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We present the precision measurements of 11 years of daily cosmic positron fluxes in the rigidity range 

from 1.00 to 41.9 GV based on 3.4 x 10° positrons collected with the Alpha Magnetic Spectrometer 

(AMS) aboard the International Space Station. The positron fluxes show distinctly different time variations 

from the electron fluxes at short and long timescales. A hysteresis between the electron fluxes and the 

positron fluxes is observed with a significance greater than 5o at rigidities below 8.5 GV. On the contrary, 

the positron fluxes and the proton fluxes show similar time variation. Remarkably, we found that positron 

fluxes are modulated more than proton fluxes with a significance greater than 5o for rigidities below 7 GV. 

These continuous daily positron fluxes, together with AMS daily electron, proton, and helium fluxes over 

an 11-year solar cycle, provide unique input to the understanding of both the charge-sign and mass 

dependencies of cosmic rays in the heliosphere. 
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Knowledge of light cosmic-ray antimatter species, such 

as positrons, antiprotons, and antideuterons, is crucial for 

the understanding of phenomena in the cosmos [1—3], such 

as the nature of dark matter. The yield of these particles is 

small. The study of cosmic antimatter with a precise 

magnetic spectrometer enables us to separate it from the 

overwhelming background of matter. 
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The measurements of the cosmic positron flux with the 
Alpha Magnetic Spectrometer (AMS) on the International 
Space Station (ISS) [4,5] and earlier measurements [6] have 

generated widespread interest and discussions of the 
observed excess of high-energy positrons. The explanations 
of these results included three classes of models: annihi- 
lation of dark matter particles [1], acceleration of positrons 

to high energies in astrophysical objects [2], such as 
pulsars, and production of high-energy positrons in the 
interactions of cosmic-ray nuclei with interstellar gas [3]. 
Models describing these phenomena can be compared to 
data only when time-dependent effects in the heliosphere 
are well understood. 

The fluxes of interstellar charged cosmic rays are thought 
to be stable on the timescale of decades [7-10]. Time- 

dependent structures in the energy spectra of galactic 
cosmic rays are expected from the solar modulation [11] 
only when they enter the heliosphere. Solar modulation 
involves convective, diffusive, particle drift, and adiabatic 

energy change processes. Only particle drift induces 
a dependence of solar modulation on the particle charge 
sign [12]. Since positrons and electrons differ only in 
charge sign, positrons and protons share the same charge 
sign with different masses, and helium provides different 

information on both charge and mass, their simultaneous 

measurement over an |1-year solar cycle offers a unique 
way to study charge-sign- and mass-dependent solar 
modulation effects at different timescales. 

Previously, AMS has reported the time dependence per 
Bartels rotation (BR: 27 days) of positron fluxes and 
separately electron fluxes over six years [13]. AMS has 
recently reported short-term variations on the scale of 
days to months and long-term variations on the scale of 
years in the daily cosmic-ray electron [14], proton [15], and 

helium [16] fluxes over 11 years. 

This Letter reports the first daily positron flux measure- 
ment. In the past, PAMELA has measured three-month 
average positron-to-electron flux ratio variation over nine 
years [17]. 

In this Letter, we present the daily positron fluxes 
spanning 11 years over a ngidity range from 1.00 to 
41.9 GV. These data cover the major portion of solar 
cycle 24, which includes the polarity reversal of the 
solar magnetic field in the year 2013 [18], and the 

first part of solar cycle 25. Therefore, both the charge- 
sign- and mass-dependent effects at different solar con- 
ditions are studied by comparing the daily positron, daily 
electron [14], and daily proton [15] fluxes measured 

simultaneously over an 11-year period. These data provide 
unique and accurate input to the understanding of the 
transport processes of charged cosmic rays inside the 
heliosphere. 

Detector.—The layout and description of the AMS 
detector are presented in Refs. [19,20] and shown in 

Fig. Sl in Supplemental Material [21]. The key elements 

used in this measurement are the permanent magnet [22], 
the silicon tracker [23-25], the transition radiation detector 

(TRD) [26], the four planes of time of flight (TOF) 

scintillation counters [27], and the electromagnetic calo- 

rimeter (ECAL) [28,29]. Further information on the AMS 

layout, performance, trigger, and the Monte Carlo simu- 
lation [30] is detailed in Supplemental Material [21]. 

Event selection. —AMS has collected 1.9 x 10!! cosmic- 
ray events. In the rigidity range from 1.00 to 41.9 GV, we 
select positron samples using the combined information of 
TRD, TOF, inner tracker, and ECAL. The details of the 

event selection, including the geomagnetic cutoff [31-33] 
and backgrounds, are contained in Supplemental 
Material [21] and in Refs. [5,19]. After selection and 

background subtraction, we obtained 3.4 x 10° positrons. 

Data analysis—The daily isotropic flux in the ith 
rigidity bin (R;, R; + AR;) and jth day is given by 

"ALL + &) Je! TIAR; 

where N! is the number of events corrected for small 
background (~1%) and bin-to-bin migration using the 

unfolding procedure described in Ref. [34], A’ is the 
effective acceptance calculated from the Monte Carlo 
simulation including geometric acceptance, event selection 
efficiencies, and interactions of positrons in the AMS 

materials, 6/ is the small correction to the acceptance 
due to the difference in selection efficiencies between data 

and Monte Carlo simulation, é/ is the trigger efficiency, 

and T! is the daily collection time (see Supplemental 
Material [21] for details). The positron flux is measured 

in 12 rigidity bins from 1.00 to 41.9 GV. The binning is 
similar to that in our electron [14] and proton [15] daily flux 

measurements. 
The small corrections 6/ are estimated by comparing the 

efficiencies in data and Monte Carlo simulation of every 
selection cut using information from the detectors unrelated 

to that cut [5]. The 6) are found to have a small rigidity 
dependence smoothly varying from —5% at 1 GV, to -—1% 
from 2 to 6 GV, to —5% at 41.9 GV. 

The trigger efficiency ¢/ is 100% above 3 GV, decreasing 
to 83% at 1 GV [19], and is stable over time within errors. 

Extensive studies were made of both the time-dependent 
and time-independent systematic errors. These errors 
include the uncertainties in background subtraction, the 
trigger efficiency, the geomagnetic cutoff, the small 
correction to the acceptance calculation (6/), the unfolding, 

and the absolute energy scale. 
The uncertainty associated with the proton background 

subtraction includes two parts: the event selection and the 
statistical fluctuation of the TRD estimator Aypp used to 

differentiate e+ from p [5]. These two errors are found to be 

independent and are added in quadrature. The systematic 
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error due to proton background subtraction is found to be 
< 0.5% of the flux over the entire rigidity range. 

The amount of charge confusion is well reproduced by 
the Monte Carlo simulation [5]. The associated systematic 

error on the fluxes is negligible (< 0.1%) over the entire 
rigidity range. 

The time-dependent systematic error on the positron 
fluxes associated with the trigger efficiency measurement is 
<1% below 3 GV and negligible above 3 GV. 

The geomagnetic cutoff is calculated as described in 
Supplemental Material [21], and the resulting systematic 
error on the fluxes is less than 2% at 1 GV and negligible 
(< 0.4%) above 2 GV. | 

The systematic error from the correction 6; on the fluxes 
is time dependent and amounts to < 1.5% over the entire 
rigidity range. 

The systematic error associated with the unfolding 

includes time-dependent and time-independent errors. 
The time-independent error is estimated to be 1% of the 

flux at 1.00 GV and decreases to < 0.2% above 10 GV [5]. 

The daily flux spectral shape variation leads to an addi- 

tional time-dependent uncertainty in the unfolding pro- 

cedure, which is < 1.0% at 1 GV and negligible (< 0.2%) 

above 5 GV. 
The uncertainty on the absolute energy scale [29] is 2.7% 

at 1 GV, decreasing to 2.0% in the range 2-41.9 GV and is 
found to be stable at the level of 0.2% for all energies. The 
energy scale error is treated as an uncertainty of the bin 
boundaries. 

The time-dependent contributions to the systematic error 
from the background subtraction, the trigger efficiency, the 
event selection efficiencies, and the unfolding are evaluated 
independently each day and are found to be uncorrelated. 
They are added in quadrature to derive a time-dependent 
systematic error, which is 1.5% at 1 GV and ~1% above 
2 GV for all days. 

The daily total systematic error is obtained by adding in 
quadrature the individual contributions of the time-inde- 
pendent systematic errors discussed above and the time- 
dependent systematic errors. At 1 GV, it is less than 3%, 
and above 3 GV, it is ~1.5% for all days. 

Most importantly, independent analyses were performed 
on the same data sample by three different study groups. 
The results of those analyses are consistent with this Letter. 

Results.—The daily positron fluxes, including statistical 
errors, time-dependent systematic errors, and _ total 
systematic errors are tabulated in Tables S1—S3268 in 
Supplemental Material [21] and in a machine-readable 
form [35] as functions of the rigidity at the top of the AMS 
detector. These data are in agreement with our earlier 
27-day results [13] in the overlapping time period. 

Figure | shows the daily positron flux ®,; in the rigidity 
range from 1.00 to 1.71 GV, measured from May 20, 2011 
to November 2, 2021, together with (a) the daily electron 

flux ®,- and (b) the daily proton flux ®,,, both measured by 

RAAT RCN, 

RAAT RCN, 

May Apr Apr Mar Mar Feb Jan Jan Dec Dec Nov’ Nov 
2011 2012 2013 2014 2015 2016 2017 2018 2018 2019 2020 2021   

FIG. 1. The daily positron fluxes (light blue points) measured 
over the entire period for the rigidity range from 1.00 to 1.71 GV 
together with (a) the daily electron fluxes (magenta points) and 
(b) the daily proton fluxes (yellow points). Days with solar 
energetic particle events are excluded from ®,,. The gaps in the 
fluxes are due to detector studies and upgrades. Electron and 
proton fluxes are divided by different scale factors as indicated. 
The scale factors are chosen such that the positron, electron, 

and proton fluxes are at the same magnitude on average during 
2014 and 2015. As seen, the positron fluxes exhibit short-term 
variations on the scale of days to months and long-term variations 
on the scale of years. The long-term evolution of positron and 
electron fluxes is clearly different. On the contrary, positron and 
proton fluxes present a similar behavior over time. 

AMS in the same rigidity range and time period [14,15]. In 
these and subsequent figures, the error bars on the fluxes 
are the quadratic sum of the statistical and time-dependent 
systematic errors. As seen, ®,+ exhibits short-term varia- 
tions on the scale of days to months and long-term 
variations on the scale of years. Figure I(a) shows that 
the long-term evolution of positron and electron fluxes is 
clearly different. On the contrary, Fig. 1(b) shows that 
positron and proton fluxes present a similar behavior over 
time. The detailed comparison will be presented below. 

The time evolution of ®,; and ®,- is presented in 
Fig. S2 in Supplemental Material [21] for four rigidity bins 
from 1.00 to 41.9 GV. ®,: and ®,- are shown averaged 

over 3 days. At low rigidities, below ~8.5 GV, ®,+ and ®,- 
present a different behavior over time. In 2011-2014, ®,. 
decreases more slowly with time than ®,-. Then, from 
2014 to 2017, both fluxes start rising, but ®,+ rises faster 
than ®,-. From 2017 to 2020, ®,+ rises more slowly than 
®,-. In 2020, both fluxes reach their maxima. From mid- 

2020 to 2021, both fluxes decrease and ®, decreases more 

slowly than ®,-. As seen from Figs. S2(a)-S2(d), the 

difference between the time evolution of ®,+ and ®,- 
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decreases with increasing rigidity, becoming negligible in 
the rigidity range [22.8-41.9] GV; see Fig. S2(d). 

The comparison of the time evolution of 3-day averaged 
®,: and ®, in the entire period is shown in Fig. S3 in 

Supplemental Material [21] for the same four rigidity bins 
from 1.00 to 41.9 GV. As seen, both fluxes present a similar 

behavior over time, and at low rigidity [Figs. S3(a) and 
S3(b)] ®,+ exhibits a larger variation than ®,. At higher 

rigidities [Fig. S3(c)], the difference in their respective time 
evolution decreases and becomes negligible in the rigidity 
range [22.8-41.9] GV [Fig. S3(d)]. 

Short-term variations in ®,: are shown in Fig. S4 in 
Supplemental Material [21] in the rigidity range from 1.00 
to 2.97 GV, together with ®,- and ®,, measured from 

January 1, 2016 to January 1, 2017. ®,:, ®,-, and ®, are 

shown averaged over 3 days. As seen, ®,+ shows time 
variations that are different from those observed in ®,-. 

On the contrary, ®,+ and ®, exhibit similar time 

variations. 
These results show that the time evolution of ®,+ is 

similar to ®,, and distinctly different from ®,- in short term 

and long term, indicating a clear charge-sign dependence in 
the solar modulation for positrons and electrons. 

To study the recurrent variations in the daily ®,:, a 
wavelet time-frequency technique [36] was used to locate 

(a) [1.00-1.71] GV 

FIG. 2. 

  

the time intervals where the periodic structures emerge. 
The details on the wavelet analysis are described in 
Supplemental Material [21]. ®,+ for the rigidity interval 
from 1.00 to 2.97 GV in each year (2011-2021 defined in 
Table SA in Supplemental Material [21]), together 
with their time-averaged power spectra and 95% confidence 
levels, are shown in Figs. S5-S15 in Supplemental 
Material [21]. Significant values of the normalized power 

around 27 days are observed in the second half of 2015, the 
first half of 2016, the first half of 2017, and the first half of 

2018. The analysis of ®, presented in Ref. [15] also 

showed significant 27-day periodicity in these four time 
intervals. 

The long-term variations on the scale of years are 
related to the 11- and 22-year cycles of the solar magnetic 
field [11]. To investigate the difference in the modulation of 

®,:, B,- and ®,, Fig. 2 shows ®,- and ®, as functions 

of ®,+ in the rigidity range from 1.00 to 1.71 GV. For 
Figs. 2(a) and 2(b), the data points correspond to fluxes 
averaged over 3 days. For Figs. 2(c) and 2(d), ®,+, ®,-, and 

®,, are calculated with a moving average of 14 BRs and a 

step of 3 days. Different colors indicate different years from 
2011 to 2021. In Fig. 2(c), a hysteresis between ®,+ and 
@,- is clearly observed. From 2011 to 2018, at a given ®,-, 

@,+ shows two distinct branches with time, one before 

(b) [1.00-1.71] GV 

In the rigidity range from 1.00 to 1.71 GV, (a),(c) electron flux ®,- versus positron flux ®,+ and (b),(d) proton flux ®, versus 

positron flux ®,+. For (a),(b), the data points correspond to fluxes averaged over 3 days. For (c),(d), ®,-, ®,, and ®,+ are calculated 

with a moving average of 14 BRs and a step of 3 days. Fluxes are in units of [m~* sr! s~' GV~!]. Different colors indicate different 

years. 
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2014-2015 and one after. Around 2017, the hysteresis 

curve changes such that in 2018—2020 it is nearly parallel to 
that in 201 1—2013. Similar behavior is observed in the ®,- 

to ®, correlation (see Fig. 3 in Ref. [14]). On the contrary, 

as seen from Fig. 2(d), there is a nearly linear correlation 

between ®,+ and ®, in the entire time period. Figure 2 also 

shows that the three fluxes ®,+, ®,-, and ®, peak in 2020, 

after which the fluxes start to trace their earlier behavior 
(2018-2020) backwards. 

The significance of the hysteresis between ®,+ and ®,- 

has been evaluated following an analysis similar to that 
described in Ref. [14] (see Figs. S16 and S17 in 

Supplemental Material [21] for details). The significance 

is greater than 10o at the rigidity bin [1.00—1.71] GV and 

greater than 5o for each rigidity bin below 8.48 GV. 

To probe structures in the hysteresis, the moving 

averages of the ®,+ and ®,- are calculated with a finer 

time window, and the result is shown in Fig. 3 for the 

rigidity range from 1.00 to 1.71 GV. Figure 3(a) shows the 
daily ®,+ and ®,- as a function of time over the entire 

period. The dashed lines I, I, and II indicate the location of 

sharp dips in ®,+ and ®,-, and the colored bands IV and V 
mark the time intervals around the dips in 2015 and 2017. 

The moving average of ®,+ and ®,- with a time window of 
2 BRs and a step of 1 day is shown in Fig. 3(b). The 

detailed behavior around dips IV and V is shown in Fig. S18 
in Supplemental Material [21]. 

To analyze the significance of the structures in the 
positron-electron hysteresis, we study the difference of 

@®,- at the same ®,+, one in the first half and one in 
the second half of each region, IV and V (see Fig. S18 and 

the description in Supplemental Material [21] for details). 
The significance at the rigidity interval [1.00—1.71] GV for 
region IV is > 10o [see Fig. S18(c)] and for region V is 40 

[see Fig. S18(d)]. 

The structures in the observed hysteresis in 2015 and 

2017 between ®,+ and ®,- are similar to those observed 

between ®,- and ®, [14] and are likely caused by two 

series of interplanetary coronal mass ejections [37]. The 

clear deviation, regions IV and V in Fig. 3 [see also 
Figs. S18(b)—S18(d)], from the long-term trend implies a 

charge-sign-dependent modulation during those solar tran- 

sients on the timescale of several Bartels rotations. 
Figure 1(b) [see also Fig. S19(a) in Supplemental 

Material [21]) shows the daily ©, and ®, as a 

function of time over the entire period for the rigidity 

range from 1.00 to 1.71 GV. ®, versus ®,+, calculated with 

a moving average of 2 BRs and a step of | day, is shown in 

Figs. S19(b)-S19(d) in Supplemental Material [21]. As 

seen, a nearly linear correlation between positron and 
proton fluxes is observed, and no significant structures 
are found. 

To compare the daily time variations of ®,+ and ®,, we 
fit a linear relation between the relative variations of the 
fluxes for the ith rigidity bin (R;, R; + AR;) as 

CNG OMAN RCL 

Bl
a 
i
e
e
e
 
cl

a 

PAU May Feb Nov 
2016 2018 2020 2021 

  
FIG. 3. (a) The daily positron fluxes (light blue points) together 
with the daily electron fluxes (magenta points), measured for the 
rigidity interval from 1.00 to 1.71 GV over the entire period. For 
display purposes, the electron fluxes are divided by a scale factor 
such that ®,+ and ®,- are at the same magnitude on average 
during 2014 and 2015. Dashed lines I, H, and III indicate the 

location of sharp dips in the positron and electron fluxes, and 
colored bands IV and V mark the time intervals around the dips in 
2015 and 2017. (b) Electron flux ®,- versus positron flux ®,+, 

both calculated with a moving average of 2 BRs and a step of 

1 day. Fluxes are in units of [m~? sr~! s~! GV~!]. Different colors 
indicate different years from 2011 to 2021. The locations of I, II, 

and III correspond to the flux dips in (a). Time intervals IV and V 

around the dips in 2015 and 2017 in (a) are indicated by white 

boxes. White squares and white triangles mark the two pairs of 
time intervals used to evaluate the significance of the structures in 
the hysteresis. 

D'. ~ (®',) 

(®,.) 

D', — (®',) 
—fi.—P = Pr 

(®;,) 
(2) 

where k’ is the slope of the linear dependence for that bin 

and (®'.) and (®',) are the positron and proton fluxes in 
the ith rigidity bin averaged over the entire period, 

respectively. 

Examples of fits of the daily positron and the daily 

proton fluxes to Eq. (2) are shown in Fig. S20 in 

Supplemental Material [21] for six consecutive rigidity 
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FIG. 4. (a) k parameter values obtained from the linear fits to 

the relative variation of the positron and proton fluxes as function 

of rigidity [see Eq. (2)] and (b) significance, in units of o, of the 

deviation of the parameter k from unity as a function of rigidity. 

As seen, k gradually increases with rigidity and is significantly 

(> 50) greater than unity in the rigidity range from 1.00 to 

7.09 GY, indicating that the positron flux is more modulated than 

the proton flux in this rigidity range. 

bins from 1.00 to 5.90 GV. Figure 4(a) shows the results of 

the k’ as a function of rigidity. As seen, k’ gradually 
increases with rigidity from 1.055 + 0.004 at the rigidity 
bin [1.00-1.33] GV to 1.20+0.03 at the rigidity bin 
[5.90-7.09] GV. As shown in Fig. 4(b), k! is greater than 
unity with a significance greater than 5o for rigidities from 
1.00 to 7.09 GV, indicating that the positron flux is more 

modulated than the proton flux in this rigidity range. 
At a given rigidity below 7 GV, AMS observed that 

helium, which has a lower velocity than protons, is 
modulated more than protons [16]. In this Letter, we 

observe that, remarkably, positrons, which have a higher 

velocity, are also modulated more than protons. The 
contradiction in velocity dependence cannot be explained 
only by differences in the diffusive processes, since these 
are commonly accepted to be proportional to the velocity. 
Our simultaneous results on the velocity dependence of 
positrons, protons, and helium require a comprehensive 
model to consider other important effects, such as con- 
vection, adiabatic energy changes, and the shape of the flux 
rigidity dependence outside the heliosphere [38]. 

In conclusion, we presented the precision measurements 
of daily cosmic positron fluxes spanning 11 years over a 
rigidity range from 1.00 to 41.9 GV based on 3.4 x 10° 
positrons. The positron fluxes exhibit variations on multi- 
ple timescales. In the 11-year period, the positron fluxes 

show distinctly different time variations from the electron 
fluxes at short and long timescales. A hysteresis between 
the electron flux and the positron flux is observed with a 
significance greater than 5o at rigidities below 8.5 GV, and 
significant structures in the electron-positron hysteresis are 
observed corresponding to sharp variations of both fluxes. 
On the contrary, positron and proton fluxes show nearly 
identical time variation. Remarkably, positron fluxes are 
modulated more than proton fluxes with a significance 
greater than 5o for rigidities below 7 GV. These continuous 
daily positron fluxes, together with AMS daily electron, 
proton, and helium fluxes over an 11-year solar cycle, 
provide unique input to the understanding of both the 
charge-sign and mass dependencies of cosmic rays in the 
heliosphere. 
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