
Intelligent Structuring and Semantic Mapping of Dash Camera Footage
and CAN Bus Data

ALEX RICHARDSON, University of Nebraska-Lincoln, USA

KATE SANBORN, The University of Alabama, USA

JONATHAN SPRINKLE, Vanderbilt University, USA

Data sets that contain dash camera and sensor data are essential to the

development of autonomous vehicles. Many current methods of constructing

these data sets are manually intensive, expensive, and difficult to scale. This

paper discusses a method of automating the development of a naturalistic

driving data sets that include dash camera footage labelled with information

captured from the Controller Area Network (CAN) bus on a vehicle. CAN

data can contain IMU data, radar data, etc. First, the dash camera footage

and CAN bus data are paired and synchronized using optical flow analysis.

Once the footage has been labelled with the telemetric information, one

can identify important events in driving behavior by examining the signal

conditions. This method is significantly less expensive and more scalable

than previous data sets, while providing competitive quality in terms of

telemetric data. It could significantly increase the quantity and diversity of

driving data sets in the future.

1 INTRODUCTION

Current driving data sets that include dash camera footage and

telemetry data suffer from limitations that make gathering data at a

large scale prohibitively expensive. This in part due to the need to

use devices costing thousands of dollars per car to gather sensor and

footage data. This expense limits the scale and geographic diversity

of any data sets created since such data gathering is often performed

in the researcher’s immediate locality. This also puts an onerous

burden on labs and researchers with fewer resources than large

corporations and universities.

Our solution to these issues is to employ only a standard dash

camera and CAN bus reader, which only costs a few hundred dollars

per car. CAN data can contain IMU data, radar data, etc. The sim-

plicity and cost reduction of this method allows it to be deployed at

a larger extent than previous data sets with a more competitive cost,

while still providing a wealth of sensor data. However, this data-

gathering method requires that the footage and CAN data files be

paired and time-synchronized after data collection. Currently, this

is done manually, but that is expensive, time-consuming, difficult to

scale, and also onerous to smaller groups with fewer resources.

Hence, this paper shows a method to automate this data process-

ing system by pairing and time-synchronizing dash camera footage

and CAN bus data files automatically using optical flow analysis. Our

current method is able to automatically pair and time-synchronize

22% of our initial 125 hour data set with no false positives. Work

is continuing on improving this metric. Further, this paper also

provides techniques for identifying various events of interest using

CAN data, such as turns, passes, lead vehicles, and more. This can
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further expedite data set creation and assist manual event identifi-

cation and data set structuring.

This paper details the process of creating this data set. Section 2

discusses related studies and approaches. In section 3, the process

for preparing the data is explained. Section 4 includes the identi-

fied phenomena and the qualifications for each event. In section

5, limitations are discussed. Section 6 identifies potential impact

of this work. Section 7 displays the results of this work. Section 8

concludes the paper.

2 RELATED WORKS

2.1 Driving Data Sets

There are several existing data sets that include dash camera video

with telemetry. For example, the BDD100K data set [9], KITTI data

set [3] and Waymo’s data set [8] include examples of dash camera

footage paired with labeled objects, radar data, and sensor data.

However, the data collection in these data sets is expensive - usually

requiring custom sensors with technically complicated deployments.

This usually restricts these data sets to specific geographic locations.

Waymo’s data set, for example, is largely restricted to western US

cities. Custom sensors include devices such as IMUs, since they do

not use CAN data for such telemetry. Even comma2k19’s [7] data

gathering, which also uses CAN data, requires a dongle that costs

$2199 at retail to automatically synchronize footage and telemetry

at recording time. All of these data set generation methods are thus

prohibitive to scale for many research groups to replicate.

2.2 Synchronizing Video and Sensor Data

Several groups have used optical flow to synchronize dash camera

footage with vehicle data. For instance, Fridman and his group [2]

correlated the steering angle and vibration of the car with the optical

flow of the dash camera footage to synchronize the data. Another

group [5] correlated optical flow with turns and acceleration with

turns to synchronize their video footage with sensor data.

3 DATA GATHERING AND PREPARATION

3.1 Initial Data Source

The initial data set is 125 hours of video and telemetric data from a

Toyota Rav4. This is gathered using a standard dash cam and CAN

reader, which only costs a few hundred dollars per car. The dash cam

and CAN reader, however, record to separate SD cards, since they

function separately. This means that the videos and telemetric data

files are not paired, nor time-synchronized - the difference in starting

time for a video and its corresponding telemetric file can be up to 2

minutes. This makes it necessary to first determine the appropriate

telemetric file for each dash cam video, and then time synchronize it.
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Currently, this process is done manually. The following sub-sections

describe a method for automatically pairing and time-synchronizing

a subset of the footage and CAN data. A preliminary optical flow

cross-correlation heuristic method is employed that can pair off and

time-synchronize approximately 22% of the data from the initial

data set with no false positives.

3.2 Cross-correlation methods

Aspects of the CAN data telemetry, such as velocity and yaw, are

cross-correlated with the optical flow of a dash camera video as

follows.

First, the CAN and associated optical flow signals are obtained:

Name CAN Equivalent Optical flow equivalent

Velocity vcan (t ) vopt_total (t )

Yaw ycan (t ) yopt_hor iz (t )

vcan (t) andycan (t) are directly derived from the CANdata.vopt _total (t)

andyopthor iz (t) are signals that are computed using Farneback’s [1]

optical flow f low(t) as input. Their implementations are Algorithms

1 and 2 respectively. vopt_total (t) computes a weighted average of

total pixel flow using the distance to the center of the flow frame

as an inverse weight - movement along the edges of the footage is

de-emphasized in favor of movement in the center. This reduces

the noise from passing vehicles and obstructions. yopthor iz (t) is the

unweighted average of all horizontal flow.

Algorithm 1 vopt_total (t)

(t)

1: procedure OpticalFlowWeightedAverage(f lowtlenдth ,h,w ,

t ) � tlenдth is the time length of the video

2: sum ← 0

3: total_weiдht ← 0

4: base_distance ← 0.1

5: for y, x in flow do

6: xf low ,yf low ← f lowt ,y,x

7: lenдth ←
√

(xf low )2 + (yf low )2 � Magnitude of flow

at pixel

8: dist ←

√

(x − ( w2.0 ))
2
+ (y − ( h

2.0 ))
2 � Distance to

center of frame

9: weiдht ← 1.0
dist+base_distance

� Give change at the

center of the frame more weight

10: sum ← sum + (lenдth ∗weiдht)

11: total_weiдht ← total_weiдht +weiдht

12: end for

13: return sum
total_weiдht

14: end procedure

The additional stop and loд_vel signals are computed as:

CAN Signal Optical Signal

stopcan (t ) =

{

1, if vcan (t ) ≤ 1

0, else
stopopt (t ) =

{

1 vopt_total (t ) ≤ 1

0 else

loд_velcan (t ) = log(vcan (t )) loд_velopt (t ) = log(vopt_total (t ))

From these signals, the following respective signals from the CAN

and optical flow are cross-correlated together:

Algorithm 2 yopt_hor iz (t)

(t)

1: procedure OpticalFlowYaw(f lowtlenдth ,h,w , t )

2: sum ← 0

3: count ← (h ∗w)

4: for y, x in flow do

5: xf low ← f lowt ,y,x

6: sum ← sum + xf low
7: end for

8: return sum
count

9: end procedure

Fig. 1. Raw velocity pair graphs as a baseline comparison

Signal Name CAN Signal Optical Signal

Stop Signal stopcan (t ) stopopt (t )
Log-velocity Signal loд_velcan (t ) loд_velopt (t )

Yaw Signal ycan (t ) yopt_hor iz (t )

The resulting properties of each cross-correlation are listed as
such. Shifts are in seconds:

Signal Name Correlation Coefficient Shift

Stop Signal cstop sstop
Log-velocity Signal cloдv sloдv

Yaw Signal cyaw syaw

One can see the comparisons between these optical flow signals

and CAN signals in Figures 1 - 4 on a sample drive.

3.3 Pairing CAN data with Dash camera videos

For the purposes of pairing CAN data with videos, all possible com-

binations of CAN files and dash camera files are considered, and the

cross-correlations are computed as described. The resulting com-

binations and computed cross-correlations are then sorted from

highest-to-lowest for cloдv , which serves as a rough measure of

confidence. This list of combinations is then iterated, from the be-

ginning to the end, with each combination being flagged as a valid

pairing if the following conditions are met:
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Fig. 2. Log-velocity pair graphs

Fig. 3. Stop method pair graphs

(1) Neither the CAN file or the dash camera file have already

been marked as part of another pairing.

(2) The CAN timestamp is within 15 hours of the dash camera

datestamp, which is translated to a timestamp of noon CST

of the date.

(3) cloдv > 0.2

(4) |sloдv − syaw | < 5 and |sloдv − sstop | < 5

3.4 Time synchronization of CAN data with Dash camera

videos

Once the CAN data files have been paired with the appropriate

videos, the CAN data and the video must be time-synchronized, i.e.,

the start-time of the CAN data must correspond with the first frame

of the video. Using the cross-correlation methods already discussed,

Fig. 4. Raw yaw method pair graphs

the appropriate time-shift is selected by averaging the shifts from

the three cross-correlations.

The CAN data and video are then appropriately trimmed so that

they are of the same temporal length.

4 IDENTIFYING EVENTS

Define the distance to the lead vehicle slead = {b, ∅} where b ∈ R+

where this value may be undefined at certain times shown by ∅.

Likewise we define side radar the distance measured by one of

sixteen radar traces as trnumber = {b, ∅} where b ∈ N where this

value may be undefined at certain times shown by ∅. The blind

spot monitor is defined as approach = {0, 1} where 1 indicates a

blind spot warning triggered on a given side of the vehicle. The

lead vehicle relative speed is defined as vlead = {b, ∅} where b ∈

R where this value may be undefined at certain times shown by

∅. The cruise control state is defined as cstate = {0, 1} where 1

indicates that the vehicle cruise control is active. Vehicle acceleration

is defined as a ∈ R. Define the turn signal state as turnstate =

{1, 2, 3} where 1 indicates an active left turn signal, 2 indicates an

active right turn signal, and 3 indicates no turn signal. Define the

steering angle as θ ∈ R. Define brake state b = 0, 1 where 1 indicates

that the brake pedal is being pressed.

If a signal s(t) is true for some time T, then we can say that ∃t0
s.t. s(t) = 1 for all t ∈ [t0, t0 +T ]. In the following subsections, these

signal definitions will be used to describe the conditions to identify

various examples of driving behavior with signal temporal logic.

4.1 Lead Vehicle

For identifying sections of chunks of CAN data and footage where

the vehicle is following another vehicle, each time interval of CAN

data where the recorded lead distance is less than 250 meters is

labeled. The 250 meter threshold is used since the car telemetry

records the absence of a lead vehicle as a lead distance of greater

than 250meters. These conditions are demonstrated by the following
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Fig. 5. Lead Distance

Fig. 6. Lead Vehicle with Cruise Control

expression:

F(G(slead (t) < 250))

The lead distance is grouped into chunks by discontinuities in the

data. A jump in the lead data indicates that a lead vehicle moves in

front of the car or moves out of the way of the car. Each of these

chunks therefore represents a period where the car was behind one

vehicle. Each chunk of lead data is then output as a video clip. Figure

5 demonstrates data points that meet these conditions.

4.2 Lead Vehicle with Cruise Control

Identifyingmoments with a lead vehicle present andwhen the cruise

control is active involves looking at the lead distance and active

cruise control signals in the CAN bus data. The lead distance data

is filtered to remove values that do not detect any vehicles. Radar

traces are also used to fill some gaps that were present in the data.

Chunks of lead distance data representing the same lead vehicle

are created. These chunks are further divided into clips based on

whether or not cruise control was active. These smaller clips that

include a lead vehicle and active cruise control are added to the list

of desired time intervals. These conditions are also represented as

follows:

F(G((slead (t) < 250) ∧ (cstate (t) = 1))

Then, using these intervals, the appropriate clips of video and

CAN bus data are created. An example of data that matches these

conditions is shown in Figure 6.

4.3 Short Lead Vehicle

To identify clips where a lead vehicle is present for five seconds or

less, the first step is to filter the lead distance by removing unlikely

values and filling in gaps with radar traces. Next, the lead distance

data is divided into chunks where each chunk represents a distinct

vehicle. Only chunks with lengths less than or equal to five seconds

Fig. 7. Short Lead Signals

and greater than one second are kept. This interval length is used

to find short following sections while ignoring clips less than a

second that often represent false positives. Within these chunks,

the steering angle is checked. If the time interval for the chunk

has a steering angle greater than fifteen degrees, this signifies that

the car is likely turning left or right. Any lead data collected on

this turn is likely to be a parked car or other cars that are not lead

vehicles. Therefore, time intervals with these large steering angles

are thrown out. These conditions can also be expressed as follows:

F(G[0,τ ](slead (t) < 250 ∧ θ (t) <= 15)), 1 < τ <= 5

The remaining short time intervals with lead vehicles are trans-

lated into video clips with the corresponding CAN bus data. An

example of data that fits these conditions is shown in Figure 7.

4.4 Long Lead Vehicle

For the purposes of this project, a long period of time where a lead

vehicle is present is defined as having a length of at least thirty

seconds. The signal used to identify these events is the lead distance.

Each continuous section of lead distance represents following a

lead vehicle for a period of time. Only the chunks that are thirty

seconds or more are kept. Some of the dash camera footage contains

instances where the vehicle is parked with something in front of it

for longer than thirty seconds. This was incorrectly being labeled as

following a lead vehicle. To resolve this issue, only instances with a

lead distance of greater than one meter are considered. When follow-

ing a car while driving, a safe following distance should be greater

than one meter. Anything with one meter or less lead distance can

therefore be removed. These conditions can also be expressed as

follows:

F(G[0,τ ](1 < slead (t) < 250)), 30 < τ < ∞

The remaining time segments are output as clips of dash camera

footage and the CSV file for the CAN bus data. An example of data

that matches these conditions is shown in Figure 8.

4.5 Passes

Instances where another car passes the vehicle have also been iden-

tified. The first signal used is lead distance. When a decrease in

lead distance is located, this indicates a car moving in front of the

vehicle. This time (t = 0 s) is used as a reference for checking other

signals. The next signal examined is the blind spot monitors. These

indicate whether or not a car is approaching on the left or right

side of the vehicle. The script checks ten seconds before (-10 s <t <0

s) to ensure that an approaching car has been detected before the

decrease in lead distance. The radar traces are also examined ten
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Fig. 8. Long Lead

Fig. 9. Example Pass Signals

seconds before and three seconds after (-10 s <t <3 s) to make sure

that a car approaching on the left appears in front on the left or a

car approaching on the right appears in front on the right. Using

these signals is not enough to identify a passing car. In some cases,

a lane change satisfies all of the criteria. Turn signal and steering

angle signals are examined to filter out the lane changes. If a turn

signal is active five seconds before (-5 s <t <1.5 s) or the steering

angle exceeds three degrees [4] five seconds before (-5 s <t <0 s)

then the case is ignored. The remaining cases that are not lane

changes are output as video clips and the corresponding sections of

the CAN bus data. All the identified time intervals are determined

based on the driving data that has been collected. Through exper-

imentation, these conditions have been showed to yield accurate

and comprehensive results. These conditions can be expressed as

follows:

F((slead (0) 
 slead (0 − ∆t)) ∧

F[−10,0](approach(t) = 1) ∧

F[−10,3](trnumber (t) < 25) ∧

G[−5,1.5](turnstate (t) = 3)) ∧

G[−5,0](θ (t) <= 3) (1)

An example of data that matches these conditions is shown in

Figure 9. The radar traces are not included in this figure to simplify

the graph.

Fig. 10. Turn

4.6 Turns

For identifying sections of chunks of CAN data and footage where

the vehicle is turning, each time interval of CAN data where the

absolute value of the recorded steering angle is greater than 100 de-

grees is added. It is unclear why the data analysis yields 100 degrees

as the optimal threshold. These conditions can also be expressed as

follows:

F(G(θ (t) >= 100))

Figure 10 demonstrates data that meets these conditions.

4.7 Braking Events

Braking events are identified and classified from the dash camera

footage. For this project, a hard brake is defined as a deceleration

of 3.5 m/s2 or more for at least half a second. A medium brake

is defined as a deceleration of 2 m/s2 or more for at least half a

second. Any smaller deceleration is defined as a soft brake. These

acceleration thresholds are defined based on [6]. The main signals

examined to identify braking are longitudinal acceleration and brake

pressed. Acceleration is filtered to remove any positive values and

any time where the brake is not pressed. The minimum acceleration

is calculated for the remaining intervals. If the acceleration is within

one of the thresholds for at least half of a second, the braking event is

labeled with the corresponding category. The half second threshold

ensures that the car was within the range for a significant amount

of time and can be placed in the most representative category. The

hard brake conditions are as follows:

F(G[0,τ ](b(t) = 1) ∧ F[0,τ ](G[0,0.5](a(t) <= −3.5))), τ >= 0.5

Data that matches this is displayed in Figure 11.

The medium brake conditions are these:

F(G[0,τ ](b(t) = 1) ∧ F[0,τ ](G[0,0.5](−3.5 < a(t) <= −2))), τ >=

0.5

Data that matches this is displayed in Figure 12.

The soft brake conditions are these:

F(G[0,τ ](b(t) = 1) ∧ F[0,τ ](G[0,0.5](−2 < a(t) < 0))), τ >= 0.5

Data that matches this is displayed in Figure 13. The names of the

outputted videos and CAN data files reflect the braking intensity

categories.

5 LIMITATIONS

Our approach for pairing, synchronization, and event identification

comes with considerable limitations.
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Fig. 11. Hard Brake

Fig. 12. Medium Brake

Fig. 13. Soft Brake

Our approach for automated pairing and time-synchronization

has room for improvement. Currently, our automated pairing is

only able to pair approximately 22% of the data from our initial data

set. We hypothesize that this is likely to be consistent across other

data sets as well. The main contributing factor to this low yield rate

is the low correlation between our computed optical flow and the

velocity and yaw. This results in discrepancy between the computed

cross-correlations, and thus lower yield rates.

Identification of events within the data set has limitations as

well. First, our initial data set had few examples of certain events,

such as hard braking. This makes it more difficult to ascertain the

replicability and robustness of the methods used to obtain these

events. Further, our methods make assumptions about "normal"

driving behavior, and how certain signals from telemetry could thus

be reflective of certain events. Abnormal events inconsistent with

typical every day driving may possibly be spuriously included in

these automatically annotated event data sets.

6 POTENTIAL IMPACT

In the dash camera footage, license plate numbers and images of

people are sometimes visible. Also, some videos start and end in

residential areas. Both of these present privacy concerns. To address

these issues, the quality of the videos is reduced so that license

plate numbers are not visible. Furthermore, given the speed of the

vehicle, it is not possible to identify any person included in the video.

Additionally, videos will be clipped to only include roads that do

not present privacy concerns.

7 RESULTS

This table includes the results of the pairing and synchronization

process for the data set:1

Category Time

Total Paired and Synchronized Data 28:14:04

Lead Vehicle 14:17:05

Lead Vehicle with Cruise Control 00:26:10

Short Lead Vehicle 00:14:33

Long Lead Vehicle 12:10:12

Passes 00:02:45

Turns 01:41:10

Hard Brake 00:01:19

Medium Brake 01:02:19

Soft Brake 03:32:08

8 CONCLUSION AND FUTURE WORK

This paper presents methods of pairing and synchronizing vehicle

dash camera footage and corresponding CAN bus data by cross-

correlating the sensor data with the optical flow of the footage. This

produced many successful synchronized pairs that were then used

to automate the identification of several hours of meaningful driving

events. Notably, up to 100,000 hours of data are expected from the

research setup by the conclusion of 2022, making it imperative to

manage the complexity of event detection, and to search for and

extract relevant activities that may precipitate or follow events, for

purposes of training new algorithms on full data sets. As more data

continues to be collected, these methods promise to accelerate the

processing of high quality and quantity data.

Currently, our pairing and time-synchronization method involves

cross-correlation of optical flow and CAN data after applying sim-

ple transformations to both. This simplicity currently restricts our

pairing rate to 22% for our data set. Two complimentary approaches

are currently being investigated to improve this rate. The first ap-

proach is a machine learning-based approach to enhance estimation

of velocity and yaw from the footage. The second approach is to

exploit the preserved temporal ordering of the dash cam videos and

CAN telemetric files to apply a dynamic programming approach to

the already described cross-correlation pairing method.
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