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Abstract— We present a reinforcement learning (RL) frame-
work that enables quadrupedal robots to perform soccer
goalkeeping tasks in the real world. Soccer goalkeeping with
quadrupeds is a challenging problem, that combines highly
dynamic locomotion with precise and fast non-prehensile object
(ball) manipulation. The robot needs to react to and intercept a
potentially flying ball using dynamic locomotion maneuvers in
a very short amount of time, usually less than one second.
In this paper, we propose to address this problem using a
hierarchical model-free RL framework. The first component
of the framework contains multiple control policies for distinct
locomotion skills, which can be used to cover different regions
of the goal. Each control policy enables the robot to track
random parametric end-effector trajectories while performing
one specific locomotion skill, such as jump, dive, and sidestep.
These skills are then utilized by the second part of the frame-
work which is a high-level planner to determine a desired skill
and end-effector trajectory in order to intercept a ball flying to
different regions of the goal. We deploy the proposed framework
on a Mini Cheetah quadrupedal robot and demonstrate the
effectiveness of our framework for various agile interceptions
of a fast-moving ball in the real world.

I. INTRODUCTION

Developing a robotic goalkeeper is an appealing but chal-
lenging problem. This task requires the robot to perform
highly agile maneuvers such as jumps and dives in order
to accurately intercept a fast moving ball in a short amount
of time. Solving this problem is attractive because it can offer
solutions for combining dynamic legged locomotion with
fast and precise non-prehensile manipulation. Recent devel-
opments in quadrupedal robots have resulted in hardware
platforms that enable agile and versatile maneuvers, making
them suitable for tackling this task. Furthermore, recent ad-
vances in model-free reinforcement learning (RL) has shown
promising results on developing controllers for dynamic mo-
tor skills on quadrupedal robots [1]-[3]. However, previous
efforts on applying RL on quadrupedal robots mainly focus
on low-level locomotion control, such as tracking a desired
walking velocity [3] or mimicking a reference motion [1],
without extending the learned locomotion skills to a higher
level task, such as precisely intercepting a fast-moving soccer
ball using agile maneuvers. This is challenging because it is
a combination of highly dynamic locomotion and accurate
non-prehensile manipulation of a fast moving object, each of
which is already a difficult task on its own. Therefore, there
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Fig. 1: A quadrupedal robot goalkeeper, Mini Cheetah, intercepts a
soccer ball flying towards the goal using the proposed hierarchical
RL framework with multiple locomotion control policies and a
motion planning policy. The flight time of the ball is only around
0.5 second. Video is at https://youtu.be/iX60gG67-2Q.

have been few prior attempts on developing goalkeeping
controllers with agile maneuvers using quadrupeds.

In this work, we propose to address the goalkeeping
task using a hierarchical model-free RL framework. This
framework decomposes the goalkeeping task into two sub-
problems: 1) low-level locomotion control to enable the robot
to perform various agile and highly-dynamic locomotion
skills, and 2) high-level planning to decide an optimal skill
and motion to perform in order to intercept the ball.

A. Related Work

The soccer goalkeeping problem using quadrupedal robots
can be viewed as a combination of three domains of robotics
research: robotic manipulation to intercept a fast moving
object, locomotion control to enable a quadruped to perform
highly dynamic maneuvers, and robot soccer.

1) Robotic Catching / Hitting of Fast Moving Objects:
Enabling robots to catch or hit fast moving objects, such as a
ball, has been studied extensively in the robotic manipulation
field. Typically, robotic arms, with a fixed base [4] or a
mobile base [5], and even a quadcopter [6] have been used
for these tasks. A common approach to tackling catching
tasks is to separate it into two sub-tasks: prediction of the
ball’s trajectory based on the estimated ball position and
velocity using models of the ball’s dynamics [4], [7], [8],
and generation of a trajectory for the robot’s end-effector
based on robot’s dynamics model [6], [7], [9] or model-free
RL [10], [11] to catch the ball at the predicted interception
point. An alternative approach [12] is to learn an end-to-end
policy in simulation that directly takes the camera’s RGB
image as input, followed by fine-tuning in the real world [13],
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[14]. Applying these previous ball-catching/hitting methods
to quadrupeds is challenging. Model-based approaches re-
quire accurate dynamic modelling of the ball, robot, and
contact with the ground, making it complex. Model-free re-
inforcement learning methods have not been used to control
legged robots for such dynamic manipulation tasks.

2) Dynamic Locomotion Control for Quadrupeds: In
recent years, there have been considerable advances in
legged robot hardware and control algorithms that enable
quadrupedal robots to perform highly dynamic locomotion
maneuvers, such as jumping [1], [15]-[19] or running [2],
[3], [20], in the real world. One approach is to use an op-
timal control framework with the robot’s dynamics models,
which can either be the robot’s full-order models optimized
offline [15], [16], [18], or simplified models deployed on-
line [17], [20]. Another approach is to leverage model-free
deep RL to train control through trial-and-error in simulation
and then transfer to real robots [1]-[3], [19], [21]. However,
most previous work only focuses on a specific dynamic
locomotion skill without attaining a more diverse repertoire
of maneuvers based on learned skills to achieve a longer
horizon task, such as jumping while intercepting a ball.

3) Legged Robot Soccer: Developing robots that can one
day compete with humans in soccer games has been an
overarching goal in the robotics community. RoboCup [22], a
notable robot soccer game was created to enable researchers
to work towards this goal. Related to the goalkeeping prob-
lem of this work, there are some efforts to develop an
intelligent goalkeeper using holonomic wheeled robots [23]—
[25]. However, most previous work only considers the robot
moving in a 2D plane to intercept the ball rolling on the
ground at low speeds [23], [24]. Intercepting balls in a 3D
and at high speeds, like a flying ball with a speeds up to 8
m/s, as in this work, has not been studied in robot soccer.
Legged robots, such as humanoid robots and quadrupedal
robots, are also used in RoboCup, but most presented soccer
skills by legged robots, such as shooting [26], kicking [27],
and goalkeeping [28], are based on rule-based motion prim-
itives due to their challenging dynamics. Most recently, by
leveraging deep RL, a quadrupedal robot demonstrates the
capacity to dribble a soccer ball to a target at a low walking
speed [29], as well as precisely shooting a soccer ball to a
random given target while the robot is standing with a single
shooting skill [30]. However, enabling legged robots to play
soccer while performing multiple highly dynamic locomotion
skills, such as using jump and dive skills, and precise ball
manipulation has not yet been demonstrated.

B. Contributions

This work presents one of the first solutions that combines
both multiple highly dynamic locomotion skills and precise
object interception (manipulation) on real quadrupedal robots
by using a hierarchical reinforcement learning framework.
Compared to our prior work on quadrupedal soccer shoot-
ing [30], which is limited to using a single manipulation
skill while standing and without locomotion, this work aims
to combine dynamic locomotion and non-prehensile manip-

ulation to accomplish a long-horizon complex task such as
goalkeeping. The proposed method allows quadrupeds to
track parametric trajectories with its end-effector(s) while
engaging in dynamic locomotion maneuvers to intercept a
fast-moving (and potentially flying) ball. We show that our
system can be used to directly transfer dynamic maneu-
vers and goalkeeping skills learned in simulation to a real
quadrupedal robot, with an 87.5% successful interception
rate of random shots in the real world. Through an ablation
study, we show that such a performance cannot be obtained
using just a single locomotion skill. We hope this paper
takes us one step closer to enabling robotic soccer players
to compete with humans in the future.

II. HIERARCHICAL RL FRAMEWORK FOR GOALKEEPING
TASK WITH MULTI-SKILLS

In this section, we introduce the Mini Cheetah robot as
our experimental platform and give a brief overview of the
framework for developing goalkeeping skills shown in Fig. 2.

A. The Mini Cheetah Quadrupedal Robot

As shown in Fig. 1, Mini Cheetah [20] is a quadrupedal
robot having a weight of 9 kg and height of 0.4 m when it
is fully standing. It has 12 actuated motors ¢, € R'? with a
6 degree-of-freedoms (DoFs) floating base, representing its
translational ¢, . . (sagittal, lateral, and vertical) positions
and orientation gy .4 (roll, pitch, yaw), respectively.

B. Locomotion Skills for Goalkeeping

Inspired by human goalkeepers, we propose a collection
of skills for intercepting a ball flying to different regions of
the goal, as illustrated in Fig. 3. One challenge underlying
the design of goalkeeping locomotion skills is that the robot
needs to react very quickly, since the total timespan of a
ball’s ballistic trajectory is typically under 1 sec. Therefore,
from an initial standing pose in the middle of the goal, the
robot needs to perform very dynamic maneuvers to intercept
the ball. To accomplish this, our system uses three skills:
sidestep, dive, and jump to cover different goal regions.

1) Sidestep: During a sidestep, the robot takes a quick
step in the lateral direction to intercept the ball when it is
rolling on the ground or flying toward the goal at a low
attitude. For larger steps, this skill may involve a small
sideways hop. However, this skill may not be effective in
covering the lower corners or upper regions of the goal.

2) Dive: The dive skill is based on quadrupedal jumping
behaviors [16], which allows the robot to cover a larger area
of the goal. During a dive, the robot pitches the body up,
turns to the side while pushing off with the rear legs, and
extends the swing legs sideways to quickly block the ball
moving towards the lower corners of the goal. The rear legs
may or may not leave the ground during the dive, depending
on the distance needed to catch the ball.

3) Jump: The jump skill, although similar to the dive skill,
demands the robot to pitch up steeper and swing its front legs
upwards faster. The rear legs need to stretch out to almost
their maximum limits and potentially lift off from the ground
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Fig. 2: Proposed hierarchical reinforcement learning framework for creating a quadrupedal robotic goalkeeper. We firstly develop a set of
locomotion control policies for multiple skills, such as sidestep, dive, and jump. The locomotion control policies are designed to follow a
random parametric Bézier curve using the robot end-effectors (swing front toes). The controller outputs PD targets at 30 Hz to generate
motor torques, after passing through a Low Pass Filter (LPF) [1], [31]. A motion planner running at 10 Hz is developed on top of the
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Fig. 3: Three different locomotion skills for goalkeeping. The robot
can use different skills to cover different regions of the goal.

to gain enough height for the swing legs to reach the flying
ball. In the flight phase, the robot also needs to reconfigure
itself in the air to a more stable landing pose. This skill
requires a higher level of agility.

For each of these three skills, a nominal reference motion
for the robot is manually authored using an animation
tool [32]. Each motion starts with the same standing pose.

C. Parameterizing Multiple Skills using Bézier Curves

Our robot leverages the above-mentioned three locomo-
tion skills to reach different commanded locations in front of
the goal in order to intercept the ball. Inspired by previous
work [30], [31], we use Bézier curves to parameterize the de-
sired robot motion. A Bézier curve parameterized by Bézier
coefficients « is defined as a function of phase ¢, B, (t) [30,
Sec.II-C] where ¢ € [0, 1] is the normalized time with respect
to a total duration T' of the entire trajectory. Similar to [30],
the Bézier curve represents the desired trajectory for the
robot’s end-effectors, which is designated to be the toes. In
the sidestep skill, the end-effector is designated to be the toe
of the robot’s swing leg, either the front right or left toe.
However, for the skills that need to use two swing legs to
catch the ball, like jump and dive, the Bézier curve specifies
a trajectory for the center of the two end-effectors (two front
swing toes). In this work, we choose to use 5 control points
in 3D space, therefore, o € R®*3. The duration T of each
skill is set to be 0.5 seconds. In this way, we can parameterize
and represent different robot’s end effector trajectory to reach

:nd-effectors or body before the ball enters the goal. The
leep neural network using a RGB-Depth camera (30 Hz).

different locations by using different Bézier coefficients.

D. Hierarchical Reinforcement Learning Framework

We now present our hierarchical RL framework (Fig. 2)
for controlling a quadrupedal robotic goalkeeper. For each
goalkeeping locomotion skill, we train a control policy to
specify joint-level commands for the robot using model-free
RL. This enables the robot to mimic the nominal reference
motion while tracking a large range of randomized end-
effector trajectories represented by parametric Bézier curves.
This process produces multiple control policies (l ...7™)
for different goalkeeping skills. In this work, we trained
three control policies for each of the sidestep, dive, and
Jjump skills. Each policy runs at 30 Hz. Since each policy
performs a distinct behavior, training individual skill-specific
control policies avoids the challenge of training a single
multi-task policy for all skills. We train a high-level planning
policy 7, using model-free RL to select an appropriate skill
corresponding to ball travelling towards different regions of
the goal, based on the detected ball position and robot’s
current states, which runs at 10 Hz. It also specifies the
desired Bézier curve for the chosen controller to track in
order to intercept the ball. The ball position is obtained by
an external camera and detection algorithm YOLO [33].

We first train each control policy in simulation, and test
them extensively on the real robot with zero-shot transfer.
After obtaining reliable controllers in the real world, we
use the same control policies to train the planning policy
in simulation and then directly deploy the entire pipeline in
the real world. This approach decouples the complex goal-
keeping task into the locomotion control and manipulation
planning problems, and solves each problem separately.

III. DYNAMIC LOCOMOTION CONTROL USING DEEP RL
In this section, we detail our framework for training

control policies for each goalkeeping skill.

A. Training Environment

The control policies are trained using a simulation of
the Mini Cheetah in Isaac Gym [34], a GPU-accelerated



dynamics simulator. For a skill-specific controller c, at each
timestep £ of an episode, the robot takes an action af
based on its current observations s, and the environment
transitions to the next state and provides the agent with
a reward 7.j. The RL is used to maximize the expected
accumulated reward over the course of an episode.

1) Action Space: The skill-specific control policy outputs
a 12-dimensional action that specifies target motor positions
for each joint ¢, and is used by joint-level PD controllers
to compute motor torques 7.

2) Observation Space: As shown in Fig. 2, the policy’s
observations consist of three components. The first com-
ponent is the desired end-effector trajectory for the robot
to track, represented by a set of Bézier coefficients and
normalized phase ¢ with respect to the 0.5-sec-timespan of
the motion. The second component is the robot’s raw sensor
reading, which consists of the measured motor positions §,,
and base rotation Gy 0.4. We also include a history of the
sensor readings (¢m,Gy,0,4) and policy’s outputs (qﬁl) in
the past 15 timesteps, which corresponds to a time window
of around 0.5 seconds. This history provides the policy
with information necessary for inferring the dynamics of the
system, which can be vital for sim-to-real transfer [31].

B. Reward Formulation

The reward 1, 1, for skill-specific controller ¢, at timestep
k is designed to encourage the control policy to track the
given Bézier curve for the robot’s end-effector and smoothly
mimic the skill-specific reference motion while maintaining
gait stability. The reward function contains three parts:

e =058 4030, +0275,, (1)

where rfk represents the robot’s end-effector tracking term,
r! ¢k 18 the imitation term, and rs ok 18 a smoothing term. The
end effector tracking term has the highest weight to prioritize
tracking the desired Bézier curve while imitating (but not
being restricted to) the reference motion, which has a lower
weight. Next, we define an abstract reward function

r(u,v) = exp(—p||lu — v|[3), 2)

which calculates the normalized distance between vector
and v, with p > 0 being a hyperparameter. With this, the
rfk term can be decomposed into:

18 = 0.87(Ba(t), me) +0.27(Ba(t), e r), (3)

where the Bézier curve B,(t) is the desired end-effector
position evaluated at phase ¢ at current timestep & and Ba(t)
is the derivative of the curve at phase ¢ representing the
desired end-effector velocity. The term z, j is robot’s end-
effector position in Cartesian space while & j, is its velocity.
We empirically found that adding the end-effector velocity
tracking term improves the smoothness of the trajectory.
Similarly, the imitation reward T({,t encourages the robot
to mimic the skill-specific reference motion, and consists
of 3 terms: the motor tracking reward r(g,,q),), robot
base height following reward r(q., ¢7), and base orientation

tracing reward T(qwﬂ,qu,e, ¢), by calculating the distance
between robot’s current values and the one from reference
motion (qy, , , g ,) at each timestep. Note that the reference
motion is just a kinematically feasible animation and a
reward formulation with a small weight on this term allows
the robot to deviate from the reference motion to per-
form dynamically feasible maneuvers. Moreover, TS ' 1s the
smoothing reward and consists of 7(gy.a.¢,0), (qw 0,6,0),
and 7(7,0) to minimize the robot base rotational velocity,
rotational acceleration, and torque consumption, respectively.
By incorporating the smoothing reward, we can effectively
minimize nonessential angular movement that hampers robot
stability, and energy consumption throughout the motion.

C. Motion and Dynamics Randomization

With the skill-specific nominal reference motion un-
changed, the desired end-effector trajectory is randomized
by adding a random change & to a nominal set of Bézier
coefficients a, i.e., « = &+ &. The coefficients change & of
each control point is uniformly sampled from a large range,
especially in the lateral direction to cover farther sides of the
goal. This then allows each policy to track a large variety of
end-effector trajectories defined by the randomized a.

During training in simulation, dynamic parameters are
randomized to facilitate transfer from simulation to the real
world. Similar to previous work [30], we randomize the link
mass, inertia, center of mass, and the PD gains of the motors
to reduce modeling error of the robot and the motors. Sensor
noise and delay are also simulated similar to [30]. Ground
friction and restitution plays a critical role in skills such as
jumping and diving. Therefore, they are randomized within a
large range of [0.5, 4.5] for friction coefficient and [0.5, 4.5]
for restitution coefficient to facilitate adaptation to various
ground surfaces. Finally, a random 6 DoFs wrench (force
from —1 to 1 N and torque, except roll, from —3 to 3 Nm)
is applied to the robot base to improve the policy robustness.
We have a large perturbation in the roll direction (£12.5Nm),
which is found to be effective in preventing the robot from
rolling over when jumping sideways.

D. Episode Design and Training

Each episode lasts for 300 timesteps max, corresponding
to 10 seconds, and consists of three stages: (1) starting in
a nominal standing pose for a random span of time, (2)
tracking the desired end-effector trajectory parameterized by
a set of randomized Bézier coefficients while imitating the
reference motion of the specific skill, and (3) returning to
a nominal standing motion after completing the goalkeeping
maneuver. During training, two early termination conditions
are considered: unsafe behavior and large deviation from
the commanded curve for end-effectors. We find that early
termination leads to faster training and more precise tracking
of end-effector trajectories. Proximal Policy Optimization
(PPO) [35] is used to train all policies, with actor and critic
networks modeled by separate MLPs using ELU activation
functions with hidden layers of 512, 256, and 128 units. We
train each skill with one billion simulation timesteps.



IV. MULTI-SKILL MOTION PLANNING USING DEEP RL

Each obtained skill-specific locomotion control policy is
first tested thoroughly on the robot hardware. After the sim-
to-real test, these control policies can then be used to train a
planning policy that enables the robot to intercept the ball by
performing dynamic locomotion maneuvers after examining
the detected ball position and the current robot states.

A. Training Environment

The planning policy is also trained in Isaac Gym with the
Mini Cheetah driven by its controller and a rigid ball. The
goal in the simulation is sized 1.5 m wide and 0.9 m high,
and the robot is placed 0.2 m in front of the goal line.

1) Action Space: As shown in Fig. 2, the planning policy
outputs the desired skill type to perform, and the desired
end-effector trajectory for the selected controller to track.
Therefore, the action of the planner a, contains two parts:
the skill type and desired Bézier coefficients a. For n skills,
the planner outputs skill selection probabilities ¢ € R"T1,
and the desired skill type can be determined by finding the
argmax of o. The extra skill utilizes a time-invariant standing
pose with a PD controller. In this work, n = 3. Although
there are 5 control points to construct the Bézier curve used
by the control policy, the planner outputs only 4 points,
excluding the first control point, i.e., o € R**3. The first
control point is always set to a nominal initial position of
the robot’s toes to reduce the dimension of the action space.

2) Observation Space: The observation of the planning
policy s} consists of four components. First, we provide the
current (at timestep k) detected ball position in global frame
0y, along with a history of the ball positions so that the policy
can implicitly filter noisy camera readings, estimate velocity,
and infer the ball’s future trajectory. Second, the current
robot sensor reading, including motor angles §,, and base
orientation gy .4, along with a history of the sensor readings
and actions are provided to the planning policy to implicitly
learn to estimate dynamics. Note that although the planner
runs at 10 Hz, all the history observations are 6 timesteps
long and are sampled at 30 Hz (the controller’s frequency).
Third, by inputting previous skill and motion selection,
the planner needs to avoid making sudden infeasible skill
changes that may cause the robot falling over. Finally, the
phase ¢ of the performed skill is also included.

B. Reward Formulation

The reward for the planning policy is designed to perform
a "save" by intercepting the flying ball with the robot’s end-
effectors, body, or trunk. To facilitate this, the reward is
specified as:

. md
Ppk = 0p(rS  +0.6r7 +0.2r%5 +0.2r8%), (@)

1
by — )
h

is a binary variable indicating if the current ball position oy
is close enough to robot’s current end-effector position x .

where
if ||0k: — xe,k” S 0.3

otherwise

®)

In this way, the reward is only nonzero when the ball is close
to the robot. Since the robot is only allowed to perform one
save in each episode, such a design encourages the robot to
preserve its skill for a good interception opportunity.

The dominant reward term rg_’ ;. represents the reward for
the ball velocity. It is set to 1 if the ball speed ||6]|2 is
zero and to 0 otherwise. By this term, we encourage the
robot to stop the ball, which is the primary objective of
goalkeeping. Furthermore, the reward r;ffk stimulates the
robot to minimize the distance between the robot’s end-
effector position z. to the ball by r(x, ,0,) Where 7(-,-)
is defined via (2). Similarly, rz’gk incentivizes the policy to
plan a desired end-effector trajectory that tracks the ball by
r(Bgaa(t), o). Given that the dominating term is to stop the
ball (rg} 1)» the robot can still receive a reasonably good return
if it uses other parts of the body to save the ball.

Finally, the smoothing term r;‘; =r(a4,0) is introduced
to encourage the planner to regularize the desired Bézier
coefficients o to prevent having fluctuating curves.

Please note that the reward for minimizing energy con-
sumption is not directly included due to the high variance
in motor torques between skills. This also makes sure the
reward doesn’t favor using low-energy skills, like sidestep,
over the main task of goal saving.

C. Early Termination Condition

Besides the reward design, the termination conditions to
end the episode earlier are critical to enable the robot to
save the ball in front of the soccer goal. We terminate the
episode to prevent the agent from having a future return
if the ball flies into the goal area. This can stimulate the
robot to try its best to save the ball instead of adopting
conservative behaviors like just standing where the robot can
still receive some rewards such as the smoothing reward.
Further, the episode will be terminated if the robot falls
over. This can prevent the planning policy from outputting
infeasible end-effector trajectories or commanding wrong
skills, like selecting a sidestep skill while the robot is in
the air, because these will cause the controllers to fail.

D. Episode Design, Domain Randomization, and Training

Each episode lasts for 90 timesteps (3 seconds) in total,
which is sufficient for a goal save that typically lasts less
than one second. Upon reset, the ball’s initial 3D position
and velocity in the transverse plane is randomly sampled.
The target position for the ball is sampled within the goal
area, and the initial vertical speed is obtained accordingly.

We again leverage domain randomization to improve the
robustness of the policy. In addition to those during training
the control policy, we also applied Gaussian noise with zero
mean and 0.05m standard deviation and constant delay ran-
domized from [80, 100]ms for the ball positions as measured
on the camera, which is crucial for the sim-to-real transfer.

The planning policy uses separate and identical actor and
critic networks, both with a 2-layer MLP with 256 and 128
hidden dimensions with ELU activation. The last layer of
the actor network is followed by two action heads, one
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Fig. 4: Snapshots and shot interception map in simulation. (a)
depicts the end-to-end baseline trained without proposed hierarchy,
while (b)(c)(d) represent hierarchical policies with different number
of skills learned. The map represents the goal region. Blue records
a goal save while red is a goal (miss). Darker colors indicates faster
ball speeds. The snapshots visualize how the planner leverages the
new skills, and the shot interception map quantitatively illustrates
the benefits of adding each skill. Note that the failing corner cases
are noticeably reduced by adding the second sidestep skill in 4c,
and further reduced by the third dive skill in 4d. The goal saving
rates are 30.84%, 65.09%, 72.46%, and 78.11%, respectively.

for continuous Bezier coefficients, and one for categorical
skill selection action. A tanh and a softmaz activation are
applied to the continuous and discrete heads respectively.
The planning policy is also optimized by PPO with 10 mil-
lion timesteps. Unlike [30], our simulation-trained planning
policy can be directly deployed in the real world without
fine-tuning.

V. RESULTS

After developing all components of the proposed frame-
work (Fig. 2), we now validate the proposed framework in
simulation and real-world experiments (video is at https:
//youtu.be/iX60gG67-7Q.)

A. Simulation Validation

We first evaluate the performance of the proposed multi-
skill framework in simulation. We compare four policies: (1)
end-to-end policy, and hierarchical policies with (2) 1-skill,
(3) 2-skill, and (4) 3-skill (ours). The end-to-end baseline
combines planning and control into one policy and does
not use reference motions during training. This is because
learning a single policy from multiple reference motions
[36] involves multi-task RL and is challenging. If we use
only one reference motion, the end-to-end policy becomes
similar to a /-skill policy. The three hierarchical policies use
the proposed hierarchical framework with different numbers
of skills. Specifically, the /-skill baseline only has one
jumping controller, 2-skill has both jump and sidestep skills,
and our 3-skill contains all jump, sidestep, and dive skills.
The end-to-end policy and the high-level planners of the
three hierarchical models are trained using the same method
introduced in Sec. IV. Each method is tested with 200
randomized scenarios as specified in Sec. IV-D, and results
are recorded in Fig. 4.

The end-to-end policy shows the worst success rate of
30.84%. The results in Fig. 4a show that while the end-to-
end policy can save some slow-rolling balls, it misses most
of the fast flying balls. This is because the robot may need

to leave its nominal pose and utilize different skills in order
to intercept the ball flying at different heights. Developing a
single policy to explore different skills using RL on its own
is a challenging problem. This showcases the importance of
the proposed hierarchy method which divides the complex
task into relatively easy-to-solve sub-problems.

Next, we evaluate the performance of the hierarchical
models with different number of locomotion skills. The -
skill planner achieves a comparable saving rate with flying
balls, but misses almost all of the balls that roll on the
ground, resulting in a 65.09% saving rate (Fig. 4b). Such
a result demonstrates that using a single skill is not suffi-
cient for the diverse scenarios present in the goalkeeping
task. While the 2-skill planner can catch most of the balls
(72.46%), there are two notable corner cases on the lower
left and right that often leads to failures. We discovered that
in these cases, a majority of the balls travel underneath the
robot when it jumps, and can not be reached by the sidestep
skill. This problem highlights the necessity of the dive skill
to intercept balls flying to these regions. When the dive skill
is added, the proposed 3-skill planner shows the best success
rate of 78.11%. Please note that our proposed method is not
limited to the three specific skills presented in this work.
The hierarchical framework in Fig. 2 provides flexibility to
incorporate more locomotion skills by simply retraining the
planning policy to utilize a larger repertoire of skills.

B. Experiments

We now deploy the proposed framework on the Mini
Cheetah robot to save soccer goals in the real world.

1) Experiment Setup: We set up a mini penalty field to
conduct the experiments, as shown in Fig 1, with a 1.5m x
0.9m goal. The robot is placed at the center with its rear
feet 0.1 m in front of the goal line. A size 3 soccer ball is
either kicked or thrown from roughly 4 m in front of the
robot with a random initial speed towards a random target
in the goal. We set an external RGB-Depth camera (Intel
RealSense D435i) placed 6 m away from the goal line. The
global frame is set to the robot’s initial frame. We also setup a
Motion Caption System (MoCap) with markers on the robot’s
trunk and front toes to evaluate the tracking performance of
the locomotion controllers. Note that our system does not
require accurate measurement from the external MoCap.

2) Performance of Skill-specific Locomotion Controllers:
The performance of the low-level controllers on the robot
hardware is firstly validated, as demonstrated in Fig. 5. The
control policies are able to produce similar maneuvers in
real world (Fig. 5) as in the simulation (Fig. 3) without any
training in the real world. Furthermore, given a random set
of Bézier coefficients, all three policies are able to track the
desired trajectories for the robot’s end-effector to the best of
its physical limitations, as shown in Fig. 6, with an average
tracking error of 0.11 m (measured by MoCap) over all trials.

3) Goalkeeping Performance: As demonstrated in Fig. 7,
the proposed framework that utilizes three different goal-
keeping skills is able to enable Mini Cheetah to save goals in


https://youtu.be/iX6OgG67-ZQ
https://youtu.be/iX6OgG67-ZQ

(c) Jump
Fig. 5: Experiments with control policies for different skills. The
policy is able to directly transfer to the hardware. As designed in
Sec. II-B, we can observe that the dive skill 5b is able to reach a
significantly larger range horizontally than sidestep 5a, while the
jump skill 5¢ can produce a notable period of flight time, swing
the front legs to cover higher regions of the goal, and land safely.
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Fig. 6: Comparlson between robot’s desired (blue) and actual
(green) end-effector trajectories. The desired end-effector trajectory
is randomly specified and the resulting actual trajectory is obtained
through MoCap. The average tracking error for left jumping, left
diving, and left sidestepping are 0.10, 0.15, 0.08 m, and those for
right sides are 0.12, 0.13, 0.05 m, respectively.

different scenarios. For easier ones (Fig 7a), the most energy-
efficient way (taking a sidestep) is leveraged, while in harder
cases such as in Fig 7b,7f, the robot takes a large jump and
punches out the ball in the air intentionally. In most shots,
the soccer ball interception time is within 0.9 second and
the robot is able to quickly react to it. Note that another
advantage of our planner is that it may leverage the existing
skills to infer other skills, such as the header in Fig. 7e,
which prevents the ball from slipping through its feet.

To further evaluate the performance in the goalkeeping
task using the proposed framework, we conducted extensive
ablation study on three methods: 1) a model-based planner,
2) the 2-skill planner with jump and sidestep skills, and
the proposed planner which utilizes 3-skill. The model-based
planner runs an optimization online to determine the desired
Bézier coefficients. Like most prior work using model-
based methods [4], we use a Kalman Filter to estimate
the ball velocity from measurements of the ball position
and dynamical model of the ball (assuming there is only
gravitational force acting on the ball). The planner finds a
Bézier curve that intercepts the ball along its predicted path

(c) Dive to intercept a
mid-height flying ball
- -

(a) Sidestep to intercei)t (b) p and punch
a rolling ball ball

7 ()ergent header

(d) Dve,fbr corners (f) Save within 0.5s

Fig. 7: Snapshots of the real-world experiments showing the Mini
Cheetah robot goalkeeper handling various scenarios. In 7a, the
robot chooses sidestep when the ball is nearby, whereas in 7d a
dive save is selected as the ball is rolling towards the corner. When
the ball comes high as in 7b, the robot jumps and intentionally
pushes the ball away, while dive is chosen for balls in the lower
half, as in 7c. Shown in 7e, the planner generalizes to leverage
other parts of the body to complete the task. These experiments are
conducted with a RGB-Depth camera, while the robot responded
to a fast ball in less than 0.5 second supported by MoCap in 7f.
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Fig. 8: Shot interception maps in real-world experiments. The
model-based method yields a very low saving rate due to imprecise
ball prediction. The lower-corner failures in 8c are significantly
reduced compared to 8b, coherent with the result in simulation.
The saving rates are 23.3%, 66.7%, and 87.5%, respectively. These
experiments are conducted using a RGB-Depth camera.

and the locomotion skill is selected based on the ball height
at the predicted interception point. The shot interception
maps with these three methods are recorded in Fig. 8.

The model-based planner results in the worst performance
with only a saving rate of 23.3% over 30 trials. This is likely
due to the unreliable ball velocity estimation, which is a
crucial element for this method, and the limited ability to
consider robot’s full-order dynamics. Since the robot often
fell over while catching the flying ball with this method, we
stopped at 30 tests to prevent potential hardware damage. On
the other hand, the learning-based 2-skill and 3-skill planners
do not require knowlege of the ball’s velocity, leading to a
significant improvement in saving rates. Both 2-skill and 3-
skill planners are tested consecutively for 40 trials, and the
shot interception maps are shown in Figs. 8b,8c. The most
frequent failure spots for the 2-skill planner occurs noticeably
on the lower corners, which is innately difficult for the robot
without learning the dive skill. In contrast, the proposed
3-skill planner (87.5% saving rate) with all three skills
noticeably alleviates these corner cases and outperforms the
2-skill planner by 20.9%.

However, one limitation of the proposed framework is that
the robot often fails to save balls whose with flight times less
than 0.5s. This is due to the minimum timespan of the robot’s
motion and ball detection delays from the camera.



4) Penalty Kicks with Humans and a Quadrupedal Robot:
We further showcase the capacity of the proposed framework
by inviting human soccer players, and a quadrupedal robot
soccer ball shooter developed in [30] to conduct penalty shots
with the proposed robot goalkeeper. These experiments are
recorded in the video.

VI. CONCLUSION AND FUTURE WORK

In conclusion, we proposed a multi-skill reinforcement
learning framework that enables quadrupedal robots to func-
tion as soccer goalkeepers with precise and highly dy-
namic maneuvers. We developed a RL-based framework
in simulation and demonstrated its performance with zero-
shot transfer to the real world. The framework consists of
multiple locomotion controllers specialized for specific skills
(sidestep, dive, and jump) and a multi-skill manipulation
planner to find the optimal skill and desired trajectory for
robot’s end-effector to intercept the incoming ball. We have
shown that the multi-skill RL framework outperformed a
model-based planner under delayed and noisy measurements,
and was able to adequately leverage the specialty of each
skill. In this work, we focused solely on the goalkeeping
task, but the proposed framework can be extended to other
scenarios, such as soccer ball dribbling.
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