O-MINIMAL FLOWS ON NILMANIFOLDS
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ABSTRACT. Let G be a connected, simply connected nilpotent Lie
group, identified with a real algebraic subgroup of UT(n,R), and
let T be a lattice in G, with 7 : G — G/T" the quotient map. For
a semi-algebraic X C G, and more generally a definable set in an
o-minimal structure on the real field, we consider the topological
closure of 7(X) in the compact nilmanifold G/T.

Our theorem describes cl(7(X)) in terms of finitely many fam-
ilies of cosets of real algebraic subgroups of G. The underlying
families are extracted from X, independently of T'.
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1. INTRODUCTION

Let UT(n, R) denote the group of real nxn upper triangular matrices
with 1 on the diagonal. Below we say that a group G is a real unipotent
group if it is a real algebraic subgroup of UT(n,R), namely a subgroup
of matrices which is a solution set to a system of real polynomials
in the matrix coordinates. Such subgroups are exactly the connected
Lie subgroups of UT(n,R), and every connected, simply connected
nilpotent Lie group is Lie isomorphic to a real unipotent group. For
I' a discrete co-compact subgroup of real unipotent G, the compact
manifold G/T" is called a compact nilmanifold. We let 7 : G — G/T" be
the map 7(g) = gI".

Let Ry, be an o-minimal expansion of the real field and G a real
unipotent group. We consider the following problem:

Given X C G an R,y -definable set (e.g. X C G a semi-algebraic
set), what is the topological closure of w(X) in the nilmanifold G/T"?

A special case of this problem is when the set X C G is the image
of R? under a polynomial map (with G viewed in an obvious way as
a subset of R"’). In [11] Shah considers a similar question when G is
an arbitrary real algebraic linear group, and in [8] Leibman considers a
discrete variant of the problem, when X is the image of Z¢ under certain
polynomial maps inside nilpotent Lie groups. Both prove results about
equidistribution from which theorems about the closure of 7(X') can be
deduced. Our setting is more general, but the results we obtain answer
mostly the closure problem. In Theorem 1.5 below and in Section 5.2
we show how to deduce closure results similar to theirs from our work.

In order to state our main theorem we set some notation: We fix G a
real unipotent group and R,,, an o-minimal expansion of the real field.
Given a lattice I' in GG, namely a discrete co-compact subgroup of G,
we denote by ME = G/T the associated compact nilmanifold and by
¢ G — ME the quotient map < (g) = gI'. We omit G from the
notation when the context is clear. Given an R,,,-definable set X C G,
we want to describe the topological closure of mp(X) in Mr.

As we shall see, the frontier of 7p(X) is given via families of orbits
of real algebraic subgroups of G in Mp. For that we make use of the
following theorem, which can be viewed as a special case of our problem
when X is a real algebraic subgroup of GG. For the discrete one-variable
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case, see Lesigne [9], and for the more general result about closures of
orbits of unipotent groups, see Ratner [13].

Theorem 1.1 ([9],[13]). Let G be a real unipotent group. Assume that
I' is a lattice in G. If H C G is a real algebraic subgroup then there
exists a unique real algebraic group Hy O H such that

Cl(TFF(H)) = WF(H()).

The group Hy is the smallest real algebraic subgroup of G containing
H such that I' N Hy 1s co-compact in Hy.

Let us set aside a specific notation for the above Hy:

Definition 1.2. Given H C G real unipotent groups and I' a lat-
tice in G, we let H' denote the smallest real algebraic subgroup of G
containing H such that H' N T is co-compact in H'.

We can now state our main theorem:

Theorem 1.3. Let G be a real unipotent group and let X C G be
an Ron-definable set. Then, there are finitely many real algebraic sub-
groups Ly, ..., L, C G of positive dimension, and finitely many Ry, -
definable closed sets C1,...,C,, C G, such that for every lattice ' C G,
we have:

el(mr(x)) = me(cx) L €28

In addition, we may choose the sets C; so that:

(1) For everyi=1,...,m, dim(C;) < dim X.

(2) Let L; be maximal with respect to inclusion among Li, ..., Ly,.
Then C; is a bounded subset of G, and in particular, mr(C;L})
18 closed in Mr.

As an immediate corollary we obtain:

Corollary 1.4. For G real unipotent and X C G an Ry, -definable set,
if I' C G is a lattice then there exists an Ry, -definable setY C G, such
that
CI(WF(X)) = WF(Y).
As part of our analysis we conclude in Section 5.2 the following

variant of theorems of Shah and Leibman:

Theorem 1.5. Let G be a unipotent group, viewed as a subset of R”2,
and F: R — R q polynomial map that takes values in G. Let X C G
be the image of R? under F. If cH C G is the smallest coset of a real
algebraic subgroup of G with X C cH then for every lattice I' C G

cl(mp(X)) = mp(cHY).
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We make some comments on Theorem 1.3:

Remark 1.6. (1) If we let X be a definable curve, i.e. dim(X) =
1, then by Theorem 1.3(1) there are finitely many real algebraic
subgroups L, ..., L,,, determined by the curve X, and finitely
many points ¢y, ..., ¢, € G such that for every lattice I' C G,

cl(mp(X)) = mp(X) U U mr(eLY).

Thus the closure of nr(X) is obtained by attaching to it finitely
many sub-nilmanifolds of G/I" (we recall below the definition of a
sub-nilmanifold).

(2) In [12] we examined the same problem in the special case when
G was abelian, so could be identified with (R",+) and the final
theorem was very similar to the current one. We also proved there
a finer theorem when G = (C", +) and X C C" a complex algebraic
variety. That work was inspired by questions of Ullmo and Yafaev
in [18] and [19].

(3) In the same paper [12] we showed that one cannot in general replace
the sets C; in Theorem 1.3 by finite sets. For a simple example
(pointed out to us by Hrushovski) one can just start with the curve
C = {(t,1/t) : t > 1} in R? and then consider 774(C x C) inside
R*/Z*. TIf we let H = R x {0}, then the frontier of 77:(C x C)
equals

m74((C x HYU (H x C)U (H x H)).

(4) Finally, our main theorem only handles the closure problem and
not equidistribution questions. In Section 8 we make some remarks
on the difference between the two for definable sets in o-minimal
structures.

We end this introduction by noting that definable sets in o-minimal
structures allow for a richer collection than semialgebraic sets, and thus
for example we could take X C UT(3,RR) to be the following Ry exp-
definable set

eV arctan(y)

1
0 1 1/y/x?2+y* | :2,y>0
0 1

0

1.1. On definable subsets of arbitrary nilpotent Lie groups.
Instead of working with real unipotent groups we could have worked
in a more general setting:

Let G be a connected, simply connected nilpotent Lie group. It is
known (e.g. see [1]) that G is Lie isomorphic to a real algebraic subgroup
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Go of UT(n,R). Given an o-minimal structure R,,,, we may declare a
subset of G to be R,y,-definable (or real algebraic) if its image under the
above isomorphism is an R,,,-definable (or real algebraic) subset of Gy.
As noted in Lemma 2.15 below, every Lie isomorphism between real
unipotent groups is given by a polynomial map and thus this notion of
definability (or algebraicity) does not depend of the choice of G or the
isomorphism between G and Gq. It follows from Fact 2.3 below that
every closed connected subgroup of G is algebraic in this sense, and
thus Theorem 1.3 holds for an arbitrary connected, simply connected
nilpotent Lie groups, under the above interpretation of the relevant
notions.

1.2. On the proof. Our proof combines model theory with the theory
of nilpotent Lie groups. It breaks down into three main parts.

Given an R,,,-definable X C G we examine the contribution of com-
plete types on X (see Preliminaries for more details on the basic no-
tions) to the closure of 7p(X). To each complete type p on X we
assign “the nearest coset to p”, a coset of a real algebraic subgroup of
G, which we denote by ¢, H,, (see Section 3). We then prove, see Corol-
lary 5.4, that for every lattice I', the closure of 7p(X) is the union of
all Wp(cpH]E ), as p varies over all complete types on X. Notice that the
coset c,H, is independent of the lattice I'.

Next, in Lemma 6.1, we use model theory to show that the family
of nearest cosets

{¢,H, : p a complete type on X'}

is itself a definable family in Rg,.
Finally, we use Baire Category Theorem to obtain finitely many fam-
ilies of fixed subgroups of G.

2. PRELIMINARIES

2.1. Lattices and nilmanifolds. We list some basic notions and prop-
erties of lattices in simply connected nilpotent Lie groups. For a refer-
ence we use [1] and [7].

We identify the Lie algebra of UT(n,R) with ut(n,R), the space of
real nxn upper triangular matrices with 0 on the main diagonal.

The following fact will be used often.

Fact 2.1. The matriz exponential map restricted to ut(n, R) is polyno-
mial and maps ut(n,R) diffeomorphically onto UT(n,R). Its inverse
log: UT(n,R) — ut(n,R) is a polynomial map as well.
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Remark 2.2. If G is a closed subgroup of UT(n, R) then we identify its
Lie algebra g with a subalgebra of ut(n, R). It follows from Fact 2.1 that
if G is a connected closed subgroup of UT(n,R) then the exponential
map expg: g — G is a polynomial map (in matrix coordinates) that
is also a diffeomorphism, and its inverse log.: G — g is polynomial as
well.

We note:

Fact 2.3. Assume that G C UT(n,R) is a subgroup. Then the follow-
ing are equivalent:

(1) G is a closed, connected subgroup of UT(n,R).
(2) G is a real algebraic subgroup of UT(n,R).
(3) G is definable in Ropy,.

Proof. The equivalence of (1) and (2) follows from the fact the expo-
nential map and its inverse are polynomial maps.

Clearly, every real algebraic subgroup of UT(n,R) is R,y,-definable,
so (2) = (3).

To see that (3) = (1), note that every definable set in an o-minimal
structure is closed and has finitely many connected components. Let
G be the definably connected component of GG containing the identity
e. Since G is torsion free, by [17], its o-minimal Euler characters x(G) is
+1 or —1. Since o-minimal Euler characteristic is additive and invariant
under definable bijections, we have [G : G°|x(Gy) = +1. Hence [G :
Gl =1, G = G° and G is definably connected. O

For the rest of this section we assume that GG is a real unipotent
group, namely a real algebraic subgroup of UT(n,R), with g its Lie
algebra. Since exps : g — G is a diffeomorphism, the group G is a
simply connected, and we have ([1, Corollary 5.4.6]):

Fact 2.4. A discrete subgroup I' C G is co-compact (i.e. G/T is com-
pact) if and only if the induced Haar measure on G/T" is finite.

Definition 2.5. A subgroup I' of G is called a lattice in G if T is
discrete and co-compact. If I' is a lattice in G then the quotient G /T’
is called a compact nilmanifold.

Given a lattice I' C (G, a real algebraic subgroup H of GG is called a
['-rational if T' N H is a lattice in H.

Remark 2.6. In [I] a closed subgroup H of G is defined to be I'-
rational if the Lie algebra h of H has a basis in the Q-linear span of
log(I"). By [l, Theorem 5.1.11] these two definitions are equivalent.

The following is easy to verify:
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Fact 2.7. If T is a lattice in G then there is no real algebraic subgroup
of G containing I' other than G.

Lemma 2.8. Let H C G be a real algebraic normal subgroup with
7w : G — G/H the quotient map. Let T' C G a discrete subgroup. Then:

(1) If T is a lattice in G and I'N H is a lattice in H then HT is closed
in G and ©(T') is a lattice in G/H.

(2) If 'N H is a lattice in H and w(T") is a lattice in G/H then T is a
lattice in G.

(3) If T is a lattice in G then H is T'-rational if and only if mr(H) is
closed.

(4) If T is a lattice in G then all subgroups in the ascending central
series are I'-rational, in particular Z(G) is I'-rational. Also, |G, G|
and all subgroups in the descending central series are I'-rational
subgroups (in particular closed).

(5) If T is a lattice in G and Hy, Hy C G are real algebraic I'-rational
subgroups then so is Hy N Hs.

Proof. (1) and (2) follow from [!, Lemma 5.1.4].

(3). If H is I'-rational then HT is closed in G by (1). Assume HI'
is closed in G. Then 7r(H) is closed in G/T', hence compact. We can
find then a compact subset K C H such that np(K) = np(H), ie.
KT'= HT'. It is not hard to see that KT is closed, since it is a product
of compact and closed sets.

(4) follows from [, Proposition 5.2.1].

(5) follows from Remark 2.6. Indeed, since H; and Hy are I'-rational
their Lie algebras h; and by both have basis in the QQ-vector space Q-
span of (logs(I"). The Lie algebra of Hy N Hy is h; Nhy and it has basis
in the same Q-vector space. O

We shall also need the following;:

Lemma 2.9. Let I' C G be a lattice in G. Let H be a real algebraic
normal subgroup of G. Then H" is also normal in G.

Proof. Since H is invariant by conjugation, and every I'-conjugate of
HY is also I'-rational, it follows that H' is normalized by I'. Thus
the normalizer of H' is a real algebraic subgroup containing I', so by
Fact 2.7 equals to G. O

Definition 2.10. Let M = G/I' be a compact nilmanifold. A set
S C M is called a sub-nilmanifold of N if there exists a € G and a
[-rational group H C G such that

S =mr(aH).
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The group G acts on M on the left and the sub-nilmanifold S can
also be written as S = a - mp(H).

Note that a sub-nilmanifold of M is closed in M and can be written
as an orbit of the element 7r(a), under the group aHa™'.

We use the following lemma to identify quotients of unipotent group
with semialgebraic sets:

Lemma 2.11. Let G be a real unipotent group and let H C G be a
real algebraic subgroup. Then there exists a closed semialgebraic set
A C G such that the map f: Ax H — G given by (a,h) — -h is a
diffeomorphism.

Proof. Let h C g C ut(n,R) be the Lie algebras of H and G, respec-
tively, and let n = dimG and k = dim H. By [!, Theorem 1.1.13],
there is a weak Malcev basis {i,...,&,} for g through h. Namely,
{&, ..., &} is a basis for b, and for every m < n, the R-linear span of
&1, ..., &y is a Lie subalgebra of g.

By [I, Proposition 1.2.8], the map ¢ : R" — G defined by

W(s1,. .., 8n) = expa(s1&1) - - .. - expa(snén)

is a polynomial diffeomorphism. It sends R* x {0,,_x} onto the group
H and the subspace {0z} x R"* onto a closed semialgebraic subset
of G, which we call A’. We have G = H - A, and if we now let
A ={a?t:a € A} and replace ¥(5) by ¥(s)"!, then we see that
G = A - H and the result follows. O

Recall that in any nilpotent group G, if H C G is a proper subgroup
then H is contained in a proper normal subgroup of G. Let us see that
this remains true when restricting to real unipotent groups:

Claim 2.12. If G is a real unipotent group and H C G is a proper
real algebraic subgroup then H 1is contained in a proper normal real
algebraic subgroup of G.

Proof. By [, Theorem 1.1.13], there is a chain of real algebraic sub-
groups,
{6}:H0g gH:ngHm-‘,-l C - an:G7

with n = dim G, and dim H;;; = dim H; + 1. Tt follows from [I,
Corollary 1.15], that H,,_; is normal in G, so we are done. O

Finally, we want to show that the collection of all cosets of real
algebraic subgroup of G is itself a semi-algebraic family. By Fact 2.1,
exp : ut(n,R) — UT(n,R) is a polynomial diffeomorphism. It induces
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a bijection between the Lie subalgebras of ut(n,R) and the connected
closed subgroups of UT(n, R). Because the family of all Lie subalgebras
of ut(n,R) is semi-algebraic we obtain:

Fact 2.13. The family F, of all cosets of real algebraic subgroups of
UT(n,R) is semi-algebraic. Namely, there exists a semi-algebraic set
S C M,(R) x R*, for some k, such that

Fo={Pec M,(R):3cR"(Pb)cS}

In fact, by Definable Choice, we may choose the above family so that
every coset is represented exactly once.

2.2. Maps between real unipotent groups.

Definition 2.14. Let G be a real unipotent group. A map f : R —
G is called polynomial if, when we view G as a subset of R™, the
coordinate functions of f are real polynomials in z1,...,z4. A map
f: G — R4 is polynomial if f is the restriction to G of a polynomial
map from R™ into R?.

We note:

Lemma 2.15. (1) If G1 and Gs are real unipotent groups and f :
G1 — Gy is a Lie homomorphism then f is a polynomial map.

(2) Let G be a real unipotent group and v an arbitrary element in its
Lie algebra g C ut(n,R). If p : R? — R is a polynomial function
then f(%) = expg(p(Z)v) is a polynomial map from R? into G.

Proof. (1) By standard Lie theory we have f = expg, o df ologg, , where
df : g1 — g2 is a linear map. Since logg, and expg, are polynomials, f
is polynomial as well.

(2) By Fact 2.1, the map exp : ut(n,R) — UT(n,R) is polynomial,
and exp,; is its restriction to g is clearly polynomial as well. The map
f:R? — @ is thus a composition of polynomial maps. O

2.3. Model theoretic preliminaries. We use the same set-up as in
[12, Section 2]. We refer to [2] and [!] for introductory material on
o-minimal structures, as well as examples. We let

‘Csa = <+7 BERE) <707 1>

be the language of ordered rings (as the subscript suggests, the de-
finable sets in the ordered field R are the semialgebraic sets). We let
Lom 2 Lg, be the language of our o-minimal structure R,,. We let
L be the language in which every subset of R™ has a predicate sym-
bol, and let R, be the corresponding structure on R. Clearly, every
R.,-definable set is also Rg,-definable.
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All definable sets are definable with parameters. The dimension of
a definable set in an o-minimal structure is defined using the cell de-
composition theorem. In our setting it is enough to know that an
Ron-definable X C R™ has dimension k if and only if it can be de-
composed into finitely many C'-submanifolds of R™, whose maximal
dimension is k.

2.3.1. Elementary extensions and some valuation theory. We let R =
(MR, ...) be an elementary extension of Ry, which is |R|"-saturated, or
alternatively an ultra-power of Rg,y with respect to an appropriate ul-
trafilter.

We let R, and R be reducts of PRy to the languages Lo, and
L., respectively. Given any set X C R", we denote by X* = X (R) its
realization in Rg,. We use roman letters X, Y, Z etc. to denote subsets
of R™ and script letters X', ), Z to denote subsets of $R™ that are not
necessarily of the form X* for some X C R™.

The underlying field (JR;+, ) of Ry is real closed and we let

OR) ={a€eR:IneN o <n}.
It is a valuation ring of fR and its the maximal ideal p(fR) is the set of
infinitesimal elements, namely

p(R) ={a e R:Vn e Nla| < 1/n}.

Mostly, for a linear real algebraic GG, we shall use a group variant
O(G) and p(Q) of the above, defined as follows. Because G is a closed
subset of GL(n,R), it can be viewed as a closed subset of R™ . and
then G* is a subset of ", In the definitions below we let I denote the
identity matrix and use + for the usual addition in R™".

We let

O(G) = O(R)"” NG* and pu(G) = (I + p(R)) NGE

Both O(G) and u(G) are subgroups of G*, and u(G) is normal in O(G).
In fact O(G) is a semi-direct product of ;(G) and G, so given € O(G)
there exists a unique b € G such that

B € uG)b = bu(G).
We call b the standard part of [, denoted as b = st(/5). The map
st : O(G) — G is a surjective group homomorphism whose kernel is

1(G). Tt coincides with the the standard part map on O(R)", when
restricted to O(G). We thus have, for g = (gi j)1<ij<n € G,

g€ OG) & Vi, j, gy € OR) & |gl € ODR),

where |g| is the Euclidean norm computed in 9",
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For X C G*, we let
st(X) == st(X N O(G)).

When our setting is clear we shall omit GG from the notation and use
O and p instead.

We shall be using extensively the following simple observation:

Fact 2.16. If X C G is an arbitrary set then cl(X) = st(X*). In
particular, if I' C G is a subgroup then

cl(XT) = st(XT%).

2.3.2. Types. If L, is any of our languages then an Lq-type p(x) over
R is a consistent collection of Lo.-formulas with free variables z and
parameters in R, or equivalently, a collection of sets defined by L,-
formulas, such that the intersection of any finitely many of them is
non-empty. When p(x) contains a formula saying = € X then we write
p = X and say that p is a type on X.

An L.-type p(z) is complete if for every Lo-definable X C R", where
n = length(x), either X or its complement belongs to p. For p(x) an
L.-type over R, we denote by p(fR) its realization in R, namely the
intersection of all X*¥, for X € p.

Given a € R", we let tp,(a/R) be the collection of all £,-definable
subsets X C R™ with o € X*. It is easily seen to be a complete type.

For G a real unipotent group, we denote by Sg(R) the collection of
all complete L,,-types p over R such that p - G.

Finally, if p € S¢(R), then we let p - p be the (partial) type whose
realization is u(G) p(MR). The type p - p is not a complete type, and
we call it a p-type. We identify two p-types u-p, p - q if u(G)p(R) =
1(G) q(R). The group G acts on the set of all pu-types on the left, since
g-(u-p)=p-(g-p). See [L1] for all the above.

The following definition and subsequent theorem, from [1 1], will play
a significant role in our proof. Given p € Sg(R), we let

Stab”(p) ={g € GR) : g (u-p) = p-p}.

[t is easy to see that g € Stab”(p) if and only if g leaves the set (u-p)(R)
invariant, when acting on the left.
The following fact follows from|[l1].

Fact 2.17. For every p € Sg(R), the group Stab”(p) is Lom-definable
over R. Moreover, if p is unbounded (namely, p(R) is not contained in

O(G)) then dim(Stab”(p)) > 0.
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Indeed, since every type over R is definable, p is definable and, by
[11, Claim 3.4], there is a definable reduced type ¢ that is ~,-equivalent
to p. Now use [L1, Theorem 1.1].

The above theorem holds for arbitrary definable groups in o-minimal
structures, and then Stab”(p) is always torsion-free. However, when G
is a linear real algebraic group then necessarily Stab”(p) is real alge-
braic, even if the type p is in a richer language.

3. THE NEAREST COSET OF A TYPE

The goal of this section is to prove that to each complete L., -type
p on a real unipotent group G one can associate a coset gH of a real
algebraic subgroup H C G, which is “nearest” to p in a precise sense.
Recall that below we are using H, G etc. to denote the R-points of
real groups, and use H*, G¥ etc to denote -points of the same groups.

Definition 3.1. For G a linear real group, o € G*, g € G, and H C G
a real algebraic subgroup, we say that gH is near o if a € u(G) gH*.

Note that there exists g € G such that gH is near « if and only if
a € O(G) H*. Also, if tpg, (a/R) = tp,,(8/R) then gH is near « if and
only if gH is near 5. Our ultimate goal is to show that in unipotent
groups there exists a minimal coset near a.

Lemma 3.2. Let G be a linear real algebraic group and let HL N C G
be real algebraic subgroups with N normal in G. Assume that o € H*

and there is b € G such that the coset bN is near «. Then bN N H # ()
and the coset bN N H 1is near o as well.

Proof. We have
a = ebn
for some € € p(G) and n € N*.

We first claim that both b and € belongs to the group (N H)*. Indeed,
b=etan™! so b = st(an™!). The element an~! belongs to (NH)F,
and since NVH is a closed subset of G, it follows from Fact 2.16, that
b€ NH. Hence, e = an~'b~!is in (NH)* as well.

Thus, we may work entirely in the group NH, so we may assume

that G = NH = HN.
Claim 3.3. If G = NH then
1(G) = u(N) p(H) = p(H) p(N).

Proof. By continuity of multiplication, pu(N)u(H) C u(G). For the
opposite inclusion, it is enough to show that for every L,,-definable
U C N,V C H, neighborhoods of e, we have ;(G) C (U V)?. For that,
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it suffices to show that the set U V' contains an open neighborhood of e
in G. This follows from the fact that the map (z,y) — xy from N x H
into G, is a submersion at (e, e). O

We are now ready to prove the lemma. We start with a = ebn, with
€ € u(G) and n € N*. Using the above Claim, € = e, with €, € u(H)
and €, € u(N). We also write b = byb,, with b, € H and b, € N.
So, a = epenbpn’, with n' € N*. Since N is normal, €,b, = byn*, for
n* € N¥, so

a = e,bpn'n’.

Clearly, byn*n/ is in b, N* and since o and ¢, are in H*, we also have
bpn*n’ € H*. So, a € u(G) (byN* N H*), and in particular b, N N H
is nonempty, and hence a left coset of N N H. This ends the proof of
Lemma 3.2. 0

Corollary 3.4. Let G and H, N C G be as above. Assume that there
are b,c € G such that the cosets DN and cH are near . Then bN N
cH # () and the coset bN N cH is near .

Proof. Note first that for any € € u(G), a € u(G) (bN* N cH?) if and
only if ea € u(G) (bN* N cH*®). Thus, we may replace the assumption
that o € u(G)cH* by a € (cH)?, so ¢ ta € H* N u(G) (c"'bN*). We
apply Lemma 3.2 and conclude that ¢ la € u(G)(c 0N N H)*. Tt
follows that o € pu(G)(bN N cH)*. In particular, bN N cH # 0, so it is
a left coset of NN H. U

We also need:

Lemma 3.5. Let G be a linear real algebraic group and H C G a
real algebraic subgroup. For gi,go € G, assume that pu(G) g H* N
w(G) goH* # 0. Then g1H = goH.

Proof. We let

a = €1g1hy = e2g2ho,
where hy, hy € H* and €y, e5 € pu(G). Tt follows that g, 'g1 = ehoh; ' for
some € € u(G). But then gy g1 = st(hohy') € H,s0 o H = goH. O

Remark 3.6. Although we proved lemmas 3.2-3.5 for linear real al-
gebraic groups, the results hold for an arbitrary definable group in an
o-minimal structures, with exactly the same proofs and with p(G) de-
fined as in [11]. See [10] for more on definable groups in o-minimal
structures.

We are ready to prove the main result of this section.

Theorem 3.7. Let G be a real unipotent group and let o € G*.
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(1) If Hy, Hy are real algebraic subgroups of G and g1, g2 € G such that
the cosets gy Hy and goHo are near o then gy Hy N gaHoy # O and the
coset gy Hy M goHs 1s near o as well.

(2) There exists a smallest left coset of real algebraic subgroup of G,
among all such cosets that are near c.

Proof. (1) We use induction on dim G and note that the result is obvi-
ously true when dim G = 1.

We may clearly assume that H;, Hy are both proper subgroups of G.
So by Claim 2.12 there exists a proper normal real algebraic Ny C G
containing H,. Obviously ¢;/N; is near a. By Corollary 3.4, g1 N1 N
goHy # () and for d € gy Ny N go Ho the coset d(Ny N Hy) is near «.

Obviously, for d € g1 N1 NgaHy we have g1 HyNgaHy = g1 HyNd(N1 N
H,). Replacing Hy by Ny N Hy and go by d € Ny N Hy, if needed, we
may assume that Hy C Nj.

By assumption, a € u(G) g H! N u(G) g2 HE, so a € p(G)gi NI N
1(G@)gaNE. By Claim 3.5, g1 Ny = g2 Ny, hence g7'g, € N.

We now consider o = g;'a € Nf, and note that

o € pu(G) Hi N p(G) gy g2 HS.
(2) The existence of a smallest coset immediately follows from (1).
U

The above theorem allows us to define:

Definition 3.8. Given real unipotent G, and a € G*, we denote by A,
the smallest coset near ae. We call it the nearest coset to . We denote
by H, the associated group, so A, = gH, for any g € A,. For p the
complete type tp,,(a/R), we also use A, := A, and write A, = gH,,.

Note that if & € O(G) then the nearest coset to « is just {st(«)},
which can be viewed as a coset of the identity of G. On the other hand,
if &« ¢ O(G) then no element in G is near a and therefore dim A, > 0.
We thus have:

Lemma 3.9. For a € G*, a € O(G) if and only if A, = {st(a)}.
We also need:

Lemma 3.10. Assume that G and G are real unipotent groups and
f G — Gy is a surjective Lie homomorphism. Then

(1) f((G)) = u(G1) and f(O(G)) = O(Gy).
(2) If « € G* and B = f() then f(As) = Ag.

Proof. By Lemma 2.15, f is a polynomial map and hence has a natural
extension to Moy, which is still denoted by f : G — Gg.
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(1) The map f is continuous and open (by its surjectivity), and hence
we have f(u(G)) = p(G1) and f(O(G)) = O(Gh).

(2) It follows from (1) that if gH is near « then f(gH) is near 3, and
therefore Ag C f(A,). For the opposite inclusion, assume that Az =
g1 H; C Gi. We have 8 € u(G1)Ag and therefore o € u(G)f~'(Ap)
(here we use that f(u(G)) = u(G1)). By the minimality of A,, we have
A, C f7Y(Ap) and therefore f(A,) C Ap. O

We end this section with an example which shows that Theorem 3.7
fails for arbitrary linear real algebraic groups.

Example 3.11. We work with G = SL(2,R). For ¢ an infinitesimally
small element of R, we let
o (€ 0
—\0 !

be an element of SL(2,9). We show that there is no minimal coset
near a.

We denote by D the diagonal subgroup of SL(2,R). Since o € D¥,
we have that D is a coset near a.

Let
1 1
= (o 1)

and H be the conjugate of D by b, namely H = b=!Db.
We consider the coset bH = Db, and claim that it is near . Obvi-

ously, the element 3 = ab is in D* = bH*, so it is enough to see that
af~tis in u(G). We have

_ 1 &?
of = (0 1.)’
clearly in u(G).

Thus, both D and bH are near a, but D NbH = D N Db = (), so
there is no minimal coset near a.

The above example takes place entirely in the solvable group of upper
triangular matrices, thus we see that Theorem 3.7 fails even for solvable
linear Lie groups.

4. THE ALGEBRAIC NORMAL CLOSURE OF A SET

We still assume here that G is a real unipotent group. All definability
isin Ryp,.
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Definition 4.1. Given a definable set X C G, we let (X)y, be the
minimal real algebraic subgroup of G containing X.

We call the smallest algebraic normal subgroup of G containing X
the algebraic normal closure of X.

Lemma 4.2. Let P C G a real algebraic subgroup and assume that
U C G is a nonempty open subset of G. Then the group <UgeU P9) g
is normal in G, and in particular, equals the algebraic normal closure
of P.

Proof. For subsets A, S C G we write A% for Uges A9 = Uges g tAg.

Let u € U. Since (PY)gy = ( (P*)* V)4, replacing P by P* and
U by u=tU, if needed, we may assume that U is an open neighborhood
of e.

Clearly, for V. C V4 C G we have (PV),, C (P")y,, and (PY)y,
is normal in G if and only if (PY),, = (P%)u,. Thus, to show that
(PY) ., is normal in G, it is sufficient to find a non-empty B C U such
that (P?),, is normal in G.

By DCC on real algebraic subgroups, we can find an open neighbor-
hood Uy of e with Uy C U such that (PY),, = (PY),, for any open
neighborhood V' of e with V' C Uy. Let N = (P%),,. We claim that
N is normal in G.

Indeed, choose open B > e with. B~! = B and BB C U,. Since for
any b € B we have e € Bb C Uy, it follows that

N’ = ((PB>alg)b = <PBb>alg = N.

Thus the normalizer of N contains an open neighborhood of e and
therefore equals the whole of (G, hence N is normal in G. O

As a corollary we obtain the following proposition. Recall that for
a subgroup N C @ and a lattice I' C G, the group N' is the smallest
[-rational subgroup of G containing N.

Proposition 4.3. Let G be a real unipotent group, P a real algebraic
subgroup of G, and N be the algebraic normal closure of P. Let ' be a
lattice in G. Then the set X = {g € G : (P9)"' = N'} is dense in G.

Proof. Tt is sufficient to prove that the complement of X is nowhere
dense in GG. Since every conjugate of P is contained in N, this comple-
ment can be written as the union over all proper I'-rational subgroup
L of N', of the semialgebraic sets

X, ={geG:(P)' CL}={geG:P'CL}.

By Remark 2.6, there are at most countably many I'-rational sub-
groups of GG, so by Baire Category Theorem, it is enough to prove that
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each of the sets X is nowhere dense. Since X is semialgebraic we
just need to see that it does not contain any nonempty open set.
Assume towards contradiction that for some proper I'-rational sub-
group L C N, X, contained an open set U. Then (U, P?)ay 18
contained in L. But, by Lemma 4.2, (U, ey, P?)atg = N, so N C L and

hence N' C L, contradicting our choice of L. 0

5. THE MAIN RESULT FOR COMPLETE TYPES
We assume in this section that G is a real unipotent group.

Lemma 5.1. Let H be a real unipotent group, f : G — H a surjective
homomorphism of Lie groups, and X a subset of G*.
Then, for every lattice ' C G, if f(I') is closed in H then

F(st(XT) = st(f(X)f(T?)).

Proof. By Lemma 2.15, f is polynomial so in particular definable in
Rom- By Lemma 3.10, f sends O(G) to O(H) and p(G) to u(H). Tt
follows that for & € O(G) we have f(st(a)) = st(f(a)).

Let Dy r = st(X T¥). We need to show that f(Dxyr) = st(f(X)f(T¥)).

C: If a = st(ay*) € Dxr, with @ € X and v* € T* then f(a) =
st(f(ay®)) = st(f(a) f(7*)) € st(f(X) F(TF)).

D: Assume that a; = st(f(a) f(7*)), for some o € X and v* € T*.
We want to show that a; € f(Dxr).

Since G/T" is compact, there exists a compact semi-algebraic set K C
G such that for every g € G, there exists v € I' with gy € K. This
remains true for G¥, I'* and K*. Thus, we can find vf € I'* such that

(av)7y € KF C O(G).

We may therefore take the standard part and get a := st(ay*yy) €
Dy r. It follows that

fla) = f(st(ar™p) = st(f(ar™ 1) = st(f (@) f (v 1)) € st(f(X) f(TF)).
Writing f(a) differently we have

fla) = st(f(eay") f (1) = st(f(y")) st(f(77))-
Note that we are allowed to write this since indeed f(vy) € O(H),
because both f(a) and f(ay*) are in O(H)). So, the term on the right

equals ay st(f(77))-
Finally, since f(I") is closed in H, we have
F(T) = st(f(D)F) = st(f(I¥)),
hence st(f(77)) = f(7), for some v € T.
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Because Dy r is right-invariant under I', its image is right-invariant
under f(T') and hence f(a)f(y)™! = ayisin f(Dxr), as we wanted. O

Recall that for a complete type p € S¢(R) we let A, be the nearest
coset to p. We can now prove:

Theorem 5.2. Assume that p is a type in Sg(R). Then for every
lattice I' C G we have

st(p(R)TH) = cl(A,T).
Proof. We write A, = gH,. To simplify notation we let
Dpr = st(p({)‘i)rﬁ).
We first handle a special case.

Proposition 5.3. Assume that A, = H, is a subgroup of G and that
Hg =G. Then DPT =G.

Proof of Proposition. We prove the proposition by induction on dim G,
starting from dim G = 0, for which the result is trivially true. We
assume then that dim G > 0.

Since H; = (G, the group H, must have positive dimension, hence p
is not a bounded type, so by Fact 2.17, the group P := Stab”(p) is a
definable subgroup of positive dimension.

We consider the algebraic normal closure of P, call it N and then N,
By Lemma 2.9, N' is normal, hence it is the minimal normal I'-rational
subgroup of GG containing P. Since G is nilpotent, the intersection any
nontrivial normal subgroup with the center Z(G) is nontrivial (see for
example [10, Proposition 7.13]), so Ny = N'NZ(G) is nontrivial. Since
G is torsion-free, Ny is a real algebraic subgroup of positive dimension,
so dimG/Ny < dim G.

We consider the quotient map

fG—>G/NO

The group G/Nj is again a connected, simply connected nilpotent
Lie group and hence Lie isomorphic to a real unipotent group. By
Lemma 2.15, the composition of this isomorphism with f is a polyno-
mial map. Thus, we identify G/N, with a real unipotent group, and
still denote the homomorphism from G onto this unipotent group by

f

We let ¢ be the image of the type p under f. By that we mean that
for some (equivalently any) a € p(R) we let ¢ = tp,,,(f(a)/R) F G/No.
We let Ty = f(T'). Since both Z(G) and N' are I-rational then so is
Ny. It follows that I'; is a lattice in G/Ny (for both, see Lemma 2.8).
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Let A, = g,H, be the nearest coset of g. We claim that Agl = G/Ny,
namely qul = G/Ny. Indeed, first note that by Lemma 3.10, we have
f(A4,) = A, so f(H,) = A, and hence A, = H, is a group. Next, since
Ny is I'-rational the pre-image under f of the I';-rational group H, ; s
a I'-rational subgroup of G containing H,, so by our assumptions on p
it equals to G. It follows that H}* = G/No.

Since dim G/Ny < dim G, we may apply induction to ¢ = G/N, and
I'; and conclude that st(g(R)I%) = G/N,. Therefore, by Lemma 5.1,

f(Dp,F) - G/NO-

Next, we claim that D, is left-invariant under P = Stab”(p). In-
deed, if a € D,r = st(p(R)['*) then a = eay* for € € u(G), a € p(R)
and v* € I'*. By definition, for every h € P, there exists ¢ € u(G) and
o’ € p(R) such that ha = €a’. But then, for some ¢’ € u(G),

ha = heay* = €"hay* = €' o’+*.
Since ha € G, we have ha = st(ha) = st(a/v*) € D,r, so D,r is
left-invariant under P.
By definition, D, r is also right-invariant under I'.
We now consider the set

Y={geG:(P) =N}
By Proposition 4.3, the set Y is dense in G.

Claim The set Y is contained in Dpp.

Proof of Claim. We will show that Y N D, r is left-invariant under Ny =
ker(f) and that f(Y N D,r) = f(Y). The result follows (since we
conclude that Y =Y N D,r).

First, let us note that NyY = Y: Because N, is central, for every
n € Ny and g € G, P9 = P™, so by the definition of YV, if g € Y then
so is ng.

In order to show that Y N D, r is left-invariant under Nj it is enough
to show that for every ¢ € Y N D,r, we have Nog C D,r. So fix
g € YN Dp,p.

Since D, is left-invariant under P and right-invariant under T,
we have Pgl' = gPI' C D,r. Because it is also closed, we have
cl(gPI') C D,r. Since g € Y,

cl(PT) = (P9)'T = N'T,

and hence
gN'T = cl(gPT) C D, .
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Because Ny C N' and is normal in G, we have
Nog = gNo € gNy C Dy,
thus completing the proof that Y N D, r is left-invariant under Nj.
Now, since NoY =Y, we have f(Y N D,r) = f(Y) N f(D,r). We
already saw that f(D,r) = G/Ny, and therefore f(Y N D,r) = f(Y).

Because Y N D, r is left-invariant under Nj it follows that Y C D, p,
completing the proof of the claim. U

Because Y is dense in G and D,,r is closed we have D,r = G. This
ends the proof of Proposition 5.3. 0

In order to complete the proof of Theorem 5.2, consider now an
arbitrary type p € Sg(R), with A, = gH,. By replacing p with g~'p
and D,r with Dy-1,r = g 'D,r, we may assume that 4, = H,.
For every a € p(R) there is € € pu(G) such that ea € HE  Since
st(ea) = st(a), replacing o with ea we may assume that p - H,,, and
thus st(p(R)T) C cl(H,I') = H,T.

Let Gy = H}; and 'y = GoNI', alattice in Gy. Notice that cl(H,I'g) =
HII; oy = HIE = (9. Thus, in order to prove the theorem it is sufficient
to show that st(p(9R)T%) = Gy. This is exactly Proposition 5.3 (for Gy
and I'y instead of G and I'), so we are done. O

Returning to the setting of Theorem 1.3, we start with a given de-
finable set X C G, and define the associated family of nearest cosets:

AX)={A,:a € X}

By Lemma 3.9, the 0-dimensional elements of A(X) are exactly the
singletons {g} for g € G.

For a € X!, let A, = ¢go,H,, where g, is any element in A,. For
every lattice I' C G, we have

cl(AT) = cl(goHoT) = go(H,)'T.

We let AL denote the coset g, HL. We can now describe the closure
of mp(X) as follows:

Corollary 5.4. For every lattice I' C G,
A(XT) = | J ga(Ha)'T = | AT,
acXt acXt

and

d(mr(X) = |J mr(gaty) = |J mr(40).

aeXt aEXH
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Proof. As we saw,

cl(XT) = st(XT%) = | ] st(p(R)TY).

pEX

By Theorem 5.2, we have

cl(XT) = [ J(4))T.

pEX

Since A, = Az whenever o and 3 realize the same complete type, we
can write the same union as (J,cy: Ay I'. The result follows. O

5.1. An alternative definition of A(X). In this section we give an
alternative definition of A(X). This definition is not used anywhere
else, so we will be brief.

As before, GG is a real unipotent group.

Viewing GL(n,R) as a subset of R, we denote by || || the restric-
tion of the Euclidean norm on R™ to G.

For a,b € G let dg(a,b) = |[ab™! — I, ]| ¢

Let X C G be a definable set. In this section by a definable curve
on X we mean a definable continuous function o(t): R=% — X.

Let o(t) be a definable curve on G. For a coset aH C G of a real
algebraic group H we say that aH is near o(t) if lim; o dg(o(t),aH) =
0, where, as usual, dg(o(t),aH) = inf{dg(c(t),9): g € aH}.

Applying Theorem 3.7 to an infinitely large ¢ we obtain the following
claim.

Claim 5.5. Let o(t) be a definable curve on G. Let g1Hy, goHs C G be
cosets of real algebraic subgroups. If both g1 Hy and goHy are near o(t)
then g1 Hy N goHy # () and the coset g1Hy N goHy is near o(t) as well.

Thus if o(¢) is a definable curve on G then there is the smallest coset
near o(t) that we denote by A, and call it the nearest coset to o(t).

Working in the tame pair (Rop(7), Rom), where Ry, (7) = del(Rop U
{7}) for an infinitely large 7, we can redefine A(X) as follows.

Proposition 5.6. Let X C G be a definable subset. Then
AX) = U{AJ: o(t) is a definable curve on X}.

5.2. Digression, the connection to the work of Leibman and
Shah. Our goal here is to deduce Theorem 1.5 from Corollary 5.4.
Before doing that, we briefly discuss the connection between our notion
of “a polynomial map” and that of [3].
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Given G a connected, simply connected nilpotent Lie group, let
ai,...,a, be some elements of G, and let p : RY — R” be a poly-
nomial map, such that p(Z?) C Z". Then the map f : Z? — G, defined
by

FB) = a® - apr®
is said to be a polynomial map in [2]. Note that this definition is
invariant under an isomorphism of G' thus we may assume that G is a
real unipotent group. By Lemma 2.15 (2), there is a map F': R — G,
polynomial in matrix coordinates, such that f(k) = F(k) for k € Z%.

We prove:

Theorem 5.7. Let G be a real unipotent group. Assume that f : R? —
G is a polynomial map in matriz coordinates and let X = f(R?) C G.
Let gH be the minimal coset among all left cosets of real algebraic
subgroups of G with X C gH. Then for every lattice I' C G,

c(mp(X)) = 7p(gH"Y).

Proof. Note first that for every o € X*, its nearest coset A, is contained
in gH. Thus, by Corollary 5.4, for every lattice I,

cl(mr(X)) = | (A7) € mr(gH").

It is therefore sufficient to prove:

Lemma 5.8. Under the above assumptions, there exists a € X* such
that A, = gH.

Proof of Lemma. We use induction on dim G, with dim G = 0 being a
trivial case. Since left translation by ¢~! is a polynomial map from G
to G, we may replace X by ¢~'X and assume that the minimal coset
containing X is H.

If H is a proper subgroup of G then by induction there exists o € X*
such that A, = H. Thus, we may assume that H = G, and we wish
to find a € X* such that the nearest coset to a is G. We define a as
follows:

We choose 8 = (B1,...,84) € R with 0 << B << [y << -+ <<
[B4. By that we mean 7 > R, and for every ¢ = 1,...,d — 1, and every
polynomial ¢(z1,...,x;) € Rlzy,...,x;] we have B;11 > q(5i,...,5i).
We can find such a tuple § because R is |R|"-saturated. The following
is easy to verify:

Claim 5.9. If q(x1,...,24) € Rlxq,...,24] is a non-constant polyno-
mial then q(B) ¢ O(R).
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We now claim that « = f(/) is the desired element. Towards that
we prove the following general claim:

Claim 5.10. For 3 € R? and G as above, if ¢ : RY — G is a polynomial
map, and gHy is near q(3), for some real algebraic Hy C G and g € G,
then q(5) € gH,.

Before proving the claim let us see that it implies Lemma 5.8. Indeed,
the above claim implies that when gH, is any coset near o then o €
gHy. We now consider the set S = {x € R?: g(x) € gHp}. Since Hy
is a real algebraic group, the set S is also real algebraic, defined over
R. The transcendence degree of 8 over R is d, and since o« € Hy and
B € S*, we must have S = R% It follows that X C gH,, and therefore
the nearest coset to o must contain X. By our assumptions, it follows
that A, = G, thus ending the proof of Lemma 5.8, and with it the
proof of Theorem 5.7.

Thus, we are left to prove Claim 5.10, and we do so by induction on
the dim G. We may assume that gH, equals A,, and by replacing the
map ¢ with the polynomial map ¢g~!¢, we may assume that the group
A, = Hy. We want to show that o € Hy. Without loss of generality,
Hy is a proper subgroup of GG, for otherwise we are done.

We may further assume that there is no proper algebraic subgroup
H, C G such that ¢(R?) C H; (for otherwise H, is also contained in
H; and we may replace G with H; and finish by induction). Let N
be a proper real algebraic normal subgroup of G containing H, and
consider the map 7 o ¢, where 7 : G — G/N is the quotient map.
By Lemma 2.15 (1), the map 7 o ¢ is still polynomial, and by our
assumptions the trivial group {e} is near 7 o ¢(f), and in particular
q(B) € O(R). By Claim 5.9, the map 7 o ¢ must be a constant map,
which is necessarily e. It follows that ¢(R?) C N, contradicting our
assumption. This ends the proof of Claim 5.10 and with it the proofs
of Lemma 5.8 and Theorem 5.7. U

6. NEAT FAMILIES OF COSETS

The work here is similar to the work in [12, Section 7.1-7.2]. We
assume that G is a real unipotent group.

Our first goal is to show that the family A(X) of all nearest cosets to
elements in X*¥, is an R,,-definable subfamily of the family of all cosets
of real algebraic subgroups of G (see Fact 2.13). This is very similar to
the work in [11]. We expand the structure R,y by adding a predicate
symbol for the set of reals R. We are thus working in the structure
Rpair = (Rom, Rom), in which Ry, is an elementary substructure of
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Rom- Such structures are called tame pairs of o-minimal structures
and were studied in [3].

Note first that since the standard part map is definable in R,
the family A(X) is definable in R, By [3, Proposition 8.1] we may
conclude:

Lemma 6.1. The family of cosets A(X) is definable in Ryy,. Namely,
there exists in Ry a definable set T and a formula ¢(x,t), with x and
t tuples of variables, such that

A(X) = {6(G,t) - t e T).

Our next goal is to replace A(X) by a family of cosets of finitely
many subgroups.

Definition 6.2. Let F = {¢:H; : t € T'} be an R,,,-definable family of

cosets of real algebraic subgroups of G. We say that F is neat if the

following hold:

(1) For ty # to, g, Hiy, # Gop Ho,.

(2) There exists k, such that T is a connected submanifold of R*.

(3) There exists a definable continuous function from 7" to G, t — h; €
G, such that for every t € T, hyH; = g, H;.

(4) For every nonempty open U C T,

<U Ht>alg = <U Ht)alg~

teU teT

For F a neat family of of cosets as above, we denote by Hz the group
<Ut€T Ht>alg’

Lemma 6.3. Let F be a neat family of algebraic subgroups of G. Then
for every lattice T C G, the set Tr = {t € T : Hf = (Hx)"} is dense
i T.

Proof. For a I'-rational subgroup L of G, let
T(L)y={teT:H CL}.

Clearly, if t € T'\ Tr then H] is a proper subgroup of (Hr)", hence
T \ Tt can be written as a union of all sets T'(L), as L varies over all
[-rational proper subgroups of (Hx)'.

By Remark 2.6, there are countably many I'-rational subgroups of
(G, thus the union is countable. So, in order to show that Tt is dense
in T it is sufficient, by Baire Category Theorem, to show that every
T(L) is nowhere dense. Since this is a definable set it is sufficient to
prove that T'(L) does not contain any nonempty open subset of T'. But,
by definition of Hr, for every U C T nonempty open set, the group
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(User Hi)aig is the whole of Hr, so (U,ep Hi)eyy, = (Hr)". On the
other hand, for every V' C T(L), we have (U,cy Hi)yyy € L # (Hr)",
so no open nonempty subset of 7" is contained in T'(L). Therefore, T1

is indeed dense in T'. O

Lemma 6.4. Let {g;H; : t € T} be a definable family of pairwise
distinct cosets of algebraic subgroups of G C UT(n,R). Then

(1) there is a definable partition of T =Ty U---UT,, such that for each
i=1,...,r the family {g;H, : t € T;} is neat.
(2) For eachi=1,...,r, let

Li - <U Ht)alg-

teT;
Then for every lattice I' C G,

od(|J aH!) = aA(l g.LD).
teT; teT;
Proof. (1) We use induction on dim 7. By o-minimality, we may assume
that 7 is a connected submanifold of some R* and that the function
t — g; is continuous on 7. Given t € T', it follows from DCC for real
algebraic subgroups that there exists a subgroup G; C G such that for
all sufficiently small open t € U C T, (U, He)atg = G-

Because the family of all real algebraic subgroups of G is definable the
family {G; : t € T'} is also definable, thus we may divide 7" into finitely
many definable submanifolds, 77, ...,7,,, on each of which dim G, is
constant. By induction, it is sufficient to handle those T; whose dimen-
sion equals that of T'. Notice that for such a T;, and ¢t € Tj, it is still
the case that for all sufficiently small open U C T, a neighborhood of
t, we have

Gt = <U Ht>alg
teU
(this might not be the case for those T;’s with dim7; < dim 7).

Thus, without loss of generality, dim G is constant as t varies in T.
We claim that now the group G is the same for all £ € T' (and hence
{g:H; : t € T'} is a neat family). Indeed, fix ty € T" and let

To ={t € TGy = Gy, }.

The set Tj is closed in T Let t; € cl(Tp) and fix U > t; such that
Gy, = (User He)arg- For every t € UNTy, we have Gy = Gy, C Gy, but
since dim G; is constant in 7" we must have G;, = Gy, so t; € Ty.

Let us see that Tj is also open in T'. For ty € Ty let t, € U C T

be an open set such that Gy, = Gy, = (U, Hi)ag- By dimension
considerations, for all t € U, Gy = Gy, so U C Ty, and thus Tj is open.
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Because T is connected, Ty = T. It follows that for every open

nonempty sets U C T
<U Ht>alg = <U Ht)alg~

teU teT

(2) Fix i = 1,...,r so the family {¢:H; : t € T} is neat. First note
that for t € TZ, each g:H} is contained 1n ¢ LY, so it is sufficient to
show that (J,., g:H; is dense in J,cp gL}

By Lemma 6.3, the set Ty = {t € T : HF = L'} is dense in T;. Let
gi,ho be an arbitrary element of g, LY, for some ty € T;, and choose
t, € Ty a sequence converging to t,. For each ¢, we have g; hy €
g, L} = gthtl:L . Because the map t — ¢, is continuous, ¢, ho tends to
iy ho, so indeed the union of g;H} is dense in the union of ¢;L}. [

(A

7. THE MAIN THEOREM

We are now ready to prove Theorem 1.3. We find it convenient to
reformulate the result within G and not in G/T". The equivalence of
the theorem below to Theorem 1.3 follows from the definition of the
quotient topology on G/T". Namely, for every X C G, np(X) is closed
in G/T" if and only if XT is closed in G.

All definability below is taken in the o-minimal structure R,,,.

Theorem 7.1. Let G be a real unipotent group and let X C G be
a definable set. Then there are finitely many definable real algebraic
subgroups Ly, ..., L, C G of positive dimension, and finitely many
definable closed sets C1,...,C,, C G, such that for every lattice ' C G,

c(XT) = (l(X)u| JCiLD)T
i=1
In addition, the C;’s can be chosen to satisfy:
(1) For everyi=1,...,m, dim(C;) < dim X.
(2) Let L; be a mazimal subgroup with respect to inclusion, among
Li,...,Ly. Then C;is a bounded set in G, and in particular C; LI T
1s closed in G.

Proof. Recall that for a coset A = gH C (G, and a lattice I', we write
AT for gH". In particular, cl(AT) = A'T.
By Corollary 5.4,
c(XT) =st(XT% = | ] AT
AEA(X)

By Lemma 6.1, the family of cosets A(X) is definable in R,,. By
Definable Choice, we may assume that the cosets in A(X) are pairwise
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distinct. As we already pointed out, the zero-dimensional cosets in this
family are exactly the singletons of elements of X. Thus we restrict
our attention to those cosets which have positive dimension and denote
this definable sub-family by A(X)'.

By Lemma 6.4, we can divide A(X)’ into finitely many neat families
of cosets, Ay U---UA,,. Foreach i = 1,...,m, the family A; =
{9:H; : t € T;} has an associated fixed group L; = (U,eq, Hi)atg- By

Lemma 6.4, for every lattice [' C G and for each = 1, ..., m, we have
U aar) = [ e(gH)T = | LT
AcA; teT; teT;
For each 7 =1, ..., m we consider the group L;. By Lemma 2.11, for
each ¢ = 1,...,m, there exists a closed semi-algebraic “complement”

A; C G, to the group L;. Namely, the map (a, h) — ah is a diffeomor-
phism of A; x L; and G. We let (a;,h;) : G — A; X L; be its inverse
map, so for every g € G we have g = a;(g)h;(g). Notice that the map
a; is constant on left cosets of L;.

Since the map a;: G — A; is continuous, we may replace the map
t — g, on T; by the continuous map t — a;(g;) and thus assume, for
each I =1,...,m, that g, takes value in A;. By our choice of A(X)’,
it is also injective. We let C; = cl({g; : t € T;}) (there is no harm in
taking closure since we are describing closed set cl(XT')). So, C; C A;.

Thus,

l(XT) = cl(X)T'U O |J o(ar) = (xu 6 C;LO)T.

i=1 A€ A; i=1

This ends the proof of the main result.

Let us see that our sets C; satisfy (1) and (2). It is sufficient to
prove both for C! = {¢; : t € T;} instead of C; = cl(C}). Indeed, by
o-minimality dim C] = dim C; and clearly C; is bounded if and only if
C! is.

(1)We need to show that dim C} < dim X. By our choice of T; and
C!, for each g € C! there exists a € G* \ O(G) such that A, C gL;.
In particular, the coset gL; is near «.

Recall that G is a closed subset of R and O(G) is the collection of
all elements of G which are R-bounded. Given g € G we let |g| be its
Euclidean norm as an element of R™. As we noted in Section 2.3.1, for
a € G* a € O(G) if and only if |a| € O(R).

We define

X; = {(a;i(x),1/|hi(z)]) € A; xRz € X}.
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The set X; is definable and there is clearly a definable surjection
from X onto Xj;, thus dim X > dim X;.

Claim If g € C/ then (g,0) is in F'r(X;) = cl(X;) \ X;.
Proof of Claim. Clearly, (g,0) ¢ X;, so we need to see that it belongs
to cl(X;).

First note that since the map (a;, h) : G — A; X L; is a semialgebraic
homeomorphism over R, it sends O(G) onto (O(G)NAH) x (O(G)NLH).
Next, as we noted above, there exists a« € X*\ O(G) such that the coset
gL; is near a.

So, there exists € € u(G) such that o € eng. Since o and eg are in

the same left coset of L, we have a;(eg) = a;(a). Because a;(—) is a
continuous map, and a; is the identity on A;, we have

st(ai(eg)) = ai(g) = 9,
and in particular, a;(a)) € O(G) and st(a;(a)) = g.

We have a = a;(a)h;(a), and since a ¢ O(G) and a;(a) € O(G),
then h;(a) ¢ O(G), so |hi(a)] ¢ O(R), hence st(1/|h;(c)]) = 0.
Thus, (g,0) = (st(a;()),st(1/|hi()])) is in st(X?), which by Fact 2.16,
equals cl(X;). O

By o-minimality, dim Fr(X;) < dim X; < dim X, so it follows from
our Claim that dim C] < dim X.
(2) We may assume that the groups Li,..., L, are maximal with

respect to inclusion among Ly, ..., L, (note that we allow repetitions
among the L;’s). We first prove:

Claim 7.2. There is a definable closed bounded set B C G such that
X CcCBLU---UBL,.

Proof of Claim. Our construction implies that for every a € X* \
O(G), if Aw = goH, then there exists i € {1,...,m} and g € C!
with A, C gL;, hence o € O(G)LE. Each L; is contained in some L;,
with 1 < 7 <r, and hence

xtco@ulJo@)L
i=1
Writing O(G) as a countable union of definable closed bounded sets
and using the Compactness Theorem (in Logic) we obtain that there

is a definable closed bounded set B C G with

XQBULTJBLZ-.

=1
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If X is bounded then r = m = 0 and then X C B for some B.
Otherwise, B C BL; for every 4, and hence

X C OBLi.

i=1

This proves Claim 7.2. U
We fix a set B as in Claim 7.2.

Claim 7.3. For every a € X* there isb € B and i € {1,...,7} such
that A, C bL;, and in particular, H, C L;

Proof of Claim. Let o € X*. It follows from Claim 7.2 that there is
be Bandie€ {1,...,r} such that « is near the coset bL;. (If a € B¥,
then « is near the coset bL;, where b = st(a) € B). This proves

Claim 7.3. O

We now proceed with the proof of (2) and fix a maximal L;. Without
loss of generality, i = 1.

We need to show that C7] is bounded. So assume towards getting a
contradiction that C7 is unbounded.

It is not hard to see that there is a bounded closed definable set
B; C A; (recall A; is the complement of L;) such that B C BjLy,
hence BL; C B;L;. Because (] is unbounded subset of A;, we have
C1 € By.

Thus, by our choice of € and Ly, there is a neat family F =
{g:H;: t € T1} (with g, taking values in A;), such that: (i) Hr = Ly,
(ii) for every t € Tj there is a € X* with A, = g;H; and (iii) for some
to € Th, Jto ¢ B;.

By the continuity of g;, there exists an open U C T} containing
such that for all t € U, g; ¢ By. It follows that for all ¢t € U, ¢;L; €
By Ly (here we use the fact that A; contains a single representative for
each left coset of L;), and since BL; C B; Ly, we also have g, L, Q BL,.

By Claim 7.3, the set U is covered by definable sets S;, i = 1,...,m,
where S; = {t € U: g.H; C BL;}. However, by what we just showed,
UnNS; =0, so we have

ve | s

Li#L,

It follows from o-minimality that there exists 79, with L;, # Ly, such
that S;, contains nonempty open set U;, C U. Thus, U;, C 71 N S,
so for every t € U,,, H,; is contained in L; N L;,. By the maximality of
Ly, and since Ly # L;,, the group L N L;, is a proper subgroup of L;.
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< U Ht>alg

tEUiO
is a proper subgroup of L, contradicting the neatness of the family F.
Thus C7 and therefore C is bounded.
This ends the proof of the clause (2) and Theorem 7.1. O

Hence

8. ON UNIFORM DISTRIBUTION

In this section we consider questions related to a uniform distribution
of definable functions. We will consider the case of curves on real tori
only.

Let T,, = R"/Z" and 7: R™ — T, be the projection. We will denote
by ., the normalized Haar measure on T,,.

Let o(t): R2 — R™ be a continuous map. We say that o(t) is
continuously uniformly distributed mod Z™ (c.u.d. mod Z", for short)
if for any continuous function h: T, — R we have

1 [T
lim —/ h(woo(t))dt:/ hdpiy,.
T Jo .

T—o00

The following fact follows from the density of trigonometric polyno-
mials in the space of continuous Z"-invariant functions on R".

Fact 8.1. (Weyl’s criterion) A continuous map o(t): R=0 — R" is
c.u.d. mod Z™ if and only if

Y
lim — / >mme ) gt =,
T—o0 0

for every nonzero m € Z™. (As usual (, ) denotes the standard scalar
product on R™.)

Remark 8.2. It follows from Weyl’s criterion that a continuous map
o(t): R2 — R" is c.u.d. mod Z" if and only if for every nonzero
m € Z" the function t — (m, o(t)) is c.u.d. mod Z.

We will use the following fact that is well known. E.g., the direction
(2) = (1) follows from the proof of [, Theorem 1.9.3]; and the direction

(1) = (2) follows from van der Corput lemma (see [15, Proposition
VIIL1.2).

Fact 8.3. Let o(t): R=° — R be a smooth function with monotone
derivative o' (t). The following are equivalent.

(1) to'(t) is unbounded.
1",

(2) lim —/ ™o gt = 0.
T Jo

T—o00
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Since the condition (2) in the above fact holds for o(t) if and only it
holds for mao(t) for any nonzero m, we get the following corollary.

Corollary 8.4. Let o(t): RZ° — R be a smooth function with mono-
tone deriwative o'(t). The following are equivalent.

(1) o(t) is is c.u.d. mod Z.
(2) to'(t) is unbounded.
1",
. - i o (t) —
(3) jlggo T /0 e dt = 0.

If Ry is a polynomially bounded o-minimal structure on the reals
and o(t): RZ° — R is a definable function then ¢/(t) is monotone for all
sufficiently large ¢ and to’(t) is bounded if and only if o (¢) is bounded.
Thus we get the following proposition. Similar observations were made

by A. Wilkie in [20].

Proposition 8.5. Let R, be an o-minimal polynomially bounded struc-
ture on the reals. For a definable function o(t): R=° — R the following
are equivalent.

(1) o(t) is c.u.d. mod Z.
(2) o(t) is unbounded.

Notice that the above proposition fails without assumption of poly-
nomial boundness (In(t + 1) is a counterexample).
We can now conclude:

Theorem 8.6. Let Ry, be an o-minimal polynomially bounded struc-
ture on the reals. For a definable map o(t): RZ% — R" the following
conditions are equivalent.

(1) o(t) is c.u.d. mod Z".

(2) (m,o(t)) is unbounded for any nonzero m € Z"

(3) The image of o(t) under m, is dense in T,.

Proof. The implication (1) = (3) is standard. (2) = (1) follows from
Wyel’s Criterion, together with Remark 8.2 and Proposition 8.5 (it is
here that polynomial boundedness is used). For (3) = (2), assume
that (2) fails, namely that there exists m € Z" such that (m,o(t)) is
bounded. It follows that as t tends to oo, o(t) tends to a coset a + L
of the hyperplane L = {7z : (m,Z) = 0}. But then the nearest coset
of o (in the notation of Section 5.1), is contained in a + L. Since L is
defined over Z, the set L + Z" is closed, and hence by Theorem 7.1,
cl(mp(0)) = mn(0) U (mn(a) + (L)), so m,(0) is not dense in T,,. O

Example 8.7. The above theorem fails when R, is not polynomially
bounded: If o(t) is the curve (¢,In(t + 1)) then 7(c) is dense in T?,
but o(t) is not c.u.d. mod Z2.
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