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A B S T R A C T

We present a neural network framework for learning a survival model to predict a time-to-event outcome while
simultaneously learning a topic model that reveals feature relationships. In particular, we model each subject
as a distribution over ‘‘topics’’, where a topic could, for instance, correspond to an age group, a disorder, or a
disease. The presence of a topic in a subject means that specific clinical features are more likely to appear for
the subject. Topics encode information about related features and are learned in a supervised manner to predict
a time-to-event outcome. Our framework supports combining many different topic and survival models; training
the resulting joint survival-topic model readily scales to large datasets using standard neural net optimizers
with minibatch gradient descent. For example, a special case is to combine LDA with a Cox model, in which
case a subject’s distribution over topics serves as the input feature vector to the Cox model. We explain how to
address practical implementation issues that arise when applying these neural survival-supervised topic models
to clinical data, including how to visualize results to assist clinical interpretation. We study the effectiveness
of our proposed framework on seven clinical datasets on predicting time until death as well as hospital ICU
length of stay, where we find that neural survival-supervised topic models achieve competitive accuracy with
existing approaches while yielding interpretable clinical topics that explain feature relationships. Our code is
available at: https://github.com/georgehc/survival-topics

1. Introduction

Predicting the amount of time until a critical event occurs – such
as death, disease relapse, or hospital discharge – is a central focus in
the field of survival analysis. Especially with the increasing availabil-
ity of electronic health records, survival analysis data in healthcare
often have both a large number of subjects and a large number of
features measured per subject. In coming up with an interpretable
survival analysis model to predict time-to-event outcomes for these
large-scale datasets, a standard approach is to use the classical Cox
proportional hazards model [1], possibly with features selected using
lasso regularization [2] or stepwise regression [3]. However, these Cox-
based models do not inherently learn how features relate. Instead, to
try to understand feature interactions with a Cox model, one would
have to, for example, introduce a large number of features that encode

∗ Corresponding author.
E-mail address: georgechen@cmu.edu (G.H. Chen).

1 Equal contribution.
2 Work conducted while at Carnegie Mellon University.

interactions between the original features. This approach is impractical
when the number of features is very large.

To simultaneously address the two objectives of learning a survival
model for time-to-event prediction and learning how features relate
through a topic model, Dawson and Kendziorski [4] combine latent
Dirichlet allocation (LDA) [5] with Cox proportional hazards to obtain
a method they call survLDA. The idea is to represent each subject as
a distribution over topics, and each topic as a distribution over which
clinical feature values appear. For example, a topic could correspond to
a severe disease state or a particular age group. The Cox model is given
the subjects’ distributions over topics as input rather than the subjects’
raw feature vectors. Importantly, the topic and survival models are
jointly learned.

In this paper, we propose a general framework for deriving neural
survival-supervised topic models that is substantially more flexible
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than survLDA. Specifically, survLDA estimates model parameters via
variational inference update equations derived specifically for LDA
combined with the standard Cox model; to use another other sort of
combination would require re-deriving the inference algorithm. More-
over, the inference algorithm for survLDA as stated in their paper does
not easily scale to large datasets. In contrast, our approach combines
essentially any topic model and any survival model that can be cast in a
neural net framework (precise prerequisites of our framework are given
in Section 2); combining LDA with the Cox proportional hazards model
is only one special case. As a byproduct of taking a neural net approach,
we can readily leverage many deep learning advances. For example,
we can avoid deriving a special inference algorithm and instead use
any neural net optimizer such as Adam [6] to learn the joint model
in minibatches, which readily scales to large datasets. Importantly, our
framework yields survival-supervised topic models that are amenable
to interpretation so long as the underlying topic and survival models
are.

As numerous combinations of neural topic/survival models are pos-
sible, we only demonstrate four combinations, corresponding to com-
bining either LDA or SAGE [7] topic models with either the Cox propor-
tional hazards model or an accelerated failure time model (e.g., [1,8]).
We make these combinations within the scholar neural topic modeling
framework by Card et al. [9] and thus refer to the resulting neural
survival-supervised topic models as scholar lda-cox, scholar lda-aft,
scholar sage-cox, and scholar sage-aft; note that scholar lda-cox is a
neural network variant of survLDA. We benchmark the four neural
survival-supervised models on seven datasets, finding that they can
yield accuracy competitive with deep learning baselines [10,11] while
yielding interpretable topics. In contrast, the deep learning baselines
are not interpretable.

Importantly, we discuss practical challenges encountered in learn-
ing these neural survival-supervised topic models on clinical data to
obtain interpretable topics. For example, we found the standard ap-
proach in topic modeling of just listing the top features per topic to
often not be interpretable because this listing does not explain how
these top features’ probabilities of appearing vary across topics. As
an alternative, we propose a new heatmap visualization of learned
topics that we found can better assist clinical interpretation. Separately,
we find encouraging sparsity in learned topics to make the topics
less interpretable. Our observation is that sometimes multiple clinical
events/measurements are taken that altogether help explain a condi-
tion, whereas encouraging sparsity tends to only pick out one among
multiple related features. This is essentially the same problem encoun-
tered when using lasso for linear regression: when there is a group of
variables with high pairwise correlation, lasso arbitrarily chooses one
of these variables [12]. We do not want this sort of behavior when our
goal is to understand how different features relate.

As a separate issue on interpretability, especially when the number
of features is large, it is possible that many features do not help
explain survival outcomes. Dawson and Kendziorski [4] address this
issue by using a preprocessing procedure for survLDA. Specifically,
they cluster on the subjects’ data based on their survival outcomes.
Then they remove features that are not sufficiently different across
the clusters. The issue with this approach is that it is ad hoc and
how it impacts downstream analyses is unclear. Moreover, there are
many possible clustering approaches that can be used each with its
own (hyper)parameter settings that can be tuned. We do not use such a
heuristic preprocessing step to filter features. Instead, we filter features
after learning a survival-supervised topic model. This strategy has been
demonstrated to work as well as filtering features before learning topic
models [13] although it has not been demonstrated in the survival
analysis context. Filtering after learning the model is appealing since
we can apply different filters (potentially with clinician input) without
having to retrain the model. For example, we can screen out features
that appear in too few or too many patients on demand after learning
the model.

Table 1
Summary of topics learned by scholar lda-cox on the support3 (cancer) dataset. Higher
Cox regression 𝛽 coefficient is associated with shorter survival time.

Topic number 𝛽 Topic interpretation

1 0.63 Old otherwise normal
2 0.11 Cardiorenal problems with comorbidities
3 0 Baseline
4 −0.04 Old, feverish, infection/inflammation
5 −0.16 Old with inflammation
6 −0.23 Normal healthier

As a concrete example, on a cancer dataset where we aim to predict
time until death, the topics learned by one of our neural survival-
supervised topic models scholar lda-cox are shown as a heatmap in
Fig. 1. In the heatmap, the columns correspond to different topics
(ordered from left to right corresponding to being associated with
shorter to longer average survival time), the rows correspond to dif-
ferent clinical measurements (continuous measurements are discretized
into bins), and the color values are probabilities where a deeper red
roughly means that the feature is more prominent for a particular topic.
We explain in Section 4 precisely how this heatmap is constructed and
how the rows are ordered. By looking at this heatmap, we can quickly
identify how feature occurrences tend to differ across the topics. We
can interpret the topics by looking at which features tend to be highly
probable for each topic. Our resulting interpretations are shown in
Table 1.

Extremely importantly, the interpretation of the learned topics re-
quires an abundance of caution. While our learned topic models are
competitive with various state-of-the-art baselines in terms of predic-
tion accuracy, the best accuracy scores possible are not high for the
various prediction tasks we consider in our experiments. Thus, we
cannot claim that the learned topics are ‘‘correct’’, and we believe that
they require more extensive validation if they are to be deployed for
clinical use. However, the learned topics can be very helpful in model
debugging. By visualizing them with our heatmap strategy, we can spot
inconsistencies between topics learned and clinical intuition, which
could suggest ways to improve the model (e.g., adding constraints or
regularization, changing specific data preprocessing steps). In contrast,
state-of-the-art deep learning baselines that we benchmark against are
not interpretable and do not provide straightforward visualizations to
assist model debugging and improvement.

With the above disclaimer, if we suppose for the moment that the
learned topics in Fig. 1/ Table 1 capture valid associations, then the
topics could provide actionable insights. In the problem of predicting
time until death for cancer patients, we may want to tease apart elderly
cancer patients in terms of their risk of mortality. Topics 1, 4, and 5 (as
numbered in Table 1) would be particularly relevant in this case as they
focus more on elderly patients and are associated with different risks
of mortality. By looking at what differentiates these topics, we see that
fever, infection, and inflammation are key indicators, which we could
consider interventions for. Note that whether a patient is more asso-
ciated with topic 1 vs. 5 can be distinguished by other characteristics
such as blood pressure and white blood cell count. One might want to
consider more aggressive interventions for patients mostly associated
with topic 1 since their prognosis is worse collectively.

In summary, our main contributions are as follows:

• We propose a general neural network framework for combining
neural topic models with survival models. This framework is
meant for large datasets in which both the number of subjects and
the number of features are large, where a key goal is to discover
possible feature relationships.
• We discuss practical issues that arise when applying our frame-
work to clinical data, including visualization strategies to assist
clinical interpretation.
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Fig. 1. Topics learned by scholar lda-cox on the support3 (cancer) dataset. Columns index topics and rows index features/‘‘words’’. The values are probabilities of each feature
conditioned on being in a topic. Note that two different features that are highly probable (darker shade of red) for the same topic does not mean that they must co-occur when
that topic is present, and it is possible that neither occurs. A helpful way to think about this is to consider how topic modeling works when applied to text data such as news
articles. In this case, a learned topic might correspond to sports, which could have highly probable words such as ‘‘basketball’’ and ‘‘skiing’’. A text document could be about sports
yet mentions neither of these words. This same idea applies to our setting where we represent patients in terms of clinical topics. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

• We experimentally show that neural survival-supervised topic
models often work as well as deep learning baselines but have
the added advantage of producing clinically interpretable topics.
The deep learning baselines are not interpretable.

Outline. The rest of the paper is organized as follows. We provide
background and prerequisites of our framework in Section 2. We then
explain how to construct neural-survival supervised topic models with
an explicit background topic in Section 3, with examples given for
how to combine LDA and SAGE topic models with the Cox and log-
logistic accelerated failure time survival models. We then benchmark
these models against classical and deep learning baselines in Section 4,
where we also discuss model interpretability. We end the paper with a
discussion in Section 5.

2. Background and prerequisites for our framework

We begin with some background and notation, first stating the
format of the data we assume we have access to. Then we review

key ideas of topic modeling and survival analysis most pertinent to
our proposed framework. Importantly, we state what properties our
framework requires of the topic and survival models that will be
combined to form a neural survival-supervised topic model. For ease of
exposition, we phrase notation in terms of predicting time until death;
other critical events are possible aside from death.

2.1. Data format

We assume that we have access to a training dataset of 𝑛 subjects,
and we pre-specify 𝑑 historical clinical events to keep track of, where
each event either occurs or not. For example, a clinical event could be
whether a patient was ever diagnosed with diabetes up to present time.
Continuous-valued clinical measurements could be discretized into bins
to come up with such binary historical clinical events. For example,
white blood count could be discretized into five quintiles. Thus, one
of the 𝑑 events would then be ‘‘white blood count reading is in the
bottom quintile’’; this event could occur multiple times. For a given
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subject, we can count how many times each of the 𝑑 events happened
up to present time. We denote 𝑋𝑖,𝑢 to be the number of times event
𝑢 ∈ {1,… , 𝑑} occurred for subject 𝑖 ∈ {1,… , 𝑛}.3 Viewing 𝑋 as an 𝑛-
by-𝑑 matrix, the 𝑖th row of 𝑋 (denoted by 𝑋𝑖) can be thought of as
the feature vector for the 𝑖th subject. Importantly, whether death has
occurred is not one of the 𝑑 historical events tracked by the matrix 𝑋
since we will be predicting time until death.

As for the training label for the 𝑖th subject, we have two recordings:
indicator 𝛿𝑖 ∈ {0, 1} specifies whether death occurred for the 𝑖th subject,
and observed time 𝑌𝑖 ∈ [0,∞) is the 𝑖th subject’s ‘‘survival time’’ (time
until death) if 𝛿𝑖 = 1 or the ‘‘censoring time’’ if 𝛿𝑖 = 0. The idea is that
when we stop collecting training data, some subjects are still alive. The
𝑖th subject still being alive corresponds to 𝛿𝑖 = 0 with a true survival
time that is unknown (‘‘censored’’); instead, we know that the subject’s
survival time is at least the censoring time.

2.2. Topic modeling

Representing subjects using the matrix 𝑋 above corresponds to topic
modeling. Developed originally to analyze text [5], classically, a topic
model represents each text document (in our case, each text document
is a subject/patient) by raw counts of how many times 𝑑 different
‘‘words’’ appear in the document (in our case, each word is a binary
indicator for whether a past clinical event occurred). These raw counts
are stored as the feature vector 𝑋𝑖 described previously. A topic model
transforms the 𝑖th subject’s feature vector 𝑋𝑖 into a topic weight vector
𝑊𝑖 ∈ R

𝑘, where 𝑊𝑖,𝑔 measures how much of topic 𝑔 ∈ {1, 2,… , 𝑘} is
present in the 𝑖th subject. A common assumption is that the 𝑖th subject’s
feature vector 𝑊𝑖 forms a probability distribution, i.e., the 𝑊𝑖,𝑔 ≥ 0

for all words 𝑔 and
∑𝑘
𝑔=1𝑊𝑖,𝑔 = 1. In the context of text documents,

examples of topics include ‘‘sports’’, ‘‘finance’’, and ‘‘movies’’, so that
a text document could be partially about both sports and finance but
not movies, etc. In our case, topics could correspond, for example, to
different patient age groups or having a specific severe illness. The goal
is to automatically learn these topics.

As a concrete example of a topic model, we review the LDA model
by Blei et al. [5]. LDA assumes the topic weight vectors 𝑊𝑖’s to be
generated i.i.d. from a 𝑘-dimensional Dirichlet distribution. Next, to
relate feature vector 𝑋𝑖 to its topic weight vector 𝑊𝑖, let 𝑋𝑖,𝑢 denote
the fraction of times a word appears for a specific subject, meaning
that 𝑋𝑖,𝑢 = 𝑋𝑖,𝑢∕

(∑𝑑
𝑣=1𝑋𝑖,𝑣

)
. Then LDA assumes the factorization

𝑋𝑖,𝑢 =

𝑘∑

𝑔=1

𝑊𝑖,𝑔𝐴𝑔,𝑢 (2.1)

for a ‘‘topic-word’’ matrix 𝐴 ∈ R
𝑘×𝑑 , where each row of 𝐴 is a

distribution over the 𝑑 vocabulary words; rows of 𝐴 are assumed to be

3 For simplicity, especially as the focus of our paper is not on feature
engineering or preprocessing (which often needs to be tailored to specific
datasets), when working with continuous-valued features, we use the simple
quintile binning strategy we described along with counting how often each
discretized event occurs across time to obtain the raw counts matrix 𝑋. In
practice, one could of course use other discretization strategies, whether based
on known threshold values that are already in clinical use for specific features,
or based on automatically learned threshold values. Moreover, rather than
counting how often a (discretized) measurement occurs over time, we could
instead look at, for instance, the most recent value of that measurement, or
the maximum value ever taken of that measurement across a time period,
etc. Once again, choosing between these options could be done using existing
clinical knowledge or learned automatically. We provide specific example
approaches of how to discretize or summarize features over time in Ap-
pendix A.3, including taking advantage of recently developed machine learning
methods. Importantly, our proposed framework accommodates any of these
feature preprocessing strategies. We defer studying the effect of using different
feature preprocessing strategies to future work.

Fig. 2. Topics learned by scholar lda-cox on the support1 (acute respiratory fail-
ure/multiple organ system failure) dataset. Columns index topics and rows index
features/‘‘words’’. The values are probabilities of each feature conditioned on being
in a topic.

sampled i.i.d. from a 𝑑-dimensional Dirichlet distribution. Importantly,

the different rows of 𝐴 correspond to the different topics. Ideally each

topic reveals words (or in our usage, historical clinical events) that are

considered related or that tend to co-occur. A standard approach is,

for example, to examine the most probable words per topic (i.e., iden-

tify the words with the highest values per row of 𝐴). We remark

that Eq. (2.1) is commonly written compactly as the nonnegative matrix

factorization 𝑋 = 𝑊𝐴, where the matrix 𝑊 has rows given by the

different subjects’ topic weight vectors 𝑊𝑖’s.

Given matrix 𝑋, LDA estimates the matrices 𝑊 and 𝐴 (along with

the parameters of the two Dirichlet distributions that generate rows

of 𝑊 and 𝐴) using variational inference (as done in the original paper

by Blei et al. [5]) or Gibbs sampling [14]. Recently, Srivastava and

Sutton [15] showed how to approximate LDA in a neural net framework
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Fig. 3. Topics learned by scholar lda-cox on the support2 (COPD/congestive heart
failure/cirrhosis) dataset. Columns index topics and rows index features/‘‘words’’. The
values are probabilities of each feature conditioned on being in a topic.

so that off-the-shelf neural net optimizers such as Adam [6] can then

be used to learn the model.

Prerequisites on the topic model for use with our framework. Our proposed

strategy for combining topic modeling with survival analysis can use

any topic model with a neural net formulation that can output an

estimate 𝑊 of the topic weight matrix 𝑊 stated above. We shall feed

𝑊 as input to a survival model. We remark that our approach techni-

cally does not require the rows of 𝑊 to be probability distributions,

although as we show later, constraining 𝑊 to be nonnegative can ease

interpretation of the survival model used.

Aside from LDA, examples of neural topic models that can be used

in our survival-supervised topic modeling framework include correlated

topic models [16], supervised LDA [17], SAGE [7], ProdLDA [15],

and the Embedded Topic Model [18]. As there are many neural topic

models at this point, we refer the interested reader to the survey
by Zhao et al. [19].

2.3. Survival analysis

Many standard topic models, including LDA, do not solve a pre-
diction task. To predict time-to-event outcomes, we turn to survival
analysis models. In this section, we review some key concepts from
survival analysis. More details can be found in standard textbooks
(e.g., [20,21]). At the end of this section, we state what our approach
to combining topic and survival models requires of the survival model
used.

Suppose we take the 𝑖th subject’s feature vector to be 𝑊𝑖 ∈ R
𝑘

instead of 𝑋𝑖. As this notation suggests, when we combine topic and
survival models,𝑊𝑖 corresponds to the 𝑖th subject’s topic weight vector;
this strategy for combining topic and survival models was first done
by Dawson and Kendziorski [4], who extended the original supervised
LDA formulation by McAuliffe and Blei [17]. We treat the training data
to the survival model as (𝑊1, 𝑌1, 𝛿1), … , (𝑊𝑛, 𝑌𝑛, 𝛿𝑛). Thus, the survival
model does not get direct access to the ‘‘raw’’ feature vectors 𝑋𝑖’s.
Instead, it only gets information about the raw feature vectors through
the topic weight vectors 𝑊𝑖’s.

The prediction task. A standard survival analysis prediction task can be
stated as using the training data (𝑊1, 𝑌1, 𝛿1),… , (𝑊𝑛, 𝑌𝑛, 𝛿𝑛) to estimate,
for any test subject with feature vector 𝑤 ∈ R

𝑘, the subject-specific
survival function

𝑆(𝑡|𝑤) = P(subject survives beyond time 𝑡 ∣ subject’s feature vector is 𝑤).

As with standard classification and regression settings, the training and
test data are assumed to be i.i.d. samples from the same underlying
distribution.

In survival analysis literature, often the prediction task is instead
stated as estimating a transformed version of 𝑆(⋅|𝑤) called the hazard
function. Formally, let 𝑊0 and 𝑇0 be continuous random variables
corresponding to the test subject’s feature vector and the test subject’s
true survival time. We denote the cumulative distribution function
(CDF) of 𝑇0 given𝑊0 by 𝐹 (𝑡|𝑤) = P(𝑇0 ≤ 𝑡|𝑊0 = 𝑤), and the probability
density function (PDF) of this distribution by 𝑓 (𝑡|𝑤) =

𝜕
𝜕𝑡
𝐹 (𝑡|𝑤). The

survival function is precisely 𝑆(𝑡|𝑤) = 1 − 𝐹 (𝑡|𝑤). The hazard function
is

ℎ(𝑡|𝑤) ∶= −
𝜕
𝜕𝑡

log𝑆(𝑡|𝑤) =
−
𝜕
𝜕𝑡
𝑆(𝑡|𝑤)

𝑆(𝑡|𝑤)
=

−
𝜕
𝜕𝑡
[1 − 𝐹 (𝑡|𝑤)]
𝑆(𝑡|𝑤)

=
𝑓 (𝑡|𝑤)
𝑆(𝑡|𝑤)

,

(2.2)

which (from the right-most expression) is the instantaneous rate of
death at time 𝑡 divided by the probability of surviving up to time 𝑡,
all conditioned on the feature vector being 𝑤. Given how the hazard
function is defined, knowing 𝑆(⋅|𝑤) means that we know ℎ(⋅|𝑤) and
vice versa (i.e., if we know ℎ(⋅|𝑤), then 𝑆(𝑡|𝑤) = exp(− ∫ 𝑡

0
ℎ(𝜏|𝑤)𝑑𝜏)).

Naturally, survival models differ in the assumptions they place on the
underlying survival function 𝑆(⋅|𝑤).

The technical challenge in estimating 𝑆(⋅|𝑤) from training data is
that in general, we do not observe the survival times for all of the
training subjects: the observed times 𝑌𝑖’s are equal to survival times
only for subjects who have 𝛿𝑖 = 1; all other 𝑌𝑖 values are censoring
times. We assume that the 𝑖th training subject has survival time 𝑇𝑖
and censoring time 𝐶𝑖 that are conditionally independent given feature
vector 𝑊𝑖, and if the survival time occurs before censoring (𝑇𝑖 ≤ 𝐶𝑖),
then 𝑌𝑖 = 𝑇𝑖 and 𝛿𝑖 = 1; otherwise 𝑌𝑖 = 𝐶𝑖 and 𝛿𝑖 = 0. This setup is
referred to as random censoring.

Measuring survival prediction accuracy. Although the prediction task can
be described as estimating the survival function 𝑆(⋅|𝑤) (or a variant of
it such as the hazard function), when it comes to evaluating accuracy,
we do not know the true function 𝑆(⋅|𝑤) even in the training data. A
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Fig. 4. Topics learned by scholar lda-cox on the support4 (coma) dataset. Columns index topics and rows index features/‘‘words’’. The values are probabilities of each feature
conditioned on being in a topic. Note that the Cox regression coefficient −0.00 actually corresponds to a value of −0.00011.

number of evaluation metrics have been devised, for which we use the
time-dependent concordance index 𝐶 𝗍𝖽 by Antolini et al. [22]. Roughly,
𝐶 𝗍𝖽 measures the fraction of pairs of subjects correctly ordered by a
survival model (based on estimated subject-specific survival functions)
among pairs of subjects that can be unambiguously ordered. Thus,
𝐶 𝗍𝖽 scores are fractions between 0 and 1, and the highest accuracy
corresponds to a value of 1.

Prerequisites on the survival model for use with our framework. Our
neural survival-supervised topic modeling framework requires that the
survival model used can be learned by (sub)gradient descent using
standard neural net optimizers. We will need to backpropagate through
both the survival and topic models, which are linked via the topic
weight matrix𝑊 (estimated by the topic model and treated as the input
‘‘feature vectors’’ by the survival model). Numerous survival models
satisfy the criterion above of being learnable via (sub)gradient descent

including the classical Cox proportional hazards model [1] and accel-
erated failure time (AFT) models (e.g., [1,8]). We state the modeling
assumptions of these models next along with their differentiable loss
functions and how to construct an estimate 𝑆(⋅|𝑤) for the subject-
specific survival function 𝑆(⋅|𝑤) after minimizing each model’s loss
function.

2.3.1. Example: Cox proportional hazards

The Cox model assumes that the hazard function has the form

ℎ(𝑡|𝑤) = ℎ0(𝑡) exp(𝛽
⊤𝑤) for 𝑡 ≥ 0, 𝑤 ∈ R

𝑘, (2.3)

where the two parameters are the baseline hazard function ℎ0 ∶

[0,∞) → [0,∞), and the vector of regression coefficients 𝛽 ∈ R
𝑘. Under

random censoring (and actually more general censoring models), we
can estimate 𝛽 without knowing ℎ0 via maximizing a profile likelihood,
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Fig. 5. Topics learned by scholar lda-cox on the metabric (breast cancer) dataset.
Columns index topics and rows index features/‘‘words’’. The values are probabilities
of each feature conditioned on being in a topic.

which is equivalent to minimizing the differentiable loss function

𝐿𝖢𝗈𝗑(𝛽|𝑊 ) = −
1

𝑛

𝑛∑

𝑖=1

𝛿𝑖

[
𝛽⊤𝑊𝑖 − log

𝑛∑

𝑗=1 s.t. 𝑌𝑗≥𝑌𝑖

exp(𝛽⊤𝑊𝑗 )
]
. (2.4)

After computing parameter estimate 𝛽 by minimizing 𝐿𝖢𝗈𝗑(𝛽), we can
estimate survival functions 𝑆(⋅|𝑤) via the following approach by Bres-
low [23]. Denote the unique times of death in the training data by
𝑡1, 𝑡2,… , 𝑡𝑚. Let 𝑑𝑖 be the number of deaths at time 𝑡𝑖. We first compute
the so-called hazard function ℎ̂𝑖 ∶= 𝑑𝑖∕

(∑𝑛
𝑗=1 s.t. 𝑌𝑗≥𝑌𝑖

exp(𝛽⊤𝑊𝑗 )
)
at

each time index 𝑖 = 1, 2,… , 𝑚. Next, we form the ‘‘baseline’’ survival
function 𝑆0(𝑡) ∶= exp(−

∑𝑚
𝑖=1 s.t. 𝑡𝑖≤𝑡

ℎ̂𝑖). Finally, subject-specific survival
functions are estimated to be powers of the baseline survival function:
𝑆(𝑡|𝑤) ∶= [𝑆0(𝑡)]

exp(𝛽 ⊤𝑤).

Importantly, under the Cox model, whether a subject with feature
vector 𝑤 is predicted to have overall higher or lower survival probabil-
ities across time is determined by the inner product 𝛽⊤𝑤 =

∑𝑘
𝑔=1 𝛽𝑔𝑤𝑔 .

When this inner product is larger, then 𝑆(𝑡|𝑤) = [𝑆0(𝑡)]
exp(𝛽 ⊤𝑤) is

smaller across time. Recall that we shall take 𝑤 to be a nonnegative

topic weight vector, so the 𝑔th topic being present for a subject means
that 𝑤𝑔 > 0. Note that the 𝑔th topic’s contribution to the inner
product 𝛽⊤𝑤 is precisely 𝛽𝑔𝑤𝑔 . Thus, the 𝑔th topic having a larger 𝛽𝑔
coefficient means that the topic is associated with lower survival func-
tions/probabilities, and thus lower mean (or median) survival times.4

By ranking topics based on their 𝛽𝑔 values, we can thus get a sense of
which topics are associated with lower vs. higher survival times.

For the above loss 𝐿𝖢𝗈𝗑(𝛽), we remark that one can regularize the
Cox regression coefficients 𝛽. For example, adding a lasso, ridge, or
more generally elastic-net penalty on 𝛽 leads to the loss minimized
by Simon et al. [2]. Adding this regularization does not change how
the hazard and survival functions are estimated once we have an
estimate 𝛽 of 𝛽. Standard neural net optimizers can accommodate such
a regularization term.

2.3.2. Example: Accelerated failure time models
As another example of a survival model that our neural survival-

supervised topic modeling framework can use, consider the log–logistic
AFT model that assumes each subject’s (possibly unobserved) survival
time 𝑇𝑖 has the form

log 𝑇𝑖 = 𝜇 + 𝜃⊤𝑊𝑖 + 𝜎𝜀𝑖, (2.5)

where 𝜇 ∈ R, 𝜃 ∈ R
𝑘, and 𝜎 > 0 are model parameters, and

noise variables 𝜀𝑖’s are i.i.d. standard logistic, i.e., 𝜀𝑖 has PDF 𝑓𝜀(𝑠) =
exp(𝑠)∕

(
1 + exp(𝑠)

)2
and CDF 𝐹𝜀(𝑠) = 1∕

(
1 + exp(−𝑠)

)
. Thus, 𝑇𝑖 given

𝑊𝑖 is distributed as a log–logistic distribution and, in particular, the
underlying survival function 𝑆(⋅|𝑊𝑖) has a closed-form expression:

𝑆(𝑡|𝑊𝑖) =
1

1 + 𝑡1∕𝜎 exp{−(𝜇 + 𝜃⊤𝑊𝑖)∕𝜎}
for 𝑡 ≥ 0. (2.6)

Under random censoring, maximum likelihood estimation for 𝜇, 𝜃, and
𝜎 is equivalent to minimizing the differentiable loss function

𝐿𝖠𝖥𝖳(𝜃, 𝜇, 𝜎|𝑊 )

∶= −
1

𝑛

𝑛∑

𝑖=1

{
𝛿𝑖 log 𝑓𝜀(𝑧𝑖) − 𝛿𝑖 log 𝜎 + (1 − 𝛿𝑖) log

(
1 − 𝐹𝜀(𝑧𝑖)

)}
, (2.7)

where 𝑧𝑖 = (log 𝑌𝑖 − 𝜇 − 𝜃⊤𝑊𝑖)∕𝜎. Hence, after minimizing the loss
function 𝐿𝖠𝖥𝖳(𝜃, 𝜇, 𝜎|𝑊 ), we have estimates 𝜃, 𝜇, and 𝜎 for 𝜃, 𝜇, and
𝜎 respectively. We can plug these estimates into Eq. (2.6) to come up
with an estimate 𝑆(⋅|𝑤) for any feature vector 𝑤.

Interpretation of the log–logistic AFT model is similar to that of the
Cox model. As we take the feature vector 𝑤 to be a topic weight vector
with nonnegative values, once again whether the predicted survival
function has higher or lower probabilities is determined by an inner
product, this time 𝜃⊤𝑤. However, unlike in the Cox model, where the
𝑔th topic having larger Cox regression coefficient 𝛽𝑔 means that the 𝑔th
topic is associated with shorter mean/median survival times, for the
above AFT model, having larger regression coefficient 𝜃𝑔 means that
the 𝑔th topic is associated with longer mean/median survival times.5

Other AFT models are also possible where, for example, 𝑇𝑖 given
𝑊𝑖 has a log-normal, Weibull, gamma, generalized gamma, or inverse-
Gaussian distribution instead of a log–logistic distribution. These dif-
ferent models arise from changing the distribution of the i.i.d. noise
terms 𝜀𝑖’s in Eq. (2.5). Moreover, just as with the Cox model, we could
introduce regularization.

4 Note that the area under the survival function ∫ ∞

0
𝑆(𝑡|𝑤)𝑑𝑡 is precisely the

mean survival time for a subject with feature vector 𝑤. The time 𝑡 for which
𝑆(𝑡|𝑤) crosses 1/2 is a median survival time for feature vector 𝑤. Thus, when
the survival function decreases across all of time (except at time 𝑡 = 0, where
it is 1), then the mean and median survival times decrease.

5 Under the log–logistic AFT model, the median survival time for a subject
with feature vector 𝑤 is exp(𝜇 + 𝜃⊤𝑤). The mean survival time exists only if
𝜎 < 1 for which it is given by 𝜋𝜎 exp(𝜇+𝜃⊤𝑤)

sin(𝜋𝜎)
.
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As stated previously, in this paper we use the time-dependent
concordance index accuracy metric, which is based on ranking pairs
of subjects. As such, using a ranking-based regularization term when
learning a survival model tends to yield higher c-index values, which
has been previously reported by other researchers (e.g., [11,24,25]).
Accounting for these previous researchers’ findings, in our experiments
later when we use an AFT model, we use the same regularization
strategy as Chapfuwa et al. [24] by adding the ranking loss by Raykar
et al. [26]:

𝐿𝗋𝖺𝗇𝗄𝗂𝗇𝗀(𝜃) = −1 +
1

||
∑

(𝑖,𝑗)∈

log2
{
1 + exp

(
𝜃⊤(𝑊𝑖 −𝑊𝑗 )

)}
, (2.8)

where  consists of pairs of subjects (𝑖, 𝑗) such that 𝛿𝑖 = 1 (death
is observed for the 𝑖th training subject) and moreover 𝑌𝑗 > 𝑌𝑖 (the
observed time for the 𝑗th training subject is higher than that of the
𝑖th subject). Raykar et al. [26] show that −𝐿𝗋𝖺𝗇𝗄𝗂𝗇𝗀(𝜃) is a lower bound
on a variant of concordance index; thus, minimizing 𝐿𝗋𝖺𝗇𝗄𝗂𝗇𝗀(𝜃) aims
to maximize concordance index. Note that the Cox model does not
need a ranking regularizer since it already approximately maximizes
concordance index [26].

Importantly, in how we combine neural topic models with survival
analysis, for the resulting overall model to be readily interpretable,
choosing a simple interpretable survival model is crucial, as we have
illustrated with the above Cox and log–logistic AFT examples. Thus,
although our approach is indeed compatible with survival models given
by deep neural net extensions of Cox and AFT models (e.g., [10,24,
25,27,28]) that can be more accurate at time-to-event predictions than
classical non-neural-net methods and that can learn highly nonlinear
functions of the input feature vector, these deep survival models are
typically difficult to interpret.

3. Neural survival-supervised topic models

We now present our proposed neural survival-supervised topic mod-
eling framework that can combine any neural topic model and any
survival model meeting the prerequisites stated in Sections 2.2 and 2.3.
For ease of exposition, we first explain how to combine LDA with the
Cox proportional hazards model, similar to what is done by Dawson
and Kendziorski [4] except we do this combination in a neural net
framework. To show the flexibility of our framework, we explain how
to combine LDA with the log–logistic AFT model, and how to replace
LDA with the SAGE topic model.

3.1. A neural formulation of the LDA/Cox combination

We first need a neural net formulation of LDA. We can use the
scholar framework by Card et al. [9]. Card et al. do not explicitly
consider survival analysis in their setup although they mention that
predicting different kinds of real-valued outputs can be incorporated
by using different label networks. We use their same setup and have
the final label network perform survival analysis. We give an overview
of scholar before explaining our choice of label network. Note that
for clarity of presentation, we present a slightly simplified version of
scholar.

The scholar framework specifies a generative model for the data,
including how each individual word in each subject is generated. In
particular, recall that 𝑋𝑖,𝑢 denotes the number of times the word 𝑢 ∈

{1, 2,… , 𝑑} appears for the 𝑖th subject. Let 𝑣𝑖 denote the number of
words for the 𝑖th subject, i.e., 𝑣𝑖 =

∑𝑑
𝑢=1𝑋𝑖,𝑢. We now define the random

variable 𝜓𝑖,𝓁 ∈ {1, 2,… , 𝑑} to be what the 𝓁-th word for the 𝑖th subject
is (for 𝑖 = 1, 2,… , 𝑛 and 𝓁 = 1, 2,… , 𝑣𝑖). Then the generative process for
scholar with 𝑘 topics is as follows, stated for the 𝑖th subject:

Fig. 6. Topics learned by scholar lda-cox on the unos (heart transplant) dataset.
Columns index topics and rows index features/‘‘words’’. The values are probabilities
of each feature conditioned on being in a topic.

1. Generate the 𝑖th subject’s topic distribution:

(a) Sample 𝑊𝑖 ∼  (𝝁0,diag(𝝈
2
0
)), where 𝝁0 ∈ R

𝑘 and 𝝈2
0
∈

[0,∞)𝑘 are user-specified, and diag(⋅) constructs a diagonal
matrix from a vector.

(b) Set the 𝑖th subject’s topic weights vector to be 𝑊𝑖 =

softmax(𝑊𝑖).

2. Generate the 𝑖th subject’s words:

(a) Compute the 𝑖th subject’s word distribution 𝜙𝑖 = 𝑓𝗐𝗈𝗋𝖽(𝑊𝑖),
where 𝑓𝗐𝗈𝗋𝖽 is a generator network.

(b) For word 𝓁 = 1, 2,… , 𝑣𝑖: Sample 𝜓𝑖,𝓁 ∼ Multinomial(𝜙𝑖).

3. Generate the 𝑖th subject’s output label:
Sample 𝑌𝑖 from a distribution parameterized by label network
𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖).
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Fig. 7. Topics learned by scholar lda-cox on the mimic-ich (intracerebral hemorrhage)
dataset. Columns index topics and rows index features/‘‘words’’. The values are
probabilities of each feature conditioned on being in a topic.

Different choices for the parameters 𝝁0,𝝈
2
0
, 𝑓𝗐𝗈𝗋𝖽, and 𝑓𝗅𝖺𝖻𝖾𝗅 lead to

different topic models. To approximate LDA where topic distributions
are sampled from a symmetric Dirichlet distribution with parameter
𝛼 > 0, we set 𝝁0 to be the all zeros vector, 𝝈

2
0
to have all entries equal

to (𝑘 − 1)∕(𝛼𝑘), and 𝑓𝗐𝗈𝗋𝖽(𝑤) = 𝑤⊤𝐴, where 𝐴 ∈ R
𝑘×𝑑 has a Dirichlet

prior per row; in fact the matrix 𝐴 is the same as the one in Eq. (2.1).
Standard LDA is unsupervised so step 3 of the above generative process
would be omitted. In terms of implementation, we set the 𝑔th row of
𝐴 to be 𝐴𝑔 = softmax(𝐻𝑔) for an unconstrained matrix 𝐻 ∈ R

𝑘×𝑑 , and
for simplicity, we assume the prior on each row of 𝐴 to be uniform (a
special case of a Dirichlet prior).

3.1.1. Learning topic model parameters
The topic model parameters are learned via amortized variational

inference [29,30]. We summarize this procedure for the above unsuper-
vised LDA neural net approximation including stating the loss function.

For the derivation of this procedure and loss function, see Section 3.2
of Card et al. [9].

For the 𝑖th subject, we keep track of a distribution 𝑞𝑖 ∶=  (𝝁𝑖,diag
(𝝈2
𝑖 )), where 𝝁𝑖 ∈ R

𝑘 and 𝝈2
𝑖 ∈ [0,∞)𝑘 will be defined shortly. Distribu-

tion 𝑞𝑖 approximates the posterior of unnormalized topic weights 𝑊𝑖

given the observed words 𝜓𝑖 ∶= (𝜓𝑖,1, 𝜓𝑖,2,… , 𝜓𝑖,𝑣𝑖 ). We introduce a

multilayer perceptron 𝑓𝑒 ∶ R
𝑑 → R

𝑑′ that takes as input 𝑋𝑖 (the word
counts for the 𝑖th subject) and outputs an embedding 𝝅𝑖 = 𝑓𝑒(𝑋𝑖), where
the embedding dimension 𝑑′ is user-specified. Then we set

𝝁𝑖 = 𝐖𝜇𝝅𝑖 + 𝒃𝜇 , (3.1)

log(𝝈2
𝑖 ) = 𝐖𝜎𝝅𝑖 + 𝒃𝜎 . (3.2)

The variables 𝐖𝜇 ∈ R
𝑑′×𝑘, 𝒃𝜇 ∈ R

𝑘, 𝐖𝜎 ∈ R
𝑑′×𝑘, and 𝒃𝜎 ∈ R

𝑘

are parameters. In the latter equation, log is applied element-wise. In
summary, the model parameters we aim to learn are 𝐖𝜇 , 𝒃𝜇 , 𝐖𝜎 , and
𝒃𝜎 , the parameters for the multilayer perceptron 𝑓𝑒, and finally the
matrix 𝐻 (recall that for LDA, we set 𝑓𝗐𝗈𝗋𝖽(𝑤) = 𝑤⊤𝐴 with 𝐴𝑔 =

softmax(𝐻𝑔) in step 2 of the scholar generative process). We collectively
refer to all the parameters as 𝜣𝖫𝖣𝖠. Meanwhile, the number of topics
𝑘, constant 𝛼 > 0 (used in the Dirichlet prior for unnormalized topic
weights), and the neural architecture of 𝑓𝑒 are hyperparameters that
are user-specified.

As is standard now in amortized variational inference, the loss func-
tion is randomly computed given parameters 𝜣𝖫𝖣𝖠; hyperparameters
and the input raw counts matrix 𝑋 are treated as fixed. For the 𝑖th
subject, we sample an unnormalized topic weight vector 𝑊 (𝗌)

𝑖 ∼ 𝑞𝑖.
Then following steps 1(b) and 2(a) of the scholar generative process,
we compute the topic weight vector 𝑊 (𝗌)

𝑖 = softmax(𝑊 (𝗌)
𝑖 ) and word

distribution 𝜁 (𝗌)𝑖 ∶= 𝑊 (𝗌)⊤
𝑖 𝐴 ∈ [0, 1]𝑑 . We repeat this across all subjects 𝑖.

Then the loss function minimized by scholar for LDA is

𝐿̃𝖫𝖣𝖠(𝜣𝖫𝖣𝖠) = −
1

𝑛

𝑛∑

𝑖=1

[

log likelihood of observed words
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑑∑

𝑣=1

𝑋𝑖,𝑣 log(𝜁
(𝗌)
𝑖,𝑣 )

−
1

2

𝑘∑

𝑔=1

( 𝝈2
𝑖,𝑔 + 𝝁2

𝑖,𝑔

(𝑘 − 1)∕(𝛼𝑘)
− 𝑘 + log

(𝑘 − 1)∕(𝛼𝑘)

𝝈2
𝑖,𝑔

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
KL divergence between 𝑞𝑖 and true posterior

]
.

(3.3)

When we apply this framework to clinical data, one practical issue
is that some subjects have dramatically more historical clinical mea-
surements than other subjects. For example, in one dataset in our
experiments, one subject has a total of 59 824 measurements (note
that the same ‘‘word’’/past historical clinical event could occur mul-
tiple times) whereas there is another subject who has a total of 3
measurements! When there is such heterogeneity in how many words
are present per ‘‘document’’/subject, the subjects with a very large
number of historical clinical measurements will dominate the entire
loss function above. To prevent this behavior, for all datasets, we
replace the raw word counts 𝑋 with its normalized version 𝑋 stated
in Section 2.2 (𝑋 is obtained by taking 𝑋 and dividing each row by
the sum of the row), which effectively weights every subject equally
(despite subjects possibly having varying amounts of measurements
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present).6 Thus, the loss function we minimize is instead

𝐿𝖫𝖣𝖠(𝜣𝖫𝖣𝖠) = −
1

𝑛

𝑛∑

𝑖=1

[ 𝑑∑

𝑣=1

𝑋𝑖,𝑣 log(𝜁
(𝗌)
𝑖,𝑣 )

−
1

2

𝑘∑

𝑔=1

( 𝝈2
𝑖,𝑔 + 𝝁2

𝑖,𝑔

(𝑘 − 1)∕(𝛼𝑘)
− 𝑘 + log

(𝑘 − 1)∕(𝛼𝑘)

𝝈2
𝑖,𝑔

)]
.

(3.4)

We can minimize this loss with respect to 𝜣𝖫𝖣𝖠 using standard neural
net optimizers as well as train in minibatches to scale to large datasets.
Empirically, Srivastava and Sutton [15] and Card et al. [9] have found
that for training neural topic models, training with high momentum and
using batch normalization is essential in preventing the topics learned
from being the same (the so-called issue of ‘‘mode collapse’’); for the
interested reader, see the implementation notes in Appendix C of Card
et al. [9].

Recall from Section 2.2 that we require the neural topic model used
in our framework to be able to output estimated topic weight vectors
𝑊𝑖’s for the different subjects as these will be used as inputs to the
survival model. We could simply set 𝑊𝑖 to be the topic weight vector
𝑊 (𝗌)
𝑖 = softmax(𝑊 (𝗌)

𝑖 ) constructed based on the random unnormalized

topic weight vector 𝑊 (𝗌)
𝑖 ∼ 𝑞𝑖. Alternatively, rather than only using one

sample 𝑊 (𝗌)
𝑖 , we could draw multiple samples 𝑊 (𝗌),1

𝑖 ,… ,𝑊 (𝗌),𝓁
𝑖

i.i.d.
∼ 𝑞𝑖,

and output 𝑊𝑖 =
1

𝓁

∑𝓁

𝑗=1 softmax(𝑊
(𝗌),𝑗
𝑖 ).

3.1.2. Survival supervision

To incorporate the Cox survival loss, we set step 3 of the scholar
generative process to use 𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖) = 𝛽⊤𝑊𝑖 for parameter vector 𝛽 ∈ R

𝑘,
where we explicitly constrain 𝛽𝑘 = 0, i.e., how much of the 𝑘th topic
is present is ignored in the inner product calculation. This is done so
that the 𝑘th topic acts as a background topic. We remark that 𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖)

is simple to implement: given 𝑊𝑖, we drop the entry corresponding to
the 𝑘th topic and then feed the result to a standard linear layer with a
single output node and no bias term. The weights of this fully-connected
layer thus correspond to (𝛽1, 𝛽2,… , 𝛽𝑘−1). The last coefficient 𝛽𝑘 = 0 is
not stored.

Note that 𝛽 precisely consists of the Cox regression coefficients
in Eq. (2.3). Meanwhile, 𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖) precisely takes the role of the 𝛽

⊤𝑊𝑖

terms in the Cox loss (2.4). Of course, as we do not observe the true
topic weight vector𝑊𝑖, we plug in its estimate𝑊𝑖 from the topic model.
To summarize, the Cox loss we use with the neural topic model is

𝐿𝖢𝗈𝗑-𝗐𝗂𝗍𝗁-𝖻𝖺𝖼𝗄𝗀𝗋𝗈𝗎𝗇𝖽-𝗍𝗈𝗉𝗂𝖼(𝛽1,… , 𝛽𝑘−1|𝑊 )

= −
1

𝑛

𝑛∑

𝑖=1

𝛿𝑖

[
𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖) − log

𝑛∑

𝑗=1 s.t. 𝑌𝑗≥𝑌𝑖

exp(𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑗 ))
]
, (3.5)

where we have left out regression coefficient 𝛽𝑘 as it is constrained to
be 0.

We can now state the overall loss function that we minimize for the
neural LDA-Cox model:

𝐿𝖫𝖣𝖠-𝖢𝗈𝗑(𝜣𝖫𝖣𝖠, 𝛽1,… , 𝛽𝑘−1)

= 𝐿𝖫𝖣𝖠(𝜣𝖫𝖣𝖠) + 𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅𝐿𝖢𝗈𝗑-𝗐𝗂𝗍𝗁-𝖻𝖺𝖼𝗄𝗀𝗋𝗈𝗎𝗇𝖽-𝗍𝗈𝗉𝗂𝖼(𝛽1,… , 𝛽𝑘−1|𝑊 ), (3.6)

where hyperparameter 𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅 > 0 weights the importance of the
survival loss. We refer to the resulting model as scholar lda-cox.

6 Other approaches are possible for weighting different subjects. For in-
stance, instead of using the row-normalized matrix 𝑋 or the raw counts

matrix 𝑋, we could interpolate between these two choices by using 𝑋
(𝜉)

𝑖,𝑢 ∶=

𝑋𝑖,𝑢∕(
∑𝑑
𝑣=1𝑋𝑖,𝑣)

𝜉 , where 𝜉 ∈ [0, 1] is a user-specified hyperparameter (setting

𝜉 = 1 corresponds to using 𝑋𝑖,𝑢, whereas setting 𝜉 = 0 corresponds to using the

raw count 𝑋𝑖,𝑢). For simplicity, we simply use 𝑋 in our experiments later.

3.1.3. Model interpretation
For the 𝑔th topic learned, we can look at its distribution over words

𝐴𝑔 ∈ [0, 1]𝑑 (the 𝑔th row of 𝐴 given in Eq. (2.1)) and, for instance,
rank words by their probability of appearing for topic 𝑔. The 𝑔th topic
is also associated with Cox regression coefficient 𝛽𝑔 , where each 𝛽𝑔 is
the parameter from Eq. (3.5). Again, the 𝑘th topic is constrained to
have Cox regression coefficient 𝛽𝑘 = 0. Under the Cox model, 𝛽𝑔 being
larger means that the 𝑔th topic is associated with shorter mean/median
survival times, as discussed in Section 2.3.1.

3.2. Using other choices of topic or survival models

To give a sense of the generality of our proposed framework, we
explain how to derive neural survival-supervised topic models corre-
sponding to combining LDA with an AFT model (Section 3.2.1) as well
as combining the SAGE topic model [7] with either Cox or AFT survival
models (Section 3.2.2).

3.2.1. LDA/AFT
To combine LDA with an AFT survival model, we use the same

idea as how we combined LDA with a Cox model. The changes are as
follows. First off, in step 3 of the scholar generative process, we now set
𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖) = 𝜃⊤𝑊𝑖 + 𝜇, again constraining the 𝑘th regression coefficient
𝜃𝑘 = 0 to correspond to a background topic. Effectively, we are taking
the survival time 𝑇𝑖 to be of the form log 𝑇𝑖 = 𝑓label(𝑊𝑖)+𝜎𝜀𝑖 in Eq. (2.7),
where parameters 𝜇, 𝜃, and 𝜎 are the same as described in Section 2.3.2
except with the new constraint that 𝜃𝑘 = 0.

Note that 𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖) can be implemented by taking the input 𝑊𝑖,
dropping the 𝑘th topic’s weight, and then feeding the result through
a standard linear layer with one output node and a bias term. The
bias term is precisely 𝜇 and the weight matrix of the linear layer
precisely gives (𝜃1, 𝜃2,… , 𝜃𝑘−1). As the true 𝑊𝑖 is unknown, we plug
in its estimate 𝑊𝑖 from the topic model.

We use the regularized survival loss function

𝐿𝖠𝖥𝖳-𝗐𝗂𝗍𝗁-𝖻𝖺𝖼𝗄𝗀𝗋𝗈𝗎𝗇𝖽-𝗍𝗈𝗉𝗂𝖼(𝜇, 𝜎, 𝜃1,… , 𝜃𝑘−1|𝑊 )

= −
1

𝑛

𝑛∑

𝑖=1

{
𝛿𝑖 log 𝑓𝜀(𝑍𝑖) − 𝛿𝑖 log 𝜎 + (1 − 𝛿𝑖) log

(
1 − 𝐹𝜀(𝑍𝑖)

)}

+ 𝜆𝗋𝖺𝗇𝗄𝗂𝗇𝗀𝐿𝗋𝖺𝗇𝗄𝗂𝗇𝗀(𝜃1,… , 𝜃𝑘−1), (3.7)

where 𝑍𝑖 = [(log(𝑌𝑖))−𝑓𝗅𝖺𝖻𝖾𝗅(𝑊𝑖)]∕𝜎, 𝑓𝜀(𝑠) = exp(𝑠)∕
(
1 + exp(𝑠)

)2
, 𝐹𝜀(𝑠) =

1∕
(
1 + exp(𝑠)

)
, and 𝜆𝗋𝖺𝗇𝗄𝗂𝗇𝗀 ≥ 0 is a user-specified hyperparameter, and

𝐿𝗋𝖺𝗇𝗄𝗂𝗇𝗀(𝜃1,… , 𝜃𝑘−1) is the same as in Eq. (2.8) except with the constraint
𝜃𝑘 = 0. Since parameter 𝜎 needs to be strictly positive, we instead
have the neural net keep track of log 𝜎, which is unconstrained and we
initialize with a random sample from  (0, 10−4). The overall loss to be
minimized is thus

𝐿𝖫𝖣𝖠-𝖠𝖥𝖳(𝜣𝖫𝖣𝖠, 𝜇, 𝜎, 𝜃1,… , 𝜃𝑘−1)

= 𝐿𝖫𝖣𝖠(𝜣𝖫𝖣𝖠) + 𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅𝐿𝖠𝖥𝖳-𝗐𝗂𝗍𝗁-𝖻𝖺𝖼𝗄𝗀𝗋𝗈𝗎𝗇𝖽-𝗍𝗈𝗉𝗂𝖼(𝜇, 𝜎, 𝜃1,… , 𝜃𝑘−1|𝑊 ),

(3.8)

for a user-specified hyperparameter 𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅 > 0. The rest of neural net
training works exactly the same way as in the LDA-Cox combination.

As for model interpretation, just as with the LDA-Cox model, for the
𝑔th topic, we can inspect its distribution over words given by the 𝑔th
row of the matrix 𝐴. As discussed in Section 2.3.2, the 𝑔th topic has an
associated regression coefficient 𝜃𝑔 for which larger values mean that
the 𝑔th topic is associated with longer mean/median survival times.

3.2.2. Replacing LDA with SAGE
The above LDA/Cox and LDA/AFT combinations can easily accom-

modate replacing LDA with a different neural topic model. For example,
to replace LDA with SAGE [7], we make the following changes. First,
recall that in step 2(a) of the scholar generative process, the neural



Artificial Intelligence In Medicine 154 (2024) 102898

11

G.H. Chen et al.

Table 2
Basic characteristics of the survival datasets used.

Dataset Description Number of Number of Fraction
subjects features censored

support1
Acute respiratory failure/multiple organ

4203 14 35.7%
system failure

support2 COPD/congestive heart failure/cirrhosis 2854 14 39.4%
support3 Cancer 1413 13 11.3%
support4 Coma 592 14 18.8%
metabric Breast cancer 1981 24 55.2%
unos Heart transplant 62 644 49 50.2%
mimic-ich Intracerebral hemorrhage 961 1530 23.1%

net 𝑓𝗐𝗈𝗋𝖽 maps an input topic weight vector 𝑤 to a distribution over
𝑑 words. For SAGE, we set 𝑓𝗐𝗈𝗋𝖽 to be

𝑓𝗐𝗈𝗋𝖽(𝑤) = softmax(𝛾 +𝑤
⊤𝐻),

where 𝛾 ∈ R
𝑑 and 𝐻 ∈ R

𝑘×𝑑 are parameters. Note that in a neural net
framework, 𝑓𝗐𝗈𝗋𝖽 is implemented as a linear layer followed by softmax
activation. Specifically, the linear layer has a bias term and maps
feature vectors of size 𝑘 to output vectors of size 𝑑. The linear layer’s
weight matrix and bias term correspond to 𝐻 and 𝛾, respectively.

The interpretation is as follows: given a subject with topic weight
vector 𝑤, the 𝑣th word (a historical clinical event) occurs with prob-
ability proportional to exp(𝛾𝑣 +

∑𝑘
𝑔=1𝑤𝑔𝐻𝑔,𝑣). In this sense, 𝛾𝑣 can be

thought of as a background log frequency of the 𝑣th word. The 𝑔th
topic is then represented by the 𝑔th row of 𝐻 and can be thought of
as log deviations from the background log frequency vector. Phrased
informally, SAGE represents each topic as a deviation from background
word frequencies. This representation is convenient in that there often
are many ‘‘background’’ words that appear in a very large fraction of
subjects and are not helpful in distinguishing between the topics. For
LDA, these background words would have to be removed either as a
preprocessing or as a postprocessing step. SAGE on the other hand
inherently accounts for these background words.

For SAGE, to interpret the 𝑔th topic, we can rank words the words
from largest to smallest deviation from background according to the
values in the 𝑔th row of 𝐻 . The values are of course not probabilities.
For example, for the 𝑔th topic, if the 𝑣th word has a log deviation value
𝐻𝑔,𝑣 = 3, then it means that it occurs exp(3) times more than word
𝑣’s background frequency. It is of course possible to have negative log
deviation values.

The loss function we use to learn the SAGE topic model is almost
the same as for LDA and is given by

𝐿𝖲𝖠𝖦𝖤(𝜣𝖲𝖠𝖦𝖤) = −
1

𝑛

𝑛∑

𝑖=1

[ 𝑑∑

𝑣=1

𝑋𝑖,𝑣 log(𝜁
(𝗌)
𝑖,𝑣 )

−
1

2

𝑘∑

𝑔=1

( 𝝈2
𝑖,𝑔 + 𝝁2

𝑖,𝑔

(𝑘 − 1)∕(𝛼𝑘)
− 𝑘 + log

(𝑘 − 1)∕(𝛼𝑘)

𝝈2
𝑖,𝑔

)]

+ 𝜆𝗌𝗆𝖺𝗅𝗅-𝖽𝖾𝗏𝗂𝖺𝗍𝗂𝗈𝗇

𝑘∑

𝑔=1

𝑑∑

𝑣=1

𝐻2
𝑔,𝑣, (3.9)

where the differences are that: (a) we redefine 𝜁 (𝗌)𝑖 = softmax(𝛾 +

𝑊 (𝗌)⊤
𝑖 𝐻), and (b) we add an 𝓁2 regularization term on the log devia-

tions, with a user-specified weight 𝜆𝗌𝗆𝖺𝗅𝗅-𝖽𝖾𝗏𝗂𝖺𝗍𝗂𝗈𝗇 ≥ 0. The rest of the setup
is the same as for LDA, and we collectively denote the complete set
of parameters that we minimize the loss over as 𝜣𝖲𝖠𝖦𝖤. By combining
this topic model with the Cox and log–logistic AFT survival models, we
obtain scholar sage-cox and scholar sage-aft.

We remark that the original SAGE model actually also uses 𝓁1 reg-
ularization on the log deviations in 𝐻 , but in preliminary experiments,
we found that encouraging sparsity yields topic models that are not
clinically interpretable. The issue is that in healthcare, often times,
a collection of clinical measurements help explain a condition. When

these measurements are collinear or have high pairwise correlation,
enforcing sparsity would favor just retaining one of these measurements
and zeroing out the contributions of the others [12, Section 2.3].
Consequently, we lose valuable co-occurrence information of related
clinical features. For this reason, as well as the previous empirical
finding by Card et al. [9] that encouraging sparsity results in worse
topics learned in terms of other standard topic modeling metrics of
perplexity and coherence, we do not encourage sparsity in learning the
topic log deviations matrix 𝐻 .

4. Experiments

4.1. Data

We conduct experiments on seven datasets: data on severely ill
hospitalized patients from the Study to Understand Prognoses Prefer-
ences Outcomes and Risks of Treatment (SUPPORT) [31], which – as
suggested by Harrell [32] – we split into four datasets corresponding
to different disease groups (acute respiratory failure/multiple organ
system failure, cancer, coma, COPD/congestive heart failure/cirrhosis);
data from breast cancer patients (METABRIC) [33]; data from pa-
tients who received heart transplants in the United Network for Organ
Sharing (UNOS)7; and lastly patients with intracerebral hemorrhage
(ICH) from the MIMIC-III electronic heath records dataset [34,35]. For
all except the last dataset, we predict time until death; for the ICH
patients, we predict time until discharge from a hospital ICU. Basic
characteristics of these datasets are reported in Table 2. More details
on the datasets and on data preproprocessing are in Appendix A. We
randomly divide each dataset into a 80%/20% train/test split. Our code
is publicly available.8

4.2. Experimental setup

We benchmark scholar lda-cox, scholar lda-aft, scholar sage-cox,
and scholar sage-aft against 5 baselines: 2 classical methods (lasso-
regularized Cox [2], and random survival forests (RSF) [36]), 2 deep
learning methods (DeepSurv [10] and DeepHit [11]), and a naive two-
stage decoupled LDA/Cox model (fit unsupervised LDA first and then
fit a Cox model). For all methods, we hold out 20% of the training
data as a validation set to select hyperparameters. Hyperparameter
search grids are included in Appendix B. For evaluating a model’s
prediction accuracy on the validation set as well as the final test set,
we use the time-dependent concordance 𝐶 𝗍𝖽 index [22]. For every test
set 𝐶 𝗍𝖽 index reported, we also compute its 95% confidence interval,
which we obtain by taking 1000 bootstrap samples of the test set
with replacement, recomputing the 𝐶 𝗍𝖽 index per bootstrap sample,

7 We use the UNOS Standard Transplant and Analysis Research data from
the Organ Procurement and Transplantation Network as of September 2019,
requested at: https://www.unos.org/data/

8 https://github.com/georgehc/survival-topics

https://www.unos.org/data/
https://github.com/georgehc/survival-topics
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Table 3
Test set 𝐶 𝗍𝖽 indices with 95% bootstrap confidence intervals.

Model Dataset

support1 support2 support3 support4 metabric unos mimic-ich

cox

0.631 0.555 0.580 0.527 0.675 0.594 0.612
(0.608, (0.520, (0.541, (0.459, (0.630, (0.585, (0.551,
0.656) 0.590) 0.616) 0.596) 0.715) 0.602) 0.659)

rsf

0.657 0.578 0.562 0.550 0.712 0.604 0.618
(0.631, (0.547, (0.522, (0.481, (0.670, (0.596, (0.567,
0.684) 0.611) 0.603) 0.616) 0.755) 0.612) 0.666)

deepsurv

0.644 0.551 0.573 0.522 0.706 0.597 0.615
(0.619, (0.518, (0.536, (0.452, (0.667, (0.588, (0.565,
0.671) 0.583) 0.611) 0.588) 0.745) 0.604) 0.667)

deephit

0.636 0.579 0.549 0.531 0.666 0.585 0.587
(0.610, (0.545, (0.509, (0.458, (0.620, (0.576, (0.533,
0.662) 0.613) 0.590) 0.594) 0.710) 0.593) 0.637)

naive

lda-cox

0.543 0.536 0.508 0.541 0.639 0.540 0.537
(0.517, (0.504, (0.470, (0.471, (0.589, (0.532, (0.484,
0.567) 0.571) 0.545) 0.614) 0.686) 0.549) 0.591)

scholar

lda-cox

0.636 0.559 0.569 0.510 0.696 0.600 0.639
(0.612, (0.528, (0.533, (0.439, (0.653, (0.591, (0.588,
0.662) 0.591) 0.608) 0.572) 0.737) 0.608) 0.687)

scholar

lda-aft

0.631 0.544 0.531 0.493 0.688 0.596 0.634
(0.606, (0.510, (0.494, (0.427, (0.643, (0.588, (0.585,
0.657) 0.579) 0.571) 0.556) 0.728) 0.604) 0.680)

scholar

sage-cox

0.633 0.522 0.561 0.516 0.708 0.603 0.629
(0.607, (0.488, (0.526, (0.442, (0.669, (0.595, (0.579,
0.657) 0.557) 0.598) 0.591) 0.746) 0.611) 0.677)

scholar

sage-aft

0.604 0.560 0.554 0.517 0.700 0.599 0.631
(0.579, (0.526, (0.511, (0.450, (0.659, (0.591, (0.579,
0.630) 0.593) 0.595) 0.581) 0.742) 0.606) 0.681)

and taking the 2.5 and 97.5 percentile values among the 𝐶 𝗍𝖽 indices
computed.

4.3. Results

Test set 𝐶 𝗍𝖽 indices are reported in Table 3 with the 95% bootstrap
confidence intervals. The main takeaways are that:

1. Random survival forest is clearly a strong baseline for the
datasets considered, often outperforming the deep learning base-
lines deepsurv and deephit. That said, no single model is consis-
tently the best.

2. The different neural survival-supervised topic models tested
have accuracy scores that are often quite similar with each other.

3. The neural survival-supervised topic models often achieve accu-
racy scores as good as deep neural net baselines. For example, if
we ignore the confidence intervals for a moment and go by test
set 𝐶 𝗍𝖽 index alone, scholar lda-cox’s accuracy scores on support2,
unos, and mimic-ich are better than those of deepsurv. Meanwhile,
scholar lda-cox’s accuracy scores on support3, metabric, unos, and
mimic-ich are better than those of deephit. However, the differ-
ences are often small and, especially once we account for the
confidence intervals, we would not claim that neural survival-
supervised topic models yield more accurate predictions than the
deep learning baselines or vice versa.

4. Clearly, the naive approach (naive lda-cox) of fitting an unsuper-
vised topic model first and then separately training a Cox model
using the topics learned tends to achieve worse accuracy scores
than its supervised counterpart scholar lda-cox.

To supplement our third takeaway above, specifically for scholar
lda-cox, we also use bootstrap sampling to compute differences between
𝐶 𝗍𝖽 indices of scholar lda-cox vs. different baseline models. Specifically,
we repeat the following 1000 times: (a) take a bootstrap sample from
the test set, (b) compute the bootstrap sample’s predictions using

Table 4
95% bootstrap confidence intervals for the test set 𝐶 𝗍𝖽 index of scholar-lda minus that
of various baselines (when this difference is positive, it means that scholar-lda is more
accurate than a particular baseline). Note that for rsf, the ‘‘-0.000’’ value actually
corresponds to -0.000142.

Baseline Dataset

support1 support2 support3 support4 metabric unos mimic-ich

cox
(−0.008, (−0.020, (−0.043, (−0.098, (−0.015, (0.002, (−0.029,
0.019) 0.028) 0.027) 0.057) 0.059) 0.010) 0.088)

rsf
(−0.037, (−0.050, (−0.026, (−0.106, (−0.041, (−0.010, (−0.027,
−0.004) 0.010) 0.043) 0.028) 0.009) −0.000) 0.070)

deepsurv
(−0.025, (−0.025, (−0.039, (−0.088, (−0.039, (−0.002, (−0.010,
0.009) 0.044) 0.036) 0.062) 0.019) 0.009) 0.059)

deephit
(−0.018, (−0.056, (−0.020, (−0.092, (−0.006, (0.007, (0.010,
0.019) 0.017) 0.064) 0.049) 0.069) 0.024) 0.100)

naive

lda-cox

(0.063, (−0.010, (0.020, (−0.139, (0.028, (0.053, (0.031,
0.123) 0.055) 0.104) 0.062) 0.088) 0.066) 0.170)

scholar lda-cox as well as a baseline model, (c) compute the 𝐶td index
of scholar lda-cox’s predictions minus that of the baseline model’s
predictions. Thus, we have 1000 differences in 𝐶td indices, for which
we then take the 2.5 and 97.5 percentiles to get a 95% confidence
interval. We report these confidence intervals in Table 4. We find
that 0 is in all the confidence intervals for scholar lda-cox vs. deepsurv
and nearly in all the ones for scholar lda-cox vs. deephit (in fact, the
only times 0 is not included for deephit is for the unos and mimic-ich
datasets, in which scholar lda-cox is more accurate). We omit tables
that compare the other neural survival-supervised topic models with
various baselines as they follow similar trends. To reiterate, we do
not claim that our proposed models outperform the various baselines
tested. Instead we claim that they achieve accuracy that is competitive
with deep learning baselines. In fact, Tables 3 and 4 suggest that scholar
lda-cox is competitive with cox and rsf as well. On the other hand, the
naive lda-cox baseline does appear to be significant less accurate than
scholar lda-cox for all datasets except support2 and support4.

4.4. Interpretability of baselines

Importantly, we remark that the deep learning baselines deepsurv
and deephit do not produce interpretable models and they were not
designed to be interpretable. Random survival forests are also not easily
interpretable: while a single decision tree could be interpretable if its
depth and number of leaves are not too large, the difficulty in inter-
preting a learned random survival forest model is that there are many
trees (in our experiments, we use 100 trees for each model), and the
best-performing models tend to have learned trees that are moderate in
size (e.g., a depth of 6 with 64 leaves). Having to look at 100 moderate-
sized trees to interpret a single random survival forest model is not
that simple, and it is not straightforward teasing apart how features
are related without instead using some post hoc explanation approach
like SHAP [37] or TreeExplainer [38]. Of the models evaluated, only
the Cox model and the survival-supervised topic models can readily be
interpreted. However, as mentioned in Section 1, Cox models do not
inherently learn how features relate, and one would have to introduce
new features that encode interactions, which becomes impractical when
the number of features is large.

4.5. Interpretability of neural survival-supervised topic models

We next discuss interpretability of neural survival-supervised topic
models. As there are many models considered, for ease of exposition,
we only present results for scholar lda-cox, for which we provide a
complete summary of all topics learned for the seven datasets along
with a detailed look at a few datasets. We remark that clinical expertise
is required to interpret the topics.
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Table 5
Summary of topics learned by scholar lda-cox on the support1 (acute respiratory failure,
multiple organ system failure) dataset. Higher 𝛽 is associated with shorter survival
time.

𝛽 Topic interpretation

0 With cancer, metastases, electrolyte abnormalities, vitals
−5.05 Protective, female, diabetic
−5.43 Protective, young, no comorbidity

Table 6
Summary of topics learned by scholar lda-cox on the support2 (COPD, congestive heart
failure, cirrhosis) dataset. Higher 𝛽 is associated with shorter survival time.

𝛽 Topic interpretation

5.30 Old, comorbid
2.72 Middle age, less comorbid, tachycardia
0 Young healthy baseline, tachycardia

We begin with summaries of the topics learned. Back in Section 1,
we already presented one such summary for the support3 dataset in
Table 1. The summaries for the rest of the datasets are in Tables 5,
6, 7, 8, 9, and 10. For each topic, we state both the Cox 𝛽 regression
coefficient as well as the topic interpretation. For all datasets except
mimic-ich, larger 𝛽 corresponds to shorter mean/median survival time.
For mimic-ich, larger 𝛽 corresponds to shorter mean/median hospital
length of stay. Note that sometimes, spurious topics are found, where a
clinical interpretation readily reveals that we could have used a fewer
number of topics (although the hyperparameter selection procedure we
use that chooses the best model based on validation 𝐶 𝗍𝖽 index would
not know this). Overall, seeking a clinical interpretation of topics was
straightforward. In contrast, when, for example, we presented topics
learned using a neural survival-supervised topic model that encouraged
sparsity, a clinical expert was unable to determine what the topics
meant, with a key problem raised being that the features that are most
probable per topic did not appear to be related to each other. We sus-
pect that this has to do with the known issue with lasso regularization
where within a group of features that have high pairwise correlation,
lasso will arbitrarily choose one of these features and give 0 weight to
the others [12, Section 2.3].

To obtain the topic interpretations for each dataset, we filter out
features that appear in too few or too many patients. Importantly,
following the work of Schofield et al. [13], we filter features after
learning a topic model in contrast to doing so before learning the model.
Schofield et al. empirically find no advantage in filtering features
before learning a topic model compared to doing it afterward. For
our purposes, filtering features before learning a topic model presents
problems since there are too many possible ways to do this filtering,
and it is unclear how these different filtering approaches impact the
topics that are learned. Dawson and Kendziorski [4] for example use a
heuristic preprocessing step in how they use survLDAwhere they cluster
subjects based on their survival outcomes and screen out features that
are not sufficiently different between the clusters. The problem is that
there are far too many choices of how to do this clustering and how
to decide what features are sufficiently different even before learning
the topic model. By instead filtering features after learning the model,
we leave this choice up to the user to specify. The benefits are that
there is no need to retrain the model when we try different filters, and
moreover, the filtering is fast so it can be adjusted on demand, for
example accounting for clinician input. For the results that we show
on learned topics by scholar lda-cox, we specifically filter out features
that appear in fewer than 2% of the patients or more than 50% of
the patients. Essentially features that are too rare do not help explain
enough of the patient cohort, and features that are too common do not
help with interpretation. We tried different thresholds and found ones
that appear to work reasonably well across all datasets.

In addition to filtering features, we also provide heatmap visual-
izations. These heatmaps were presented to a clinician to obtain the

Table 7
Summary of topics learned by scholar lda-cox on the support4 (coma) dataset. Higher
𝛽 is associated with shorter survival time.

𝛽 Topic interpretation

0.47 Kidney failure, tachycardia, hypertensive, comorbid
0.08 Respiratory distress/MV, infection/inflammation, hypothermic
0.01 Hypothermic otherwise normal
0 Normal baseline
−0.00011 Kidney failure, old, infection/inflammation
−0.58 Healthy

Table 8
Summary of topics learned by scholar lda-cox on the metabric (breast cancer) dataset.
Higher 𝛽 is associated with shorter survival time.

𝛽 Topic interpretation

1.29 er- pr- her2+, high mortality, advanced grade
0 Similar to 1, focus on group 4 not 1, site 1 not 3
−1.20 Protective her2_status1 (-) er- pr-
−1.29 Protective but high cellularity luma; pr+ er+

−1.37
These last two topics are both on protective low npi

−1.38

summaries in Tables 1, 5, 6, 7, 8, 9, and 10. In Section 1, we already
presented one such heatmap for the support3 dataset in Fig. 1. Heatmaps
for the other datasets are shown in Figs. 2, 3, 4, 5, 6, and 7; note that
for the unos and mimic-ich datasets, due to the large number of features,
we truncate the heatmap to only show the top ∼80 features (since we
only display categorical variables as a block of features at once, we do
not get to exactly 80). In these heatmaps, the columns index different
topics (with Cox 𝛽 regression coefficient displayed per topic; the topics
are sorted in decreasing order of 𝛽 coefficient). The rows index different
features. The features are sorted based on the maximum word proba-
bility across topics (i.e., for the 𝑘-by-𝑑 topic-word matrix 𝐴, for the 𝑣th
column/word, we sort based on the scoremax𝑔=1,…,𝑘 𝐴𝑔,𝑣). Furthermore,
after doing this sorting, we group together features corresponding to
the same categorical variable. Note that we only show features that
meet the filtering requirements stated previously.

In producing these heatmaps, we also tried a few variations on the
plots to present to a clinician. We sorted the words instead based on the
largest difference between word probabilities across topics (i.e., rank
words based on the score (max𝑔=1,…,𝑘 𝐴𝑔,𝑣) − (min𝑔=1,…,𝑘 𝐴𝑔,𝑣) for the
𝑣th word) and also based on the average probability across topics
( 1
𝑘

∑𝑘
𝑔=1 𝐴𝑔,𝑣). Qualitatively, we did not find an advantage to using

these compared to the score we first presented of using the maximum
word probability across topics. We also tried instead of using the raw
word probabilities per topic, re-ranking words based on the topic TF-
IDF score by Blei and Lafferty [39, equation (4.3)] and also based on the
IDF score by Alokaili et al. [40]. Qualitatively, we found that the topic
TF-IDF weighting highlights a few words per topic but this weighting
can be a bit too aggressive (the few words highlighted could be hard to
interpret). IDF weighting could help draw out underrepresented words.
Overall, though we did not see a clear advantage to using TF-IDF or IDF
weighting in presenting the heatmap visualizations.

Note that prior to using our heatmap visualizations, we first tried
providing a clinician with a listing of most probable words per topic.
This is a standard approach for interpreting LDA models for text data.
However, this way of conveying information turned out to be difficult
for the clinician to quickly parse. For example, a feature might be in
the top 20 most probable words for two different topics, and at that
point understanding the difference in how probable the feature is across
the two topics would be helpful. A listing of top words per topic did
not make it easy to quickly find this information. For this reason, we
switched to a heatmap visualization where each row of the heatmap
directly gives us a quick way to compare probabilities of a feature/word
across topics.
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Table 9
Summary of topics learned by scholar lda-cox on the unos (heart transplant) dataset. Higher 𝛽 is associated with shorter survival time.

𝛽 Topic interpretation

6.92 Old, old donor, renal failure, with transfusions, liver failure, previous transplant
0 Baseline, heart failure, diabetes, with lvad
−1.45 Panel reactive antibodies, middle age, low ischemic time, inotropes, body measurements (height weight bmi)
−5.04 Pediatric cases, young, donor with infection

−5.09
These last two topics appear to be spurious and are a mix of the topics with 𝛽 coefficients 0 and −5.04

−5.17

Table 10
Summary of topics learned by scholar lda-cox on the mimic-ich (intracerebral
hemorrhage) dataset. Higher 𝛽 is associated with shorter hospital length of stay.

𝛽 Topic interpretation

2.08 Relatively healthy, anticoagulated, protective demographic factors
1.34 Severe anemia, renal failure, inflammatory profile
1.14 Hematuria, thrombocytopenia
0 Negative drug screening
−2.05 Glycosuria screen, electrolyte abnormalities

5. Discussion

Despite many methodological advances in survival analysis with the
help of deep learning, these advances have predominantly not focused
on interpretability. Model interpretation can be especially challenging
when there are many features and how they relate is unknown. In this
paper, we show that neural survival-supervised topic models provide
a promising avenue for learning structure over features in terms of
‘‘topics’’ that help predict time-to-event outcomes. These topics can
be used by practitioners to check if learned topics agree with domain
knowledge and, if not, to help with model debugging.

Our work thus far has a number of limitations. We discuss some of
these limitations next.

Moving beyond discrete data. Our focus has been on when the raw
features are encoded in a format specifying whether different historical
clinically relevant events occur or not (the ‘‘words’’ of the topic model).
This encoding inherently is discrete. The discretized raw counts then
get modeled by a neural topic model, and the topics are treated as
the input ‘‘features’’ for the survival model, as shown in Fig. 8(a).
Discretizing continuous data inherently results in some loss in informa-
tion. Better understanding how different discretization strategies (such
as those described in Appendix A.3) impacts learned neural survival-
supervised topic models in terms of accuracy and interpretability is
an important direction for future research. Note that it is possible to
also have some user-specified raw features be modeled directed by the
survival model rather than being modeled by the topic model first, as
shown in Fig. 8(b); in this case, the raw features directly modeled by
the survival model need not be discretized. For example, depending
on the problem, we may want to have age be directly modeled by
the survival model (e.g., a Cox model) rather than being explained by
the topic model. As another example, consider gender being directly
modeled by the survival model and not provided to the topic model. We
could still try to understand how gender relates to the topics learned
by adding interaction terms for the survival model (e.g., an indicator
variable specifying whether female and topic 1 jointly occur, whether
female and topic 2 jointly occur, etc.).

Separately, much of the same ideas we presented in interpreting
neural topic models readily apply to prototypical part networks (ProtoP-
Nets) [41,42], which behave like neural topic models but for raw data
that are images or time series. Note that ProtoPNets can directly work
with continuous-valued features without discretization. For example,
given an input image, a ProtoPNet transforms the image into a vector
representation specifying how much of each of 𝑘 different prototypes
are present in the image (‘‘similarity scores’’ that are nonnegative);
this vector representation behaves much like the topic weight vectors

𝑊𝑖’s that we have considered and could be fed as input to a sur-
vival model incorporating a background topic. Using these ideas, it is
possible to build survival-supervised neural topic models that accept
heterogeneous inputs, for example using the discrete ‘‘words’’ that we
have considered in this paper, alongside images and time series (that
could be left as continuous-valued). Of course, we could again choose
some features to be directly modeled by the survival model. The overall
diagram depicting this setup is shown in Fig. 8(c).

Incorporating additional structure in topics. Topics learned by neural
survival-supervised topic models vary in how easy they are for a
clinician to interpret. We suspect that to improve interpretability, ad-
ditional regularization is essential. For example, one possible research
direction is to automatically find clinical measurements that do not
plausibly co-occur within individual subjects, and add regularization
that disallows these ‘‘contradictory’’ clinical measurements from both
being highly probable within the same topic. For example, hematocrit
and hemoglobin should be highly correlated, so we would expect that
if a topic says one has a high probability of taking on a high value, then
the topic should also say that the other has high probability of taking
on a high value.

As another example, when a continuous measurement is discretized,
we currently do not impose any constraints on the resulting discretized
variables even though they are, of course, highly dependent on each
other (i.e., a continuous variable is converted into a collection of
variables that correspond to whether different discretization bins occur,
and when one of them occurs, we know that the others cannot occur).
A fix to this issue would be to add in loss terms to say when specific
‘‘words’’ explicitly do not occur.

A less straightforward relationship to encourage is that a specific
continuous variable (that has been discretized) should have a mono-
tonic association with the survival time. Neither the raw continuous
variable nor its corresponding discretized variables are provided di-
rectly as input to the survival model—instead they are treated as inputs
to the topic model. One possible workaround is as follows. Suppose that
we think age should have a monotonic association with survival time,
and that it is discretized into bins 1 through 5, going from smaller to
larger ages. Then for a specific topic, we could constrain the topic’s
probabilities for the discretized variables for age to be monotonic
(i.e., the probabilities of the bins either increase from bin 1 up to bin
5, or they decrease from bin 1 up to bin 5 depending on whether we
want the presence of the topic to be associated with higher or lower
ages).

Topic stability. As a separate direction that requires further investiga-
tion, thus far, we have not conducted experiments to quantify how
‘‘stable’’ the topics learned are across, for example, different random
neural net parameter initializations. This is a problem more broadly
found in training neural networks and is referred to as ‘‘prediction
churn’’ [43]. Better understanding how much the learned topics change
due to random initialization would be helpful. We suspect that intro-
ducing regularization – such as the one we suggested for encouraging
plausible co-occurrences – would lead to more stable topics learned.
Even if we develop an improved understanding of topic stability,
we would further need to understand how best to communicate this
information to clinicians.
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Fig. 8. Incorporating different raw feature types: (a) our framework, (b) an extension of our framework allowing some raw features (which need not be discretized) to be directly
modeled by the survival model, and (c) an extension of our framework that also uses prototypical part networks [41,42] that are in some sense like topic models but for images
and time series (we can omit different parts of this general framework depending on the raw input data that are available, e.g., if images are not available, then we remove the
part involving prototypical part networks for images).

Competing risks. In this paper, we focused on the standard right-
censored survival analysis setup. We point out that our framework
trivially extends to the competing risks setting, where we further want
to reason about the cause of death (or more generally, a collection
of competing critical events that could occur, where whichever occurs
first prevents the other critical events from occurring). In this case, for
each training subject, we assume that in addition to the subject’s raw
clinical events data, observed time, and indicator variable for whether
death occurred, if death did occur, we also know the cause of death
(among a finite set of causes under consideration). Standard competing
risk models (e.g., see Chapter 8 of the textbook by Kalbfleisch and
Prentice [20]) can be used in place of the survival model in our neural
net framework to obtain a neural topic model for competing risks. For
example, one approach would be to have a Cox loss per cause of death,
where the key idea here is that standard competing risk models still can
be framed as minimizing a differentiable loss function (specifically a
negative log likelihood). Empirically studying the resulting neural topic
models for competing risks could provide interesting practical insights,
with the goal of automatically surfacing feature relationships through a
topic model, and finding associations between topics and the different
causes of death.

Theoretical analysis. Lastly, we mention that developing theory to un-
derstand when and why neural survival-supervised topic models work
would be valuable. In particular, for what datasets should we expect
to be able to learn such neural topic models that have sufficiently
high prediction accuracy and are also easy to interpret? What special
structure should be present in the data and how much data do we need?
How does data preprocessing (e.g., discretization) impact these neural
topic models? Finding theory that answers these questions could help
clinicians understand when our proposed framework is most effective
and what the best practices are in collecting and preprocessing data for
use with our framework.
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Appendix A. Datasets and preprocessing details

We describe the seven datasets we use and how we preprocess the
data to obtain feature vectors of the format specified in Section 2.

A.1. Datasets

Support. The dataset from the Study to Understand Prognoses Pref-
erences Outcomes and Risks of Treatment (SUPPORT) [31] is freely
available online.9 This dataset contains clinical features collected from
seriously ill hospitalized adults, such as their age, presence of cancer,
and neurologic function. These features were collected from patients
on the third day after the study started, and patients were followed
for survival up to 5.56 years after entering the study. We do not
use all the features and instead use the same 14 features that were
used by Katzman et al. [10] in their experiments. We further split
the dataset into four datasets corresponding to different disease groups
(acute respiratory failure/multiple organ system failure, cancer, coma),
as done by Harrell [32]. After we created these four subsets, all subjects
from the cancer group have identical values for a clinical feature
related to cancer presence, so this feature was removed only for the
cancer cohort, resulting in 13 clinical features for the support3 dataset.
Furthermore, of the 14 features used, two features (creatinine and
white blood count) had suggested imputation values from the official
SUPPORT documentation that we used. After using this imputation, any
data point that still had missing values for any of the 14 features used
was omitted, resulting in the dataset sizes given in Table 2.

Metabric. The Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset is available on the Synapse platform.10

This dataset contains clinical and genetic features from breast cancer
patients, and their respective survival durations. We only used a subset
of 24 features that are available for open use through Synapse. This
dataset includes 1981 breast cancer patients in total, around 55.2%
of whom were censored and not followed until death. The original
METABRIC paper [33] discusses how the dataset’s clinical features were
defined in more detail.

Unos. The UNOS dataset was extracted from the United Network for
Organ Sharing (UNOS) database,11 and curated in order to replicate the
pre-processing documented by Lee et al. [11] and Yoon et al. [44]. We
selected only patients who went through heart transplantations in the
30-year window from January 1985 to December 2015. Because Yoon
et al. [44] did not document the exact list of feature names that we
could directly extract from the database, we attempted to the best
of our ability to curate a list of features that overlaps the most with
the feature table presented by them. We ended up with 49 features

9 https://hbiostat.org/data/
10 https://www.synapse.org/
11 https://www.unos.org/data/

in total, among which 31 are recipient-related, 12 are donor-related,
6 are compatibility related. For this dataset, our objective is to pre-
dict patients’ post-transplantation survival time. Because we assumed
December 2015 to be the end of data collection, patients who were
still alive as of December 2015 are all considered censored samples.
Among 62644 patients who underwent transplantation, around 50.2%
are censored samples.

Mimic-ich. The intracerebral hemorrhage (ICH) dataset we evaluated
on is created from MIMIC-III (version 1.4), a critical care health records
database containing 52 thousand individuals and their hospital encoun-
ters involving admission to the ICU at Beth Israel Deaconess center
between 2001 and 2012 [34,35]. Experiments were conducted using a
subset of the MIMIC-III data consisting of patients having spontaneous
intracerebral hemorrhage requiring admission to the ICU. Patients were
included in the study if they have an ICU admission with a primary
billing code of intracerebral hemorrhage, resulting in a cohort of 961
individuals. For patients who are admitted to the ICU multiple times,
we only consider their first visit to the ICU within the dataset. We aim
to predict patients’ lengths of stay in the ICU (specifically time until
discharge). This subset of the data has no right-censoring in the sense
of data no longer being collected midway through a patient’s ICU stay.
However, 23.1% of the patients die in the ICU; for these individuals, we
record the time until death as the observed time and set the indicator
variable for whether the patient is discharged to 0. In particular, death
is effectively treated as the sole censoring event.

Features extracted include demographics, medications, billing codes,
procedures, laboratory measurements, events recorded into charts, and
vitals. Features were extracted from the relational database into a 4-
column format for patient id, time, event, and event value. To prevent
erroneous merging of different events into a single event, and to
provide more informative events, event strings are concatenations of
the event descriptor prefixed with the table from which they are
derived and additional relevant information such as measurement
type, measurement units, etc. Because events recorded in charts are
sometimes automated and sometimes manually entered, a physician-
developed mapping and lower-casing all fields were used to resolve
duplicate entries. As we aim to predict the patient length of stay in ICU,
we extract clinical events from the subjects’ electronic health records
strictly before ICU admission. After preprocessing, the total number of
features used for prediction is 1530.

A.2. Features used

For all of our datasets, categorical features were one-hot encoded.
Specifically to the Cox proportional hazards and lasso-regularized Cox
baselines, for each categorical feature, one category was removed as
the reference column. For methods that use topic modeling, we realized
it does not make sense to encode numeric clinical events as they are.
Instead, numeric clinical events were treated as categorical by mapping
observed values to equally spaced ranges by quintile (5 bins of roughly
equal number of subjects per bin). When values of a numeric clinical
event are highly cluttered (i.e., the 20/40/60/80 percentile values of
the event do not correspond to 4 unique threshold values so that there
end up being fewer than 5 bins), we allow the number of bins to be
less than 5, where the resulting bins can have imbalanced numbers of
subjects. For instance, if there are fewer than 5 unique values for the
clinical event across data points, then we cannot discretize the event
into 5 nonempty bins.

Features for the mimic-ich dataset were created slightly differently.
Our definition of clinical events mean that a subject can have mul-
tiple instances of one event; for example, one patient might have
multiple results for a particular lab test on file. Under this case, single-
occurrence categorical events (e.g., gender) were one-hot encoded as
usual; multiple-occurrence categorical events (e.g., urine color) were
encoded by counting each category’s occurrences in a single subject’s

https://hbiostat.org/data/
https://www.synapse.org/
https://www.unos.org/data/
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records. For numeric clinical events, as a subject may have a list of
numeric values recorded, we engineered numeric features that captured
the minimum, maximum, median, and length of a subject’s list of
recordings. However, this was not necessary for methods that use topic
modeling, because mapping values to equally spaced bins took care of
multiple-occurrence numeric events for us.

We would also like to note that missing records were not imputed
as missing certain events can have clinical significance. Therefore, for
features with incomplete records, the missing entries were first filled
with zeros, and then an additional feature was added solely to indi-
cate whether missingness is observed for each subject; this approach
to handling missing data is motivated by the work of Lipton et al.
[45]. While we added features that solely indicate missingness for all
baseline methods, methods that use topic modeling do not require
encoding missingness explicitly. For topic modeling based methods,
feature vectors encode number of occurrences, so a patient with missing
feature simply has that feature’s number of occurrences set to 0. For this
reason, we did not explicitly encode missingness as a separate feature
for methods that use topic modeling.

A.3. Other possible ways to encode clinical measurements

Our feature preprocessing has largely been chosen to be relatively
easy to explain. We now mention other strategies that are possible for
discretization and, separately, for summarizing a feature across time.

Discretization. We discretize continuous features into quintiles (as we
mentioned earlier, sometimes this is not possible so we simply use
fewer than 5 bins), which is a simple strategy that can be used for
different continuous features without a priori knowledge. However, if
one did have domain knowledge about how specific features could be
discretized, then such discretization strategies could be used instead of
the simple quintile binning strategy. As an example, there are specific
cutoffs whereby cohorts are defined (e.g., lactate levels of 4), and where
medical interventions are indicated (e.g., mean arterial pressures below
65).

Alternatively, one could even learn how to discretize a specific
continuous feature (a single real number). For instance, taking the
feature’s value across the training data, we could use a user-specified
clustering algorithm (e.g., Jenks natural breaks [46]) to cluster on the
observed values of the continuous feature to decide on how to discretize
(the thresholds could come from the boundary points between clusters).
A different strategy is to learn a decision tree for survival analysis using
a single continuous feature across the data. Such a tree could be learned
greedily (using the same tree learning strategy as in random survival
forests [36]) or optimally by solving a mixed-integer program [47]: the
leaves of the learned tree directly correspond to the discretization bins.
A generalization of this idea is possible in which multiple continuous
features could be discretized together (train a single decision tree with
these different features and then let the final tree leaves correspond to
the discretization bins).

Summarizing a feature across time. For ease of exposition, we had
simply counted how often a feature occurred across time to obtain the
raw counts matrix 𝑋. If we had domain knowledge of how a specific
feature should be summarized across time, then we could take this
into account when summarizing the feature. For example, if we take
many oxygen saturation measurements within a few minutes, clinically
we typically take the highest measured value because the physiologic
process prevents rapid fluctuations in saturation, and the measurement
is intended to grossly assess oxygenation and perfusion. Alternatively,
we could use the approach by Johnson et al. [48] that automatically
learns how to summarize continuous or discrete features across time in
such a way that the summary features are clinically interpretable. Each
summary feature can then be discretized using any user-specified dis-
cretization strategy, such as the clustering or decision-tree approaches
we described in the previous paragraph.

Appendix B. Hyperparameter search

We use grid search, with the same grid of hyperparameters used
across datasets per model as given in Table B.11. For neural net

Table B.11
Hyperparameter grids used during model training.

Model Hyperparameter grid

cox Lasso regularization weight: 0, 0.0001, 0.001, 0.01, 0.1, 1.0

rsf Number of trees: 100
Number of features used per split: sqrt of total number of features, rounded up
Max depth: 2, 4, 6, 8

deepsurv Number of hidden layers for the multilayer perceptron: 1, 2, 4
Number of nodes per hidden layer: 16, 32, 64

deephit Number of hidden layers for the multilayer perceptron: 1, 2, 4
Number of nodes per hidden layer: 16, 32, 64
Number of durations (in time discretization): 64, 128
𝛼 (in original DeepHit paper; not LDA Dirichlet hyperparameter): 0.1, 0.5, 0.9
𝜎 (in original DeepHit paper; not AFT scale parameter): 0.1, 1.0, 10.0

naive lda-cox Number of topics: 2, 3, 4, 5, 6

scholar lda-cox Number of topics: 2, 3, 4, 5, 6
Word embedding dimension: 16 32, 64
𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅: 1, 100, 10 000, 1 000000

scholar lda-aft Number of topics: 2, 3, 4, 5, 6
Word embedding dimension: 16 32, 64
𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅: 1, 100, 10 000, 1 000000
𝜆𝗋𝖺𝗇𝗄𝗂𝗇𝗀: 1

scholar sage-cox Number of topics: 2, 3, 4, 5, 6
Word embedding dimension: 16 32, 64
𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅: 1, 100, 10 000, 1 000000
𝜆𝗌𝗆𝖺𝗅𝗅-𝖽𝖾𝗏𝗂𝖺𝗍𝗂𝗈𝗇: 0.005, 0.05, 0.5, 5

scholar sage-aft Number of topics: 2, 3, 4, 5, 6
Word embedding dimension: 16 32, 64
𝜆𝗌𝗎𝗋𝗏𝗂𝗏𝖺𝗅: 1, 100, 10 000, 1 000000
𝜆𝗋𝖺𝗇𝗄𝗂𝗇𝗀: 1
𝜆𝗌𝗆𝖺𝗅𝗅-𝖽𝖾𝗏𝗂𝖺𝗍𝗂𝗈𝗇: 0.005, 0.05, 0.5, 5
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approaches, we always train using Adam [6] with a batch size of 256
and use early stopping (no improvement in best validation 𝐶 𝗍𝖽 index
within 10 epochs) with a budget of 512 epochs; however we do vary
the learning rate and sweep over the choices of 0.01 and 0.001.
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