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Data sets that contain dash camera and sensor data are essential to the
development of autonomous vehicles. Many current methods of constructing
these data sets are manually intensive, expensive, and difficult to scale. This
paper discusses a method of automating the development of a naturalistic
driving data sets that include dash camera footage labelled with information
captured from the Controller Area Network (CAN) bus on a vehicle. CAN
data can contain IMU data, radar data, etc. First, the dash camera footage
and CAN bus data are paired and synchronized using optical flow analysis.
Once the footage has been labelled with the telemetric information, one
can identify important events in driving behavior by examining the signal
conditions. This method is significantly less expensive and more scalable
than previous data sets, while providing competitive quality in terms of
telemetric data. It could significantly increase the quantity and diversity of
driving data sets in the future.

1 INTRODUCTION

Current driving data sets that include dash camera footage and
telemetry data suffer from limitations that make gathering data at a
large scale prohibitively expensive. This in part due to the need to
use devices costing thousands of dollars per car to gather sensor and
footage data. This expense limits the scale and geographic diversity
of any data sets created since such data gathering is often performed
in the researcher’s immediate locality. This also puts an onerous
burden on labs and researchers with fewer resources than large
corporations and universities.

Our solution to these issues is to employ only a standard dash
camera and CAN bus reader, which only costs a few hundred dollars
per car. CAN data can contain IMU data, radar data, etc. The sim-
plicity and cost reduction of this method allows it to be deployed at
a larger extent than previous data sets with a more competitive cost,
while still providing a wealth of sensor data. However, this data-
gathering method requires that the footage and CAN data files be
paired and time-synchronized after data collection. Currently, this
is done manually, but that is expensive, time-consuming, difficult to
scale, and also onerous to smaller groups with fewer resources.

Hence, this paper shows a method to automate this data process-
ing system by pairing and time-synchronizing dash camera footage
and CAN bus data files automatically using optical flow analysis. Our
current method is able to automatically pair and time-synchronize
22% of our initial 125 hour data set with no false positives. Work
is continuing on improving this metric. Further, this paper also
provides techniques for identifying various events of interest using
CAN data, such as turns, passes, lead vehicles, and more. This can
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further expedite data set creation and assist manual event identifi-
cation and data set structuring.

This paper details the process of creating this data set. Section 2
discusses related studies and approaches. In section 3, the process
for preparing the data is explained. Section 4 includes the identi-
fied phenomena and the qualifications for each event. In section
5, limitations are discussed. Section 6 identifies potential impact
of this work. Section 7 displays the results of this work. Section 8
concludes the paper.

2 RELATED WORKS
2.1 Driving Data Sets

There are several existing data sets that include dash camera video
with telemetry. For example, the BDD100K data set [9], KITTI data
set [3] and Waymo’s data set [8] include examples of dash camera
footage paired with labeled objects, radar data, and sensor data.
However, the data collection in these data sets is expensive - usually
requiring custom sensors with technically complicated deployments.
This usually restricts these data sets to specific geographic locations.
Waymo’s data set, for example, is largely restricted to western US
cities. Custom sensors include devices such as IMUs, since they do
not use CAN data for such telemetry. Even comma2k19’s [7] data
gathering, which also uses CAN data, requires a dongle that costs
$2199 at retail to automatically synchronize footage and telemetry
at recording time. All of these data set generation methods are thus
prohibitive to scale for many research groups to replicate.

2.2 Synchronizing Video and Sensor Data

Several groups have used optical flow to synchronize dash camera
footage with vehicle data. For instance, Fridman and his group [2]
correlated the steering angle and vibration of the car with the optical
flow of the dash camera footage to synchronize the data. Another
group [5] correlated optical flow with turns and acceleration with
turns to synchronize their video footage with sensor data.

3 DATA GATHERING AND PREPARATION
3.1 Initial Data Source

The initial data set is 125 hours of video and telemetric data from a
Toyota Rav4. This is gathered using a standard dash cam and CAN
reader, which only costs a few hundred dollars per car. The dash cam
and CAN reader, however, record to separate SD cards, since they
function separately. This means that the videos and telemetric data
files are not paired, nor time-synchronized - the difference in starting
time for a video and its corresponding telemetric file can be up to 2
minutes. This makes it necessary to first determine the appropriate
telemetric file for each dash cam video, and then time synchronize it.
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Currently, this process is done manually. The following sub-sections
describe a method for automatically pairing and time-synchronizing
a subset of the footage and CAN data. A preliminary optical flow
cross-correlation heuristic method is employed that can pair off and
time-synchronize approximately 22% of the data from the initial
data set with no false positives.

3.2 Cross-correlation methods

Aspects of the CAN data telemetry, such as velocity and yaw, are
cross-correlated with the optical flow of a dash camera video as
follows.

First, the CAN and associated optical flow signals are obtained:

H Name CAN Equivalent Optical flow equivalent ”
“ Velocity Vean(t) Vopt_total(t) ”
“ Yaw Yean(t) Yopt_horiz(t) ”

Vcan(t) and ycan(t) are directly derived from the CAN data. v totall)
and yopt,oriz(t) are signals that are computed using Farneback’s [1]
optical flow flow(t) as input. Their implementations are Algorithms
1 and 2 respectively. Ugp; sorqi(t) computes a weighted average of
total pixel flow using the distance to the center of the flow frame
as an inverse weight - movement along the edges of the footage is
de-emphasized in favor of movement in the center. This reduces
the noise from passing vehicles and obstructions. yopt,ori 2(t) is the
unweighted average of all horizontal flow.

Algorithm 1 v orai(t)

(t)
1: procedure OPTICALFLOWWEIGHTEDAVERAGE(f lowtleng[ nohws

t)

> lengeh is the time length of the video

2: sum «— 0

3 total_weight < 0

4: base_distance «— 0.1

5 for y, x in flow do

6: Xflows> Yflow < flowt,y,x

7: length «— \/(xflaw)z + (yflow)2 > Magnitude of flow
at pixel

8: dist «— \/(x - ()P +(y- (Z—hO))2 > Distance to
center of frame

9: weight «— m > Give change at the

center of the frame more weight

10: sum < sum + (length * weight)
11 total_weight « total_weight + weight
12: end for
X sum
13: return total_weight
14: end procedure

The additional stop and log_vel signals are computed as:
CAN Signal
1, fvean(t) <1

Optical Signal

1o 1) <1
stopcan(t) = {0 else Stopopt(t) — {0 ef;[gt,total( )

log_velcan(t) = log(vean(?)) log_velopt(t) = log(vopt,tutal(t))
From these signals, the following respective signals from the CAN
and optical flow are cross-correlated together:
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Algorithm 2 yuptihariz(t)

(t)
1: procedure OPTICALFLOWYAW(flOthength’h’w, t)
2: sum «— 0
3 count « (h*w)
4: fory, x in flowdo
5: Xflow < flowe y,x
6: SUM — SUM + Xf]ory
7: end for
. sum
8: return o~
9: end procedure
25
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Fig. 1. Raw velocity pair graphs as a baseline comparison

[ SignalName [ CAN Signal [Optical Signal |
Stop Signal stopcan(t) | stopop:(t)
Log-velocity Signalllog_velcan(t)|log_velop:(2)
Yaw Signal Yean(t) yopl_horiz(t)

The resulting properties of each cross-correlation are listed as
such. Shifts are in seconds:

H Signal Name Correlation Coefficient ~ Shift ”
Stop Signal Cstop Sstop
Log-velocity Signal Clogw Slogv
Yaw Signal Cyaw Syaw

One can see the comparisons between these optical flow signals
and CAN signals in Figures 1 - 4 on a sample drive.

3.3 Pairing CAN data with Dash camera videos

For the purposes of pairing CAN data with videos, all possible com-
binations of CAN files and dash camera files are considered, and the
cross-correlations are computed as described. The resulting com-
binations and computed cross-correlations are then sorted from
highest-to-lowest for cj,4,, which serves as a rough measure of
confidence. This list of combinations is then iterated, from the be-
ginning to the end, with each combination being flagged as a valid
pairing if the following conditions are met:
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Fig. 3. Stop method pair graphs

(1) Neither the CAN file or the dash camera file have already
been marked as part of another pairing.

(2) The CAN timestamp is within 15 hours of the dash camera
datestamp, which is translated to a timestamp of noon CST
of the date.

(3) Clogy > 0.2

() Is1ogo — Syaw| < 5and [sjo40 — Ssropl < 5

3.4 Time synchronization of CAN data with Dash camera
videos

Once the CAN data files have been paired with the appropriate

videos, the CAN data and the video must be time-synchronized, i.e.,

the start-time of the CAN data must correspond with the first frame

of the video. Using the cross-correlation methods already discussed,
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the appropriate time-shift is selected by averaging the shifts from
the three cross-correlations.

The CAN data and video are then appropriately trimmed so that
they are of the same temporal length.

4 IDENTIFYING EVENTS

Define the distance to the lead vehicle s;0,4 = {b, 0} where b € R+
where this value may be undefined at certain times shown by 0.
Likewise we define side radar the distance measured by one of
sixteen radar traces as t7,,,mper = {b, 0} where b € N where this
value may be undefined at certain times shown by 0. The blind
spot monitor is defined as approach = {0, 1} where 1 indicates a
blind spot warning triggered on a given side of the vehicle. The
lead vehicle relative speed is defined as vj.,q = {b, 0} where b €
R where this value may be undefined at certain times shown by
0. The cruise control state is defined as cs¢qre = {0,1} where 1
indicates that the vehicle cruise control is active. Vehicle acceleration
is defined as a € R. Define the turn signal state as turnssgre =
{1, 2,3} where 1 indicates an active left turn signal, 2 indicates an
active right turn signal, and 3 indicates no turn signal. Define the
steering angle as 6 € R. Define brake state b = 0, 1 where 1 indicates
that the brake pedal is being pressed.

If a signal s(¢) is true for some time T, then we can say that 3t
s.t. s(t) = 1for all t € [#o, tp + T]. In the following subsections, these
signal definitions will be used to describe the conditions to identify
various examples of driving behavior with signal temporal logic.

4.1 Lead Vehicle

For identifying sections of chunks of CAN data and footage where
the vehicle is following another vehicle, each time interval of CAN
data where the recorded lead distance is less than 250 meters is
labeled. The 250 meter threshold is used since the car telemetry
records the absence of a lead vehicle as a lead distance of greater
than 250 meters. These conditions are demonstrated by the following
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Fig. 6. Lead Vehicle with Cruise Control

expression:
F(G(sieqa(t) < 250))

The lead distance is grouped into chunks by discontinuities in the
data. A jump in the lead data indicates that a lead vehicle moves in
front of the car or moves out of the way of the car. Each of these
chunks therefore represents a period where the car was behind one
vehicle. Each chunk of lead data is then output as a video clip. Figure
5 demonstrates data points that meet these conditions.

4.2 Lead Vehicle with Cruise Control

Identifying moments with a lead vehicle present and when the cruise
control is active involves looking at the lead distance and active
cruise control signals in the CAN bus data. The lead distance data
is filtered to remove values that do not detect any vehicles. Radar
traces are also used to fill some gaps that were present in the data.
Chunks of lead distance data representing the same lead vehicle
are created. These chunks are further divided into clips based on
whether or not cruise control was active. These smaller clips that
include a lead vehicle and active cruise control are added to the list
of desired time intervals. These conditions are also represented as
follows:

F(G((s1¢qd(t) < 250) A (cstate(t) = 1))

Then, using these intervals, the appropriate clips of video and
CAN bus data are created. An example of data that matches these
conditions is shown in Figure 6.

4.3 Short Lead Vehicle

To identify clips where a lead vehicle is present for five seconds or
less, the first step is to filter the lead distance by removing unlikely
values and filling in gaps with radar traces. Next, the lead distance
data is divided into chunks where each chunk represents a distinct
vehicle. Only chunks with lengths less than or equal to five seconds
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Fig. 7. Short Lead Signals

and greater than one second are kept. This interval length is used
to find short following sections while ignoring clips less than a
second that often represent false positives. Within these chunks,
the steering angle is checked. If the time interval for the chunk
has a steering angle greater than fifteen degrees, this signifies that
the car is likely turning left or right. Any lead data collected on
this turn is likely to be a parked car or other cars that are not lead
vehicles. Therefore, time intervals with these large steering angles
are thrown out. These conditions can also be expressed as follows:

F(Gpo,r1(S1eaa(t) <250 A O(t) <=15)),1 <7 <=5

The remaining short time intervals with lead vehicles are trans-
lated into video clips with the corresponding CAN bus data. An
example of data that fits these conditions is shown in Figure 7.

4.4 Long Lead Vehicle

For the purposes of this project, a long period of time where a lead
vehicle is present is defined as having a length of at least thirty
seconds. The signal used to identify these events is the lead distance.
Each continuous section of lead distance represents following a
lead vehicle for a period of time. Only the chunks that are thirty
seconds or more are kept. Some of the dash camera footage contains
instances where the vehicle is parked with something in front of it
for longer than thirty seconds. This was incorrectly being labeled as
following a lead vehicle. To resolve this issue, only instances with a
lead distance of greater than one meter are considered. When follow-
ing a car while driving, a safe following distance should be greater
than one meter. Anything with one meter or less lead distance can
therefore be removed. These conditions can also be expressed as
follows:

F(G[O’T](l < Sleqd(t) < 250)),30 < 7 < o0

The remaining time segments are output as clips of dash camera
footage and the CSV file for the CAN bus data. An example of data
that matches these conditions is shown in Figure 8.

4.5

Instances where another car passes the vehicle have also been iden-
tified. The first signal used is lead distance. When a decrease in
lead distance is located, this indicates a car moving in front of the
vehicle. This time (t = 0 s) is used as a reference for checking other
signals. The next signal examined is the blind spot monitors. These
indicate whether or not a car is approaching on the left or right
side of the vehicle. The script checks ten seconds before (-10 s <t <0
s) to ensure that an approaching car has been detected before the
decrease in lead distance. The radar traces are also examined ten

Passes
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seconds before and three seconds after (-10 s <t <3 s) to make sure
that a car approaching on the left appears in front on the left or a
car approaching on the right appears in front on the right. Using
these signals is not enough to identify a passing car. In some cases,
a lane change satisfies all of the criteria. Turn signal and steering
angle signals are examined to filter out the lane changes. If a turn
signal is active five seconds before (-5 s <t <1.5 s) or the steering
angle exceeds three degrees [4] five seconds before (-5 s <t <0 s)
then the case is ignored. The remaining cases that are not lane
changes are output as video clips and the corresponding sections of
the CAN bus data. All the identified time intervals are determined
based on the driving data that has been collected. Through exper-
imentation, these conditions have been showed to yield accurate
and comprehensive results. These conditions can be expressed as
follows:

F((s1ead(0) < s7¢qq(0 — A))
F[_10,01(approach(t) = 1)
Fi10,31(Tnumber (£) < 25)
Gl_s,1.5](turnstate(t) = 3))

Gi5,0(0(t) <= 3) 1)

An example of data that matches these conditions is shown in

Figure 9. The radar traces are not included in this figure to simplify
the graph.

> > > >

28

«  Steering Angle
400 ",//_\\
7 X
8 / \
2
2 300
s
=
=
£ 200
g \
2 \
8
@ e
0
] : ] 10
Time (s)
Fig. 10. Turn
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For identifying sections of chunks of CAN data and footage where
the vehicle is turning, each time interval of CAN data where the
absolute value of the recorded steering angle is greater than 100 de-
grees is added. It is unclear why the data analysis yields 100 degrees
as the optimal threshold. These conditions can also be expressed as
follows:

F(G(6(t) >= 100))

Figure 10 demonstrates data that meets these conditions.

4.7 Braking Events

Braking events are identified and classified from the dash camera
footage. For this project, a hard brake is defined as a deceleration
of 3.5 m/s? or more for at least half a second. A medium brake
is defined as a deceleration of 2 m/s? or more for at least half a
second. Any smaller deceleration is defined as a soft brake. These
acceleration thresholds are defined based on [6]. The main signals
examined to identify braking are longitudinal acceleration and brake
pressed. Acceleration is filtered to remove any positive values and
any time where the brake is not pressed. The minimum acceleration
is calculated for the remaining intervals. If the acceleration is within
one of the thresholds for at least half of a second, the braking event is
labeled with the corresponding category. The half second threshold
ensures that the car was within the range for a significant amount
of time and can be placed in the most representative category. The
hard brake conditions are as follows:

F(Gpo,71(b(t) = 1) A Fjo,71(Gyo,0.5)(a(t) <= =3.5))),7 >=0.5

Data that matches this is displayed in Figure 11.

The medium brake conditions are these:

F(Go,¢1(b(t) = 1) A Flo ¢)(Glo,0.5)(-3.5 < a(t) <= ~2))),7 >=
0.5

Data that matches this is displayed in Figure 12.

The soft brake conditions are these:

F(Gyo,7)(b(t) = 1) A Fjo,71(Gyo,0.5(=2 < a(t) < 0))), 7 >=0.5

Data that matches this is displayed in Figure 13. The names of the
outputted videos and CAN data files reflect the braking intensity
categories.

5 LIMITATIONS

Our approach for pairing, synchronization, and event identification
comes with considerable limitations.
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Our approach for automated pairing and time-synchronization
has room for improvement. Currently, our automated pairing is
only able to pair approximately 22% of the data from our initial data
set. We hypothesize that this is likely to be consistent across other
data sets as well. The main contributing factor to this low yield rate
is the low correlation between our computed optical flow and the
velocity and yaw. This results in discrepancy between the computed
cross-correlations, and thus lower yield rates.

Identification of events within the data set has limitations as
well. First, our initial data set had few examples of certain events,
such as hard braking. This makes it more difficult to ascertain the
replicability and robustness of the methods used to obtain these
events. Further, our methods make assumptions about "normal”
driving behavior, and how certain signals from telemetry could thus
be reflective of certain events. Abnormal events inconsistent with
typical every day driving may possibly be spuriously included in
these automatically annotated event data sets.

6 POTENTIAL IMPACT

In the dash camera footage, license plate numbers and images of
people are sometimes visible. Also, some videos start and end in
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residential areas. Both of these present privacy concerns. To address
these issues, the quality of the videos is reduced so that license
plate numbers are not visible. Furthermore, given the speed of the
vehicle, it is not possible to identify any person included in the video.
Additionally, videos will be clipped to only include roads that do
not present privacy concerns.

7 RESULTS

This table includes the results of the pairing and synchronization
process for the data set:!

H Category Time ”
Total Paired and Synchronized Data  28:14:04
Lead Vehicle 14:17:05
Lead Vehicle with Cruise Control ~ 00:26:10
Short Lead Vehicle 00:14:33
Long Lead Vehicle 12:10:12
Passes 00:02:45
Turns 01:41:10
Hard Brake 00:01:19
Medium Brake 01:02:19
Soft Brake 03:32:08

8 CONCLUSION AND FUTURE WORK

This paper presents methods of pairing and synchronizing vehicle
dash camera footage and corresponding CAN bus data by cross-
correlating the sensor data with the optical flow of the footage. This
produced many successful synchronized pairs that were then used
to automate the identification of several hours of meaningful driving
events. Notably, up to 100,000 hours of data are expected from the
research setup by the conclusion of 2022, making it imperative to
manage the complexity of event detection, and to search for and
extract relevant activities that may precipitate or follow events, for
purposes of training new algorithms on full data sets. As more data
continues to be collected, these methods promise to accelerate the
processing of high quality and quantity data.

Currently, our pairing and time-synchronization method involves
cross-correlation of optical flow and CAN data after applying sim-
ple transformations to both. This simplicity currently restricts our
pairing rate to 22% for our data set. Two complimentary approaches
are currently being investigated to improve this rate. The first ap-
proach is a machine learning-based approach to enhance estimation
of velocity and yaw from the footage. The second approach is to
exploit the preserved temporal ordering of the dash cam videos and
CAN telemetric files to apply a dynamic programming approach to
the already described cross-correlation pairing method.
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