6716(13) 1.001(09) 0.73  0.685
al2m220L 4 0.6125(21) 0.6135(17) 0.995(15) 0.39  0.940
al2m220L 2 0.6187(10) 0.6187(10) 1.013(07) 0.67  0.741
al2m220 4 0.6080(31) 0.6086(30) 0.989(27) 033  0.967
al2m220 2 0.6151(14) 0.6152(14) 1.001(10) 091 0515
al2m220S 4 0.6039(52) 0.6110(41) 0.97029) 1.19  0.297
al2m220S 2 0.6194(26) 0.6204(24) 0.997(21)  0.69  0.718
a09m310 4 0.4951(14) 0.4959(13) 1.027(13) 172  0.078
a09m310 3 0.4952(15) 0.4961(13) 1.024(14) 096  0.473
a09m220 4 0.4495(20) 0.4513(15) 1.020(16) 036  0.955
a09m220 3 0.4514(16) 0.4528(13) 1.021(14) 0.53  0.857
a09m130W 4 0.4208(17) 0.4221(16) 0.978(31) 077  0.647
a09m130W 3 0.4213(18) 0.4225(17) 0.981(31) 1.12  0.342
a06m310 4 0.3248(30) 0.3257(28) 0.996(42) 097 0422
a06m310 3 0.3305(21) 0.3319(19) 1.059(25) 0.80  0.524
a06m310W 4 0.3277(18) 0.3296(16) 1.025(22) 2.11  0.077
a06m310W 3 0.3289(16) 0.3303(14) 1.030(19) 2.14  0.073
a06m220 4 0.3036(19) 0.3035(19) 0.926(52) 026  0.902
a06m220 3 0.3065(17) 0.3060(16) 0.987(42) 122  0.299
a06m220W 4 0.3030(21) 0.3045(17) 1.033(40) 0.51  0.730
a06m220W 3 0.3047(14) 0.3053(13) 1.027(25) 033  0.858
a06m135 4 0271424) 02716(22) 0.857(48) 048  0.886
a06m135 3 0.2735(16) 0.2737(16) 1.008(35) 033  0.967
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FIG. 21. Top: the first excited state mass, M<3), from the

frequentist 3-state (or 2-state) fit. The mass differences M(24) -
M (13> and M (14> -M <13> are shown in the second and third panels.
The difference in the ground state mass, Mg”
the bottom panel.

- Mé3), is given in

their difference is shown in Fig. 21 (bottom panel). We
observe that
(i) The ground state masses from the F- and B-fits
given in Table VII are consistent within one com-
bined o. There is, however, a small but systematic
shift with M (()4) < M(<)3), indicating near convergence.
The deviations are 10 MeV on all except al2m220S
and a06m310 ensembles, where they are 20-30 MeV.
Overall, the B-fit values are smaller.

E?[GeV?

5 a06m135, s4 rem
‘ a09m1?‘>0VV, s4 B
0 0.2 0.4 0.6
p? [GeV?]

FIG. 22. The plot of E? obtained from the Bayesian four-state
fit versus p?® for the a09m130W (squares) and a06m 135 (circles)
ensembles. The slope gives the speed of light, ¢? listed in
Table VII. It shows significant deviation from unity for the
a06m135 ensemble. Note that the blue line lying above most
square points is a consequence of including the full covariance
matrix.

(i1) For all except the al5m310 and a06m135 ensem-
bles, the E? obtained from the four-state Bayesian
fit satisfy the relativistic dispersion relation, i.e.,
the speed of light, ¢?, is consistent with unity to
within 16. The fits for the a09m130W and a06m135
ensembles are shown in Fig. 22.

The analysis of the first excited state mass from fits to the
three-point correlations functions has been presented in
Sec. I D. Here we study its extraction from the spectral
decomposition of C?P'(t):

CP(t) = aoe_EO’{l + Z bke_<Ek_E0>’}, (A1)

k=1

where the coefficients a and b, are positive definite since
the same interpolating operator is used at the source and the
sink. Starting from the definition of the effective mass

C(1)

C(t+1) (A2)

m(1) = log

one can derive, using the symmetric lattice derivative
df(t)/dt — (f(t+1) = f(t—1))/2, a series of effective

masses m")
eff

d
met == 1og C(1) (A3)
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Me (1)

meft(t)

- HH:H

30

FIG. 23. Data for the effective masses mi'gf) , defined in Eq. (A4), from the a06m135 two-point correlators. Top panel shows results for
p = 0 with the E,_; in Eq. (A4) taken from the four-state fit (left) and three-state fit (right). These input energy levels E,, are shown by
the dashed lines with yellow error bands. The red plus, green square, and blue circle symbols correspond to mgfg with n =0, 1, 2,
respectively. The bottom panel shows mgg forp = 2zn/L,n = (1,0,0). In the bottom right panel, E is taken from the four-state fit and
E, = Ey+ 2M, (solid black line) is assumed.

n n—1 d n—1
mgff? = m((eff = Elog<m§:ff ) - E,_) (Ad)
by (Ex—Eo) - (Ex—E,1) g _
1 1 " (Ex—Ey)t =1,2..). A
o8 { " Z b (E EO (En - En—l) ‘ 7 (n o ) ( 5)

that should approach a plateau from above at a sufficiently (i) The estimate of E; is slightly larger from the 3-state
large time ¢ and give the energy levels E,. To determine fits. Again, this is expected since the fits give

mg’f) (1), one could take the E, from a multi-exponential fit, “effective” E; that partly incorporate the contribu-
tions of all the higher states neglected in the fits.

with n limited by the statistical quality of the data. Note that . . 1 . .
no prior information of the overlap factors @, and b, is (if) The time #, when mg; (1) reaches the estimate E, is
roughly constant, 0.7 fm.

: (n)
required to calculate e (1). (iii) The signal in méﬁ (t) becomes noisy for t > 1, i.e.,
These effective masses for the a06m135 ensemble are before confirmation of it havmg plateaued
shown in Fig. 23 for the lowest two momenta and compared (iv) Estimates of M( ) and M( for the two physical pion

with when the E; are taken from a four- (left panels) versus
three-state (right panels) fits with values given by the black

lotted in Fig. 21 istent with the N(1710
dashed lines with yellow error bands. The fit parameters Ex(;it::d lsriatég or a) ngrerlgﬁlr;stlizsnofvrﬁe N(el 4 4(0) an()i
3) ’

and the first excited state masses, M 54) and M,”, are given N(1710) as they overlap within their widths, I' ~
in Table VIII. We note that 300 and 100 MeV.

mass ensembles (see Table VIII and M g ) —M(l3
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TABLE VIII. Results for M; from the four-state empirical
Bayesian fit (4s) and the three-state frequentist fit (3s). For
ensembles with a ~ 0.12,0.15 fm, a two-state frequentist fit is
performed, nevertheless, we keep the label “3s” for brevity. The
second column gives the approximate time #; at which the mi}f)
reaches the first excited state energy E; given by the four-state fit.
The time interval used in the four- (three-) state fits to C?P'(%) is
given in the third (fourth) column. These fit ranges were chosen
individually for each case balancing between keeping the
maximum number of points with signal in the effective mass
plot and the y?/d.o.f.

Ensemble ID 7,/a 4s [tmins fmax]) 35 [fmins fmax) M(IA) GeV Mgz) GeV

al5Sm310 4 1, 10] [1,10]  2.0406) 2.22(03)
al2m310 6 [2,15] [2,10]  1.58(09) 2.51(05)
al2m220S 6  [2,15] 2, 10] 1.50(08)  2.40(08)
al2m220 6 [2,15] [1,12]  1.63(12) 2.39(02)
al2m220L 7 [2,15] [2, 14]  1.69(18) 2.40(03)
a09m310 7 [2,18] [2, 18]  2.06(13) 2.09(16)
a09m220 9 3, 14] 12, 20] 1.72(09)  2.00(10)
a09mI130W 7 [4, 20] [2,20]  1.76(09) 1.82(09)
a06m310 12 [7,30] [3,30]  1.65(11) 2.09(14)
a06m310W 8  [4, 25] [2,25]  2.05(15) 2.37(15)
a06m220 13 [7,30] (3, 30] 1.87(08)  2.10(06)
a06m220W 11 [4, 20] [2,25]  1.82(15) 221(11)
a06m135 12 [6,30] [2,25]  1.69(11) 1.85(05)

(v) Estimates of E, and mgf) (t) from 3-state fits are not

reliable.
(vi) In the bottom right panel of Fig. 23, we input E; =
Eq+2M, (solid black line) to study impact on

m&?(r) Estimates of mgg(t) are not changed but

mgf) () shows a much more rapid fall. The signal is,

however, poor and dies before any conclusion can be
reached.
Overall, this analysis highlights the challenge of deter-
mining the excited state energies E; from fits to C*'(¢) and
making an association with physical states.

APPENDIX B: EXTRAPOLATION OF THE
NUCLEON MASS My TO THE PHYSICAL POINT

Here we revisit the extrapolation of the nucleon mass
My(a, M2, ML) given in Table VII to the physical point
and extend the discussion in the Appendix B in Ref. [19].
We use the following CCFV ansatz:

My = co + cra + cra® + c3M2 + cyaM> + csMZe ™M=,
(B1)

Results and the fit parameters c¢; for various truncations
of this ansatz are given in Table IX. The AIC score is
defined as AIC =2k —2log(L) =2k + y* + constant where
k is the number of parameters and L is the likelihood
function. When quoting AIC scores, we drop the irrelevant
constant. The CCFV fits F1 and B1 are shown in Fig. 24.
Our analysis indicates

(i) The CCFV fits, F1-F4, to the M{" data give slightly

4)

smaller continuum My than fits to M, even though

Mf)3> > Mé4) as shown in Fig. 21 (bottom panel) for
each of the thirteen ensembles.

(ii)) Only FI1 (My =0.939(12) GeV) and BI
(My = 0.945(16) GeV) fits give estimates consis-
tent with the physical value of My = 939 GeV. The
other fits give 25 MeV higher values.

(iii) The F3 and B3 fits, which include the higher order
M3 term give a ¢, that is roughly consistent with the
#PT prediction ¢4 = 3¢3/(327F2) = =5.716. On
including a” and/or finite volume correction terms
in addition to the M> term, c, remains consistent
with the yPT prediction for F1, F2, and F4 fits but
becomes smaller for B1, B2, and B4.

(iv) The finite volume coefficient, cs, is not well deter-
mined in any of the fits. Without it, fits F1 and B1
have small p-value but give results consistent with

TABLE IX. Summary of CCFV fits to My(a, M2, ML) using Eq. (B1). Fits F1-F4 are to the frequentist (3-state or 2-state) data

labeled M83> in the text, and B1-B4 are to the 4-state empirical Bayesian fit data and labeled Mg”. To make the interpretation of
coefficients ¢; defined in Eq. (B1) easier, we give both the functional dependance within square parentheses and the units. The results for

M(<J4> are the same as in Ref. [19], except for a small change in a06m135 value due to increased statistics. Fits corresponding to the B2
and B4 were given in Table XV in Ref. [19] (labeled B1 and B2 there) and led to My = 0.976(20) GeV and 0.972(6) GeV, respectively.

The table also gives the AIC score and the p value of the fits.

Fit My GeV y?/do.f. p AIC ¢y[l] GeV ¢ la] GeV fm™! ¢,[a?] GeV fm™2 c3[M2] GeV™! ¢,[M}] GeV™? ¢5[FV] GeV™!

F1 0.939(12) 2.187 0.025 27.5 0.878(013) 0.41(25)
F2 0.954(14) 1.758 0.091 24.3 0.895(015) 0.11(28)
F3 0.968(04) 2.686 0.004 32.2 0.904(008)  —0.23(04)
F4 0.969(04) 1.686 0.096 23.5 0.908(008)  —0.19(04)
B1 0.945(16) 1.109 0.353 18.9 0.896(017) 0.27(32)
B2 0.968(20) 0.675 0.693 16.7 0.922(021)  —0.16(38)
B3 0.972(05) 1.318 0.221 19.9 0.921(009)  —0.28(04)
B4 0.970(05) 0.592 0.785 14.7 0.924(009)  —0.20(05)

~3.2(12) 4.24(38) —6.5(1.0) -
~1.6(1.4) 4.07(38) ~5.9(1.0) —6.0(2.6)
e 4.53(36) ~7.3(9) e
. 4.13(38) —6.0(1.0) —7.4(2.3)
-2.6(1.5) 3.18(46) ~3.6(1.2) .
—0.2(1.9) 2.86(48) —25(1.3)  —104(5.1)
e 3.35(44) —42(1.2) .
2.86(48) —25(1.3)  —10.7(4.0)
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FIG. 24. The result of the chiral-continuum (CC) fit (no finite
volume term) to the nucleon mass M (()4) (B1 fit in Table IX) (top
panel) and ME)3) (F1 fit in Table IX) (bottom panel) is shown by
the red line with the error band. The data for B1 and F1 fits given
in Table VIII are plotted versus M2 after shifting them in a to
a = 0 using the CC fits. The CC fit is also shown versus M2 with
a set to a = 0.06 fm (blue dashed line), 0.09 fm (orange dotted
line), 0.12 fm (green dotted line), and 0.15 fm (purple dash-dot
line). In a perfect fit, these curves should pass through points with
the same color, i.e., with the same lattice spacing a.

the experimental value. Including it, the p-value of
F2 and B2 fits improves to an acceptable level, but
the coefficients of the lattice spacing dependence,
¢y and ¢,, become less well determined. Neglecting
the ¢, term (F4 and B4 fits), the ¢, becomes well deter-
mined, while the other c; are essentially unchanged.

In these cases, the ~25 MeV shifts in the My from
the F1 or B1 fits persist.
Overall, with the current data, we are not able to determine

whether Mf)a) or M(()4) give better estimates of the ground
state nucleon mass. Also, we can at best make four-state
fits to the two-point function and three-state fits to the
three-point functions.

APPENDIX C: DATA FOR THE FORM
FACTORS VERSUS Q?

The unrenormalized values of the form factors G, Gp,
and G, at the various Q? values simulated on the thirteen
ensembles and extracted using the three excited-state
analysis strategies Sgm, Sa4, and Sy, defined in Sec. II
are given in Tables X—XXII. Since the behavior of the data
for the four correlation functions varies significantly with
Q? and the 13 ensembles, we could not develop a simple
prescription for making the fits. These O(1000) fits were
done individually over a three year period. In addition to the
energies E; and amplitudes A;, one has to select two
additional parameters in each of the fits: (i) the number
of points, 7y, skipped next to the source and sink at which
the ESC are the largest and (ii) the values of source-sink
separation 7 used in the fit. For these we made the following
common choices: (i) Zyj, was taken to be the same for all
values of 7 used in a given fit; (ii) in all fits we used data
with the largest three values of 7 for which the errors were
comparable to or smaller than the difference between the
central values. In most cases these were the largest three
values of 7 simulated.

The full covariance matrix was used for all fits to the
3-point functions with the Sy, and S,y strategies and for
the 2-point functions. In the simultaneous fits (S,
strategy), we restricted the covariance matrix to be block
diagonal in each correlation function.

A rough estimate of the size of contributions of the Nz
state can be obtained from the difference between results
with Sy, and S, (or Su4) strategies in the following

tables. In particular, the smallest 0? data for the two

TABLE X. The bare form factors G, Gp, and Gp versus Q2 for

the 3 strategies Sgm, Sas» and Sy on ensemble al5m310.

G, Gp Gp

Q2 [GeV] Ssim SA4 SZpt S sim SA4 SZpl Ssim SA4 SZpl
0.252(00) 1.007(008) 1.010(009) 0.993(006) 12.53(22) 12.89(23) 11.01(14) 15.12(24) 15.56(23) 13.14(15)
0.483(01) 0.842(007) 0.842(007) 0.822(007) 6.388(126) 6.433(102) 5.827(093) 8.115(143) 8.162(105) 7.386(097)
0.703(02) 0.720(007) 0.720(010) 0.690(008) 3.967(071) 4.046(104) 3.647(072) 5.255(095) 5.357(105) 4.939(081)
0.911(06) 0.648(017) 0.657(020) 0.614(017) 2.890(132) 2.915(148) 2.553(094) 4.080(172) 4.071(160) 3.559(097)
1.102(07) 0.593(011) 0.587(013) 0.561(011) 2.144(082) 2.065(090) 1.978(061) 3.184(133) 3.046(105) 2.856(088)
1.297(09) 0.520(006) 0.524(011) 0.491(013) 1.560(045) 1.613(076) 1.590(078) 2.341(063) 2.418(090) 2.369(117)
1.637(22) 0.450(017) 0.476(025) 0.469(023) 1.018(062) 1.119(087) 1.119(103) 1.662(082) 1.793(118) 1.640(121)
1.803(22) 0.439(029) 0.449(034) 0.452(023) 0.999(106) 1.028(124) 1.050(104) 1.444(133) 1.489(148) 1.290(207)
1.790(29) 0.543(114) 0.458(039) 0.395(056) 1.215(356) 1.002(135) 0.959(204) 1.557(428) 1.121(319) 0.995(972)
1.917(31) 0.428(108) 0.437(024) 0.379(046) 0.911(353) 0.938(085) 1.225(153) 1.455(505) 1.354(166) 1.293(322)
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TABLE XI. The bare form factors G, Gp, and Gp versus Q2 for the 3 strategies S, Sqs, and Sy on ensemble al12m310.

G, Gp Gp
0?(GeV] Ssim Sas Sopt Ssim Saa Sapt Ssim Sas Sapt
0.176(00) 1.086(011) 1.086(011) 1.050(014) 18.01(29)  17.84(38) 16.51(56) 22.32(36)  22.08(41)  21.15(86)
0.342(01) 0.948(010) 0.937(009) 0.905(013) 9.817(153) 9.501(169) 9.493(281) 12.67(20) 12.27(19)  12.02(33)
0.498(02) 0.844(011) 0.842(012) 0.787(016) 6.505(106) 6.411(155) 5.954(199) 8.635(154) 8.499(206) 8.309(252)
0.646(03) 0.764(013) 0.763(014) 0.686(022) 4.664(087) 4.600(138) 4.124(189) 6.478(133) 6.385(194) 5.863(191)
0.787(04) 0.694(011) 0.691(012) 0.639(016) 3.504(088) 3.454(113) 3.246(123) 4.957(127) 4.891(157) 4.301(162)
0.920(05) 0.649(011) 0.666(013) 0.576(019) 2.882(118) 3.006(076) 2.399(168) 4.015(150) 4.161(106) 3.424(180)
1.178(09) 0.533(010) 0.550(017) 0.506(025) 1.684(068) 1.818(110) 1.651(126) 2.606(074) 2.731(163) 2.433(222)
1.293(10) 0.472(031) 0.463(040) 0.465(025) 1.296(193) 1.295(214) 1.469(150) 2.056(173) 2.048(221) 1.659(259)
1.315(19) 0.462(016) 0.538(047) 0.482(336) 1.175(083) 1.609(253) 1.264(1.241) 2.104(152) 2.446(317) 1.680(546)
1.435(18) 0.471(013) 0.488(032) 0.462(044) 1.224(066) 1.293(138) 1.438(258) 1.908(087) 1.984(223) 0.840(515)
TABLE XII. The bare form factors G4, Gp, and Gp versus Q2 for the 3 strategies Sy, Sas, and Sope On ensemble al2m220S.
G, Gp Gp

0?(GeV] Siim Sas Sapt Siim Sas Sapt Sgim Sas Sopt
0.175(01) 1.129(033) 1.123(034) 1.084(020) 19.73(92) 19.75(1.08) 16.14(69)  26.03(1.19) 26.27(1.49) 21.67(96)
0.339(03) 0.918(037) 0.920(033) 0.912(020) 9.517(656) 9.580(552) 8.373(527) 14.44(1.11)  14.83(98) 12.60(91)
0.490(06) 0.814(031) 0.821(044) 0.766(027) 5.271(346) 5.634(304) 5.165(360) 8.344(603) 9.064(487) 8.620(681)
0.636(09) 0.749(120) 0.749(044) 0.705(037) 4.284(877) 4.166(328) 3.744(288) 6.528(1.027) 6.563(449) 6.237(399)
0.773(10) 0.629(039) 0.646(041) 0.640(024) 3.016(409)  3.123(268) 2.743(171) 7.386(2.229) 6.484(705) 5.342(341)
0.909(13) 0.587(069) 0.627(045) 0.593(028) 2.568(343) 2.763(309) 2.276(212) 4.458(804)  4.516(556) 3.919(353)
1.178(23) 0.461(144) 0.514(062) 0.502(041) 1.110(705) 1.689(269) 1.515(176) 2.710(222) 3.422(587) 3.156(390)
1.307(25) 0.467(115) 0.571(059) 0.511(039) 1.116(1.966) 1.810(250) 1.480(193) 2.183(5.142) 2.986(644) 2.890(476)
1.238(33) 0.509(049) 0.551(077) 0.555(068) 1.247(181) 1.605(316) 1.499(288) 2.975(858) 3.966(821) 3.586(682)
1.358(36) 0.415(037) 0.425(135) 0.440(050) 0.771(163)  0.712(764) 0.890(225) 2.597(424) 3.625(1.536) 2.818(614)

physical mass ensembles a09m130W and a06m135 in The values of Q% = |p|> — (E—M)?> given in the

Tables XVII and XXII show ~5%, ~45%, and ~45%
differences between the Sy and S, values for Gy, Gp,
and Gp, respectively. A ~ 5% level of effect in G,(Q?)
is also consistent with what is observed in the axial charge
g4 extracted from the forward matrix element between
“3-RD” and “3*” strategies as shown in Table XXXI
in Appendix F.

first column show that for a given gauge coupling f
(approximately constant a) and keeping M,L constant,
for example, in the three a ~0.09 fermi ensembles, the
values of Q? decrease as M, — 135 MeV. This is because
p =2xn/La decreases as L is increased to keep the
parameter controlling the finite-volume effects, M L,
constant. The same decrease happens if L is increased at

TABLE XIII. The bare form factors G4, Gp, and Gp versus Q2 for the 3 strategies S, Sy4, and Sy on ensemble al2m?220.

G, Gp Gp
’Ssim SA4 ’SZpt S sim SA4 ’SZpt Ssim ’SA4

1.174(020) 1.169(021) 1.145(017) 28.84(1.16) 28.37(1.27) 24.11(1.40) 38.36(1.42) 37.84(1.55)
1.033(014) 1.041(017) 1.031(022) 15.55(42)  15.93(52)  14.53(97) 21.95(58)  22.23(66)

0.954(017) 0.956(017) 0.930(021) 10.75(34)  10.9334)  9.9948)  15.17(47)  15.30(49)

0.908(017) 0.911(017) 0.900(021) 7.975(219) 8.011(221) 7.498(345) 11.51(34)  11.43(34)

0.834(014) 0.836(016) 0.812(021) 6.182(192) 6.168(240) 5.752(262) 9.135(300)  9.236(356)
0.784(018) 0.787(021) 0.749(024) 4.988(200) 5.142(246) 4.601(249) 7.746(282)  7.955(344)
0.690(015) 0.730(029) 0.671(028) 3.404(152) 3.746(303) 3.246(219) 5.518(262) 6.051(497)
0.686(028) 0.705(033) 0.644(031) 3.213(252) 3.323(218) 2.850(237) 5.606(475) 5.833(388)
0.676(043) 0.711(035) 0.643(045) 3.147(203) 3.077(357) 2.885(321) 5.421(360) 5.058(541)
0.655(023) 0.671(025) 0.622(036) 2.579(184) 2.562(240) 2.693(266) 4.085(261)  4.115(295)

0%[GeV]

0.105(00)
0.206(02)
0.301(02)
0.391(03)
0.482(04)
0.568(05)
0.732(08)
0.808(10)
0.806(12)
0.884(12)

SZpt

32.00(2.09)
20.38(1.43)
13.78(59)
10.44(41)
8.444(356)
6.803(348)
5.145(361)
4.690(377)
4.995(556)
3.753(470)
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TABLE XIV. The bare form factors G4, Gp, and Gp versus Q? for the 3 strategies Sy, Saq» and Syp on ensemble al2m220L.

G, Gp Gp

0%[GeV] Ssim Sas Sopt Ssim Sas Sopt Seim Sus Sopt
0.067(0) 1.235(20) 1.259(16) 1.199(09) 39.90(1.21) 40.42(1.12) 30.88(2.09) 52.61(1.52) 52.68(1.37) 40.29(3.15)
0.132(0) 1.129(10) 1.150(09) 1.118(08) 24.34(55) 24.51(45) 20.55(1.17) 32.11(63) 32.17(53) 27.08(1.63)
0.195(0) 1.061(09) 1.078(08) 1.052(09) 17.24(36) 17.22(26) 15.09(68) 23.01(42) 23.01(32) 20.17(95)
0.257(1) 0.982(11) 1.008(09) 0.983(13) 12.68(41) 13.01(19) 11.58(44) 17.74(41) 17.98(27) 16.02(68)
0.316(1) 0.944(08) 0.961(09) 0.936(12) 10.34(21) 10.40(18) 9.30(27) 14.34(27) 14.43(22) 12.98(37)
0.374(1) 0.907(10) 0.921(13) 0.890(14)  8.719(155)  8.623(250)  7.765(203) 12.19(24) 12.11(31) 10.99(29)
0.487(2) 0.822(29) 0.839(09) 0.808(14) 6.264(153)  6.239(091) 5.576(124)  9.003(302) 9.046(132)  8.146(154)
0.541(3) 0.782(15) 0.802(12) 0.771(16)  5.503(129) 5.347(173)  4.894(126) 8.083(176)  7.852(241)  7.260(159)
0.541(3) 0.776(15) 0.797(10) 0.770(17)  5.152(168)  5.075(130)  4.883(130) 7.922(237) 7.606(199)  7.429(190)
0.595(33) 0.739(13) 0.766(09) 0.741(16)  4.549(105) 4.477(110)  4.264(120) 6.992(210) 6.920(168)  6.565(145)

TABLE XV. The bare form factors G,, Gp, and Gp versus Q? for the 3 strategies Sy, Saq, and Sope on ensemble a09m310.

G, Gp Gp

Q2 [GCV] Ssim SA4 SZpl S sim SA4 SZpl Ssim S A4 SZpt

0.183(00) 1.043(06) 1.043(06) 1.053(04) 17.38(22)  17.2720)  14.6030)  21.9021)  21.76(18)  18.35(35)
0.356(01) 0.894(06) 0.894(07) 0.907(06)  9.238(099) 9.231(105) 8.316(185) 12.36(14) 12.37(12) 11.24(25)
0.520(04) 0.793(09) 0.794(09) 0.795(12) 6.027(123) 6.047(103)  5.594(178)  8.372(148) 8.399(126)  7.931(253)
0.673(04) 0.714(09) 0.715(09) 0.717(09) 4.325(084) 4.313(082)  4.042(077)  6.225(108)  6.208(103)  5.776(086)
0.819(08) 0.647(07) 0.659(10) 0.652(09)  3.284(067) 3.370(079)  3.115(091) 4.889(103) 4.989(111) 4.620(103)
0.961(13) 0.602(07) 0.609(12) 0.591(13) 2.612(057) 2.710(084)  2.482(079) 3.938(082) 4.059(114) 3.834(106)
1.197(09) 0.531(14) 0.565(25) 0.521(09) 1.906(082) 2.028(121)  1.676(046) 3.116(126)  3.198(114)  2.781(063)
1.323(13) 0.498(10) 0.506(16) 0.489(08)  1.513(076) 1.601(093)  1.455(047) 2.535(120) 2.663(131)  2.455(123)
1.325(17) 0.449(12) 0.529(34) 0.482(24) 1.352(080) 1.687(162)  1.438(104) 2.312(138) 2.783(174)  2.319(131)
1.421(14) 0.481(23) 0.513(30) 0.470(11) 1.430(141) 1.519(146) 1.296(052) 2.435(240) 2.560(197) 2.216(111)

fixed a and M, to reduce finite-volume effects as is evident
from the data on the three ensembles, al2m220S,
al2m?220, and al2m220L. This is a simple kinematic
effect, i.e., the Q® for a given n decreases as the lattice
volume is increased. For fixed M, and M,L, the Q?
remains roughly the same when a is decreased toward
the continuum limit as we keep La, the lattice size in
physical units (fermi) constant. This can be deduced from
the data on the al2m310, a09m310 and a06m310

ensembles. In short, as lattice QCD calculations improve
(larger L, M, ~ 135 MeV, and a — 0), the Q? values (and
Q% ,pax for fixed 7|, = (3,1,0) in our case) decrease.
Thus, the standard method for calculations of form factors
used in this work will increasingly give more precise form
factors in the Q% < 0.5 GeV? region. Further algorithmic
developments are needed to push calculations with momen-
tum transfer squared up to Q% ~ 5 GeV? to meet the needs
of the DUNE experiment.

TABLE XVI. The bare form factors G,, Gp, and G versus Q> for the 3 strategies Sgm» Sy4, and Sy on ensemble a09m?220.

Q2 [GeV] Ssim SA4 SZpt Ssim SA4 SZpt S sim SA4 SZpt
0.086(0) 1.185(17) 1.181(17) 1.169(10) 34.73(1.00) 34.12(92) 27.06(88) 47.06(1.16) 46.25(1.03) 36.91(1.17)
0.169(0) 1.063(11) 1.060(11) 1.074(09) 19.29(39) 19.16(38) 17.17(48) 27.19(45) 27.01(45) 23.67(66)
0.248(1) 0.978(10) 0.974(10) 0.986(09) 13.11(25) 13.04(25) 11.99(30) 18.90(31) 18.85(30) 17.25(48)
0.324(1) 0.925(11) 0.922(11) 0.920(11)  9.940(202)  9.784(217)  8.960(227) 14.41(28) 14.19(27) 13.22(33)
0.398(2) 0.862(08) 0.859(09) 0.858(10)  7.665(141)  7.563(146)  7.158(154) 11.59(19) 11.46(19) 10.67(24)
0.470(2) 0.807(09) 0.806(09) 0.802(11) 6.165(119)  6.086(124)  5.736(134)  9.556(168)  9.451(172)  8.847(189)
0.608(4) 0.726(10) 0.725(10) 0.719(12)  4.401(081)  4.379(090)  4.142(101)  7.007(131)  7.020(136)  6.462(159)
0.674(4) 0.687(11) 0.694(11) 0.683(13) 3.807(084)  3.772(088)  3.532(104) 6.187(137)  6.169(135)  5.456(160)
0.671(5) 0.706(09) 0.711(14) 0.690(16)  3.882(070)  3.935(095) 3.538(131)  6.299(162) 6.333(165)  5.616(208)
0.736(5) 0.664(11) 0.677(12) 0.654(13) 3.351(105) 3.362(111)  3.147(102) 5.480(177) 5.473(176) 4.962(178)
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TABLE XVII. The bare form factors G4, Gp, and Gp versus Q2 for the 3 strategies Sy, Sa4» and Sy 0n ensemble a09m130W.

Gy Gp Gp
0?(GeV] Ssim Sas Sopt Ssim Sas Sapt Ssim S Sapt

0.049(0) 1.284(37) 1.281(35) 1.197(11) 66.90(4.61) 67.10(3.01) 38.95(1.00) 98.55(6.16) 98.65(4.23) 57.55(1.44)
0.097(0) 1.153(19) 1.15220) 1.141(10) 36.15(1.21) 34.92(94)  25.08(55)  55.27(1.97) 53.17(1.32) 38.23(92)
0.1430) 1.091(17) 1.092(17) 1.094(10) 24.32(73)  23.94(58)  18.69(42)  36.65(1.08) 36.14(80)  28.41(65)
0.189(1) 1.014(13) 1.022(17) 1.044(10) 17.42(36)  17.56(41)  14.58(32)  26.35(65)  26.32(59)  22.00(50)
0.234(1) 0.971(12) 0.976(13) 0.997(09) 13.8031)  13.76(28)  11.88(26)  21.34(49)  21.09(38)  18.08(34)
0.277(1) 0.942(13) 0.945(13) 0.957(10) 11.57(29)  11.55(24)  10.0023)  17.75(37)  17.7033)  15.51(32)
0.361(2) 0.877(11) 0.867(13) 0.881(12) 8.244(191)  8.044(197)  7.399(168) 12.84(24)  12.85(28)  11.71(26)
0.403(3) 0.839(13) 0.839(13) 0.847(13) 7.165(179) 7.100(180)  6.517(170) 11.25(28)  11.22(26)  10.30(25)
0.404(4) 0.824(18) 0.822(17) 0.827(19) 6.833(225) 6.806(241)  6.315(216) 11.02(41)  10.97(41)  10.21(35)
0.443(4) 0.804(14) 0.800(13) 0.804(15) 6.399(169)  6.150(203)  5.797(148) 10.24(25)  9.999(276)  9.110(269)

TABLE XVIII.  The bare form factors G4, G p, and G p versus Q2 for the 3 strategies Sgim» Saq, and Sope on ensemble a06m310W. Data
for Gp were, by accident, not saved.

0°[GeV] Ssim Sas Sapt Siim Sas Sapt Siim Sas Sapt
0.190(1) 1.022(21) 1.010(23) 1.033(17) 16.99(64) 17.19(68) 14.40(49)

0.365(2)  0.868(15)  0.857(18)  0.870(15) 8.793(230) 8.997(256) 7.911(221)
0.528(3)  0.780(22)  0.774(22)  0.770(20) 6.151(188) 6.149(210) 5.048(228)
0.690(5)  0.669(36)  0.696(34)  0.670(25) 3.913(403) 4.303(242) 3.543(257)
0.840(6)  0.599(29)  0.614(26)  0.614(19) 3.080(168) 3.243(205) 2.932(192)

TABLE XIX. The bare form factors G4, Gp, and Gp versus Q2 for the 3 strategies Sgim, Sa4, and Sy, on ensemble a06m310. Data for
Gp were, by accident, not saved.

G, Gp Gp
07(GeV] Sgim Sas Sapt Siim Sas Sopt Sgim Sas Sopt
0.189(01) 1.001(15) 1.007(23) 1.020(17) 15.67(72) 16.28(84) 15.11(64)

0.365(03) 0.853(10) 0.856(14) 0.880(17) 8.451(313) 8.635(228) 8.236(291)
0.532(07) 0.743(12) 0.745(17) 0.723(29) 5.441(168) 5.546(188) 4.964(297)
0.683(10) 0.677(12) 0.718(28) 0.663(32) 3.926(125) 4.409(216) 3.967(368)
0.846(12) 0.599(14) 0.618(21) 0.554(42) 2.929(088) 3.120(105) 2.762(240)

TABLE XX. The bare form factors G4, Gp, and Gp versus Q? for the 3 strategies S, Sas, and Sope 0n ensemble a06m220W. Data
for Gp were, by accident, not saved.

G, Gp Gp
Q2 [GCV] Ssim SA4 SZpl S sim SA4 SZpl S sim SA4 S 2pt
0.109(0) 1.161(48) 1.152(37) 1.124(21) 29.89(1.99) 30.67(1.62) 22.81(89)
0.213(1) 1.022(29) 0.999(23) 1.008(20) 15.51(71) 15.35(56) 13.64(40)

0.313(2) 0.909(24) 0.898(25) 0.901(27) 9.762(387) 10.030(490) 8.987(396)
0.412(6) 0.860(34) 0.860(31) 0.801(52) 7.669(431) 7.993(393) 6.817(437)
0.504(6) 0.777(27) 0.774(27) 0.762(35) 5.701(264) 5.694(253) 5.539(305)
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TABLE XXI. The bare form factors G,, Gp, and G versus Q> for the strategies S, Sq4, and Sop on ensemble a06m220.

G, Gp Gp
0°(GeV] Sim Sas Sopt Ssim Saa Sopt Ssim Sas Sapt

0.11000) 1.186(36) 1.149(34) 1.124(16) 30.75(1.54) 30.47(1.37) 21.36(66)  43.30(2.01) 42.85(1.66) 29.59(67)
0.216(1) 1.005(15) 0.973(20) 1.007(15) 16.04(47)  15.59(46)  13.08(36)  22.74(66)  22.14(54)  18.43(36)
0.318(2) 0.910(24) 0.862(20) 0.918(18) 10.53(42)  10.08(31) 9.228(312) 14.83(52)  14.93(41)  13.39(32)
0.414(5) 0.823(23) 0.807(22) 0.850(22) 7.449(289) 7.439(259) 6.917(272) 11.14(33)  10.98(35)  10.37(32)
0.509(6) 0.757(18) 0.754(19) 0.777(20)  5.807(188) 5.781(186)  5.295(199) 8.463(317) 8.621(274)  8.081(259)

TABLE XXII. The bare form factors G,, Gp, and Gp versus Q2 for the 3 strategies Sgm» Sa4, and Sope On ensemble a06m135.

Gy Gp Gp
07(GeV] Ssim Sas Sopt Ssim Sas Sopt Seim Sus Sopt

0.051(0) 1.201(51) 1211(56) 1.179(20) 59.23(4.34) 61.92(4.15) 35.54(1.42) 94.52(6.52) 99.18(6.04) 56.03(2.10)
0.102(1) 1.075(33) 1.075(34) 1.109(16) 32.30(1.88) 32.17(1.48) 22.04(64)  54.37(2.91) 54.56(2.25) 37.84(1.41)
0.151(2) 0.966(31) 0.966(34) 1.041(17) 20.25(1.02) 20.52(97)  16.21(55)  36.14(1.68) 36.60(1.55) 28.47(1.20)
0.198(2) 0.940(24) 0.948(25) 1.008(18) 15.71(74)  15.95(57)  13.47(48)  26.73(1.01) 26.96(85)  22.41(73)
0.246(3) 0.876(20) 0.877(22) 0.940(20) 11.82(47)  11.7541)  10.3331)  21.32(60)  21.32(66)  18.53(59)
0.294(4) 0.836(17) 0.838(21) 0.876(32) 9.153(297) 9.397(327) 8.750(352) 16.88(49)  17.34(54)  15.85(55)
0.386(6) 0.778(19) 0.782(18) 0.788(37) 6.977(212) 6.977(182) 6.705(320) 12.84(37)  12.8337)  11.73(44)
0.431(5) 0.755(19) 0.755(18) 0.740(34) 5.883(182) 5.862(188) 5.665(321) 11.17(34)  11.25(35)  10.39(46)
0.432(5) 0.739(22) 0.75021) 0.753(37) 6.129(219)  6.163(202)  5.909(331) 11.38(41)  11.3339)  10.79(56)
0.475(6) 0.71821) 0.736(19) 0.707(28)  5.386(184)  5.369(168)  4.757(193)  9.941(344)  9.931(313)  9.117(407)

APPENDIX D: RESULTS FOR g4, (r2), g5, AND g,y

The results for g,, <r§>, Ips GunnF . and g’%f” from the thirteen ensembles are given in Tables XXIII-XXV.

TABLE XXIII. Results for g4 and (r3) given by z2 fits to the =~ TABLE XXIV. Results for gp, guvy Fr, and guyyFr/My given
axial form factor, G,(Q?), obtained with the Sy, strategy. The by the “PD” fits [defined in Eq. (42)] to Gp obtained using S,

y%/d.of. and p-value of the fits are also given. strategy. The y*/d.o.f. and p-value of the fits are also given, and
F, and My are in units of GeV.

ID Ja (r3) y*/d.of. p

al5m310 1211(30)  0.229(11) 1.07 038 DD G gmwF.  MpEE p/dof. p
al2m310 1.209(40) 0.221(17) 0.29 094  a15m310 2.16(07) 1.24(05) 1.15(04) 0.92 0.43
al2m220L 1.246(43)  0.300(25) 2.39 001  al2m310  2.44(09) 1.33(06) 1.22(05) 061 0.6l
al2m?220 1.234(46)  0.292(28) 0.87 0.56  al2m220L  4.02(16) 1.23(05) 1.21(05) 134 023
al2m?2208S 1.331(80)  0.331(59) 0.25 096  al2m220  3.73(18) 1.14(06) 1.13(06)  0.68  0.69
a09m310 1.188(49)  0.250(11) 0.81 0.56  al2m220S  4.71(36) 1.47(13) 1.48(13) 046  0.71
a09m220 1.233(54) 0.297(21) 1.33 021 a09m310 2.37(10)  1.32(06) 1.20(05) 0.86  0.46
a09m130W 1.272(65) 0.446(72) 1.30 0.22  a09m220 3.98(18) 1.21(06) 1.19(06) 1.15 0.33
a06m310 1.158(44)  0.239(18) 0.56 074  a09ml130W 8.38(46) 1.19(07) 1.25(07) 1.05  0.39
a06bm310W  1.165(48)  0.221(24) 0.59 071 a06m310  220(13) 1.28(09) 1.16(07)  0.01  0.99
a06m220 1.300(59)  0.368(45) 0.69 0.63  a06m310W 231(16) 1.34(12) 1.20(11)  3.48  0.03
a06m220W  1.261(70)  0.311(50) 0.42 0.83  a06m220  4.38(29) 1.48(12) 143(12) 027  0.77
a06m135 1.349(85) 0.74(13) 0.63 0.71  a06m220W 4.16(38) 1.41(16) 1.37(15) 136 0.6

a06m135 8.35(70) 1.16(11) 1.23(11) 1.44 0.23
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TABLE XXV. The values of gp, givnFgr and goynF./My APPENDIX E: SUMMARY OF CCFV FITS
given by 22 fits to Sy, strategy data for Fp defined in Eq. (41).
The y?/d.o.f. and p-value of the fits are also given, and F, and
My are in units of GeV.

This appendix presents results after chiral-continuum-
finite-volume extrapolation for ¢4 and (r3) in
Table XXVI; gp in Tables XXVII and XXVIII; and

D g gewwFr  Ele 2/d0f p gevy in Table XXIX. All the data for G,(Q?) and
N ~ 2 . .
alsm310 22208) 13006) 12005 046 osa Op(Q) used were Obtalzned with the S strategy to
al2m310  2.46(09) 1.36(06) 12506) 045 085 remove ESC, and the Q7 behavior was fit using either
al2m220L  4.06(16) 1.26(06) 1.24(05)  0.92  0.52  the z* truncation [G,(Q?)] or the PD fit (Gp(Q?)) given
al2m220  3.81(20) 1.18(08) 1.16007) 047 091  in Eq. (42). The four parameters, by,3, define the
al2m220S ~ 4.62(32) 1.47(12) 1.48(12) 079  0.58  CCFV ansatz given in Eq. (29). The tables also give
a09m20 3'42(;0) 1'38(06) 1'55(06) 0.43 0.86  the y?/d.of., the p-value, and the Akaika information
a09m220 1120) - 1.28(07) 1.26(07) 0.66 0.76 criteria (AIC and AICc) [20] scores for the CCFV fit.

a09m130W  8.78(58) 1.28(10) 1.34(10) 0.73 0.70 . . . . .
206m310 220(13)  1.29009) 1.17(07) 023 0.95 The definition of AIC is given in Appendix B, and

a06m310W  2.29(11) 134(08) 1.20(07) 1.49 0.19 iIlCllldil’lg correction for small sample SiZCS, AICc is
a06m220  428(23) 14509) 14009) 042 084  defined as rmAICc=AIC + (2k* +2k)/(n— k- 1)
a06m220W  3.95(26) 1.33(10) 1.29(09) 0.91 0.48 where n is the number of data points and k is the
a06m135 8.39(73) 1.18(13) 1.25(13) 0.83 0.55 number of parameters.

TABLE XXVI. Summary of the parameters in the 13-point CCFV fit [Eq. (29)] to g4 and (ri ). The data used are given in Table XXIII.
These were obtained by fitting the Q2 behavior of G, obtained with the Sy, strategy, using the z> truncation. Details are given in
Sec. IIT A.

7*/d.of. p AIC AlICc by[1] by[a] fm™! b,[M2] GeV~? b3[FV] GeV~2

ga (obtained from G, with Sy, and z? fit) extrapolated using the 13-point CCFV fit
1.296(050) 0.254 0.986 10.3 153 1.332(058) 0.002(477) —1.967(719) 41.370(37.926)
1.277(047) 0.348 0.968 9.5 12.1 1.303(052) 0.284(402) —1.402(498) e
1.219(042) 1.037 0.410 154 16.6 1.219(042) 0.039(392) e
1.302(032) 0.361 0.971 8.0 9.2 1.326(040) e —1.325(486) X
1.248(027) 0.940 0.500 14.3 15.5 1.248(027) e —23.153(22.360)
1.223(013) 0.951 0.494 13.4 13.8 1.223(013) e

(r3) (obtained from G, with S, and z* fit) extrapolated using the 13-point CCFV fit
0.418(033) 1.310 0.225 19.8 24.8 0.457(040) —0.489(260) —2.169(449) 34.126(20.944)
0.384(025) 1.445 0.154 20.4 23.1 0.413(029) —0.168(170) —1.596(280) e
0.287(019) 4.267 0.000 50.9 52.1 0.287(019) —0.332(167) e
0.369(021) 1.403 0.164 19.4 20.6 0.399(025) e —1.643(276) e
0.298(013) 3.241 0.000 39.6 40.8 0.298(013) e —38.490(9.863)

0.251(006) 4.240 0.000 52.9 532 0.251(006)

TABLE XXVII. Summary of parameters values in the 13-point CCFV fit [see Eq. (29)] for obtaining gj. The data used are given in
Tables XXIV and XXV. In the top half, the quantity (Q*? + M2) gy = 2m,MyFp(Q*?), with Fp is defined in Eq. (41) and fit using z2, is
extrapolated, while in the bottom half (Q*? + M2)g; = (Q** + M2)(m,/2My)Gp(Q*?) is used. The extrapolated results are then
converted to g} by dividing by the physical value of (Q*? + M?2). Details are given in Sec. TV.

gp y*/d.of. p AIC AlCc byl[1] by[a] fm™! b,[M?%) GeV~2 b3[FV] GeV~2
g5 (obtained from F, with Sy, and fit using z?) extrapolated using the 13-point CCFV fit

9.300(459) 0.897 0.527 16.1 21.1 0.261(015) —0.117(124) —0.018(180) 6.359(9.373)

9.213(441) 0.853 0.577 14.5 17.2 0.257(013) —0.079(110) 0.067(129) e

9.301(408) 0.800 0.640 12.8 14.0 0.261(011) —0.066(107) e

8.969(281) 0.822 0.618 13.0 14.2 0.251(010) e 0.047(126)

(Table continued)
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TABLE XXVIL. (Continued)

gp r*/d.of. p AIC AlCc byl1] by|a] fm™! b,[M2] GeV~ b3[FV] GeV~2
gp (obtained from Fp with S, and fit using z?) extrapolated using the 13-point CCFV fit
8.968(240) 0.815 0.625 13.0 14.2 0.251(007) e e 2.739(5.929)
9.062(124) 0.765 0.687 11.2 11.5 0.254(003) . e
gp (obtained from Gp with Sy, and PD fit, Eq. (42) extrapolated using the 13-point CCFV fit

9.248(484) 1.182 0.301 18.6 23.6 0.258(015) —0.178(135) 0.075(181) 4.550(9.448)
9.167(454) 1.087 0.368 16.9 19.5 0.255(013) —0.148(119) 0.138(127) e
9.274(443) 1.096 0.360 16.1 17.3 0.260(012) —0.105(112) e

8.708(264) 1.129 0.333 16.4 17.6 0.243(009) e 0.086(119) e
8.793(228) 1.159 0.310 16.7 17.9 0.247(006) e 2.360(5.527)

8.876(123) 1.078 0.374 14.9 15.3 0.249(003)

TABLE XXVIIL. Summary of parameters values in the 13-point CCFV fit [Eq. (29)] plus an additional “pole” term b, /(Q*? + MZ))
for obtaining gj. The data used are given in Tables XXIV and XXV. In the top half, the quantity gj = (m,/2My)Fp(Q*?)/(Q** + M2),
is extrapolated, while in the bottom half gj = (m,/2My)Gp(Q*?) is used. Details are given in Sec. IV.

gp 7*/dof. p AIC AlCc byl[1] by[a] fm™! b,[M2] GeV~? b3[FV] GeV~2 by[pole] GeV?

g5 (obtained from Fp(Q*?) using Sy, data and fit using z?) extrapolated using the 13-point CCFV plus pole fit

8.763(479) 0.978 0451 178 264  0917(944)  —1327(1.523)  —6.027(6.740) 83.890(129.644) 0.223(035)
8.770(479) 0.916 0510 162 212 0692878)  —0.655(1.114)  —3.825(5.817) o 0.228(034)
9.019(292) 0.867 0.563 147 173 0.127(182)  —0.679(1.113) . 0.249(011)
8.714(469) 0.859 0572 146 173 0.631(872) e ~3.935(5.814) . 0.229(034)
8.950(294) 0.900 0532 150 177 0.086(226) . e ~18.315(86.479) 0.249(014)
8.969(281) 0.822 0618 130 142 0.047(126) . 0.250(011)

gp [obtained from Gp with S, and “PD” fit, Eq. (42)] extrapolated using the 13-point CCFV plus pole fit

8.590(418) 1.273 0.252 20.2 28.8 1.075(905) —2.081(1.715) —6.246(6.684) 83.651(136.326) 0.214(031)
8.585(418) 1.174 0.307 18.6 23.6 0.813(798) —1.322(1.186) —3.821(5.390) e 0.220(030)
8.806(277) 1.107 0.352 17.1 19.7 0.265(195) —1.376(1.184) e e 0.240(011)
8.468(404) 1.180 0.298 17.8 20.5 0.698(791) e —4.209(5.378) e 0.220(030)
8.645(279) 1.191 0.291 17.9 20.6 0.219(222) e e —58.710(82.451) 0.236(013)
8.708(264) 1.129 0.333 16.4 17.6 0.086(119) e e e 0.242(010)

TABLE XXIX. Summary of the 13-point CCFV fit parameters for the extraction of g,y as described in Sec. IV B 2. The data used are
given in Tables XXIV and XXV. In the top table, the product g,ynF, = MyFp(—M2) is extrapolated, and the result, in the continuum, is
divided by F, = 92.9 MeV. In the bottom table, F,(—M?2) is extrapolated and the result in the continuum multiplied by My/F .

vy 7*/dolf. P AIC AICc bo[l] byla] fm™! by [M?] GeV~2 bs[FV] GeV—2

goyy (obtained with Sy, and fit using z?) extrapolated using the 13-point CCFV fit

14.491(857) 0.878 0.544 15.9 20.9 1.330(090) —0.942(752) 0.339(1.093) 55.002(56.824)
14.273(827) 0.884 0.547 14.8 17.5 1.296(083) —0.637(683) 1.080(779) e
14.713(764) 0.979 0.463 14.8 16.0 1.357(070) —0.448(669) e

13.666(511) 0.883 0.556 13.7 14.9 1.243(060) e 0.935(763) e
13.777(435) 0.886 0.553 13.7 14.9 1.270(040) e 44.246(36.550)
14.225(228) 0.934 0.511 132 13.6 1.312(021) e

gevy [obtained from Gp with S, and PD fit, Eq. (42)] extrapolated using the 13-point CCFV fit

14.135(852) 1.202 0.288 18.8 23.8 1.283(087) —1.230(786) 1.098(1.026) 28.874(53.442)
13.975(799) L111 0.349 17.1 19.8 1.261(077) ~1.036(699) 1.497(711) o
14.240(788) 1.412 0.159 19.5 20.7 1.313(073) —0.519(655) .

12.986(438) 1.209 0.274 17.3 18.5 1.177(051) . 1.127(666) .
13.271(381) 1.349 0.190 18.8 20.0 1.224(035) . 35.810(31.073)

13.637(210) 1.347 0.184 18.2 18.5 1.257(019)
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APPENDIX F: DATA AND FITS FOR THE
EXTRACTION OF ISOVECTOR CHARGES g, 57
FROM FORWARD MATRIX ELEMENTS

This appendix gives the mass gaps of excited state for the
3-RD-Nr fit in units of the lattice pion mass for each
ensemble. The M, is fixed to the noninteracting energy
of the N(n) + n(—n) state with n = (1,0,0). The M, is
constrained to be near the first excited state mass given by
the two-point correlator by using the narrow prior shown in
the last column in Table XXX. The results for the bare

isovector charges g, 7.y from the forward matrix elements
and the p-value of the fit are given in Table XXXI for the
three strategies 3-RD, 3*, and 3-RD-Nux.

The parameters of the fits defined in Eq. (48) and the
mass gaps for the 3-RD strategy are given in Table XXXII.
Summary of the various CCFV fits to the 3-RD data
for the renormalized isovector charges g, 7 are given in
Tables XXXIII, XXXIV, and XXXV. The extraction of
the final values at the physical point from these data are

discussed in the main text.

TABLE XXX. Mass gaps of excited state for the 3-RD-N fit in units of the lattice pion mass for each ensemble.
The M is fixed to the noninteracting energy of the N(r) + z(—n) state withn = (1,0, 0). The M, is constrained to
be near the first excited state mass given by the two-point correlator by using the narrow prior shown in the last
column. These mass gaps can be compared with the 3-RD fit results given in the Table XXXII.

M, —M,

ID M, —-M, Axial Scalar Tensor Vector Prior

al5m310 2.2 3.50(01) 3.52(01) 3.52(03) 3.50(02) 3.52(12)
al2m310 2.0 4.32(11) 4.51(07) 3.78(14) 4.46(08) 4.55(26)
al2m220L 1.7 5.19(30) 6.26(11) 6.01(17) 6.01(08) 6.05(44)
al2m220 2.0 5.93(12) 6.02(08) 5.55(23) 5.88(12) 6.00(44)
a12m220S 2.5 6.09(04) 6.12(03) 5.97(12) 6.10(05) 6.13(36)
a09m310 2.0 2.91(16) 3.24(11) 3.29(08) 3.43(10) 3.15(21)
a09m220 1.8 3.90(66) 4.43(20) 4.49(14) 2.07(07) 4.35(40)
a09m130W 2.1 5.83(39) 7.27(29) 6.48(23) 2.37(05) 5.84(66)
a06m310 2.0 3.01(02) 3.03(02) 3.11(03) 3.05(01) 3.04(11)
a06m310W 2.0 3.95(04) 3.94(03) 3.89(06) 3.95(02) 3.94(21)
a06m220 2.0 4.20(13) 4.40(06) 4.50(11) 4.47(06) 4.49(29)
a06m220W 2.0 4.91(06) 4.96(04) 5.04(10) 4.95(03) 4.98(29)
a06m135 2.2 6.43(07) 6.84(16) 6.93(27) 6.71(08) 6.60(51)
TABLE XXXI. Summary of bare charges g4, gs, g7, and gy obtained from forward matrix elements along with the

p-value of the three fits used to remove ESC: 3-RD (first row), 3* (or 2-state for gg) (second row), and 3-RD-Nx
(third row) described in the text. The mass gap M, — M, output by the 3-RD-N fits is summarized in Table XXX.

ID 9a p Js p gr p gy p
al5m310 1.266(017)  0.780  0.834(018)  0.040  1.133(006)  0.819  1.073(004)  0.528
1.250(007)  0.591  0.868(028)  0.002  1.121(006)  0.641  1.069(004)  0.000
1.243(005)  0.607  0.838(019)  0.031  1.132(004)  0.811  1.070(003)  0.394
al2m310 1.256(006)  0.247  0.929(031)  0.180  1.068(009)  0.089  1.055(005)  0.097
1.283(018)  0.436  1.091(083)  0.007  1.034(020) 0.060  1.061(008)  0.106
1.241(005)  0.047  0.910(015)  0.215  1.083(005)  0.000  1.053(002)  0.069
al2m220L 1.275(005)  0.175  0.829(025)  0.038  1.090(007)  0.679  1.068(003)  0.053
1.289(013)  0.410  0.873(042)  0.000  1.069(011)  0.194  1.067(004)  0.165
1.266(007)  0.005  0.865(016)  0.089  1.092(003)  0.690  1.064(002)  0.035
al2m220 1.253(010)  0.252  0.987(056)  0.561 1.080(011) 0363  1.063(004)  0.892
1.265(021)  0.173  1.113(095)  0.401  1.048(018)  0.243  1.071(009)  0.622
1.239(007)  0.157  0.929(029)  0.445  1.084(006)  0.266  1.061(003)  0.846
a12m220S 1.257(017)  0.715  0.908(213)  0.113  1.103(027)  0.982  1.065(006)  0.775
1.266(044)  0.631  1.003(260)  0.015  1.065(039)  0.754  1.081(018)  1.000
1.245(012)  0.627  0.967(097)  0.100  1.110(011)  0.861  1.061(004)  0.713
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TABLE XXXI. (Continued)

ID Ja p Js p gr p 9y p

a09m310 1.275(017)  0.593 1.000(019)  0.305 1.029(004)  0.620 1.047(002)  0.034
1.238(008)  0.426 1.016(027)  0.170 1.027(007)  0.375 1.036(004)  0.080
1.212(004)  0.000 1.006(011)  0.291 1.025(004)  0.463 1.067(008)  0.000

a09m220 1.282(016)  0.173 0.987(025)  0.570 1.018(004)  0.809 1.051(002)  0.449
1.279(013)  0.440 1.056(046)  0.222 1.001(011)  0.634 1.049(004)  0.325
1.216(006)  0.000  0.989(015)  0.531 1.007(005)  0.379 1.040(007)  0.000

a09m130W 1.320(034)  0.132 1.049(023)  0.542 1.010(006)  0.869 1.054(002)  0.045
1.271(015)  0.021 1.049(061)  0.069 1.000(011)  0.648 1.052(006)  0.090
1.231(006)  0.006 1.135(024)  0.068 0.990(007)  0.250 1.011(008)  0.000

a06m310 1.271(057)  0.439 1.172(082)  0.873 0.992(007)  0.217 1.041(005)  0.823
1.243(027)  0.840 1.239(108)  0.352  0.982(020)  0.738 1.033(010)  0.773
1.181(008)  0.098 1.121(003)  0.829 0.980(006)  0.058 1.054(011)  0.586

a06m310W 1.264(089)  0.397 1.115(065)  0.288  0.979(016)  0.438 1.036(005)  0.886
1.216(021)  0.669 1.122(073)  0.501 0.975(016)  0.094 1.035(011)  0.413
1.208(012)  0.358 1.144(049)  0.280  0.985(009)  0.407 1.036(005)  0.883

a06m220 1.336(065)  0.009 1.183(157)  0.625 0.975(011)  0.668 1.048(005)  0.373
1.235(018)  0.012 1.109(066)  0.275 0.975(012)  0.372 1.050(007)  0.328
1.190(011)  0.000 1.026(028)  0.484  0.975(007)  0.664 1.059(007)  0.359

a06m220W 1.383(079)  0.751 0.818(065)  0.539 0.977(012)  0.078 1.039(006)  0.908
1.257(024)  0.643 0.769(089)  0.770  0.962(022)  0.084 1.039(009)  0.724
1.212(012)  0.303 0.866(055) 0454  0.971(008)  0.104 1.037(004)  0.882

a06m135 1.281(061)  0.518 1.025(050)  0.460  0.966(010)  0.277 1.039(005)  0.354
1.242(021)  0.641 1.108(110)  0.382  0.950(014)  0.208 1.039(006)  0.303
1.198(010)  0.272 1.154(073)  0.312  0.942(009)  0.072 1.075(007)  0.003

TABLE XXXII. Outputs r,bg,, r172b5, and the excited state mass gap aAM, of the 3-RD fit for the axial (A),
scalar (S), tensor (T) and vector (V) charges. The mass gaps in columns 6—8 are in units of M, for that ensemble. The
mass gap M(Nz) — My = My(n) + M, (—n) — My withr = (1,0,0) is close to M, — M|, for the axial channel and
much smaller for the other charges. Note that M| — M, and M(Nx) — M, are the same for the four charges.

Ensemble ID Charge by rirabiy aAM, M‘A;iw" MZA;”M‘) M(NA’Z_M”
al5m310 A —0.063(008) —0.00(00) —0.37(11) 3.5(1) 2.0(4) 2.2
al2m310 A ~0.047(008)  —4.0(29)  —0.15(10)  462)  3.7(5) 2.0
al2m220L A ~0.051(011)  —-34(17)  —-0.16(08)  6.1(1)  4.9(6) 1.7
a12m220 A ~0.055(011)  —29(34)  —0.07(19)  6.0(1)  5.5(1.4) 2.0
al2m220S A _0.041(021)  —27(48)  —0.18(23)  6.1(3)  48(1.7) 2.5
a09m310 A —-0.076(013) 0.12(03) —0.26(06) 3.2(5) 1.3(1) 2.0
a09m?220 A —0.091(012) 0.18(03) —0.23(04) 4.3(4) 2.0(1) 1.8
a09m130W A —0.111(024) 0.20(04) —0.19(03) 5.8(6) 2.8(3) 2.1
a06m310 A —0.127(038) 0.12(14) —0.17(06) 3.0(4) 1.2(3) 2.0
a06m310W A ~0.070(073) 0.1929)  —027(06)  39(5)  1.1(5 2.0
a06m220 A ~0.191(041) 0.17(15)  —0.19(03)  452)  1.7Q2) 2.0
a06m220W A —0.183(058) 0.42(30) —0.24(03) 5.0(4) 1.5(2) 2.0
a06m135 A —0.149(052) 0.32(09) —0.13(03) 6.6(3) 3.3(5) 2.2

(Table continued)
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TABLE XXXII. (Continued)

Ensemble ID Charge r2bgo rirabys alAM, M IA;:W” MQA;:W“ M(NA’Z_M"
al5m310 S —0.190(026) 1.13(66) 0.04(08) 3.5(1) 3.7(3) 2.2
al2m310 S —0.273(045) —5.6(5.7) —0.14(16) 4.6(2) 3.8(8) 2.0
al2m220L S —0.224(050) 10(13) 0.07(03) 6.1(1) 6.5(2) 1.7
al2m220 S —0.242(034) —27(18) 0.04(07) 6.0(1) 6.3(5) 2.0
al2m220S S —0.256(086) 18(56) —0.12(34) 6.1(3) 5.3(2.5) 25
a09m310 S —0.325(007) —0.04(11) 0.03(09) 3.2(5) 3.403) 2.0
a09m220 S —0.324(009) 0.43(18) —0.00(00) 4.3(4) 4.3(4) 1.8
a09m130W S —0.316(037) —0.35(55) 0.36(10) 5.8(6) 11.8(1.5) 2.1
a06m310 S —0.402(026) -0.9(1.3) —0.06(08) 3.0(4) 2.4(7) 2.0
a06m310W S —0.401(086) 7(17) —0.02(06) 3.9(5) 3.8(7) 2.0
a06m220 S —0.482(079) 0.2(1.3) —0.12(06) 4.5(2) 2.709) 2.0
a06m220W S —0.424(351) 57(64) 0.09(13) 5.04) 6.3(1.8) 2.0
a06bm135 S —0.130(267) —14.0(8.7) 0.33(10) 6.6(3) 15.0(2.5) 2.2
al5m310 T 0.136(007) 0.10(13) 0.03(07) 3.5(1) 3.6(3) 2.2
al2m310 T 0.172(007) —1.17(69) —0.30(05) 4.6(2) 3.0(2) 2.0
al2m220L T 0.190(020) —2.06(92) —0.12(10) 6.1(1) 5.2(7) 1.7
al2m?220 T 0.187(008) -2.3(1.2) —0.18(08) 6.0(1) 4.7(6) 2.0
al2m220S T 0.189(033) —4.4(2.7) —0.25(12) 6.1(3) 4.309) 2.5
a09m310 T 0.200(002) 0.33(07) 0.04(07) 3.2(5) 3.4(1) 2.0
a09m220 T 0.206(003) 0.62(08) 0.07(04) 4.3(4) 5.0(2) 1.8
a09m130W T 0.214(006) 0.61(07) 0.11(03) 5.8(6) 7.6(3) 2.1
a06m310 T 0.215(029) 1.25(71) 0.11(05) 3.04) 4.2(6) 2.0
a06m310W T 0.227(026) 0.15(43) —0.05(07) 3.9(5) 3.4(7) 2.0
a06m220 T 0.191(014) 0.17(54) 0.01(04) 4.5(2) 4.7(6) 2.0
a06m220W T 0.230(028) —0.15(78) —0.01(06) 5.0(4) 4.809) 2.0
a06bm135 T 0.226(016) 1.91(67) 0.12(04) 6.6(3) 9.7(1.1) 2.2
al5m310 v —0.012(001) 0.16(08) —-0.23(07) 3.5(1) 2.6(3) 2.2
al2m310 \Y% —0.008(001) -0.2(2.1) —-0.17(22) 4.6(2) 3.7(1.1) 2.0
al2m220L \Y% —0.009(001) 0.04(07) —0.45(13) 6.1(1) 2.709) 1.7
al2m?220 \Y% —0.009(001) 0.06(18) —0.26(12) 6.0(1) 4.109) 2.0
al2m220S \Y% —0.009(002) 0.04(18) —0.36(25) 6.1(3) 3.5(1.9) 2.5
a09m310 \Y% —0.006(000) 0.36(08) 0.02(01) 3.2(5) 3.3(5) 2.0
a09m220 \Y% —0.006(000) 0.53(08) 0.01(00) 4.3(4) 4.5(4) 1.8
a09m130W v —0.006(000) 0.48(03) 0.01(00) 5.8(6) 6.0(7) 2.1
a06m310 \Y% —0.005(001) 0.66(28) 0.01(04) 3.0(4) 3.2(7) 2.0
a06m310W \Y% —0.006(004) -0.4(1.3) 0.13(14) 3.9(5) 5.3(1.5) 2.0
a06m220 \Y% —0.009(002) 1.29(42) 0.07(02) 4.5(2) 5.5(5) 2.0
a06m220W A% —0.004(001) 0.03(17) —0.17(16) 5.0(4) 2.6(2.3) 2.0
a06m135 \Y% —0.003(001) 0.78(16) 0.01(02) 6.6(3) 6.8(6) 2.2

TABLE XXXIII.

Summary of CCFYV fits to g, using Eq. (29). We show results for (i) four different trunctions

of the four-parameter CCFV ansatz; (ii) fits with three different cuts on the 13 points labeled “13-pt,” “11-pt,” and
“10-pt”; and (iii) fits to data obtained with three different renormalization procedures defined in the text.

Ja y*/d.of.  p-value AIC AICc col1] cla] fm™"  ¢,[M2] GeV™2  ¢[FV] GeV~
ZAgI(qbare)’ 13—pt

1.281(052) 0.296 0.987 7.3 8.5 1.281(052) —0.59(45) e

1.228(029) 0.430 0.943 8.7 9.9  1.232(036) . —0.22(48)

1.281(052) 0.325 0.975 9.3 11.9  1.280(054) —0.60(49) 0.03(52) .

1.285(054) 0.348 0.959 11.1 16.1 1.287(057)  —0.69(55) —0.08(60) 10.0(28.7)
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TABLE XXXIII. (Continued)

Ja y2/d.of.  p-value AIC AICc coll] cila] fm™  ¢,[M2] GeV™2  ¢[FV] GeV~?
Zugt™, 11-pt

1.264(057) 0.214 0.993 5.9 7.4 1.264(057) —0.45(49) e

1.222(029) 0.295 0.976 6.7 8.2  1.225(037) e —0.18(49)

1.264(057) 0.241 0.983 79 114 1.263(058) —0.47(55) 0.04(55) e

1.268(059) 0.265 0.967 99 165 1.269(062) —0.54(62) —0.04(62) 7.7(28.8)
Z4g™) | 10-pt

1.308(072) 0.112 0.999 4.9 6.6  1.308(072) —0.93(68) o

1.226(031) 0.313 0.961 6.5 8.2 1.232(040) e —-0.32(60)

1.316(074) 0.105 0.998 6.7 10.7  1.320(078) —0.90(68) —0.25(61) e
1.317(075) 0.115 0.995 87 1677 1.321(078) —0.88(69) —0.20(64) —6.7(31.8)
ZA/ZV x g\ 1re)/g(bare) 13-pt

1.317(037) 0.334 0.979 7.7 8.9 1.317(037) —0.62(33) e
1.252(014) 0.651 0.786 11.2 124  1.253(018) —0.09(26)

1.317(038) 0.367 0.961 9.7 123  1.317(039) —0.62(33) 0.00(26) e
1.316(038) 0.403 0.934 1.6 16.6  1.315(040) —0.61(34) 0.03(31) —3.0(13.8)
ZA/ZV x g\ dre)/ (bare) 11—pt

1.310(039) 0.268 0.983 6.4 79 1. 310(039) —0.56(34) e
1.250(014) 0.555 0.835 9.0 105 1.252(018) —0.07(26)

1.309(039) 0.302 0.966 84 11.8 1.309(040) —0.56(35) 0.01(27) e
1.308(040) 0.335 0.939 103 17.0  1.307(041) —0.54(36) 0.05(31) —3.7(13.8)
ZA/ZV x g\ dre)/ (bdre), 10—pt

1.320(044) 0.266 0.977 6.1 7.8 1.320(044) —0.66(39) e

1.250(014) 0.617 0.764 8.9 10.7 1.251(019) —0.05(28)

1.321(045) 0.302 0.953 8.1 12.1 1.322(047)  —0.66(39) —0.03(28) e

1.323(045) 0.312 0.931 99 179 1.322(047) -0.65(39) 0.03(31) —7.3(14.8)
(ZAQ,(a;bdre + ZA/ZV « gAbare /g (bare) )/2 13- pt

1.292(041) 0.354 0.973 7.9 9.1 1.292(041)  —0.56(36) e

1.238(019) 0.551 0.869 10.1 11.3  1.241(024) —0.18(33)

1.292(041) 0.389 0.952 99 126 1.292(042) —0.56(38) 0.00(35) e

1.294(042) 0.429 0.920 11.9 169  1.294(044) —0.59(41) —-0.03(39) 3.0(17.6)
(ZAggbare + ZA/ZV x gAbare / J)are )/2 11- pt

1.280(044) 0.268 0.983 6.4 7.9  1.280(044) —0.46(38) .

1.235(019) 0411 0.930 7.7 9.2  1.238(024) —-0.15(33)

1.280(044) 0.301 0.966 84 11.8 1.280(044) —0.46(41) —0.00(36) e

1.281(045) 0.343 0.934 104 17.1 1.282(047) —0.48(44) —0.02(40) 1.5(17.7)

(bare + ZA/ZV > gAbare /g‘;)are )/2’ 10-pt

1.311(054) 0.183 0.993 5 5 7.2 1.311(054) -0.77(49) .

1.237(020) 0.456 0.888 7.6 9.4 1.240(026) —0.20(38)

1.316(056) 0.187 0.988 7.3 11.3  1.319(058) —0.75(49) —-0.15(39) e

1.317(056) 0.195 0.978 9.2 172 1.319(058) —0.73(50) —0.10(41) =7.1(19.3)
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TABLE XXXIV. Summary of CCFV fits to gy using Eq. (29). The rest is same as in Table XXXIII.

Jr y*/dof. p-value AIC AlCc coll] cila] fm™  ¢,[M2%] GeV™?  ¢[FV] GeV~

7 (bare)

r9r > 13-pt

0.990(029) 0.281 0.989 7.1 8.3 0.990(029) 0. 35(32) e
1.001(019) 0270 0991 7.0 82  0.994(024) 0.38(33)

0.980(031) 0.222 0.994 8.2 109  0.974(033) 0. 29(33) 0.32(34) .
0.982(031) 0.145 0.998 9.3 143 0.982(034)  0.11(38) 0.02(46) 30.4(31.8)

(b1re)
Zrgo)  11-pt
0.983(034) 0.329 0.966 7.0 85 0. 983(034) 0.40(35) e
0.999(020) 0.303 0.974 6.7 8.2 0.991(026) e 0.45(36)

0.978(034) 0.266 0.977 8.1 11.6  0.971(036)  0.29(37) 0.35(38)
0.981(034) 0.176 0.990 9.2 159 0.980(037)  0.10(42) 0.05(49) 30.1(31.9)

(bare) ~
Zrgr 10-pt
1.012(040) 0.156 0.996 52 70 1 012(040) 0.00(46) e
1.004(020) 0.117 0.999 4.9 6.6  1.000(026) - 0.22(39)

1.005(042) 0.133 0.996 6.9 109  1.001(045) —0.02(47) 0.22(40)
1.000(044) 0.124 0.993 8.7 167 0.998(046) —0.04(47) 0.09(50) 16.3(37.5)

ZT/ZV bare)/ (bare) 13—pt
1.008(025) 0.172 0.999 5.9 7.1 1. 008(025) 0.38(28) e
1.024(015) 0.208 0.997 6.3 7.5 1.018(019) e 0.33(27)

0.999(026) 0.089 1.000 6.9 9.6 0.994(028)  0.33(28) 0.27(27)
1.000(026) 0.072 1.000 8.7 13.7  0.997(029)  0.27(31) 0.14(38) 13.1(26.7)

ZT/Z x g are)/g(bare) 1l-pt
1.002(029) 0.192 0.995 5.7 7.2 1.002(029) 0.43(30) e
1.024(016) 0.227 0.991 6.0 7.5 1.017(020) e 0.37(29)

0.997(029) 0.105 0.999 6.8 103 0.992(031)  0.35(32) 0.28(30) e
0.998(029) 0.088 0.999 8.6 153 0.995(031)  0.28(35) 0.15(40) 12.8(26.8)

ZT/ZV « Tare)/g(bare) 10-pt
1.009(033) 0.198 0.991 5.6 7.3 1.009(033) 0.34(38) e
1.026(016) 0.188 0.993 5.5 7.2 1.0200021) e 0.29(31)

1.000(035) 0.118 0.997 6.8 10.8  0.995(037)  0.32(39) 0.27(31) e
0.995(037) 0.099 0.997 8.6 16.6  0.992(038)  0.30(39) 0.14(41) 15.3(31.7)

(Zngwe +Zr/Zy x grbm /9\})clre )/2, 13-pt
0.998(020) 0.383 0.963 8.2 9.4  0.998(020) 0.37(22) .
1.012(013) 0.387 0.962 8.3 9.5 1.005(016) cee 0.36(22)

0.989(021) 0.249 0.991 8.5 1.2 0.984(023)  0.30(23) 0.30(23) e
0.991(021) 0.167 0.997 9.5 145 0.990(024)  0.19(25) 0.08(32) 21.8(22.0)

(Zrgy (pare) 1 Zr/Zy x gz}me /g‘ﬁme )/2, 11-pt
0.993(023) 0.440 0.914 8. O 9.5 0.993(023) 0.41(24) .
1.011(013) 0.432 0.919 79 9.4 1.004(017) e 0.41(24)

0.987(023) 0.296 0.967 8.4 11.8  0.982(025)  0.31(25) 0.32(25) e
0.990(024) 0.202 0.985 94 16.1  0.988(026)  0.19(28) 0.10(34) 21.5(22.1)

(Zrg?™ + Zr)Zy x g7 /g\2*) /2, 10-pt
1.012(028) 0.303 0.965 6.4 8.1 1.012(028) 0.16(32) cee
1.014(013) 0.214 0.989 5.7 7.4 1.009(018) cee 0.26(26)

1.003(029) 0.217 0.982 7.5 1.5 0.999(031)  0.14(32) 0.25(26) e
0.998(030) 0.205 0.975 9.2 17.2  0.996(031)  0.13(32) 0.13(34) 14.7(27.1)
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TABLE XXXV. Summary of CCFV fits to gy using Eq. (29). The rest is same as in Table XXXIII.

Js y*/d.of.  p-value AIC AlCc col1] cila] fm™"  ¢,[M2] GeV™?  ¢[FV] GeV~
7 gsbdre 13- pt
0.991(046) 2.073 0.019 26.8 28.0 0.991(046) —1.37(46) e
0.876(021) 2.809 0.001 349 36.1 0.882(027) e —-0.32(37)
0.991(046) 2.278 0.012 28.8 314 0.990(047) —1.40(49) 0.07(40) e
1.001(047) 2.435 0.009 29.9 349 1.008(050) —1.61(54) -0.37(62) 38.7(41.6)
nggbare), ll-pt
1.044(051) 1.055 0.393 13.5 15.0 1.044(051) —1.83(50) e
0.888(022) 2.317 0.013 249 264  0.897(028) e —0.52(38)
1.045(051) 1.180 0.307 154 189  1.043(051) —1.88(56) 0.10(42) e
1.066(053) 1.056 0.389 154 22.1  1.076(056) —2.27(62) —0.56(63) 60.4(42.2)
ngsbare) ]O-pt
1.077(070) 1.130 0.339 13.0 14.8 1.077(070)  —2.20(75) e
0.882(022) 2.179 0.026 214  23.1  0.886(028) e -0.21(42)
1.076(070) 1.288 0.251 150 19.0 1.075(071) —2.23(77) 0.06(43) ‘e
0.993(086) 1.043 0.395 143 223 1.016(080) —1.67(84) —1.23(89) 132.3(79.7)
ZS/Z x g (bare) ggaare), l3-pt
0.999(053) 2.456 0.005 31.0 322 0.999(053) —1.43(49) e
0.832(027) 3.202 0.000 392 404  0.826(034) e 0.31(47)
0.988(054) 2.396 0.008 30.0 32.6  0.973(055) —1.73(52) 0.87(50) e
0.994(054) 2.513 0.007 30.6  35.6  0.990(057) —1.78(52) 0.21(76) 44.6(38.6)
ZS/Z « ggbare) gaare)’ ll—pt
1.072(064) 1.696 0.084 193  20.8  1.072(064) —2.03(56) e
0.846(027) 3.132 0.001 322 3377  0.846(035) e 0.04(48)
1.083(064) 1.443 0.173 17.5  21.0  1.064(064) —2.59(63) 1.05(54) e
1.093(064) 1.312 0.240 17.2  23.8 1.090(066)  —2.68(64) 0.16(79) 59.8(38.9)
ZS/ZV « ggbare)/gg)are)’ IO—pt
1.103(074) 1.825 0.067 18.6 203 1.103(074) —2.35(69) e
0.837(028) 3.211 0.001 29.7 314  0.829(037) 0.40(54)
1.097(074)  1.630  0.122 174 214  1.079075) -2.71(72) 1.00(56) .
0.981(089) 0.987 0.432 139 219 1.001(082) —1.69(84) —1.10(1.05) 174.6(74.5)
(nggbwre + ZS/ZV « gsbare /g‘})are )/2, 13-pt
1.004(043) 2.563 0.003 322 334 1.004(043) —1.46(40) e
0.867(022) 3.727 0.000 45.0 46.2  0.871(028) —0.24(37)
1.003(043) 2.737 0.002 334 360 0.996(044) —1.62(44) 0.37(41) e
1.014(044) 2.883 0.002 339 389 1.017(047) —1.81(47) —-0.17(60) 40.7(34.1)
(ZS (bare) + ZS/ZV « gstnre /g‘ﬁyare )/2’ ll-pt
1.057(048) 1.547 0.125 17 9 194 1.057(048) —1.90(44) e
0.880(022) 3.408 0.000 347 36.2  0.888(028) —0.47(38)
1.064(049) 1.600 0.119 18.8 222  1.055(049) —2.18(51) 0.47(44) e
1.085(050) 1.420 0.192 179  24.6  1.090(053) —2.49(55) —0.28(62) 58.2(34.4)
(ZS (bare) + ZS/ZV « ngare /g‘laare )/2, lO-pt
1.095(063) 1.636 0.109 17 1 188 1.095(063) —2.32(64)
0.870(023) 3.294 0.001 304  32.1  0.871(029) —0.04(43)
1.093(063) 1.755 0.092 183 223 1.085(064) —2.47(66) 0.40(45) e
0.983(080) 1.212 0.296 153 233 1.007(073) —1.63(76) —1.32(89) 163.2(72.9)
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