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ABSTRACT. A theorem of Elekes and Szabd recognizes algebraic groups
among certain complex algebraic varieties with maximal size intersec-
tions with finite grids. We establish a generalization to relations of any
arity and dimension, definable in: 1) stable structures with distal expan-
sions (includes algebraically and differentially closed fields of character-
istic 0); and 2) o-minimal expansions of groups. Our methods provide
explicit bounds on the power saving exponent in the non-group case.
Ingredients of the proof include: a higher arity generalization of the
abelian group configuration theorem in stable structures, along with a
purely combinatorial variant characterizing Latin hypercubes that arise
from abelian groups; and Zarankiewicz-style bounds for hypergraphs
definable in distal structures.
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1. INTRODUCTION

1.1. History, and a special case of the main theorem. Erdds and Sze-
merédi [21] observed the following sum-product phenomenon: there exists
¢ € R+ such that for any finite set A C R,

max {|A+ A|, |A- A]} > |A["T°.

They conjectured that this holds with ¢ = 1—¢ for an arbitrary e € Ry, and
by the work of Solymosi [55] and Konyagin and Shkredov [35] it is known
to hold with ¢ = % + ¢ for some sufficiently small . Elekes and Rényai [22]
generalized this by showing that for any polynomial f(x,y) € R[z,y| there
exists ¢ > 0 such that for every finite set A C R we have

[F(Ax A)| > |A]"*

unless f is either additive or multiplicative, i.e. of the form g(h(x)+i(y)) or
g(h(z)-i(y)) for some univariate polynomials g, h, i respectively. The bound

was improved to Qqeg f ]A]%) in [50].

Elekes and Szabé [23] established a conceptual generalization of this result
explaining the exceptional role played by the additive and multiplicative
forms: for any irreducible polynomial Q(x,y, z) over C depending on all of its
coordinates and such that its set zero set has dimension 2, either there exists
some £ > 0 such that F has at most O(n?~¢) zeroes on all finite n x n x n
grids, or F' is in a coordinate-wise finite-to-finite correspondence with the
graph of multiplication of an algebraic group (see Theorem (B) below for a
more precise statement). In the special Elekes-Rényai case above, taking @
to be the graph of the polynomial function f, the resulting group is either
the additive or the multiplicative group of the field. Several generalizations,
refinements and variants of this influential result were obtained recently
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[13,30,33,48,49,51,506], in particular for complex algebraic relations of higher
dimension and arity by Bays and Breuillard [3].

In this paper we obtain a generalization of the Elekes-Szabé theorem to
hypergraphs of any arity and dimension definable in stable structures ad-
mitting distal expansions (this class includes algebraically and differentially
closed fields of characteristic 0 and compact complex manifolds); as well as
for arbitrary o-minimal structures. Before explaining our general theorems,
we state two very special corollaries.

Theorem (A). (Corollary 6.21) Assume s > 3 and @@ C R® is semi-
algebraic, of description complexity D (i.e. given by at most D polynomial
(in-)equalities, with all polynomials of degree at most D, and s < D), such
that the projection of Q to any s—1 coordinates is finite-to-one. Then exactly
one of the following holds.

(1) There exists a constant ¢, depending only on s and D, such that: for
any n € N and finite A; CR with |A;| = n fori € [s] we have

QN (AL x ... x Ay)| < en® 177,

where’y:% if s >4, and’y:% if s =3.
(2) There exist open sets U; C R,i € [s], an open set V' C R containing 0,
and analytic bijections with analytic inverses m; : Uy — V' such that

7'['1(I’1) + - +7T3(.CC3) =0« Q(l'lv cee 7-Ts)
for all x; € Uy,i € [s].

Theorem (B). (Corollary 5.51) Assume s > 3, and let Q C C*® be an
irreducible algebraic variety so that for each i € [s], the projection of Q to
any s — 1 coordinates is generically finite. Then exactly one of the following
holds.

(1) There exist ¢ depending only on s,deg(Q) such that: for any n € N and
A; C C; with |A;| =n fori € [s] we have

QN (A x ... x Ag)| <en® 17

where’yzl—ll if s >4, andvz% if s =3.
(2) For G one of (C,+), (C, X) or an elliptic curve group, Q is in coordinate-

wise correspondence (see Section 5.8) with
Q ={(z1,...,25) €G*:wy-...- x5 =1g}.

Remark 1.1. Theorem (B) is similar to the codimension 1 case of [8, Theorem

1.4], however our method provides an explicit bound on the exponent in
Clause (1).

Remark 1.2. Theorems (A) and (B) correspond to the 1-dimensional case
of Corollaries 6.20 and 5.48, respectively, which allow @ C Hz‘e[s] X; with

dim(X;) = d for an arbitrary d € N.



4 ELEKES-SZABO FOR STABLE AND O-MINIMAL HYPERGRAPHS

Remark 1.3. Note the important difference — Theorem (A) is local, i.e. we
can only obtain a correspondence of () to a subset of a group after restricting
to some open subsets U;. This is unavoidable in an ordered structure since
the high count in Theorem (A.2) might be the result of a local phenomenon
in Q. E.g. when @ is the union of Q1 = {Z : 1+ -+ + s = 0} N (—¢,¢)?,
for some € > 0, and another set 5 for which the count is low.

1.2. The Elekes-Szabé principle. We now describe the general setting of
our main results. We let M = (M, ...) be an arbitrary first-order structure,
in the sense of model theory, i.e. a set M equipped with some distinguished
functions and relations. As usual, a subset of M? is definable if it is the set of
tuples satisfying a formula (with parameters). Two key examples to keep in
mind are (C, +, x,0,1) (in which definable sets are exactly the constructible
ones, i.e. boolean combinations of the zero-sets of polynomials, by Tarski’s
quantifier elimination) and (R, +, X, <,0,1) (in which definable sets are ex-
actly the semialgebraic ones, by Tarski-Seidenberg quantifier elimination).
We refer to [10] for an introduction to model theory and the details of the
aforementioned quantifier elimination results.

From now on, we fix a structure M, s € N, definable sets X; C M% i €
[s], and a definable relation Q C X = X7 x ... x X,. We write 4; C,, X;
if A; C X; with |4;] < n. By a grid on X we mean a set A C X with
A=A x...x Ay and A; C X;. By an n-grid on X we mean a grid
A:Al X ...x Ag with A; C,, X;.

Definition 1.4. For d € N, we say that a relation Q C X7 x Xs x ... x X
is fiber-algebraic, of degree d if for any i € [s] we have

Ve € Xy...Vo;_q1 € X-_IVxZ-H S Xz'—i—l Vs € X
Hgdwi e X; ({L‘l,...,l’s) S Q

We say that Q C X1 X Xo X ... x X; is fiber-algebraic if it is fiber-algebraic
of degree d for some d € N.

In other words, fiber algebraicity means that the projection of () onto any
s —1 coordinates is finite-to-one. For example, if Q@ C X7 x X3 x X3 is fiber-
algebraic of degree d, then for any A; C,, X; we have |[Q N A; x Ay x Az| <
dn?. Conversely, let Q@ C C? be given by z1 + 3 — 23 = 0, and let A; =
Ay = Az = {0,...,n —1}. Then |QN A; x Az x A3 = ") — 0 (n?).
This indicates that the upper and lower bounds match for the graph of
addition in an abelian group (up to a constant) — and the Elekes-Szabd
principle suggests that in many situations this is the only possibility. Before
making this precise, we introduce some notation.

1.2.1. Grids in general position. From now on we will assume that M is
equipped with some notion of integer-valued dimension on definable sets, to
be specified later. A good example to keep in mind is Zariski dimension on
constructible subsets of C%, or the topological dimension on semialgebraic
subsets of R,
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Definition 1.5. (1) Let X be a definable set in M, and let F be a definable
family of subsets of X. For v € N, we say that a set A C X is in (F,v)-
general position if |[ANF| < v for every F' € F with dim(F') < dim(X).

(2) Let X;, i = 1,...,s, be definable sets in M. Let F = (Fy,...,Fs),
where F; is a definable family of subsets of X;. For v € N we say that a
grid A on X is in (F,v)-general position if each A; is in (F;, v)-general
position.

For example, when M is the field C, a subset of C? is in a (F,v)-general
position if any variety of smaller dimension and bounded degree (determined
by the formula defining F) can cut out only v points from it (see the proof
of Corollary 5.48). Also, if F is any definable family of subsets of C, then
for any large enough v, every A C X is in (F,v)-general position. On the
other hand, let X = C? and let F; be the family of algebraic curves of
degree less than d. If v < d + 1, then any set A C X with |A| > v is not in
(Fg4,v — 1)-general position.

1.2.2. Generic correspondence with group multiplication. We assume that
M is a sufficiently saturated structure, and let Q C X be a definable relation
and (G, -, 1g) a connected type-definable group in M. Type-definability
means that the underlying set G of the group is given by the intersection
of a small (but possibly infinite) collection of definable sets, and the mul-
tiplication and inverse operations are relatively definable. Such a group is
connected if it contains no proper type-definable subgroup of small index
(see e.g. [10, Chapter 7.5]). And M*®? is the structure obtained from M
by adding sorts for the quotients of definable sets by definable equivalence
relations in M (see e.g. [10, Chapter 1.3]). In the case when M is the field
C, connected type-definable groups are essentially just the complex alge-
braic groups connected in the sense of Zariski topology (see Section 5.8 for
a discussion and further references).

Definition 1.6. We say that @ is in a generic correspondence with multi-
plication in G if there exist a small set A C M and elements g1,...,9s € G
such that:

(1) g1-...-9s = lg;

(2) g1,.-.,9s—1 are independent generics in G over A (i.e. each g; does not
belong to any definable set of dimension smaller than G definable over
AU{g1,. -1 9i-1,0i11, -, Gs—1});

(3) For each i = 1,...,s there is a generic element a; € X; inter-algebraic
with g; over A (i.e. a; € acl(g;, A) and g; € acl(a;, A), where acl is the
model-theoretic algebraic closure), such that (ai,...,as) € Q.

Remark 1.7. There are several variants of “generic correspondence with a
group” considered in the literature around the Elekes-Szabd theorem. The
one that we use arises naturally at the level of generality we work with, and
as we discuss in Sections 5.8 and 6.4 it easily specializes to the notions consid-
ered previously in several cases of interest (e.g. the algebraic coordinate-wise
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finite-to-finite correspondence in the case of constructible sets in Theorem
(B), or coordinate-wise analytic bijections on a neighborhood in the case of
semialgebraic sets in Theorem (A)).

1.2.3. The FElekes-Szabo principle. Let s > 3,k € N and X1,..., X, be de-
finable sets in a sufficiently saturated structure M with dim(X;) = k.

Definition 1.8. We say that X1,..., Xy satisfy the Elekes-Szabd principle
if for any fiber-algebraic definable relation ) C X, one of the following
holds:

(1) @ admits power saving: there exist some v € Ry and some definable
families F; on X; such that: for any v € N and any n-grid A C X in
(F,v)-general position, we have |Q N A| = O, (n(s_l)_V);

(2) there exists a type-definable subset of @ of full dimension that is in
a generic correspondence with multiplication in some type-definable
abelian group G of dimension k.

The following are the previously known cases of the Elekes-Szabé princi-
ple:

(1) 23] M = (C,+, x), s = 3, k arbitrary (no explicit exponent v in power
saving; no abelianity of the algebraic group for k£ > 1);

(2) 18] M = (C,+, x), s =3, k=1 (explicit v in power saving);

(3) [19) M = (C,+, x), s =4, k =1 (explicit v in power saving);

(4) p1] M = (C,+,x), k = 1, Q is the graph of an s-ary polynomial
function for an arbitrary s (i.e. this is a generalization of Elekes-Rényai
to an arbitrary number of variables);

(5) [8] M = (C,+, x), s and k arbitrary, abelianity of the group for k£ > 1
(they work with a more relaxed notion of general position and arbitrary
codimension, however no bounds on 7v);

(6) [20] M is any strongly minimal structure interpretable in a distal struc-
ture (see Section 2), s =3, k = 1.

In the first five cases the dimension is the Zariski dimension, and in the sixth
case the Morley rank.

1.3. Main theorem. We can now state the main result of this paper.

Theorem (C). The Elekes-Szabd principle holds in the following two cases:

(1) (Theorem 5.24) M is a stable structure interpretable in a distal struc-
ture, with respect to p-dimension (see Section 5.1, and below).

(2) (Theorem 6.4) M is an o-minimal structure expanding a group, with
respect to the topological dimension. In this case, on a type-definable
generic subset of X, we get a definable coordinate-wise bijection of Q
with the graph of multiplication of an abelian type-definable group G (we
stress that this G is a priori unrelated to the underlying group that M
expands).
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Moreover, the power saving bound is explicit in (2) (see the statement of
Theorem 6.4), and is explicitly calculated from a given distal cell decompo-
sition for @ in (1) (see Theorem 5.27).

Examples of structures satisfying the assumption of Theorem (C.1) in-
clude: algebraically closed fields of characteristic 0, differentially closed fields
of characteristic 0 with finitely many commuting derivations, compact com-
plex manifolds. In particular, Theorem (B) follows from Theorem (C.1) with
k =1, combined with some basic model theory of algebraically closed fields
(see Section 5.8). We refer to [16] for a detailed treatment of stability, and
to [57, Chapter 8] for a quick introduction. See Section 2 for a discussion of
distality:.

Examples of o-minimal structures include real closed fields (in particu-
lar, Theorem (A) follows from Theorem (C.2) with £ = 1 combined with
some basic o-minimality, see Section 6.4), Rexp = (R, +, %, €%), Rap =

(R, +, X, f [[071%) for £ € N and f ranging over all functions real-analytic

on some neighborhood of [0, 1], or the combination of both Ran,exp- We
refer to [58] for a detailed treatment of o-minimality, or to [52, Section 3]
and reference there for a quick introduction.

Remark 1.9. The assumption that M is an o-minimal expansion of a group
in Theorem (C.2) can be relaxed to the more general assumption that M
is an o-minimal structure with definable Skolem functions (see e.g. [21] for
a detailed discussion of Skolem functions and related notions), but possibly
with a weaker bound on the power saving exponent than the one stated
in Theorem 6.4. Indeed, the v in the ~-power saving stated in Theorem
6.4 depends on 7 in the v-ST property, and hence on t = 2d; — 2, in Fact
2.15(2) — the proof of which uses that M is an o-minimal expansion of a
group. However, Fact 2.15(2) is known to hold in an arbitrary o-minimal
structure with (at least) the weaker bound ¢t = 2d; — 1 (see [!, Theorem
4.1]). To carry out the rest of the arguments in the proof of Theorem 6.4 in
Section 6 we only use the existence of definable Skolem functions. Thus any
o-minimal structure with definable Skolem functions satisfies the conclusion
ofTheoremGAwithyzﬁ if524and’y:ﬁ if s = 3.

m—6

1.4. Outline of the paper. In this section we outline the structure of the
paper, and highlight some of the key ingredients of the proof of the main
theorem. The proofs of (1) and (2) in Theorem (C) have similar strategy
at the general level, however there are considerable technical differences. In
each of the cases, the proof consists of the following key ingredients.

(1) Zarankiewicz-type bounds for distal relations (Section 2, used for both
Theorem (C.1) and (C.2)).

(2) A higher arity generalization of the abelian group configuration theorem
(Section 3 for the o-minimal case Theorem (C.2), and Section 4 for the
stable case Theorem (C.1)).
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(3) The dichotomy between an incidence configuration, in which case the
bounds from (1) give power saving, and existence of a family of functions
(or finite-to-finite correspondences) associated to @ closed under generic
composition, in which case a correspondence of ) to an abelian group
is obtained using (2). This is Section 5 for the stable case (C.1) and
Section 6 for the o-minimal case (C.2).

We provide some further details for each of these ingredients, and discuss
some auxiliary results of independent interest.

1.4.1. Zarankiewicz-type bounds for distal relations (Section 2). Distal struc-
tures constitute a subclass of purely unstable NIP structures [54] that con-
tains all o-minimal structures, various expansions of the field @@, and many
other valued fields and related structures [2] (we refer to the introduction
of [19] for a general discussion of distality in connection to combinatorics
and references). Distality of a graph can be viewed as a strengthening of
finiteness of its VC-dimension retaining stronger combinatorial properties of
semialgebraic graphs. In particular, it is demonstrated in [15, 18, 19] that
many of the results in semialgebraic incidence combinatorics generalize to
relations definable in distal structures. In Section 2 we discuss distality, in
particular proving the following generalized “Szemerédi-Trotter” theorem:

Theorem (D). (Theorem 2.8) For every d € N,t € N>g and ¢ € R there
exists some C' = C(d,t,c) € R satisfying the following.

Assume that E C X XY admits a distal cell decomposition T such that
|T(B)| < ¢|BJ|t for all finite B CY. Then, taking v1 := (z_l)ld,’yg = =t
we have: for all v € N> and A C,,, X, B C,, Y such that EN (A x B) is
K, -free,

IEN(Ax B)|<Cvr(m"™n™?+m+n).

In particular, if £ C U x V is a binary relation definable in a distal
structure and E is K,o-free for some s € N, then there is some v > 0

such that: for all A C,, U,B C,, V we have |[ENA X B| = O(n%_'y). The
exponent strictly less that % requires distality, and is strictly better than

e.g. the optimal bound Q(n%) for the point-line incidence relation on the
affine plane over a field of positive characteristic. In the proof of Theorem
(C), we will see how this « translates to the power saving exponent in the
non-group case. More precisely, for our analysis of the higher arity relation
@, we introduce the so-called y-Szemerédi- Trotter property, or v-ST property
(Definition 2.12), capturing an iterated variant of Theorem (D), and show
in Proposition 2.14 that Theorem (D) implies that every binary relation
definable in a distal structure satisfies the v-ST property for some v > 0
calculated in terms of its distal cell decomposition. We conclude Section 2
with a discussion of the explicit bounds on v for the v-ST property in several
particular structures of interest needed to deduce the explicit bounds on the
power saving in Theorems (A) and (B).
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1.4.2. Reconstructing an abelian group from a family of bijections (Section
3). Assume that (G,+,0) is an abelian group, and consider the s-ary rela-
tion @) C Hie[s] G given by x1+...4+ x5 = 0. Then @ is easily seen to satisfy
the following two properties, for any permutation of the variables of Q:

(P1) Vo, ..., Veso13esQ(xq, ..., xs),

(P2) Var, 2oy, -y -0 (Q@,9) A Q(E,T) =
(va1,25Q(z.3) & Q. 7)) ).

In Section 3 we show a converse, assuming s > 4:

Theorem (E). (Theorem 3.21) Assume s € N>4, Xi,...,Xs and Q C
Hie[s] X, are sets, so that Q satisfies (P1) and (P2) for any permutation of
the variables. Then there exists an abelian group (G,+,0¢g) and bijections
i+ Xi = G such that for every (ai,...,as) € Hie[s] X; we have

Qai,...,as) < mi(a1)+ ...+ 7s(as) = 0g.

Moreover, if Q is definable and X; are type-definable in a sufficiently satu-
rated structure M, then we can take G to be type-definable and the bijections
m; relatively definable in M.

On the one hand, this can be viewed as a purely combinatorial higher
arity variant of the Abelian Group Configuration theorem (see below) in
the case when the definable closure in M is equal to the algebraic closure
(e.g. when M is o-minimal). On the other hand, if X1 = ... = X, property
(P1) is equivalent to saying that the relation @ is an (s — 1)-dimensional
permutation on the set X1, or a Latin (s — 1)-hypercube, as studied by Linial
and Luria in [37,38] (where Latin 2-hypercube is just a Latin square). Thus
the condition (P2) in Theorem (E) characterizes, for s > 3, those Latin
s-hypercubes that are given by the relation “xy + ... 4+ z,_1 = s’ in an
abelian group. We remark that for s = 2 there is a known “quadrangle
condition” due to Brandt characterizing those Latin squares that represent
the multiplication table of a group, see e.g. [28, Proposition 1.4].

1.4.3. Reconstructing a group from an abelian s-gon in stable structures
(Section /). Here we consider a generalization of the group reconstruction
method from a fiber-algebraic @ of degree 1 to a fiber-algebraic @ of arbi-
trary degree, which moreover only satisfies (P2) generically, and restricting
to @ definable in a stable structure.

Working in a stable theory, it is convenient to formulate this in the lan-
guage of generic points. By an s-gon over a set of parameters A we mean a
tuple aq, ..., as such that any s—1 of its elements are (forking-) independent
over A, and any element in it is in the algebraic closure of the other ones and
A. We say that an s-gon is abelian if, after any permutation of its elements,
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we have
a1as L as...Qm.

acla(araz)Nacla(as...am)
Note that this condition corresponds to the definition of a 1-based stable
theory, but localized to the elements of the s-gon.
If (G,+) is a type-definable abelian group, ¢1,...,gs—1 are independent
generics in G and g5 := g1 + ...+ gs—1, then g1,...,gs is an abelian s-gon
(associated to G). In Section 4 we prove a converse:

Theorem (F). (Theorem 4.6) Let ay,...,as be an abelian s-gon, s > 4, in
a sufficiently saturated stable structure M. Then there is a type-definable
(in M) connected abelian group (G,4+) and an abelian s-gon gi,...,Js
associated to G, such that after a base change each g; is inter-algebraic with
a;.

It is not hard to see that a 4-gon is essentially equivalent to the usual
abelian group configuration, so Theorem (F) is a higher arity generaliza-
tion. After this work was completed, we have learned that independently
Hrushovski obtained a similar (but incomparable) unpublished result [31,

]

1.4.4. FElekes-Szabo principle in stable structures with distal expansions —
proof of Theorem (C.1) (Section 5). We introduce and study the notion of p-
dimension in Section 5.1, imitating the topological definition of dimension in
o-minimal structures, but localized at a given tuple of commuting definable
global types. Assume we are given p-pairs (X;,p;) for 1 < i < s, i.e. X;
is an M-definable set and p; € S(M) is a complete stationary type on
X; for each 1 < i < s (see Definition 5.2). We say that a definable set
Y C Xy x...x X is p-generic, where p refers to the tuple (p1,...,ps), if
Y e(p1®...Q0p,)|m. Finally, we define the p-dimension via dim,(Y") > k
if for some projection m of X onto k components, 7(Y) is p-generic. We
show that p-dimension enjoys definability and additivity properties crucial
for our arguments that may fail for Morley rank in general w-stable theories
such as DCFy. However, if X is a definable subset of finite Morley rank k
and degree one, taking px to be the unique type on X of Morley rank k, we
have that k-dim, = MR (this is used to deduce Theorem (B) from Theorem
(C.1)).

In Section 5.2 we consider the notion of irreducibility and show that every
fiber-algebraic relation is a union of finitely many absolutely p-irreducible
sets. In Section 5.3 we consider finite grids in general position with respect to
p-dimension and prove some preliminary power-saving bounds. In Section
5.4 we state a more informative version of Theorem (C.1) (Theorem 5.24
+ Theorem 5.27 concerning the bound 7 in power saving) and make some
preliminary reductions. In particular, we may assume dim(Q) = s — 1, and
let @ = (ai,...,as) be a generic tuple in Q. As @ is fiber-algebraic, a is an
s-gon. We then establish the following key structural dichotomy.
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Theorem (G). (Theorem 5.35 and its proof) Assuming s > 3, one of the

following is true:

(1) For u = (a1,a2) and v = (as,...,as) we have u \Lacl(u)ﬂacl(v) v.

(2) Q, as a binary relation on UXV | forU = X1 x X5 andV = X3x...x X,
1s a “pseudo-plane”. By which we mean here that, ignoring a smaller
dimensional (dim, < s —2) set of v € V, every fiber Q, C U has a
zero-dimensional intersection Q, N Qy for all v/ € V' outside a smaller

dimensional set (more precisely, the p-dimension of the set Z defined in
terms of Q in Section 5.5 is < s —2).

This notion of a “pseudo-plane” generalizes the usual definition requiring
that any two “lines” in V intersect on finitely many “points” in U, viewing
@ as the incidence relation.

In case (2) the relation @ satisfies the assumption on the intersection of
its fibers in Definition 2.12; hence the incidence bound from Theorem (D)
can be applied inductively to obtain power saving for @ (see Section 5.5).
Thus we may assume that for any permutation of {1,...,s} we have

ai1ag i/ as...ag,
acl(aiaz)Nacl(as...as)

i.e. the s-gon a is abelian. Assuming that s > 4, Theorem (F) can be
applied to establish a generic correspondence with a type-definable abelian
group (Section 5.6). The case s = 3 of Theorem (C.1) is treated separately
in Section 5.7 by reducing it to the case s = 4 (similar to the approach in
[45]).

In Section 5.8 we combine Theorem (C.1) with some standard model
theory of algebraically closed fields to deduce Theorem (B) and its higher
dimensional version.

1.4.5. Elekes-Szabo principle in o-minimal structures — proof of Theorem
(C.2) (Section 6). Our proof of the o-minimal case is overall similar to the
stable case, but is independent from it. In Section 6.1 we formulate a more
informative version of Theorem (C.2) with explicit bounds on power saving
(Theorem 6.4) and reduce it to Theorem 6.9 — which is an appropriate
analog of Theorem (G): (1) either @ is a “pseudo-plane”, or (2) it contains
a subset Q* of full dimension so that the property (P2) from Theorem (E)
holds in a neighborhood of every point of @*. In Case (1), considered in
Section 6.2, we show that () satisfies the required power saving using Theo-
rem (D) (or rather, its refinement for o-minimal structures from Fact 2.15).
In Case (2), we show in Section 6.3 that one can choose a generic tuple
(a1,...,as) in @ and (type-definable) infinitesimal neighborhoods u; of a;
so that the relation QN (uy X ... X us) satisfies (P1) and (P2) from Theorem
(E) — applying it we obtain a generic correspondence with a type-definable
abelian group, concluding the proof of Theorem (C.2) for s > 4. The case
s = 3 is reduced to s = 4 similarly to the stable case.
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Finally, in Section 6.4 we obtain a Corollary of Theorem (C.2) that holds
in an arbitrary o-minimal structure, not necessarily a saturated one - replac-
ing a type-definable group by a definable local group (Theorem 6.19). Com-
bining this with the solution of the Hilbert’s 5th problem for local groups
[27] (in fact, only in the much easier abelian case, see Theorem 8.5 there),
we can improve “local group” to a “Lie group” in the case when the under-
lying set of the o-minimal structure M is R and deduce Theorem (A) and
its higher dimensional analog (Theorem 6.20, see also Remark 6.22). We
also observe that for semi-linear relations, in the non-group case we have
(1 — ¢)-power saving for any € > 0 (Remark 6.24).
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2. ZARANKIEWICZ-TYPE BOUNDS FOR DISTAL RELATIONS

We begin by recalling some of the notions and results about distality and
generalized “incidence bounds” for distal relations from [15], and refer to
that article for further details. The following definition captures a combina-
torial “shadow” of the existence of a nice topological cell decomposition (as
e.g. in o-minimal theories or in the p-adics).

Definition 2.1. [15, Section 2| Let X, Y be infinite sets, and £ C X xY a
binary relation.

(1) Let AC X. For b €Y, we say that E = {a € X : (a,b) € E} crosses A
ifEbﬂA?é(b and (X\Eb)ﬂA#@

(2) A set A C X is E-complete over B C Y if A is not crossed by any Ej,
with b € B.

(3) A family F of subsets of X is a cell decomposition for E over B CY if
X C|JF and every A € F is E-complete over B.

(4) A cell decomposition for E is a map T : B — T (B) such that for each
finite BCY, T (B) is a cell decomposition for E over B.

(5) A cell decomposition T is distal if there exist k& € N and a relation
D C X x Y* such that for all finite B C Y, T(B) = {Dy,..pp)
bi,...,bx € B and Dy, . 4, is E-complete over B}.
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(6) For t € Ry, we say that a cell decomposition T has exponent < t if
there exists some ¢ € Rsg such that |T(B)| < ¢|B|" for all finite sets
BCY.

Remark 2.2. Note that if 7 is a distal cell decomposition, then it has expo-
nent < k for k as in Definition 2.1(5).

Remark 2.3. Assume that the binary relation £ C X x (Y x Z) admits a
distal cell decomposition T with |7(B)| < ¢|B|! for every finite B CY x Z.
Then for every z € Z, the binary relation F, C X x Y admits a distal cell
decomposition T, with |T,(B)| < ¢|B| for all finite B C Y.

Proof. Indeed, assume that D C X x (Y x Z)¥ is witnessing that 7 is distal,
i.e. for any finite B CY x Z we have

T (E) ={Dw,,.b) b1, -, bk € B and D, ... py) is E-complete over E}
Fix z € Z, and let
D, := {(m;yl,...,yk) eX xY*:(myr, 2.y 2) € D} C X xYk
Given a finite B C Y, we define T, (B) as
{(Dz)(bl,...,bk) :b1,...,by € B and (DZ)(bl,...,bk) is F,-complete over B} .

Then 7, (B) = T (B x {z}), hence T is a distal cell decomposition for E,
and |T.(B)| = [T(B x {z})| < ¢[B". 0

Existence of “strong honest definitions” established in [18] shows that ev-
ery relation definable in a distal structure admits a distal cell decomposition
(of some exponent).

Fact 2.4. (see [15, Fact 2.9]) Assume that the relation E is definable in
a distal structure M. Then E admits a distal cell decomposition (of some
exponent t € N). Moreover, in this case the relation D in Definition 2.1(5)
is also definable in M.

The following definition abstracts from the notion of cuttings in incidence
geometry (see the introduction of [15] for an extended discussion).

Definition 2.5. Let X, Y be infinite sets, £ C X xY. We say that E admits
cuttings with exponent t € R if there is some constant ¢ € Ry satisfying the
following. For any B C Y with |B| = n and any r € R with 1 < r < n there
are some sets X1,...,X; C X covering X with s < er® and such that for
each i € [s] there are at most ©* elements b € B so that X; is crossed by Ep.

In the case r > n in Definition 2.5, an r-cutting is equivalent to a distal
cell decomposition (sets in the covering are not crossed at all). And for r
varying between 1 and n, r-cutting allows to control the trade-off between
the number of cells in a covering and the number of times each cell is allowed
to be crossed.
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Fact 2.6. (Distal cutting lemma, [15, Theorem 3.2]) Assume E C X XY
admits a distal cell decomposition T of exponent < t. Then E admits cut-
tings with exponent <t and with the constant coefficient depending only on t
and the constant coefficient of T (the latter is not stated there explicitly, but
follows from the proof). Moreover, every set in this cutting is an intersection
of at most two cells in T .

Remark 2.7. We stress that in the Definition 2.5 of an r-cutting, some of
the fibers Fy, b € B might be equal to each other. This is stated correctly on
page 2 of the introduction of [15], but is ambiguous in [15, Definition 3.1] (the
family F there is allowed to have repeated sets, so it is a multi-set of sets) and
in the statement of [15, Theorem 3.2] (again, the family {@(M;a):a € H}
there should be viewed as a family of sets with repetitions — this is how it
is understood in the proof of Theorem 3.2 there).

The next theorem can be viewed as an abstract variant of the Szemerédi-
Trotter theorem. It generalizes (and strengthens) the incidence bound due
to Elekes and Szabé [23, Theorem 9] to arbitrary graphs admitting a distal
cell decomposition, and is crucial to obtain power saving in the non-group
case of our main theorem. Our proof below closely follows the proof of
[20, Theorem 2.6] (which in turn is a generalization of [25, Theorem 3.2]
and [13, Theorem 4]) making the dependence on s explicit. We note that
the fact that the bound in Theorem 2.8 is sub-linear in s was first observed
in a special case in [53].

As usual, given d,v € N we say that a bipartite graph £ C U x V is
K, -free if it does not contain a copy of the complete bipartite graph Ky,
with its parts of size d and v, respectively.

Theorem 2.8. For every d,t € N> and ¢ € Ry there exists some C =
C(d,t,c) € R satisfying the following.
Assume that E C X XY admits a distal cell decomposition T such that

|T(B)| < c|BJ|! for all finite B CY. Then, taking v, = (Z;l)ld,'yz = =t
we have: for allv € N>g and A Cp,, X, B C,, Y such that EN (A x B) is

K, -free,

IEN(Ax B)|<Cvr(m"™n?+m+n).

Before giving its proof we recall a couple of weaker general bounds that will
be used. First, a classical fact from [30] giving a bound on the number of
edges in Kg,-free graphs without any additional assumptions (see e.g. [11,
Chapter VI.2, Theorem 2.2] for the stated version):
Fact 2.9. Assume E C A x B is Kg,-free, for some d,v € N>1 and A, B
finite. Then |EN A x B| < vi|A||B|'"a +d|B|.

Given a set Y and a family F of subsets of Y, the shatter function 7r :
N — N of F is defined as

mr(z) :=max{|FNB|: BCY,|B| =z},
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where FNB={SNB:S e F}.

Second, the following bound for graphs of bounded VC-density is only
stated in [25] for Kg,-free graphs with d = v (and with the sides of the
bipartite graph exchanged), but the more general statement below, as well
as the linear dependence of the bound on v, follow from its proof.

Fact 2.10. [25, Theorem 2.1] For every ¢ € R and t,d € N there is some
constant C = C(c,t,d) such that the following holds.

Let E C X XY be a bipartite graph such that the family F = {E, : a € X}
of subsets of Y satisfies nr(z) < czt for all z € N (where E, = {b €Y :
(a,b) € E}). Then, for any A Cp, X, B C,, Y so that EN (A X B) is
K, -free, we have

|EN (A x B)| < Cv(m'~in+m).

Remark 2.11. If E C X x Y admits a distal cell decomposition 7 with
|T(B)| < ¢|BJ! for all BC Y, then for F = {E, : a € X} we have mx(z) <
cz! for all z € N.

Indeed, by Definition 2.1, given any finite B C Y and A € T(B), BNE, =
BN E,y for any a,a’ € A (and the sets in T (B) give a covering of X), hence
at most |7 (B)| different subsets of B are cut out by the fibers of E.

Proof of Theorem 2.8. Let A Cp, X, B C,, Y so that EN(Ax B) is Ky ,-free
be given.
If n > m?, then by Fact 2.9 we have

(2.1) |[EN(Ax B)| < vimn'"i +dn < dy(n%nl_é +n) = 2dvn.
Hence we assume n < m? from now on.
Let r := m¥L (note that » > 1 as m% > n), and consider the family

td—1
Y= (Ep:b EnB) of subsets of X (some of the sets in it might be repeated).

By assumption and Fact 2.6, there is a family C of subsets of X giving a
L_cutting for the family 3. That is, X is covered by the union of the sets in

T
C, any of the sets C € C is crossed by at most |B|/r elements from 3, and
IC| < ayrt for some a1 = ay(c,t).

m W T

Then there is a set C' € C containing at least 77 = —— points from
aymtd—T
_t
A. Let A’ C ANC be a subset of size exactly [ ntdo -‘
apmtd—T

¢ . td—1
If |[A/| < d, we have ntd=r < |A| < d, son < didTlozl T mt. By
aym -1
assumption, Remark 2.11 and Fact 2.10, for some ag = as(c, t,d) we have

_1 td=1
|IEN(Ax B)| < aw(nml_% +m) < ocgl/(dthlal T omimlTT + m),
hence

(2.2) |EN (A x B)| < asvm for some ag = as(c,t,d).
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Hence from now on we assume that |A’| > d. Let B’ be the set of all
points b € B such that Ej crosses C. We know that

td

1
d—1 d—1
B < Bl M0 2T e
T

Again by Fact 2.9 we get
BN (4 x B)| < dv(|A|| B4 + |B)
< dv(|A'laf AT+ af| A1) < agv| A
for some ay = ay(c,t,d). Hence there is a point a € A’ such that |[E,NB’| <
oyv| A4,
Since E N (A x B) is Kq,-free, there are at most v — 1 points in B \ B’

from E, (otherwise, since none of the sets Ep,b € B\ B’ crosses C' and C
contains A’, which is of size > d, we would have a copy of K;,). And we
t

t
have |A’] < 21— 11 < o<21 n'® 1 as |A' > d > 1. Hence

apmtd—1 mtd—1

|E,NB| < |E,NB'|4+|E,N(B\ B)| < auv|A " 4 (v - 1)

t(d—1) t(d—1)

d—1
a42 n td—1 n td—1
> T4 -1 <asv—pyg +(¥-1)
Qq mtd—1 mtd—1

for some a5 := as(c,t,d). We remove a and repeat the argument until (2.1)
or (2.2) applies. This shows:

m t(d—1)
n td—1
|[EN(Ax B)| < (2dv+ asv)(n+m) + Z asv———+ (v —1)
1 gtd—1
i=nd

t(d—1)

m
1
< (2d 4 as)v(n+m) + asyn td-1 Z — + (v —1)m.

1 gtd—1
1=nd
Note that
1_d=1
1 -
1 o dx T (ng - 1) -
Z.d—lg/l a1 T a1 1 _ d-1
Z_n% g td—1 nd—1 ptd—1 ~ H—1 ~ =1
< td —1 1- 4=t
. m =
= - 1d

using d,t > 2 and that the second term is non-negative for n > 1.
Taking C' := 3 max{2d + as, (ﬁ%)ldag,} — which only depends on ¢, t,d —
we thus have

(d—1) _
[EN(AxB)| < %V(n +m) + gvnttd—i mlTieT %ym

(t—1)d  td—t
< Cv(m W@=T ntd=1 4+ m +n)
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for all m, n. U

For our applications to hypergraphs, we will need to consider a certain
iterated variant of the bound in Theorem 2.8.

Definition 2.12. Let £ be a family of subsets of X x Y and v € R. We
say that &£ satisfies the y-Szemerédi- Trotter property, or v-ST property, if
for any function C' : N — Nxj there exists a function C’ : N — N>; so
that: for every E € £, s € N>4,v € N>g,n € Nand A C X, B C Y with
|A] < n®72)|B| < n?, if for every a € A there are at most C(v)n*~* elements
a' € A with |E, N Ey N B| > v, then |[EN (A x B)| < C'(v)nts=D=7,

We say that a relation £ C X xY satisfies the v-ST property if the family
& :={FE} does.

Lemma 2.1. Assume that £ is a family of subsets of X x Y and v € R.

(1) Assume that X', Y’ are some sets and f : X — X', g: Y — Y are bijec-
tions. For E € &, let B := {(z,y) € X' xY': (fY(x),g7'(y)) € E},
and let & := {E': E € £}, a family of subsets of X’ x Y’. Then &
satisfies the v-ST property if and only if £ satisfies the v-ST property.

(2) Assume that for some k,¢ € N we have X = | |;cy X3, Y = ;g Vi,
and let E; ; .= EN (X; xYj), & :={F;;: E €&} Assume that each
&; ;j satisfies the -ST property. Then £ also satisfies the v-ST property.

Proof. (1) is immediate from the definition. In (2), given C : N — N>q,
assume C’Z{J : N — N1 witnesses that &; ; satisfies the 4-ST property. Then
C = > d)elkx [ C} ; witnesses that & satisfies the 7-ST property. O

Lemma 2.13. Assume that € C P (X xY), 71,72 € Ry with 1,72 <
Lyi+7 >1 and Cy: N — R satisfy:

(%) for every E € €, v € N>y and finite A C,, X,BC, Y, if EN(A X B) is
Ky, -free, then |EN (A x B)| < Co(v)(m"n”? +m +n).

Then & satisfies the v-ST property with v := 3 — 2(y1 +72) < 1 and
C'(v) :=2Cy(v)(C(v) +2).

Proof. Given E € £ and finite sets A, B satisfying the assumption of the
~-ST property, we consider the finite graph with the vertex set A and the
edge relation R defined by aRda’ < |E, N E, N B| > v for all a,d’ € A.
By the assumption of the +-ST property, this graph has degree at most
r:= C(v)n*4, so it is (r 4+ 1)-colorable by a standard fact in graph theory.
For each i € [r + 1], let A; C A be the set of vertices corresponding to the
ith color. Then the sets A; give a partition of A, and for each i € [r+ 1] the
restriction of E to A; x B is Ko ,-free.
For any fixed i, applying the assumption on E to A; x B, we have

[E 0 (Ai x B)| < Co(v) (A" B|™ + |Ai] + |B]) .
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Then we have

IEN(AxB)| < )  |EN(A;x B)
i€[r+1]

< > Colv) (A" B> + |A| +|B])
i€[r+1]

23) <G| Yo 1AMBMe+ > JAl+ > |B

i€[r+1] i€[r+1] i€[r+1]

For the first sum, applying Holder’s inequality with p = 711, we have

Z |A;[1| B2 = | B Z | A

1€[r+1] i€[r+1]
gel I-m

<[BP | > |4 o1

i€[r+1] i€[r+1]

= |B|72’A|71 (7“ + 1)1—71 < n272n(s—2)71 (C(l/)ns_4 + 1)1—’)’1
< p2rpls—2n C) + 1)1771 n(5—0(1-m)
< (C(v)+ 1)n(s—4)+2(71+72) = (C(v) + l)n(s_l)_'y

for all n (by definition of v and as s > 4,C(r) > 1,0 <y <1).
For the second sum, we have

S 1Al =14 <02

ie[r+1]
for all n. For the third sum we have

Y 1Bl (r+ DBl < (C)n* ™+ 1)n® < (C(v) + 1)n*?
i€[r+1]

for all n. Substituting these bounds into (2.3), as v < 1 we get
|EN (A x B)| <2Cow)(C(v)+2)nt*=Y77. O

We note that the v-ST property is non-trivial only if v > 0. Lemma 2.13
shows that if £ satisfies the condition in Lemma 2.13(x) with v + 72 <
%, then & satisfies the «-ST property for some v > 0. By Theorem 2.8
this condition on ~; + 2 is satisfied for any relation admitting a distal cell
decomposition, leading to the following.

Proposition 2.14. (1) Assume that t € N>g and E C X XY admits a
distal cell decomposition T such that |T(B)| < c|B|! for all finite B C Y.
Then E satisfies the v-ST property with v = 5= > 0 and ¢’ : N — N>1

2t—1
depending only on t,c,C.
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(2) In particular, if the binary relation E C X x (Y x Z) admits a distal
cell decomposition T of exponent t, then the family of fibers

E:={E.CXxY:2€Z}CP(XxY)
satisfies the v-ST property ~v := Til

Proof. (1) By assumption and Theorem 2.8 with d := 2, there exists some
d = d(t,¢) € R such that, taking v := %,w = o, for all v €
N>o,m,n e Nand A C,,, X, B C,, Y with EN (A x B) is Ky ,-free we have

|IEN(Ax B)|<dv(m™n”+m+n).
Then, by Lemma 2.13, E satisfies the 4-ST property v := 3 — 2(y1 + 72) =

3—23=2 = 1> 0and C'(v) :=2¢v(C(v) + 2).

(2) Combining (1) and Remark 2.3. O

The ~ in Proposition 2.14 will correspond to the power saving in the main
theorem. Stronger upper bounds on 71,72 in Lemma 2.13(x) (than the ones
given by Theorem 2.8) are known in some particular distal structures of
interest and can be used to improve the bound on « in Proposition 2.14, and
hence in the main theorem. We summarize some of these results relevant
for our applications.

Fact 2.15. Let M = (M, <,...) be an o-minimal expansion of a group.

(1) Let € be a definable family of subsets of M? x M dy € N, i.e. £ =
{E, : b € Z} for some d3 € N and definable sets E C M? x M% x
M%7 C M. The definable relation E viewed as a binary relation on
M? x M%%d qdmits a distal cell decomposition with exponent t =2 by
[15, Theorem 4.1]. Then Proposition 2.14(2) implies that £ satisfies the
~-ST property with v := % (See also [6] for an alternative approach.)

(2) For general dy,dy € N>o, every definable relation E C M x pfd2tds
admits a distal cell decomposition with exponent t = 2d; — 2 by []
(this improves on the weaker bound in [3, Section 4] and generalizes
the semialgebraic case in [11]). As in (1), Proposition 2.14(2) implies
that any definable family £ of subsets of M% x M satisfies the v-ST
property with v := Wl—ﬁ

In particular this implies the following bounds for semialgebraic and con-
structible sets of bounded description complexity:

Corollary 2.16. (1) If di,d2, D € N>o, and Ep is the family of semial-
gebraic subsets of RM x R% of description complexity D (i.e. every
E € & is defined by a Boolean combination of at most D polynomial
(in-)equalities with real coefficients, with all polynomials of degree at
most D), then Ep satisfies the v-ST property with v := %%5 (noting
that for a fived D, the family Ep is definable in the o-minimal structure
(R, +, X, <) and using Fact 2.15(2)).
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(2) If di,d2,D € N>o and Ep is the family of constructible subsets of
Ch x C% of description complexity D (i.e. every E € & is defined by
a Boolean combination of at most D polynomial equations with complex
coefficients, with all polynomials of degree at most D), then Ep satis-
fies the v-ST property with v := %%5 (noting that for a fized D, every
E € Ep can be viewed as a constructible, and hence semialgebraic, subset
of R241 x R%42 of description complexity D, and using (1)).

We note that a stronger bound is known for algebraic sets over R and C,
however in the proof of the main theorem over C we require a bound for
more general families of constructible sets:

Fact 2.17. (1) (]25, Theorem 1.2], [60, Corollary 1.7]) If di,ds € N>y and
E C RM x R% s algebraic with each Ey,b € R% an algebraic variety
of degree D in R4, then E satisfies the condition in Lemma 2.15(x)
with y1 = 2;21:}),72 = 2dcf1_1 and some function Cy depending on ds, D.
Hence, by Lemma 2.13, E satisfies the v-ST property with ~ := 20!1%1.
(2) If di,dy € N>o and E C Ch x C% is algebraic with each Ey, b € C%
an algebraic variety of degree D, it can be viewed as an algebraic subset
of R?W x R2% with all fibers algebraic varieties of fixed degree, which

implies by (1) that E satisfies the v-ST property with ~ := 4d1171. (This

improves the bound in [23, Theorem 9].)

Problem 2.18. We expect that the same bound on v as in Fact 2.17(2)
should hold for an arbitrary constructible family Ep over C in Corollary
2.16(2), and the same bound on ~y as in Fact 2.17(1) should hold for an arbi-
trary definable family € in an o-minimal structure in Fact 2.15(2). However,
the polynomial method used to obtain these stronger bounds for high dimen-
stons in the algebraic case does not immediately generalize to constructible
sets, and is not available for general o-minimal structures (see [5]).

Fact 2.19. Assume that d1,d2,s € N and & is a family of semilinear subsets
of R4 x R% so that each E € & is defined by a Boolean combination of s
linear equalities and inequalities (with real coefficients). Then by [1, Theo-
rem (C)], for every e € Rxq the family € satisfies the condition in Lemma
2.13(%) with v1 +7v2 < 1+ ¢ (and some function Cy depending on s and €).
It follows that £ satisfies the (1 — e)-ST property for every € > 0 (which is
the best possible bound up to € ).

Fact 2.20. It has been shown in [2] that every differentially closed field
(with one or several commuting derivations) of characteristic 0 admits a
distal expansion. Hence by Fact 2./, every definable relation admits a distal
cell decomposition of some finite exponent t, hence by Proposition 2.14(2)
any definable family € of subsets of C M4 x M® in o differentially closed
field M of characteristic O satisfies the v-ST property for some v > 0.

Fact 2.21. The theory of compact complex manifolds, or CCM, is the theory
of the structure containing a separate sort for each compact complex variety,
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with each Zariski closed subset of the cartesian products of the sorts named
by a predicate (see [11] for a survey). This is an w-stable theory of finite
Morley rank, and it is interpretable in the o-minimal structure Rg,. Hence,
by Fact 2.4 and Proposition 2.1/(2), every definable family € admits a distal
cell decomposition of some finite exponent t, and hence satisfies the v-ST
property for some v > 0.

We remark that in differentially closed fields it is not possible to bound
t in terms of d; alone. Indeed, the dp-rank of the formula “x = z” is > n
for all n € N (since the field of constants is definable, and M is an infinite
dimensional vector space over it, see [17, Remark 5.3]). This implies that
the VC-density of a definable relation £ C M x M™ cannot be bounded
independent of n (see e.g. [34]), and since ¢ gives an upper bound on the
VC-density (see Remark 2.11), it cannot be bounded either.

Problem 2.22. Obtain explicit bounds on the distal cell decomposition and
incidence counting for relations E definable in DCFy (e.g., are they bounded
in terms of the Morley rank of the relation E?).

3. RECONSTRUCTING AN ABELIAN GROUP FROM A FAMILY OF BIJECTIONS

In this and the following sections we provide two higher arity variants of
the group configuration theorem of Zilber-Hrushovski (see e.g [16, Chapter
5.4]). From a model-theoretic point of view, our result can be viewed as a
construction of a type-definable abelian group in the non-trivial local locally
modular case, i.e. local modularity is only assumed for the given relation,
as opposed to the whole theory, based on a relation of arbitrary arity > 4.

In this section, as a warm-up, we begin with a purely combinatorial
abelian group configuration for the case of bijections as opposed to finite-to-
finite correspondences. It illustrates some of the main ideas and is sufficient
for the application in the o-minimal case of the main theorem in Section 6.

In the next Section 4, we generalize the construction to allow finite-to-
finite correspondences instead of bijections (model-theoretically, algebraic
closure instead of the definable closure) in the stable case, which requires
additional forking calculus arguments.

3.1. Q-relations or arity 4. Throughout this section, we fix some sets
A, B,C,D and a quaternary relation () C AxBxCxD. We assume that Q
satisfies the following two properties.
(P1) If we fix any 3 variables, then there is exactly one value for the 4th variable
satisfying Q.
(P2) If
(o, B;7,0), (o, 8'57,6), (/. B59',0) € Q,
then
(e, B;7',0") € Qs
and the same is true under any other partition of the variables into two
groups each of size two.
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Intuitively, the first condition says that ¢ induces a family of bijective func-
tions between any two of its coordinates, and the second condition says that
this family of bijections satisfies the “abelian group configuration” condi-
tion in a strong sense. Our goal is to show that under these assumption
there exist an abelian group for which () is in a coordinate-wise bijective
correspondence with the relation defined by av- 8 = - 6.

First, we can view the relation ) as a 2-parametric family of bijections
as follows. Note that for every pair (¢,d) € C' x D, the corresponding fiber
{(a,b) € Ax B:(a,b,c,d) € Q} is the graph of a function from A to B by
(P1). Let F be the set of all functions from A to B whose graph is a fiber
of Q.

Similarly, let G be the set of all functions from C to D whose graph is a
fiber of @ (for some (a,b) € A x B). Note that all functions in F and in G
are bijections, again by (P1).

Claim 3.1. For every (a,b) € Ax B there is a unique f € F with f(a) =,
and similarly for G.

Proof. We only check this for F, the argument for G is analogous. Let
(a,b) € Ax B be fixed. Existence: let ¢ € C be arbitrary, then by (P1) there
exists some d € D with (a,b,c,d) € Q, hence the function corresponding to
the fiber of Q at (c,d) satisfies the requirement. Uniqueness follows from
(P2) for the appropriate partition of the variables: if (a, b; ¢, d), (a,b;c1,d1) €
Q for some (c,d),(c1,d1) € C x D, then for all (z,y) € A x B we have
(m,y,c,d)GQ — (:E,y;c1,d1)€Q. U
Claim 3.2. For every f € F and (x,u) in Ax C there exists a unique g € G
such that (z, f(z),u, g(u)) € Q (which then satisfies (', f(z"),u/, g(v")) € Q
for all (2',u') € Ax C).
And similarly exchanging the roles of F and G.

Proof. As x, f(z),u are given, by (P1) there is a unique choice for the fourth
coordinate of a tuple in ) determining the image of g on u. There is only
one such g € G by Claim 3.1 with respect to G. O

For f € F, we will denote by f* the unique ¢ € G as in Claim 3.2.
Similarly, for g € G, we will denote by g+ the unique f € F as in Claim 3.2.

Remark 3.3. Note that (f+)t = f and (¢-)t =g forall f € F,g€g.

Claim 3.4. Let fi, fo, f3 € F, and g; := fi- € G fori € [3]. Then f30f2_10
fieF,gz09, og1€G and (fso fy o fi)t =g30gy ' ogi.

Proof. We first observe the following: given any @ € A and ¢ € C, if we
take b := (fso fy' o fi)(a) € B and d := (g3 095" 0g1)(c) € D, then
(a,b,c,d) € Q. Indeed, let by := fi(a), ay = f{l(bl), then b = f3(as9).
Similarly, let dy := g1(c), c2 := g5 '(d1), then d = g3(c2). By the definition
of 1 we then have

(a,bl,C, dl) S Qa (a27b17027d1) S Q7 (a27b7 C2ad) S Q
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Applying (P2) for the partition {1,3} U {2,4}, this implies (a,b,c,d) € Q,
as wanted.

Now fix an arbitrary ¢ € C and take the corresponding d, varying a € A
the observation implies that the graph of f3o fy Lo f1 is given by the fiber
Q(c,q)- Similarly, the graph of g3 o gy Lo gy is given by the fiber Q(a,p) for an
arbitrary a € A and the corresponding b; and (f30 f{l o fi)t =gso 951 g1
follows. O

Claim 3.5. For any f1, fo, f3 € F we have fg,of;1 ofi=f1 of{1 o f3, and
similarly for G.

Proof. Let a € A be arbitrary. We define by := fi(a), ag := f; (b
by := f3(ag), so we have (fz o fy ' o fi)(a) = bs. Let also by :=
ayg := fy '(bs) and bz := fi(as), so we have (f1 o f5 ' o f3)(a) = bs.
We need to show that b5 = bs.
Let ¢; € C be arbitrary. By (P1) there exists some d; € D such that

and

1)
f3(a’)>

(3.1) (a,b1,c1,d1) € Q.

Applying (P1) again, there exists some co € C' such that
(3.2) (az,b1,c2,d1) € Q,

and then some do € D such that

(3.3) (ag, b3, ca,ds) € Q.

Using (P2) for the partition {1,3} U{2,4}, it follows from (3.1), (3.2), (3.3)
that
(3.4) (a,bg,Cl,dg) S Q
On the other hand, by the choice of by, a2, b3, (3.1), (3.2), (3.3) and Claim
3.1 we have: Q(c, 4,) is the graph of f1, Q.4 is the graph of f; and
Q(ca,d2) is the graph of f3. Hence we also have
(a,ba, c,d2) € Q, (a4,ba,c2,d1) € Q, (ag,b5,c1,d1) € Q.
Applying (P2) for the partition {1,4} U {2, 3} this implies
(a,bs,c1,ds) € Q,
and combining with (3.4) and (P1) we obtain bg = bs. O
Claim 3.6. Given an arbitrary element fo € F, for every pair f, f' € F we
define
fHf=Ffofylof.
Then (F,4+) is an abelian group, with the identity element fo.
Proof. Note that for every f, f' € F, f+ f' € F by Claim 3.4. Associativity
follows from the associativity of the composition of functions. For any f € F
we have f+ fo = fofylofo=f, foo f~ o fo € F by Claim 3.4 and
f+ (fO o f_1 o fO) =fo f[;l o (fO o f_1 o fO) = fo, hence fy is the right
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identity and fyo f~' o fy is the right inverse of f. Finally, by Claim 3.5 we
have f+ f' = f'+ f for any f, f' € F, hence (F,+) is an abelian group. O

Remark 3.7. Moreover, if we also fix go := f;- in G, then similarly we
obtain an abelian group on G with the identity element gg, so that (F,+)
is isomorphic to (G, +) via the map f + f* (it is a homomorphism as for
any fi, f2 € F we have (fio fylo fo)= = fi- o g5t o f3 by Claim 3.4, and
its inverse is g € G — g+ by Remark 3.3).

Next we establish a connection of these groups and the relation Q). We
fix arbitrary ag € A, by € B, ¢y € C and dy € D with (ag, by, co,dp) € Q. By
Claim 3.1, let fy € F be unique with fo(ag) = bo, and let gy € G be unique
with go(co) = do. Then gy = fi- by Claim 3.2, and by Remark 3.7 we have
isomorphic groups on F and on G. We will denote this common group by
G:= (F,+).

We consider the following bijections between each of A, B,C,D and G,
using our identification of G with both F and G and Claim 3.1:

e let m4: A — F be the bijection that assigns to a € A the unique f, € F
with fo(a) = bo;
e let mp: B — F be the bijection that assigns to b € B the unique f, € F

with fy(ao) = b
e let mo: C — G be the bijection that assigns to ¢ € C the unique g. € G

with gc(c) = do;

e let mp: D — G be the bijection that assigns to d € D the unique g4 € G

with g4(co) = d.

Claim 3.8. For anya € A and b € B, ma(a)+ wp(b) is the unique function
f € F with f(a) =b.

Similarly, for any ¢ € C and d € D, mc(a)+mp(b) is the unique function
g € G with g(c) =d.
Proof. Let (a,b) € Ax B be arbitrary, and let f := wa(a)+7p(b) = 7p(b)+
ma(a) = mp(b)o fy toma(a). Note that, from the definitions, 7 (a): a + by,
fot:bo = ag and wp(b): ag — b, hence f(a) = b. The second claim is
analogous. O

Proposition 3.9. For any (a,b,c,d) € Ax Bx C x D, (a,b,c,d) € Q if
and only if ma(a) + 75 (b) = mo(c)t + mp(d)* (in G).

Proof. Given (a,b,c,d), by Claim 3.8 we have: 7m4(a)+mp(b) is the function
f € Fwith f(a) = b, and 7¢(c) +7p(d) is the function g € G with g(c) = d.
Then, by Claim 3.2, (a,b,¢,d) € Q if and only if f = g+, and since L is an
isomorphism this happens if and only f = 7¢(c)* + mp(d)*. O

3.2. Q-relation of any arity for dcl. Now we extend the construction of
an abelian group to relations of arbitrary arity > 4. Assume that we are
given m € N>y, sets X1,..., X, and a relation ) C X x--- x X, satisfying
the following two conditions (corresponding to the conditions in Section 3.1
when m = 4).
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(P1) For any permutation of the variables of ) we have:
Var, ... Va3, Q(z1, ..., ).

(P2) For any permutation of the variables of @) we have:
vwla 1’2VZ/37 o ymvyén ey y;n (Q(i.v g) A Q(i.a gl) —

(Val, #4Q(. ) © Q1))

where = (21,22),7 = (y3,...,Ym), Q(Z,y) evaluates @ on the concate-
nated tuple (z1,x2,¥s,...,Ym), and similarly for z’, 7.
We let F be the set of all functions f : X; — Xs whose graph is given
by the set of pairs (x1,22) € X1 x X» satisfying Q(z1,x2,b) for some b €
X3 X ... x X,

Remark 3.10. (1) Every f € F is a bijection, by (P1).

(2) For every a; € Xj,a2 € Xs there exists a unique f € F such that
f(a1) = ag (existence by (P1), uniqueness by (P2)). We will denote it

as fa,a0-

Lemma 3.11. For every ¢; € X;,4 < i < m and f € F there exists some
c3 € X3 such that Q(x1,z2,c¢3,¢4,...,Cm) is the graph of f.

Proof. Choose any a; € X, let ag := f(a1). Choose c3 € X3 such that
Q(a1,a2,c3,...,¢y) holds by (P1). Then Q(z1,x2,c3,¢4,...,Cn) defines
the graph of f by Remark 3.10(2). O

Lemma 3.12. For any fi, fo, f3 € F there exists some fqy € F such that
fiofitofs=fsofylofi=fu.

Proof. Choose any ¢; € X;,5 < ¢ < m and consider the quaternary relation
Q' C X1 x -+ x Xy defined by Q'(x1,...,24) := Q(x1,...,24,¢). Hence
Q' also satisfies (P1) and (P2), and the graph of every f € F is given by
Q' (x1,x9,b3,by) for some by € X3,by € X4, by Lemma 3.11. Then the
conclusion of the lemma follows from Claims 3.4 and 3.5 applied to Q’. O

Definition 3.13. We fix arbitrary elements e; € X;,7 = 1,...,m so that
Qe1,...,em) holds. Let fy € F be the function whose graph is given by
Q(z1,22,€3,...,6m), i.e. fo = fe, e, We define + : F x F — F by taking

ALt fai=fiofyto fa
As in Claim 3.6, from Lemma 3.12 we get:

Lemma 3.14. G := (F,+) is an abelian group with the identity element
Jo-

Definition 3.15. We define the map m1 : X1 — G by m1(a) := fg., for all
a € X1, and the map m : Xo — G by ma(b) := f, 5 for all b € Xo.

Note that both 71 and w5 are bijections by Remark 3.10.
Lemma 3.16. For any a € X1 and b € Xy we have mi(a) + m2(b) = fup-
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Proof. Let fi := mi(a), fo := m2(b). Note that fi(a) = ez, f; '(e2) = €1
and fa(e1) = b, hence (f1 + f2)(a) = (f2 + f1)(a) = fao fy ' o fi(a) = b, so
i+ f2 = fap O
Definition 3.17. For any set S C {3,...,m}, we define the map wg :
[Lics Xi = G as follows: for a = (a; : i € S) € [[;cgXi, let mg(a) be the
function in F whose graph is given by Q(z1,22,¢3,...,¢y) with ¢; := a; for
j €S andcj:=e;for j ¢ S. We write m; for m;.

Remark 3.18. For each i € {3,...,m}, the map m; : X; — G is a bijection
(by (P2)).

Lemma 3.19. Fiz some S C {3,...,m} and jo € {3,...,m}\ S. Let
So := SU{jo}. Then for any a € [[;cg Xi and aj, € X;, we have ws(a) +
Tjo (ajo) =TS (a/\ajo)'

Proof. Without loss of generality we have S = {3,...,k} and jo = k+1 <m

for some k. Take any a@ = (as,...,ar) € [[5<;<; Xi and a1 € Xg41. Then,
from the definitions: o

e the graph of f; := wg(a) is given by Q(x1,x2,as,...,a, exr1,€ ), where
e = (ek+27 s 7€m);

e the graph of fa := mj11(ak+1) is given by Q(z1, 22, €3, . .., €, a1, €);

e the graph of f3 := mg, (@ ags1) is given by Q(x1,x2,as, ..., ak, ax41,€).

Let ¢; € X; be such that fi(c;) = ez and let co € Xy be such that

faler) = co. Then (f1 + fo)(c1) = (f2+ f1)(c1) = fao fy ' o fi(e1) = c2. On
the other hand, the following also hold:

e Q(c1,€2,03,...,ak, €,41,€);
e Qe1,e2,€3,..., 6k €141,€);
° Q(el, C2,€3,...,€L, Qk+1, é/).
Applying (P2) with respect to the coordinates (2,k + 1) and the rest,
this implies that Q(cy,co,as, ..., ag, aky1,€) holds, i.e. f3(c1) = co. Hence

fi+ fa = f3 by Remark 3.10(2), as wanted.
]

Proposition 3.20. For any a = (a1,...,am) € Hie[m} X, we have
Qai,...,am) <= m(a1) + ma(a2) = m3(az) + ... + mm(am).
Proof. Let a = (a1,...,amy) € Hie[m] X; be arbitrary. By Lemma 3.16,
mi(a1) + m2(a2) = fa,.a00- Applying Lemma 3.19 inductively, we have
73, .m(a3, ..., am) = m(a3) + ...+ mp(am).

And by definition, the graph of the function 73, (as,...,an) is given
by Q(z1,z2,as,...,ay). Combining and using Remark 3.10(2), we get
Qar,...,am) = mi(a1) + me(a2) = w3, _m(as,...,an) <= mi(a1)+
ma(az) = m3(as) + ... + mm(am). O

We are ready to prove the main theorem of the section.
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Theorem 3.21. Given m € N>y, sets X1,..., Xy, and Q C Hie[m

fying (P1) and (P2), there exists an abelian group (G,+,0q) and bijections
7l : X; — G such that for every (a1, ...,am) € Hie[m] X, we have

] X, satis-

Q(ala cee 7am) — 7r'1(a1) —+ ... —|—7r7/n(am) = 0¢q.

Moreover, if we have first-order structures M =< N so that N is |M|*-
saturated, each X;,i € [m] is type-definable (respectively, definable) in N
over M and QQ = F N Hie[m] X; for a relation F definable in N over M,
then given an arbitrary tuple € € Q, we can take G to be type-definable
(respectively, definable) and the bijections w},i € [m] to be definable in N,
in both cases only using parameters from M and e, so that 7(e;) = O for
all i € [m)].

Proof. By Proposition 3.20, for any a = (a1, ...,am) € Hie[m] X; we have

(3.5) Qay,...,ap) <
mi(a1) + me(ag) = m3(ag) + ... + mp(am) <=
m1(a1) + ma(ag) + (—ms3(as)) + ... + (—mm(am)) = 0g,
hence the bijections 7} := 1,7} := mp and 7} : X; — G, 7w)(x) :== —m;(x) for
3 < i < m satisfy the requirement.

Assume now that, for each i € [m], X; is type-definable in N over M,
i.e. X; is the set of solutions in N of some partial type u;(z;) over M; and
that @ = F N ][, Xi for some M-definable relation F'. Then from (P1)
and (P2) for @, for any permutation of the variables of @) we have in N:

() A () A N\ g ) A

1<i<m—1
AF (21, T 1, ) A F (21,0 o1, 20) = X = 2,
/\ wi () A /\ i () A F(x1, 22,23, ..., 3m) A F(z1, 29,25, ..., 2),)A
i€m] i€[m]
AF(2y, 2, g, o) — F(2), 25, 2%, ... 2)).

By |M|*-saturation of NV, in each of these implications y; can be replaced
by a finite conjunction of formulas in it. Hence, taking a finite conjunction
over all permutations of the variables, we conclude that there exist some
M-definable sets X} D X;,i € [m] so that Q" := F'N[];,, X satisfies (P2)
and

(P1’) For any permutation of the variables of @', for any z; € X/,1 < i <
m — 1, there exists at most one (but possibly none) z,, € X/, satisfying

Q' (1, .., Tm).
We proceed to type-definability of G. Let (e1,...,en) € Q (so in ) be as
above (see Definition 3.13). We identify Xy with F, the domain of G, via the
bijection 7y above mapping az € Xz to fe, 4, (in an analogous manner we
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could identify the domain of G with any of the type-definable sets X;,7 € [s]).
Under this identification, the graph of addition in G is given by

-1
Ry = {(a%aéaag) € Xo x Xg X Xo: a,2/ = f€1,a2 © Jei,es © fe1,a’2(61)}

= {(ag,a'z,ag) € X2 X XQ X X2 : a’Q' = fel,llz o —1 (a’z)} .

€1,€2

We have the following claim.

Claim 3.22. e Foranya; € X1,as € Xo andb € [[3;2,, X/, if F(a1,a2,b)
holds then Fy [x,xx, defines the graph of fa, .a, (since Q' satisfies (P2)).
o For any b € [[3<;cpn XIs if F Ix1xx, coincides with the graph of some
function f € F, then using that Q' satisfies (P1') we have:
— for any a1 € X1, f(ay) is the unique element in X} satisfying F (a1, z2,b);
— for any ay € Xa, f~Y(az2) is the unique element in X| satisfying F(x1, as,b).

Using Claim 3.22, we have

Ry =R, | [] X,

1€[m)]

where R!, is a definable relation in N (with parameters in M U {e1,ez})
given by

R, (9, 2h,2}) 1 <= Hg,g’,z<ge II xing' e J[ Xinzexin
3<i<m 3<i<m

F(617627g/) /\F(Z,xé,gl) AF(elax%g) /\F(Z7x/2/7g))

This shows that (G,+) is type-definable over M U {ej,e2}. It remains to
show definability of the bijections n : X; — F, where F is identified with
X5 as above (i.e. to show that the graph of 7} is given by some N -definable
relation Pj(z;, x2) intersected with X; x X5).

We have 7] : a1 € X1 — fa,e, € F, hence we need to show that the
relation

{(a1,a2) € X1 x Xo: fa, e,(€1) = an}

is of the form Pj(z1,22) | X1 x Xy for some relation P; definable in N.
Using Claim 3.22, we can take

Pi(zy,20): <= g (g€ [[ XiIAF(x1,e2,9) A Fler,22,7)
3<i<m

We have 74 : ag € Xg > fe, q, € F, hence the corresponding definable
relation Py (x2,x2) is just the graph of the equality.

Finally, given 3 < ¢ < m, m; maps a; € X; to the function in F with the
graph given by Q(x1,x2,€3,...,€i—1,0i,€i41,...,€n). Hence, remembering
that the identity of G is fe, ¢,, which corresponds to ez € X5, and using
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Claim 3.22, the graph of 7} : a; € X; — —m;(a;)(e1) € Xs is given by the
intersection of X; x X9 with the definable relation

P(x;,22) : < Hz(z EX,AF(e1,2,€3,...,€i 1,04, €41, em)A\
R;(x2,2,62)>. l:l

4. RECONSTRUCTING AN ABELIAN GROUP FROM AN ABELIAN m-GON

Let T'= T°Y be a stable theory in a language £ and M a monster model
of T. By “independence” we mean independence in the sense of forking,
unless stated otherwise, and write a | b to denote that tp(a/bc) does not
fork over c. We assume some familiarity with the properties of forking in
stable theories (see e.g. [11] for a concise introduction to model-theoretic
stability, and [16] for a detailed treatment). We say that a subset A of M
is small if |A] < |L].

4.1. Abelian m-gons. For a small set A, as usual by its acla-closure we
mean the algebraic closure over A, i.e. for a set X its acly-closure is acl4 (X) :=
acl(AU X).

Definition 4.1. ! We say that a tuple (a1,...,a,) is an m-gon over a set
A if each type tp(a;/A) is not algebraic, any m — 1 elements of the tuple
are independent over A, and every element is in the acls-closure of the rest.
We refer to a 3-gon as a triangle.

Definition 4.2. We say that an m-gon (ay,...,a,) over A with m > 4 is
abelian if for any i# j € [m], taking a;; := (ax)pepm)\{i,j}> We have
aia; J_/ Qjj-

aclg (ajaj)Nacl4(aq;)

Ezample 4.3. Let A be a small set and let (G, -, 1) be an abelian group type-
definable over A. Let g1, ...,9m—1 € G be independent generic elements over
A, and let g, be such that g;-...-gm = 1g. Then (g1,...,9m) is an abelian
m-~gon over A associated to G.

Indeed, by assumption we have g1 - g2 € dcl(g1, g2) Ndcl(gs, ..., gm). Also
9192 L 4 93---9gm—1, hence gigs \I/A,gl-gz g3 ...9m—1, which together with
gm € dcl(g1 - 92,93, ..., gm—1) implies g1g2 \LA,gl-gz g3 ...9m- As the group
G is abelian, the same holds for any i # j € [m] instead of i = 1,5 = 2.

Definition 4.4. Given two tuples a = (a1, ...,am), @ = (a1,...,a,) and
a small set A we say that @ and @’ are acl-equivalent over A if acla(a;) =
acla(a}) for all ¢ € [m]. As usual if A = () we omit it.

Remark 4.5. Note that the condition “a,a’ are acl-equivalent” is stronger
than “the tuples a,a’ are inter-algebraic”, as it requires inter-algebraicity
component-wise.

1 An analogous notion in the context of geometric theories was introduced in [10] under
the name of an algebraic m-gon, and it was also used in [16, Section 7].
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In this section we prove the following theorem.

Theorem 4.6. Let a = (a1, ...,ay) be an abelian m-gon, over some small
set A. Then there is a finite set C' with a J/AC’, a type-definable (in M)

over acl(C'U A) connected (i.e. G = G°) abelian group (G,-) and an abelian
m-gon g = (g1,...,9m) over acl(C U A) associated to G such that a and g
are acl-equivalent over acl(C' U A).

Remark 4.7. After this work was completed, we have learned that indepen-
dently Hrushovski obtained a similar (but incomparable) result [31,32].

Remark 4.8. In the case m = 4, Theorem 4.6 follows from the Abelian Group
Configuration Theorem (see [9, Theorem C.2]).

In the rest of the section we prove Theorem 4.6, following the presenta-
tion of Hrushovski’s Group Configuration Theorem in [7, Theorem 6.1] with
appropriate modifications.

First note that, adding to the language new constants naming the ele-
ments of acl(A), we may assume without loss of generality that A = ) in
Theorem 4.6, and that all types over the empty set are stationary.

Given a tuple @ = (ay,...an) we will often modify it by applying the
following two operations:

e for a finite set B with a | B we expand the language by constants for

the elements of acl(B), and refer to this as “base change to B”.

e we replace a with an acl-equivalent tuple @ (over {)), and refer to this as

“inter-algebraic replacing”.

It is not hard to see that these two operations transform an (abelian) m-gon
to an (abelian) m-gon, and we will freely apply them to the m-gon a in the
proof of Theorem 4.6.

Definition 4.9. We say that a tuple (aq,...,am,&) is an expanded abelian
m-gon if (a1,...,an) is an abelian m-gon, £ € acl(ai,az) Nacl(as, ..., amn)
and ajas J-/g as...Qm.

We remark that the tuple £ might be infinite even if all of the tuples a;’s are
finite. Similarly, base change and inter-algebraic replacement transform an
expanded abelian m-gon to an expanded abelian m-gon.

From now on, we fix an abelian m-gon @ = (ay,...,a,). We also fix

¢ € acl(ay,az) Nacl(as,...,an) such that ajas J/£a3 ...y, (exists by the
definition of abelianity).
Claim 4.10. (aj,a2,&) is a triangle and (§,as, ..., an) is an (m — 1)-gon.
Proof. For i = 1,2, since a; | as,...,a, and £ € acl(as,...,ay) we have
a; | & Also a; | ag. Thus the set {a1,a2,{} is pairwise independent. We
also have ¢ € acl(ay, az). From ajas J/E as . ..a,, we obtain a; J-/ﬁag as...Qm.
Since a1 € acl(ag, ..., a,) we obtain a; € acl(§, az). Similarly ay € acl(§, aq),
thus (a1, a9,§) is a triangle.

The proof that (£, as,...,an) is an (m — 1)-gon is similar. O
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4.2. Step 1. Obtaining a pair of interdefinable elements. After ap-
plying finitely many base changes and inter-algebraic replacements we may
assume that a1 and ag are interdefinable over £, i.e. ap € dcl(§,az2) and
as € dcl(§, a1).

Our proof of Step 1 follows closely the proof of the corresponding step in
the proof of [7, Theorem 6.1], but in order to keep track of the additional
parameters we work with enhanced group configurations.

Definition 4.11. An enhanced group configuration is a tuple
(a7 b7 C? x? y? Z? d7 e)

satisfying the following diagram.

That is,

(a,b,c) is a triangle over de;

(c,z,x) is a triangle over d;

(y,x,a) is a triangle over e;

(y,z,b) is a triangle;

for any non-collinear triple in (a,b, ¢, z,y, z), the set given by it and de is
independent over (.

If e = 0 we omit it from the diagram:

In order to complete Step 1 we first show a few lemmas.

Lemma 4.12. Let (a,b,c,x,y,z,d,e) be an enhanced group configuration.
Let Z € M®? be the imaginary representing the finite set {z1,...,zr} of all
conjugates of z over bexyd. Then Z is inter-algebraic with z.

Proof. It suffices to show that acl(z;) = acl(z;) for all 1 <i,j < k. Indeed,
then Z € acl(zy,...,2;) = acl(z), and z € acl(Z) as it satisfies the algebraic
formula “z € 27.

We have cd | yz, so cd J/Z Yy, SO cdx J/Z by. Let B := acl(cdx) Nacl(by),
then B | B, so B C acl(z). But z € B, so B = acl(z). Then we also
have acl(z;) = B since for each z; there is an automorphism o of M with
o(z) =z and o(B) = B. O
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Lemma 4.13. Assume that (a,b,c,x,y,z,d,e) is an enhanced group con-
figuration. Then after a base change it is acl-equivalent to an enhanced
group configuration (a,by,c,x,y1,21,d,e) such that z; € dcl(byy). More-
over, b € dcl(by) and y € dcl(y1).

Proof. Recall that by our assumption all types over the empty set are sta-
tionary.

Let d'd'e’ = tp(ade)|abedeny-- We have ade | yz, hence ade | yzb. Then
by stationarity we have a’d'e’ =,.; ade. Let 2/, ¢ be such that o'd'e’s’'d =,
adexc. So (a',b,d,x',y,z,d €') is also an enhanced group configuration.
Applying Lemma 4.12 to it, the set 2z’ of conjugates of z over ybz'c'd is
inter-algebraic with z, and z’ € dcl(yba'd'd').

We add acl(a’d’e’) to the base, and take y, := ya/, by := bc, z; = 2.
Then (a, b1, ¢, x,y1, 21,d, ) is an enhanced group configuration satisfying the
conclusion of the lemma. O

Lemma 4.14. Let (a,b,c,x,y,z,d,e) be an enhanced group configuration
with e € dcl((). Then, applying finitely many base changes and inter-
algebraic replacements, it can be transformed to a configuration

(a1,b1,¢c1,21,%1,21,d, €)

such that y1 and z1 are interdefinable over by. (Notice that d and e remain
unchanged.)

Proof. Applying Lemma 4.13, after a base change and an inter-algebraic
replacement we may assume z € dcl(by).

Next observe that, since e € dcl((), the tuple (b,a,c,z,y,z,d,e) is also
an enhanced group configuration.

de...C

Y

By Lemma 4.13, after a base change, it is acl-equivalent to a configuration
(b,ai,c,z,y1,x1,d,e) with 1 € dcl(a;,y1) and y € dcl(y;). Thus after an
inter-algebraic replacement we may assume that = € dcl(ay) and z € dcl(by).

Finally, observe that (c,b,a,x, z,y,e,d) is an enhanced group configura-
tion.

Applying the proof of Lemma 4.13 to it, after base change to an inde-
pendent copy dd'e’ of cde, let a'a'dd'e’ =, axcde, let § be the set of
conjugates of y over ba’zz'e’, equivalently over ba’zz’ since €' € dcl(()). So
y' € dcl(ba’za").
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Now since 2’ € dcl(a’y) and z € dcl(by) (since this was satisfied on the
previous step), we have za’ € dcl(ba’y). But then za’ € dcl(ba'y’) for any
y' a conjugate of y over ba’zx’, and so zz' € dcl(ba'y’). We take by := ba’,
21 := z2' and y; := ¢’. Then y; € dcl(by121), and also z; € dcl(byyy), and
the tuple (a, b1, ¢, z,y1, 21, d, e) satisfies the conclusion of the lemma. O

We can now finish Step 1.

Let (a1, ...,am, &) be an expanded abelian m-gon. Let @ := aj . . . a,, and
n := acl(araz) Nacl(azas . .. am)

It is easy to check that (as, &, aq,7,a1,az2,a,0) is an enhanced group con-
figuration.

ae..
az as
a

Applying Lemma 4.14, after a base change it is acl-equivalent to an en-
hanced group configuration (a4, &', a},n',a}, ay, a, ) such that @} and df, are
interdefinable over &'. Replacing a1, as, as, as with a}, al, aj, a}j, respectively,
and ¢ with ¢ we complete Step 1.

Reduction 1. From now on we assume that in the expanded abelian m-gon
(a1,...,am,&) we have that a1 and az are interdefinable over §.

4.3. Step 2. Obtaining a group from an expanded abelian m-gon.
As in Hrushovski’s Group Configuration Theorem, we will construct a group
using germs of definable functions. We begin by recalling some definitions
(see e.g. [7, Section 5.1]).

Let p(x) be a stationary type over a set A. By a definable function on
p(z) we mean a (partial) function f(x) definable over a set B such that
every element a = p|ap is in the domain of f.

If f and g are two definable functions on p(z), defined over sets B and C'
respectively, then we say that they have the same germ at p(x), and write
f ~p g, if for all (equivalently, some) a |= p|apc we have f(a) = g(a). We
may omit p and write f ~ g if no confusion arises.

The germ of a definable function f at p is the equivalence class of f under
this equivalence relation, and we denote it by f. .

If p(x) and ¢(y) are stationary types over ), we write f : p — ¢ if for some
(any) representative f of f definable over B and a = p|p we have f(a) = q.
We say that f is invertible if there exists a germ § : ¢ — p and for some
(any) representative g definable over C' and a |= p|pc we have g(f(a)) = a.
We denote § by 1.

By a type-definable family of functions from p to ¢ we mean an ()-definable
family of functions f, and a stationary type s(z) over () such that for any
¢ = s(z) the function f, is a definable function on p, and for any a = pl.
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we have f.(a) E q(y)|.. We will denote such a family as fs: p — ¢, and the
family of the corresponding germs as fs: p — q.

Let p,q,s be stationary types over () and fs: p — ¢ a type-definable
family of functions. This family is generically transitive if f.(a) | a for any
(equivalently, some) ¢ = s and a = p|e. This family is canonical if for any
¢, =swehave fo~ fo e c=(.

Let p;(z;) := tp(a;/0) for i € {1,2}, and let ¢(y) := tp(&/0).
Since a; and ag are interdefinable over £ and £ € acl(aq, az), there exists
a formula p(x1,x2,y) € tp (a1, az,§) such that

= Vo 3= (1, 32, y), | Yy 3= mio(z, 22, ),
): V:mVxQHSdQO(»Th €2, y)a

for some d € N, and also

We now return to our expanded abelian m-gon (@, &).
=t
cl

p(a1, a2, y) F tp(€/araz).
It follows that ¢(x1,z2,7),7 |= ¢ gives a type-definable family of invertible
germs fq: p1 — p2 with fe(a1) = ao.

Remark 4.15. Let r |= q, by |= p1|r and by := f,(b1). By stationarity of types
over () we then have b1r = a1, and as (b1, z2,r) has a unique solution this
implies b1bar = ajagé, so by | be, by € dcl(bg,r) and r € acl(by, ba).

In particular fq: p1 — p2 is a generically transitive invertible family.

Consider the equivalence relation E(y,y’) on the set of realizations of
q given by rEr’ < f. ~ f.. By the definability of types it is relatively
definable, i.e. it is an intersection of an (-definable equivalence relation with
q(y) U q(y'). Assume & | ¢ with EEE'. We choose by = pi|€€’ and let
by := fe(b1) = fe(b1). By the choice of ¢ we have &, & € acl(by, bz), hence
¢ and ¢ are inter-algebraic over by. Since by | &£ it follows that £ and
& are inter-algebraic over (): as by ng ¢ and & € acl(b;€) implies &’ Lg £,
hence & € acl(§); and similarly € € acl(¢’). Hence the E-class of £ is finite.
Replacing £ by £/E, if needed, we will assume that the family fq: p1 — P2
is canonical.

We now consider the type-definable family of germs f;—l 1o fm: p1 — p1,
(r1,79) = ¢?). Again let E be a relatively definable equivalence relation on
¢ defined as (ri,72)E(rs,r4) if and only if f,fllofr2 ~ T;lo fry- Let s(2) be
the type ¢ /E. We then have (by e.g. [29, Remark 3.3.1(1)]) a canonical
family of germs hs: p1 — p1 such that for every (ri,m2) = q? there is

unique ¢ = s(z) with he = f-'of,,. We will denote this ¢ as ¢ = [ftofr].

T1

Clearly ¢ € dcl(ry,r2), r1 € dcl(e, r2) and ro € del(e, 7).

Lemma 4.16. For any (r1,73) = ¢® and ¢ := [frtofr,] we have ry | c
and ra | c.
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Proof. 1t is sufficient to prove the lemma for some (rq,77) = ¢(®. We take
r1 := & from our abelian expanded m-gon (@, §) and let 72 = ¢lq, ... a,.- Let
c:= (fglofm].

Let a := (as,...,an) and n := acl(aiaz) Nacl(agay ... an). We have an
enhanced group configuration

(]..__azl

7
ay
In particular (as, &, aq,m, a1, a2) form a group configuration over a, i.e. we
have a group configuration

a4 5

n
ay

where any three distinct collinear points form a triangle over a, and any
three distinct non-collinear points form an independent set over a.

It follows from the proof of the Group Configuration Theorem (e.g. see
Step (II) in the proof of [7, Theorem 6.1]) that ¢ | . & and ¢ | . 72.

We also have ra | aj...anm, hence ry \Lalaz a, and as ajaz | a this im-
plies reajas | @, which together with £ € acl(ajas) implies re | a. Hence

c| €and c | ro. O

This shows that the families of germs fq . p1 — pa, hs 1 p1 — p1 satisfy the
assumptions of the Hrushovski-Weil theorem for bijections (see [7, Lemma
5.4]), applying which we obtain the following.

(a) The family of germs hs: p1 — p1 is closed under generic composition
and inverse, i.e. for any independent c;, ¢y = s(z) there exists ¢ = s(z)
with fe = he,0he,, and also there is ¢3 = s(z) with he, = izc_ll.

(b) There is a type-definable connected group (G, ) and a type-definable
set S with a relatively definable faithful transitive action of G on S
that we will denote by * : G x § — 5, so that G, S and the action are
defined over the empty set.

(c) There is a definable embedding of s(z) into G as its unique generic type,
and a definable embedding of p;(z1) into S as its unique generic type,
such that the generic action of the family hs on p; agrees with that of
G on S, i.e. for any ¢ = s(z) and a |= p1(x)|c we have h.(a) = ¢ * a.

Reduction 2. Let r1, 79 be independent realizations of q(y), ¢ := [f,;lofm}
and s(z) := tp(c/0).

From now on we assume that s(z) is the generic type of a type-definable
connected group (G,-), the group G relatively definably acts faithfully and
transitively on a type-definable set S, the type pi(x1) is the generic type of
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S, and generically the action of hs on p1 agrees with the action of G on S,
and G, S and the action are definable over the empty set.

4.4. Step 3. Finishing the proof. We fix an independent copy (€, &) of
(@, ), ie. (€,&)=(a,&) and €€ | ac.
We denote by 7 the map 7: q(y)|e, = s(2)]¢, given by m: r — [fgelof,ﬂ.
Note that 7 is relatively definable over acl(€). Let
t(xs, ..., Tm) = tplas,...,amn/0),
te(y,x3,...,xm) =tp(§, as,...,am/0).
Note that by Claim 4.10 every tuple realizing t¢ is an (m — 1)-gon.

Notation 4.17. For a tuple ¢ = (¢3,...,¢m), J € {3,...,m} and O € {<, <
,>, >}, we will denote by ¢qj; the tuple ¢o; = (¢; : 3 <@ < m Aildj). For

example, c<; = (c3,...,¢j—1). We will typically omit the concatenation sign:
e.g., for ¢ = (c3,...,¢m), b= (b3,...,by) and j € {3,...,m} we denote by
C<j,bj, Cj the tuple (c3,...,¢j—1,b5,¢jx1,. .., Cm)-

Also in the proof of the next proposition we let a := (as,...,am), € :=
(e3,...,em), and continue using @ and € to denote the corresponding m-
tuples.

Proposition 4.18. For each j € {3,...,m} there exists r; |= q(y)l¢, such
that |= te(rj, e<j,aj,e>5) and (&) = w(ry) - T(rm—1) - ... 7(rs).
We will choose such r; by reverse induction on j. Before proving Propo-

sition 4.18 we first establish the following lemma and its corollary that will
provide the induction step.

Lemma 4.19. For j € {4,...,m} there exist r<j,rj,v<;, each realizing
q(y)le., such that

= te(r<j, a<js 825), F le(r)y e<jr aj, 55), = Le(r<y, asy, ex5)
and m(r<j) = n(r;) - m(r<j).
Proof. First we note that the condition r—j,7;,r<; = q(y)|e, can be re-

laxed to r<j,7j,7<; = q(y) by stationarity of g, since for j € {4,...,m}

and 7 = ¢(y) satisfying one of |= te(r,a<j, e>;5), | te(r,e<j,a5,esj), =
te(r,a<j,e>;) we have r | &. Indeed, assume e.g. |= t¢(r,a<j,e>;). We
have r € acl(a<j, €>;) and & € acl(es, ..., en). By assumption

{es,...,em,as,...,an}

is an independent set, hence we obtain r JJ@A €. Using & | é>; we con-
)

clude r | &. The other two cases are similar.
Let n := acle_,(e1,e;) Nacle;(e2,€e3,...,e;-1). Note that acl(n) = n,
hence all types over 7 are stationary, and e-; € .
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Then one verifies by basic forking calculus that

ecj-10.5-1 ¢
(4.1) D ¥

€1

is an enhanced group configuration over € ;. Namely,

o (ej,&,ej—1) and (1, ez, e;_1) are triangles over e.;_1, €x;;

e (e1,m,¢e;) and (e1, e2,&:) are triangles over e ;;

e for any non-collinear triple in e1, e, e;_1,¢€;,7, &, the set given by it and
€<j—1 is independent over e ;.

In addition, eje2ée | €s; and fe (e1) = ea.

The triple 1, ej, e;—1 is non-collinear, hence 7 J/é>j €3...ej. Since

é>jJ/€3...€j,

this implies n | esz...e;j. Since also n | as...a;, by stationarity of types
over () we have a3...a; =, e3...e;. Hence there exist r<j, b1, by such that
the diagram

fl<j,1 .,_a’.j*1
r<j

(4.2) by <
by

is isomorphic over 7 to the diagram (4.1). I.e., there is an automorphism of
M fixing 7 (hence also é;) and mapping (4.2) to (4.1).

It follows from the choice of the tuple (€,&.), diagrams (4.1), (4.2) and
their isomorphism over 7 that eje; J/neg ...ej_1 and bia; =, ere;. Since
aj | e1...en we have a; \Ln ex...ej_1. As by € acl(a;n), we have

blaj J/ €2...€51.
n
Since all types over 7 are stationary, this implies
blajeg ... €651 =p €1€5€2...€¢5_1,

hence there exists r; such that the diagram

ecj10.55-1
: r;

(4.3) N
b

is isomorphic to the diagram (4.1) over 7.
A similar argument with the roles of the a’s and the e’s interchanged
shows that ejejaz...aj—; =, biajaz...aj_1, hence there exists r—; such
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that the diagram

(4.4) by 3

€1

is isomorphic to the diagram (4.1) over 7.
From the choice of (€,&.) and the isomorphisms of the diagrams we have

(4.5) (freg o feb 0 fry)(b1) = b2 = frey (1)
We claim that by | r<j, &, 7j,7<;. Indeed, as
r<j;&e,7j,r<j € acl(as, ..., am,e3,...ey) and
ea | as,...,am,es3,...em,
we obtain ep | r<j,&,7j,r<;, hence ey J/Tj r<j,€e,T<j. As by € acl(ea, ;)

we have by J/Tj r<j,€e,T<j. Using by | r; we conclude

(46) bl ¢ T<j7§67rj7r§j'
It follows from (4.5) and (4.6) that
fr<j o fgel o frj = frgja
and hence
(47) <(f£;1 o fT‘<j) o) (fézl ) fT’j)) = fle o) frgj’
As noted at the beginning of the proof, we have that rj, 7, 7<; = q(y)le,
and we define co, c1, c2 |= 5(2)[¢, as follows:
co = m(rej) = [fglofr<ﬂ,
cl = 7T(’I“j) = [fgelof,,j-‘,
Co 1= 7T(7’§j) = ’—fg_elofTsﬂ'
By (4.7), to conclude that ¢; = ¢p - ¢; in G and finish the proof of the
lemma it is sufficient to show that ¢y | ¢;.
As ro; € acl(acj,e>;), rj,& € acl(e,a;), and {es,...,em,aj,a<;} is an
independent set, we have r; \|/6>_ ri€e. Since r<; | €>j (as (r<j,a<j,€>5)
J

is an (m — 1)-gon) we also have r; J’E r;. It follows then that cg \Lg 1.

Since, by Lemma 4.16, ¢y | & we have ¢o | c1.
This concludes the proof of Lemma 4.19. U

Corollary 4.20. For any j € {4,...,m}, let r<; = q(y)|e, with
= te(re), a<j, €>j)-
Then there exist r<j,r; = q(y)l|e. such that
Fte(r<j, G<j, €>5), = te(rj, €<, a5, €x5)

and w(r<;) = m(r;) - m(r<;).
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Proof. It is sufficient to show that for any =, with = t¢(r,a<j,es;), =
te(r',a<j, €>;) we have rae = r'ae. Indeed, given any (re;, 7%, 7% ;) satisfying
the conclusion of Lemma 4.19, we then have an automorphism o of M fixing
ae with o(r;) = r<;; as the map n is relatively definable over acl(e), it
then follows that r; := o(rl;),rj = o(r}) satisfy the requirements.

We have ra<;és; = r'a<jés;. As e | a and each of €,a is an (m — 2)-
tuple from the corresponding m-gon, we get a<;és; | asjé<;. Also r,r' €
acl(a<je;), as any realization of t¢ is an (m — 1)-gon, hence

r'acies; | asje<;.
As all types over the empty set are stationary, we conclude rae = r'ae. [0
We can now finish the proof of Proposition 4.18.

Proof of Proposition 4.18. We start with r<,, := £. Applying Corollary 4.20
with j := m, we obtain r,, and r<,, with 7(§) = 7(ry) - 7(rem).

Applying Corollary 4.20 again with j := m — 1 and r<;,—1 = <)y, we
obtain 7,1 and r<pm—1 with 7(§) = m(rp) - 7(rm-1) - T(rem—1)-

Continuing this process with j :=m — 2,...,4 we obtain some
Tm—2,--.,T4,T<4
with w(&) = w(rp) - ... - w(ra) - w(r<a). We take rs := r-4, which concludes
the proof of the proposition. (I

Proposition 4.21. There exist m1,72 = q(y)|e, such that f (a1) = e,
fra(e1) = az and w(rz) - w(r1) = w(§).

Proof. We choose r1 = q(y) with f;, (a1) = ez (possible by generic transi-
tivity: as a1 | eg, hence ajes = ajag by stationarity of types over (); and as
fe(ar) = az, we can take r1 to be the image of £ under the automorphism
of M sending (a1, a2) to (a1,e2)). We also have r1 | & (a1 | €and ey | €
by the choice of €, so ajea | €; as r1 € acl(ay, e2), & € acl(€), we conclude
r1 | &), hence 71 |= gl¢, by stationarity again.

Similarly £ | &1, hence € | [fr_llofge]. By Lemma 4.16 we also have

r1 J/ffT:lOfg,j. By stationarity of ¢ this implies ¢ =(frlof,] s SO there
1 e
exists some ry = ¢ such that &rg =[ilof ] r&.. Hence
1 e

fglofrz = falofﬁe’
equivalently
(4.8) fro = feof i o e,
In particular, ro € acl(§,r1,&.).
We claim that e; | r2€ri&.. Since & € acl(er,es), r1 € acl(ai, e2) and

{a1,e1,e2} is an independent set, we have r; \Le2 e1&e. Using r1 | es we
deduce 1 | e1&. As & | e, it implies that {r1,e1, &} is an independent
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set. We have r1,e1,& € acl(ay, e, e2) and € € acl(ay,az). Using indepen-
dence of ai,ao,e1,e2 we obtain £J/al e1€er1. Since € | aj, we have that
¢ | eirie, hence {£,e1,71,&} is an independent set and e; | &£ri&.. As
ro € acl(§, 1, &) we can conclude ey | rofri&e.

It then follows from (4.8) that

fraler) = (feofr o fe.)(e1) = az,
so fr,(€1) = as.
It also follows from (4.8) that
(o frd o (Ft o fi) = fito e
We let
e = (1) = [f o fn] and e i= w(r2) = [£2 o fry].

To show that c2 - ¢; = w(§) and finish the proof of the proposition it is
sufficient to show that ¢ | ca.

Since r1 € acl(aq,e2), r2 € acl(e1, az) (by Remark 4.15, as by the above
we have ry = ¢,e1 | 72 and fr,(e1) = a2) and & € acl(eg, ea), we obtain
7 \Lez ro€e. Using m1 | e2 we deduce r; | 12&, hence r; \Lge ro. It follows

then that c; Lg co and, as ¢; | &, we obtain ¢1 | co. O
Combining Propositions 4.21 and 4.18, we obtain some ri,...,r, =
q(y)|e. such that each r; is inter-algebraic with a; over {eq,...,en} and
w(ry) - m(ry) =m(rm) - ... w(rs).
Obviously each r; is also inter-algebraic over {ey,..., e} with 7(r;).
Thus, after a base change to {e1, ..., e, } and inter-algebraically replacing
ay with 7(r1)~L, ag with m(re)~t, and a; with 7(r;) for i € {3,...,m}, and

using that permuting the elements of an abelian m-gon we still obtain an
abelian m-gon, we achieve the following.

Reduction 3. We may assume that ai,...,ay realize the generic type
s(z) of a connected group G that is type-definable over the empty set, with
ai-ag - Qm - ... a3 = 1g.

To finish the proof of Theorem 4.6 it only remains to show that the group
G is abelian. We deduce it from the Abelian Group Configuration Theorem,
more precisely [9, Lemma C.1].

Claim 4.22. Let G be a connected group type-definable over the empty set,
m >4 and g1, ...,9m are generic elements of G such that g1, ..., gm form
an abelian m-gon and g1 - ... gm = 1lg. Then the group G is abelian.

Proof. Let B := acl(gs,...,gm). We have that gi,...,g4 are generics of
G over B, and they form an abelian 4-gon over B. Since g4 is inter-
algebraic over B with g¢i-gs-g3, we have that g¢1,g2,93,91:g2-g3 form an
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abelian 4-gon over B. Let D := aclg(g1,93) N aclp(g2,91-92-93). We have
91,93 L, 92, 91-92-g3, hence

91-92-93 € aclp(ga, D) = aclp (g2, aclp(g1, g3) Naclp(g2, g1-92-93)) -
By [9, Lemma C.1], the group G is abelian. O

5. MAIN THEOREM IN THE STABLE CASE

Throughout the section we work in a complete theory T in a language L.
We fix an |£|T-saturated model M = (M,...) of T, and also choose a large
saturated elementary extension M of M. We say that a subset A of M is
small if |A| < |L]. Given a definable set X in M, we will often view it as a
definable subset of M, and sometimes write explicitly X (M) to denote the
set of tuples in M realizing the formula defining X.

5.1. On the notion of p-dimension. We introduce a basic notion of di-
mension in an arbitrary theory imitating the topological definition of dimen-
sion in o-minimal structures, but localized at a given tuple of commuting
definable global types. We will see that it enjoys definability properties that
may fail for Morley rank even in nice theories such as DCFy.

Definition 5.1. If X is a definable set in M and F is a family of subsets of
X, we say that F is a definable family (over a set of parameters A) if there
exists a definable set Y and a definable set D C X x Y (both defined over
A) such that F = {Dy : b € Y}, where D = {a € X : (a,b) € D} is the
fiber of D at b.

Definition 5.2. (1) By a p-pair we mean a pair (X,px) where X is an
(-definable set and px € S(M) is an (-definable stationary type on X.

(2) Given s € N, we say that (X;,pi)ic[s is a p-system if each (X;,p;) is a
p-pair and the types p1,...,ps commute, i.e. p; ® p; = p; ® p; for all
i,j € [s].

Ezample 5.3. Assume T is a stable theory, (p;);c|s are arbitrary types over
M and X; € p; are arbitrary definable sets. By local character we can
choose a model My < M with [Mg| < |£] such that each p; is definable (and
stationary) over Mg and X, i € [s] are definable over M. The types (pi);c[s]
automatically commute in a stable theory. Hence, naming the elements of
My by constants, we obtain a p-system.

Assume now that (X;,pi)ic[s is a p-system. Given u C [s], we let 7, :
[Tic Xi = Ilieu Xi be the projection map. For i € [s], we let m; := my;y.
Given u,v C [s] with uNv =0, a = (a; : i € u) € [[;c, Xs and b = (b; :
i € v) € [[ic, Xi, we write a @ b to denote the tuple ¢ = (¢; : i € uUw) €
[Licuuy Xi with ¢; = a; for i € u and ¢; = b; for i € v. Given Y C Hie[s] X,
u C [s] and a € [[;¢, Xi, we write Yo := {b € [[;c(p,Xi:a®be Y} to
denote the fiber of Y above a.
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Example 5.4. If F is a definable family of subsets of Hie[s] X; and u C
[s], then {m,(F): F € F} and {Fa tFeF,a€ L Xi} are definable

families of subsets of [];., Xi (over the same set of parameters).

Definition 5.5. Let a = (a1,...,as) € X1 x --- x X5 and A a small subset
of M.
(1) We say that a is p-generic in X1 x -+ x Xg over A if (a1,...,as)
p1L® - @ps[A
(2) (a) For k < s we write dimp(a/A) > k if for some u C [s] with |u| > k
the tuple m,(a) is p-generic (with respect to the corresponding p-
system {(X;,p;) : i € u}).
(b) As usual, we define dimy(a/A) = k if dimy(a/A) > k and it is not
true that dimy(a/A) > k + 1.
(3) If ¢(z) € S(A) and ¢(Z) - T € X; x ... x X,, we write dimy(q) =
dimy(a/A) for some (equivalently, any) a = q.
(4) For a subset Y C XX --- x X definable over A, we define
dimy(Y') := max {dimy(a/A): a € Y}
= max {dimy(q): ¢ € S(A),Y € ¢},
note that this does not depend on the set A such that Y is A-definable.
(5) As usual, for a definable subset ¥ C X;x--- x X, we say that Y is
a p-generic subset of X1 x --- x X, if dimy(Y') = s (equivalently, Y is
contained in p; ® - -+ ® ps.)
If A =0 we will omit it.

Remark 5.6. It follows from the definition that for a definable set Y C
Xix - xXg, dimp(Y') is the maximal k& such that the projection of Y onto
some k coordinates is p-generic. As usual, for a definable Y C X7 x - -+ x X

and small A C M we say that an element a € Y is generic in Y over A if
dimy(a/A) = dimy(Y).

Remark 5.7. Tt also follows that if N' = M is an arbitrary |£|"-saturated
model and p; := p;|n € S(N) is the unique definable extension, for i € [s],
then (X;(N), p))ic[s] is a p-system in NV, and for every definable subset Y C
X1 % ... x X in M we have dim,(Y) = dim, (Y (N)), where the latter is
calculated in N with respect to this p-system.

Claim 5.8. Let F be a definable (over A) family of subsets of X7 x -+ x X
and k < s. Then the family

(F € F: dimy(F) = k}
is definable (over A as well).

Proof. Assume that F = {D; : b € Y} for some definable Y and definable
D C(Xix..xX)xY. Given 0 < k < s,let Yy, :={be Y : dimy(Dy) = k},
it suffices to show that Y} is definable. As every p; is definable, for every
u C [s], the type p, = @),;c, Pi is also definable. In particular, there is a
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definable (over any set of parameters containing the parameters of Y and
D) set Z,, C Y such that for any b € Y, 7, (Dp) € py < b€ Z,. Then Y}
is definable as

Y, = \/ bez|A N bv¢Z.). O

uCls],|ul=k uCls],|u|>k
The following lemma shows that p-dimension is “super-additive”.

Lemma 5.9. Let Y C X; x --- x X be definable and u C [s]. Assume that
0 < n < [s] is such that for every a € m,(Y) we have dimy(Y,) > n. Then
dimy(Y') > dimy (7,(Y)) + n.

Proof. Assume that Y is definable over a small set of parameters A, and let
m := dimy (7, (Y)). Then there is some u* C u, |u*| = m such that

s (V) (70 (Y)) = e (V) € pur = (X) pi-

1EU*

Let by = (bi 1 i € u*) = purla. As by € T+ (Y)(mu(Y)), there exist some
(bi : i € uw\ u*) so that b, := (b; : i € u) € m(Y). Then by assumption
dimy(Y,) > n, that is for some v* C v := [s] \ u with [v*| > n we have
T (Yo,) € Por := Qe Pi- Let byx = (b : i € v*) = por|ap,, and let
w := u* Uv*. Since the types (p; : i € w) are stationary and commuting,
it follows that b, := (b; : i € w) F pula for py = Qicysp~ Pi- A
by« € my= (Y3, ), there exists some (b; : i € v \ v*) so that (b; : i € v) € Y},
hence (b; : @ € [s]) € Y. Thus b, € m,(Y), hence m,(Y) € py, and
|w| > m 4+ n — which shows that dim,(Y') > m + n, as required. O

5.2. Fiber-algebraic relations and p-irreducibility.

Definition 5.10. Given a definable set Y C Hie[s} X; and a small set of
parameters C C M so that Y is defined over C, we say that Y is p-irreducible
over C if there do not exist disjoint sets Y7, Yo definable over C with ¥ =
Y1 UYs and dimy(Y7) = dimy (Y2) = dimy(Y).

We say that Y is absolutely p-irreducible if it is irreducible over any small
set C' C M such that Y is defined over C.

Remark 5.11. Tt follows from the definition of p-dimension that a definable
set Y C X; X ... x Xy is p-irreducible over C' if and only if any two tuples
generic in Y over C have the same type over C.

Lemma 5.12. If Q(Z) C X; X ... x X, is fiber-algebraic of degree < d, then
the set

{g € Sz(M) :Q € q and dimy(q) > s — 1}

has cardinality at most sd.
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Proof. Assume towards a contradiction that g, ..., gsq+1 are pairwise differ-
ent types in this set. Then there exist some formulas 1;(Z) with parameters
in M such that v;(Z) € ¢; and ¢;(Z) — —;(Z) for all i # j € [sd + 1]. Let
C C M be the (finite) set of the parameters of @ and 1);,7 € [sd + 1]. For
each i € [sd+1], as (¢;(Z) A Q(Z)) € ¢;, we have dimy, (;(Z) A Q(Z)) > s—1,
which by definition of p-dimension implies 3z, (¢i(Z) A Q(Z)) € @ efo) (4} Pe
for at least one k € [s]. By pigeonhole, there must exist some k' € [s]
and some u C [sd + 1] such that |u| > d + 1 and Fzp (Yi(Z) A Q(Z)) €
Q@ eps)\ iy Pe for all i € u. Now let a = (ag : £ € [s] \ {k'}) be a tuple in

M satisfying a npe) |c. By the choice of u, for each ¢ € u
Lels)\{+'}

there exists some b; in M such that (; A Q) (a1,...,a—1,bi, k41, ..., as)
holds. By the choice of the formulas v;, the elements (b; : @ € u) are pair-
wise distinct, and |u| > d — contradicting that @ is fiber-algebraic of degree
d. O

Corollary 5.13. Every fiber-algebraic Q C X1 X ... X X, of degree < d 1is
a union of at most sd absolutely p-irreducible sets (which are then automat-
ically fiber-algebraic, of degree < d).

Proof. Let (g; : i € [D]) be an arbitrary enumeration of the set
{g € Sz:(M) : Q € g Adimy(q) > s — 1},

we have D < sd by Lemma 5.12. We can choose formulas (¢;(z) : i € [D)])
with parameters over M such that ¢;(z) € ¢; and ¢;(z) — —;(z) for all
i #j € [D]. Let Qi(Z) := Q(Z) A i(2), then Q@ = | |;¢p; Qi and each Q; is
absolutely p-irreducible (by Remark 5.11, as every generic tuple in Q; over
a small set C has the type gi|¢). O

Lemma 5.14. If Q C Hie[s} X; is p-irreducible over a small set of pa-
rameters C and dimy(Q) = s — 1, then for any i € [s] and any tuple
a = (aj : j € [s]\ {i}) which is p-generic in [[ ;¢\ 5y Xj over C (i.e. a =
(®j€[s]\{i} vi)lc), if Q(ar, ... ,ai—1,%i, Git1, - .., as) is consistent then it im-
plies a complete type over C' U{a;:j € [s]\ {i}}.

Proof. Otherwise there exist two types r € Sz, (Ca),t € {1,2} such that
r1 # ro and Q(ay,...,ai—1,Ti, Gj+1,...,as) € 7 for both ¢ € {1,2}. Then
there exist some formulas ¢;(Z),t € {1,2} with parameters in C' such that

or(ary ..oy i—1, iy Qg1 -y a5) € Ty 1(T) = 2(Z) and po(Z) — —p1(T).
In particular, by assumption on a,

dimy, (Q(Z) A pe(Z)) > s —1
for both t € {1,2} — contradicting irreducibility of @ over C. O

5.3. On general position. We recall the notion of general position from
Definition 1.5, specialized to the case of p-dimension.
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Definition 5.15. Let (X,p) be a p-pair, and let F be a definable family
of subsets of X. For v € N, we say that a set A C X is in (F,v)-general
position if for every F' € F with dimy(F) =0 we have |[ANF| < v.

We extend this notion to cartesian products of p-pairs.

Definition 5.16. For sets X1 xXox -+ x X, and an integer n € N, by an
n-grid on X1x ---xX; we mean a set of the form A;xAsx --- xAg with
A; C X; and |A;| < nforall i € [s].

Definition 5.17. Let s € N and (X, p;), @ € [s], be p-pairs. Let F be a
definable system of subsets of (X;), i € [s], i.e. F = (F1,...,Fs) where each
F; is a definable family of subsets of X;. For v € N, we say that a grid
Al X -+ xAg on Xyx---xX, is in (f, v)-general position if each A; is in
(Fi, v)-general position.

We will need a couple of auxiliary lemmas bounding the size of the in-
tersection of sets in a definable family with finite grids in terms of their
p-dimension.

Lemma 5.18. Let s € N>q, (Xi,pi)icls ap-system, and G a definable family
of subsets of X1 x -+ x X such that dim,(G) = 0 for every G € G. Then
there is a definable system of subsets F = (Fi,...,Fs) such that: for any
finite grid A = Ay X --- X Ag on X1 X --- X X in (f, v)-general position
and any G € G we have |GNA| < v,

Proof. Assume that G is a definable family of subsets X; x --- x X with
dimy(G) = 0 for all G € G. For i € [s] and G € G, we let G; := m;(G),
note that still dim,(G;) = 0. Let F; := {G; : G € G}, we claim that then
F = (Fi,...,F,) satisfies the requirements.

Indeed, let A = A; x --- X A, be a finite grid on X; x -+ x X in (.7-:,1/)-
general position. Let G € G be arbitrary. As G; € F; with dim,(G;) = 0,
by assumption we have |G; N A;| < v for every i € [s]. As G C [];¢fy Gi, we
have

Gn HA’ - HG’ N HAZ :H(GimAi)7
1€[s] 1€]s] i€[s] 1€[s]

hence ‘G’ NI Lieps) Ai

< v®, as required. O

Lemma 5.19. Let s € N>1 and (Xy, pi)ics) be a p-system, and G a definable
family of subsets of X1 x -+ x X4. Assume that for some 0 < k < s we
have dimy(G) < k for every G € G. Then there is a definable system

F= (Fi,...,Fs) of subsets of X1 X ... x X such that: for any v and any
n-grid A = A; x --- X Ag on X1 x --- x X in (F,v)-general position, for
every G € G we have |G N A| < sFvs=Fnk,
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Proof. Given s > k and v, we let C(k, s,v) be the smallest number in N (if
it exists) so that the bound |G N A| < C(k, s, v)n” holds (with respect to all
possible p-systems (X, p;)ic[s) and definable families G). We will show that
C(k,s,v) < s*v*=F for all s > k > 0 and v.

For any s € N>; and £ = 0, the claim holds by Lemma 5.18 with
C(0,s,v) = v®. For any s € N>y and k = s, the claim trivially holds
with C(s,s,v) =1 (and F; = 0,7 € [s]).

We fix s > k > 1 and assume that the claim holds for all pairs s’ > k' > 0
with either s’ < s or ¥’ < k. Assume that dim,(G) < k for every G € G.
Given G € G, let G’ := {g € m(G) : dimy(Gy) > k}. Then Fi :={G' : G €
G} is a definable family of subsets of X; by Claim 5.8. By assumption and
Lemma 5.9 we have dimy(G’) = 0 for every G € G. Let

G ={G,:GegGngem(G)},
GL ={Gy:GeGANgem(G)Ndimy(Gy) < k}.

Both G* and G% . (by Claim 5.8) are definable families of subsets of [ [, , X
all sets in G* have p-dimension < k, and all sets in gz i have p-dimension <
k—1. Applying the (k,s—1)-induction hypothesis, let Fr = (Ff:2<i<ys)
be a definable system of subsets of Xo x ... x X, satisfying the conclusion
of the lemma with respect to G*. Applying the (k — 1, s — 1)-induction hy-
pothesis, let fzk = 2191
Xo X ... x X; satisfying the conclusion of the lemma with respect to GZ,.
We let F = (F; : i € [s]) be a definable system of subsets of X; x ... x X,
with 77 defined above and F; := F; U .7-"2,“. for2<i<s.

Let now v € Nand A = A; X --- X Ag be a finite grid on X1 x -+ x X
in (f ,v)-general position. Let G € G be arbitrary. As G’ € Fy, we have in
particular that |G’ N A;| < v, and by the choice of F*, for every g € G' N A;
we have |G, N (A2 x ... x Ag)| < C(k, s —1,v)n*. And by the choice of fzk,
for every g € A1\ G', we have |Gy N(Az x...x Ag)| < C(k—1,5—1,v)nk~L.
Combining, we get

12<4< s) be a definable system of subsets of

IGN (A x ... x Ay <
vO(k,s —1,v)n* 4+ (n—v)C(k—1,s — 1,v)nfF~1 <
(vC(k,s —1,v) + C(k — 1,5 — 1,v))n".
This establishes a recursive bound on C(k,s,v). Given s > k > 1, we can

repeatedly apply this recurrence for s,s—1, ..., k, and using that C(s, s,v) =
1 for all s, v we get that

s—k
C(k,s,v) < R 4 Zui_lC(k —1,s—1,v)
i=1
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for any s > k > 1. Using that C'(0,s,v) = v*® for all s,v and iterating this
inequality for 0,1,...,k, it is not hard to see that C(s, k,v) < s¥v5=F for all
s, k,v. O

5.4. Main theorem: the statement and some reductions. From now
on we will assume additionally that the theory T is stable and eliminates
imaginaries, i.e. T' = T°1 (we refer to e.g. [57] for a general exposition of
stability). As before, M is an |£|"-saturated model of T', M is a monster
model of T', and we assume that (X;,pi)ic[s is a p-system in M, with each
p; non-algebraic. “Definable” means “definable with parameters in M”. As
usual, if X is a definable set, a family F of subsets of X is definable if there
exist definable sets Y, F' C X x Y so that F ={F,:be Y}.

Remark 5.20. Note that if Q C X7 x --- x X is a fiber-algebraic relation of
degree d, then for any n-grid A C Hz‘e[s] X; we have
QN Al <dn®' =04(n°).

Definition 5.21. Let O be a definable family of subsets of X7 x --- x Xj.

(1) Given a real € > 0, we say that Q admits e-power saving if there exist
definable families F; on X;, such that for F= (Fi)i<s and any v € N,
for any n-grid A = A; X -+ x A;g on X1 X -+ x X, in (f,y)—general
position and any Q) € Q we have

QN Al =0, (n<8—1>—€) .

(2) We say that Q admits power saving? if it admits e-power saving for some
e>0.

(3) We say that a relation @ C X; x ... x X admits (e-)power saving if the
family Q := {Q} does.

(4) We say that @ is special if it is fiber-algebraic and does not admit power-
saving.

Lemma 5.1. Assume Q, Q1, ..., Q,, are definable families of subsets of X7 x
.-+ x Xg and € > 0 is such that each Q; satisfies e-power saving. Assume
that for every QQ € Q, Q) = Ute[m} Q; for some Q; € Q;. Then Q also satisfies

e-power saving.

Proof. Assume each Q,t € [m] satisfies e-power saving, i.e. there exist
definable families F;; on X; and functions C; : N — N so that letting

F = (Fti)i<s, for every grid A in <.ft, I/) -general position and every Q; € Q4

we have |Q; N A| < Cy(v)ns=D=¢. Let F; := Ute[m] Fii, F = (Fi)i<s and

C:= Zte[m] C;. Then for every grid A in <]? ) 1/) -general position and every

Q € Q we have |Q N A| < C(v)n>=D~¢  as required. O
We recall Definition 1.6, specializing to p-dimension.

2We are following the terminology in [2].
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Definition 5.22. Let Q C J[;cy Xi be a definable relation and (G, -, 1¢) a

type-definable group in M (over a small set of parameters A). We say that

Q is in a p-generic correspondence with G (over A) if there exist elements

g1,---,9s € G(M) such that:

(1> g1-...-9s = lg;

(2) g1,...,9s—1 are independent generics in G over A (in the usual sense of
stable group theory);

(3) for each i € [s] there is a generic element a; € X; realizing p;|4 and
inter-algebraic with g; over A, such that M = Q(ay,...,as).

Remark 5.23. If @) is p-irreducible over A, then (3) holds for all gy,...,9; € G
satisfying (1) and (2), providing a definable generic finite-to-finite correspon-
dence between @) and the graph of the (s — 1)-fold multiplication in G.

The following is the main theorem of the section characterizing special
fiber-algebraic relations in stable reducts of distal structures.

Theorem 5.24. Assume that M is an |L|"-saturated L-structure, and

Th(M) is stable and admits a distal expansion. Assume that s > 3, (Xi,pi)ies]

is a p-system with each p; non-algebraic and QQ C X1 x ---x X is a definable

fiber-algebraic relation. Then at least one of the following holds.

(1) Q admits power saving.

(2) Q is in a p-generic correspondence with an abelian group G type-definable
in M over a set of parameters of cardinality < |L].

The only property of distal structures actually used is that every definable
binary relation in M satisfies the «-ST property (Definition 2.12) for some
~ > 0, by Proposition 2.14 and Fact 2.4. In fact, Theorem 5.24 follows from
the following more precise version with the additional uniformity in families
and explicit bounds on power saving.

Definition 5.25. Let Q be a definable family of subsets X7 x --- x Xj.

(1) We say that Q is a fiber-algebraic family if each @) € Q is fiber-algebraic.

(2) We say that Q is an absolutely p-irreducible fiber-algebraic family if each
Q@ € Q is p-irreducible and fiber-algebraic

Remark 5.26. Let Q be a definable fiber-algebraic family. By saturation of
M there is d € N such that every ) € G has degree < d. In this case we say
that Q is of degree < d.
Theorem 5.27. Assume that M is an |L|*-saturated L-structure and Th(M)
is stable. Assume that s > 4, (X;,pi)ic[s) i a p-system with each p; non-
algebraic, and let Q be a fiber-algebraic definable family, and fir 0 < v < 1.
o If s >4, assume that there exist m € N and definable families Q;,i € [m)]
of absolutely p-irreducible sets so that for every QQ € Q we have QQ =
Uie[m] Q; for some Q; € Q;. Assume also that for each i € [m],t; # ta €
[s], the family Q; viewed as a definable family of subsets of (X, x Xy,) X

(HkG[S]\{t1,t2} Xk) satisfies the v-ST property.
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e If s =3, for each i € [m]| and Q; as above, we additionally consider the
definable family QF = {Q* : Q € Q;} of subsets of X1 x Xo x X3 x Xy,
where

Q* = {($2,.%'/2,.%'3,xg) € Xo x Xog x X3 xX X3

dzi1 € X3 ((xl,xg,xg) € QN (w1,25,2%) € Q)}

Assume moreover that there exist m; € N,i € [m] and definable families
Q,j fori € [m],j € [my] so that for every i € [m],Q* € Qf we have
Q" = Ujepm, Qij for some Qij € Qij. Assume also that for each i €
[m],j € [mi], t1 # ta € [4], the family Q; ; viewed as a definable family of
subsets of (X, x Xy,) X (er[4]\{t1,t2} Xk) satisfies the 2~y-ST property.

Then there is a definable subfamily Q' C Q such that the family Q' admits
y-power saving, and for each Q@ € Q\ Q' the relation Q is in a p-generic
correspondence with an abelian group Ggq type-definable in MY over a set
of parameters of cardinality < |L|.

To see that Theorem 5.24 follows from Theorem 5.27, assume that a
definable relation @ is as in Theorem 5.24, and consider the definable family
Q := {Q} consisting of a single element ). By Proposition 2.14 and Fact 2.4
every definable family of binary relations in M satisfies the v-ST property
(Definition 2.12) for some v > 0. Moreover, by Corollary 5.13, if @ C X3 x
...x X is definable and fiber-algebraic of degree < d, we have ) = Uie[ sd] Q;
for some definable absolutely p-irreducible sets ;. By distality, each Q)
satisfies the ~;-ST-property for some 7; > 0. Hence, taking Q; := {Q;},
m = sd and v := min{y; : i € [m]|} > 0, the assumption of Theorem 5.27
is satisfied for s > 4. If s = 3, note that each Q; is still fiber-algebraic of
degree d, hence each @} C X x...x X, is fiber-algebraic, of degree < d? by
Lemma 5.44. By Corollary 5.13 again, for each i we have Q; = ;¢ 442 Qij
for some definable absolutely p-irreducible sets @); j, each satisfying the ~; ;-
ST-property for some 7; ; > 0. Hence, taking m; := 4d?, Q;; := {Q; ;} and
v :=min{y,; : i € [m],j € [my]} > 0, the assumption of Theorem 5.27 is
satisfied for s = 3. In either case, let Q' be as given by applying Theorem
5.27. If @' = Q, then @ is in Case (1) of Theorem 5.24. Otherwise Q' = (),
and @ is in Case (2) of Theorem 5.24.

In the rest of the section we give a proof of Theorem 5.27 (which will
also establish Theorem 5.24). In fact, first we will prove a special case of
Theorem 5.27 for definable families of absolutely p-irreducible sets and s > 4
(Theorem 5.31), and then derive full Theorem 5.27 from it in Section 5.6
(for s > 4) and Section 5.7 (for s = 3). We begin with some auxiliary
observations and reductions.
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Assumption 1. For the rest of Section 5, we assume that s € N>3 (even
though some of the results below make sense for s € N>1), M is |L]T-
saturated, (X;,pi)ic[s) 18 a p-system with each p; non-algebraic, and X; is a
(-definable. “Definable” will mean “definable with parameters in M”

Lemma 5.28. If Q C X x--- x X, is fiber-algebraic then dim,(Q) < s—1.

Proof. Let (a1,...,as-1) = Qe[s—1] Pil4, where A is some finite set such
that @ is A-definable. The type ps is non-algebraic by Assumption 1, and

Q(aq,...,as_1,x5) has at most d solutions. Hence necessarily
Q(a17 ceeyOs—1, IL‘S) ¢ Ps,
SO Q(l‘]_,...,ﬂjs) é ®’i€[8} pl 0

The following is straightforward by definition of fiber-algebraicity.

Lemma 5.29. Let Q C X1 X --- X X be a fiber-algebraic relation of degree
<d and u C [s] with |u| = s—1. Let m, be the projection from Xi x ---x X,
onto [[;c, Xi. Let A= Ay x --- x Ag be a grid on X1 x --- x Xs. Then
QN Al <d|m(Q)n]] A4
1€U
Proposition 5.30. Let Q be a definable family of fiber-algebraic subsets of
X1 x - x Xg. Let u C [s| with u = s — 1. Assume that for every Q € Q
the projection m,(Q) onto [[.., X; is not p-generic. Then Q admits 1-power
saving.
Proof. By Lemma 5.19 there exists a definable system ]-j{f = (F;:i€u)of
sulosets of [],;c, Xi such that for any v € N, for any n-grid A* on [],., X; in
(Fr,v)-general position, for any Q € Q we have |7, (Q) N A*| < s57202ns2,
Let d € N be such that Q is of degree < d. Taking F; := ) for i € [s] \ u,
let Fy :={F;:i € [s]}. Then by Lemma 5.29, for any n-grid A on [, Xi
in (F,v)-general position, for any Q € Q we have |Q N A| < ds*~2v2n"2 =
O, (n*72), hence the family Q admits 1-power saving. O

1EU

The following is the main theorem for definable families of absolutely
irreducible sets:

Theorem 5.31. Assume that M is an |L|*-saturated L-structure and Th(M)
is stable. Assume that s > 4, (X;,pi)ic[s) i a p-system with each p; non-
algebraic, and let Q be a fiber-algebraic definable family of absolutely p-
irreducible subsets of X1 x --- X Xg. Assume that for some 0 < v <
1, for each i # j € [s], Q viewed as a definable family of subsets of

(X x Xj) x (er[s]\{i7j} Xk> satisfies the v-ST property. Then there is
a definable subfamily Q" C Q such that the family Q' admits vy-power sav-
ing, and for each Q € Q\ Q' the relation Q is in a p-generic correspondence

with an abelian group Gq type-definable in M over a set of parameters of
cardinality < |L|.
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In the rest of this section we give a proof of Theorem 5.31 (and then of
Theorem 5.27).

We fix a fiber-algebraic definable family O of absolutely p-irreducible
subsets of X7 x --- x X;.

Let Qg be the set of all @ € Q such that for some u C [s] with |u| =s—1
for the projection m,(Q) of Q onto [[,., X; we have dimy (7, (Q) < s — 1.

By Claim 5.8, the family Qg is definable and it follows from Proposi-
tion 5.30 that the family Qg admits 1-power saving. Hence replacing Q
with @\ Qp, if needed, we will assume the following:

Assumption 2. Q is a fiber-algebraic definable family of absolutely p-
irreducible subsets of X1 X --- x X5. For any Q € Q the projection of
Q onto any s — 1 coordinates is p-generic. In particular, dimy(Q) = s —1
(by Lemma 5.28).

Proposition 5.32. Let C be a small set in M, Q € Q and let a =
(a1,...,as) be a p-generic in Q over C' (see Remark 5.6 for the definition).
Then for any i € [s] we have

(aj:jels\{HE @ wile
JelsI\{z}
Proof. Since @ is absolutely p-irreducible, it has unique p-generic type over
C. By our assumption for any ¢ € [s] the projection of @ onto [s] \ {i}
is p-generic. Hence any realization of ®j€[s]\ ) pjlc can be extended to a
p-generic of Q. ([

Next we observe that the assumption that the projection of ) onto any
s — 1 coordinates is p-generic in Proposition 5.32 was necessary, but could
be replaced by the assumption that ¢ does not admit 1-power saving (this
will not be used in the proof of the main theorem).

Proposition 5.33. Assume that Q is absolutely p-irreducible, dim,(Q) =
s —1 (but no assumption on the projections of Q), and @Q does not admit
1-power saving. Let C be a small set in M and let a = (a1,...,as) be a
generic in Q over C. Then for any i € [s] we have

(aj:jels\N{HE @ wile
jelsh\i}

Proof. Let a be a generic in (Q over C'. Permuting the variables if necessary
and using that the types p; commute, we may assume

(ai,...,as-1) Ep1® - Q@ps_i|c-

We only consider the case ¢ = 1, i.e. we need to show that

(a2a"'7as) ’:p2®"'®ps|c’a

the other cases are analogous.
Assume this does not hold, then there is a relation G; C Xo x --- x X
definable over C' such that dimy(G1) < s — 1 and (ag,...,as) € Gi.
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Since @ is p-irreducible over C, the formula Q(aq,...,as—1,%s) implies a
complete type over C'U {ai,...,as—1} by Lemma 5.14. Hence we have
Qai,...,as—1,zs) Ftplas/C U{a1,...,as_1}),

so in particular

Q(a17 cee 7a8—1)$8) — Gl(a27 o 7as—17x8)7
which implies

Q1,25 1,2) U (p1 @ ... @ps—1) |o(@1, .-, T5-1)
— Gl(l‘g, . ,1‘571,33‘8).
Then, by saturation of M, there exists some p-generic set Go C X; X
-+ X X4_1 definable over C' (given by a finite conjunction of formulas from
(P1 ®...®ps—1)|c) such that
Q(xl, - ,ws_l,l'S) A GQ({El, - ,ws_l) — Gl(xg, - ,xs_l,xs),
hence
Q(:El, - ,1‘3,1,1‘5) — (—|G2(l‘1, ce .Ts,1) Y Gl(.’EQ, R ,l‘sfl,l‘s)).

Let Hy := (=G3) x X5 and Hy := X; x Gi. Then dimy (m[;_1j(H2)) =
dimp(—'Gg) < 8§ — 1 and dimp (W[s]\{l}(Hl)) = dimp(—!Gl) < § — 1. Thus
Q@ is covered by the union of H; and Hs, each with 1-power saving by
Proposition 5.30, which implies that ) admits 1-power-saving. [l

Remark 5.34. The assumption that @) has no 1-power saving is necessary
in Proposition 5.33, and the assumption that the projection of @) onto any
s — 1 coordinates is p-generic in necessary in Proposition 5.32. For example
let s = 2 and assume Q(x1,x2) is the graph of a bijection from X; to some
(-definable set Yo C X with Y5 ¢ po. Then @ is clearly fiber algebraic,
absolutely p-irreducible, with dim,(Q) = 1. But for a generic (by,b2) €
@, be does not realize pa|y. Note that @ has l-power saving. Indeed, let
F = (F1, F) with Fy := 0, F := {Y»}. Then, given any n,v € N and an
n-grid A; x Ay in (]? , v |-general position, as dim,(Y2) = 0 we must have
|A2 NYa| < v, hence, by definition of @, |Q N (A; x A2)| < v =0,(1) =
0O, (n(2_1)_1). Also note that m»)(Q) is not p-generic.

We can now state the key structural dichotomy at the core of Theorem
5.31:

Theorem 5.35. Let Q = {Q.: o € Q} be a definable family of absolutely
p-irreducible fiber-algebraic subsets of [[;c, Xi satisfying the Assumption 1
above. Assume the family ©, as a family of binary relations on

[T Xi] x (X x X,
1€[s—2]

satisfies the v-ST property for some 0 < v < 1.
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Then there is a definable Q1 C Q such that the family {Qq: « € 1}, ad-
mits y-power-saving, and for every o € Q\Qy, for every tuple (aq,...,as) €
Qo generic over a there exists some tuple

¢ eacl(ay, ..., as—2,a) Nacl(as—1, as, @)
of length at most |L| such that

(a1,...,as—2) | (as—1,as).
13

Remark 5.36. Theorem 5.35 is trivial for s = 3 with Q; = 0, as a; \Lg(ag, as)
always holds with & := a;a.

First we show how the above theorem, combined with the reconstruction
of abelian groups from abelian s-gons in Theorem 4.6, implies Theorem 5.31.
Then we use theorem Theorem 5.31 to deduce Theorem 5.24 for s > 4 (along
with the bound in Theorem 5.27) in Section 5.6. The case s = 3 of Theorem
5.24 requires a separate argument reducing to the case s = 4 of Theorem
5.24 given in Section 5.7.

Proof of Theorem 5.31. From the reductions described above, we assume
that Q and (X;,p;)ic|s satisfy Assumptions 1 and 2, and that for some
0 <~ <1, foreach i # j € [s], Q viewed as a definable family of subsets of
(X x Xj) x <er[s]\{z',j} Xk> satisfies the y-ST property.

It follows that for every permutation of [s], the family Q and the p-system
obtained from Q and (X;, pi)ie[s] by permuting the variables accordingly still
satisfy the assumption of Theorem 5.35. Applying Theorem 5.35 to every
permutation of [s], and taking (definable) Q' C Q to be the union of the
corresponding Q1’s, we have that the family Q" = {Q,: o € Q'} admits
v-power saving and for any « € Q\ , for every tuple (aq,...,as) generic
in Q, over «, after any permutation of [s] we have

a1a9 L as...as.
acl(aiaza)Nacl(as...asa)

Together with fiber-algebraicity of @, this implies that (ai,...,as) is an
abelian s-gon over a.

Applying Theorem 4.6, we obtain that for any o € Q\ Q' there exists a
small set A, € M and a connected abelian group G, type-definable over
A, and such that @ is in a p-generic correspondence with G, over A,. (As
stated, Theorem 4.6 only guarantees the existence of an appropriate set of
parameters A, of size < |£| and G, in M, however by |£|*-saturation of M
there exists a set A/, in M with the same type as A, hence we obtain the
required group applying an automorphism of M sending A, to A..) O

In the remainder of the section we prove Theorem 5.35.
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5.5. Proof of Theorem 5.35. Theorem 5.35 is trivial in the case s = 3 by
Remark 5.36, so we will assume s > 4.

Let U:=X1 x...x Xg 0oand V := X, 1 x X5. We view each QQ € O as
a binary relation Q@ C U x V.

We fix a formula ¢(u; v; w) € L such that for a € Q the formula p(u;v; @)
defines ), with the variables u corresponding to U and v to V.

We also fix d € N such that Q is of degree < d.

Definition 5.37. For a € Q and a € U, let Z,(a) be the set
Za(a) == {d' € U: dimy (¢(a;v;a) Np(a;v;a)) =1}.
Claim 5.38. The family {Zy(a): o € Q,a € U} is a definable family of
subsets of U.
Proof. By Claim 5.8, the set
D :={(a,d,a) eUxUxQ:d € Zy(a)}
= {(a,d,0) € U x U x Q: dim, (¢(a;v;a) Np(d;v;a)) =1}
is definable, hence the family {Z,(a): o € Q,a € U} is definable. O
Claim 5.39. For any o € Q and a € U, we have that Z,(a) # 0 if and only
if a € Zo(a), if and only if dimy(p(a;v;a)) = 1.
Proof. Let a« € Q and a € U. As @, is fiber-algebraic, we also have
that the binary relation ¢(a;v;a) C Xs—1 x X is fiber-algebraic, hence
dimy(p(a;v;a)) < 1 (by Lemma 5.28). The claim follows as, by def-
inition of p-dimension, dimy(¢(a;v;a) N @(a;v;a)) = dimy(e(a;v;a)) >
dimy (¢(a; v; @) N@(a’;v; ) for any o’ € U. O
Claim 5.40. For every o € Q and a € U the set Zy(a) C Xy x -+ X Xs_o
is fiber-algebraic, of degree < 2d>.

Proof. We fix @ € Q and a € U. Assume Z,(a) # (). Since p(a;v;a) is
fiber-algebraic of degree < d (by fiber-algebraicity of @), the set S of types
q € Sy(M) with ¢(a;v;) € ¢ and dimy(¢g) = 1 is finite, of size < 2d (by
Lemma 5.12); and for any @’ € U we have a’ € Z,(a) if and only if p(d’, v; @)
belongs to one of these types (by definition of p-dimension). Thus

Zo(a) ={d € U: p(d',v,a) € q for some q € S}.

Let q1,...,q:,t < 2dlist all types in S. We then have Z,(a) = Uie[t] dy(gi),
where dy(¢;) = {d’ € U: ¢(d/,v;0) € ¢;}. Tt is sufficient to show that each
dy(gi) is fiber-algebraic of degree < d. Choose a realization §; of ¢; in
M. Obviously dy(g;) € oM, Bi;0). As M < M and a € M, the set
o(M; B;; ) C HiE[S—Z] X;(M) is fiber-algebraic of degree < d, hence the set
dy(g;) is fiber-algebraic of degree < d as well. O

By Claim 5.40 and Lemma 5.28, each Z,(a) is not a p-generic subset of

X1 X+ x Xs_9, hence we have that dimy(Z,(a)) < s—3 for any o € © and
acU.
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Definition 5.41. Let Z, C U be the set
Zo :={a € U: dimp(Za(a)) = s — 3}.
Note that the family {Z, : o € 2} is definable by Claim 5.8.

Let Q1 == {a € Q: dimy(Z,) < s —2}. By Claim 5.8 the set Q; is
definable. We will show that the family Q; := {Qu: a € 1} admits 7-
power saving for the required +.

To show that the family {Q,: o € Q;} admits y-power saving, it suffices
to show that both families {QaN(ZaxV): a € Q1 } and {QaN(ZyxV): a €
01} admit y-power saving, where Z, := U \ Z, is the complement of Z, in
U.

Since for any a € €)1 the set Z,, is not a p-generic subset of X1 X+ x X o,
for the projection Ts—1] Xy X+ x Xy = X7 x--- x X4_1 we have that
Ts—1)(Qa N (Za x V7)) is not a p-generic subset of X7 x ... x X5 1. Hence,
by Proposition 5.30, the family {Qn, N (Zy X V): o € 21} admits 1-power
saving.

Next we show that the family {Qn N (Zo X V): a € Q1} admits y-power
saving. By the definition of Z,, for any @ € Q; and a € Z, we have
dimy(Za(a)) < s—4. By Lemma 5.19, there is a definable system of sets Fi=
(Fi,...,Fs—2) on X7 X ...x X _9 such that for any n-grid 4; x --- x As_»
in (F1,v)-general position we have

|Zo(a) N (A1 X -+ X Ag_0)| < (s — 2)* W2ns™4,

for any o € Q and a € Z,.
Applying Lemma 5.18 to the definable family

G = {p(ar;v;) Np(ag;v;a): a € Qy,a1,a2 €U,
dimy (p(ar;v; ) Np(ag; vy o)) = O},

we obtain that there is a definable system of sets Fo= (Fs—1,Fs) on Xg_1 X
X, such that for any n-grid As;_1 x Ag in (fg, v)-general position and any
G € G we have

|G N (As,1 X AS) ’ < 1/2.

Then F := fl U .7?2 = (Fi,...Fs) is a definable system of sets on X x
N Xs‘

Let A = Ay x --- x Ag be an n-grid on X7 x --- x X in (f, v)-general
position and « € Q1. We need to estimate from above |Q, N (Z, x V) N A.
Let Ay = Ay x -+ x Ag_9,Al, := Ay N Z, and A, := As 1 x Ag, then
|4 < |Aul < n°72 and |A,] < n? Let Q) be Q. viewed as a binary
relation on U x V', we have

Qa N (Za x V)N Al =|Q4 N (Za x V) N (Au x Ay)| < |Q4 N (A7, x Ad)l,
so it suffices to obtain the desired upper bound on |Q., N (A}, x A,)|.
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From the (.7? , V)-general position assumption and the choice of F we have:
for any a € A!, there are at most (s — 2)*"42n™* elements o’ € A!, such
that |Q’,(a,v) N Q. (a',v) N A,| > V2.

By assumption on Q the definable family Q) := {Q/, : @ € Q1} of subsets
of U x V satisfies the 7-ST property, and let C' : N — N be as given by
Definition 2.12 for C(v) := (s — 2)*"4v. Then we have |Q/, N (A!, x A,)| <
C'(v*)ns=D=7 (independently of ), as required.

Thus the family Q1 = {Qq: a € Q1} admits y-power saving.

We now fix a € 2\ Q.

By absolute irreducibility of @), and Remark 5.11 it is sufficient to show
that there exists a tuple (aj,...as) € Qo generic over a and some tuple
€ €acl(ay,...,as—2,a) Nacl(as_1, as, @) of length at most |£| such that

((Il, PN ,CLS,Q) L(asfl, as).
§

We add acl(a) to our language if needed and assume that o € del(().

By |£|*-saturation of M, let e = (ey,...,es—2) be a tuple in M which
is p-generic in Z,, namely e € Z, with dimy(e/0)) = s — 2 (note that Z,
is (-definable). Let My = (Mp,...) = M be a model containing e with
(Mol < [L].

Let 8 = (B1,...,Bs—2) € U be a p-generic point in Z,(e) over My, i.e. 8 €
Z(e) and dimy(8/My) = s — 3.

Let § = (41, 92) be a tuple in p(e, M, a)Np(B, M, ) with dim, (6 /Mo5) =
1. Without loss of generality we assume that dimy(61/Mopf) = 1, namely
61 E ps—1 [ampp- Note that such B and § can be chosen in M by |£|*-
saturation.

We now collect some properties of 8 and 4.

Claim 5.42. (1) (e,d) is generic in Q. over (.
(2) 01 L), 02 and (61,02) = ps—1 @ pslp-

(3) 6L

(4) (B,0) is generic in Qq over (.

Proof. (1) We have, by our assumption above, that dimy(d;/MoS3) = 1,
hence in particular dimy(d;/e) = 1. Since dimy(e/@) = s — 2 we have
dimy((e,6)/0) > s —1 (as (e, d1) = <®i€[872] pi) ® ps—1lp using that the
types p;,i € [s — 1] commute). Since @, is fiber-algebraic and (e, d) € Qq,
we also have dimy((e,d)/0) < s — 1 by Lemma 5.28.

(2) Since (e, d) is generic in @, over () by (1), by Proposition 5.32 we have
(51)52) >: Ps—1® ps|@'

(3) As 8 \LMO 91 and &9 € acl(ed;) C acl(Myd1), we have S \l—/MO((Sl’ 92).

(4) We have (3,6) € Qq. Since dimy(8/Mpy) = s — 3 and LMO 0, we have
dimy (8/Mod) = s — 3 (as B = @;e[s_3) Pil mos by stationarity of non-forking
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over models), hence in particular dim,(5/0) > s—3. Also, since dimy,(6/0) =
2 by (2), we have dimy, ((3,6)/0) > s — 1. Since Q) is fiber-algebraic we also
have dim,((3,6)/0) < s — 1, hence dim,, ((8,0)/0) = s — 1. O

Let p(u) := tp(B8/Mp) and q(v) := tp(d/My), both are definable types
over My by stability.

We choose canonical bases £, and &, of p and ¢, respectively; i.e. §,, §, are
tuples of length < |£] in Mg, and for any automorphism o of M we have
o(p|M) = p|M if and only if o(,) = &, (pointwise); and o(g|M) = g| M if
and only if o(§,) = &,.

Note that p does not fork over £, and ¢ does not fork over &,.

Claim 5.43. We have:

(a) & € acl(B)
(b) & € acl(9)
(c) & € acl(&p);
(d) &, € acl(&,).

Proof. (a) Assume not, then the orbit of £, under the automorphisms of M
fixing 8 would be infinite. Hence we can choose a model N' = (N,...) = M
containing My with |N| < |£|, and distinct types ¢; € Sy(N),i € w, each
conjugate to g|N under an automorphism of N fixing £.

Let 0} f= ps—1|N. For each i € w we choose &% such that (8], 03) k= gi. We
have that (8,07,0%) € Qa, hence, by fiber-algebraicity, [{0%: i € w}| < d.
But all ¢; are pairwise distinct types, a contradiction.

)
)

(b) Since dimy(8/Myd) = s — 3, permuting variables if needed, we may

assume that (81,...,8s—3) Ep1 @+ @ Ps—3|mps-

Assume (b) fails. Then we can find a model N' < M, |N| < |£] containing
Myé, and distinct types p; € S(N),i € w, each conjugate to p[ N under an
automorphism of N fixing 3. Let

(Bl Beeg) EP1L® ... @ ps—3|N
in M. For each i € w we choose 3¢ , in M such that

(517---7&—3752—2) = pi,

and get a contradiction as in (a).
(c) Since &, € My and p does not fork over &,, we have &, \Lgp 3, which by
part (a) implies &, € acl(,).
(d) Similar to (c). O

We have that the tuple (3,9) is generic in @, by Claim 5.42(4). Let
£ = & U &, then & € acl(f) N acl(d) by Claim 5.43. Finally 5J/M0ﬂ
by Claim 5.42(3), 8 J/gp My by the choice of &,, hence 5\]/&) B, and as

&, € acl() we conclude 3 J/g 0.
This finishes the proof of Theorem 5.35, and hence of Theorem 5.31.
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5.6. Proof of Theorem 5.27 for s > 4. Let Q = {Q,:a € Q} be a
definable family of subsets of X; x --- x X satisfying the assumption of
Theorem 5.27, and say Q is fiber-algebraic of degree < d. In particular, there
exist m € N and definable families Q;,i € [m] of absolutely p-irreducible
subsets of X7 x --- x X, so that for every Q € Q we have ) = Uz‘e[m} Q;
for some @Q; € Q;. Note that each Q; is automatically fiber-algebraic, of
degree < d. By assumption each O, satisfies the v-ST property for some
fixed v > 0, under any partition of the variables into two groups of size 2
and s — 2.

For each i € [m], let the definable family Q) be as given by Theorem 5.31
for Q;. That is, for each i € [m] the family Q) admits ~-power saving, and
for each Q; € Q; \ Q} the relation @; is in a p-generic correspondence with
an abelian group G, type-definable in M®? over a set of parameters A; of
cardinality < |£|. Consider the definable family

Q:={QcQ:Q= U Q; for some Q; € Q) » C Q.

1€[m]

By Lemma 5.1, Q' satisfies y-power saving. On the other hand, from Defini-
tion 5.22, if @ € Q, @ = U, @i With @; € Q;, and at least one of the Q;
is in a p-generic correspondence with a type-definable group, then @ is also
in a p-generic correspondence with the same group. Hence every element
Q € Q\ Q' is in a p-generic correspondence with a group type-definable over
some A := J;epn) Ais [A| < [L].

5.7. Proof of Theorem 5.27 for ternary (). In this subsection we reduce
the remaining case s = 3 of Theorem 5.27 to the case s = 4.

Let (X, pi)icj3 and a definable fiber-algebraic (say, of degree < d) family
Q of subsets of X7 x X9 x X3 satisfy the assumption of Theorem 5.27 with
some fixe v > 0. In particular, there exist m € N and fiber-algebraic (of
degree < d) definable families Q;,7 € [m] of absolutely p-irreducible subsets
of X1 x --- X Xg, so that for every Q) € Q we have ) = Uz‘e[m] Q; for some
Q; € Q;. By the same reduction as in Section 5.6, it suffices to establish
the theorem separately for each Q;, so we may assume from now on that
additionally all sets in Q are absolutely p-irreducible.

Consider the definable family Q* := {Q* : @ € Q} of subsets of X; x Xa x
X3 x X4, where

Q* = {(:cg,:z:’z,xg,xg) € X9 x X9 X X3 X X3 :

Jz1 € Xy (w1, 22, 23) € Q A (z1, 25, x3) € Q)}

Lemma 5.44. The definable family Q* of subsets of Xo x X9 X X3 x X3 is
fiber algebraic, of degree < d?.

Proof. We consider the case of fixing the first three coordinates of Q* € Q*,
all other cases are similar. Let Q € Q, (ag,d)) € Xo x X9 and a3 € X3 be
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fixed. As @ is fiber algebraic of degree < d, there are at most d elements
x1 € Xj such that (z1,a2,a3) € @Q; and for each such z, there are at most
d elements x5 € X3 such that (z1,ab,2%5) € Q. Hence, by definition of Q*,
there are at most d? elements x5 € X3 such that (ag, ab, as, z5) € Q*. O
Remark 5.45. Note that (X{,p;)iGM] with X| = X/} := X9, X§ = X := X3
and p| = ph := pa, ps = ply := p3 is a p-system with each p non-algebraic.

The following lemma will be used to show that power saving for Q* implies

power saving for Q (this is a version of [20, Proposition 3.10] for families,
which in turn is essentially [50, Lemma 2.2]). We include a proof for com-
pleteness.

Lemma 5.46. For any finite A; C X;,i € 3] and Q € Q, taking Q =
QN (A] x Ag x Az) and Q* := Q" N (A2 x Ay x A3 x A3) we have

1
2

‘Q‘ < d’Al‘% Q*

Proof. Consider the (definable) set
W= {(21, 22,25, x5, 7%) € X1 x X3 x X3
(21,9, 13) € Q A (31,25, 25) € Q},
and let W := W N (A1 x A3 x A3). As usual, for arbitrary sets S C B x C
and b € B, we denote by S}, the fiber S, = {c € C': (b,c) € S}.
Note that [Q = >, ca, |Qa,| and [W| = 37 4 |Qq, |?, which by the

Cauchy-Schwarz inequality implies

2
~ 1 ~ 1o~ 1
QI <lAilz [ D 1Qul| =lAlz W],
a1€A,
For any tuple a := (ag, a5, as, ay) € Q*, the fiber W5 C A; has size at most d
by fiber algebraicity of Q. Hence |[W| < d|Q*|, and so |Q] < d]A1|%|Q*|% O

Lemma 5.47. Assume that v/ > 0 and Q* admits v -power saving (with
respect to the p-system (X, p})icpa) in Remark 5.45). Then Q admits y-power

. /
saving for v := L.

Proof. By assumption there exist ' = (F! )icja) With F7, 75 definable fami-

lies on Xy and Fj, Fj definable families on X3, and a function C' : N — N,

such that for any Q* € Q*,v,n € N and an n-grid A’ = Hie[4] Al on

Xy x Xy x X3x X3 in (F/, v)-general position we have |Q*NA'| < C'(v)n3~7.
We take Fy := 0, Fy := FlUF}, Fy:= FyUF,, C(v) :=d-C'(v)? and
—

! ASSQume we are given @ € Q,v,n € N and A; C X;,7 € [3] with |4;] =n

in (ﬁ , v)-general position. By the choice of F it follows that the grid Ay x
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Ay x Az x As is in F'-general position, hence |Q* N (A3 x A3)| < C'(v)n?~7.
By Lemma 5.46 this implies

1 1
QN (A1 x Ag x Ag)| < d|A1]2|Q" N (A3 x A3)|?
< dn%C’(V)%ngf% < C(v)n*.
Hence Q satisfies y-power saving. O

We are ready to finish the proof of Theorem 5.27 (and hence of Theorem
5.24), the required bound on power saving follows from the proof.

Proof of Theorem 5.27 for s = 3. By the reduction explained above we may
assume that Q is a definable family of absolutely p-irreducible sets and does
not satisfy l-power saving. Applying the case s = 4 of Theorem 5.27 to
the family Q* (note that Q* satisfies the assumption of Theorem 5.27 by
the reduction above and since Q satisfies the s = 3 assumption of Theorem
5.27), we find a definable subfamily ( Q%) C Q* such that the family (Q*)'
admits y-power saving, and for each Q* € 9Q*\ (Q*)’ the relation Q* is in a
p-generic correspondence with an abelian group G« type-definable in M®4
over a set of parameters of cardinality < |L|.

Let Qp be the set of all @ € Q such that for some u C [3] with |u| = 2
for the projection m,(Q) of @ onto [, X; we have dim,(m,(Q)) < 2. By
Claim 5.8, the family Qg is definable and it follows from Proposition 5.30
that the family Qg admits 1-power saving.

Consider the definable subfamily Q' := {Q €cQ:Q*e (Q*)/} U Qg of Q.
By Lemma 5.47, as v < 1, Q" admits 3-power saving. On the other hand, if
Q€ 9\ Q, then Q* € 9%\ (Q*), hence there exists a small set A C M and
an abelian group (G, -, 1) type-definable over A so that Q* is in a p-generic
correspondence with G.

This means that there exists a tuple (g2, gh,93,95) € G* so that g -
g5 - g3 - g5 = la, 92,093,945 are independent generics over A and a tuple
(az, dby, ag,al) € Q* so that each of the elements as, ab, as, a§ is p-generic over
A and each of the pairs (g2, a2), (95, ab), (g3, as3), (g5, a%) is inter-algebraic
over A.

By definition of Q* there exists some a; € X; such that (a1,a2,a3) € Q
and (a1,adh,as) € Q. We let A’ := Ad% and g; := g5 - g5, and make the
following observations.

(1) 9192 g3 = 1 (using that G is abelian).

(2) Each of the pairs (a1, 91), (ag, g2), (a3, g3) is inter-algebraic over A’.
The pairs (a2, g2), (a3,g3) are inter-algebraic over A by assumption.
Note that a; and af, are inter-algebraic over A" as @ is fiber-algebraic,
so it suffices to show that a), and g; are inter-algebraic over A’. By
definition g1 € acl(gh, g5) C acl(al, as, A) C acl(ay, A’). Conversely, as
gh € acl(gh - g5, 95) C acl(g1, A"), we have a), € acl(gh, A) C acl(g1, A').

(3) g2 and g3 are independent generics in G over A'.
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By assumption g2 | Agggg and af is inter-algebraic with g5 over A,
hence g2 | 4 93

(4) a; = pi|ar for all i € [3].
For i € {2,3}: as g; | , g5 and g3 is inter-algebraic with a3 over A, we
have a; |, a3, which by stationarity of p; implies a; = pifar.
For i = 1: as a; = pi|la for i € {2,3} and a2 | ,, as, it follows that
(az,a3) | (p2 ® p3)|ar and the tuple (a1, a2, as) is generic in @ over
A" (as dimy(Q) = 2 by the choice of Q). But then a; = pi|la by
the assumption on @ and Proposition 5.32 (can be applied by absolute
irreducibility of @ and the choice of Q’).

It follows that @ is in a p-generic correspondence with G over A’, witnessed
by the tuples (g1, g2, 93) and (a1, az, a3). U

5.8. Discussion and some applications. First we observe how Theorem
5.24, along with some standard facts from model theory of algebraically
closed fields, implies a higher arity generalization of the Elekes-Szab6 the-
orem for algebraic varieties over C similar to [3]. Recall from [3] that a
generically finite algebraic correspondence between irreducible varieties V'
and V' over C is a closed irreducible subvariety C C V x V' such that
the projections C — V and C' — V' are generically finite and dominant
(hence necessarily dim(V) = dim(V’)). And assuming that W;, W/ and
V C [Ligg Wi, V' € [le) Wi are irreducible algebraic varieties over C, we
say that V and V' are in coordinate-wise correspondence if there is a gener-
ically finite algebraic correspondence C' C V' x V' such that for each i € [s],
the closure of the projection (m; x m)(C) C W; x W/ is a generically finite
algebraic correspondence between the closure of 7;(V) and the closure of

(V7).

Corollary 5.48. Assume that s > 3, and X; C C™ i € [s] and Q C

[Tic(g Xi are irreducible algebraic varieties, with dim(X;) = d. Assume also

that for each i € [s], the projection Q@ — [ ¢(q\ sy Xi is dominant and gener-

ically finite. Let m := (mq,...,mg), t := max{deg(Q), deg(X1), ..., deg(Xs)}.

Then one of the following holds.

(1) For every v there exist D = D(d,s,t,m) and ¢ = c(d, s,t,m,v) such
that: for any n and finite A; C X;,|A;| = n such that |[A; NY;| < v for
every algebraic subsets Y; of X; of dimension < d and degree < D, we
have

QN Al <ent 177
forvzwl_s if s >4, andvzm if s =3.

(2) There exists a connected abelian complex algebraic group (G,-) with
dim(G) = d such that Q) is in a coordinate-wise correspondence with

Q ={(z1,...,25) €G*:wy-...- x5 =1g}.

The above Corollary 5.48 immediately follows from the following slightly
more general statement:
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Corollary 5.49. Assume that s > 3, and X; C C™i i € [s]| are irreducible
algebraic varieties with dim(X;) = d, and let Q be a definable family of
subsets of Hie[s] X;, each of Morley degree 1. Assume also that for each
Q € Q, i € [s], the projection Q — Hje[s]\{i} X; is Zariski dense and is
generically finite to one. Then there is a definable family Q" C Q such that:

(1) Q' admits y-power saving for v = ﬁ if s >4, and v = m if
s =3.

(2) For every Q € Q\ Q' there exists a connected abelian complex algebraic
group (G,-) with dim(G) = d such that for some independent generics
gis---,9s—1 € G and generic (qi,...,qs) € Q we have that g; is inter-
algebraic with q; fori < s and qs inter-algebraic with (g1-ga-...-gs—1) "'

It is not hard to see that Corollary 5.49 implies 5.48. Indeed, if @ is
an irreducible variety then it has Morley degree one. Let Q be the family
of all irreducible algebraic varieties contained in Hie[s] X; of degree deg @,
Morley rank MR(Q) and with all projections Zariski dense and generically
finite to one. It is a definable family in M by definability of Morley rank and
irreducibility (see e.g. [26, Theorem A.7]), defined by a formula depending
only on m,t,s,d; and Q € Q. Applying Corollary 5.49 we can conclude
depending on whether Q € Q" or Q € 9\ Q.

Proof of Corollary 5.49. Let M := (C,+, x,0,1) = ACF, then |£| = Yy
and M is an |£|T-saturated structure. We recall that M is a strongly
minimal structure, in particular it is w-stable and has additive Morley rank
MR coinciding with the Zariski dimension (see e.g. [17]).

For each i, as X is irreducible, i.e. has Morley degree 1, let p; € S, (M)
be the unique type in X; with MR(pz) MR(X;) =d. By Stablhty, types are
definable, commute and are stationary after naming a countable elementary
submodel of M so that all of the X;’s are defined over it.

Hence (X, pi)ic[s] is a p-system; and by the additivity of Morley rank we
see that MR(Y') > d dim,(Y') for any definable Y C J[, ¢, Xi-

For any @) € O, since the projection of Q) onto Hf;ll X, is Zariski dense
and generically finite, we have MR(Q) = d(s — 1).

Let Q" C Q be a definable set with RM(Q') = d(s — 1). Since Q and Q'
have the same generic points, the item (2) is equivalent for @ and @’. Ob-
viously y-power saving for ) implies y-power saving for @Q’, and we observe
that ~-power saving for @' with 0 < v < 1 implies y-power saving for Q.
Let Q" := Q\ Q. Then, as @ has Morley degree 1, MR(Q") < d(s — 1),
hence dim,(Q"”) < s — 2. Applying Lemma 5.19 to G := {Y"} we obtain
that Y has 1-power saving. Since v < 1, it follows that Y = Y’ U Y” also
has ~-power saving.

As by assumption every () € Q has generically finite projections, after
removing a subset of smaller Morley rank we may assume that @) is fiber-
algebraic. This can be done uniformly for the family by [26, Theorem A.7]
(however, on this step we have to pass from a family of algebraic sets to
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a family of constructible sets, that is why we can only use bounds from
Corollary 2.16(2) but not from Fact 2.17 in the following), hence we may
assume that the family O consists of fiber algebraic sets of fixed degree.
As dim(X;) = d, it follows that X; has a generically finite-to-one projec-
tion onto C?, hence, after possibly a coordinate-wise correspondence, we may
assume that Q) C Hie[s} C? — again, uniformly for the whole family Q. By

Corollary 2.16(2), every definable family of sets Y C C2¢ x C6~2)4 gatisfies

the (ﬁ)—ST property. Applying Theorem 5.27 (we are using once more
that irreducible components are uniformly definable in families in ACF, see
[26, Theorem A.7]) we find a definable subfamily Q' with y-power saving for
the stated ~.

Every type-definable group in M®? is actually definable (by w-stability,
see e.g. [10, Theorem 7.5.3]), and every group interpretable in an alge-
braically closed field is definably isomorphic to an algebraic group (see
e.g. [17, Proposition 4.12 + Corollary 1.8]). Thus, for Q € Q\ Q’, there exists
an abelian connected complex algebraic group (G, -), independent generic el-
ements gi,...,9s—1 € G and g5 € GG such that g1 - ... gs = 1 and generic
a; € X; inter-algebraic with g;, such that (ai,...,as) € Q. In particular,
dim(G) = dim(X;) = d. And, by irreducibility of @, hence uniqueness of
the generic type, such a;’s exist for any independent generics gi,...,gs_1.
As the model-theoretic algebraic closure coincides with the field-theoretic
algebraic closure, by saturation of M this gives the desired coordinate-wise
correspondence. O

Remark 5.50. Failure of power saving on arbitrary grids, not necessarily
in a general position, does not guarantee coordinate-wise correspondence
with an abelian group in Corollary 5.48. For example, let (H,-) be the
Heisenberg group of 3 x 3 matrices over C, viewed as a definable group in
M := (C,+, x). For n € N, consider the subset of H given by

1 ny ns
A, = 0 1 no|:ni,ne,ns€N,ni,ne <n,ng<n’
0 0 1

It is not hard to see that |A,| = n*. For the definable fiber-algebraic relation
Q(z1, 72,23, 74) on H* given by x1-79 = x3-24 we have |QNA%L| > 1—16(714)3 =
Q| AuP).

However, () is not in a generic correspondence with an abelian group.
Indeed, the sets A,, C H,n € N are not in an (F, v)-general position for any
v, with respect to the definable family F = {u; — us = ¢ : ¢ € C} of subsets
of H.

However, restricting further to the case dim(X;) = 1 for all ¢ € [s], the
general position requirement is satisfied automatically: for any definable set
Y C X;, dim(Y) < 1 if and only if YV is finite; and for every definably
family F; of subsets of X; there exists some v such that for any Y € F,,
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if Y has cardinality greater than 1 then it is infinite. Hence (using the
classification of one-dimensional connected complex algebraic groups) we
obtain the following simplified statement.

Corollary 5.51. Assume s > 3, and let Q C C* be an irreducible algebraic
variety so that for each i € [s|, the projection Q@ — Hje[s]\{z‘} C*® is generically
finite. Then exactly one of the following holds.

(1) There exist ¢ depending only on s,deg(Q) such that: for any n and
A; C Cy,|4;] =n we have

QN A| <ens 177

forvz% if s >4, and’y:2—12 if s=3.
(2) For G one of (C,+), (C, x) or an elliptic curve, Q is in a coordinate-
wise correspondence with

Q ={(zx1,...,25) €G° 1w -... w5 =1g}.

Remark 5.52. We expect that the two cases in Corollary 5.48 are not mu-
tually exclusive (a potential example is suggested in [12, Remark 7.14]),
however they are mutually exclusive in the 1-dimensional case in Corollary
5.51. The proof of this for s = 3 is given in [20, Proposition 1.7], and the
argument generalizes in a straightforward manner to an arbitrary s.

We remark that the case of complex algebraic varieties corresponds to a
rather special case of our general Theorem 5.24 which also applies e.g. to
the theories of differentially closed fields or compact complex manifolds (see
Facts 2.20 and 2.21). For example:

Remark 5.53. Given definable strongly minimal sets X;,i € [s] and a fiber-
algebraic Q) C Hie[s] X; in a differentially closed field M of characteristic 0,
we conclude that either @) has power saving (however, we do not have an
explicit exponent here, see Problem 2.22), or that @ is in correspondence
with one of the following strongly minimal differential-algebraic groups: the
additive, multiplicative or elliptic curve groups over the field of constants
Cap of M, or a Manin kernel of a simple abelian variety A that does not
descend to Caq (i.e. the Kolchin closure of the torsion subgroup of A; we rely
here on the Hrushovski-Sokolovic trichotomy theorem, see e.g. [12, Section
2.1]).

6. MAIN THEOREM IN THE 0-MINIMAL CASE

6.1. Main theorem and some reductions. In this section we will assume
that M = (M,...) is an o-minimal, Ng-saturated L-structure expanding a
group (or just with definable Skolem functions). We shall use several times
the following basic property of o-minimal structures:

Fact 6.1. [15, Fact 2.1] Assume that a € M™ and A C B C M are small
sets. For every definable open neighborhood U of a (defined over arbitrary
parameters), there exists C 2O A, acl-independent from aB over A, and a
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C-definable open W C U containing a. In particular, dim(a/A) = dim(a/C)
and dim(aB/C) = dim(aB/A).

For the rest of the section we assume that s > 3 and for i = 1,...,s,
we have (-definable sets X; with dim X; = m for all ¢ € [s] (throughout
the section, dim refers to the standard notion of dimension in o-minimal
structures). We also have an (-definable set Q C X := X x --- x X, with
dim @ = (s — 1)m, and such that @ is fiber algebraic of degree d, for some
d € N (see Definition 1.4).

The following is the equivalent of Definitions 5.17 and 5.21 in the o-
minimal setting.

Definition 6.2. For v € R, we say that Q C X satisfies y-power saving
if there are definable families F = (F,...,Fs), where each F; consists of
subsets of X; of dimension smaller than m, such that for every v € N there
exists a constant C' = C(v) such that: for every n € N and every n-grid
A=Ay x - x Ay C X, |A;] = n in (F,v)-general position (i.e. for every
i € [s] and S € F; we have |A; N S| < v) we have

QNA|l < Cnls—h,
It is easy to verify that if Q1, Q2 C X satisfy y-power saving then so does
Q1 U Q2. Before stating our main theorem in the o-minimal case, we define:

Definition 6.3. Given a finite tuple ¢ in an o-minimal structure M, we let
uam(a) be the infinitesimal neighborhood of a, namely the intersection of all
M-definable open neighborhoods of a. It can be viewed as a partial type
over M, or we can identify it with the set of its realizations in an elementary
extension of M.

Theorem 6.4. Under the above assumptions, one of the following holds.

(1) The set Q has y-power saving, for v = 8mlf5 if s >4, and v = m
if s =3.

(2) There exist (i) a tuple a = (ai,...,as) in M generic in Q, (i) a sub-
structure My := dcl(a) of M of cardinality < |L| (iii) a type-definable
abelian group (G,4+) of dimension m, defined over My and (iv) M-
definable bijections m; : puam,(a;) NX; = G,i € [s], sending a; to 0 = Og,
such that

mi(xy) + -+ ms(zs) =0 Qxq,. .., zs)
Jor all z; € pp,(a;) N X510 € [s].
We begin working towards a proof of Theorem 6.4.

Notation

(1) For i,j € [s], we write X ; for the set [Tezij Xe

(2) For z € X; x Xo and V C Ylg we write

Q(z,V)={weV:(zw) €Q}.
We similarly write Q(U,w), for U C X; x X3 and w € X1 9.
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Lemma 6.5. The following are easy to verify:
(1) For every z € X1 x Xa, dimQ(z, X1,2) < (s — 3)m.
(2) If a = (z,w) € (X1 X X2) X X12 is generic in Q then for every neigh-
borhood U x V of a, dim Q(z,V) = (s — 3)m and dim Q(U, w) = m.
We will need to consider a certain local variant of the property (P2) from
Section 3.2.

Definition 6.6. Assume that a = (z,w) € Q N (X1 x Xa) x X1
e We say that Q has the (P2)1 9 property near o if for all U’ C X; x Xy and
V' C X1 2 neighborhoods of z,w respectively,

(6.1) dim Q(U',w) =m and dimQ(z,V') = (s — 3)m,

and there are open neighborhoods U x V' 3 (z,w) in (X1 x X2) x X ;
such that

(6.2 QU w) x Q(=,V) € @,
(namely, for every z; € U and w; € V, if (z1,w),(z,w1) € @ then
(21,w1) € Q).

e We say that Q) satisfies the (P2); j-property near o, for 1 <i < j < s, if the
above holds under the coordinate permutation of 1,2 and i, j, respectively.

e We say that Q satisfies the (P2)-property near o if it has the (P2); -
property for all 1 <i < j <s.

Remark 6.7. Note that if U,V satisfy (6.2), then also every Uy C U and
Vi C V satisfy it. Note also that under the above assumptions, we have
dlm(Q(U,’U)) X Q(za V)) = (S - 2)m

Definition 6.8. e Let Q7 be the set of all @ € @ such that @ satisfies
(P2);; near a.

e Let Q" =[1,.; Q7 ; be the set of all & € @ near which @ satisfies (P2).
Clearly, Q7 ; and Q* are (-definable sets.

The main ingredient towards the proof of Theorem 6.4 is the following:

Theorem 6.9. Assume that Q does not satisfy v-power saving for v as in
Theorem 6.4(1). Then dim Q* = dim Q = (s — 1)m.

6.2. The proof of Theorem 6.9. The following is an analog of Lemma
5.19 in the o-minimal setting.

Lemma 6.10. Let {Z; : t € T} be a definable family of subsets of X, each
fiber-algebraic of degree < d with dim(Z;) < (s — 1)m. Then there exist
definable families F;, i € [s]|, each consisting of subsets of X; of dimension
smaller than m, such that for every v € N, if A C X is an n-grid in (?, v)-
general position then for everyt € T,

AN Zy| < sd(v —1)n°2.

In particular, each Z,t € T satisfies 1-power saving.
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Proof. For t € T and a1 € X7 we let

Zta1 = {(ag,...,as) € Xogx--x Xg: (al,ag,...,as) S Zt}
For i € [s — 1], we similarly define Ziq,...q, € Xiy1 X -+ X X§.
(1) For t € T, we let

V! i={a; € X1 : dim(Zso,) = (s — 2)m} .
By our assumption on dim Z;, dim ;! < m. Let F, := {Y,! : t € T}.
(2) For t € T and a; ¢ Y, let
Y2 = {as € Xo : dim(Zsa,a,) = (5 — 3)m}.

tal

Then define 7, := {Y2 :t€T,a; ¢ Y;'}. Note that whenever a; ¢ Y/,
dim(Zsa,) < (s —2)m and therefore the set ¥;2 has dimension smaller than
m

For ¢« = 1,...,s — 2, we continue in this way to define a family F; =
{Yi 4 } of subsets of X; as follows: for a1 ¢ V!, as ¢ Y2, a3 ¢
i—1
Yt‘zlaz, ceyQim1 & Ytlal,,_aid, we let
Yo, = 1{ai € Xi : dim(Zigy.a,) = (s — (i + 1))m},
and let
j 1 2 i—1
‘Fi = {}/;7211---(11‘,1 : t € T7 al ¢ }/t 7a2 ¢ Y;ap D ai—l ¢ Ytzll"‘aifQ} ’
Finally, for aj,...,as_2 such that a; ¢ Ytill,_,ai_l fori=1,...,5—2, we
let
}/;z:}'as—Q = 7.‘-5_1(Ztal---@sf2) g X5—17
and let
Foo1:i= {}ngas_z teT, a1 ¢ Y} ... a5s ¢ }Qf;;?.as_?)} :

We provide some details on why the families F := (F; : i € [s]) satisfy the
requirement.

Assume that n,v € N and A C X is an n-grid which is in (?, v)-general
position, and fix t € T.

Because |A1NY;!| < v there are at most v—1 elements a1 € 71 (Z;NA)NY,
and for each such a; there are at most dn®~2 elements in ZN A which project
to it. Indeed, this is true because Z,, is fiber-algebraic of degree < d, so
for every tuple (ag,...,as_1) € Az x --- A1 (and there are at most n® 2
such tuples) there are < d elements as; € As such that (ag,...,as-1,as) €
(Ag X -+ X Ag) N Zya, -

So, altogether there are at most d(v—1)n*~2 elements (a1, ..., as) € ANZ;
for which a; € Y{. On the other hand, there are at most n —v < n elements
a1 ¢ Y;'. We now compute for how many a € AN Z; we have a; ¢ Y,!.

By definition, dim(Z,,) < (s — 2)m, so now we consider two cases, ag €
Yt?ll and ay ¢ Yt%”. In the first case, there are at most v — 1 such ag, by
general position, and as above, for each such ay there are at most dn®—3
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tuples (as,...,as) € Ag X --- x Ag such that (ag,as,...,as) € Zia,. Thus
all together there are n(v — 1)dn*~2 = d(v — 1)n*2 elements a € AN Z,
such that a; ¢ Y;' and az € Y;2. There are at most (n — v) < n elements
as € A which are not in Yt?zl Of course, there are at most n? pairs (a1, az)
such that a; ¢ ;' and az ¢ Y2, and we now want to compute how many
a € AN Z; project onto such (ar,as). Repeating the same process along
the other coordinates, we see that there are at most (s — 2)d(v — 1)n®~*
elements which project into each such (a1, a2), so all together there are at
most (s —2)d(v — 1)n*~2 tuples @ € AN Z; for which a1 ¢ Y;' and az ¢ Y2, .
If we add it all we get at most sd(v — 1)n*~? elements in A N Z;, which
concludes the proof of the lemma. O

Corollary 6.11. Assume that Q C X does not satisfy 1-power saving and
that Z C @ is a definable set with dim Z < (s —1)m. Then Q' := Q\ Z also
does not satisfy 1-power saving.

Proof. Indeed, Lemma 6.10 (applied to the constant family) implies that Z
itself satisfies 1-power saving, and since y-power saving is preserved under
union then it fails for @Q’. O

In order to prove Theorem 6.9, it is sufficient to prove the following:

Proposition 6.12. Let Q' C Q be a definable set and assume that there
exist i # j € [s] such that dim(Q N Q7 ;) < (s —1)m. Then Q' satisfies
~v-power saving for vy as in Theorem 6.4(1).

Let us first see that indeed Proposition 6.12 quickly implies Theorem 6.9.
Let v be as in Theorem 6.4(1). Assuming that @ does not have y-power
saving, Proposition 6.12 with Q' := @ implies that dim(Q7 ,) = (s — 1)m.
Also, if we take Q" := Q\ Q7 5 then clearly Q"NQ7 5 = () and therefore by the
same proposition Q" satisfies y-power saving, and therefore Q7 o does not
satisty y-power saving. We can thus replace @ by Q1 := Q7 5 and retain the
original properties of () together with the fact that Q1 has (P2); 2 at every
a € Q1. Next we repeat the process with respect to every (i,7) # (1,2) and
eventually obtain a definable set @' C @ of dimension (s — 1)m such that
Q' satisfies (P2) at every point — establishing Theorem 6.9.

Proof of Proposition 6.12.

Let Q' C @ and v be as in Proposition 6.12. It is sufficient to prove the
proposition for Q7 5 (the case of arbitrary i # j € [s] follows by permuting
the coordinates accordingly). If dim @’ < (s — 1)m then by Lemma 6.10
Q' satisfies 1-power saving, hence y-power saving. Thus we may assume
that dim @’ = (s — 1)m, and hence, by throwing away a set of smaller
dimension, we may assume that @’ is open in (. It is then easy to verify
that (Q')7 o = Q75N Q. Hence, without loss of generality, @ = Q'. We
now assume that dim Q7 , < (s — 1)m and therefore, by Lemma 6.10, Q7 5
has y-power saving. Thus, in order to show that ) has y-power saving, it
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is sufficient to prove that @ \ Q7 » has y-power saving, so we assume from
now on that Q7 5 = (.
We let U := X1 X X2 and V := XLQ.

Claim 6.13. For every w € V, the set
Xy = {w €V :dim(QU,w) NQ(U,w")) =m}

has dimension strictly smaller than (s — 3)m. Moreover, the set X,, is fiber
algebraic in X3 x --- x Xg.

Proof. We assume that relevant sets thus far (i.e. X;,Q,U,V, Q;j) are de-
fined over (). Now, if dim(X,,) = (s — 3)m (it is not hard to see that it
cannot be bigger), then by Ng-saturation of M we may take w’ generic in
Xy over w, and then u' generic in Q(U, w) N Q(U,w’") over w,w’. Note that
the fiber-algebraicity of @ implies that dim(Q(u,V)) < (s — 3)m, and since
dim(w’/wu') = dim(w’ /w) = (s—3)m it follows that w' is generic in both X,
and Q(u/, V) over wu/, so in particular, dim X,, = dim Q(v/, V') = (s — 3)m.
We claim that (u',w’) € Q7 5. Indeed, by our assumption,

dim (v /ww') = dim(Q((U,w) N Q(U,w")) = dim Q(U, w) = m.

Thus, there exists an open Uy C U containing u/, such that Uy N Q(U,w) =
Up N Q(U,w’), or, said differently, Q(Uy, w) = Q(Uy,w’). By Fact 6.1, we
may assume that the tuple (w,w’,u') is independent from the parameters
defining Uy over (). Thus, without loss of generality, Uy is definable over
(. The set Wy :={v € V : Q(Up,w) C Q(U,v)} is defined over w and the
set Q(v', V) is defined over ', and both contain w’. Since dim(w'/w,u’) =
(s — 3)m then dim(W7 N Q(v/,V)) = (s — 3)m. We can therefore find an
open Vy C V such that Q(u/,Vp) € Wi. Now, by the definition of W7y, we
have Q(Uy, w) x Wi C @, and hence Q(Up, w) x Q(u', Vp) C @ and therefore
(since Q(Uy,w) = Q(Up,w")), Q(Up,w’) x Q(u,Vy) C Q. This shows that
(v, w') € QF 5, contradicting our assumption that Q7 , = 0.

To see that X, is fiber algebraic, assume towards contradiction that there

exists a tuple (as,...,as—1) € X3 x --- x X, for which there are infinitely
many as € X, such that (as,...,as) € X, (the other coordinates are treated
similarly). We can now pick such ag generic over w,as,...,as—1 and then
pick (a1,a2) € Q(U,w)NQ(U,as, .. .,as) generic over w, as, ..., as. Because
dim(ay,a2/w) = dim(ay, az/w,as, ..., as) it follows by the additivity of di-
mension that for any subtuple a’ of as,...,as we have dim(a’'/w,a1,as) =

dim(a’/w). It follows that

0 < dim(as/w,as,...,as—1) = dim(as/w,ay,as,as,...,as—1).
Since Q(a1,az,as,...,as) holds, it follows that Q(a1,as,as, ..., as—1,Xy) is
infinite — contradicting the fiber-algebraicity of Q. O

We similarly have:
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Claim 6.14. For every u € U, the set
X":={u €U :dm(Q(u, V) NQ/,V)) = (s — 3)m}

has dimension strictly smaller than m. Moreover, the set X" is fiber-
algebraic in X7 x Xs.

Lemma 6.15. There exist s definable families F= (Fi,...,Fs) of subsets

of X1,...,Xs, respectively, each containing only sets of dimension strictly

smaller than m, such that for every v € N and every n-grid A C X in

(f, v)-general position, we have the following.

(1) For all w,w" € Az x -+ x As, if |Q(A1 X Az, w) NQ(A; X Az, w')| > dv
then w' € X,,.

(2) For all w € Az x --- x A, there are at most C(v)n*~* elements w' €
Ag x -+ X Ag such that |Q(A1 X A2, w) N Q(A; X Ay, w')| > dv.

(3) |[ANQ| < C'(v)nt—1-7,

Proof. We choose the definable families in F as follows. Let

F1:= {Wl(Q(U,w) NQU,w")) :
w,w’ € V& dim (Q(U, w) NQU, w’)) < m},

and Fy := {0}. Clearly, each set in F; has dimension smaller than m.
Because @ is fiber algebraic of degree < d, it is easy to verify that (1) holds
independently of the other families.

For the other families, we first recall that by Claim 6.13, for each w € X1 o,
the set X,y C X1 2 has dimension smaller than (s — 3)m.

We now apply Lemma 6.10 to the family {X,, : w € X2} (note that s
from Lemma 6.10 is replaced here by s — 2), and obtain definable families
F = (Fs,,...,Fs), each F; consisting of subsets of X; of dimension smaller
than m, such that for every v and every n-grid As x --- x Ay C X1 in
(f ', v)-general position and every w € X1 2 we have

| (A3 x - x Ag) N X, | < Cv)n*~4

Let F := (Fi, F2, F') and assume that A is in (F,v)-general position. It
follows that for every w € Az x - --x A, there are at most C'(v)n®*~* elements
w' € Az X -+ x Ag such that |Q(A; x Az, w) N Q(A1 x Ag,w’)| > dv. This
proves (2).

We claim that the relation ), viewed as a binary relation on (X; X
X5) x X129, satisfies the v-ST property. Indeed, for i € [s], let X; =
Ueqki] X;¢ be an o-minimal cell decomposition of X;, for some k; € N,
we have m = dim(X;) = max {dim(X;¢) : £ € [k;]}. Then each (definable)
cell X;, is in a definable bijection with a definable subset of Mdim(Xie)
(namely, the projection on the appropriate coordinates is a homeomor-
phism), hence in a definable bijection with a definable subset of M™. For
= (lr,....0) € [k] x ... x [ks], let Q7 := Q N [];cry Xie;- Applying
these definable bijections coordinate-wise, by Lemma 2.1(1) we may assume
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Q7 C Hie[s] M™ and apply Fact 2.15 to conclude that for each £, Qj satisfies
the v-ST property. But then, by Lemma 2.1(2), @ also satisfies the 7-ST
property. Finally, given an n-grid A C (X3 x Xs) x X1 in (.f, v)-general
position, we thus have by the -ST property that (2) implies (3). O
This shows that () has y-power saving, in contradiction to our assumption,
thus completing the proof of Proposition 6.12, and with it Theorem 6.9.

6.3. Obtaining a nice @)-relation. By Theorem 6.9 we may assume that
dim @) = dim @*. Thus, in order to prove Theorem 6.4, we may replace @)
by @Q*, and assume from now on that @ = Q*.

Using o-minimal cell decomposition, we may partition ) into finitely
many definable sets such that each is fiber-definable, namely for each tu-
ple (a1,...,as—1) € Ay X --+- X As_1, there exists at most one

Qs :f(alv"'aasfl) E)(3

such that (a1, ...,as—1,as) € @, and furthermore f is a continuous function
on its domain. We can do the same for all permutations of the variables.
Since ) does not satisfy v-power saving by assumption, one of these finitely
many sets, of dimension (s — 1)m, also does not satisfy y-power saving.

Hence from now on we assume that @) is the graph of a continuous partial
function from any of its s — 1 variables to the remaining one.

By further partitioning ) and changing the sets up to definable bijections,
we may assume that each X; is an open subset of M™. Fix € = (eq,...,es)
in M generic in @, and let My := dcl(e). Note that for each (as,...,as) in
a neighborhood of (es, ..., es), the set Q(x1,x9,as,...,as) is the graph of a
homeomorphism between neighborhoods of e; and ea. We let u; := pag, (€;)
(see Definition 6.3) and identify these partial types over M with their sets
of realizations in M.

Lemma 6.16. There exist Mo-definable relatively open sets U C X; X
Xy and V. C Xi9, containing (e1,e2) and (es,...,es), respectively, and
a relatively open W C @, containing €, such that for every (u,v) € W,
Q(u, V) x Q(U,v) C Q.

In particular, for any u,u’ € ppam,(e1,e2) N (X1 x X2) and any v,v" €
pro (€3, - es) N X19 we have

(u,v), (u,v"), (v',v) € Q = (v, V) € Q.

Proof. Because the properties of U, V and W are first-order expressible over
e, it is sufficient to prove the existence of U, V, W in any elementary extension
of Mo.

Because € € Q = @7, there are definable, relatively open neighborhoods
UCX;xXyandV C )_(1,2 of (e1,e2) and (es,...,es), respectively, such
that

Q(Ua €35, es) X Q(ela €2, V) C Q

By Fact 6.1, we may assume that U,V are definable over A C M such

that € is still generic in Q over A. It follows that there exists a relatively



72 ELEKES-SZABO FOR STABLE AND O-MINIMAL HYPERGRAPHS

open W C @, containing €, such that for every (u,v) € W (so, u € X7 x X3
and v € X1 ), we have Q(U,v) x Q(u,V) C Q. As already noted, we now
can find such U,V and W defined over M.

Note that paq,(e1,e2) N (X1 x X2) € U and ppgy(es,...,en) N X122 C
V, and ppm,(6) € W. Let us see how the last clause follows: assume
that u,u’ € pa,(e1,e2) N (X1 x Xa), v,0" € ppg(es, ... en) N X122, and
(u,v), (u,v"), (u',v) € Q. We have u,u’ € U, v,0' € V and

(u,v), (u,v"), (u',v) € W.
By the choice of U, V, W, we thus have (v/,v") € Q. O

Lemma 6.17. The definable relation Q) satisfies properties (P1) and (P2)
from Section 3.2 with respect to the Mo-type-definable sets p; N X;,i € [s],
namely:

(P1) For any (a1,...,as—1) € u1 X+ X us—1, there exists exactly one ag €
s with (ai,...,as-1,as) € Q, and this remains true under any coordinate
permutation.

(P2) Let U = X o N X, X Xy and V := w3 X ... x pus N X12. Then
for every u,v' € U and w,w’ €'V,

(usw), (u;w), (u;w') € Q = (u;u') € Q.
The same is true when (1,2) is replaced by any (i,7) with i # j € [s].
Proof. By continuity of the function given by @, for every tuple
(@1y...,G5-1) € pb1 X =+ X fls—1

there exists a unique as € ps such that (ai,...,as) € Q. The same is true
for any permutation of the variables. This shows (P1).

Property (P2) holds by Lemma 6.16 for the (1, 2)-coordinates. The same
proof works for the other pairs (i, 7). O

Let us see how Theorem 6.4 follows. Assume first that s > 4, and that
@ does not have y-power saving for v = ﬁ. By Theorem 6.9 and the
resulting Lemma 6.17 (see also the choice of the parameters before Lemma
6.16), there is € = (eq, ..., es) generic in @ and a substructure My = dcl(e)
of cardinality |£| such that @N]T;cry (ko (€:) N X;) satisfies (P1) and (P2)
of Theorem 3.21. Note that paq,(e;) is a partial type over My for i € [s],
€ satisfies the relation, and € is contained in M. Thus, by the “moreover”
clause of Theorem 3.21, there exists a type definable abelian group G over
My and My-definable bijections 7 : g, (€;) N X; — G each sending e; to
O and satisfying:

Qlai,...,an) & m(a) + -+ 7, (am) =0

for all a; € pa,(ei) N X;. This is exactly the second clause of Theorem 6.4.
Finally, the case s = 3 of Theorem 6.4 reduces to the case s = 4 as in the
stable case, Section 5.7, with the obvious modifications.
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6.4. Discussion and some applications. We discuss some variants and
corollaries of the main theorem. In particular, we will deduce a variant
that holds in an arbitrary o-minimal structure, i.e. without the saturation
assumption on M used in Theorem 6.4.

Definition 6.18. (see [27, Definition 2.1]) A local group is a tuple (I, 1, ¢, p),
where T" is a Hausdorff topological space, ¢ : A — T" (the inversion map) and
p: Q — T (the product map) are continuous functions, with A C T" and
Q) C T? open subsets, such that 1 € A, {1} x I',T x {1} € Q and for all
x,y,z €It

(1) p(x, 1) = p(l,l’) €,
(2) if z € A then (z,t(x )) (t(x),z) € Q and p(x,c(x)) = p((z),x) = 1;
(3) if (z,y), (y,2) € Qand (p(z,y),2), (x,p(y, 2)) € Q, then

p((p(z,y),2) = p(z,p(y, 2)).

Our goal is to show that in Theorem 6.4 we can replace the type-definable
group with a definable local group. Namely,

Corollary 6.19. Let M be an Rg-saturated o-minimal expansion of a group,
§>3,Q C Xy x - X Xy are 0-definable with dim(X;) = m, and Q is fiber
algebraic. Then one of the following holds.

(1) The set Q has y-power saving, for v = g
if s =3.

(2) There exist (i) a finite set A C M and a structure Mgy = dcl(A) (ii) a
definable local abelian group T with dim(T") = m, defined over My, (iii)
definable relatively open U; C X;, a definable open neighborhood V- C T’
of 0 = Op, and (iv) definable homeomorphisms 7; : Uy — V| i € [s], such
that for all x; € U;,

: 1
5 ifs 24, andy = 15,5

m(z1) + -+ 7s(xs) =0 Q(x1,. .., x5).

Proof. We assume that (1) fails and apply Theorem 6.4 to obtain a generic in
Q, My = dcl(a), a type-definable abelian group G over M, and bijections
i M, (ai) = G sending a; to 0, such that for all ¢ € [s], and x; € paq,(ai),

7T1(l‘1) +e +7Ts($s) =0< Q(mlv' .- 71'3)'

By pulling back the group operations via, say, 71, we may assume that the
domain of G is pa,(a1). We denote this pull-back of the addition and the
inverse operations by x @y and Oy, respectively. Let us see that @ and © are
continuous with respect to the induced topology on g, (a1) € X1. Because
a is generic in ), and @ is fiber algebraic, it follows from o-minimality that
the set Q(z1, 2,3, a4, .. .,as) defines a continuous function from any two of
the coordinates x1, x2, x3 to the third one, on the corresponding infinitesimal

types fim,(ai) X fiamo(ag)-
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The following is easy to verify: for o/, 2" 2" € pam,(ar), ' @& 2" = 2" if

and only if there exist xg € pa,(a2) and z3, x4 € paq, (az) such that

Q (2, x9,x3,a4,...,as), Q2" as,x3,a4,...,a5) and
Q('I”a ag, ‘r/3a a4, ... ,Cls), Q(ala $25$/33 a4, ... ,CLS).

By the above comments, @ can thus be obtained as a composition of con-
tinuous maps, thus it is continuous. We similarly show that © is continuous.

Applying logical compactness, we may now replace the type-definable G
with an Moy-definable I' O G = piaq,(a1), with partial continuous group op-
erations, which make I' into a local group (we note that in general, any type-
definable group is contained in a definable local group by logical compact-
ness, except for the topological conditions). Similarly, we find U; D pipm, (ai),
V CT and m; : U; — V as needed. ([

Note that if Ry min is an o-minimal expansion of the field of reals and
the X;’s and @ are definable in Ry pin, with @ not satisfying Clause (1)
of Corollary 6.19, then taking a sufficiently saturated elementary extension
M = Romin, Q(M) still does not satisfy Clause (1) in M. Hence we may
deduce that Clause (2) of Corollary 6.19 holds for @ in M, possibly over
additional parameters from M. However, the definition of a local group is
first-order in the parameters defining I', + and p. Thus, by elementarity,
we obtain that Clause (2) of Corollary 6.19 holds for Q(R), with " and the
functions m; definable in the original structure Ro_min-

By Goldbring’s solution [27] to the Hilbert’s 5th problem for local groups,
if T' is a locally Fuclidean local group (i.e. there is an open neighborhood
of 1 homeomorphic to an open subset of R™, for some n), then there is a
neighborhood U of 1 such that U is isomorphic, as a local group, to an open
subset of an actual Lie group G. Clearly, if the local group is abelian then
the connected component of G is also abelian. Combining these observations
with Corollary 6.19 we conclude:

Corollary 6.20. Let Ro_min be an o-minimal expansion of the field of reals.
Assume s > 3, Q C X7 x -+ X X, are (-definable with dim(X;) = m, and
Q is fiber-algebraic. Then one of the following holds.

(1) The set Q satisfies y-power saving, for v = ﬁ if s >4, and v =

m if s =3.

(2) There exist definable relatively open sets U; C X, i € [s], an abelian
Lie group (G,+) of dimension m and an open neighborhood V- C G of
0, and definable homeomorphisms m; : U; — V', i € [s|, such that for all
x; € Uj,i € [S]

7T1(l‘1)+"'+775(335) :0<:>Q(x1,...,:cs).

Finally, this takes a particularly explicit form when dim(X;) = 1 for all
i€ [s].
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Corollary 6.21. Let Ry min be an o-minimal expansion of the field of reals.
Assume s > 3 and QQ C R* is definable and fiber-algebraic. Then exactly one
of the following holds.

(1) There exists a constant ¢, depending only on the formula defining Q (and
not on its parameters), such that: for any finite A; C R with |A;] = n
for i € [s] we have

QN (AL x ... x Ay)| < en® 177,

where’y:% if s >4, and’y:% if s =3.
(2) There exist definable open sets U; C R,i € [s], an open set V. C R
containing 0, and homeomorphisms m; : Uy — V' such that

7[-1(3:1) +---+ 7T3(ZC3) =0« Q(«Tl, s 7$S)
for all z; € Uy,i € [s].

Proof. Corollary 6.20 can be applied to Q.

Assume we are in Clause (1). As the proof of Theorem 6.4 demonstrates,
we can take any < such that @ satisfies the -ST property (as a binary
relation, under any partition of its variables into two and the rest) if s > 4;
and such that @' (as defined in Section 5.7) satisfies the 7-ST property
if s = 3. Applying the stronger bound for definable subsets of R? x R%
from Fact 2.15(1), we get the desired v-power saving. Note that in the 1-
dimensional case, the general position requirement is satisfied automatically:
for any definable set Y C R, dim(Y') < 1 if and only if Y is finite; and for
every definable family F; of subsets of R, by o-minimality there exists some
vp such that for any Y € F;, if Y has cardinality greater than 1y then it is
infinite.

In Clause (2), we use that every connected 1-dimensional Lie group G is
isomorphic to either (R,+) or S!, and in the latter case we can restrict to a
neighborhood of 0 and compose the 7;’s with a local isomorphism from S*
to (R, +).

Finally, the two clauses are mutually exclusive as in Remark 5.52. ([

Remark 6.22. In the case that definable sets in Rqy iy admit analytic cell
decomposition (e.g. in the o-minimal structure Ruy exp, see [59, Section 8])
then one can strengthen Clause (2) in Corollaries 6.20 and 6.21, so that the
U;’s are analytic submanifolds and the maps 7; are analytic bijections with
analytic inverses.

Remark 6.23. If @ is semialgebraic (which corresponds to the case Ry min =
R of Corollary 6.21), of description complexity D (i.e. defined by at most D
polynomial (in-)equalities, with all polynomials of degree at most D), then
in Clause (1) the constant ¢ depends only on s and D (as all Q’s are defined
by the instances of a single formula depending only on s and D).

Remark 6.24. If @) is semilinear, then by Fact 2.19 it satisfies (1 — ¢)-ST
property, for any € > 0. In this case, in Clause (1) of Corollary 6.21 for



76 ELEKES-SZABO FOR STABLE AND O-MINIMAL HYPERGRAPHS

s > 4 we get (1 — e)-power saving — which is essentially the best possible
bound. See [39] concerning the lower bounds on power saving.
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