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Abstract
Online collaborative and content-focused professional development (PD) is becoming an 
increasingly important setting for supporting mathematics teachers’ professional learn-
ing. The purpose of this study was to better understand the process by which a commu-
nity emerges in such a PD setting by examining how the cohesiveness of 21 mathematics 
teachers’ social network evolves and associated shifts in the quality of mathematics teach-
ers’ mathematical discourse. We employed social network analysis (SNA) to examine the 
evolving cohesiveness of mathematics teachers’ social network and coding procedures to 
examine teachers’ mathematical discourse. A key finding was the documentation of an 
emergent divide between participation in the core and periphery during initial weeks of the 
PD and then a reduced divide and emergence of a social network that resembles a commu-
nity. We argue that the instructor’s pattern of participation that included distributing their 
interactions across the subgroups while sending a common message regarding expectations 
for mathematical discourse in the PD may have contributed to the community formation 
process. We propose the Interaction Assessment Model, which outlines an approach for PD 
facilitators to use SNA as a feedback mechanism to differentiate facilitation of online col-
laborative and content-focused PD and build online communities.

Keywords  Online professional development · Teacher communities · Social network 
analysis · Cohesiveness · Interaction assessment model

Introduction

Meeting the calls of research and policy (e.g., see National Council of Teachers of Math-
ematics (NCTM), 2018; Schoenfeld 2014; Stein et al. 2008; Sztajn et al. 2012) for teach-
ers implementing mathematics instruction that supports students developing conceptual 
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mathematics understanding requires teachers to hold these conceptual mathematics under-
standings themselves (Silverman and Thompson 2008). Research indicates the importance 
of mathematics teachers having ongoing opportunities to enhance their mathematics con-
tent knowledge (Byerley and Thompson 2017), and professional development (PD) is one 
mechanism used to support teacher mathematics learning (Fennema et al. 1996; McDonald 
et al. 2013; Sedova et al. 2016). Furthermore, online PD is becoming an increasingly more 
important and viable context for supporting teachers’ mathematics learning (Lantz-Anders-
son et al. 2018; Macià and García 2016); however, many questions remain regarding how 
communities emerge in online collaborative and content-focused PD.

Research indicates that not all PD is equally effective (Bannister 2018; Grossman et al. 
2001; Kennedy 2016; Munter et al. 2016). Synthesizing research on PD (e.g., see Penuel 
et al. 2007; Spillane 1999), Desimone (2009) argued that there is consensus on the core 
design features of effective PD and these features include content focus, collective partici-
pation, active learning, coherence, and sustained duration. Recent work has expanded this 
list to include coaching, modeling effective instruction, opportunities for feedback (Dar-
ling-Hammond et al. 2017), and knowledgeable facilitators (Sztajn et al. 2017). While the 
effectiveness of these core features has been questioned (Kennedy 2016), our PD efforts 
draw from these features and aim to support teacher learning of mathematics content 
through collaborative PD because (1) unfortunately, research indicates that teachers’ math-
ematics content knowledge is underdeveloped (Byerly and Thompson 2017) and (2) our 
work is grounded in the assumption that collaboration is essential for learning (Lave and 
Wenger 1991).

Teacher communities, which can emphasize the collaborative aspect of PD, have a his-
tory of success in supporting teacher learning, and participation in such communities has 
been linked to increased student achievement (Langer 2000; McLaughlin and Talbert 2001; 
Ronfeldt et  al. 2015). For example, Ronfeldt et  al. (2015) found that teachers who were 
members of communities engaging in high-quality collaboration were linked to increases 
in their students’ achievement. Typical contexts for teachers participating in community 
include settings that have a physical location such as teacher work groups in local schools 
(Horn et al. 2016; Little 2003), teacher education courses (Kutaka et al. 2017)), video clubs 
(van Es 2012; Wallin and Amador 2019), and externally supported projects and initiatives 
(Bannister 2015; Stein et al. 1999; Wilson et al. 2017).

Despite research documenting the efficacy of teacher communities for supporting 
instructional change (Ronfeldt et al. 2015), research has also found shortcomings. Specifi-
cally, Cobb et al. (2003) note the potential impact of local instructional norms and the chal-
lenges they may present for shifting instruction (i.e., following pacing guides, using com-
mon assessments). In addition, school-based teacher communities often present challenges 
due to teachers’ schedules and availability (Chappuis et al. 2009) and the lack of continuity 
in participation due to high teacher turnover rates (Carver-Thomas and Darling-Hammond 
2017). Moreover, Desimone and Garet (2015) found that teachers experience different 
learning gains from participating in the same community; and one factor contributing to 
this difference is the beliefs, attitudes, and identities teachers bring to the PD (Goldsmith 
et al. 2014). This indicates a need for approaches that allow PD leaders to differentiate their 
facilitation of collaborative PD (Desimone and Garet 2015).

As communication and collaboration technology continue to develop, teacher communi-
ties mediated by the internet continue to show promise as a viable modality for teachers 
participating in generative and productive PD (Lantz-Andersson et  al. 2018; Macià and 
García 2016). An important difference between collaboration in face to face and online 
settings is that online collaboration can be asynchronous. Such collaboration allows for 
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teachers to be more consistently connected to each other and to activities since they are 
not limited to engagement at a specific time or place (Fletcher et al. 2007). This implies 
that online environments afford access to sustained participation in PD as teachers move 
between schools, which is particularly prevalent in urban districts (Desimone and Garet 
2015). In addition to these affordances of online collaboration, Li and Qi (2011) found 
that an online PD focused on instructional design supported teachers developing a better 
understanding of mathematics content and instructional strategies. Further, Polizzi et  al. 
(2018) documented success of online communities in supporting new teachers’ continued 
development of effective instructional practices as they transitioned from teacher prepara-
tion programs to their initial teaching position.

For these reasons, we have spent nearly a decade studying teachers participating in online 
communities. In previous studies, we have documented the efficacy of our online work with 
teachers through supporting teachers’ development of mathematical practices (Fukawa-
Connelly and Silverman 2015) and mathematical knowledge for teaching (Clay et al. 2012). 
Additionally, we documented the potential for online asynchronous collaboration to support 
evidence-based feedback practices (Matranga et al. 2018) and collective practices such as 
placing student thinking at the center of instructional decision making and supporting the 
development of increased facility with teacher professional noticing (Fukawa-Connelly et al. 
2018). Our current work has shifted toward better understanding and characterizing the pro-
cess by which communities emerge in online collaborative and content-focused PD and to 
develop frameworks that allow others to understand and implement similar work.

Purpose

The purpose of this study is to better understand the process by which the cohesiveness 
of mathematics teachers’ social network evolves during online collaborative and content-
focused PD and begins to resemble a community as well as to document increases in the 
quality of mathematics teachers’ mathematical discourse in relationship to changes in net-
work cohesion. The cohesiveness of a network or network cohesion “describes attributes 
of the whole network, indicating the presence of strong socializing relationships among 
network members, and also the likelihood of their having access to the same information or 
resources” (Haythornthwaite 1996, p. 332) and can be used as a proxy for examining com-
munity formation. Social network analysis (SNA)—an approach to examining patterns in 
interactions derived from graph theory (Wasserman and Faust 1994)—can be employed to 
measure network cohesion by quantifying the extent to which mathematics teachers inter-
act. Accordingly, this study used SNA and qualitative approaches to investigate partici-
pants’ interactions during online asynchronous collaborative problem-solving and how the 
features of their interactions morphed during the PD course. We investigated the following 
research questions:

•	 How does the cohesiveness of participants’ social network evolve during the PD 
course?

•	 How do participants’ interactions in the social network influence cohesiveness of the 
network, including membership in the core and/or periphery of the network?

•	 How does the content of participants’ interactions provide insight into the cohesiveness 
of the network and associated changes in the quality of their mathematical discourse?
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Network cohesion in online teacher PD

This study is situated in research that examines the pattern in and content of teachers’ 
interactions in online PD. Studies that focus on the content of teachers’ interactions in 
online PD consistently show that teachers largely share and compare information and fol-
low norms of agreement in both informal (Macià and Garcià 2016) and formal (Lantz-
Andersson et al. 2018) online communities. Research has documented ways to disrupt such 
norms and promote quality collaboration in online PD through the use of discourse scaf-
folds (Yücel and Usluel 2016), design of learning environments (Chieu and Herbst 2016), 
and instructor facilitation methods (Ouyang and Scharber 2017). Nevertheless, additional 
research is needed to better understand how to support teacher learning through quality 
interactions in online collaborative and content-focused PD.

To better understand teacher collaboration in online PD by focusing on the pattern of 
teachers’ interactions, research has examined the cohesiveness of online networks. As 
noted above, cohesiveness or network cohesion describes features of social networks, spe-
cifically highly collaborative settings where information and resources are equally acces-
sible to all members of the network (Haythornthwaite 1996). One theme in research taking 
a network cohesion lens on teacher participation in online PD is the use of arbitrary points 
in time of the PD to examine changes in network cohesion. For example, Zhang et  al. 
(2017) facilitated two online lesson study cycles and examined network cohesion after each 
cycle. Similarly, Sing and Khine (2006) assessed network cohesion at the conclusion of 
a PD. Thus, a gap in the literature exists regarding the process by which the cohesive-
ness of teachers’ social networks evolve in online PD. Filling this gap can lead to a better 
understanding of the process of teacher learning in collaborative PD, which can inform the 
development of frameworks for using SNA as a feedback mechanism (Dado and Bodemer 
2017; Wise and Cui 2018) to support the emergence of online teacher communities. The 
current study makes an initial step at filling this gap.

Studies of network cohesion in online teacher PD range from what we have character-
ized as low-density and low-reciprocal (not cohesive) to cohesively connected. Zhang et al. 
(2017) studied 83 teachers in a 6-month online PD and documented a low-density and 
low-reciprocal network as the density was 0.06 (meaning that 6% of the possible connec-
tions were made) and the reciprocity was 0.10 (meaning that 10% of participants’ connec-
tions were reciprocal). On the other hand, Sing and Khine (2006) examined 11 teachers in 
an eight-week online PD and found that the density of the network was 0.67, which they 
concluded was a cohesively connected network. Similarly, Ouyang and Scharber (2017) 
reported that after seven discussions in an online master’s course, the 21 participants 
formed a cohesively connected social network with a density of 0.776 and a reciprocity of 
0.698. While the number of participants in a network has a large impact on potential for 
cohesiveness of the network (Wasserman and Faust 1994), we use results reported by Sing 
and Khine (2006) and Ouyang and Scharber (2017) as a benchmark for assessing the cohe-
siveness of participants’ social network in this study.

Core-periphery analysis can be used to investigate network cohesion. Studies have doc-
umented the presence of core/periphery structures in online teacher PD, while identify-
ing the presence of an intermediate category of participation that is in between the core 
and periphery. For example, Li and Li (2013) used a continuous core/periphery model to 
examine 141 teachers in an online community and their emergent degrees of participation, 
which the authors characterized as the core, semi-core, and periphery. El-Hani and Greca 
(2013) examined 87 science teachers in an online PD and used “actions” as a metric for 
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participation (e.g., posting messages, downloading files, etc.). Quantifying actions resulted 
in three emergent subgroups: an “inner circle” with the most active participants, an “inter-
mediate circle” with moderately active participants, and an “outer circle” with less active 
participants. Our interpretation of the findings reported in these studies is that the interme-
diate category of participation provides evidence that the network resembles a community 
because Jan and Vlachopoulos (2019) argued that an indicator of network cohesion that 
resembles a community is a decrease in the extent of participation when moving outward 
in the network. Taken together, these studies suggest the potential of examining network 
cohesion to better understand the process by which a network evolves and begins to resem-
ble a community.

Communities of practice and network cohesion

We draw from Wenger’s (1998) notion of a community of practice to define “community” 
in this study. Wenger (1998) argued that there are three features of a community of prac-
tice, namely participating members’ mutual engagement in practice (collective practices), 
a joint enterprise (common goals), and a shared repertoire (emergent concepts and arti-
facts from collaboration). Learning in a community of practice occurs through a process 
of legitimate peripheral participation (LPP), which involves the evolution of individuals’ 
participation from peripheral to full participation in the discourse practices that define a 
community (Lave and Wenger 1991). Barab et  al. (2003) emphasized that learning is a 
social process that involves developing “connections between the learner and other learn-
ers with similar goals” (p. 238). This suggests that social learning processes and legitimate 
peripheral participants’ changing participation in a community of practice has implica-
tions for evolution of discourse practices that define a community (Wenger 1998) and the 
cohesiveness of a community’s social network (Wenger et al. 2011). Thus, communities of 
practice are dynamic and constantly evolving, both in regard to the qualitative features of 
the community and the relational patterns. Therefore, we argue that focusing on teachers’ 
interactional patterns in an online PD has high potential to provide insight into the com-
munity formation process.

Cohesiveness has been used as a proxy for studying community formation in online 
environments through focus on structural characteristics of a social network (Haythorn-
thwaite 1996; Jan and Vlachopoulos 2019). Gaggioli et al. (2015) related the presence of 
a cohesive social network to online learners developing a collective vision and engaging 
in goal-oriented participation, while Aviv et al. (2003) found that a cohesively connected 
network was related to participants developing common practices for knowledge-building. 
In addition, Nistor et al. (2020) argued that online blogging communities with a large inter-
mediate group of participants successfully fostered LPP because they supported newcom-
ers in moving from peripheral to full participation in the community.

These studies show that there can be links between cohesively connected groups of 
teachers and productive goals, practices, and generative participation structures. SNA 
includes procedures for studying teachers’ collaboration (Daly 2010) and can index pat-
terns in interactions that indicate cohesiveness. This study draws from an approach that 
uses SNA to examine network cohesion for the specific purpose of determining the pres-
ence of community.

Jan and Vlachopoulos (2019) argued that indicators of network cohesion that resemble a 
community include a: (1) large proportion of individuals interacting during the time period 
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of interest (high-density), (2) group of individuals with strong ties (Granovetter 1973) at 
the core of the network and a decrease in the extent of and strength in individuals’ ties as 
one moves “outward” in the network; and (3) core-periphery structure that allows for LPP. 
Further, Zhang et al. (2017) suggest that reciprocal relationships could indicate cohesive-
ness because multiple interactions between individuals afford negotiation of meaning. The 
SNA procedures of density, average degree, core-periphery analyses, and reciprocity (dis-
cussed below) can quantify these indicators of cohesiveness (Jan and Vlachopoulos 2019). 
Employing SNA to quantify network cohesion allows us to measure the quality of teachers’ 
collaboration from an interactional perspective. Identifying patterns in how these measures 
vary over time allows us to surface shifts in teachers’ collaboration and characterize the 
process by which a group of teachers begins to resemble a community. Locating such shifts 
also allows us to make conjectures regarding what supported these shifts.

Methodology

This section introduces the PD context, the participants, and data sources. We then intro-
duce the SNA procedures used to examine participants’ social network, our approach to 
investigating individuals’ interactions, and our process for conducting qualitative analysis 
of the content of participants’ interactions.

PD context

This study is part of a longitudinal mixed-methods research project focusing on mathemat-
ics teachers’ collaborative learning in online PD. The online PD course is offered by a pri-
vate university in the Northeast region of the USA. The study was approved by the second 
author’s Institutional Review Board, and all participants in the online PD course consented 
to participate. The mathematics content goal of the PD is to support teachers reasoning 
about functions by examining the variation and co-variation of quantitative relationships 
(e.g., see Carlson et  al. 2002). The course mathematics tasks include interactive applets 
that scaffold participants’ focus on quantitative relationships to understand the behavior 
of functions. An example task (Fig. 1) scaffolds focus on quantities and quantitative rela-
tionships from the unit circle to introduce trigonometric functions. The applet affords a 
dynamic view of the quantitative relationships in the unit circle. One can click and drag a 
point around the circumference of the unit circle and notice, for example, how the magni-
tude of the arclength cut out by the horizontal axis and the subtended angle varies (the blue 

Fig. 1   A mathematics task using an interactive applet
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section on the unit circle), how the vertical distance from the point where the subtended 
angle intersects the circumference of the circle to the horizontal axis varies (the red line 
segment in the unit circle), and how these two quantities vary simultaneously. The tasks 
prompt participants to explain their observations with a focus on why the trace of function 
graphs in the coordinate plane appear the way that they do. These explanations are submit-
ted to the course Discussion Board (DB) and provide foundation for participants’ collective 
mathematical activity. Each week of the course includes similar mathematics tasks that 
focus on functional relationships and communicating mathematical ideas.

The course has pedagogical goals such as supporting generative feedback practices by 
scaffolding participants’ interactions with online learning technologies and “Noticing and 
Wondering”—a discourse scaffold for supporting evidence-based reasoning about math-
ematics and mathematical thinking (Delavan and Matranga 2020; Fukawa-Connelly et al. 
2018; Hogan and Alejandre 2010; Shumar 2017). The online asynchronous collaboration 
model (Silverman and Clay 2010) was applied to structure participants’ collective math-
ematical activity. During a typical week, participants worked privately on a mathemat-
ics task, submitted initial thoughts/questions to the course DB, provided feedback on at 
least two colleagues’ mathematics work, revised their initial solution and then collectively 
reflected on the learning process. Each week followed this work flow except week four, 
which included an optional DB for participants to discuss the course quiz. Past research 
on the participants in this PD course indicates that they achieved course goals as we docu-
mented the emergence of generative mathematical activity and a pedagogical practice for 
providing effective feedback (Matranga 2017). Thus, the online PD course presents a rich 
context for examining community formation in online mathematics teacher PD.

Participants

This study included 21 practicing mathematics teachers who participated in the online PD 
course, the instructor, and the teaching assistant (n = 23). Each of the 21 participants had 
between one and three years of teaching experience at the secondary level. Participants’ 
geographical locations varied, while 63% of participants were female, 47% were male. 
Their racial and ethnic backgrounds are unknown.

Data sources

Data for this study were collected from participants collaborating in the online course DB. 
A third party extracted the data from the DB into a spreadsheet, which included forum name 
(e.g., week 1 DB), thread name, author of post, content of post, post ID (a unique identifier 
for each post), and parent post ID (the post ID number a message was in response to). Data 
preparation included generating a record of the interactions according to who responded to 
whose post by creating an “author to” column in the spreadsheet and adding the author name 
that corresponded to the parent post ID. Interactions were directed, meaning that if partici-
pant A submitted an initial post to the DB and participant B responded to participant A’s post, 
there was a directed interaction from participant B to participant A. There were ten DBs (one 
per week) with a total of 1016 directed interactions. Edges were considered binary, meaning 
that a relationship was considered either established or not. We developed cumulative data-
sets to provide insight into the evolution of participants’ interactional patterns by extracting 
the author from and author to column from the spreadsheet. The week two dataset, for exam-
ple, compiled interactions from the week one forum and week two forum. We imported the 
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ten interactional datasets into UCINET 6.0 (Borgatti et al. 2002)—the SNA software used for 
the analysis. We extracted the forum name, author from, author to, and content columns from 
the spreadsheet and imported this dataset into Nvivo 11 for the qualitative analysis.

Data analysis

The goal of the SNA was to better understand the process by which participants’ inter-
actions evolved during the PD course and began to resemble a community. The analysis 
began by conducting SNA procedures to examine evolution in the cohesiveness of partici-
pants’ social network (research question #1) with the purpose of distinguishing stages of 
evolution, that is time periods during the PD course with similar changes in the structural 
characteristics—the ways in which a collection of nodes is connected.

The Integrated Methodological Framework (IMF) (Jan and Vlachopoulos 2019) guided 
our choice of SNA procedures. The IMF identifies SNA procedures effective for examining 
network cohesion that resembles a community, and these procedures include density, aver-
age degree, reciprocity, and core/periphery analysis. Density indicates the extent to which 
a network is connected by calculating the proportion of connections present to all possible 
connections. A density of 100% indicates each individual in a network has communicated 
with everyone in the network. Average degree or average number of interpersonal rela-
tionships indicates how many individuals, on average, participants communicate within a 
network and is calculated by dividing the total number of connections in a network by the 
number of participants. An average degree of five indicates that on average, participants 
communicate with five different participants. An average degree of n-1 indicates that each 
participant in the network interacted with each of his/her colleagues (a density of 100%). 
Reciprocity indexes the proportion of cases in a network where both participants in a dyad 
sent a message to one another. A reciprocity of 50% means that in 50% of the pairs of par-
ticipants, both individuals sent a message to one another.

A core/periphery network structure includes a core group of participants who frequently 
communicate with one another, a peripheral group who infrequently communicate with 
one another and on occasion communicate with the core group (Borgatti and Everett 2000). 
Core/periphery analyses bifurcate a social network into two classes with respect to fre-
quency of participation and with whom that participation is with. The analysis output in 
UCINET includes core/periphery membership logs and the following densities: core-to-
core, core-to-periphery, periphery-to-core, and periphery-to-periphery. These densities 
indicate the extent to which participants communicate within and across subgroups.

After applying these SNA procedures to the ten interactional data sets, we organ-
ized social network metrics into spreadsheets, generated descriptive statistics, examined 
changes in the social network maps, and created alternative representations of the data. 
This allowed us to characterize patterns in change in the social network.

This analysis was followed by investigating how individual interactions influenced the 
structural characteristics of the network (research question #2). We began this analysis by 
examining ways in which individual participants’ membership with the core and periph-
eral subgroups varied within and across the stages of evolution. This included organizing 
membership data from the core/periphery analyses into a matrix that had the dimensions 
“week of PD course” and “participants,” where a cell entry of “C” indicated participants’ 
membership with the core. We manipulated the columns of the matrix to uncover patterns 
in how membership with the core was changing within and across the stages. We also 
examined individual participants’ out degree centrality—a measure of how many times a 
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participant initiates interaction with colleagues—to make meaning out of emergent partici-
pation patterns.

We also focused on microlevel processes of how individual participants interacted 
through existing and/or developed new communication ties both within and across the sub-
groups of the social network. NetDraw, the network visualization software associated with 
UCINET, allowed us to manipulate the edges of the network to explore who was initiating 
interactions in the course and how these interactions impacted the network structure.

Qualitative analyses for this study were conducted with modified grounded theory. 
Accordingly, we framed analysis of the content of participants’ interactions through an 
existing coding scheme developed in our ongoing research on this PD course. The research 
team conducted data sessions where the data corpus was analyzed chronologically using 
constant comparative methods (Strauss and Corbin 1990). Initial coding was done col-
laboratively in data sessions, allowing for all research team members to develop common 
understandings and interpretations of the codes. Subsequent coding was done individually 
by the two authors of the present article, and any questions or disagreements in coding 
were discussed at whole group data sessions and consensus was reached on the code(s). 
Four salient codes emerged related to the quality of participants’ mathematical discourse 
and feedback practices, namely visual features, explaining why, covariation to explain why, 
and challenging practice. The first three codes represent how participants reasoned about 
functions, while the fourth code represents how participants began to provide feedback to 
their colleagues that pressed them to develop more sophisticated explanations of functions. 
Examples of the codes are analyzed and discussed in the final section of the results.

We organized the code counts according to participants’ subgroup during each stage 
of evolution of the network. This allowed us to surface associations between participants’ 
mathematical discourse and their membership with and movement between subgroups 
(research question #3). The surfaced associations framed our choice of whose sample posts 
we chose to highlight in the findings section below.

Results

This section provides an overview of the SNA results, characterizes the network’s change 
across two stages of evolution, and shows evidence that the network became cohesively 
connected by the conclusion of the PD course. We present our analysis of how participants’ 
membership varied between subgroups and the coding results.

Overview of the social network

Table 1 provides an overview of the structural characteristics of participants’ network and 
can be interpreted as follows: at the conclusion of week one, the density was 0.208, which 
indicates that 20.8% of the possible ways in which participants could reply to their col-
leagues’ posts occurred during week one. By the conclusion of week ten, 75.3% of the 
ways in which participants could reply to their colleagues’ posts occurred. At the conclu-
sion of week one, the average degree was 4.36, meaning that on average, participants sent 
a message to four or five colleagues during week one. At the conclusion of week one, the 
reciprocity was 0.438, meaning that of the connections made between pairs of participants, 
43.8% included both members of a dyad sending a message to their colleague. Each of the 
structural characteristics increased throughout the course.
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Table  2 provides an overview of the network’s core-periphery structure and can be 
interpreted as follows: at the conclusion of week one, the core-to-core density was 0.643. 
This indicates 64.3% of the ways in which the members of the core could reply to their 
colleagues’ posts occurred during week one. The core-to-periphery density was 0.241, 
which indicates that 24.1% of the ways in which the members of the core could send a 
message to the members of the periphery occurred during week one. The core-to-core 
density increased to 83.3% by week two and then remained relatively stable through week 
ten, while the core-to-periphery, periphery-to-core, and periphery-to-periphery densities 
increased throughout the course.

The SNA metrics indicate that the network became cohesively connected and began 
to resemble a community by the conclusion of the course. The network had a high-den-
sity (75.3%), indicating a large proportion of participants interacted during the course. A 
core-periphery structure with a high-density core (88.5%) and moderate-density periphery 
(54.4%) was present in the network, which indicates a decrease in density when moving 
“outwards” in the network. There was a high average number of interpersonal relation-
ships (average degree) (16) and reciprocity (81%). These metrics are consistent with those 
documented by Sing and Khine (2006) (density of 67%) and Ouyang and Scharber (2017) 
(density of 78% and reciprocity of 70%), who argued that the networks they studied were 
cohesively connected.

Two stages of evolution in participants’ social network

Looking across the core/periphery density model (Table  2) and the structural character-
istics of the network (Table 1) surfaced patterns in the way in which the metrics varied, 
which was important for understanding how the network evolved. During weeks one 
through four, we see an increase in each of the structural characteristics (see Table  3); 
however, those increases were primarily due to the rapid increase in the core-to-core den-
sity. For example, the network density increased to 41.7%, while the core-to-core density 
increased to 81.9%. The structural characteristics of the network continued to increase 
during weeks five through ten. However, the core-to-core density remained stable, while 

Table 1   Structural characteristics

Week 1 2 3 4 5 6 7 8 9 10

Density 0.208 0.308 0.41 0.417 0.476 0.536 0.648 0.684 0.719 0.753
Avg. degree 4.36 6.78 8.91 9.17 10.47 11.78 14.26 15.04 15.82 16.56
Reciprocity 0.438 0.551 0.615 0.616 0.631 0.686 0.768 0.792 0.802 0.808

Table 2   Core/periphery density model

Week 1 2 3 4 5 6 7 8 9 10

Core-to-Core 0.643 0.833 0.839 0.819 0.833 0.8 0.864 0.879 0.878 0.885
Core-to-Periphery 0.241 0.348 0.517 0.452 0.579 0.591 0.629 0.674 0.715 0.754
Periphery-to-Core 0.107 0.223 0.317 0.302 0.389 0.432 0.614 0.674 0.692 0.738
Periphery-to-Periphery 0.125 0.237 0.276 0.313 0.324 0.364 0.455 0.473 0.489 0.544
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the core-to-periphery, periphery-to-core, and periphery-to-periphery densities increased 
toward the core-to-core density. For example, the core-to-core density increased by 1.4% 
in week five and then decreased by 3.3% in week six, while the other three densities in 
the model increased each week by larger amounts then the core-to-core density (except in 
week five where the core-to-core density increased by 1.4% while the periphery-to-periph-
ery density increased by 1.1%).

According to the relationship between how the structural characteristics and the core/
periphery density model varied, we defined two stages of the network’s evolution and 
characterized the stages as: Stage one: (a) the structure of the network quickly evolved 
and became nearly half way connected (see Table 1 week four: density = 41.7% and avg. 
degree = 9.17) and (b) there was an emergent divide between participation in the core and 
periphery (see Table 2 week four: core-to-core density = 81.9% and periphery-to-periph-
ery density = 31.3%). Stage two: (a) the structure of the network became nearly fully con-
nected (see Table 1 week ten: density = 75.3% and avg. degree = 16.56) and (b) there was 
a reduced divide between participation in the core and periphery (see Table 2 week ten: 
core-to-core density = 88.5% and periphery-to-periphery density = 54.4%). The following 
unpacks and discusses these characterizations.

Stage one

The structural analysis (e.g., density, average degree, reciprocity) of the 425 interactions 
from stage one showed that the network quickly evolved and became nearly half way con-
nected, that is nearly one half of the ways in which participants could reply to their col-
leagues’ posts occurred on the course DB. The proportion of ties present in the network 
to all possible ties (density) increased each week until reaching 41.7% at the end of stage 
one. The average outreach of participants’ interpersonal relationships (average degree) 
increased each week until reaching approximately nine at the conclusion of week four, 
meaning that on average participants sent at least one post to nine of their 22 colleagues 
(41%) during stage one. The proportion of participants’ reciprocal relationships with col-
leagues (reciprocity) increased each week, reaching 61.6% at the end of week four, mean-
ing that in 61.6% of occasions both participants in a dyad sent a post to one another.

The core/periphery analysis indicated that there was an emergent divide between the 
core and periphery because much of the increases in the network’s structural characteris-
tics were due to frequent communication between members of the core (Fig. 2). The pro-
portion of ties present to all possible ties in the core was 81.9% (core-to-core density); the 

Table 3   Changes in SNA metrics

Week 1 2 3 4 5 6 7 8 9 10

Density 0.208 0.1 0.097 0.012 0.059 0.06 0.112 0.036 0.035 0.034
Avg. Degree 4.364 2.419 2.13 0.261 1.304 1.305 2.478 0.782 0.783 0.739
Arc Reciprocity 0.438 0.113 0.064 0.001 0.015 0.055 0.082 0.024 0.01 0.006
Core-to-Core 0.643 0.19 0.006 − 0.02 0.014 − 0.033 0.064 0.015 −0.001 0.007
Core-to-Periphery 0.241 0.107 0.169 − 0.065 0.127 0.012 0.038 0.045 0.041 0.039
Periphery-to-Core 0.107 0.116 0.094 − 0.015 0.087 0.043 0.182 0.06 0.018 0.046
Periphery-to-Periphery 0.125 0.112 0.039 0.037 0.011 0.04 0.091 0.018 0.016 0.055
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proportion of ties present to all possible ties in the periphery was 31.3% (periphery-to-
periphery density). Of the 214 posts that established new connections in the network dur-
ing stage one, the six members of the core for the entirety of stage one (26% of the class) 
initiated approximately 40% of these connections (85 posts).

Stage one of the network’s evolution shows that participants quickly established con-
nections with their colleagues, which is expected since this was the first time they com-
municated during the course. The emergent divide in participation indicates that there were 
qualitatively different ways in which participants engaged in this process of establishing 
connections. While there are signs of a cohesively connected network because of the high-
density core (81.9%) and the core-periphery structure, the emergent divide in the network 
suggests a community had yet to form in the online PD course.

An emergent divide between subgroups might be an important phase of community devel-
opment because it might create social context for various levels of engagement and opportuni-
ties for LPP, which are important features of a community (Jan and Vlachopoulos 2019; Lave 
and Wenger 1991). Nevertheless, if the network remained in a “divided state,” it could result in 
the emergence of qualitatively different ways of engaging mathematical and pedagogical activ-
ity because of the potential for two separate communities to emerge (Wenger 1998).

Stage two

Analysis of the 591 interactions during stage two showed that the structural character-
istics of participants’ social network evolved and became nearly fully connected, that is 
nearly three quarters of the way in which participants could reply to their colleagues’ posts 
occurred by the conclusion of the course. The proportion of ties present to all possible ties 
increased each week (density), reaching 75.3% at the end of stage two. The outreach of par-
ticipants’ interpersonal relationships increased each week (average degree), reaching 16.5 

Fig. 2   Stage one core/periphery structure. *Blue = Core; Red = Periphery; Green = changing membership. 
(Color figure online)
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at the end of stage two. The extent to which participants sent a post to a colleague who sent 
a post back increased each week (reciprocity), reaching 80.1% by the end of the course.

The core/periphery analysis showed that there was a reduced divide between the core 
and peripheral subgroups. The proportion of ties present to all possible ties within the core 
increased by 5.2%, within the periphery increased by 23.1%, from the core to periphery 
increased by 30.2%, and from the periphery to core increased by 43.6%. These increases 
indicate that while the density of connections within the core remained stable, there was an 
increase in the extent to which members of the core and periphery and between members 
of the periphery established new connections with one another.

Our interpretation of the change in network cohesion is that there was a shift in the 
social dynamic of the online course because participants began to establish new commu-
nication ties—resulting in the emergence of a more cohesively connected network that 
resembles a community.

Patterns in individual participant’s interactions within and across stages of evolution

We also examined how participants’ membership varied between the core and periphery 
both within and across the two stages of evolution. Table 4 illustrates organized member-
ship data from the core/periphery analysis. The cells with a “C” indicate that UCINET 
identified the participant as a member of the core for that week. The data show that within 
each stage there were participants who remained in the core or periphery and participants 
who moved between these subgroups. For example, in stage one, Paul was in the core each 
of the four weeks, Gina was in the periphery, and Summer was in the core during weeks 
one and four while she was in the periphery during weeks two and three. Table 5 shows 
that there are differences in the average outdegrees of participants who stayed in or moved 
between a subgroup during a stage. For example, the average outdegree of the core in stage 
one was 15.2, while the average outdegree of the participants who moved between the core 
and periphery was 10.6. Outdegree centrality has been shown to be a significant predictor 
of subgroup membership in online communities (Nistor et al., 2020).

This analysis led to the identification of three participant types: (1) core participants 
remained in the core the entire stage, (2) intermediate participants moved between the core 
and periphery the entire stage, and (3) peripheral participants remained in the periphery 
the entire stage. These varying degrees of participation are consistent with past research 
(El-Hani and Greca 2013; Li and Li 2013; Nistor et al. 2020) and provide additional evi-
dence of a decrease in the extent of participation when moving “outward,” a key compo-
nent of network cohesion that resembles a community (Jan and Vlachopoulos 2019).

There were three ways in which participants’ membership varied between these sub-
groups across the stages of evolution: (1) Consistent participation includes participants 
who stayed in the core, intermediate, or peripheral subgroup for the entire course, (2) 
emerging participation includes participants who shifted toward the core, and (3) decreas-
ing participation includes participants who shifted toward the periphery. In the tran-
sition between the network’s stages of evolution (Table  7), four of the five intermediate 
participants appear to settle into roles as members of the core (Cindy, Shawn) or periph-
ery (Chloe, Summer) while Jazmine remained an intermediate participant. Six partici-
pants increased their participation from the periphery to the intermediate subgroup. This 
expanding membership with the intermediate group further illustrates the reduced divide 
between participation in the core and periphery and evidence of increasing participation 
demonstrates the presence of generative participation structures consistent with LPP (Lave 
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& Wenger, 1991) because participants were moving from peripheral toward more central 
participation.

Patterns in the instructor’s interactions during week four

After characterizing the network’s evolution and uncovering patterns in participants’ 
interactions within and across the stages, we examined how participants developed new 
communication ties within and across the core and periphery.1 We focused specifically on 
week four because this was the beginning of the network’s transition between the stages of 
evolution.

During week four, the core communicated exclusively through existing communica-
tion ties while the periphery reached out to talk to a few colleagues who they had yet to 
talk to. There were six cases where members of the periphery at beginning of week four 
(Summer, Gina, Melody and Taylor) sent a message to a colleague who they had yet to 
talk (connections shown in red in Fig. 3). Taylor (periphery) talked to Paul (core) for the 
first time while Summer (periphery) sent a post to Gina (periphery) and Rose (core) for 

Table 5   Average outdegree Membership with core/periphery Stage 1 Stage 2

Remained in core 15.2 19.7
Moved between core and periphery 10.6 16.875
Remained in periphery 7.36 12.75

Fig. 3   New connections made by the periphery during week four. *Blue= Core; Maroon=Periphery; 
Red=Changed from periphery to core; Orange=Changed from core to the periphery; Red edges=New con-
nections during week four. (Color figure online)

1  This analysis focused on core and peripheral subgroups because it was during a specific week of the 
course. The intermediate participants emerged as a result of looking at patterns in participation across mul-
tiple weeks. Therefore, at any given moment in the course a participant could be characterized as a member 
of the core or periphery.



78	 A. Matranga, J. Silverman 

1 3

the first time. On the other hand, members of the core sent 32 messages to other mem-
bers of the core who they already talked to, while sending 12 messages to members of 
the periphery who they already talked to.

The instructor was an exception to this pattern in participation as he distributed his 
interactions across the core and periphery by sending 23 messages to 12 different par-
ticipants during week four—10 messages to seven members of the periphery and 13 
messages to five members of the core (Fig. 4).

The qualitative analysis uncovered that during week four the instructor sent posts to 
members of the core and periphery that challenged them to refine their mathematical 
discourse to include examination of quantitative relationships to provide reasoning for 
why function graphs behave in certain ways. We coded 10 of the 13 posts the instructor 
sent to the core and five of the 10 posts the instructor sent to the periphery as challeng-
ing practice. Consider the following representative sample post the instructor sent to 
Randy that we coded as such and responded to Randy’s rough draft quiz he submitted to 
the DB:

While your answers are no doubt correct, I would bet that you would have been 
able to respond similarly prior to this class. You are taking steps to talking con-
ceptually and about quantities—for example you note "the graph will complete a 
cycle in a shorter distance" rather than saying for example, "has a shorter period." 
But I’d urge you to spend time and focus on the quantities, which can explain why 
that is true.

The instructor quoted a portion of Randy’s solution when he said, “you note, ‘the 
graph will complete a cycle in a shorter distance’ rather than…” This portion of Ran-
dy’s explanation quoted by the instructor is an example of Randy focusing on the vis-
ual features of the graph to make sense of the function’s behavior. The instructor chal-
lenged Randy to move beyond a focus on visual features and explain why when he said, 
“I’d urge you to spend time and focus on the quantities, which can explain why that is 
true…”.

Fig. 4   The instructor’s interactions during week four. *Red edges represent posts sent by the instructor. 
(Color figure online)
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The pattern in the instructor’s interactions indicates that he distributed his partici-
pation across the core and periphery. The content of the instructor’s interactions sug-
gests that he provided support for how to engage mathematical discourse that focuses on 
quantities and the variation between quantities. Taken together, the pattern in and con-
tent of the instructor’s interactions may have contributed to the establishment of com-
mon expectations for productive mathematical discourse in the class.

Examining the content of interactions in relation to the network’s structural 
characteristics

This section presents results from our coding of the content of participants’ interac-
tions. The codes included: visual features, explaining why, covariation to explain why, 
and challenging practice (see Table 6 for examples). The first three codes represent an 
increase in the sophistication of participants’ mathematical discourse from focusing on 
visual features of function graphs to understand its properties, examining underlying 
quantities to explain why functions behave in certain ways, and examining the variation 
and covariation of quantities to understand functions. Visual features captures discourse 
that reflects a less sophisticated approach to examining functions because it relies on 
perceptual and sensorimotor experiences for sense making, which can result in context 
specific patterns in learners’ understandings (i.e., steepness of a linear function indi-
cating rate of change). On the other hand, explaining why and covariation to explain 
why capture discourse that reflects a more sophisticated approach because examining 

Table 6   Data samples for codes used for the qualitative analysis

Code Data sample

Visual features A new observation I was able to make by watching the lengths of the lines 
on the axis, was that the closer the cities are to the highway as well as clos-
est to the midpoint between the exits, the shorter the lines on the axis were

sin(θ) has two waves, sin(2θ) has four waves, and sin(3θ) has six waves. All 
graphs start with a wave above the axis and then alternate dipping below 
and above the axis

Explaining why Quantity ‘a’ multiplies the quantity of sin(x) (which is the vertical length of 
the sine graph). This vertical length is determined by the ratio of the oppo-
site side and the hypotenuse, and we know that this varies from 0 to 1 to 0 
to − 1 to 0. As quantity a varies, now the vertical length will also vary

As the arc length varies around the circle, the sine function varies from 0 to 
1, decreases from 1 to 0, decreases from 0 to −1, and increases from −1 to 
0. This is considered one period of the graph

Covariational to explain why As the arclength x increases from 0 to pi/2, the y value, which represents the 
vertical length, increases until it reaches the maximum value of 1 at pi/2. 
Then as x increases from pi/2 to pi the y value decreases as the vertical 
length decreases. It reaches 0 again at pi since there is no vertical length

As x increases by 1 rad from 0 to 1, 2x/7 increases by 2/7 radians from 0 to 
2/7, sin(2x/7) increases by 0.28 rad from 0 to 0.28

Challenging practice Can you describe why sin(θ) has two waves for one revolution around the 
circle and why sin(2θ) has four waves for one revolution around the circle?

I notice that you talk about the shift in direction when the graph begins 
increasing and decreasing it periods. …and I wonder at which points does 
the graph shift from a period shorter than 2pi to a period longer than 2pi. 
Can you explain why it occurs here?
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the variation and covariation of quantities  to understand the behavior of functions is 
generalizable to a variety of function families (see Moore and Thompson (2015) for a 
description of a comparable learning trajectory ranging from static to emergent shape 
thinking). The challenging practice, on the other hand, was an emerging approach to 
providing feedback, where participants pressed their colleagues to refine their mathe-
matical explanations. Table 7 illustrates the aggregate coding results according to par-
ticipant type and stage of observation. Table 8 disaggregates these results. 

The coding results demonstrate an overall shift in the quality of participants’ math-
ematical discourse throughout the course as there are increases in the presence of each 
of the latter three codes (explaining why, covariation to explain why, challenging prac-
tice) and decreases in the presence of the first code (visual features). The percentage 
of posts coded as visual features decreased from 12.7% of posts in stage one to 7.1% 
of posts during stage two. The percentage of posts coded as explaining why, covaria-
tion to explain why, or challenging practice increased by approximately 8%, 12%, and 
3%, respectively. The coding results also indicate that the core more frequently engaged 
quality mathematical discourse. For example, the six members of the core explained 
why 35 times in stage one (40% of the occasions of explaining why) and the seven core 
members explained why 64 times in stage two (39% of the occasions of explaining 
why), while the 12 peripheral participants explained why 35 times in stage one (40% 
of the occasions of explaining why) and 43 times in stage two (25% of the occasions of 
explaining why). The following analyzes exemplars of visual features, explaining why, 
and challenging practice while drawing connections between the structural characteris-
tics of the network and shifts in the quality of participants’ mathematical discourse.

Each of the 21 participants’ mathematical discourse included making sense of functions 
by examining visual features of functions graphs during stage one (see Table 8). As the 
course progressed, a large proportion of the participants, including consistent participants 
who remained in the periphery showed decreases in the extent to which they used visual 
features of graphs to understand functions. There were two exceptions, Nina and Justin. 
Therefore, we present a post by Nina as a case example of participants’ initial mathemati-
cal discourse and highlight Nina in particular because she did not show shifts in the quality 
of her discourse. The following exemplar post by Nina examined the function f(x) = sin(x2).

The first thing I noticed is that the range remains the same, −1 and 1. This makes 
sense considering that the sin of a function is a ratio. I noticed that there is still the 
hills and valleys. However, the difference is where we learn the most information. 

Table 7   Coding results

Code Visual features Explaining why Covariation to 
explain why

Challenging 
practice

Stage Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

Core 15 9 35 64 5 36 20 29
Intermediate 11 13 17 59 5 39 1 9
Peripheral 28 20 35 43 7 20 0 7
Percentage of 

interactions
12.7 7.1 20.4 28.1 4 16.1 4.9 7.6
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We can look at the hills and valleys almost as oscillations. The oscillations start 
“slow” and begin to increase in frequency rapidly as x approaches infinity.

Nina noticed visual features of the function graph such as “hills and valleys,” and 
how the “oscillations start slow and begin to increase in frequency” as you look from 
the origin of the Cartesian plane toward positive or negative infinity. These hills and 
valleys and the increase in the frequency of the oscillations are visual features of the 
function sin(x2) when it is graph on the Cartesian plane. Thus, our interpretation is that 
Nina’s approach to understanding the function was to describe visual features of the 

Table 8   Individual coding results

*Code counts are in the following order: visual features, explaining 
why, covariation to explain why, challenging practice

Subgroup Stage 1 Stage 2

Core Ava 2, 8, 1, 0* Ava 1, 16, 6, 3
Paul 5, 6, 2, 1 Paul 3, 11, 5, 16
Riley 3, 7, 0, 0 Riley 1, 10, 5, 0
Jessica 3, 13, 1, 0 Jessica 2, 8, 5, 1
Instructor 0, 0, 0, 18 Instructor 0, 0, 0, 2
Amarie 2, 1, 1, 1 Cindy 0, 8, 8, 5

Shawn 2, 11, 7, 2
Intermediate Randy 3, 12, 4, 1

Taylor 3, 12, 3, 2
Charles 0, 11, 6, 0
Kylie 2, 6, 3, 1
Melody 1, 5, 5, 1
Ruby 2, 5, 8, 2

Jazmine 2, 1, 1, 1 Jazmine 1, 5, 4, 2
Chloe 2, 1, 0, 0
Summer 2, 4, 0, 0
Cindy 3, 9, 2, 0
Shawn 2, 2, 2, 0

Amarie 1, 3, 6, 0
Periphery Randy 2, 5, 0, 0

Taylor 2, 3, 0, 0
Charles 2, 2, 1, 0
Kylie 2, 3, 0, 0
Melody 4, 4, 1,0
Ruby 2, 5, 2, 0
Hank 2, 7, 2, 0 Hank 0, 10, 8, 5
Rose 2, 1, 1, 0 Rose 2, 12, 5, 1

Chloe 2, 10, 2, 0
Gina 4, 1, 0, 0 Gina 6, 6, 0, 0

Summer 3, 3, 2, 0
Nina 4, 2, 0, 0 Nina 4, 1, 0, 0
Justin 2, 2, 0, 0 Justin 3, 1, 3, 1
TA 0, 0, 0, 0 TA 0, 0, 0, 0
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function graphed in the Cartesian plane. Examining functions in this way is consistent 
with what Moore and Thompson (2015) refer to as static shape thinking.

This focus on visual features of function graphs was a defining aspect of all participants’ 
initial mathematical discourse while it was the discourse demonstrated by Nina and Justin 
throughout the PD course. Nina and Justin’s continued engagement in this discourse distin-
guishes them from other consistent participants in the periphery who demonstrated shifts 
in the quality of their discourse (e.g., Hank, Rose, Chloe, Gina). Thus, while the cohe-
siveness of the network evolved and began to resemble a community, a small subgroup of 
participants increased the extent of their collaboration with colleagues while showing little 
sign of shifts in the quality of their mathematical discourse.

Participants began to more frequently use underlying quantitative relationships to 
explain why functions behave in certain ways as the course transitioned from stage one 
to two. This increase was particularly prevalent in the emerging participation group who 
moved from the periphery in stage one to intermediate participation in stage two. Amongst 
this group, Randy, Taylor, and Charles demonstrated the most pronounced shift toward 
explaining why when examining functions. Moreover, the instructor challenged Randy, 
Taylor, Charles and Melody during stage one to move beyond a focus on visual features 
of functions and begin examining underlying quantities. The following presents Randy’s 
week six post as an exemplar of this feature of participant’s mathematical discourse.

I am going to attempt to explain why the graph looks as it does. x can be any value 
from negative infinity to infinity. As x varies the cos(x) varies from 1 to negative 1. 
As cos(x) varies between 1 and −1, ecos(x) varies between e (approximately 2.7918….) 
and 1/e (approximately 1/2.7918). Some important values would be ecos(0) = 1. This 
value repeats itself, since cos(x) is a periodic function, every 2pi radians.

Randy highlighted that he is attempting to explain “why the graph looks as it does” 
and then examined the function’s quantities by describing how these quantities vary (“As x 
varies, the cos(x) varies from 1 to negative 1”). Randy further described how the variation 
of cos(x) impacts the variation of ecos(x) (“ecos(x) varies between e…and 1/e…”). Thus, our 
interpretation is that Randy focused on varying quantities to understand the function. This 
approach to examining functions is similar to what Moore and Thompson (2015) refer to as 
emergent shape thinking. This post is in contrast to an earlier post by Randy that we coded 
as visual features. Randy explained:

Similar to Nina’s post shown above, Randy focused on visual features of the graph in 
the coordinate plane such as the “solid line” that might appear near the origin when graph-
ing y = sin(1/x) on a Cartesian coordinate plane. He also used language indicating he was 
drawing on his perceptual experience (e.g., “it appears,” and “I expected to see”) to under-
stand the function. Thus, these posts provide evidence that Randy moved beyond a focus 
on visual features of graphs and began to provide reasons for why functions vary between 
particular values.

More generally, the exemplar posts illustrate the shift in the quality of participants’ 
mathematical discourse documented in our coding. The shift is illustrated when compar-
ing discourse such as “varies” and descriptions of the relationship between changes in 
quantities (e.g., “as x varies…the cos(x) varies…) to discourse such as “hills and valleys” 
and a “solid line.” We suggest that the former is similar to emergent shape thinking, while 
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the latter is consistent with static shape thinking. Moore and Thompson (2015) argued, 
similarly, that emergent shape thinking is a more sophisticated approach to examining 
functions than static shape thinking. We observed this shift in the quality of all partici-
pants’ discourse (accept Nina and Justin). The emerging participants in the intermediate 
group during stage two (Randy, Taylor, and Charles) in particular were on a trajectory of 
increased communication with the core, and the quality of their discourse was becoming 
more sophisticated. Therefore, this association between Randy, Taylor, and Charles’ pat-
tern in participation and shifts in their discourse provides additional evidence of LPP in the 
network.

An emergent feature of the class’s discourse included what we characterized as the chal-
lenging practice, where participants challenged colleagues to shift their focus from visual 
features of function graphs to underlying reasons for why graphs have certain visual fea-
tures. This feature of discourse was primarily observed in instructor’s posts during stage 
one. The instructor sent 18 posts that we coded as challenging practice and four of these 
posts were sent to Paul during week four. We coded 45 posts sent during stage two as 
challenging practice and 16 of these posts were sent by Paul. Paul was a consistent partici-
pant who remained in the core. Therefore, we present Paul’s post to Nina to illustrate this 
emerging feature of participants’ discourse. The post was in response to Nina’s examina-
tion of the function f(x) = sin(x):

I noticed that you wrote: “This graph appears as it does because of the Unit Circle. 
Essentially as the values of sin(x) make their way around the circle, they start again 
at zero.” …and I wonder… if you could elaborate on this concept more. Why do the 
values start again at zero? Why does the graph have hills and valleys?

Paul quoted a particular aspect of Nina’s work when he said, “I noticed that you wrote: 
‘This graph appears as it does because …’” The quoted portion of Nina’s explanation lacks 
specificity, focus on quantities or the relationship between quantities. In Paul’s response, 
he pushed Nina to refine her explanation with additional detail regarding why f(x) = sin(x) 
has this particular pattern of change. Paul also asked a question that pushed Nina to explain 
why the graph has particular visual features (“hills and valleys”). This example illustrates 
this emerging feature of participants’ discourse and shows Paul, in particular, taking a role 
in increasing the connectivity of the network through engagement in a generative feedback 
practice.

The presented data provide a lens into the content of participants’ discourse, how it 
shifted from focusing on visual features to explaining why functions behave in certain 
ways, and how participants began to support one another in improving the quality of their 
mathematical discourse by engaging in the challenging practice. While we are not making 
any claims regarding the association between the pattern in and content of participants’ 
discourse, this analysis provides insight into potential relationships between shifts in inter-
actional patterns and changes in the quality of participants’ mathematical discourse.
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Discussion

We began this study with the goal of better understanding the process by which the cohe-
siveness of mathematics teachers’ social network evolved and how the quality of discourse 
shifted in relationship to changes in the network. This study documented the emergence 
of a cohesively connected network with high-density, high-reciprocity, a core/periphery 
structure, and a decrease in density when moving outward in the network—key features 
of a cohesive network that resembles a community (Jan and Vlachopoulos 2019)—as well 
as evidence of LPP (Lave and Wenger 1991). We also documented increases in the qual-
ity of participants’ mathematical discourse from a focus on visual features of graphs to 
understand functions to a focus on explaining why graphs have certain characteristics. 
Further, past studies on this group of participants documented the emergence of collective 
discourse practices, goals, and artifacts (Matranga 2017)—three key features of a commu-
nity (Wenger 1998). Thus, this study provides an empirical example of online mathematics 
teacher collaboration that resulted in a cohesively connected network where the qualitative 
features of participants’ collaboration also indicated a community was present. Given the 
benefits of online settings for teacher participation in successful PD and the importance 
of teachers’ participation in community for enhancing student achievement (Ronfeldt et al. 
2015), this study is significant because it provides additional evidence that online PD can 
be a viable context for supporting mathematics teachers’ learning through participation in 
generative, productive and community-oriented PD.

This study builds on previous work that has taken snapshots of how network cohesion 
changes over time (e.g., see Zhang et al. 2017) by opening up the “black box” of teacher 
learning in online PD (Little 2003; Goldsmith et  al. 2014) and documenting commu-
nity formation processes. We characterized the network’s evolution in two stages: (1) an 
emergent divide between participation in the core and periphery, and (2) a reduced divide 
between participation in the core and periphery and emergence of a more cohesively con-
nected network. Moreover, we identified three subgroups of participants (core, intermedi-
ate, and periphery) and three ways in which participants’ membership varied between these 
subgroups (consistent, increasing, decreasing).

One important finding in this study is how the instructor distributed his interactions 
across the core and periphery during week four and sent a common message regarding what 
constitutes appropriate mathematical discourse in the class. The concept of humans-with-
media defines mathematics learning as a collaborative process that is integrally shaped by 
the technologies mediating collaboration. Moreover, the affordances and constraints of tech-
nologies impact collaboration and emergent learning (Borba and Villarreal 2006). Borba 
et al. (2018) argued that an affordance of DBs is that they can function as “interactive text-
books” that learners co-construct during collaborative learning and these interactive text-
books, in turn, provide a mechanism for support in the learning process. In an excerpt from 
an interview of a pre-service mathematics teacher in an online distance education course, 
Borba et al. (2018) documented a student noting, “of course we have the textbooks, have 
the handouts of the course, but the [DB] is all we really need […] it is full of informa-
tion, solved exercises, videos, links to help with solutions” (p. 281). We argue that there is 
potential that the instructor increased visibility of and access to course expectations by co-
constructing a digital learning environment that includes details (i.e., the posts we coded as 
challenging practice) regarding what constitutes quality mathematical discourse.

This co-constructive process and perspective of the course DB as an interactive text-
book provides one potential explanation for the network’s shift from the emergent divide 



85An emerging community in online mathematics teacher professional…

1 3

to a more cohesively connected network. Horn et al. (2020) argued that teachers engaging 
in dialogue contributing to common perspectives of effective math teaching during formal 
PD meetings can become a “source of homophily” that contributes to increased interac-
tions outside of the meeting. Homophily is  a social network concept that indicates indi-
viduals with common genders, backgrounds, and/or interests tend to build relationships 
with one another (Kadushin 2011). This implies that increasing visibility of quality math-
ematical discourse across the subgroups might have contributed to increased communica-
tion between subgroups because of participants’ emerging common understanding of how 
to communicate mathematically. We showed that in the transition from stage one to stage 
two, participants shifted from the peripheral to intermediate subgroup and these partici-
pants (e.g., Randy, Taylor, and Charles) showed increases in the quality of their mathemati-
cal discourse along with this shift. This argument is in line with a key finding in Eberle 
et al. (2014), showing that access to community knowledge was a significant predictor of 
the extent to which new participants increased their participation in a community. There-
fore, there is potential that the pattern in and content of the instructor’s facilitation of this 
online PD impacted the trajectory of participants’ collaborative learning process.

The analysis of the content of participants’ interactions provided insight into the struc-
tural characteristics of the network and teacher learning processes in online settings. Draw-
ing from the aforementioned logic regarding the DB as an interactive textbook (Borba et al. 
2018), it might be expected that quality posts are more generative in the core than in the 
periphery. There is potentially an increased opportunity for members of the core to take up 
and respond to colleagues’ ideas because of the core’s increased engagement and increased 
visibility of their posts. Conversely, quality interactions in the periphery are more likely 
to go unnoticed because of the decreased engagement by the periphery and lack of vis-
ibility of their posts. We showed that Paul challenged Nina to refine her examination of 
f(x) = sin(x). Given Nina’s position in the periphery of the network, this may have appeared 
to Nina as an isolated occasion of challenge, whereas participants in the core may have 
been more likely to observe this interaction and other, similar interactions. Thus, Paul’s 
interactions in the network were potentially generative because he increased the density of 
the network by frequently interacting with colleagues and potentially increased the visibil-
ity of expectations for quality mathematical discourse by challenging colleges to explain 
why. An implication of this insight is that it might be effective to scaffold online collabora-
tive PD along two dimensions, namely (1) the pattern in participants’ interactions and (2) 
the content of participants’ interactions.

Desimone and Garet (2015) found that individual teachers respond differently to the 
same collaborative PD and proposed differentiating PD for teachers with common needs as 
a way to address this issue. From an interactional perspective, our study showed that teach-
ers responded differently to our collaborative PD in the  online setting. Teachers’ varied 
responses were evidenced by the emergent divide in the network and in the mathematical 
discourse of participants such as Nina. We propose the Interaction Assessment Model as an 
empirically grounded strategy that allows educators to differentiate facilitation of online 
PD by scaffolding collaboration in a way that foregrounds the pattern of participants’ inter-
actions to increase access to rich mathematical discussions. The model uses SNA as a feed-
back mechanism (Dado and Bodemer 2017; Wise and Cui 2018) to monitor collaboration. 
Specifically, the model includes (1) applying core/periphery analyses to monitor the emer-
gence of core and peripheral subgroups in an online PD, (2) using this data to inform how 
the PD facilitator can distribute interactions across subgroups to enhance the visibility of 
support, and (3) responding to participants in a way that provides appropriate support to 
establish what constitutes acceptable mathematical or pedagogical activity. Moreover, it 
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might be useful to explicitly scaffold mathematics teachers in using community-generated 
artifacts to inform their development of mathematical explanations.

Finally, the implemented analytical method allowed us to unpack the process of teacher 
collaboration. Looking across the analysis of the networks’ structural characteristics and 
the core/periphery density model provided a better understanding of how participants’ col-
laborative processes shifted throughout the PD. Identifying subgroups and patterns in how 
participants’ membership varied between these subgroups provided a better understanding 
of how individual participation shifted. Moreover, looking across the SNA results and the 
coding results allowed us to uncover subgroups of participants such as Randy, Taylor, and 
Charles who demonstrated generative shifts in the pattern in and content of their participa-
tion, providing empirical examples of LPP (Lave and Wenger 1991). While more work is 
needed to better understand various factors, events, and conditions that support generative 
shifts in participation (e.g., Randy, Taylor, and Charles), we argue that the implemented 
SNA method outlines an efficient approach for unpacking teacher learning processes in 
online PD and focusing follow-up analyses on factors contributing to the observed learning 
process. If this SNA approach is adopted by mathematics teacher education researchers, 
there is potential for an organized effort to better understanding the critical question of 
what mechanisms foster the emergence of generative and productive teacher communities 
that have positive impacts on student mathematics achievement (Goldsmith et  al. 2014; 
Kennedy 2016).
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