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INTRODUCTION

Drought and windthrow events shape the structure,
dynamics, and diversity of tropical forests by Kkilling
mature trees, altering competition for resources, and
influencing regeneration patterns (Aleixo et al., 2019;
Brando, Paolucci, et al., 2019; Hubau et al., 2020). These
natural disturbances have increasingly interacted with
wildfires, logging, and edge effects due to human activity
(Davidson et al., 2012; Silvério et al., 2019; Trumbore
et al., 2015). As climate and land use change, synergies
among disturbances are likely to become even more fre-
quent, widespread, and intense (Nobre et al., 2016). An
outstanding scientific question is whether tropical forest
recovery will outpace forest degradation associated
with novel disturbance regimes (Massad et al., 2013;
Trumbore et al., 2015). Despite their high resilience, trop-
ical forests may recover only partially or not at all if
disturbances drive substantial declines in fruit and
seed (FS) rain (Trumbore et al., 2015), an important
source of propagules for forest regeneration (Chazdon &
Guariguata, 2016).

The influence of disturbance events on forest struc-
ture and diversity ultimately depends on post-disturbance
forest regeneration (Chazdon, 2003). Although
resprouting represents an important recovery mechanism
following disturbances (e.g., fire), the regeneration of
tropical forests is mainly associated with seed dispersal,
germination, and seedling establishment (Balch et al.,
2015). Tree species overcome several hurdles to reach
maturity. As seeds, they must escape predators and path-
ogens, remain viable during dispersal, and land at a suit-
able site (e.g., neither too close nor too far from the
parent tree, as posited by the Janzen-Connell hypothesis;
Comita et al., 2014). As seedlings, they must survive her-
bivory, pathogens, physical damage, and competition
(Jakovac et al., 2021). Not surprisingly, only a small frac-
tion of the total seeds produced by trees become seedlings

species composition shifted throughout the experiment. Along the edge of both
burned plots, the forest community became dominated by species with faster
relative growth, thinner leaves, thinner bark, and lower height. We conclude
that compounding disturbances changed FS patterns, with a strong effect on
species composition and potentially large effects on the next generation of
trees. This is largely due to reductions in the diversity of species-producing FS
where fires are severe, causing a shift toward functional traits typically associ-
ated with pioneer and generalist species.

Amazon, fruit, resilience, seed, species diversity, tropical, wildfire

or reproductive trees (Chazdon, 2003; Marshall et al.,
2020; Rozendaal et al., 2019). This low probability of sur-
vival through different life stages requires tropical trees
and lianas to allocate an important fraction of their net
primary productivity (NPP) to producing fruits and seeds
(Malhi, 2012).

Despite being highly variable in space and time,
post-disturbance fruit/seed production and associated
regeneration processes usually follow predictable pat-
terns (Mesquita et al., 2001). Disturbances can reduce the
abundance of tree species and, therefore, free up limiting
resources such as light and nutrients. This permits seeds
of opportunistic pioneer species to rapidly germinate
and colonize disturbed sites (Griscom & Ashton, 2011).
Once these fast-growing, short-lived species (i.e., those
with acquisitive strategies such as rapid growth, low
stem-specific density [SSD], thin bark, and low specific
leaf area [SLA]) reach maturity, they facilitate
post-disturbance regeneration by producing seeds,
attracting new dispersers, and changing the microcli-
matic conditions. Over time, increased competition (espe-
cially for light) likely facilitates the replacement of early
successional species by shade-tolerant ones. During this
replacement, not only does species richness increase, but
also the number of species with conservative strategies
(e.g., slower growth, thinner and smaller leaves, denser
wood) that evolved to cope with limited resources
(Cavallero et al., 2013; Chen et al., 1992; Cury et al.,
2020; Hawes et al., 2020). Yet, interactions between dis-
turbances and intrinsic ecological processes have the
potential to fundamentally alter forest succession path-
ways (Balch et al., 2013) or even impair them.

Near agricultural fields, edge effects may delay the
replacement of early successional species by late succes-
sional ones, with long-term consequences for forest func-
tioning and structure (Maracahipes-Santos et al., 2020;
Nobrega et al., 2019). When a forest edge is created due to
agricultural clearing, trees previously insulated from steep
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gradients in temperature, heat load, wind, humidity,
and light typical of edges are suddenly exposed to a
radically different abiotic environment (Laurance, 2004).
Compounding disturbances associated with severe
droughts, fires, and windthrow events likely amplify such
edge effects by killing reproductive trees, altering competi-
tion for limited resources, and delaying forest succession
(Brando, Silvério, et al., 2019; Silvério et al., 2019). With
forest degradation, lianas often become more common
and forest succession slower (Flores et al., 2017). Together,
compounding stressors and liana overdominance may
drive substantial declines in both the amount and diversity
of seed rain (Barlow & Peres, 2006; Menezes et al., 2019).

While some disturbance events may promote
short-term increases in productivity and FS production
(Brando et al., 2016), there are likely threshold conditions
associated with disturbance frequency and intensity
beyond which the linkages between fruit/seed production
and forest structure/diversity are severely impaired
(Balch et al., 2015; Brando et al., 2014). As a result,
post-disturbance recovery of species composition and
richness may be delayed, as well as recovery of forest
structure and functioning (Camargo et al., 2020; Hawes
et al., 2020; Nobrega et al., 2019). While some of these
traits may permit tree species to rapidly colonize dis-
turbed sites (Maracahipes et al., 2018), they may also rep-
resent vulnerability to other types of disturbances. For
instance, Barlow and Peres (2008) found that
fast-growing, pioneer species in tropical forests tend to
have thinner bark than other species, which increases
forest vulnerability to fires during the recovery phase.

Here, we evaluated the effects of multiple disturbances
on FS production and diversity in a large-scale disturbance
experiment in southeast Amazonia (Figure 1). The experi-
mental area consisted of three 50-ha experimental plots,
one unburned (Control) and two that were experimentally
burned annually (Blyr) or triennially (B3yr) between 2004
and 2010 (Balch et al., 2008; Brando et al., 2012). The area
was also impacted by two drought events in 2007 and 2010
(Brando et al., 2014) (Appendix S1: Figure S1) and by a
blowdown in 2012 (Brando, Silvério, et al., 2019; Silvério
et al., 2019). Interactions among these multiple distur-
bances caused substantial reductions in forest height
(e.g., Appendix S1: Figures S2 and S3), canopy cover, and
tree diversity, especially after 2012 (Silvério et al., 2019).
Fruit production and diversity in these highly degraded
forests could either: (1) decline due to fire-related tree
mortality reducing the number of reproductive trees;
(2) remain comparable to primary forests because reduc-
tions in competition may promote greater postfire fruit
production per individual tree; or (3) increase due to lower
competition for resources among large reproductive trees,
which are usually more fire resistant.

We predict that our initial experimental fires
(i.e., forest interior and Blyr) caused minor changes in
FS production and diversity because of their low fireline
intensity and severity (e.g., low tree mortality)
(Brando et al., 2014; Brando, Silvério, et al., 2019), but
subsequent disturbances associated with interactions
among droughts, blowdown events, and high-intensity
and -severity fires resulted in long-term impoverishment
of tropical forests, as represented by lower diversity
and production of fruits/seeds. Because the experimental
forest edges adjacent to agricultural fields experienced
more severe fires and windstorms (e.g., higher tree
mortality) (Brando et al, 2014), we expected fruit
diversity and production to further along these edges. We
also predict a long-term functional composition shift in
the burned treatments toward species with acquisitive
rather than conservative strategies, as represented by
fast relative growth rate (RGR), low SSD, thinner bark,
small and thicker leaves (represented by lower SLA),
and lower maximum tree height (MTH).

MATERIALS AND METHODS
Description of area and fire experiment

The study area is located on Fazenda Tanguro
(83,000 ha), a farm in Mato Grosso state, 30 km north of
the southern boundary of the Amazon rainforest in
Brazil. The site is located within the driest portion of the
Amazon basin (13°04" S, 52°23' W)—a region character-
ized by a 4- to 5-month dry season, with mean annual
precipitation around 1770 mm (Balch et al., 2008). The
experimental area consisted of three adjacent 50-ha plots
burned annually (Blyr), triennially (B3yr), or not at all
(Control) from 2004 to 2010, except for 2008. Thus, the
B3yr and Blyr experimental areas were burned three and
six times, respectively, during this time. While these fire
frequencies represent higher fire return intervals than
currently observed along the drier edges of Amazonia
(Alencar et al., 2022), they provide a test of the resistance
and resilience of those forests to repeated disturbances.
This choice of frequency was influenced by constraints
related to conducting a long-term, large-scale experiment,
including long-term funding, legal permits to conduct
prescribed fires, and access to the site.

In the experimental burn areas, we ignited fires using
drip torches along transects spaced 50 m apart during the
peak of the dry season, between July and early
September (details in Balch et al., 2008). Prior to the first
experimental fire (2004), aboveground biomass (ABG) in
the Control was higher than in Blyr (11%) and B3yr
(14%), whereas canopy greenness was similar among the

ASUDDIT SUOWWOY) AL d[qeorjdde o) £q PAUIIAOS 21k SIOIIE V() oSN JO SN J0J KIRIQIT dUIUQ) AI[IAL UO (SUONIPUOD-PUB-SULID) /WO Ao[IM’ TeIqi[aur[uo//:sdny) suonipuo) pue SWid ], Y1 39S *[+70¢/90/¢1] uo Kreiqiy autjuQ K[IA ‘SAAVD Aq 08LF TS99/Z001 0 1/10p/wiod K91 Kreiqrjaurjuo’sjeuinolesa;/:sdny woiy papeojumo( ‘g ‘$20¢ ‘ST680S1T



40f 14

BRANDO ET AL.

Meters

©  Transects

|:| Fire experiment

Tanguro Farm

FIGURE 1 Map showing infrared band combination from Sentinel-2 with the location of the experimental area in southern Amazonia,
Queréncia-MT, Brazil. The inset map shows the variability in forest canopy height derived from LiDAR data collected in 2012 (details in
Silvério et al., 2019) across three experimental plots (Control, Blyr, and B3yr). Each dot represents a fruit and seed sampling trap.

three treatment plots (Brando, Silvério, et al., 2019). In
contrast, burned plots had higher species richness and
litterfall along the forest edges (Brando, Silvério, et al.,
2019). Measurements of fire behavior showed that during
the droughts of 2007 and 2010 (Appendix S1: Figure S2),
fireline intensity was substantially higher along the edges
of the burned plots (Brando et al., 2014). Because there
was more time for fuel accumulation in B3yr, fireline
intensity was even higher along the edges of the B3yr
treatment (Brando et al., 2014). Although these droughts
caused increased mortality in the Control, these increases
were much less pronounced than in the burned treatment
plots. Two years after the last experimental fires, a blow-
down event killed a high proportion of the trees with

diameter at breast height >10cm (Control: 8.3 + 4.5%;
Blyr: 12.7 + 9.1%; B3yr: 17.4 + 13.2%). Between 2014 and
2018, there was a partial recovery of vegetation regrowth
in experimental plots (Appendix S1: Figures S2 and S3).

Litter, fruit, and seed fall

Litterfall was collected biweekly from August 2004 to
August 2018 using 0.5-m” screen litter traps (N: 90 per
treatment plot) suspended 1 m above the forest floor and
distributed systematically in grids throughout the plots to
capture spatial variability, random variability, and poten-
tial edge effects (details in Balch et al., 2008). Litter was
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oven-dried (65°C for 48 h) and weighed to calculate dry
mass. Fruits and seeds were separated from the litter and
identified to species. Of the total fruit/seed fall, we could
not identify 11% of the sampled species. Nine of these
were treated as different morpho species. The same tech-
nician sorted and identified all species in order to reduce
identification errors.

Functional traits

Annual or biannual inventories in the unburned Control
(details in Balch et al., 2008) were used to calculate maxi-
mum tree size (based on dbh, 97.5%) and relative tree
growth per species. In addition, we sampled 413 individ-
uals in the unburned Control and 451 in the burned plots
for SSD, MTH, RGR, SLA, and bark thickness (BT), fol-
lowing Pérez-Harguindeguy et al. (2013). To calculate the
community-weighted mean, we weighted trait values by
the relative abundance of each species, which was esti-
mated as the number of traps containing the FS of a
given species in each year divided by the total number of
FS traps. We then evaluated how community-weighted
traits changed over time across the three treatments.

Statistical analysis

We used generalized linear mixed (Bates et al., 2015) and
additive (Wood, 2017) models to test for differences
among treatments over time. These models included the
response variable of interest (e.g., FS production, the pro-
portion of litterfall consisting of FS, species richness) and
predictors such as fire treatment and location (edge or
forest). These models included random effects of years to
minimize unwanted sources of variability. Previous stud-
ies conducted at this site (e.g., Brando et al., 2014)
showed that the forest interior and edges of the burned
plots differed in tree mortality rates, canopy cover, and
grass invasion rates. Therefore, we included a categorical
variable representing forest interior and edge in our
models.

We compared FS species richness across treatment
plots based on rarefaction curves. To do so, we standard-
ized the sampling effort per number of FS traps in the
area sampled (Gotelli & Colwell, 2001) using the iNEXT
function from the iNEXT package in R (Chao et al., 2014;
Hsieh et al., 2016). Given that previous studies showed
strong edge effects and differences between the periods
2004-2011 and 2012-2018, we built rarefaction curves for
those cases within each treatment plot. To evaluate
whether communities differed across treatment plots and
time periods (2004-2011 and 2012-2018), we ordinated

species composition of FS production with a principal
coordinates analysis (PCoA) using the Bray-Curtis dis-
similarity index (Legendre & Legendre, 2012) followed by
an analysis of similarities (ANOSIM).

RESULTS
FS production

Compared with the Control, FS production was higher in
Blyr and lower in B3yr, but there was high variability
between years and treatments. In general, our statistical
model identified a strong interaction between treatment
and distance from the edge. This interaction arose from
FS production in Blyr and B3yr’s forest interiors being
disproportionately higher than production along forest
edges, compared with the Control (Figure 2). Moreover,
although Blyr’s forest interior produced more FS from
2005 to 2012, Blyr experienced a steeper decline (35%)
during the postfire period (2012-2018) compared with FS
production in B3yr (which dropped 26%) and the Control
(which gained 14%). Along the forest edge, FS declined
earlier than in the interior of the burned plots. From
2012 to 2018, FS production along forest edges was
higher in the Control than in the burned plots (Figure 2).

The proportion of FS in the litterfall (FSL) was also
influenced by interactions between treatments and years,
although there were no clear differences between forest
edge and interior (Figure 2). We found FSL to be higher
in Blyr than in the Control and B3yr from 2005 to 2011.
In the following years (2012-2018), however, FSL
declined in both burned plots (Blyr: from 3.0% to 2.4%;
B3yr: from 1.9% to 1.6%), but remained similar in the
Control (averaging 2.3% in both periods), despite high
interannual variability. During the second phase of the
experiment (2012-2018), FSL was higher in Blyr than in
B3yr and comparable between Blyr and the Control
(Figure 2). Finally, FSL averaged similar values between
forest edge and interior, except for B3yr from 2010 to
2012, when FSL reached the lowest values observed in
our record.

Species diversity in FS rain

Species richness in FS rain declined in all three treat-
ments during the first years of the experiment (Figure 3).
These declines were statistically clear in the two burned
plots and along the forest edges in all treatments. For
instance, the lowest species richness was observed along
the edge of B3yr, followed by the edge of Blyr, and then
the interior of B3yr. In the Control, there was also a drop
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FIGURE 2 Temporal patterns in fruit and seed weight (% in litterfall; upper panel) and production (lower panel) along the
forest edge (left) and interior (right) of three experimental plots (Control, Blyr, and B3yr), measured from 2005 to 2018 in

southern Amazonia.
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FIGURE 3 Temporal patterns in species richness of fruit and seed rain along the forest edge (left) and interior (right) in three
experimental plots (Control, Blyr, and B3yr), measured from 2005 to 2018 in southern Amazonia.

in species richness along the forest edge from 2005 to
2011, but this was not as pronounced as in the burned
plots. In the forest interior of the Control, FS species rich-
ness in 2011 clearly dropped below average values, but
increased to long-term average values in the following
years. By 2018, the forest interiors of the Control and
Blyr averaged similar values compared with 2005,
suggesting a recovery in species richness in Blyr. In con-
trast, species richness in the forest interior of B3yr
remained relatively low, with just 11 species (Figure 3).
Along the edge of the burned plots, the reduction in
species richness was associated with both a reduction
in total FS production and less diverse FS rain, because
species richness along the forest edges of the burned plots
was lower than that of the forest interior, even when FS
production was similar (Figure 4). In the forest interior of
the burned plots, however, the reduction in species rich-
ness was likely due to a reduction in total FS production,
given that the species richness projected by our species
accumulation curve did not differ between treatments for a
given sampling effort (Figure 4). In addition to changes in
species richness, we observed major changes in species

composition. For example, the three treatments had com-
parable species composition between 2005 and 2011, but
after the last experimental fire in 2010 and the blowdown
of 2012, the burned plots differed from the Control. Species
composition in the Control also shifted between those two
time periods, but less so than the burned plots (Figure 5).
As a result of fire-related changes in species composi-
tion, species evenness (relative to the Control) declined
over time, especially in B3yr and after the 2010 fires
(Figure 6). At the same time, the fraction of total samples
that contributed the most abundant species increased,
indicating that a few species contributed more to FS pro-
duction in the burned plots (Figure 6). In general, changes
in species diversity were greatest along the forest edges of
the burned plots and after 2011. Lianas accounted for only
7% of the species richness, with no apparent differences
between the burning and post-burning periods.
Community-level changes in functional traits
became more statistically clear after 2012 when major
transformations occurred in the burned plots (Brando,
Silvério, et al., 2019). For instance, we observed changes
between the periods 2005-2011 and 2012-2018 in the
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FIGURE 4 Species richness in the fruit and seed (FS) rain in
three treatment plots in a large-scale fire experiment in southeast
Amazonia. Species diversity based on the Hill numbers (g = 0) in the
forest interior and along the forest edge during two time periods
(2004-2011 and 2012-2018). The solid line represents interpolation; the
dashed line represents extrapolation. Shaded areas represent CIs (95%).

burned plots for BT (Blyr: from 10.8 to 8.9 mm; B3yr:
from 12.0 to 7.2 mm), MTH (Blyr: from 21.4 to 19.1 m;
B3yr: from 21.2 to 16.9 m), and RGRs (Blyr: from 0.02 to
0.03; B3yr: from 0.03 to 0.04) (Figure 7). We also observed
an increase in SLA in B3yr (from 95.0 to 113.8 cm® g™ %)
between these two time periods, but not in Blyr. In the
forest interior, however, the differences in weighted func-
tional traits were less statistically clear, with all treat-
ments averaging similar values. The exceptions to this
pattern were a small decrease in BT in Blyr over time
and faster increases in RGR in the burned plots com-
pared with the Control. In the forest interior, average
SLA values were higher in the burned plots compared
with the Control during the entire duration of the experi-
ment, while SSD was higher in Blyr than in the Control
or in B3yr (Figure 7).

DISCUSSION

Intensification of disturbances in Amazonia may drive
long-term forest degradation by reducing forest resilience

(Brando et al., 2020; Grantham et al., 2020; Malhi et al.,
2020). Our understanding of this process has been ham-
pered by a lack of long-term information on FS production
and diversity, two key processes for forest regeneration
(Hawes et al., 2020). This study addresses that knowledge
gap by analyzing FS data collected from 2004 to 2018 dur-
ing a long-term, large-scale forest disturbance experiment.
We hypothesized the existence of two contrasting temporal
patterns in the FS rain. On the one hand, we expected FS
production and diversity to remain high relative to the
Control, given that Brando et al. (2014) observed low mor-
tality of large trees following the initial, low-intensity
experimental fires. On the other hand, we expected ecolog-
ically relevant declines in FS production and diversity after
major forest mortality events drought-fire interactions
(in 2007 and 2010) as well as a blowdown event in 2012
(Silvério et al., 2019), particularly along the forest edges
(Appendix S1: Figure S1). In general, FS production and
FSL remained relatively high following both high- and
low-intensity fires in one fire treatment plot, while FS
declined in B3yr following the fires of 2007 and 2010 in
B3yr. These results emphasize that the accumulation of
fuel material post-disturbance, in synergy with extreme
drought events, can drastically impact FS production pat-
terns. In contrast with FS production and FSL, FS species
richness sharply declined in the initial years of the experi-
ment, while species composition drastically shifted. These
changes in FS diversity were particularly steep along the
forest edges, where environmental filters (e.g., increased
insolation and heat load) and the prescribed fires tend to
be more intense. These changes in FS patterns indicate
that forest fires have strong effects on the next generation
of tree species colonizing burned sites. Moreover, we found
that the FS rain shifted toward species with functional
traits typical of pioneer and generalist species, character-
ized by having acquisitive strategies such as faster growth
and thin leaves.

Previous studies in our experimental plots showed
that the experimental fires set during non-drought condi-
tions triggered low-intensity fires, which mostly killed
small-sized individuals. This mortality among
small-sized, nonreproductive trees may explain the
lower-than-expected changes in FS production in the first
phase of our experiment. With fewer small trees, compe-
tition for limiting resources probably permitted faster
growth and increased FS production by surviving trees
(Berenguer et al., 2018; Brando et al., 2016). Despite this
apparent initial forest resilience to fires, we observed
clear changes in FS production and FLS after the
high-intensity and -severity fires of 2007 and 2010, and
the blowdown event of 2012. Combined, these events
drastically reduced forest canopy cover, the number
of large trees, and forest diversity. As a consequence,
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FS diversity declined and species composition
substantially shifted, particularly along the forest edges
of B3yr (Brando et al., 2014). Despite fast vegetation
regrowth across large tracts of the burned plots, even
eight years after the last experimental fire, FS diversity
was substantially lower and FS composition differed
between B3yr and the Control. These results suggest
that interactions among multiple disturbances can have
long-lasting effects on FS diversity and composition. The
declines in FS and FSL production were less pronounced
compared with the reductions in FS diversity, mostly
because a few pioneer species (e.g., Mabea fistulifera)
compensated for fruit losses from other species. Although
this compensation process is common during early suc-
cessional phases, it suggests that recovery of species com-
position takes longer when disturbance events co-occur.
The FS patterns changed over time in both fire treat-
ments, but there were important differences between
them. Compared with the other treatments, B3yr’s FS
production was lower, FS species diversity declined
faster, edge effects were more severe, and the shift toward
pioneer species was more pronounced. These differences
between fire treatments are likely related to greater mor-
tality of large tree species in B3yr compared with Blyr
(Brando, Silvério, et al., 2019). The lower fire frequency

at B3yr likely permitted higher fuel production and accu-
mulation (Brando et al., 2014), two important predictors
of fire intensity. Because tree species in our experimental
forest were highly susceptible to fire (Brando et al., 2012),
even small increases in fire intensity were expected to
drive additional mortality of thicker-barked, larger indi-
viduals. The 2012 blowdown event drove further mortal-
ity of large trees, especially along the forest edges and at
B3yr (Silvério et al., 2019). These differences highlight
the importance of considering the intensity and severity
of disturbances when assessing their potential effects on
FS production and diversity.

The variations observed in FS patterns between our
fire treatments indicate that more frequent and less
intense fires result in less damage to regeneration. This is
supported by the higher fruit production and diversity
observed in the annually burned plot (Blyr) than in the
plot burned every three years (B3yr). However, it is
important to note that while high-intensity fires can
impede regeneration by causing significant mortality
among large reproductive trees, the higher fire frequency
in Blyr also had a strong impact on regeneration owing
to the direct mortality of small individuals. In a related
study, Cury et al. (2020) found that although fruit pro-
duction and diversity were higher in Blyr within the
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same experimental area, species diversity was compara-
ble between Blyr and B3yr from 2011 to 2013. This sug-
gests that the total direct mortality of seedlings and
saplings associated with the experimental fires was
higher at Blyr than at B3yr. Despite similar species rich-
ness, there were notable differences in species evenness
and composition between the two treatments. In other
words, postfire regeneration was significantly affected in
both fire treatments, but through different mechanisms
that led to distinct plant community pathways, one more
directly via mortality of seedlings and saplings and the
other more indirectly via tree mortality.

Compared with the primary forest interior, forests
growing near agricultural fields are drier and hotter,
more susceptible to windstorm-related tree mortality,
and less diverse. Our results showed that forest fires can
further contribute to long-term declines in species rich-
ness and changes in species composition along forest
edges by reducing FS diversity. Previous studies in this
site have shown that regional droughts created the poten-
tial for high-intensity and -severity fires, which can kill a
large proportion of trees along the forest edges. The blow-
down of 2012 caused much higher mortality rates of large

trees in the burned plots, leading to further forest
degradation. Thus, near the agricultural field, we
observed the highest rates of forest species loss, where
the experimental fires and blowdown events were most
severe. Furthermore, along these forest edges, losses in
species richness were associated not only with reductions
in FS production but also with a less diverse FS rain.
These results along the edges of the burned plots arose
from higher tree mortality and slower recovery of species
richness and composition, partly driven by the postfire
establishment of native and exotic grasses along
forest edges (Silvério et al., 2013), which likely contrib-
uted to low recruitment diversity. Given that forest edges
are becoming more widespread in the region, our
results suggest that forest degradation is likely to increase
in the short term. In the Xingu Basin, where the
study was conducted, close to 12% of the forests
already grow <100 m from an open agricultural field
(Brando et al., 2014).

As compounding disturbances along forest edges
(ie., fires, droughts, edge effects, and a blowdown)
changed the species composition, functional traits of FS
shifted toward a more dynamic tree species community.
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Specifically, we observed FS production along forest
edges to represent tree species assemblages characterized
by shorter individuals, with faster growth rates, thicker
leaves, and, in some cases, lower wood density. At the
same time, there was a major reduction in the diversity
of these communities, probably associated with the eco-
logical filters created by those disturbances. It is still
unclear how these changes in functional traits in the
burned plots translate to recovery success, assuming that
some of this FS would be established and become adult
trees in burned sites in the near future. For instance,
trees in burned Central Amazon forests grew more and
accumulated more carbon than drought-impacted trees
(Berenguer et al., 2018). A body of literature points to pio-
neer species investing more of their NPP for growth,

which could speed up forest recovery, resilience, and eco-
system functions. However, the FS rain along the forest
edge became dominated by species with thin bark, indi-
cating a forest more vulnerable to fire (Barlow & Peres,
2008). Fast-growing species colonizing the forest edges
may also be more vulnerable to drought, given their
lower wood density.

CONCLUSION

Amazon forests growing near the drier climatological
boundary of the biome may be highly susceptible to the
intensification of disturbance regimes associated with
deforestation and climate change. Over time, this
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intensification could result in an impoverished ecosystem
with lower species diversity, especially along the driest
portion of the Amazon, where fires are most likely and
forest fragmentation is widespread. Based on the results
from our site, we speculate not only that some
Amazonian forests may be highly resilient to distur-
bances but also that synergies among disturbances could
substantially reduce species richness, shift species compo-
sition, and change functional traits toward smaller, faster
growing species. Although these changes in FS character-
istics may promote faster forest regeneration at first, they
may also delay the recovery of important forest functions
and increase susceptibility to recurrent disturbances.
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