ECS Meeting Abstracts

Synthesis and Characterization of Neoteric Boronium Ionic Liquids

Paul C. Trulove¹, Christopher D. Stachurski¹, James H. Davis Jr.², Tyler Cosby³, Nathaniel E. Larm¹ and David P. Durkin¹

© 2023 ECS - The Electrochemical Society

ECS Meeting Abstracts, Volume MA2023-02, L04: Physical and Analytical Electrochemistry in Ionic Liquids 6

Citation Paul C. Trulove et al 2023 Meet. Abstr. MA2023-02 2721

DOI 10.1149/MA2023-02562721mtgabs

▼ Article and author information

Abstract

Ionic liquids (ILs) are highly tailorable materials with unique physical and chemical properties that set them apart from conventional organic solvents. As the library of readily accessible ILs continues to grow, so too does their relevance in applications ranging from material processing to electrochemical energy storage as solvents capable of accessing new chemistries disallowed by traditional chemicals. While a great deal of interest has been directed towards imidazolium and quaternary ammonium based ionic liquids, there are other understudied classes of cations which have potentially favorable properties for energy related applications. One such class is that with boronium cations. These cations have a unique structure with a formally negative boron flanked by positive nitrogens. This inherently zwitterionic structure presents interesting possibilities for electrochemical applications. To date only a handful of boronium cation-based ionic liquids have been thoroughly characterized despite exhibiting impressive electrochemical stabilities (> 5.0 V). In the present study we synthesized a series of ILs with novel boronium cations coupled with the bis(trifluoro-methanesulfonyl)imide anion. We then characterized the electrochemical and physical properties of these boronium ionic liquids by techniques such as cyclic voltammetry, broadband dielectric spectroscopy, oscillatory shear rheology, and thermogravimetric analysis. We will discuss how systematic variations in boronium cation structure impacted electrochemical and physical

Export citation and abstract

BibTeX

RIS

← Previous article in issue

Next article in issue →

Article metrics 28 Total downloads

Permissions

Get permission to re-use this article

Share this article

Abstract

You may also like

JOURNAL ARTICLES

Molecular thermodynamic modeling of ionic liquids using the perturbationbased linear Yukawa isotherm regularity

Preparation and Characterization of Titanium Tetrachloride-**Based Ionic Liquids**

Metal-containing ionic liquids: current paradigm and applications

Custom-Made Bromide-Based Ionic Liquids as **Electrolyte Additives for Enhancing Hydrogen Evolution in Alkaline** Water Electrolysis

Synthesis and Characterization of Guanidinium-Based Ionic Liquids as Possible Electrolytes in Lithium-Ion Batteries

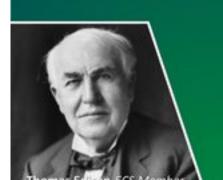
Enhanced Electrical Conductivity of Imidazolium-Based Ionic Liquids Mixed with Carbon Nanotubes: A Spectroscopic Study

physicsworld|jobs

Postdoc Position for THz at PITZ **DESY**

International Faculty Position, UESTC University of Electronic Science and Technology of China (UESTC) - IFFS

Scientist for Hereon imaging beamlines at PETRA IV and PETRA III Helmholtz-Zentrum Hereon


Post a job

More jobs

Electrochemical

Join the **Society** Led by Scientists, for **Scientists** Like You!

Allen J. Bard-ECS Membe

properties.

IOPSCIENCE

Journals

Books

IOP Conference Series

About IOPscience

Contact Us

Developing countries access

IOP Publishing open access policy

Accessibility

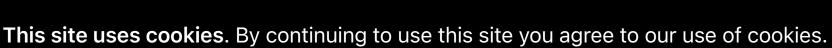
IOP PUBLISHING

Copyright 2024 IOP Publishing

Terms and Conditions

Disclaimer

Privacy and Cookie Policy


PUBLISHING SUPPORT

Authors

Reviewers

Conference Organisers

