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As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations.
A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations
inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different
environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative
magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change
but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in
the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate
change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found
that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage
and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these
conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that
many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy we observed increased adaptive capacity. This
finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for
better understanding the climatic vulnerability of real populations.
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C limate change is one of the foremost threats to biodi-1

versity in the Anthropocene. The ability of species to2

persist within their current ranges will likely depend largely3

upon their abilities to locally adapt to new climate conditions4

— a concept frequently referred to as ‘adaptive capacity’ or5

‘evolutionary potential’ (1–5). Because beneficial de novo mu-6

tations take a long time to arise, this adaptation will likely7

be facilitated by the reconfiguration of existing adaptive ge-8

netic diversity (6). A common conceptual model underlying9

this scenario is that of adaptive gene flow tracking a shifting10

climatic gradient (7, 8), which would bring beneficial genes11

into recipient populations from ‘climate-suitable’ populations12

whose current climates approximate future local conditions (9).13

This model of adaptive gene flow has both theoretical (10–12)14

and empirical (13, 14) support but meets resistance under15

conditions in which gene flow can be maladaptive (11, 15–19).16

In these circumstances, shifting allelic covariance — the in situ17

recombination of standing genetic variation into new, adaptive18

genotypes — could be a more efficient mechanism underlying19

local adaptation to environmental change.20

In recent decades, research bridging the fields of molecu-21

lar population genetics and quantitative genetics (20–23) has22

revealed that the genomic architecture of a trait is a core23

determinant of whether and how that trait becomes locally24

adapted (24). Among the key aspects of genomic architec-25

ture that influence adaptation (21, 24–26) are the number of26

loci underlying a trait (henceforth, ‘polygenicity’), the rate27

of recombination between these loci (i.e., linkage), and the28

number of distinct genotypes that yield identical phenotypes29

(henceforth, ‘genotypic redundancy’). Previous research sug-30

gests that ecologically-important traits can vary from having31

few loci of large effect (27, 28) to many loci of small effect 32

(20, 29–32) and shows that variation in polygenicity can de- 33

termine the rate and nature of local adaptation (33). Linkage 34

controls the likelihood that adaptive alleles cluster together, 35

essentially forming alleles of larger effect size that are stronger 36

targets of selection and more resistant to swamping gene flow 37

(25), thereby facilitating local adaptation (12). Genotypic 38

redundancy — a form of genetic redundancy that is defined 39

as when more than one genotype can produce the same phe- 40

notype (34) — can facilitate local adaptation by allowing the 41

existence of a stable phenotypic cline governed by concerted 42

shifts in underlying allele frequencies (33, 35, 36). We refer to 43

this phenomenon as ‘transient genomic architecture.’ 44

The influence of genomic architecture on the nature and 45

outcomes of local adaptation to changing environmental gradi- 46

ents has been studied to a limited extent, with nearly exclusive 47

focus on univariate models of the selective environment (but 48

see (37)). These models have limitations for studying adap- 49

tation to climate change because, in nature, species can be 50

adapted to multiple, independent environmental gradients 51

(38) that can shift differentially, and thus decouple, as climate 52

change advances (39, 40), leading to the emergence of novel 53

multivariate landscapes (41–43). Thus, it is important to in- 54

vestigate how the genomic architectures of multiple traits can 55

combine to drive multivariate adaptation under climate change. 56

Gene flow from ‘climate-suitable’ portions of a species’ range 57

is often assumed to be beneficial for adaptation to climate 58

change. This may be accurate from the perspective of a single 59

trait adapted to a shifting climatic gradient, but it may be an 60

invalid assumption if the gene flow also carries linked variation 61

for a trait adapted to a second environmental variable from 62
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component level parameter value

genotypic redundancy
low: redund = 1
high: redund = 2

polygenicity
low: n_loci = 4 × redund

mod: n_loci = 20 × redund

high: n_loci = 100 × redund

linkage
low: recomb = 0.5
mod: recomb = 0.05
high: recomb = 0.005

Table 1. Parameter values used for each of the three focal components
of genomic architecture. The full factorial combinations of these
parameter values constitute the set of 18 simulation scenarios for
which we present results.

which the shifting gradient has decoupled. Under this scenario,63

gene flow may introduce alleles for the second trait that are dis-64

advantageous and that could counteract any fitness advantage65

gained through the first trait. Thus, the genomic architectures66

of both traits may determine evolutionary outcomes by con-67

trolling the relative likelihoods of adaptation by gene flow and68

of in situ adaptation by shifting allelic covariance (10, 37).69

Spatially-explicit simulation is one of our strongest tools70

for improving our understanding of the complex dynamics of71

gene flow and adaptation under climate change (44). In this72

study, we use individual-based, spatially-explicit simulations,73

constructed in Geonomics (45), to test how genomic architec-74

ture influences multivariate adaptation to climate change. We75

simulate the adaptation of a single population continuously76

distributed on a two-dimensional landscape composed of two77

environmental variables, each structured as a gradient that78

runs parallel to the x-axis (Fig. 1) and that exerts selection79

on a separate trait. In our main models, we then simulate80

climate change on that landscape by holding one gradient81

constant while gradually shifting the other gradient along the82

x-axis, such that the decoupling environment pushes local83

fitness peaks toward novel regions of two-dimensional trait84

space (Fig. 1). We run 100 pairs of climate change simula-85

tions and null (stable-climate) simulations for each of eighteen86

scenarios resulting from the full factorial crossing of three key87

components of genomic architecture: genotypic redundancy,88

polygenicity, and linkage (Table 1).89

We analyze variation in the resulting spatiotemporal pat-90

terns of gene flow, population size and density, and phenotypic91

distributions — all of which are emergent properties of our92

simulation parameterizations (Code Sample S1) — to test a93

series of hypotheses about the influence of genomic architec-94

ture on multivariate adaptation under climate change. First,95

we hypothesize that up-gradient gene flow will be higher under96

climate change than under a stable climate across all scenarios97

but that gene flow contributes least to climate change adap-98

tation when linkage is low and polygenicity is high. This is99

because we expect gene flow to always have at least some adap-100

tive value, but we also expect low-linkage, high-polygenicity101

architectures (i.e., ’dispersed’ architectures (24)) to exhibit102

quick in situ adaptation via shifting allelic covariance among103

many small-effect alleles, facilitating phenotypic shifts in the104

absence of up-gradient gene flow. Second, we hypothesize105

that stronger linkage and higher polygenicity will reduce a106

Fig. 1. Conceptual model of adaptation to climate change. The top panel depicts
the two-layered physical landscape used in our simulations, showing the shifting
environmental gradient (e1) in a blue-red color ramp and the stable gradient (e2) in
a white-black color ramp. The landscape is shown both before climate change (t1)
and after (t2). The bottom panel depicts a fitness landscape for two traits adapted to
the shifting (e1) and stable gradients (e2). Three example positions on the physical
landscape (x1, x2, x3) are shown as boxes delinated y-axis cross-sections, both
before climate change (gray) and after (yellow), and their corresponding fitness peaks
are shown as color-matched kernels on the fitness landscape. The gray and yellow
lines on the fitness landscape indicate the fitness optima defined by the environments
that exist before (t1) and after climate change (t2). Shifts in local fitness peaks are
shown as labeled arrows (x2, x3); the environment at the far left of the physical
landscape does not change, so x1 ’s fitness peaks are overlapping and have no shift.
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population’s adaptive capacity under climate change, manifest-107

ing as greater reductions in population size and mean fitness108

and more persistent maladaptation, because both conditions109

impose longer expected wait times for the emergence of recom-110

binant haplotypes that push phenotypes further from their111

pre-change fitness peaks. Finally, we hypothesize that higher112

genotypic redundancy will facilitate adaptation to shifting113

gradients, much as it does on stable gradients (33, 35, 36),114

resulting in smaller reductions in population size and mean115

fitness.116

Methods117

Simulations. We performed simulations using Geonomics118

(45), a Python (46) package for forward-time, agent-based,119

continuous-space landscape genomic simulations. All of our120

simulated scenarios feature a species with two traits, each of121

which experiences selection on the basis of a different environ-122

mental variable. Both environmental variables are modeled as123

linear gradients running along the x-axis (Fig. 1) that initially124

span environmental values from 1 to 0, left to right across the125

landscape. The genome is modeled as an array of length L,126

which in our 2-trait simulations equals 2 times the number of127

genes per trait. Instead of randomly assigning loci to either of128

the two traits, we alternated locus trait assignment along the129

genome to avoid creating islands of within-trait linkage that130

would vary across iterations and introduce noise in our results.131

The fitness of individuals is a function of the difference between132

their local environmental values and their phenotypes, which133

are determined by the additive effects of multiple loci (i.e.,134

without pleiotropy or epistasis), a reasonable approximation of135

many traits in real populations (32). Individuals have contin-136

uous spatial coordinates, and their local environmental values137

are found in the landscape cells within which their coordinates138

fall. Each time step has a movement phase during which139

each individual moves along a vector composed of a randomly140

drawn direction (from a uniform circular distribution) and a141

randomly drawn distance (from a Wald(0.25, 0.5) distribution,142

such that most movements are less than one landscape cell in143

length).144

Simulations start with a neutral burn-in period that does145

not include differential fitness. The burn-in is concluded when146

statistical tests of temporal and spatial population stability147

are passed, at which point individuals are randomly assigned148

genomes based on 0.5|0.5 allele frequencies at all loci. Simu-149

lations then run for 2,500 time steps with differential fitness,150

generating a pattern of local adaptation to the initial environ-151

ment. After that, one environmental layer undergoes a change152

event in which the gradient’s values shift over a period of 250153

time steps, resulting in a final gradient that spans values from154

1 to 0.5, left to right. This creates a scenario in which the155

two environmental variables become decoupled, leading to the156

emergence of novel environments (i.e. sites occupying new157

values in two-dimensional environmental space), effectively158

modeling a common phenomenon under climate change (41–159

43). This generates spatially heterogeneous rates of climate160

change, ranging from no change at the leftmost edge to 0.002161

units per timestep at the rightmost edge. We chose this sce-162

nario because one with spatially homogeneous rates of change163

would generate an artefact of range expansion whose genomic164

signal could not reliably be disentangled from that of climate165

change adaptation. Hence, the approach we chose here allows166

us to isolate the evolutionary dynamics resulting from the 167

components of genomic architecture that define our scenarios 168

and hypotheses. The pre-climate change population sizes in 169

our simulations varied around 5,800-6,100 individuals, which 170

yields mean times to fixation of approximately 16,000-17,000 171

time steps (18, 45), roughly an order of magnitude larger than 172

the total simulation length. Thus, the effects of drift dur- 173

ing these simulations should be low given the relatively large 174

population sizes. 175

We used a custom Python script to set values for the pa- 176

rameters of interest in our simulations: the number of loci 177

underlying each trait (parameter n_loci), the recombination 178

rate between neighboring loci (parameter recomb), and the 179

level of genotypic redundancy (parameter redund). The val- 180

ues we assigned to these parameters are provided in Table 181

1, and a visual depiction of the difference between low- and 182

high-redundancy scenarios for all phenotypes is provided in 183

Fig. S1. We ran the simulations on the savio3 partition of 184

UC Berkeley’s Savio computing cluster (each node has 96 GB 185

RAM and 32, 2.1-GHz Skylake processors). For each scenario, 186

we ran a total of 100 iterations, featuring a 250 time-step 187

climate change period with natural selection (henceforth, the 188

‘main’ scenarios), and 100 iterations of a paired null scenario 189

without natural selection (henceforth, the ‘null’ scenarios). 190

We set all other Geonomics parameters to their default val- 191

ues. Some values of interest that might be explicit parameter 192

settings in other simulation programs are instead emergent 193

properties in Geonomics; for example, the population size 194

values we report emerge from the interaction of several explicit 195

parameters, including the raster of local carrying capacities, 196

the population intrinsic growth rate, the number of offspring 197

per reproduction event, and the death rates resulting from the 198

parameters controlling density-dependent mortality and natu- 199

ral selection. The complete set of Geonomics parameters and 200

the values we assigned to them across all models are provided 201

in Code Sample S1. The parameters we set correspond best 202

to a scenario of a moderately mobile species with occasional 203

longer-distance dispersal, overlapping generations, and repeat 204

reproduction of small numbers of offspring. 205

Using a combination of internal Geonomics functions and 206

custom Python code, we designed a set of data outputs from 207

each model run to visualize results and test hypotheses. We 208

saved tables of the locations and phenotypes for all individuals 209

at the beginning and end of the climate change period. We 210

also saved time series of population size, mean fitness, and the 211

mean phenotype of the trait adapted to the shifting gradient. 212

We gathered this data at every time step for the 250 time 213

steps immediately before the onset of climate change, 250 time 214

steps during the climate change period, and 250 time steps 215

after climate change completed (hereafter, the ’post-change 216

period’). 217

We also saved data on the vector directions of gene flow 218

occurring during climate change by keeping data for two ran- 219

domly chosen loci underlying the trait adapted to the shifting 220

environmental gradient (with positive effect) for all of the 221

individuals remaining in the final time step. Capturing loci ex- 222

pected to facilitate adaptation to increasing environmental val- 223

ues allowed us to track up-gradient gene flow, and it provided 224

equal sample sizes across scenarios for downstream analysis 225

(which was constrained to the number of positive-effect loci in 226

the low-polygenicity, low-redundancy scenarios). We collected 227
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these data using an internal function that extracts data from228

the spatial pedigrees stored in the simulation’s tskit (47)229

data structures. We also calculated a single summary metric230

of ’up-gradient gene flow’ for each iteration:231

GFup =

n∑
i

cos θ

n
, cos θ ≥ 0,232

where θ is the angle of gene flow, expressed counterclockwise233

from the right. The cos θ ≥ 0 condition allowed us to track234

only rightward (up-gradient) gene flow and to omit leftward235

(down-gradient) gene flow which would be maladaptive for the236

positive-effect loci we tracked and, thus, low irrespective of237

scenario.238

Analysis. We analyzed the results of our simulations using239

custom scripts written in Python (46) and R (48). To test240

our first hypothesis — that up-gradient gene flow should be241

greater under climate change scenarios — we first produced242

a visualization of the directional distributions of gene flow243

under all 18 scenarios, comparing between main and null244

simulations (Fig. 2) based on the random sample of the gene245

flow that occurred during the climate change period that we246

captured from our simulations. We then fitted a mixture of247

4 von Mises distributions to that data using the R package248

movMF (49), yielding 12 parameter estimates defining each249

simulation’s fitted mixture distribution. For each of the 18250

scenarios, we then plotted the probability density function251

described by the means of all vectors of fitted parameters. We252

did this separately for null scenarios and for main scenarios253

then overlaid the results for the main scenarios (in red) on top254

of the null results (in blue; Fig. 2), providing a visualization255

of the directionality of gene flow within each climate change256

scenario compared to its null expectation.257

We also ran a simple linear regression of the main vs. null258

difference in up-gradient gene flow density as a function of259

polygenicity, linkage, and redundancy. We coded the genomic260

architecture components as integer variables representing the261

levels of the parameter values used in the simulations (redun-262

dancy: low = 1, high = 2; polygenicity: low = 0, moderate = 1,263

high = 2; linkage: low = 0, moderate = 1, high = 2). We used264

the regression results to test both predictions for our first hy-265

pothesis: (1) that the main main - null difference in up-gradient266

gene flow should have 95% confidence intervals > 0 under all267

scenarios (calculated using the stats package’s predict.lm268

function with the argument interval=‘confidence’), in-269

dicating significant up-gradient gene flow under climate change;270

and (2) that the coefficients for the linkage (βl) and polygenic-271

ity (βp) terms of the model should be significantly positive and272

negative, respectively, indicating that higher levels of gene flow273

are associated with stronger linkage and lower polygenicity.274

To visually assess our second and third hypotheses, we275

created a series of plots comparing climate change-driven276

demographic shifts and maladaptation across all 18 scenarios277

and between our null and main models. First, we plotted278

the null and main time series of two demographic metrics,279

mean fitness and population size, for each of our 18 scenarios,280

combining the results for all 100 iterations under each scenario.281

For each time series we calculated the mean and 5th and282

95th percentiles at each time step (Figs. 3 and S2). We also283

summarized all scenarios in a pair of box plots (Fig. S2).284

To better understand changes in population size and dis-285

tribution, we also mapped before and after comparisons of286

population densities for all 18 main scenarios (Fig. S3). Each 287

population density map was calculated as the mean population 288

density at each cell on the landscape, averaged across all 100 289

iterations. 290

Finally, to visualize maladaptation, we plotted each sce- 291

nario’s mean phenotypic distributions before and after climate 292

change as scatter plots of the density of individuals occur- 293

ring across two-dimensional trait space. We plotted lines and 294

wedges depicting the average maladaptation observed across 295

each scenario’s 100 iterations (Fig. 4). We refer to the wedge 296

as ’persistent maladaptation,’ and we calculated it as the 297

difference between: a) the area within two-dimensional trait 298

space that the population’s phenotypic distribution would 299

have needed to shift through during the climate change event 300

to remain optimally fit to its environment, and b) the observed 301

area of phenotypic shift within a scenario’s 100 simulations. 302

We qualify this metric as ’persistent’ to emphasize that it does 303

not reflect transient maladaptation that arises but then resides 304

during the period of climate change but rather reflects only 305

maladaptation that remained at the end of the climate change 306

period. To measure this area, we first determined the trian- 307

gular area between the expected central tendency lines of the 308

optimal two-dimensional phenotypic distributions before and 309

after the climate change event. Then, for each model run, we 310

used ordinary least squares (OLS) to fit a central tendency line 311

to the 100-iteration ensemble phenotypic distribution observed 312

at the end of the climate change event (fixing the y-intercept 313

at the (1,1) point in phenotypic space, which represents the 314

unchanging phenotypic optimum at the leftmost extent of 315

the landscape). The area of the wedge between the expected 316

and observed post-change central tendency lines provides our 317

measure of a scenario’s persistent maladaptation. We plotted 318

before and after scatter plots of the ensemble datasets of in- 319

dividuals’ two-dimensional phenotypes (binned to a grid of 320

regular points for interpretability). We also produced these 321

plots (Fig. S4) using data from our null simulations to demon- 322

strate that all differences in maladaptation observed between 323

scenarios were attributable to climate change. 324

To statistically evaluate our results, we ran simple linear 325

regressions for each of our three response variables measuring 326

population-level changes during the climate change event — 327

change in mean fitness, change in population size, and persis- 328

tent maladaptation — with polygenicity, linkage, redundancy, 329

and nullness serving as explanatory variables. We modeled 330

nullness as a binary categorical variable (null = 0, main = 1) 331

and again modeled the genomic architecture components as 332

integer variables, as described above. We used these regres- 333

sions to test our second (polygenicity and linkage) and third 334

(redundancy) hypotheses. Specifically, our second hypothesis 335

predicts that the coefficients of the linkage and polygenicity 336

terms are significantly non-zero and negative (for changes 337

in fitness-change and population size) and positive (for the 338

maladaptation model), while our third hypothesis predicts sig- 339

nificantly non-zero redundancy coefficients with the opposite 340

signs. 341

Results 342

Gene flow. Under our simulations, climate change led to a 343

nearly universal increase in up-gradient gene flow compared to 344

null simulations with no change to either environmental vari- 345

able. For all 18 of our simulated scenarios (Fig. 2), the simula- 346
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tions with climate change exhibited greater up-gradient gene347

flow than the null scenarios, and linear regressions modeling the348

effects of linkage, redundancy, and polygenicity on up-gradient349

gene flow found that the fitted 95% confidence intervals for350

up-gradient gene flow were > 0 for all but one scenario (the351

moderate-polygenicity, low-linkage, high-redundancy scenario;352

Table S1). However, the magnitude of this increase in gene353

flow was minimal under some scenarios. We found that the354

difference in up-gradient gene flow between climate change355

and null simulations was positively correlated with linkage356

(βl = 0.0129 ± 0.0006, P < 1 × 10−15) and inversely correlated357

with polygenicity (βp = −0.0142 ± 0.0006, P < 1 × 10−15), cor-358

roborating our first hypothesis. Correspondingly, and in line359

with expectations, down-gradient gene flow was universally360

suppressed under climate change (Fig. 2). Of the three com-361

ponents of genomic architecture that we tested, polygenicity362

had the most striking effect on the extent to which up-gradient363

gene flow contributed to adaptation; moderate and high poly-364

genicity scenarios generally had much lower up-gradient gene365

flow than did low-polygenicity scenarios, with low-redundancy,366

independent-linkage scenarios being the main exception (Fig.367

2). Moderate-polygenicity scenarios actually showed the lowest368

overall increase in up-gradient gene flow, though differences369

between moderate- and high-redundancy scenarios were minor.370

371

Linkage and polygenicity. As expected, our null simulations372

showed essentially no changes in mean fitness (Fig. 2) or373

population size (Fig. S2), aside from small modeling artefacts374

present in both the null and climate-change scenarios, and the375

phenotypic distributions for the populations in these simula-376

tions were stable through time (Fig. S4). The results of our377

climate change simulations exhibited decreases in population378

size and mean fitness that are the expected results of increasing379

maladaptation (10). They also revealed environment-tracking380

phenotypic shifts (Fig. 4) in line with expectations (Fig. 1),381

though these shifts lagged behind environmental change to382

some extent, producing suboptimal mean fitness at the end of383

the climate change period. Across scenarios, the demographic384

responses to climate change, in terms of population size and385

fitness, increased with increasing linkage (change in fitness:386

βl = −0.0018 ± 0.0001, P < 1 × 10−15; change in population387

size: βl = −33.330 ± 1.287, P < 1 × 10−15). We also found388

greater maladaptation, defined as the area in two-dimensional389

trait space separating the central line of a population’s post-390

change phenotypic distribution from the central line of the391

distribution that would optimally track the changing envi-392

ronment (Figs. 4 and S4), associated with increasing linkage393

(maladaptation: βl = 0.0038 ± 0.0004, P < 1 × 10−15).394

The magnitude of demographic responses also showed a395

signal of overall increase with increasing polygenicity (change396

in fitness: βp = −0.0022 ± 0.0001, P < 1 × 10−15; change in397

population size: βp = −15.070 ± 1.287, P < 1 × 10−15; mal-398

adaptation: βp = 0.0097 ± 0.0004, P < 1 × 10−15), although399

the trend was non-monotonic and complex. Responses were400

smallest at moderate polygenicity, more pronounced at low401

polygenicity, and highest at high polygenicity and low redun-402

dancy (Figs. 3 and S2). In fact, under high polygenicity403

and low redundancy, populations declined so strongly that404

adaptive capacity was effectively outstripped, and the declines405

persisted throughout the climate change period, with little406

indication of evolutionary rescue (i.e., stabilization and re-407

Fig. 2. Distributions of gene flow directions during the climate change period of
our climate change simulations (red) compared to null simulations (blue) for our 18
scenarios. The shifting environmental gradient moves to the right (in the direction of
the arrow) in our simulations, so rightward gene flow represents up-gradient gene
flow, and upward and downward (i.e., ‘on contour’) gene flow is perpendicular to the
environmental gradients. Down-gradient gene flow is expected to be maladaptive
under all scenarios, explaining why it is universally suppressed relative to the null
results (as evidenced by the blue distributional ’margins’ extending to the left of the
red distributions in all scenarios). There is a general trend toward increasing on-
contour gene flow and decreasing up-gradient gene flow with decreasing linkage and
increasing polygenicity.
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Fig. 3. Left: Mean fitness for all scenarios during the 250 time steps before, during, and after the climate change period (separated by red, dashed lines). Black lines represent
the mean values, and the shaded red and blue areas represent variability envelopes (5th percentile to 95th percentile) for all replicates for climate change and null simulations,
respectively. Right: Boxplots of changes in mean fitness during the climate change period for all scenarios. Null scenarios are plotted on the top in blue, and main scenarios are
plotted on the bottom, in red. Within each plot, the scenarios are organized by polygenicity (number of loci per trait) on the x-axis and shaded by the strength of linkage.

bound) occurring until the post-change period (Figs. 3 and408

S2). The collapse of adaptive capacity in these scenarios is409

also visible in the large areas of phenotypic-shift shortfall in410

Fig. 4. The low-redundancy, high-polygenicity, strong-linkage411

scenario had such low adaptive capacity that mean fitness412

declined by 5.2% on average (from 0.934 to 0.885), mean pop-413

ulation size declined by 17.1% on average (from 6326 to 5246414

individuals), and the simulated population ceased to occupy415

the rightmost, fastest-changing portion of the landscape (Fig.416

4).417

Genotypic redundancy. Our high-redundancy scenarios showed418

consistently smaller demographic responses to climate change,419

less-prominent up-gradient gene flow, and higher adaptive420

capacity, than their low-redundancy counterparts (change in421

fitness: βr = 0.0040±0.0002, P < 1×10−15; change in popula-422

tion size: βr = 39.060 ± 2.101, P < 1 × 10−15; maladaptation:423

βr = −0.0098±0.0006, P < 1×10−15), consistent with our hy-424

pothesis that genotypic redundancy can facilitate adaptation425

to shifting environmental gradients (Figs. 2 and S2). This 426

effect was most pronounced in the high-polygenicity scenarios, 427

which exhibited much milder demographic decline under high 428

redundancy compared to low redundancy, despite still showing 429

no evidence of demographic rebound until after climate change 430

(Fig. 3). Indeed, increased redundancy put the demographic 431

declines under these scenarios on par with those of the low 432

polygenicity scenarios (Figs. 3 and S2). 433

Discussion 434

Current theoretical understanding of evolutionary responses 435

to climate change largely derives from a simplified mechanistic 436

model in which adaptation is universally facilitated by up- 437

gradient gene flow. This model also serves as the inspiration 438

for some climate-smart approaches to biodiversity manage- 439

ment (e.g., assisted gene flow; (10)). However, adopting this 440

model as the basis for theoretical and mechanistic research 441

risks overlooking the influence of genomic architecture on mul- 442

tivariate adaptation to environmental change. Starting from a 443
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Fig. 4. Scatterplots of the observed versus expected phenotypic shift during the climate change period for all 18 of our simulated scenarios. For each scenario, the left (’before’)
scatterplot shows the distribution of phenotypes before climate change begins, and the right (’after’) scatterplot shows how the distribution has shifted by the end of the climate
change period. The trait adapted to the shifting environmental gradient is distributed along the x-axis, with the trait adapted to the stable gradient on the y-axis. Each plot is
an ensemble of the results for all 100 replicates of each scenario. The size and opacity of each point represents the number of individuals exhibiting that two-dimensional
phenotype. The gridded arrangement of the points in each scatterplot is a function of the number of loci per trait, which determines the set of possible phenotypes. Solid black
lines delineate the shifts in the phenotypic distributions’ central tendencies that are expected to take place during the climate change period, dotted black lines depict the
observed distributions’ central tendencies, and red wedges depict the differences between the expected and observed distributions (‘phenotypic shortfall’).
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more realistic, multi-trait framework, our simulations demon-444

strate that up-gradient gene flow does indeed occur under445

climate change but that its contributions to local adaptation446

and persistence may be constrained by polygenicity, genotypic447

redundancy and, to a lesser extent, linkage. Given the range448

of plausible genomic architectures we simulate (6, 20, 29–32),449

these results raise the compelling possibility that up-gradient450

gene flow, while unlikely to be entirely maladaptive, could play451

a limited role in climate change adaptation in many systems.452

This may be especially true in systems where climate-adapted453

traits have more dispersed architectures — for example, ar-454

chitectures composed of many genes of small effect (24). This455

poses an important question for subsequent research: how of-456

ten are the genomic architectures underlying climate-adapted457

traits dispersed versus concentrated?458

We also show that the genomic architecture of climate-459

adapted traits can influence the nature and size of demographic460

responses to climate change. Our results suggest that strong461

linkage between non-neutral loci, especially under high poly-462

genicity, can increase maladaptation and demographic decline463

during climate change. In the most extreme case, evolutionary464

rescue was absent; high polygenicity and low redundancy com-465

bined to drive dramatic and persistent demographic declines466

and even caused local extinction when linkage was strong.467

This was unexpected in light of previous work reporting that468

dispersed architectures produce stable, resilient phenotypic469

clines despite transient genotypic composition (24, 33) and,470

thus, that species with such architectures could exhibit rapid471

local adaptation (50). We did, nonetheless, expect evolution-472

ary responses to climate change to be slower in these scenarios,473

because natural selection is less effective on smaller-effect alle-474

les, gene flow may have more of a swamping effect for these475

alleles, and high linkage leads to longer expected wait times for476

the generation of novel, adaptive recombinant genotypes. We477

did not, however, expect adaptive capacity to be completely478

outstripped. Yet, it appears that the rate of environmental479

change simply exceeded the pace of adaptation. This is evi-480

denced by the quick demographic rebound that occurred in481

the ‘post-change’ periods (Fig. 3). This rebound was likely482

driven by the same evolutionary dynamics that occur during483

evolutionary rescue, but in these extreme scenarios it only484

emerged once environmental change had ceased.485

Remarkably, we also observed higher maladaptation and486

larger demographic declines in our low-polygenicity scenar-487

ios with fewer, larger-effect alleles. Demographic decline was488

least pronounced in our moderate-polygenicity models. This489

contrasts with previous work finding that adaptation to a490

gradient is more effective under either concentrated or dis-491

persed genomic architectures (25). This disagreement may be492

attributable to the difference in timeframes between adapta-493

tion to a univariate environmental gradient and adaptation494

to a decoupled, multivariate gradient. Adaptation to a single,495

static gradient can proceed gradually, which may favor large-496

effect alleles or allele-clusters over longer time scales, once497

they have arisen by mutation, recombination, gene flow, or a498

combination thereof (24, 33). Longer term, gradual change499

scenarios may also favor dispersed architectures in temporally500

fluctuating environments (24, 25, 51, 52). However, the sud-501

den onset of persistent environmental change in a population502

that is already locally adapted triggers a ’race against time,’503

and genomic architectures with optimal adaptive capacity may504

be the ’middle ground’ architectures that comprise freely re- 505

combining loci with small enough effect sizes to avoid large 506

declines in fitness from migration load but with large enough 507

effect sizes to allow for effective natural selection and to avoid 508

the long wait times necessary for recombination to cluster 509

many adaptive loci into larger-effect haplotypes. This presents 510

the surprising possibility that an ’evolutionary trade-off’ may 511

exist, such that mid-effect-size alleles may confer maximal 512

adaptive capacity to environmental change. 513

The fact that high genotypic redundancy reduces demo- 514

graphic decline, across all scenarios, contributes to the growing 515

recognition of the importance of redundancy as a driver of 516

evolutionary outcomes for polygenic traits (24, 34). This also 517

presents a possible mechanism to be explored in real-world 518

populations living at colder range edges. Much like the local 519

populations in the rightmost region of our low-redundancy 520

scenarios, these local populations could already be at the 521

edge of the phenotypic space defined by their standing ge- 522

netic variation. In this case, segregating redundancy (34) 523

and, thus, adaptive capacity would be low, so vulnerability 524

to local extinction would be substantial. However, species 525

whose cold range edges are predominantly determined by ge- 526

ographic barriers or biotic interactions rather than climate 527

limits (53) could feature local populations more similar to our 528

high-redundancy scenarios; segregating redundancy would be 529

higher, so selection would be balancing rather than directional, 530

and adaptive capacity would be substantial. Hence, in situ 531

adaptation would be a substantial contributor to adaptive 532

capacity in these scenarios — an implication supported by the 533

fact that we observed reduced up-gradient gene flow across all 534

high-redundancy scenarios. 535

Our findings also contribute new insight to the theoretical 536

understanding of local adaptation with recombination. Recom- 537

bination is generally regarded as disadvantageous in situations 538

of clinal adaptation with gene flow, because it disrupts the 539

association between adaptive loci underlying a single trait 540

(12). Unstable environments experiencing stochastic temporal 541

fluctuations are considered a major exception (12), but our 542

results suggest that this may also extend to environments 543

undergoing monotonic change such as that caused by climate 544

change. In fact, recombination may be advantageous under 545

these conditions, particularly when species have distinct traits 546

simultaneously adapted to decoupled environmental gradients. 547

This advantage likely arises because recombination allows for 548

more effective in situ adaptation by shifting allelic covari- 549

ance, despite still disrupting the associations between loci that 550

would otherwise allow for the development of larger-effect gene 551

clusters. This suggests that in situ shifts in allelic covariance 552

provide an alternative to adaptive gene flow as a mechanism 553

for evolutionary rescue, especially in multi-trait systems where 554

gene flow can be adaptive for shifting climatic gradients but 555

maladaptive with respect to other, decoupled gradients. 556

A major challenge in simulation-based research is the com- 557

plexity of the high-dimensional parameter space that could be 558

explored. Useful and informative studies can be constructed by 559

focusing on a small set of key parameters while holding others 560

at reasonable values, as we have done here. This nonetheless 561

leaves unexplored a number of secondary parameters that can 562

have non-negligible influence over the complex ecological phe- 563

nomena of interest. In the case of evolutionary responses to 564

climate change this provides various areas for future research. 565
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These include population size, a major determinant of the rela-566

tive strengths of drift and natural selection (54) and of the wait567

time to emergence of recombinant haplotypes (55); movement568

behavior, a key factor influencing migration-selection dynam-569

ics (17, 18, 21); allelic effect size distributions (56), which570

are omitted here in favor of a single, fixed effect size; and571

the spatiotemporal structure of the environment, including572

gradient geometries, slopes, orientations, and rates of change573

(57). Additionally, important and conservation-relevant in-574

sight could emerge from the integration of other dimensions575

of climate change ecology, including range shifts (58), plastic-576

ity (1), and range-wide variation in population densities (10).577

Finally, more complex evolutionary scenarios could also be578

explored, including pleiotropy and epistasis (59), hybridization579

(60), life history variation, and even multiple traits that differ580

in the complexity of their genomic architectures — a realistic581

scenario that could exhibit different evolutionary outcomes582

than the ones we describe here.583

Conclusions584

Adaptive gene flow and in situ adaptation are two of the585

main processes by which species may persist under climate586

change. Evaluating the conditions under which they are likely587

to contribute to species persistence is essential for better under-588

standing microevolutionary responses to climate change and589

for informing management efforts. Our simulations show that590

genomic architecture can play an important, but largely over-591

looked, role in driving evolutionary outcomes. This includes592

determining the relative effectiveness of these two processes,593

the magnitude and persistence of maladaptation, and the like-594

lihood of concomitant demographic decline or evolutionary595

rescue. These findings highlight the importance of considering596

multivariate environmental gradients for climate change re-597

search, and suggest that the genomic architecture underlying598

traits adapted to those gradients has direct consequences for599

how species respond to environmental change.600
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