
Project-Fair and Truthful Mechanisms for Budget Aggregation

Rupert Freeman1, Ulrike Schmidt-Kraepelin2

1University of Virginia, Charlottesville, VA, USA
2TU Eindhoven, The Netherlands

freemanr@darden.virginia.edu, u.schmidt.kraepelin@tue.nl

Abstract

We study the budget aggregation problem in which a set of
strategic voters must split a finite divisible resource (such as
money or time) among a set of competing projects. Our goal
is twofold: We seek truthful mechanisms that provide fairness
guarantees to the projects. For the first objective, we focus on
the class of moving phantom mechanisms, which are – to this
day – essentially the only known truthful mechanisms in this
setting. For project fairness, we consider the mean division as
a fair baseline, and bound the maximum difference between
the funding received by any project and this baseline. We pro-
pose a novel and simple moving phantom mechanism that
provides optimal project fairness guarantees. As a corollary
of our results, we show that our new mechanism minimizes
the ℓ1 distance to the mean for three projects and gives the
first non-trivial bounds on this quantity for more than three
projects.

1 Introduction
In the budget aggregation problem, a fixed amount of a di-
visible resource (such as money or time) must be allocated
among m competing projects based on the divisions pro-
posed by a set of n voters. For example, in participatory bud-
geting (Cabannes 2004; Aziz and Shah 2021), citizens vote
directly on how a public budget should be divided between
a set of public projects. Other examples might include a uni-
versity department allocating discretionary funding among
different initiatives or a group of conference organizers de-
ciding how to divide time among activities such as talks,
posters, and social events.

A common and natural solution to this problem is to di-
vide the resource according to the (arithmetic) mean of the
votes, guaranteeing that the funding received by each project
is proportional to the total support that project receives from
the voters. However, using the mean as a budget aggregation
rule is not strategyproof.1 For example, voters can overstate
their preference for their favorite projects to bring the fund-
ing for that project towards the voter’s true preference.

In pursuit of strategyproof mechanisms, Freeman et al.
(2021) defined the class of moving phantom mechanisms,
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1We use the terms “strategyproof” and “truthful” interchange-
ably.

a high-dimensional generalization of the well-known class
of generalized median mechanisms for strategyproof aggre-
gation in one dimension (Moulin 1980). Moving phantom
mechanisms are strategyproof when voters have disutilities
given by the ℓ1 distance between their vote and the aggregate
division. One particularly natural mechanism, which turns
out to be a member of this class, is the one that minimizes
the sum of disutilities of the voters (Lindner, Nehring, and
Puppe 2008; Goel et al. 2019). Although this rule can be
effective, it can also produce outcomes that differ signifi-
cantly from the mean (for intuition, consider the median in
one dimension). If the mean is considered a desirable out-
come, then it would be beneficial to discover strategyproof
mechanisms that are more aligned with it.

Freeman et al. (2021) introduced the Independent Mar-
kets mechanism, which is guaranteed to agree with the mean
when all voters want to fund only a single project (a mech-
anism with this property is said to be proportional). How-
ever, as Caragiannis, Christodoulou, and Protopapas (2022)
showed in subsequent work, on other inputs it may produce
outcomes that are far from the mean according to the ℓ1
distance. They propose a different moving phantom mech-
anism, the Piecewise Uniform mechanism, which never out-
puts budget divisions that have an ℓ1 distance from the mean
larger than 2

3 when there are only three projects.2 No posi-
tive results are known for higher numbers of projects.

Caragiannis, Christodoulou, and Protopapas (2022) mea-
sure the quality of an outcome by its ℓ1 distance to the
mean. However, this measure does not capture how the de-
viation from the mean is distributed over the projects. For
instance, suppose that the mean division over four projects
is given by (70%, 10%, 10%, 10%) and consider two poten-
tial aggregate divisions: a = (50%, 30%, 10%, 10%) and
b = (60%, 20%, 0%, 20%). For both aggregates, the ℓ1 dis-
tance to the mean is 40%. However, while in division a, the
first project is being underfunded relative to the mean by
20% of the budget, in division b, no project is over or un-
derfunded by more than 10% of the budget. In this paper,
we complement Caragiannis, Christodoulou, and Protopa-
pas’s approach by studying the ℓ∞ distance to the mean,
which can be interpreted as a measure of fairness between

2The proof relies on solving a nonlinear program, so this bound
is subject to a small error.
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projects. Taking the mean to be a project’s “entitlement,” by
how much does the allocation of any project exceed or fall
short of this value?

Given that the projects themselves (or the entities behind
them) are typically stakeholders in budget aggregation sys-
tems, project-fairness guarantees are important to maintain
the confidence of the projects in the system.

Our Contributions. We introduce the notion of project
fairness for the budget aggregation problem. While our defi-
nition is technically similar to the proportionality measure of
Caragiannis, Christodoulou, and Protopapas (2022) in that
we are interested in the worst case distance (according to
some metric) from the mean, the two metrics can differ sub-
stantially in which outcomes they prefer. That said, they are
related in that an upper bound on the ℓ∞ distance implies an
upper bound on the ℓ1 distance and vice versa; see Section 6.

We focus on project fairness for the class of moving phan-
tom mechanisms. Whether there exist (anonymous, neutral,
and continuous) strategyproof mechanisms outside of this
class remains an intriguing open question. As our main re-
sult, we define the Ladder mechanism, a new moving phan-
tom mechanism that is guaranteed to output a budget di-
vision with ℓ∞ distance from the mean equal to at most
1
2 − 1

2m . This bound is tight for moving phantom mecha-
nisms. We additionally show that, while our mechanism may
underfund a project by this amount relative to the mean, it
never overfunds a project by more than 1/4, a property that
we show to be common to all proportional mechanisms.

As a corollary of our result, we show that our new mech-
anism guarantees an ℓ1 distance from the mean of no more
than 2

3 for instances with three projects, which matches the
known lower bound. This closes a (very small) gap that was
left open by Caragiannis, Christodoulou, and Protopapas
(2022), who obtained an upper bound of 2

3+10−5 by a com-
plex proof that involved characterizing worst case instances
and then solving a non-linear program. In contrast, our proof
is combinatorial and relatively simple in comparison. We ad-
ditionally obtain non-trivial bounds on the ℓ1 distance from
the mean for 4, 5, and 6 projects. Prior to our work, no mech-
anisms were known to guarantee an ℓ1 distance less than a
trivial upper bound for more than 3 projects.

Related Work. Portioning, also known as (unbounded) di-
visible participatory budgeting, is an umbrella term for prob-
lems in which a continuous divisible resource must be di-
vided among alternatives. The budget aggregation problem
is an example of portioning where voters submit complete
budget allocation proposals; in addition to the papers dis-
cussed above, Elkind, Suksompong, and Teh (2023) perform
an axiomatic analysis of various rules in this setting, and find
that the mean performs well relative to the other rules they
consider. In particular, it is the only one of the considered
rules to satisfy the score representation axiom, a natural pro-
portionality property. Goyal et al. (2023) study mechanisms
with low sample complexity in terms of their social wel-
fare approximation guarantees. Other variants of portion-
ing include voters submitting ordinal preferences (Airiau
et al. 2023), dichotomous preferences (e.g., Bogomolnaia,
Moulin, and Stong 2005; Brandl et al. 2021; Michorzewski,

Peters, and Skowron 2020), or more general cardinal utility
functions over alternatives (Fain, Goel, and Munagala 2016;
Wagner and Meir 2023). For an overview of other models
and additional related work in participatory budgeting, we
refer to the survey of Aziz and Shah (2021).

For the special case of two projects,3 moving phantom
mechanisms reduce to the generalized median mechanisms
of Moulin (1980), which take the median of n + 1 fixed
“phantom” votes and the n submitted votes. These mech-
anisms have been extensively studied, most notably in the
context of strategyproof facility location (Procaccia and Ten-
nenholtz 2013; Aziz et al. 2021). Connections between gen-
eralized median mechanisms and mean approximation in
one dimension have also been made previously in various
contexts (Renault and Trannoy 2005, 2011; Caragiannis,
Procaccia, and Shah 2016; Jennings et al. 2023; Caragian-
nis, Christodoulou, and Protopapas 2022). All of these pa-
pers identify the uniform phantom mechanism, which places
phantom votes at uniform intervals of 1/n, as the most desir-
able generalized median from this perspective. As with other
proportional moving phantom mechanisms in the literature,
the Ladder mechanism draws heavy inspiration thereof.

Alternative multidimensional aggregation settings that do
not require votes and outcomes to sum to one exist in the
literature (e.g., Barberà, Gul, and Stacchetti 1993; Barberà,
Massó, and Neme 1997; Border and Jordan 1983; Peters,
van der Stel, and Storcken 1992). Typically, strategyproof
mechanisms in these models can be decomposed into one-
dimensional mechanisms taking a generalized median in ev-
ery coordinate, which would violate our normalization re-
quirement. Accordingly, these problems are very different
to ours from a technical perspective.

2 Preliminaries
For any k ∈ N, let [k] = {1, . . . , k} and [k]0 =
{0, 1, . . . , k}. We denote by N = [n] the set of voters and
by M = [m] the set of projects. For any m ∈ N, we define
∆(m) = {q ∈ [0, 1]m |

∑
j∈[m] qj = 1} to be the stan-

dard simplex. For a set of projects M , each voter indicates
their ideal budget distribution over the projects, i.e., an ele-
ment of ∆(m). Formally, these preferences are summarized
in a preference profile P , which is a matrix P ∈ [0, 1]n×m

with (Pij)j∈[m] ∈ ∆(m) for every i ∈ N . A budget aggre-
gation mechanism A takes as input a preference profile P
and outputs an element from ∆(m). For a given preference
profile P , and for any j ∈ [m], let P j = 1

n

∑
i∈[n] Pij be

the average support of this project.
Moving Phantom Mechanisms For n ∈ N, a phantom

system Fn = {fk : k ∈ [n]0} is a family of functions,
where fk : [0, 1] → [0, 1] is a continuous, non-decreasing
function with fk(0) = 0 and fk(1) = 1 for each k, and
f0(t) ≥ f1(t) ≥ · · · ≥ fn(t) for all t ∈ [0, 1]. Then, for any
preference profile P , let t∗ ∈ [0, 1] be chosen such that∑

j∈[m]

med(f0(t
∗), . . . , fn(t

∗), P1j , . . . , Pnj) = 1,

3Since we have a normalization constraint, the two-project case
has only one degree of freedom.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

9705



where “med” is the median. Then, we define
AFn(P )j = med(f0(t

∗), . . . , fn(t
∗), P1j , . . . , Pnj)

and say that AFn reaches normalization at t∗. While t∗ is
not always unique, the resulting budget allocation is unique.

Since phantom systems are defined for fixed n ∈ N, we
are interested in families of phantom systems, F = {Fn |
n ∈ N}, and define the moving phantom mechanism AF by
applying mechanism AFn to any profile with n voters.

Following Freeman et al. (2021), we will pictorially repre-
sent (snapshots of) moving phantom mechanisms in the fol-
lowing way (see, for example, Figure 1). Projects are repre-
sented by vertical bars, with voter reports indicated by black
horizontal line segments. The vertical position of the seg-
ment indicates the report Pij . Phantom positions are indi-
cated by solid blue lines. On every project, the median of
the voter and phantom positions is indicated by a rectangle.

Strategyproofness For any q ∈ ∆(m), the disutility of a
voter i is assumed to be the ℓ1 distance from q to its ideal
point, i.e.,

∑
j∈[m] |Pij − qj |. It is known that all moving

phantom mechanisms are strategyproof in the sense that no
voter can decrease the ℓ1 distance from the aggregate to their
ideal distribution by reporting a distribution that is not their
ideal one (Freeman et al. 2021). Note that strategyproofness
of moving phantom mechanisms rests crucially on the as-
sumption of ℓ1 (dis)utilities. We refer the reader to Nehring
and Puppe (2019) and Goel et al. (2019) for natural interpre-
tations of this utility model in the budgeting setting (and to
Varloot and Laraki (2022) for a setting where a utility model
other than ℓ1 is more appropriate).

Proportionality We say that a voter i ∈ N is single
minded if Pij ∈ {0, 1} for all j ∈ M . Freeman et al. (2021)
define a budget aggregation mechanism to be proportional
if, for any profile consisting of single-minded voters only, it
holds that A(P )j = P j for all j ∈ M .

We now introduce the main novel concept of the paper,
i.e., a guarantee for the maximum deviation of the fund-
ing received by any project from the funding given to this
project by the mean aggregation function (which is not strat-
egyproof). Since these bounds can be made more precise by
parameterizing them by n and m, we express the resulting
bounds in terms of a function α(n,m).

Project Fairness For a function α : N × N → R, we
say that a budget aggregation mechanism is α-project fair
if, for any preference profile P on n voters and m projects,
and any j ∈ [m], it holds that |A(P )j − P j | ≤ α(n,m). In
addition, we say that a mechanism overfunds by at most α if
A(P )j−P j ≤ α(n,m) for all j ∈ [m], and it underfunds by
at most α if P j−A(P )j ≤ α(n,m) for all j ∈ [m]. Clearly,
a mechanism is α-project fair if and only if it overfunds by
at most α and underfunds by at most α. For simplicity, any
function α in this paper maps from N× N to R.

3 Lower Bounds
In this section, we provide several lower bounds on the α-
project fairness for (subclasses of) moving phantom mecha-
nisms. This paves the way to the introduction of a new mech-
anism guaranteeing optimal project fairness. We say that a

0

1

1 2 3

f0
f1

f3

f4

f2

Figure 1: Example from Proposition 1 for n = 4 and m = 3.
See Section 2 for an explanation of how to read our figures.
Note that the black line segments each represent two voters
who both make the same report.

budget aggregation mechanism is zero unanimous if it never
funds a project that every voter agrees should receive zero
funding, i.e., Pij = 0 for all i ∈ [n] implies that A(P )j = 0.
Zero unanimity is a restriction of the score unanimity con-
dition of Elkind, Suksompong, and Teh (2023), which says
that whenever all agents unanimously agree on the funding
for a particular project, then this project should receive ex-
actly that level of funding. In Proposition 1, we start by pro-
viding a lower bound on the overfunding guarantee of any
zero-unanimous moving phantom mechanism.4

Proposition 1. Let AF be a zero-unanimous moving phan-
tom mechanism. Then, there exists no α satisfying

• α(n,m) < 1
4 for any n,m ∈ N, where n is even, or

• α(n,m) < 1
4

(
1− 1

n

)
for any n,m ∈ N, where n is odd,

such that AF overfunds by at most α.

Proof. For any n,m ∈ N, consider the instance in which
the voters in N1 = [⌊n/2⌋] report Pi1 = 1 and Pij = 0
for all j ∈ M \ {1} and the voters in N \ N1 report Pi1 =
Pi2 = 1/2 and Pij = 0 j ∈ M \ {1, 2}. By zero unanimity,
AF (P )j = 0 for all j ∈ M \ {1, 2}, and therefore AF

reaches normalization when f⌊n/2⌋(t) = 1/2, returning the
budget distribution AF (P )1 = AF (P )2 = 1/2. We refer to
Figure 1 for an illustration of the case n = 4 and m = 3.
Now, when n is even, it holds that P 2 = 1

4 and therefore
AF (P )2 − P 2 = 1/4. When n is odd, we get that P 2 =
1
4

(
1 + 1

n

)
and therefore AF (P )2 − P 2 = 1

4

(
1− 1

n

)
.

We continue by providing a lower bound on the under-
funding guarantee that any moving phantom mechanism can
provide. To this end, we use an example provided by Cara-
giannis, Christodoulou, and Protopapas (2022).

4Dropping zero unanimity allows for moving phantom mecha-
nisms with better overfunding guarantees. For example, the mech-
anism that always outputs 1

m
for every project never overfunds by

more than 1
m

. That said, this mechanism clearly suffers from high
underfunding and completely ignores the voters’ preferences.
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Proposition 2. Let AF be a moving phantom mechanism.
Then, there exists no α such that

• α(n,m) < 1
2

(
1− 1

m

)
for any n,m ∈ N, n even, or

• α(n,m) < 1
2

(
1− 1

m

)(
1− 1

n

)
for n,m ∈ N, n odd,

and AF underfunds by at most α.

Proof. For any n,m ∈ N, let N1 = [⌊n/2⌋] and N2 =
N \N1. Then, define the profile

Pij =


1 if i ∈ N1, j = 1

0 if i ∈ N1, j ̸= 1

1/m if i ∈ N2.

Caragiannis, Christodoulou, and Protopapas (2022, Theo-
rem 7) prove that for this profile under the restriction that n
is even, any moving phantom mechanism returns AF (P )j =
1/m for all j ∈ [m]. It is easy to verify by going through
their arguments that the same holds when n is odd. Hence,
we receive the following lower bounds for the underfund-
ing guarantees: For n even, it holds that P 1 = 1

2 + 1
2m ,

which implies P 1 − AF (P )1 = 1
2 − 1

2m . For odd n,
we get that P 1 = 1

2

(
1 + 1

m

(
1 + 1

n

)
− 1

n

)
and therefore

P 1 −AF (P )1 = 1
2

(
1− 1

m

(
1− 1

n

)
− 1

n

)
.

In Theorem 7 of the next section, we show that any pro-
portional mechanism overfunds by at most 1

4 . Hence, we can
focus on finding a proportional mechanism with optimal un-
derfunding guarantee. While doing so, we first seek to un-
derstand the space of mechanisms that are optimal for large
m, i.e., mechanisms with an underfunding guarantee α sat-
isfying limm→∞ α(n,m) = 1

2 . In Proposition 3, we exhibit
a class of moving phantom mechanisms that do not provide
an optimal asymptotic underfunding guarantee. As we show
in Corollary 4, this class includes the Independent Markets
mechanism, which has been previously studied by Freeman
et al. (2021) and Caragiannis, Christodoulou, and Protopa-
pas (2022). Intuitively, Proposition 3 implies that any mech-
anism that moves a phantom with high index while the sym-
metric phantom of low index is still low has to have a higher
asymptotic underfunding guarantee than 1

2 .

Proposition 3. Let AF be a moving phantom mechanism
and k ∈ [⌊n/2⌋]0. Then, for any t ∈ [0, 1] such that
fn−k(t) > 0, there exists no α such that

lim
m→∞

α(n,m) ≤ n− k

n
− fk(t)

and AF underfunds by at most α.

Proof. Let AF , k, and t be as in the proposition assump-
tions. Now, for any m ∈ N such that fk(t) + (m − 1) ·
fn−k(t) > 1 we can construct a simple instance in which
n − k voters cast the vote (1, 0, . . . , 0) and the remaining
k voters cast the vote (0, 1

m−1 , . . . ,
1

m−1 ). By construction,
the mechanism AF is normalized for some t′ < t. As a re-
sult, we get that

P 1 −AF (P )1 ≥ n− k

n
− fk(t),

and the proposition statement follows.

Below, we show the implication for the Independent Mar-
kets mechanism, which is defined by the phantom system5

Fn =
{
fk(t) = t · n− k

n
for all k ∈ [n]0, t ∈ [0, 1]

}
,

for all n ∈ N.

Corollary 4. For the Independent Markets mechanism and
any ϵ > 0, there exists no function α satisfying

lim
m→∞

α(n,m) ≤ (1− ϵ)
n− 1

n

such that the Independent Markets mechanism underfunds
by at most α.

Proof. For any ϵ > 0 it holds that f1(ϵ) = ϵn−1
n and

fn−1(ϵ) = ϵ 1
n > 0. Therefore, Proposition 3 implies that

there exists no α with limm→∞ α(n,m) ≤ n−1
n − ϵn−1

n ,
such that the Independent Markets mechanism underfunds
by at most α.

4 The Ladder Mechanism
Proposition 3 narrows down the space of moving phantom
mechanisms that can achieve a project fairness guarantee of
1
2 in the limit as m grows: At any moment in time t ∈ [0, 1]
when fn−k(t) > 0 for any k ∈ [⌊n/2⌋]0, it needs to hold
that fk(t) ≥ 1

2 − k
n . Thus, we aim to construct mechanisms

that first move the upper phantoms while keeping the lower
phantoms at zero. However, while doing so we have to be
careful. For example, it might be tempting to consider the
moving phantom mechanism which starts by increasing f0
from 0 to 1 (while keeping all other phantoms at 0), then
moves f1 from 0 to n−1

n , and so on. However, the large gap
between the middle phantoms leads to problems itself: For
any odd n, there exists a profile6 with m = 3 in which this
algorithm underfunds a project by 1

2 − 1
2n , which is larger

than the lower bound from Proposition 2.
There exists one moving phantom mechanism in the liter-

ature that avoids both of the described issues: Caragiannis,
Christodoulou, and Protopapas (2022) introduced the Piece-
wise Uniform mechanism, which in a first phase spreads the
upper ⌈n+1

2 ⌉ phantoms uniformly within the interval [0, 1],
and, in a second phase, spreads the lower ⌊n+1

2 ⌋ phantoms
uniformly within the interval [0, 1

2 ] while pushing the first
half of the phantoms into the interval [ 12 , 1]. The Piecewise
Uniform mechanism avoids the issue captured by Proposi-
tion 3 and at no time creates too large a gap between consec-
utive phantoms. Hence, the mechanism is in fact a promising

5This does not exactly fit the definition of a moving phantom
mechanism since fk(1) < 1 for k ∈ [n]. However, it is known that
fk(1) ≥ 1− k

n
is sufficient to always achieve normalization (Free-

man et al. 2021), thus moving all phantoms to 1 is redundant.
6Let n ∈ N be odd, m = 3. Then, ⌊n/2⌋ of the voters report

(1, 0, 0) while ⌈n/2⌉ of the voters report (0, 1
2
, 1
2
). The mechanism

described above would output (0, 1
2
, 1
2
) and therefore underfund

project 1 by 1
2
− 1

2n
.The same profile provides a counter example

for the mechanism maximizing utilitarian social welfare (Freeman
et al. 2021).
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Figure 2: Example execution of the Ladder mechanism with
n = 4 voters and m = 3 projects. The left panel shows the
positions of the phantoms at t = 1

2 (before normalization is
reached) while the right panel shows them at t = 11

12 (exactly
when normalization is reached).

candidate for optimal project fairness. That said, the precise
definition of the mechanism is intricate, making it difficult to
analyze. Instead, we propose a novel and arguably simpler
mechanism which also avoids both issues and additionally
allows for an elegant proof of optimal project fairness.

We refer to our mechanism as the Ladder mechanism, and
there are two ways to gain intuition for it: The first view, giv-
ing the mechanism its name, thinks of a rope ladder where
the ladder rungs correspond to the phantoms. The ladder
is then pulled up by its top rung. The second view, being
closer to its formal definition, imagines the phantoms be-
ing uniformly spread within the interval [−1, 0], and then,
as t increases, being pushed upwards (with equal speed) un-
til they are uniformly spread in [0, 1]. However, since phan-
toms need to be non-negative, they only become “active”
once they cross 0, which is ensured by the max function in
the following definition.

Definition 5 (Ladder Mechanism). The Ladder mechanism
is the moving phantom mechanism defined by the following
phantom system for any n ∈ N:

fk(t) = max
(
t− k

n
, 0
)

for all k ∈ [n]0, t ∈ [0, 1].

We illustrate the Ladder mechanism in Figure 2. The
example displayed in the figure has four voters with
reports (0, 0.2, 0.8), (1, 0, 0), (0, 1, 0), (0.55, 0.45, 0). Nor-
malization is reached at t = 11

12 , returning the budget dis-
tribution ( 5

12 ,
5
12 ,

1
6 ).

5 Upper Bounds
In this section, we present our main results, i.e., upper
bounds for the overfunding and underfunding guarantees
provided by the Ladder mechanism that are essentially tight.
In this context, we write essentially in order to refer to the
fact that there is a small gap of O( 1n ) between the upper and
lower bounds only in the case when n is odd.

To prove the overfunding guarantee (Theorem 7), we need
the fact that any moving phantom mechanism is monotone.
That is, if a single voter increases its report for a single
project while it decreases its report for all other projects,

then this project receives at least as much funding as in
the original instance. Formally, a budget aggregation mech-
anism is monotone if, for any two profiles P and P ′ for
which there exists a voter i0 and a project j0 such that
(Pij)j∈[m] = (P ′

ij)j∈[m] for all i ∈ [n] \ i0, and Pi0,j0 <
P ′
i0,j0

while Pi0,j ≥ P ′
i0,j

for all j ∈ [m] \ j0, it holds that
AF (P )j0 ≤ AF (P ′)j0 .

Lemma 6. Any moving phantom mechanism is monotone.

Proof. Let t ∈ [0, 1] (t′ ∈ [0, 1], respectively) be the time
at which mechanism AF reaches normalization on profile P
(P ′, respectively). If t ≤ t′, then AF (P )j0 ≤ AF (P ′)j0
since phantoms and voters on project j0 are all weakly
higher for P ′ than for P at the time of normalization. If
t > t′, then voters and phantoms are weakly lower for P ′

than for P for all j ∈ [m] \ {j0} at the time of normaliza-
tion, implying AF (P )j ≥ AF (P ′)j . By normalization, this
implies AF (P )j0 ≤ AF (P ′)j0 .

We are now ready to prove Theorem 7.

Theorem 7. Let AF be a proportional moving phantom
mechanism. Then, AF overfunds by at most α, where

α(n,m) =

{
1
4 for n,m ∈ N, n even
1
4

(
1− 1

n2

)
for n,m ∈ N, n odd.

Proof. Consider some profile P with normalization
achieved at time t∗, and some project j ∈ [m]. Denote by
N− the set of voters with Pij < AF (P )j and let n− =
|N−|. Note that for every voter i ∈ N− there must exist a
project ji with Piji > AF (P )ji , since votes and outputs are
normalized. Starting from P , construct a profile P ′ by, for
every voter i ∈ N−, changing i’s vote to be single minded
on project ji. Note that, holding the position of the phantoms
fixed at {fk(t∗) : k ∈ [n]0}, the median on every coordinate
is (weakly) lower in P ′ than in P , with the median on project
j being the same in the two profiles. So it might be the case
that to achieve normalization in profile P ′, we need to ad-
vance the phantoms to {fk(t′) : k ∈ [n]0} for some t′ > t∗.
Therefore, AF (P )j ≤ AF (P ′)j . Let us now construct a
profile P ′′ by starting with P ′ and, for every voter i ̸∈ N−,
setting their vote to be single-minded on project j. By mono-
tonicity, AF (P ′′)j ≥ AF (P ′)j . By proportionality of AF ,
we have AF (P ′′)j = 1 − n−

n . Combining the inequalities,
we get AF (P )j ≤ AF (P ′)j ≤ AF (P ′′)j = 1− n−

n .
To complete the proof, note that n−n− voters have report

Pij ≥ AF (P )j , by the definition of N−. Therefore, P j ≥
(1− n−

n )AF (P )j . We have

AF (P )j − P j ≤ AF (P )j −
(
1− n−

n

)
AF (P )j

=
n−

n
AF (P )j ≤

n−

n

(
1− n−

n

)
,

which is at most 1
4 when n is even and at most 1

4

(
1 − 1

n2

)
when n is odd.
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Figure 3: Proof sketch of Theorem 8: We assume for contra-
diction that the Ladder mechanism underfunds project 1 by
more than 1

2

(
1 − 1

m

)
. We divide the proof into four steps:

Using that the mean for project 1 is high, in step (i), we
derive a lower bound for the number of voters reporting a
value in the interval (AF (P )1, 1] (indicated by green). (ii)
Since we know that the total number of phantoms and vot-
ers strictly above AF (P )1 is at most n, we derive an upper
bound for the highest phantom at the point of normalization,
i.e., f0(t∗). (iii) Building upon (ii), we can upper bound the
number of phantoms within each interval [AF (P )j , 1] (in-
dicated by orange) and thereby lower bound the number of
voters reporting a value in the same interval. This in turn al-
lows us to derive a lower bound on the mean of each project
j ̸= 1. (iv) Summing over all lower bounds on the mean im-
plies a contradiction to the fact that the means sum up to 1.

We can easily verify that the Ladder mechanism satis-
fies proportionality: Freeman et al. (2021, Section 5) argue
that a moving phantom mechanism satisfies proportionality
if there exists t ∈ [0, 1] such that fk(t) = 1− k

n holds for all
k ∈ [n]0, which is the case for the Ladder mechanism when
t = 1. Hence, as an immediate corollary of Theorem 7, we
get that the overfunding guarantee of the Ladder mechanism
is essentially optimal. We now turn to proving our main re-
sult, i.e., an essentially tight upper bound for the underfund-
ing guarantee of the Ladder mechanism. We provide a proof
sketch in Figure 3.
Theorem 8. The Ladder mechanism underfunds by at most
α, where

α(n,m) =
1

2

(
1− 1

m

)
for all n,m ∈ N.

Proof. Let AF be the Ladder mechanism and let P be a
preference profile. For the sake of contradiction, assume that
there exists a project j ∈ M with

P j −AF (P )j >
1

2
− 1

2m
. (1)

We assume without loss of generality that j = 1.
We introduce the following notation: For simplicity, we

write aj = AF (P )j for all j ∈ M . For a given project

j ∈ M and some interval I ⊆ [0, 1], we denote by nj(I) the
number of agents within the interval I , i.e., |{i ∈ N | Pij ∈
I}|. Similarly, we denote by p(I) the number of phantoms in
interval I , i.e., |{k ∈ [n]0] | fk(t∗) ∈ I}|, where t∗ ∈ [0, 1]
is some arbitrary point of normalization.

Step (i) We start by showing that

n1((a1, 1]) ≥ n · P 1 − a1
1− a1

. (2)

This is because, given n1((a1, 1]) voters with report strictly
above a1, the highest possible mean is attained when all of
them report 1 and the remaining voters report a1. Formally,

n1((a1, 1]) · 1 + (n− n1((a1, 1])) · a1 ≥ nP 1.

Rearranging this inequality yields Equation (2).

Step (ii) In this step, we derive an upper bound on the
value of the highest phantom, i.e., f0(t∗). By definition of a1
as the median on the first project, it holds that n1((a1, 1]) +
p((a1, 1]) ≤ n, which yields an upper bound for the number
of phantoms strictly above a1. Formally,

p((a1, 1]) ≤ n− n1((a1, 1])

eq. (2)
≤ n · 1− a1

1− a1
− n · P 1 − a1

1− a1
= n · 1− P 1

1− a1
.

Since any two consecutive phantoms are separated by a dis-
tance of at most 1

n , this yields an upper bound for the posi-
tion of the highest phantom. Namely, the highest phantom is
located at a position no greater than a1 +

1−P 1

1−a1
.

Step (iii) We next derive lower bounds on the mean for
any other project j ∈ {2, . . . ,m}:

P j ≥
(
1− a1 + aj −

1− P 1

1− a1

)
aj . (3)

As this bound clearly holds in the case that aj = 0, we
can assume in the following case distinction that aj > 0.
Case 1: There is no phantom at aj . We claim the following
upper bound on the number of phantoms weakly above aj :

p([aj , 1]) ≤
⌈
n
(
a1 +

1− P 1

1− a1
− aj

)⌉
≤ n

(
a1 +

1− P 1

1− a1
− aj

)
+ 1

This bound holds because of the upper bound on the high-
est phantom and the fact that any two consecutive phan-
toms above aj have distance exactly 1

n . The ceiling function
comes from the fact that aj and the lowest phantom above
aj may have smaller distance.
Case 2: There is a phantom at aj . We claim the following
upper bound on the number of phantoms weakly above aj :

p([aj , 1]) ≤ n
(
a1 +

1− P 1

1− a1
− aj

)
+ 1.

This bound holds because of the upper bound on the high-
est phantom and the fact that any two consecutive phantoms
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above aj have a distance exactly 1
n . Moreover, since aj > 0,

this minimum distance also holds for aj and the smallest
phantom above aj . The +1 comes from the phantom at aj .

Note that we obtained the same bound in both cases. Now,
since nj([aj , 1]) + p([aj , 1]) ≥ n + 1 (as aj is the median
of 2n + 1 values), we can use the above bound to derive a
lower bound on the number of voters weakly above aj :

nj([aj , 1]) ≥ n+1−p([aj , 1]) ≥ n
(
1−a1−

1− P 1

1− a1
+aj

)
.

The lowest mean for project j is attained when nj([aj , 1])
agents report aj and the remaining agents report 0. Hence,
we obtain the following lower bound on the mean:

P j ≥
(
1− a1 + aj −

1− P 1

1− a1

)
aj .

Step (iv) We complete the proof by summing over the
mean of all projects. Using our bounds from step (iii), the as-
sumption that project 1 is underfunded, and that

∑m
j=1 aj =

1, we get:

P 1+
m∑
j=2

P 2

eq.(3)

≥ P 1 +
m∑
j=2

(
1− a1 + aj −

1− P 1

1− a1

)
aj

= P 1 +

(
1− a1 −

1− P 1

1− a1

) m∑
j=2

aj +
m∑
j=2

a2j

= 2P 1 − 1 + (1− a1)
2 +

m∑
j=2

a2j

≥ 2P 1− 1 + (1− a1)
2 + (m− 1)

(
1− a1
m− 1

)2

eq.(1)
> 2

(
a1 +

1

2
− 1

2m

)
− 1 +

m

m− 1
(1− a1)

2

= 2a1 −
1

m
+

m

m− 1
(1− a1)

2

=
m− 1

m
− 2(1− a1) +

m

m− 1
(1− a1)

2+ 1

=
(√m− 1

m
−
√

m

m− 1
(1− a1)

)2

+ 1 ≥ 1,

where the unlabeled inequality stems from the fact that∑m
j=2 a

2
j is the sum of convex functions, minimized when

all values aj are equal. We obtained a contradiction to the
fact that the sum of the means is 1.

6 Implications for ℓ1 Distance
Caragiannis, Christodoulou, and Protopapas (2022) study
the maximum ℓ1 distance between the output of any truth-
ful budget aggregation mechanism and the mean. More pre-
cisely, consider some budget aggregation mechanism A.
Then, for some real number7 α ∈ [0, 2], A is said to be

7In this section, we focus on upper bounds that hold for specific
values of m and are independent of n, hence, for the sake of pre-
sentation we omit the parameterization of the upper bounds here.

α-approximate for m, if∑
j∈[m]

|A(P )j − P j | ≤ α

holds for any instance P with m projects. Caragiannis,
Christodoulou, and Protopapas (2022) show that no mov-
ing phantom mechanism can achieve an approximation bet-
ter than 1 − 1

m and that the Piecewise Uniform mechanism
is ( 23 + ϵ)-approximate for m = 3 and some ϵ ∈ [0, 10−5].
Building upon our results from Section 5, we are able to im-
prove upon this result and show that the Ladder mechanism
is 2

3 -approximate for m = 3 as well as non-trivial upper
bounds for larger m. The bounds follow from the follow-
ing general result relating overfunding and underfunding to
approximation guarantees.
Lemma 9. If a mechanism A overfunds by at most β and
underfunds by at most γ (for fixed m ∈ N and all n ∈ N),
then A is α-approximate for m, where

α = 2 · max
k∈[m−1]

min{kβ, (m− k)γ}.

Proof. Consider some profile P . Suppose that A(P )j ≥ P j

for k projects and A(P )j < P j for m− k projects. Then,∑
j:A(P )j≥P j

|A(P )j − P j | ≤ kβ,

and analogously,∑
j:A(P )j<P j

|A(P )j − P j | ≤ (m− k)γ.

Moreover, since both A(P ) and P are normalized,∑
j:A(P )j≥P j

|A(P )j − P j | =
∑

j:A(P )j<P j

|A(P )j − P j |,

which together with the bounds above implies∑
j∈[m]

|A(P )j − P j | ≤ 2 ·min{kβ, (m− k)γ}.

Taking the maximum over all possible choices of k yields
the result. Note that k = 0 is impossible, while k = m leads
to an ℓ1 distance to the mean of 0.

The desired result is derived by applying Theorems 7
and 8 and Lemma 9. We summarize our results in Table 1.
Note that directly applying this approach for m > 6 gives
upper bounds that are larger than the trivial upper bound of
2, which is why Corollary 10 applies only to 3 ≤ m ≤ 6.
Corollary 10. The Ladder mechanism is 2

3 -approximate for
m = 3, 1-approximate for m = 4, 3

2 -approximate for m =

5, and 5
3 -approximate for m = 6.

Proof. The ladder mechanism overfunds, for any n ∈ N and
m ∈ N by at most β = 1

4 and underfunds for any n ∈ N and
m ∈ N by at most γ = 1

2 − 1
2m . For m = 3, we have

2min{kβ, (m− k)γ} = 2min{ 1
4 ,

2
3} = 1

2 for k = 1
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m Lo. Bound Up. Bound Previous Up. Bound
3 2/3 2/3 2/3 + ϵ
4 3/4 1 2
5 4/5 3/2 2
6 5/6 5/3 2

Table 1: A summary of our results for the worst case ℓ1 dis-
tance from the mean. Lower bounds (holding for any moving
phantom mechanism) and the previous m = 3 upper bound
are from the work of Caragiannis, Christodoulou, and Pro-
topapas (2022). Other previous upper bounds are trivial. In
the previous m = 3 upper bound, ϵ is some small constant
no larger than 10−5.

2min{kβ, (m− k)γ} = 2min{ 1
2 ,

1
3} = 2

3 for k = 2,

hence the ladder mechanism is 2
3 -approximate.

For m = 4, we have

2min{kβ, (m− k)γ} = 2min{ 1
4 ,

9
8} = 1

2 for k = 1

2min{kβ, (m− k)γ} = 2min{ 1
2 ,

3
4} = 1 for k = 2

2min{kβ, (m− k)γ} = 2min{ 3
4 ,

3
8} = 3

4 for k = 3,

hence the ladder mechanism is 1-approximate.
For m = 5, we have

2min{kβ, (m− k)γ} = 2min{ 1
4 ,

16
10} = 1

2 for k = 1

2min{kβ, (m− k)γ} = 2min{ 1
2 ,

12
10} = 1 for k = 2

2min{kβ, (m− k)γ} = 2min{ 3
4 ,

8
10} = 3

2 for k = 3

2min{kβ, (m− k)γ} = 2min{1, 4
10} = 4

5 for k = 4,

hence the ladder mechanism is 3
2 -approximate.

For m = 6, we have

2min{kβ, (m− k)γ} = 2min{ 1
4 ,

25
12} = 1

2 for k = 1

2min{kβ, (m− k)γ} = 2min{ 1
2 ,

20
12} = 1 for k = 2

2min{kβ, (m− k)γ} = 2min{ 3
4 ,

15
12} = 3

2 for k = 3

2min{kβ, (m− k)γ} = 2min{1, 10
12} = 5

3 for k = 4

2min{kβ, (m− k)γ} = 2min{ 5
4 ,

5
12} = 5

6 for k = 5,

hence the ladder mechanism is 5
3 -approximate.

7 Discussion
We introduce the notion of project fairness for the budget ag-
gregation problem, defined by the maximum difference be-
tween the funding that a project receives and the funding that
it would have received under the mean division of the bud-
get. Our main technical contribution is to define the Ladder
mechanism and show that it achieves essentially tight project
fairness bounds. Additionally, our result yields a guarantee
on the maximum ℓ1 distance between the output of the Lad-
der mechanism and the mean division, which is optimal for
m = 3 and the first non-trivial guarantees for m ∈ {4, 5, 6}.

Several open questions remain. Perhaps most intriguing
is whether we can achieve better project-fairness guaran-
tees with strategyproof mechanisms that are not moving

phantom mechanisms (a project fairness lower bound of
α(n,m) = 1

4 follows directly from an argument of Cara-
giannis, Christodoulou, and Protopapas (2022, Theorem 6),
but this is far from our upper bounds). Of course, resolving
this question in the affirmative would require a resolution
to the question of whether moving phantom mechanisms
comprise the complete space of strategyproof mechanisms
in this setting. It would also be interesting to characterize the
class of optimal project-fair moving phantom mechanisms.
Finally, it may be possible to tighten our analysis in Sec-
tion 6. We have made use only of the project fairness bounds
locally on each project, but perhaps a more global analysis
would do better.
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