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Abstract

The SL(2, Z)-symmetry of Cherednik’s spherical double affine Hecke algebras in

Macdonald theory includes a distinguished generator which acts as a discrete time

evolution of Macdonald operators, which can also be interpreted as a torus Dehn twist

in type A. We prove for all twisted and untwisted affine algebras of type ABC D that

the time-evolved q-difference Macdonald operators, in the t → ∞ q-Whittaker limit,

form a representation of the associated discrete integrable quantum Q-systems, which

are obtained, in all but one case, via the canonical quantization of suitable cluster alge-

bras. The proof relies strongly on the duality property of Macdonald and Koornwinder

polynomials, which allows, in the q-Whittaker limit, for a unified description of the

quantum Q-system variables and the conserved quantities as limits of the time-evolved

Macdonald operators and the Pieri operators, respectively. The latter are identified with

relativistic q-difference Toda Hamiltonians. A crucial ingredient in the proof is the use

of the “Fourier transformed” picture, in which we compute time-translation operators

and prove that they commute with the Pieri operators or Hamiltonians. We also discuss

the universal solutions of Koornwinder-Macdonald eigenvalue and Pieri equations, for

which we prove a duality relation, which simplifies the proofs further.
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1 Introduction

1.1 Overview

The purpose of this paper is to determine, in a uniform manner, a certain discrete

integrable structure associated with the finite-dimensional representations of quantum

affine algebras or Yangians of affine algebras g, and to understand the relation of

this structure with Koornwinder-Macdonald theory and spherical double affine Hecke

algebras (sDAHA) for all g of non-exceptional type.

Specifically, the characters of a special subset of representations of these algebras,

known as KR-modules [5, 34], satisfy recursion relations which can be viewed as

discrete time evolution equations. These evolutions, called Q-systems [28, 29], are

known to have an integrable structure for a subset of algebras g. When g = A
(1)
N−1,

the integrable structure was shown to be a Coxeter-Toda system [13, 25], and this was

generalized [54] to g = D
(1)
N , A

(2)
2N−1, D

(2)
N+1 using the refactorization map [30]. In

type g = B
(1)
N the system was shown to be integrable [53] using a Goncharov-Kenyon

type dimer model [26]. Generally, discrete integrability was a conjecture and does

seem to be related to refactorization maps.

The combinatorial structure of Q-system evolution equations is such that, in almost

all cases, they can be interpreted as mutations in a cluster algebra of geometric type [12,

32]. This structure can be encoded in the form of a quiver, which, in type A
(1)
N−1 appears

in various contexts such as K -theoretic Coulomb branches [47], gauge theories [3],

factorization maps [54] and shifted quantum affine algebras or Yangians [2, 18, 24].

Cluster algebras have a natural quantization [1], and in [15, 38] it was shown that

this quantization is associated to the grading of the so-called fusion product of KR-

modules [23]. That is, the character of the graded fusion product can be expressed as a

constant term identity involving the corresponding solutions of the quantum Q-system.

The Hamiltonians associated with the quantum Q-system in type A
(1)
N−1 are the

q-difference (or relativistic) quantum Toda Hamiltonians of [21], and therefore the

graded characters of fusion products of fundamental representations in this type can

be identified with q-Whittaker functions of Uq(slN ) [11]. More generally, the quantum

Q-system generators can be identified with the algebra of creation and annihilation

operators of generalized q-Whittaker functions or graded characters. This algebra was

identified in [11, 16, 18] with the q-Whittaker limit t → ∞ of the spherical double

affine Hecke algebra of type A [9] as follows. There is a natural SL(2, Z)-symmetry of

the sDAHA, and the generator τ+ ∈ SL(2, Z) acts on the functional representation as

conjugation by Cherednik’s Gaussian. The subset of the sDAHA generators consisting

of all τ+-translates of the commuting Macdonald difference operators can be identified,

in the q-Whittaker limit, as the set of solutions of the quantum Q-system. This gives

a functional representation of the quantum Q-system as an algebra of difference oper-

ators. In particular, single τ+-translates of Macdonald operators are the q-Whittaker

limits of the Kirillov-Noumi raising operators for Macdonald polynomials [33].

There are generalizations of DAHAs and their functional representation to the

other classical affine root systems [6, 9]. The corresponding Macdonald operators have

generalized Macdonald polynomials as common eigenfunctions. The latter can also be
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obtained as specializations of the Koornwinder polynomials, which depend on several

extra parameters (a, b, c, d) [35, 50, 55] (see Table 1). These are eigenfunctions of

the Koornwinder difference operator, the first in a family of N commuting difference

operators [50], where N is the rank of the finite sub-algebra R. These are elements in

the functional representation [41] of a DAHA depending on (a, b, c, d).

Quantum Q-systems can be defined for all affine algebras. It is natural to expect

that some selected commuting family of difference operators together with their τ+-

translates will, in the q-Whittaker limit, satisfy these non-commutative evolution

equations. For a subset of algebras g, we presented a conjectural family of such dif-

ference operators in [19]. In this paper, we generalize and prove these conjectures for

all non-exceptional g using duality and the Fourier transform.

In type A
(1)
N−1, we present a simpler, alternative proof to that of [11], that the τ+-

translates of the Macdonald difference operators, in the q-Whittaker limit, satisfy the

quantum Q-system. An essential ingredient in the simplification of the proof is the

use of the Macdonald duality property [39]. The Macdonald difference operators are

elements of Ct (x)[�i ], written in terms of the generators of the quantum torus

Tx := 〈xi , �i 〉i=1,...,N , �i x j = qδi j x j�i (1.1)

acting on functions of x = (x1, ..., xN ). The monic, symmetric Macdonald polynomi-

als Pλ(x) are the common eigenfunctions of the Macdonald difference operators,

depending on two sets of parameters, the variables x as well as integer parti-

tions λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ). Encoding the partitions using the variables

s = (s1, ..., sN ) with si = �i tρi , �i = qλi and ρ is the half-sum of positive roots

(ρi = N − i), the duality of Macdonald theory is a symmetry property of the properly

normalized eigenfunctions of the Macdonald operators under the interchange of the

variables x and s [7, 39, 51].

This symmetry can be used to relate the Macdonald operator eigenvalue equations to

the Pieri rules, which express the effect of multiplication of the Macdonald polynomial

by elementary symmetric functions, as the action of q-difference operators in the

variables s or �. These difference operators are Pieri operators, and can be written in

terms of the quantum torus

T� := 〈�i , Ti 〉i=1,...,N , Ti� j = qδi j � j Ti . (1.2)

The eigenvalue equations for Macdonald operators with eigenfunctions Pλ(x) can

be thought of as a special case of the sDAHA “Fourier transform”, which is a map

from operators f (x) to operators f̄ (�), such that

f (x) Pλ(x) = f̄ (�) Pλ(x) (1.3)

for all λ. In particular, the Fourier transforms of the Macdonald operators are the ele-

mentary symmetric functions in the variable s, and the transform of the Pieri operators

are the elementary symmetric functions in x .

In the q-Whittaker limit, switching to the “Fourier transformed” T� picture results

in drastic simplifications. Indeed, the transforms of the Macdonald operators in the
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q-Whittaker limit are the limits of the elementary symmetric function in s, which

are the leading monomials in �i due to the dependence of s on t . Because of this,

the τ+-translates of the Fourier-transformed operators are simpler. In the functional

representation as difference operators in x-variables, the action of τ+ is expressed as

conjugation by the Cherednik Gaussian γ (x) [9], which is independent of t . In the

Fourier-transformed picture in �-variables, we find the explicit operator g(�) which

represents the τ+-translation, generates the discrete time evolution of the quantum

Q-system, and commutes with the Hamiltonians.

The operator g(�) is interpreted as a Dehn twist [46] from a quantum higher

Teichmüller theory interpretation in type A, and can be expressed as a product of

quantum dilogarithms. It was shown to be a specialization of the Baxter Q-operator of

[46] for the Q-system quiver of type A
(1)
N−1. The Baxter Q-operator is the generating

function of commuting q-difference Toda Hamiltonians [21], which coincide with the

q-Whittaker limit of the Macdonald Pieri rules.

The above discussion for type A
(1)
N−1 can be extended to the affine algebras, twisted

or untwisted, of the form g = X
(r)
N , with X a classical Lie algebra of type ABC D

and r = 1, 2, in the notation of [29, 31]. This includes the cases presented as conjec-

tures in [19]. In this paper, we prove the relation between the the q-Whittaker limit of

the SL(2, Z)-translates of appropriately chosen q-difference Koornwinder-Macdonald

operators, for each algebra g, with the solutions of the type g quantum Q-system sys-

tems.

At the same time, we find a uniform description of the integrable structure of

the quantum Q-systems as discrete dynamical systems with commuting integrals of

motion. These are versions of the q-difference Toda Hamiltonians for the various

root systems. The classical Q-systems associated with the affine root systems of types

A
(1)
N , D

(1)
N , A

(2)
2N−1, D

(2)
N+1 are known [54] to be the evolution equations of the refac-

torization maps of types A, D, C, B, respectively. As such, their integrable structure

is given by a classical Toda-type lattice [30, 44]. The integrable structure of the Q-

systems for g = B
(1)
N , C

(1)
N and A

(2)
2N , also given by a Toda-type Hamiltonian, but do

not arise from factorization dynamics.

Here, we show that the unifying structure in the case of the quantum Q-systems is

given, instead, by the Koornwinder-Macdonald operators [40, 45, 51] via the duality

relating the eigenvalue equations to the Pieri rules, which become q-difference Toda

equations [21, 27] in the q-Whittaker limit t → ∞.

In this limit, the symmetry in the duality relations is broken, and as a result the

Fourier transform of the Macdonald operators acting on �-space is greatly simplified.

The rationale of our proofs is to identify the Fourier transforms of the SL(2, Z)-

translates of the Macdonald operators in the q-Whittaker limit and to transform the

relations occurring in �-space back to x-space.

We also use another formulation of duality, based on the notion of the “universal

solution” P(x; s) to the Koornwinder-Macdonald eigenvalue equations (c.f. [7, 10] and

the asymptotically-free basic Harish-Chandra series of [49]). In [42] such solutions are

explicitly computed in type A
(1)
N−1 . In the Koornwinder case and its specializations, this

suggests the definition of series solutions for the eigenvalue equation in the formal vari-

ables (x, s). These truncate to the polynomial eigenfunctions when λ is specialized to
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g-partitions corresponding to dominant integral weights of g, where s is a discrete vari-

able. Duality relates the universal solution P(x; s) of the eigenvalue equation, to the

universal solution Q(s; x) of the Pieri equations, and formalizes the Fourier transform.

1.2 Summary of themain results

All the results here refer to all affine algebras g of type X
(r)
N with X = A, B, C, D

and r = 1, 2. The subsequent labeling of theorems refers to both Sect. 2 (dedi-

cated to the case of A
(1)
N−1 for pedagogical reasons) and Sect. 4 which addresses

g = B
(1)
N , C

(1)
N , D

(1)
N , A

(2)
2N−1, D

(2)
N+1 and A

(2)
2N .

For each such algebra g, we define a preferred set of N commuting q-difference

operators {D(g)
a (x; q, t), a ∈ [1, N ]}, chosen via specializations of linear combi-

nations of van Diejen’s higher Koornwinder operators, augmented by Rains and

Macdonald operators for each algebra. The operators are chosen so that their eigenval-

ues form a basis for the space spanned by the fundamental characters of the underlying

finite subalgebras R∗ listed in Table 1, with R∗ = AN−1 in the case of g = A
(1)
N−1.

Once an appropriate family of commuting difference operators is constructed, we

define the q-Whittaker limit t → ∞ of the family, {D
(g)
a (x; q)}, as well as their

τ n
+ ∈ SL(2, Z)-translates, {D

(g)

a;n(x; q), n ∈ Z}. These operators satisfy the g-type

quantum Q-systems, (2.13), (2.14) or (4.2)–(4.4). The main results of this paper may

be stated as the following Theorems:

Theorems 2.3, 4.3. For each g, the set of q-difference operators {D
(g)

a;n(x; q), a ∈
[1, N ], n ∈ Z} defined in Sections 2.2 and 3.3.3 satisfy the corresponding quantum

Q-system relations.

These operators can be viewed as generalized raising or lowering operators, and in

particular, we prove

Theorem 4.4. The q-difference operators {D
(g)
a,i (x; q) : i = 0, 1} satisfy eigenvalue

and raising operator properties:

D
(g)

a;0(x; q)	
(g)
λ (x) = �ω∗

a 	
(g)
λ (x),

D
(g)

a;1(x; q)	
(g)
λ (x) = �ω∗

a 	
(g)
λ+ωa

(x),

where ωa, ω∗
a are fundamental weights of R, R∗ the finite root lattices of g, g∗.

The proof uses the t → ∞ limit of the “Fourier transform” (1.3) (sometimes

called q-Whittaker transform), which relies on the completeness of eigenfunctions

of the q-Whittaker difference operators. Let 	
(g)
λ (x) be the set of common eigen-

functions of the operators D
(g)
a (x) = D

(g)

a;0(x), i.e. limits of Macdonald polynomials.

The Fourier transform relates operators f (x) in Tx to operators f (�) in T� via

f (x)	
(g)
λ (x) = f̄ (�)	

(g)
λ (x). Then we define the q-difference operators acting on

the index variables �, D̄
(g)
a,n(�), starting from the initial (Macdonald eigenvalue) con-

dition D
(g)

a;0(x)	
(g)
λ (x) = D̄

(g)

a;0(�)	
(g)
λ (x), and further constrained to obey the g
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quantum Q-system with the opposite multiplication. Finally we set out to prove that

the operators D̄
(g)
a,n(�) are the Fourier transforms of the operators D

(g)

a;n(x).

To this end, we first find the explicit time-translation operators n 	→ n+1 (or n+2)

acting on the operators D̄
(g)
a,n for each g:

Theorems 2.7, 4.9. There is a unique, up to scalar multiple, function g = g(g)(�) in

the generators of the quantum torus T�, such that

D̄a,n+ta = q−ω∗
a ·ωa ta/2gD̄a,ng−1,

where ta = 1 for all labels a except for the so-called short labels N in type B
(1)
N ,

[1, N − 1] in type C
(1)
N and [1, N ] in type A

(2)
2N , in which case ta = 2. Here ωa (ω∗

a)

are fundamental weights of R (R∗).

The g operators are listed in (2.27) and (4.12). They can be expressed as explicit

products of quantum dilogarithms. In the case of A
(1)
N−1 the operator g−1 is a particular

evaluation of the Baxter Q-operator of [46].

Next, we use the duality in Koornwinder-Macdonald theory, which relates the eigen-

value equation of the Koornwinder-Macdonald operators for g to the Pieri rules for

the dual g∗, where all cases are self-dual except B
(1)∗
N = C

(1)
N and C

(1)∗
N = B

(1)
N . In

the q-Whittaker limit, the Pieri operators are interpreted as (relativistic) q-difference

Toda Hamiltonians, and the polynomials 	
(g)
λ (x) as q-Whittaker functions. The First

Pieri operators for 	
(g)
λ (x) are listed in (2.12) and (3.38). They express the effect of

multiplying 	
(g)
λ (x) with the first elementary symmetric function in x , e1(x) in type

A
(1)
N−1 or ê1(x) =

∑N
i=1(xi + x−1

i ) for all other g. The N commuting Pieri operators

H
(g)
a (�), which can be thought of as q-difference Toda Hamiltonians, commute with

the time-translation operator g(g)(�). Thus, we have

Corollaries 2.13, 4.14. The Pieri operators {H
(g)
a (�), a ∈ [1, N ]} are algebraically

independent conserved quantities of the opposite quantum Q-system for type g.

The origin of the operators g(g)(�) is clarified by the following theorem:

Theorems 2.11, 4.12. The operators g(g)(�)are the Fourier transforms of Cherednik’s

Gaussian operator γ (x)t1 , with γ (x) as in Equation (2.16) the functional representa-

tion of the SL(2, Z) generator τ+:

γ (x)t1	λ(x) = g(g)(�)	λ(x), t1 =
{

2 if g = A
(2)
2N , C

(1)
N ,

1 otherwise.

Using these properties, and a uniqueness argument involving series solutions of the

first Pieri rule, we finally prove

Theorems 2.6, 4.15. For all g,

D
(g)

a;n(x)	
(g)
λ (x) = D̄

(g)

a;n(�)	
(g)
λ (x), (n ∈ Z)
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valid for any g-partition λ and any root label a ∈ [1, N ].

In other words, the operators D̄
(g)

a;n(�) are the Fourier transforms of the Whittaker

limits of Macdonald operators D
(g)

a;n(x). This completes the proof of the main claim of

this paper (Theorems 2.3, 4.3 and 4.4), and the conjectures of [19], that the q-difference

operators D
(g)
a,n(x; q) satisfy the quantum Q-system of type g.

We consider duality in terms of the universal solutions of the eigenvalue and

Pieri equations, P(x; s) and Q(s; x). These are continuations of the Koornwinder

or Macdonald polynomials to arbitrary values of the parameters λ, with s = qλtρ

and x = qμtρ
∗

with ρ a function of (a, b, c, d) as in Sect. 3.1.4. The series have

the form P(x; s) = qλ·μ ∑
β∈Q+ cβ(s) x−β and Q(s; x) = qλ·μ ∑

β∈Q∗
+

c̄β(x) s−β ,

with normalizations c0(s) = c̄0(x) = 1, and Q+, Q∗
+ are the positive root lattices

of the root systems R, R∗. Under specialization of the parameters (a, b, c, d), uni-

versal solutions of the Koornwinder equation specialize g-Macdonald solutions, and

whenenever λ corresponds to any dominant integral R-weight, the series truncates to a

polynomial. They also specialize to Chalykh’s Baker-Akhiezer quasi-polynomials [4]

when parameters a, b, c, d, t (resp. t) are specialized to negative (half-)integer (resp.

integer) powers of q, while λ remains arbitrary.

We establish the following relation between the series P(x; s) and Q(x; s) , and a

simple subsequent reformulation of duality.

Theorem 5.3, Corollary 5.4, Theorem 5.5. The universal Koornwinder functions

Q(a,b,c,d)(s; x) and P(a,b,c,d)(x; s) and their g-specializations are related via

Q(a,b,c,d)(s; x) = P(a,b,c,d)(x; s)

�(a,b,c,d)(x)
, Q(g)(s; x) = P(g)(x; s)

�(g)(x)

with �(a,b,c,d) as in (3.14), and �(g) as in (3.27). Moreover the duality of Koornwinder

and g-Macdonald polynomials extends to universal solutions as follows

Q(a∗,b∗,c∗,d∗)(x; s) = Q(a,b,c,d)(s; x), Q(g∗)(x; s) = Q(g)(s; x).

1.3 Outline of the paper

This paper is organized as follows.

We first revisit the A type in Sect. 2 as an illustration of the concepts used for

other types in the remainder of the paper. After recalling the definition of Macdonald

operators and polynomials, and showing how eigenvalue equations relate to Pieri

rules via duality, we discuss the q-Whittaker limit t → ∞ and the quantum Q-system

(Sects. 2.1-2.4). Our main character is the time translation operator, whose adjoint

action allows to advance Macdonald operators Da(x) in discrete time, thus producing

operators Da;n(x). In x space it takes the form of the (scalar) Gaussian operator

γ (x) (Sect. 2.5). To prove that the Macdonald operators obey the quantum Q-system

we switch to � space: in Sect. 2.6, using the eigenvalue D̄a;0(�) of the Macdonald

operator Da(x) as initial data, we define the candidate Fourier duals D̄a;n(�) of the

translated Macdonald operators as solutions of the opposite quantum Q-system for
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this initial data. In Sect. 2.7 we derive the associated explicit time translation operator

g(�). Finally the latter is shown to be the Fourier transform of the Gaussian γ (x)

in Sect. 2.10 leading to the proof of the main Theorem 2.3 for type A by identifying

Da;n(x) with the Fourier transform of D̄a;n(�). A key ingredient is the commutation of

g(�) with the first Pieri operator H1(�), shown in Sect. 2.8. This allows to identify the

Pieri operators as the commuting conserved quantities of the quantum Q-system, also

known as the relativistic Toda Hamiltonians of type A (Sect. 2.12). Finally Sect. 2.13

is devoted to a reformulation of the duality properties, Fourier transform, and proofs

in terms of the universal solution of the Macdonald eigenvalue equation considered

by [42].

The remainder of the paper focusses on the other types. In Sect. 3, we define suit-

able families of commuting Macdonald operators, borrowing from various existing

constructions. The first approach uses the known specialization scheme of the Koorn-

winder operator to Macdonald operators, completed by van Diejen and Rains into a set

of commuting difference operators (Sects. 3.1 and 3.2, and details in Appendix A). The

duality of Koornwinder polynomials descends to a duality between Macdonald oper-

ators and Pieri rules for dual types. Sect. 3.3 describes the q-Whittaker limit t → ∞,

and provides detailed definitions of the translated limiting Macdonald operators D
(g)

a;n
for all types. Some new subtleties arise for non-A types, in particular the distinction

between long and short labels a for which the time translation has to be defined sepa-

rately (type A only has long labels). Section 4 defines the quantum Q-systems for all

types and presents the main results of this paper, Theorems 4.3 and 4.4 (Sect. 4.1),

and their proof (Sect. 4.2 complemented by Appendices B and C), along the same

lines as for the case of type A. We define candidate Fourier transforms D̄
(g)

a;n(�) of

the translated Macdonald operators by use of the opposite g-quantum Q-system, and

construct the time translation operators g(g)(�) explicitly. The latter commute with

the Toda Hamiltonians, identified as the conservation laws of the quantum Q-systems,

thus allowing us to identify g(g)(�) with the Fourier transform of the Gaussian oper-

ator γ (g)(x). Finally in Sect. 4.3 we prove that the D̄
(g)

a;n(�) are the Fourier transforms

of the translated Macdonald operators D
(g)

a;n(x), from which the main results follow.

Section 5 is an extension of the constructions of Sect. 2.13. In Sect. 5.1 we intro-

duce universal solutions P(x, s) to the Koornwinder-Macdonald eigenvalue equations

in the form of power series of the variables x−αi , s−α∗
i where αi , α

∗
i are the sim-

ple roots of suitable lattices. P(x, s) has the remarkable property that it reduces to

Koornwinder-Macdonald polynomials upon specializing s = qλtρ for λ a (g-) par-

tition. In Sect. 5.2 we extend the duality of Koornwinder-Macdonald polynomials to

some relation between P(x, s) and its dual P∗(s, x). Finally in Sect. 5.3 we show how

this new formulation allows to rewrite the proofs of this paper more elegantly.

We finally gather some concluding remarks in Sect. 6. We comment on the three

additional “companion” quantum Q-systems obtained as a by-product of our study

and the associated representation by q-difference operators, which were not part of the

original setting (Sect. 6.1). We discuss path models for the various universal functions

of the paper in Sect. 6.2. We interpret the universal function results in terms of q-

Whittaker functions in Sect. 6.3. Sect. 6.4 summarizes our results and lists related

open questions.
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2 Duality property in type A
(1)

N−1

The main result of [11] is a theorem which states that the q-Whittaker limit of the

A-type Macdonald operators and their τ+-translates satisfy the quantum Q-system of

type A
(1)
N−1. To prove this, we used the explicit form of these difference operators in

x-space. In this section we will give a different method for proving the same theorem

by using Macdonald’s duality relation and the Fourier transform of these operators.

We use the notation for the roots and weights of glN as follows. Let {e1, ..., eN } be

the standard basis of RN , then the simple roots are {αi = ei − ei+1; i = 1, ..., N − 1},
the glN fundamental weights (including ωN ) are {ωi = e1 + · · · + ei , i = 1, ..., N },
the positive roots are R+ = {ei − e j , 1 ≤ i < j ≤ N }, and ρ =

∑N
i=1(N − i)ei .

For u, v ∈ RN , we use the notation u · v for the standard scalar product. We consider

q ∈ C∗, |q| < 1.

2.1 Macdonald operators and polynomials

Let x = (x1, ..., xN ) be formal variables, and define the q-difference operators

Da(x; q, t) be the a-th Macdonald q-difference operator in type A
(1)
N−1 [39]:

Da(x; q, t) =
∑

I⊂{1,...,N }
|I |=a

∏

j /∈I
i∈I

(
t xi − x j

xi − x j

)∏

i∈I

�i ,

a ∈ {1, ..., N }, �i x j = qδi j x j�i . (2.1)

These difference operators form a commuting family and preserve the space of

symmetric polynomials in x . The common eigenvectors are the monic symmetric

Macdonald polynomials Pλ(x), where λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0) is an integer

partition:

Da(x; q, t)Pλ(x) = t−(a
2)ea(s)Pλ(x) (a = 1, 2, ..., N ), (2.2)

where, ea(s) is the ath elementary symmetric function in s = (s1, ..., sN ), with si =
t N−i qλi . Macdonald polynomials form a basis for the space of symmetric polynomials

of x .

2.2 Duality

The Macdonald polynomials Pλ(x) satisfy a remarkable duality property, which is a

symmetry under the interchange of the variables x and s. Under the specialization

x = tρqμ with μ an integer partition, Macdonald showed that [39]

Pλ(t
ρqμ)

Pλ(tρ)
= Pμ(tρqλ)

Pμ(tρ)
(2.3)
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for all integer partitions λ,μ.

Remark 2.1 The duality property has a formal generalization to arbitrary values of

μ, λ, see the discussion on the universal function in Sect. 2.13.

The denominators in Eq. (2.3) can be obtained as specializations of an infinite

product expression. Let

�(x) =
∏

n≥1

∏

α∈R+

1 − qn x−α

1 − t−1qn x−α
=

∏

β∈R̂++

1 − x−β

1 − t−1x−β
, (2.4)

where the second product extends over the set R̂++ of strictly positive affine roots

β = nδ +
∑

i βiαi , n ≥ 1, βi ∈ Z+, and we use the shorthand notation xβ =
q−n

∏
i (xi/xi+1)

βi . Then [39]1

Pλ(t
ρ) = tλ·ρ �(tρ)

�(tρqλ)
. (2.5)

Next we use Macdonald’s evaluation homomorphism uμ defined on functions of
x by uμ( f (x)) = f (qμtρ). It maps the generators of quantum torus Tx to uμ(xi ) =
qμi t N−i and uμ(�i ) = e∂μi which acts as the translation μi 	→ μi + 1 while leaving
μ j , j �= i unchanged. Applying uμ for μ an integer partition on the eigenvalue Eq.
(2.2), and using duality (2.3) gives

ea(tρqλ)Pμ(tρqλ) = t(
a
2) Pμ(tρ) uμ (Da(x; q, t)) Pμ(tρ)−1 Pμ(tρqλ)

=
{

t(
a
2)tρ·μ �(tρqμ)−1uμ (Da(x; q, t))�(tρqμ)t−ρ·μ

}
Pμ(tρqλ).

Let us finally interchange the partition labels λ ↔ μ in the above equation, and note

moreover that since the polynomial Pλ(x) is entirely determined by its values at the

discrete specializations x = tρqμ with μ taking values in integer partitions, we can

conclude that Pλ(x) satisfies the Pieri equations:

Ha(�; q, t) Pλ(x) = ea(x) Pλ(x) (a = 1, 2, ..., N ), (2.6)

with

Ha(�; q, t) := t(
a
2)tρ·λ�(s)−1uλ (Da(x; q, t)) �(s)t−ρ·λ. (2.7)

The Pieri rules for the Macdonald polynomials express the multiplication of Pλ(x)

by an elementary symmetric function ea(x) as a linear combination of Macdonald

polynomials with shifted partitions.

1 Our definition of the infinite product � differs slightly from that of Macdonald’s �+, but is better suited

for taking the limit t → ∞ below.
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Remark 2.2 Note that in (2.7) the evaluation uλ maps xi → qλi t N−i = si and

�i → e∂λi . The same evaluation map sends the generators of the quantum torus

T� to respectively �i → qλi and Ti → e∂λi . By a slight abuse of notation, we simply

express the operator Ha(�; q, t) in terms of the generators �i and Ti and omit the

mention of the evaluation map from now on. This amounts to evaluating the left action

of the quantum torus T� on functions of the variables (�1, ..., �N ). There is also a

right action of the evaluation of T� on the basis of Macdonald polynomials Pλ in

which �i acts diagonally Pλ �i = Pλ qλi and Ti by a shift Pλ Ti = Pλ+ei
. We adopt a

single notation using the quantum torus generators, to denote either left or right action.

Explicitly the commuting operators Ha(�; q, t) acting on functions of � or s are

Ha(�; q, t) =
∑

I⊂[1,N ]
|I |=a

∏

i∈I , j /∈I
j<i

t i− j−1� j − �i

t i− j� j − �i

t i− j+1� j − q�i

t i− j� j − q�i

∏

i∈I

Ti . (2.8)

where the q-difference operator Ti acts as Ti� j = qδi j � j Ti . They can be thought

of as Macdonald Hamiltonians of type A
(1)
N−1: In the q-Whittaker limit, they become

relativistic q-difference Toda Hamiltonians (see Sect. 2.12 below).

2.3 The q-Whittaker limit

By a slight abuse of languge, we call the limit t → ∞ of the difference operators and

eigenfunctions above the q-Whittaker limit (as opposed to the standard t → 0). The

q-Whittaker functions2 are the limits of the Macdonald polynomials [10]:

	λ(x) = lim
t→∞

Pλ(x).

In this limit we use the t-independent variables �i = qλi instead of si . The symmetry

between the eigenvalue equation and the Pieri rules under exchange of x and s is lost

in this limit. However, the limit of the difference equations still makes sense. The

q-Whittaker functions satisfy the difference equations

Da(x; q)	λ(x) = �ωa 	λ(x), �ωa = �1 · · · �a; (2.9)

Ha(�; q)	λ(x) = ea(x)	λ(x). (2.10)

Here, the difference operators are

Da(x; q) = lim
t→∞

ta(a−N )
Da(x; q, t) =

∑

I⊂{1,...,N }
|I |=a

∏

j /∈I
i∈I

xi

xi − x j

∏

i∈I

�i , (2.11)

2 This is a slight abuse of language, as these are strictly speaking q−1-Whittaker functions. 	λ(x) is

interpreted as a (class 1) q-Whittaker function where x is the representation index, and λ the argument.
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and the Pieri operators are

Ha(�; q) = lim
t→∞

Ha(�; q, t) =
∑

I⊂[1,N ]
|I |=a

∏

i∈I
i−1/∈I

(
1 − �i

�i−1

) ∏

i∈I

Ti (2.12)

with the convention that �0 := ∞. Note the simplified form of these equations: the

Pieri operators are polynomials in �−αi where αi are the simple roots, rather than

rational functions. Moreover, the eigenvalues of operators Da(x; q) are monomials in

�, because ea(s) is replaced by its leading term in t , �ωa , where ωa are the fundamental

weights.

2.4 Type A
(1)
N−1 quantumQ-system

The main result of [11] is that the set of all τ+-translations of the operators Da(x; q)

satisfy the quantum Q-system equations3 of type A
(1)
N−1. To define this system, let

{Qa;k : a ∈ {1, ..., N }, k ∈ Z} be invertible elements in some non-commutative

algebra over C(q), subject to two types of relations: A q-commutation relation

Qa;kQb;k+i = q i min(a,b)
Qb;k+iQa;k, k ∈ Z, a, b ∈ [1, N ], |i | ≤ 1, (2.13)

and a cluster exchange-type relation, which can be thought of as a discrete time evo-

lution in the variable k:

qa
Qa;k+1Qa;k−1 = Q

2
a;k − Qa−1;kQa+1;k, a ∈ [1, N ], k ∈ Z, (2.14)

subject to the boundary conditions Q0;k = 1,QN+1;k = 0. The algebra generated

by the set {Qa;k : a ∈ [1, N ], k ∈ Z} and their inverses is a subalgebra in a certain

quantum cluster algebra [14].

Define the generalized q-Whittaker difference operators, acting on the space of

functions in the variables {x1, ..., xN } with coefficients in C(x1, ..., xN , q):

Da;k(x; q) =
∑

I⊂{1,...,N }
|I |=a

∏

i∈I

xk
i

∏

j /∈I

(
xi

xi − x j

)∏

i∈I

�i , a ∈ [1, N ], k ∈ Z.

(2.15)

When k = 0 these are just the q-Whittaker difference operators (2.9). The main result

of [11] is that these operators provide a functional representation of the quantum

Q-system:

Theorem 2.3 ([11]) The q-difference operators Da;k(x; q) of (2.15) satisfy the quan-

tum Q-system relations (2.13) and (2.14).

3 This was referred to as the type AN−1 Q-system in e.g. [11].
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The original proof of the theorem consisted of working directly with the difference

operators Da;k(x; q). Here, we present a simplification of the proof which uses the

duality of Sect. 2.2. This method has the advantage that it can be generalized to other

root systems.

2.5 The action of �+ on the difference operators

The difference operators Da(x; q, t) are representations of elements of the spherical

DAHA acting on the space of functions in N variables. There is an action of SL2(Z)

on DAHA, and the SL2(Z)-generator τ+ acts on the functional representation by the

adjoint action of Cherednik’s Gaussian operator [9]

γ (x) = e
∑N

i=1
log(xi )

2

2 log(q) . (2.16)

In the q-Whittaker limit, the adjoint action of γ (x) is well-defined. In particular, the

difference operators (2.11) are the τ+-translates of Da(x; q):

Lemma 2.4 ([18])

Da;k(x; q) = q−ak/2γ (x)−k Da(x; q)γ (x)k . (2.17)

The proof follows from

γ (x)−1�iγ (x) = q
1
2 xi�i .

2.6 Fourier transform

The q-Whittaker functions {	λ(x)}, with λ ranging over integer partitions, form a

complete basis of the space of symmetric polynomials. Suppose that a set of difference

operators {Da(x)} in the variables of Tx satisfies

Da(x)	λ(x) = D̄a(�)	λ(x)

for all λ, where the difference operators D̄a(�) act in the variables of T�=qλ . If

the operators {D̄a(λ)} satisfy certain relations R, then the set of operators {Da(x)}
satisfy the relations Rop with the opposite multiplication. The operators D̄a(�) are

the “Fourier transforms” of the operators Da(x).

The strategy is to define the operators D̄a;k(�; q), starting with initial data

{D̄a;0, D̄a;1 : a ∈ [1, N ]}, by using the quantum Q-system relations with the oppo-

site multiplication. We will then show that the corresponding Fourier-dual operators

Da;k(x; q) are the difference operators (2.15), which therefore satisfy the quantum

Q-system. The simplification of the proof in the Fourier transformed picture is due to

the simple form of the initial data in T�, which allows us to compute the τ+ action on

the Fourier transformed operators directly.
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2.6.1 Initial data

To find appropriate initial data for the opposite quantum Q-system, we start with the

eigenvalue Eq. (2.9), which we write as

Da;0(x; q)	λ(x) = D̄a;0(�; q)	λ(x), D̄a;0(�; q) = �ωa , a ∈ [1, N ].
(2.18)

For the operators D̄a;k(�; q) ∈ Cq(�)[T ] to be well-defined from the opposite

quantum Q-system for all k, we need another set of initial data, {D̄a;1(�; q), a ∈
[1, N ]}, such that (we drop the arguments �, q from now on):

D̄a;0 D̄b;1 = q− min(a,b) D̄b;1 D̄a;0, [D̄a;1, D̄b;1] = 0, a, b ∈ [1, N ].
(2.19)

These are 2N relations on the quantum torus T� of dimension 2N , so they determine

{D̄a;1} up to scalar multiple, which commutes with T�, i.e. an element in C(q). We

choose this constant to be 1:

D̄a;1 = �ωa T ωa = �1 · · · �aT1 · · · Ta . (2.20)

2.6.2 The set {D̄a;k}

Given the set of 2N initial data {D̄a;k, k ∈ {0, 1}, a ∈ [1, N ]}, which form an alternate

basis for T�, all D̄a;k are uniquely defined by the requirement that they satisfy the

opposite quantum Q-system relation:

qa D̄a;k−1 D̄a;k+1 = D̄2
a;k − D̄a+1;k D̄a−1;k, D̄0;k = 1, D̄N+1;k = 0.

(2.21)

Remark 2.5 The quantum Q-system variables are cluster variables in a quantum cluster

algebra, and therefore, due to the Laurent property of these algebras, all D̄a;k are in fact

Laurent polynomials in the initial data (2.18) and (2.20). As the latter are monomial

in the variables of the quantum torus T�, so are the D̄a;k ∈ Cq [�±1, T ±1].

The main theorem to be proven is

Theorem 2.6

D̄a;k(�; q)	λ(x) = Da;k(x; q)	λ(x)

for all a ∈ [1, N ] and k ∈ Z, with Da;k(x; q) the difference operators of Eq. (2.15)

Since D̄a;k(�; q) satisfy the opposite quantum Q-system relations, then the

operators Da;k(x; q) satisfy the quantum Q-system. Theorem 2.6 therefore implies

Theorem 2.3.
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The proof of this theorem performed over the next several subsections as follows.

First, in 2.7 we compute a “time translation” operator g(�), whose adjoint action on

D̄a;k(�; q) gives D̄a;k+1(�; q) in accordance with the opposite Q-system recursion

evolution. We then show in 2.8 that this time-translation commutes with the Pieri

operator or Hamiltonian H1(�; q). In 2.9 we prove the uniqueness of the solution of

the Pieri equation H1(�, q) f = ê(x) f . This implies, as shown in 2.10, that g(�)

is the Fourier transform of the Gaussian γ (x). The proof of Theorem 2.6 follows

(Sect. 2.11) from a simple argument using the Fourier transform.

2.7 The action of �+ on D̄a;k(3; q)

The key to proving theorem 2.6 is to find an element g(�) in the completion of the

space of rational functions in T� which realizes the action of γ (x) in the Fourier

transformed picture4:

Theorem 2.7 There is a unique, up to scalar multiple, function g ≡ g(�) acting on

the variables of T�, such that

D̄a;k = q−ak/2 gk D̄a;0 g−k (2.22)

is a solution of the opposite quantum Q-system for all a, k.

Proof The element g is determined by the commutation relation (2.19) and the subset of

Q-system relations (2.21) corresponding to k = 1. Indeed, assuming such an element

g exists, we first note that gm[D̄a,0, D̄b,0]g−m = q(a+b)m/2[D̄a,m, D̄b,m] = 0 for all

m ∈ Z. Similarly, conjugating (2.19) and (2.21) for k = 1 with gm gives

gm(D̄a,0 D̄b,1 − qmin(a,b) D̄b,1 D̄a,0)g
−m

= q(a+b)m/2(D̄a,m D̄a,m+1 − qmin(a,b) D̄a,m+1 D̄a,m) = 0,

gm(qa D̄a,−1 D̄a,1−D̄2
a,0+D̄a−1,0 D̄a+1,0)g

−m

= qam(qa D̄a,m−1 D̄a,m+1−D̄2
a,m+D̄a−1,m D̄a+1,m) = 0.

We therefore obtain the opposite of (2.13) and (2.14) for all m ∈ Z.

We now prove the existence of g by construction. Assume g = gT g�, where gT

commutes with all Ta and g� commutes with all �a . Up to a scalar multiple, gT is

determined by the N Eqs. (2.22) with k = 1:

q−a/2 g D̄a;0 g−1 = q−a/2 gT �ωa g−1
T = D̄a;1 = �ωa T ωa , a ∈ [1, N ],

because g� commutes with D̄a;0 = �ωa by assumption. This has the solution

gT =
N∏

a=1

e
(log Ta )2

2 log q , (2.23)

4 The element g(�) is referred to as the “Dehn twist” generator in the geometric formulation of Ref. [46],

which uses a different but related definition of the Fourier transform, under the name of Whittaker transform.
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where we used the identity

e
(log Ta )2

2 log q �a e
− (log Ta )2

2 log q = �a e
(log qTa )2−(log Ta )2

2 log q = q1/2 �a Ta .

To find g�, we use the Q-system (2.21) with k = 1:

D̄a;2 = �ωa T 2ωa (1 − q �−αa T −αa ), a ∈ [1, N − 1], D̄N ;2 = �ωN T 2ωN .

(2.24)

To simplify the equations below, we set �N+1 = 0 and �0 = ∞, i.e. we define

α0, αN by �−α0 = �−αN = 0. The function g� is defined from

D̄a;1 = qa/2 g−1 D̄a;2 g = qa/2 g−1
� g−1

T D̄a;2 gT g� = �ωa T ωa . (2.25)

Acting on (2.24) by the adjoint action of g−1
T , we have

qa/2 g−1
T D̄a;2 gT = �ωa T ωa (1 − �−αa ).

Using

∞∏

n=0

(1 − qn �−αa ) T ωb = T ωb (1 − �−αa )−1
∞∏

n=0

(1 − qn �−αa )

we can choose

g� =
N−1∏

a=1

(�−αa ; q)−1
∞ , (a; b)∞ =

∞∏

n=0

(1 − bna). (2.26)

We conclude that the function

g =
(

N∏

a=1

e
(log Ta )2

2 log q

)
N−1∏

a=1

(
�a+1

�a

; q

)−1

∞
(2.27)

satisfies the conditions of Theorem 2.7. ��

2.8 Commutation with the first Pieri operator

In general, the translation operator g commutes with each of the Pieri operators

Ha(�; q). It is sufficient for our purposes to show that it commutes with the first,

H1(�; q):

Theorem 2.8 The function g(�) of Theorem 2.7 commutes with the Pieri operator

H1(�; q) of Eq. (2.12).
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Proof From (2.12),

H1(�; q) =
N∑

a=1

(1 − �−αa−1)Ta =
N∑

a=1

Ta −
N−1∑

a=1

�a+1

�a

Ta+1.

For all a ∈ [1, N ],

g(1 − �−αa−1)Tag−1 = gT (1 − q−1�−αa )Tag−1
T = (Ta − �−αa Ta+1),

again with the convention that �−α0 = �−αN = 0. Summing over all a = 1, 2, ..., N

results in gH1(�; q)g−1 = H1(�; q). ��

2.9 Uniqueness of the Pieri solution

To prove the result of next section, we resort to a uniqueness argument regarding the

solutions to the first Pieri Eq. (2.30).

Recall that 	λ(x) is eigenfunction of the Macdonald operator: D1 	λ = �1 	λ.

Writing 	λ(x) = xλ pλ(x), and D1 =
∑

i φi (x) �i , the eigenvalue equation turns

into

(
1 −

∑

i

φi (x)
�i

�1
�i

)
pλ(x) = 0. (2.28)

This equation makes it easy to analytically continue pλ(x) to a function p̂λ(x) with

λ ∈ CN , as the dependence on � is explicit (in fact polynomial of the variables �−αi ,

αi the simple roots of AN−1). Writing p̂λ(x) as a series of the variables x−αi : p̂λ(x) =∑
β∈Q+ cβ(�)x−β , Q+ the positive cone of the root lattice of AN−1, (2.28) turns into

a linear triangular system for the coefficients cβ(�), which are uniquely determined

(with c0(�) = 1), and rational functions of the �−αi . Moreover, specializing λ to

an integer partition in p̂λ(x) recovers pλ(x). Expanding cβ(�) =
∑

δ∈Q+ cβ,δ�
−δ

allows to view 	λ(x) as the specialization of a series in �:

xλ p̂λ(x) = xλ
∑

δ∈Q+

ĉδ(x)�−δ, ĉδ(x) =
∑

β∈Q+

cβ,δx−β .

Lemma 2.9 Assume we have a (non necessarily polynomial) solution �λ(x) of the

first Pieri rule (2.30), which admits a series expansion of the form �λ(x) =
xλ
∑

β∈Q+ τβ(x)�−β for λ ∈ CN . Then we have, for λ an integer partition:

	λ(x) = ĉ0(x)

τ0(x)
�λ(x),

where ĉ0(x) is the leading coefficient in the series p̂λ(x) that specializes to 	λ(x) for

integer partitions λ.
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Proof Write �λ(x) = xλθλ(x). By use of (2.12) for a = 1, the Pieri equation turns

into

(
N∑

i=1

xi

{
(1 − �−αi )Ti − 1

}
)

θλ(x) = 0.

This is a linear triangular system for the coefficients τβ(x), which are uniquely deter-

mined for β �= 0, proportional to τ0(x). The same holds for the coefficients ĉβ(x)

of p̂λ(x) in terms of ĉ0(x). We deduce that xλ p̂λ(x) = ĉ0(x)
θ0(x)

�λ(x), and the Lemma

follows by specialization. ��

Remark 2.10 The argument used in this section prefigures the reformulation in terms

of universal solutions performed in Sect. 2.13 below, and extends to all types.

2.10 Fourier duality of g and �

The final piece of information we need to prove Theorem 2.6 is that g acting on the

q-Whittaker functions is equal to the Gaussian γ (x) acting on the same functions:

Theorem 2.11

g(�)	λ(x) = γ (x)	λ(x). (2.29)

Proof Acting with g(�) on both sides of the first Pieri rule

H1(�; q)	λ(x) = e1(x)	λ(x) (2.30)

and noting that g and γ commute with both H1(�; q) and e1(x), we see that

γ −1 g 	λ(x) obeys the same first Pieri rule. We use the uniqueness argument of

the previous section for the solutions of (2.30). Applying Lemma 2.9 to �λ =
γ −1 g xλ p̂λ(x), the latter must be proportional to 	λ(x) when specialized to an inte-

ger partition λ. To determine the proportionality constant, we compute the leading

coefficient of the series expansion x−λ γ −1 g xλ p̂λ(x). Since g� is a power series in

{�−αi } with leading term 1, the leading term is determined by the action of gT on

xλ ĉ0(x).

We claim that

gT xλ = γ xλg′
T ,

where g′
T acts only by shifting � by powers of q, leaving the leading term ĉ0(x)

unchanged.

To see this, let a, b be elements in an algebra such that [a, [a, b]] = 0 and

[b, [a, b]] = c commutes with both a and b. Then the Campbell-Hausdorff formula

implies:
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ea eb e−a e−b = ea+b+ 1
2 [a,b]− 1

12 [b,[a,b]]e−a−b+ 1
2 [a,b]+ 1

12 [b,[a,b]] = e[a,b]+ c
2 .

(2.31)

Choosing ea = gT and eb = xλ, i.e. a =
∑

i

∂2
λi

2 log q
and b =

∑
i λi log xi leads to

[a, b] =
∑

i

log xi ∂λi

log q
and e

1
2 c = γ (x)−1, which commutes with e[a,b]. Finally,

ea eb = gT xλ = e
c
2 e[a,b] eb ea = γ −1e

∑
i

log xi ∂λi
log q e

∑
i λi log xi gT

= γ xλ
∏

i

T

log xi
log q

i gT = γ xλ g′
T ,

where the last step uses again (2.31), with a =
∑

i

log xi ∂λi

log q
, b =

∑
i λi log xi hence

e[a,b] = γ 2 and c = 0.

We conclude that γ −1 g 	λ(x) = 	λ(x), and the theorem follows. ��

Remark 2.12 The relation g(�)	λ(x) = γ (x)	λ(x) is equivalent to the recursion

relation for the quantities denoted J
μ
β in [22] (Theorem 3.1), which we denote as

Jβ(x = qμ) below. These can be identified as the coefficients in the formal expan-

sion of the series 	̃λ(x) := g� 	λ(x) = xλ
∑

β∈Q+ Jβ(x)�−β . Theorem 2.11 says

that gT g�	λ(x) = γ (x)	λ(x), which implies (g�gT )	̃λ(x) = γ (x) 	̃λ(x). As a

recursion relation for coefficients, this means

J
μ
β =

∑

δ

γ (qδ)

(q, q)β−δ

x−δ J
μ
δ

with the notation (q, q)α =
∏

i (q, q)αi
, where we have used the series expansion

g� =
∑

α∈Q+
�−α

(q;q)α
, as well as the relation γ (x)−1x−λgT xλ�−δ = γ (qδ)(�x)−δ .

A similar connection holds for certain other root systems, see Remark 4.13.

Corollary 2.13 The (higher) q-difference Toda Hamiltonians Ha(�) are algebraically

independent conserved quantities of the opposite quantum Q-system (2.21).

Proof Multiply the Pieri equation ea(x)	λ(x) = Ha(�)	λ(x) on the left by g γ −1,

and use Theorem 2.11 to rewrite:

g γ −1 ea(x)	λ(x) = ea(x)	λ(x) = g Ha(�) g−1 	λ(x) = Ha(�)	λ(x),

hence g commutes with all Ha(�), a = 1, 2, ..., N . The latter are Laurent polynomials

of the elements of the quantum torus T�, hence of the initial data D̄i;0, D̄i;1 as well,

which are invariant under any time translation (D̄i;0, D̄i;1) 	→ (D̄i;n, D̄i;n+1), n ∈ Z.

These are independent conserved quantities of the opposite quantum Q-system that

governs the D̄a;n , as any dependence between Ha(�) would imply a dependence

between the ea(x) by inverse Fourier transform. ��
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2.11 Proof of Theorem 2.6

The proof of the main Theorem 2.6 now follows.

Proof Acting on Da;0(x; q)	λ(x) by γ (x)−k gk(�), we have

γ −k gk Da;0(x; q)	λ(x) = γ −k Da;0(x; q) gk 	λ(x) = γ −k Da;0(x; q) γ k 	λ(x)

= qak/2 Da;k(x; q)	λ(x).

Using the eigenvalue Eq. (2.9), this is equal to

γ −k gk D̄a;0 	λ(x) = gk D̄a;0 γ −k 	λ(x) = gk D̄a;0 g−k 	λ(x) = qak/2 D̄a;k 	λ(x),

which is the statement of Theorem 2.6. ��

2.12 Pieri operators, conserved quantities and Toda Hamiltonians

Let us compare the result of Corollary 2.13 with the conserved quantities of the (oppo-

site) quantum Q-system of [11, 13, 14]. Those references use a different normalization

of the Q-system variables, resulting in the system

Q̄a;n Q̄b;n+1 = v−�a,b Q̄b;n+1 Q̄a;n
v�a,a Q̄a;n−1 Q̄a;n+1 = (Q̄a;n)2 − Q̄a−1;n Q̄a+1;n (2.32)

with �a,b = min(a, b)
(
N − max(a, b)

)
. The precise relation with the operators

D̄a;k(�; q) is

Q̄a;n = q− nα2

2N (D̄N ;0)
− a

N D̄a;n (2.33)

with v = q1/N . The conserved quantities C̄m of the quantum system (2.32) are

expressed in terms of the initial cluster {Q̄a;0, Q̄a;1} as hard particle partition func-

tions (i.e. generating polynomials of independent sets of vertices) on a graph (Figure

3 of [13]) with ordered vertices labeled 1, 2, ..., 2N −1, with a weight ȳi per occupied

vertex labeled i , where:

ȳ2a−1 = Q̄a−1;0 (Q̄a;0)
−1 (Q̄a−1;1)

−1 Q̄a;1 (a = 1, 2, ..., N ),

ȳ2a = −Q̄a−1;0 (Q̄a;0)
−1 (Q̄a;1)

−1 Q̄a+1;1 (a = 1, 2, ..., N − 1).

Using (2.33),

ȳ2a−1 = v− 1
2 Ta, ȳ2a = −v− 1

2
�a+1

�a

Ta+1,

hence the resulting conserved quantities are related to the Hamiltonians (2.12) by

Hm(�) = vm/2 C̄m .



Macdonald Duality and the proof... Page 21 of 100 23

In Ref. [11], it was shown that the conserved quantities C̄m can be interpreted as type

A (relativistic) q-difference Toda Hamiltonians [21]. This justifies the identification

of the Pieri operators (2.12) as q-difference Toda Hamiltonians.

2.13 Universal solutions and duality

The results of the previous sections may be rephrased in the more uniform context of

universal solutions, obtained explicitly in the case of type A in [42]. The following

discussion treats the two sets x and s on equal footing, as formal variables, and implies

that the duality property is more general.

2.13.1 Universal Macdonald and Pieri solutions and duality

We now consider s = tρqλ as a formal variable which we may specialize to integer

partitions λ, and similarly write x = qμtρ . If we consider the difference operators

(2.1) in the space C(q, t)[[{x−αi }]][�1, ..., �N ], i.e. expanded as power series of the

variables xi+1/xi with 1 ≤ i ≤ N − 1, then there is a unique series solution P(x; s)

to the Macdonald eigenvalue equation

D1(x; q, t) P(x; s) = e1(x) P(x; s) (2.34)

of the form

P(x; s) = qλ·μ ∑

β∈Q+

cβ(s; q, t)x−β , c0(s; q, t) = 1. (2.35)

Note that qλ·μ = xλ t−ρ·λ = sμ t−ρ·μ is symmetric with respect to the interchange of x

and s. The uniqueness of the solution follows from the fact that (2.34) is a nonsingular

triangular system for the coefficients cβ(s; q, t).

The series (2.35) is called the universal Macdonald solution because, under the

specialization of the variables s = qλ tρ with λ an integer partition, the function

tρ·λ P(x; s) specializes to the symmetric Macdonald polynomial Pλ(x):

Pλ(x) = tρ·λ P(x; qλ tρ), λ = (λ1 ≥ · · · ≥ λN ), λi ∈ Z≥0. (2.36)

That is, the infinite series (2.35) truncates to a finite number of terms, and the prefactor

tρ·λqλ·μ = xλ ensures that the function is a symmetric polynomial of x1, ..., xN . All

Macdonald polynomials Pλ(x) are obtained as specializations of P(x; s). On the other

hand, the series P(x; s) also specializes to the Baker-Akhiezer quasi-polynomials

introduced by Chalykh [4]. In this case, the relevant specialization consists in taking

t = q−k , k some positive integer. One can check that another truncation occurs leaving

us with a finite sum.

Example 2.14 Let us illustrate the phenomenon of truncation in the simplest case of

A
(1)
1 of rank N = 2. The universal Macdonald series is expressed in terms of the
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variables u = x2/x1 and v = �2/�1 as

P(x; s) = x
λ1

1 x
λ2

2 t−λ1

∞∑

n=0

un

n−1∏

i=0

1 − vq i

1 − t−1vq i

1 − t−1q−i

1 − q−i−1
.

The first type of truncation occurs for v = qλ2−λ1 = q−k for some integer k ≥ 0.

We see that the first factor in the numerator of the coefficient in the series vanishes as

soon as n > k (for i = k). The second type of truncation occurs when t = q−k for

some integer k ≥ 0 and arbitrary λ. In that case the second factor vanishes as soon as

n > k.

Similarly, if we consider H1(�; q, t) as a power series in {si+1/si }, then the equa-

tion

t−ρ·λ
H1(�; q, t)tρ·λQ(s; x) = e1(x)Q(s; x) (2.37)

has a unique “universal Pieri” solution of the form

Q(s; x) = qλ·μ ∑

β∈Q+

c̄β(x; q, t)s−β , c̄0(x; q, t) = 1. (2.38)

An outcome of the study of [42] is a relation between the universal Macdonald and

Pieri solutions, which we re-prove below.

Theorem 2.15 The universal Macdonald and Pieri solutions are related via

P(x; s) = �(x) Q(s; x),

with �(x) as in (2.4).

Proof First note that P(x; s) obey both Macdonald eigenvalue and Pieri equations [4,

7]. Expanding the coefficients of P(x; s) as series of s−αi : cβ(s) =
∑

δ∈Q+ cβ,δs−δ

allows to rewrite P(x; s) = qλ·μ∑
δ∈Q+ ĉδ(x) s−δ , where ĉδ(x) =

∑
β∈Q+ cβ,δx−β .

Now both P(x; s) and Q(s; x) can be viewed as two different solutions of the Pieri

equation. By uniqueness, they must be proportional up to an s-independent factor. We

deduce that P(x; s) = ĉ0(x)Q(s; x). To compute ĉ0(x), note that it is the limit of

q−λ·μ P(x; s) = ĉ0(x) + O(s−αi ), when we take |s1| >> |s2| >> · · · |sN | >> 1,

so that all s−αi → 0. Using the a-th Macdonald eigenvalue Eq. (2.2) and the explicit

formula (2.1), and dividing by �ωa = �1�2 · · · �a ,

⎧
⎪⎪«
⎪⎪¬

t−(a
2)

ea(s)

�ωa
−

∑

I⊂[1,N ]
|I |=a

∏

j /∈I
i∈I

t xi − x j

xi − x j

1

�ωa

∏

i∈I

�i�i

«
⎪⎪¬
⎪⎪­

(
ĉ0(x) + O(x−αi )

)
= 0.
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In the limit �i+1/�i → 0, all the terms tend to zero except for the leading term in

the eigenvalue, and the term corresponding to I = {1, 2, ..., a} in the sum:

⎧
«
¬1 −

∏

1≤i≤a< j≤N

1 − x j

t xi

1 − x j

xi

�ωa

«
¬
­ ĉ0(x) = 0. (2.39)

We verify that ĉ0(x) and �(x) of (2.4) both obey (2.39) for a = 1, 2, ..., N . Their

ratio must therefore be independent of x as it is invariant under each �i , and is easily

identified to 1 by taking the limit when all x−αi → 0 and using c0,0 = 1. The Theorem

follows. ��

Repeating the argument of Sect. 2.2 starting with (2.34), including the interchange

of the labels x and s, we see that

t−ρ·λ
H1(�; q, t)tρ·λ Q(x; s) = e1(x) Q(x; s),

where the expansion in s of Q(x; s) = P(s; x)/�(s) has the form qλ·μ(1+O(s−αi )).

By uniqueness of the solution,

Q(x; s) = Q(s; x) ⇔ �(s) P(x; s) = �(x) P(s; x). (2.40)

The duality (2.40) states that the series Q(s; x) in s is equal to the series Q(x; s)

in x . The specialization of λ and μ to integer partitions reduces to the Macdonald

polynomial duality relation (2.3). We may therefore interpret (2.40) as a universal

extension of the duality of Macdonald theory.

2.13.2 q-Whittaker limit

The symmetry (2.40) is replaced in the t → ∞ limit by

	(x;�) = �(x)K(�; x), �(x) =
∏

α∈R+

(qx−α; q)∞, (2.41)

where the universal q-Whittaker function 	(x;�) and Pieri solution K(�; x) read

respectively

	(x;�) = lim
t→∞

tρλ P(x; s), K(�; x) = lim
t→∞

tρλQ(s; x)

and satisfy the limiting Macdonald eigenvalue equations and Pieri rules:

Da(x; q)	(x;�) = �ωa 	(x;�) (2.42)

Ha(�; q) K(�; x) = ea(x)K(�; x) (2.43)



23 Page 24 of 100 P. Di Francesco, R. Kedem

As in the case of the Macdonald function, the universal functions 	(x;�) and

K(�; x) are uniquely determined from the difference Eqs. (2.42) and (2.43) as series

of the form

	(x;�) = xλ
∑

β∈Q+

cβ(�; q)x−β , c0(�; q) = 1, (2.44)

K(�; x) = xλ
∑

β∈Q+

c̄β(x; q)�−β , c̄0(x; q) = 1. (2.45)

Example 2.16 Let us compute K(�; x) explicitly as a solution of the first Pieri equation

H1(�; q) K(�; x) = e1(x)K(�; x) with H1(�; q) as in (2.12) for a = 1, by use of a

path model. The equation reduces to the following triangular system for the coefficients

c̄β(x; q) from (2.45):

{
N∑

i=1

xi (q
βi−1−βi − 1)

}
c̄β(x; q) =

N−1∑

i=1

xi+1 qβi −βi+1−1 c̄β−ei
(x; q),

with β =
∑N−1

i=1 βi ei and β0 = βN = 0 by convention. The system is nonsingu-

lar for x generic, and we may express c̄β(x; q) as a path model partition function,

namely as the sum over all paths p from 0 to β in the positive quadrant ZN−1
+ of

path weights w(p). The path weight is defined as a product along the path of its ver-

tex weights wv(a) = (
∑n

i=1 xi (q
ai−1−ai − 1))−1 per vertex a visited and edge step

weights we(s) = xi+1 qbi −bi+1−1 per edge step s = b − ei → b:

c̄β(x; q) =
∑

paths p:0→β

∏

vertex a of p

wv(a)
∏

edge step s of p

we(s)

This construction parallels that of Whittaker vectors performed in [20].

The Fourier transform may be restated in terms of the universal q-Whittaker

function as follows: f (x)	(x;�) = f̄ (�)	(x;�), and our main theorem 2.6 as

Da;k(x; q)	(x;�) = D̄a;k(�; q)	(x;�), which is also a consequence of the rela-

tion g(�)	(x;�) = γ (x)	(x;�).

3 Duality property for other classical root systems

In this section we present a generalization of the methods of Sect. 2 for the root sys-

tems corresponding to the affine algebras in the classical series, listed in Table 1. In

these cases, the underlying double affine Hecke algebra is of BC-type, correspond-

ing to finite-type Weyl groups of types CN or DN , and the commuting q-difference

operators and their eigenfunctions are Koornwinder/Macdonald operators and poly-

nomials. A key ingredient is the duality property, which implies a relation between

the Koornwinder/Macdonald eigenvalue equations and the Pieri rules [8, 45, 51].
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Our goal is to choose a set of N commuting difference operators for each algebra

g such that, in the q-Whittaker limit, these difference operators and their SL(2, Z)-

translates satisfy the g-type quantum Q-system. There are several known constructions

of the difference operators. Koornwinder introduced a first order operator [35] depend-

ing on generic parameters (q, t, a, b, c, d), which was extended by van Diejen to a

complete set of N commuting difference operators [50]. Upon specialization of the

parameters (a, b, c, d), these correspond to the root systems of g. In some cases,

van Diejen’s operators must be supplemented by operators introduced by Macdonald

[40], who used the structure of specific root systems to produce difference operators

for miniscule co-weights. We combine these constructions and define a set of N com-

muting g-Macdonald operators in Appendix A, whose eigenvalues form a basis for

the space of fundamental characters of the finite algebra R∗ = R(g∗) (see Table 1).

This section is organized as follows. We introduce the Koornwinder operators for

generic values of (a, b, c, d) in (Sect. 3.1). The specialization of the parameters cor-

responding to g of Table 1 are explained in Sect. 3.2. Finally, the q-Whittaker limit of

the g-Macdonald operators is described in Sect. 3.3, together with their τ+-translates.

We will prove that the τ+ translation is the discrete time evolution of the associated

quantum Q-systems in Sect. 4.

3.1 Koornwinder Operators, Polynomials and Pieri rules

3.1.1 The Koornwinder operators

Let F be the field of rational functions in the indeterminates a, b, c, d, q
1
2 , t

1
2 and

W the Weyl group of type CN . It acts on functions in F(x1, ..., xN ) by permutations

and inversions of the variables. The W -invariant space of Laurent polynomials in x

is generated by the elementary symmetric functions ê(x), defined via the generating

function

Ê(z; x) :=
N∏

i=1

∏

ε=±1

(1 + zxε
i ) =

2N∑

k=0

zk êk(x), (3.1)

so that ê1(x) =
∑n

i=1(xi + x−1
i ). The space F[x, x−1]W is preserved by the action of

the Koornwinder operator, defined as follows.

Definition 3.1 The Koornwinder operator K
(a,b,c,d)
1 (x; q, t) is the q-difference oper-

ator acting on F[x, x−1]:

K
(a,b,c,d)
1 (x; q, t) =

N∑

i=1

∑

ε=±1

�
(a,b,c,d)
i,ε (x) (�ε

i − 1), �i x j = qδi j x j�i ,

(3.2)
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where

�
(a,b,c,d)
i,ε (x) =

(1 − axε
i )(1 − bxε

i )(1 − cxε
i )(1 − dxε

i )

(1 − x2ε
i )(1 − qx2ε

i )

∏

j �=i

t xε
i − x j

xε
i − x j

t xε
i x j − 1

xε
i x j − 1

.

Koornwinder polynomials are the unique monic, symmetric, Laurent polynomial

eigenfunctions of the eigenvalue equation

K
(a,b,c,d)
1 (x; q, t) P

(a,b,c,d)
λ (x) = σ t N−1

(
ê1(s) − ê1(σ tρ)

)
P

(a,b,c,d)
λ (x)

where λ is any integer partition coding the leading term xλ of P
(a,b,c,d)
λ (x). We make

use of the notations

si = qλi tρi σ, σ =
√

abcd/q, ρi = N − i (i = 1, 2, ..., N ). (3.3)

As an example, the first two Koornwinder polynomials are P
(a,b,c,d)

∅ (x) = 1, with
eigenvalue 0, and

P
(a,b,c,d)
1,0,0,...,0(x)

= ê1(x) + 1 − t N

1 − t

abcd(a−1 + b−1 + c−1 + d−1)t N−1 − (a + b + c + d)

1 − abcd t2N−2
.

3.1.2 Koornwinder-Macdonald operators

We define the Koornwinder-Macdonald operators to be the set of mutually commuting

difference operators, which commute with the Koornwinder operator, chosen so that

their eigenvalues are proportional to the elementary symmetric functions êm(s). The

first order Koornwinder-Macdonald operator (A.23) is

D
(a,b,c,d)
1 (x; q, t) = K

(a,b,c,d)
1 (x; q, t) + 1 − t N

1 − t

(
1 + abcd

q
t N−1

)
. (3.4)

The additive constant in (3.4) is σ t N−1 ê1(σ tρ), so that Koornwinder polynomials

satisfy the eigenvalue equation

D
(a,b,c,d)
1 (x; q, t) P

(a,b,c,d)
λ (x) = σ t N−1 ê1(s) P

(a,b,c,d)
λ (x). (3.5)

Definition 3.2 The Koornwinder-Macdonald operators are a commuting family of dif-

ference operators {D(a,b,c,d)
m (x; q, t) : m ∈ [1, N ]}, which are linear combinations of

van Diejen’s commuting difference operators [51], uniquely defined by their eigen-

values:

D
(a,b,c,d)
m (x; q, t)P

(a,b,c,d)
λ (x) = d

(a,b,c,d)

λ;m P
(a,b,c,d)
λ (x),

d
(a,b,c,d)

λ;m = σm tm(N− m+1
2 )êm(s). (3.6)
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These operators are explicitly constructed in Appendix A, see Definitions A.2, A.8

and Theorem A.9.

3.1.3 Rains operators

A useful alternative “N -th order” difference operator was constructed by Rains [43]5

in his study of BC-symmetric polynomials. Rains shows that the operators

R
(u,v)
N (x; q, t) =

∑

ε1,ε2,...,εN =±1

N∏

i=1

(1 − ux
εi

i )(1 − vx
εi

i )

1 − x
2εi

i

×
∏

1≤i< j≤n

1 − t x
εi

i x
ε j

j

1 − x
εi

i x
ε j

j

N∏

i=1

�
εi /2
i (3.7)

are maps between W -invariant spaces with different values of the parameters

(a, b, c, d). They act between bases of Koornwinder polynomials as follows:

R
( a√

q
, b√

q
)

N (x; q, t)P
(a,b,c,d)
λ (x) = q− |λ|

2

N∏

i=1

(1 − abqλi −1t N−i )P
( a√

q
, b√

q
,
√

qc,
√

qd)

λ (x),

R
( c√

q
, d√

q
)

N (x; q, t)P
(a,b,c,d)
λ (x) = q− |λ|

2

N∏

i=1

(1 − cdqλi −1t N−i ) P
(
√

qa,
√

qb, c√
q
, d√

q

λ (x),

(3.8)

where |λ| =
∑N

i=1 λi . The product

D̂
(a,b,c,d)
N (x; q, t) = R

(a,b)
N (x; q, t)R

(q
− 1

2 c,q
− 1

2 d)

N (x; q, t) (3.9)

commutes with the Koornwinder operators, since Koornwinder polynomials satisfy

the eigenvalue equation

D̂
(a,b,c,d)
N (x; q, t) P

(a,b,c,d)
λ (x) = d̂

(a,b,c,d)
λ;N

P
(a,b,c,d)
λ (x),

with eigenvalues

d̂
(a,b,c,d)

λ;N
= q−|λ|

N∏

i=1

(1 − abqλi t N−i )(1 − cdqλi −1t N−i ). (3.10)

The operator (3.9) is not linearly independent of the set of Koornwinder-Macdonald

operators: See Sect. A.2.3, Lemma A.10 for the explicit expression. However, its

factored form will play a crucial role in the proof of our main theorems below.

5 Some of these operators actually appeared in earlier works of van Diejen, but Rains’ construction is more

systematic.
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3.1.4 Duality

Due to the existence of an anti-involution ∗ of the DAHA, Koornwinder polynomials

obey a remarkable duality property [45, 51]. The involution acts on the parameters

(a, b, c, d) as

a∗ =
(abcd

q

)1/2
, b∗ = −

(
q

ab

cd

)1/2
, c∗ =

(
q

ac

bd

)1/2
, d∗ = −

(
q

ad

bc

)1/2
,

(3.11)

so that σ ∗ = a. The duality property for Koornwinder polynomials is

P
(a,b,c,d)
λ (qμtρ

∗
)

P
(a,b,c,d)
λ (tρ

∗
)

= P
(a∗,b∗,c∗,d∗)
μ (qλtρ)

P
(a∗,b∗,c∗,d∗)
μ (tρ)

. (3.12)

where μ, λ are both integer partitions. ρ, ρ∗ are defined by

tρi = tρ
(a,b,c,d)
i = σ t N−i , tρ

∗
i = tρ

(a∗,b∗,c∗,d∗)
i = at N−i . (3.13)

3.1.5 Pieri rules

Using the duality relation (3.12), one obtains the Pieri rules for Koornwinder poly-

nomials with parameters (a, b, c, d) from the eigenvalue equation with parameters

(a∗, b∗, c∗, d∗). It is useful to define the function

�(a,b,c,d)(x) :=
N∏

i=1

(
q

x2
i

; q)∞

(
q

axi
; q)∞(

q
bxi

; q)∞(
q

cxi
; q)∞(

q
dxi

; q)∞

×
∏

1≤i< j≤N

∏

ε=±1

(
qxε

j

xi
; q)∞

(
qxε

j

t xi
; q)∞

. (3.14)

The normalization factor in the duality (3.12) is given by (See Theorem 5.1 of [51]):

P
(a,b,c,d)
λ (tρ

∗
) = tρ

∗·λ �(a∗,b∗,c∗,d∗)(tρ)

�(a∗,b∗,c∗,d∗)(qλtρ)
,

P(a∗,b∗,c∗,d∗)
μ (tρ) = tρ·μ �(a,b,c,d)(tρ

∗
)

�(a,b,c,d)(qμtρ
∗
)
, (3.15)

Using the parametrization x = qμtρ
∗

in the eigenvalue Eq. (3.6),

Dm(qμ tρ
∗; q, t)Pλ(q

μ tρ
∗
) = θm êm(qλtρ) Pλ(q

μ tρ
∗
), m ∈ [1, N ],

(3.16)
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where θm = σm tm(N− m+1
2 ) and �i : μ j 	→ μ j + δi, j in the difference operator

Dm = D
(a,b,c,d)
m . Upon specializing μ to integer partitions, we use the duality relation

(3.12), where we replace the normalization factor by (3.15). Eq. (3.16) becomes

θm êm(qλtρ) P∗
μ(qλ tρ)

= P∗
μ(tρ)Dm(qμ tρ

∗; q, t) P∗
μ(tρ)−1 P∗

μ(qλ tρ)

=
(

tρ·μ�(qμ tρ
∗
)−1

Dm(qμ tρ
∗; q, t)�(qμ tρ

∗
) t−ρ·μ

)
P∗

μ(qλ tρ).

Acting with the involution ∗ on the parameters and interchanging the roles of λ and

μ (i.e. x and s) above, we arrive at the following Pieri rules.

Theorem 3.3 The Pieri rules for the Koornwinder polynomials are

H
(a,b,c,d)
m (s; q, t) P

(a,b,c,d)
λ (x) = êm(x) P

(a,b,c,d)
λ (x), (3.17)

where the Pieri operators H
(a,b,c,d)
m (s; q, t) are obtained from conjugating the Koorn-

winder operator of the dual theory:

H
(a,b,c,d)
m (s; q, t) = 1

θ∗
m

tρ
∗·λ�(a∗b∗c∗d∗)(s)−1

D
(a∗b∗c∗d∗)
m (s; q, t)�(a∗b∗c∗d∗)(s)t−ρ∗·λ.

(3.18)

In the difference operators Hm , s is specialized to qλ tρ with λ an integer partition,

θ∗
m = am tm(N− m+1

2 ), and Ti : λ j 	→ λ j + δi, j .

The explicit first Pieri operator H
(a,b,c,d)
1 (s; q, t) is derived in Theorem B.1 of

Appendix B.

3.2 Specialization of the parameters (a, b, c, d)

3.2.1 g-Macdonald operators and polynomials

The Macdonald operators for type g are a set of N commuting operators which com-

mute with the specialization of the Koornwinder operators at values of (a, b, c, d)

indicated in Table 1. The list of operators is given in Definition A.8. In most cases, these

are just the specialized Koornwinder-Macdonald operators, but for a few exceptions,

where the operators are chosen so that their eigenvalues be fundamental characters of

the finite-dimensional algebra R∗ = R(g∗). This occurs when R∗ = BN or DN .

Remark 3.4 The case of A
(2)
2N is special, as R = BCN = R∗ is non-reduced. In this

case, we must use the set of simple roots αa = α∗
a for BN , and the set of fundamental

weights ωa = ω∗
a for CN .
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Table 1 Specialization of the Koornwinder parameters a, b, c, d corresponding to the affine algebra g. The

pair (R, S) refer to a pair of classical root systems corresponding to Macdonald’s notation [40], used in

Appendix A, except for A
(2)
2n

g g∗ a b c d R S R∗ ξg

D
(1)
N

D
(1)
N

1 −1 q
1
2 −q

1
2 DN DN DN 0

B
(1)
N

C
(1)
N

t −1 q
1
2 −q

1
2 BN BN CN

1
2

C
(1)
N

B
(1)
N

t
1
2 −t

1
2 t

1
2 q

1
2 −t

1
2 q

1
2 CN CN BN 1

A
(2)
2N−1

A
(2)
2N−1

t
1
2 −t

1
2 q

1
2 −q

1
2 CN BN CN

1
2

D
(2)
N+1

D
(2)
N+1

t −1 t q
1
2 −q

1
2 BN CN BN 1

A
(2)
2N

A
(2)
2N

t −1 t
1
2 q

1
2 −t

1
2 q

1
2 BCN – BCN 1

Table 2 The list of chosen

symmetric functions forming a

basis for the fundamental

characters of the finite Lie

algebra R. The exceptional

symmetric functions in the table

are given in (A.32)

R ê
(R)
a (x)

DN ê1, ..., êN−2, ê
(DN )

N−1
, ê

(DN )

N

BN ê1, ê2, ..., êN−1, ê
(BN )

N

CN , BCN ê1, ê2, ..., êN

The principle for the choice of g-Macdonald operators is that their spectrum gen-

erates the Grothendieck ring of the algebra R∗ associated to each g. The choice is not

unique. Define

Ng :=

⎧
⎪⎪«
⎪⎪¬

N , for g = A
(1)
N−1, B

(1)
N , A

(2)
2N−1, A

(2)
2N ,

N − 1, for g = C
(1)
N , D

(2)
N+1,

N − 2, for g = D
(1)
N .

(3.19)

Definition 3.5 For m ≤ Ng, the g-Macdonald operators D
(g)
m = D

(g)
m (x) are

D
(g)
m := D

(a,b,c,d)
m , m ∈ [1, Ng],

where D
(a,b,c,d)
m are as in Definition 3.2 with (a, b, c, d) specialized according Table 1.

For Ng < m ≤ N , we use the operators constructed by Macdonald, described in

Sect. A.1:

D
(1)
N : D

(D
(1)
N )

a := E
(D

(1)
N )

ωa , a = N − 1, N ; (3.20)

C
(1)
N : D

(C
(1)
N )

N := E
(C

(1)
N )

ωN
, (3.21)

D
(2)
N+1 : D

(D
(2)
N+1)

N := E
(D

(2)
N+1)

ωN
. (3.22)
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where E
(D

(1)
N )

ωa ,E
(C

(1)
N )

ωN
,E

(D
(2)
N+1)

ωN
are as in (A.4-A.5),(A.6),(A.7) respectively.

The choice of higher commuting difference operators (3.5) is such that the eigen-

value equation for the mth g-Macdonald operator is (see Theorem A.15):

D
(g)
m (x; q, t)P

(g)
λ (x) = θ (g)

m ê(R∗)
m (s) P

(g)
λ (x), (3.23)

where θ
(g)
m are as in (A.34-A.35) and ê

(R)
m (x) are listed in Table 2 (as these involve

the fundamental weights we choose the same eigenvalues for type BCN and CN , see

Remark 3.4).

In particular, the first g-Macdonald operators are simply the specialization of the

Koornwinder-Macdonald operator (3.4).

D
(g)
1 (x; q, t) = tρ

g

1 ê1(t
ρg

) +
N∑

i=1

∑

ε=±1

φ
(g)
i,ε (x; q, t)(�ε

i − 1). (3.24)

The factor σ under the specialization is tξg (see Table 1), so that

si = qλi t N+ξg−i = qλi tρ
(g)
i , (i = 1, 2, ..., N ), (3.25)

where ρ(g) = ρ(S) is the half-sum of positive roots of S (except when g = A
(2)
2N ). The

functions φ
(g)
i,ε (x; q, t) are

φ
(g)
i,ε (x; q, t) =

∏

j �=i

∏

ε′=±1

t xε
i xε′

j − 1

xε
i xε′

j − 1
×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

1, g = D
(1)
N ;

t xε
i − 1

xε
i − 1

, g = B
(1)
N ;

t x2ε
i − 1

x2ε
i − 1

tqx2ε
i − 1

qx2ε
i − 1

, g = C
(1)
N ;

t x2ε
i − 1

x2ε
i − 1

, g = A
(2)
2N−1;

t xε
i − 1

xε
i − 1

tq1/2xε
i − 1

q1/2xε
i − 1

, g = D
(2)
N+1;

t xε
i − 1

xε
i − 1

tqx2ε
i − 1

qx2ε
i − 1

, g = A
(2)
2N .

The unique monic eigenfunction P
(g)
λ (x) of D

(g)
1 (x; q, t) with eigenvalue tρ

g

1 ê1(s),

where λ is g-partition, is the g-type Macdonald (Laurent) polynomial.

Definition 3.6 A g-partition is a set λ = (λ1, ..., λN ) such that
∑

i λi ei is a dominant

integral weight of R = R(g).
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Table 3 The subset R̂++ of the affine roots for each affine algebra g

G Affine roots in R̂++

D
(1)
N

nδ + (ei ± e j ) (1 ≤ i < j ≤ N ; n ≥ 1)

B
(1)
N

nδ + ei (1 ≤ i ≤ N ), nδ + (ei ± e j ) (1 ≤ i < j ≤ N ; n ≥ 1)

C
(1)
N

nδ + 2ei (1 ≤ i ≤ N ), nδ + (ei ± e j ) (1 ≤ i < j ≤ N ; n ≥ 1)

A
(2)
2N−1 2nδ + 2ei (1 ≤ i ≤ N ), nδ + (ei ± e j ) (1 ≤ i < j ≤ N ; n ≥ 1)

D
(2)
N+1

n
2 δ + ei (1 ≤ i ≤ N ), nδ + (ei ± e j ) (1 ≤ i < j ≤ N ; n ≥ 1)

A
(2)
2N

nδ + ei , (2n − 1)δ + 2ei (1 ≤ i ≤ N ),

nδ + (ei ± e j ) (1 ≤ i < j ≤ N ; n ≥ 1)

The g-partitions are simply integer partitions except in the cases R = BN , DN . In

type DN , λ ∈
{
(Z+)N−1 × Z

}
∪
{
(Z++1

2 )
N−1 × (Z +1

2 )
}
, λ1 ≥ · · · ≥ λN−1 ≥ |λN |,

and in type BN λ ∈ (Z+)N ∪ (Z++1
2 )

N , λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0.

Remark 3.7 The g-Macdonald polynomial P
(g)
λ (x) with λ an integer partition is the

specialization of the Koornwinder polynomial, indexed by the same partition, to the

parameters of Table 1. For non-integer partitions, g-Macdonald polynomials can be

obtained from a different specialization of the parameters [50], see Sect. 4.3.3 in type

B. Alternatively, we can use the specialization of the universal functions of Sect. 5,

see remark 5.2.

3.2.2 Duality

The involution ∗ acting on the parameters (a, b, c, d) implies an involution g 	→ g∗ and

R 	→ R∗, as listed in Table 1. In particular, g = g∗ except in the cases (C
(1)
N )∗ = B

(1)
N

and (B
(1)
N )∗ = C

(1)
N .

The duality relation (3.12), specialized to g-Macdonald polynomials is

P
(g)
λ (qμtρ

∗
)

P
(g)
λ (tρ

∗
)

= P
(g∗)
μ (qλtρ)

P
(g∗)
μ (tρ)

. (3.26)

Note, however, that the range of validity of (3.26) is wider, as λ can be any g-partition,

while μ is any g∗-partition, and these are not necessarily integer partitions as in (3.12).

First conjectured by Macdonald, the duality (3.26) was successively proved for all

types in the case of integer partitions: for type A, it appears in [39], for other types

the main proof is in [7], supplemented by [51] and [45] upon specialization of (3.12).

See Section 5 for a more general duality statement.

For α = nδ + α1 + · · · + αN ∈ R̂, define xα = q−n x
α1

1 · · · x
αN

N . The function � in

Eq. (3.14) has the following specializations:

�(g)(x) =
∏

α∈R̂++

1 − x−α

1 − t−1x−α
, (3.27)
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where R̂++ = {α + nδ ∈ R̂ : α ∈ R+, n > 0} is a subset of the affine roots of g,

see Table 3. In all cases but g = A
(2)
2N , � is closely related to a simplified version of

Macdonald’s function �+ [40], suitable for taking the dual q-Whittaker limit t → ∞.

The function � enters the duality relation (3.26) via the evaluation formulas (see (0.6)

in [7])

P
(g)
λ (tρ

∗
) = tρ

∗·λ �(g∗)(tρ)

�(g∗)(qλtρ)
, P(g∗)

μ (tρ) = tρ·μ �(g)(tρ
∗
)

�(g)(qμtρ
∗
)
. (3.28)

3.2.3 Pieri rules

As in the case of generic (a, b, c, d), the Pieri rules follow from the eigenvalue Eqs.

(3.23) and the duality (3.26). Start with (3.23) with x = qμ tρ
∗
, and specialize μ to a

g∗-partition:

D
(g)
m (qμ tρ

∗; q, t)P
(g)
λ (qμ tρ

∗
) = θ (g)

m ê(R∗)
m (qλtρ) P

(g)
λ (qμ tρ

∗
), (3.29)

where (x, �) is specialized to (qμtρ
∗
, e∂μ). Following the same steps as in Sect. 3.1.5,

using the duality relation (3.26), one obtains the g-Pieri formulas:

Theorem 3.8 The Pieri rules for g-Macdonald polynomials are

H
(g)
m (s; q, t) P

(g)
λ (x) = ê(R)

m (x) P
(g)
λ (x), (3.30)

where the difference operators H
(g)
m (s; q, t) are given in terms of D

(g∗)
m (s; q, t):

H
(g)
m (s; q, t) = 1

θ
(g∗)
m

tρ
∗·λ �(g∗)(s)−1

D
(g∗)
m (s; q, t)�(g∗)(s) t−ρ∗·λ. (3.31)

The explicit Pieri operators H
(g)
1 (s; q, t) are listed in Sect. B.2.

3.3 The q-Whittaker limit

The Macdonald polynomials have a symmetry (t, q) 	→ (t−1, q−1). For certain root

systems, the q-Whittaker polynomials are the t → 0 limit of the Macdonald poly-

nomials, and therefore the q−1-Whittaker polynomials are the t → ∞ limit of these

polynomials. In this paper, we define the various functions and operators so that they

have well-defined limits as t → ∞. We refer to this as the q-Whittaker limit by slight

abuse of terminology. We also call q-Whittaker polynomials what technically should

be called q−1-Whittaker polynomials.
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3.3.1 Whittaker difference operators

The eigenvalue equations and Pieri rules of the previous section have well-defined

q-Whittaker limits. Define

	
(g)
λ (x) = lim

t→∞
P

(g)
λ (x) (3.32)

and

D(g)
a (x; q) = lim

t→∞
(θ (g)

a )−2
D

(g)
a (x; q, t), (a = 1, 2, ..., N ). (3.33)

The first q-Whittaker difference operators are obtained from Eq. (3.2.1):

D
(g)
1 (x; q) = 1 +

N∑

i=1
ε=±1

φ
(g)
i,ε (x)(�ε

i − 1), (3.34)

with

φ
(g)
i,ε (x) =

∏

j �=i

xε
i

xε
i − x j

xε
i x j

xε
i x j − 1

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

1 (D
(1)
N );

xε
i

xε
i −1

, (B
(1)
N ),

x2ε
i

x2ε
i −1

qx2ε
i

qx2ε
i −1

, (C
(1)
N ),

x2ε
i

x2ε
i −1

, (A
(2)
2N−1),

xε
i

xε
i −1

q
1
2 xε

i

q
1
2 xε

i −1
, (D

(2)
N+1),

xε
i

xε
i −1

qx2ε
i

qx2ε
i −1

, (A
(2)
2N ).

(3.35)

The limiting eigenvalues of D
(g)
m (x; q) are not symmetric functions because of the

dependence of s on t . Instead, they are given by the dominant term in t in the functions

ê
(R∗)
a (s), �ω∗

a . The eigenvalue equations are (see Sect. A.4, Theorem A.18)

D(g)
a (x; q)	

(g)
λ (x) = �ω∗

a 	
(g)
λ (x). (3.36)

3.3.2 Pieri rules and Toda Hamiltonians

The Pieri operators (3.31) have well-defined limits as t → ∞. Let

H (g)
m (�; q) := lim

t→∞
H

(g)
m (s = �tρ

(g); q, t). (3.37)

Using the Pieri operators from Sect. B.2 (see also Remark B.3), and taking the t → ∞
limit, we obtain the following list of first Pieri operators.
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Theorem 3.9 For all g, the first Pieri operators take the form

H
(g)
1 (�; q) =

N∑

i=1

(1 − �−α∗
i−1)Ti +

NR∗∑

i=1

(1 − �−α∗
i )T −1

i + M (g)(�; q),

(3.38)

where the roots α∗
i are the simple roots of R∗ and α∗

0 = 0 by convention. Here,

NR∗ = N − 1 if R∗ = BN , N − 2 if R∗ = DN , and is equal to N otherwise. The

boundary terms M (g)(�; q) are as follows:

M (g)(�; q) =

⎧
⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪¬

(1−�
−α∗

N )(T −1
N +(1−�

−α∗
N−1 )T −1

N−1), g = D
(1)
N ,

(1−�
−α∗

N )(1−q�
−α∗

N )T −1
N +�

−α∗
N (q−1�

−α∗
N−1−(1+q−1)),g = B

(1)
N ,

0, g = C
(1)
N , A

(2)
2N−1,

(1−�
−α∗

N )(1−q
1
2 �

−α∗
N )T −1

N , g = D
(2)
N+1,

−�
−α∗

N , g = A
(2)
2N .

(3.39)

Explicitly, the first Pieri operators are:

H
(D

(1)
N )

1 (�) = T1 +
N∑

i=2

(
1 − �i

�i−1

)
Ti +

N−2∑

i=1

(
1 − �i+1

�i

)
T −1

i

+
(

1 − �N

�N−1

)(
1 − 1

�N−1�N

)
T −1

N−1 +
(

1 − 1

�N−1�N

)
T −1

N ,

H
(B

(1)
N )

1 (�) = T1 +
N∑

i=2

(
1 − �i

�i−1

)
Ti +

N−1∑

i=1

(
1 − �i+1

�i

)
T −1

i

+
(

1 − 1

�2
N

)(
1 − q

�2
N

)
T −1

N + q−1

�N−1�N

− 1 + q−1

�2
N

,

H
(C

(1)
N )

1 (�) = T1 +
N∑

i=2

(
1 − �i

�i−1

)
Ti +

N−1∑

i=1

(
1 − �i+1

�i

)
T −1

i +
(

1 − 1

�N

)
T −1

N ,

H
(A

(2)
2N−1)

1 (�) = T1 +
N∑

i=2

(
1 − �i

�i−1

)
Ti +

N−1∑

i=1

(
1 − �i+1

�i

)
T −1

i +
(

1 − 1

�2
N

)
T −1

N ,

H
(D

(2)
N+1)

1 (�) = T1 +
N∑

i=2

(
1 − �i

�i−1

)
Ti +

N−1∑

i=1

(
1 − �i+1

�i

)
T −1

i

+
(

1 − 1

�N

)(
1 − q

1
2

�N

)
T −1

N − 1 + q− 1
2

�N

,

H
(A

(2)
2N )

1 (�) = T1+
N∑

i=2

(
1 − �i

�i−1

)
Ti +

N−1∑

i=1

(
1 − �i+1

�i

)
T −1

i +
(

1 − 1

�N

)
T −1

N − 1

�N

.
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The first q-Whittaker Pieri rule is

H
(g)
1 (�)	

(g)
λ (x) = ê1(x)	

(g)
λ (x). (3.40)

Alternatively this equation can be interpreted as the eigenvector equation for q-

Whittaker functions in which the roles of variables � and x are interchanged.

Remark 3.10 The Pieri operators H
(g)
1 (�; q) match the relativistic Uq(R)-Toda

Hamiltonians acting on functions of � [27, 52] upon the following correspondence:

D
(1)
N → DN , D

(2)
N+1 → BN , A

(2)
2N−1 → CN .

The equivalence uses the Etingof automorphism [21] Ti 	→ T2�i
, �i 	→ �i T−�i

and

v = q
1
2 in the notations of [27]. To our knowledge, the cases g = B

(1)
N , C

(1)
N , A

(2)
2N

do not appear in the literature in relation to standard constructions of q-Whittaker

functions for quantum groups. By a slight abuse of terminology, we still call the cor-

responding limits of Macdonald polynomials q-Whittaker functions, and the limiting

Pieri operators Toda Hamiltonians, and keep our labeling with (twisted) affine algebras

to avoid confusion. The same correspondence in the q = 1 limit occurs in relation

to factorization dynamics [54], where the BN , CN cases match classical Q-system

evolutions for the twisted algebras g = D
(2)
N+1, A

(2)
2N−1 respectively.

3.3.3 Generalized q-Whittaker difference operators

In this section, we consider the τ+ ∈ SL(2, Z)-action on the q-Whittaker difference

operators of Sect. 3.3.1. Let γ (x) be as in Eq. (2.16). We will define “translated” oper-

ators D
(g)

a;n for all a = 1, 2, ..., N and n ∈ Z, by suitable use of iterated conjugations

with γ −1. There is a subtlety arising from a distinction according to whether a is a

long or short label. These do not necessarily correspond to long and short roots of R,

but are determined instead by the Q-system evolutions described in the next section.

Definition 3.11 All labels a ∈ [1, N ] are long except for the following cases: a = N

for B
(1)
N , a ∈ [1, N − 1] for C

(1)
N , and a ∈ [1, N ] for A

(2)
2N .

In general, we think of the integer n as a discrete time, and as Adγ −1 as a “time

translation” operator.

Definition of D
(g)

1;n(x) and properties We start with the definition of the operators

D
(g)

1;n(x), which depends on whether a = 1 is a long or short label.

Definition 3.12 When the label a = 1 is long (g = D
(1)
N , B

(1)
N , A

(2)
2N−1, D

(2)
N+1), define,

for any n ∈ Z,
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D
(g)

1;n(x) := q− n
2 γ −n D

(g)
1 (x; q) γ n = q− n

2 +
∑

i,ε

φ
(g)
i,ε (x) (xnε

i �ε
i − q− n

2 ),

(3.41)

with φ
(g)
i,ε (x) as in (3.35).

Definition 3.13 When the label a = 1 is short (g = C
(1)
N , A

(2)
2N ) define

D
(g)

1;−1(x) =
∑

i,ε

φ
(g)
i,ε (x) x−ε

i (�ε
i − 1), (3.42)

with φ
(g)
i,ε (x) as in (3.35). Then for all n ∈ Z and for i = 0,−1, define

D
(g)

1;2n+i
(x) = q−n γ −2n D

(g)
1,i (x; q) γ 2n, (3.43)

where D
(g)
1,0(x; q) = D

(g)
1 (x; q).

Conjugating (3.34) and (3.42) by γ −2n , we have, when g = C
(1)
N , A

(2)
2N ,

D
(g)

1;2n
(x) = q−n +

∑

i,ε

φ
(g)
i,ε (x) (x2nε

i �ε
i − q−n), (3.44)

D
(g)

1;2n−1(x) =
∑

i,ε

φ
(g)
i,ε (x) x−ε

i (x2nε
i �ε

i − q−n). (3.45)

The main difference between the cases of Definitions 3.12 and 3.13 is that in the

latter case the translation splits into distinct even and odd time evolution Eqs. (3.44–

3.45).

Lemma 3.14 We have the commutation relation

[D
(g)

1;n(x), ê1(x)] = (q − 1) D
(g)

1;n+1(x) + (q−1 − 1) D
(g)

1;n−1(x). (3.46)

Proof Using

[�ε
i , ê1(x)] = (qε − 1)xε

i �ε
i + (q−ε − 1)x−ε

i �ε
i =

∑

ε′
(qε′ − 1)xεε′

�ε .

we have

[D
(g)
1,n , e

(x)
1 ] =

N∑

i=1

∑

ε=±1

φi,εxnε[�ε
i , ê1(x)] =

∑

i,ε,ε′
φi,εx (n+ε′)ε(qε′ − 1)�ε .

��
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Definition of higher generalized q-Whittaker operators

The higher, generalized q-Whittaker operators are denoted by D
(g)

a;n(x), with a ∈
[1, N ] and n ∈ Z. They are defined as follows.

Definition 3.15 For all a ∈ [1, N ] and for all n,

D
(g)
a,tan(x) = q−ntaω∗

a ·ωa/2γ −t1n D(g)
a (x)γ t1n,

where D
(g)
a (x) are defined in (3.33) and ωa (ω∗

a) are fundamental weights of R (R∗),

ta = 2 for short labels and ta = 1 for long labels in Definition 3.11.

Definition 3.16 For the short labels a ≥ 2 of C
(1)
N and A

(2)
2N , define

D
(g)

a;−1 := (−1)a

q − 1
[D

(g)

1;−a
, D

(g)

a−1;0]qa , (n ∈ Z), (3.47)

where [A, B]p = [A, B]p = AB − pB A. Then

D
(g)

a;2n−1 = q−na γ −2n D
(g)

a;−1 γ 2n = (−1)a

q − 1
[D

(g)

1;2n−a
, D

(g)

a−1;2n
]qa .

Definition 3.16 anticipates on the desired connection to the quantum Q-systems of

the next section and uses a recursive reformulation of the quantum Q-system solution

obtained in [17].

Finally, to define the generalized difference operators with odd n corresponding to

the label a = N , g = B
(1)
N , we use the Rains operators R

(u,v)
N and D̂

(a,b,c,d)
N of (3.7)

and (3.9), with the specialization (a, b, c, d) = (t,−1, q1/2,−q1/2):

D̂
(B

(1)
N )

N = D̂
(t,−1,q1/2,−q1/2)

N = R
(1)
N R

(0)
N

with

R
(1)
N = R

(t,−1)
N , R

(0)
N = R

(1,−1)
N .

In the q-Whittaker limit t → ∞, these become

D̂
(B

(1)
N )

N = lim
t→∞

t−N 2

D̂
(B

(1)
N )

N = R
(1)
N R

(0)
N , (3.48)

with

R
(0)
N = lim

t→∞
t−(N

2)R
(1,−1)
N

=
∑

ε1,...,εN =±1

∏

1≤i< j≤N

x
εi

i x
ε j

j

x
εi

i x
ε j

j − 1

N∏

i=1

�
εi /2
i , (3.49)
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R
(1)
N = lim

t→∞
t−(N

2)R
(t,−1)
N

=
∑

ε1,...,εN =±1

N∏

i=1

x
εi

i

x
εi

i − 1

∏

1≤i< j≤N

x
εi

i x
ε j

j

x
εi

i x
ε j

j − 1

N∏

i=1

�
εi /2
i . (3.50)

The factorized form of D̂
(B

(1)
N )

N can be used to define the discrete time evolution as

follows:

Definition 3.17 Let n ∈ Z. Define

R
(i)
N ;n = q− Nn

8 γ −n R
(i)
N γ n, (i = 0, 1),

D
(B

(1)
N )

N ;2n−1 = q− Nn
4 R

(1)

N ;n−1 R
(0)

N ;n . (3.51)

Note in particular that D
(B

(1)
N )

N ;2n−1 = q− nN
2 γ −n D

(B
(1)
N )

N ;−1 γ n , similarly to the even n

case where D
(B

(1)
N )

N ;2n
= q− nN

2 γ −n D
(B

(1)
N )

N ;0 γ n .

4 QuantumQ-systems andMacdonald operator conjecture

For any affine algebra g, there is a corresponding Q-system [28, 29], which is a

recursion relation satisfied by the characters of the KR-modules [5] of the Yangian

Y (g). Their deformation into recursion relations for non-commuting variables, called

quantum Q-systems, were first defined [15] using the identification of the Q-system

recursion relations as mutations in a cluster algebra. In that case, one may use the

canonical quantization of the cluster algebra [1], and in [15, 37, 38] it is shown that

this quantization is related to the graded fusion characters for g. In special cases, these

are known to be related to q-Whittaker functions.

One of the main conjectures presented in [19] is that for untwisted g in Table 1,

some q-difference operators D
(g)

a;n(x) satisfy the quantum Q-system relations of type

g, and that the operators D
(g)

a;1 and D
(g)

a;−1 act as raising and lowering operators when

acting on the eigenfunctions 	
(g)
λ (x) of D

(g)

a;0. The purpose of this section is to prove

these statements for all g of Table 1.

4.1 Statement of themain theorems

4.1.1 Quantum Q-systems

For each g, we consider an algebra generated by invertible, non-commuting elements

{Q±1
a;n : a ∈ [1, N ], n ∈ Z}. The quantum Q-system of type g is a set of relations

among these generators, which depend on the root data of g.
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Definition 4.1 For each g, let �(g) be the N × N matrix defined by

�
(g)
a,b = ω∗

a · ωb, a, b ∈ [1, N ], (4.1)

where ωa and ω∗
a are the fundamental weights of type R and R∗ respectively, and · is

the standard inner product.

In the case of untwisted g, �(g) is the inverse of the Cartan matrix C of R, since

ω∗
a = ω∨

a . For the case g = D
(2)
N+1, �(g) is the inverse of the symmetrized Cartan

matrix of type BN , and for g = A
(2)
M , it is the inverse of the symmetrized Cartan

matrix of type C� M+1
2 �:

�
(D

(2)
N+1)

a,b = (Da,a)−1 �
(B

(1)
N )

a,b =

⎧
«
¬

min(a, b), (a, b < N )
1
2

min(a, b), (a = N , or b = N )
1
4

N , (a = b = N ),

�
(A

(2)
2N−1)

a,b = �
(A

(2)
2N )

a,b = (D′
a,a)−1 �

(C
(1)
N )

a,b = min(a, b).

Here, D = diag(1, 1, ..., 1, 2) and D′ = D−1 are such that C = C (BN )D and C =
C (CN )D′ are symmetric. These are chosen so that �

(g)
1,1 = 1. Defining ta = 2 for αa a

short simple root of R, ta = 1 for αa long, t1/ta is Da,a for type B and D′
a,a for type

C .

The quantum Q-system relations are of two types. The first are q-commutation

relations:

Qa;tak+i Qb;tbk+ j = q
�

(g)
a,b j−�

(g)
b,a i

Qb;tbk+ j Qa;tak+i , (i, j = 0, 1, k ∈ Z).

(4.2)

The second type of relations are evolution equations in the discrete time variable n,

and have the form q�aa Qa;n+1Qa;n−1 = Q2
a;n − Ta;n for some monomials Ta;n . Let

N̄g be the maximal integer such that (�(g))a,a = a for a ≤ N̄g + 1:

N̄
D

(1)
N

= N − 3; N̄g = N − 2, g = B
(1)
N , C

(1)
N , D

(2)
N+1;

N̄g = N − 1, g = A
(2)
2N , A

(2)
2N−1.

The evolution equations are

qa
Qa;n+1 Qa;n−1 = Q

2
a;n − Qa+1;n Qa−1;n, a ∈ [1, N̄g], all g. (4.3)
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D
(1)
N : q N−2 QN−2;n+1 QN−2;n−1 = Q2

N−2;n − q− (N−2)n
4 QN−3;n QN−1;n QN ;n,

q
N
4 QN−1;n+1 QN−1;n−1 = Q2

N−1;n − q
(N−4)n

4 QN−2;n,

q
N
4 QN ;n+1 QN ;n−1 = Q2

N ;n − q
(N−4)n

4 QN−2;n,

B
(1)
N : q N−1 QN−1;n+1 QN−1;n−1 = Q2

N−1;n − QN−2;nQN ;2n,

q
N
2 QN ;2n+1 QN ;2n−1 = Q2

N ;2n
− q−n Q2

N−1;n,

q
N
2 QN ;2n+2 QN ;2n = Q2

N ;2n+1 − q
N
2 −n−1

QN−1;n+1QN−1;n,

C
(1)
N : q N−1 QN−1;2n+1 QN−1;2n−1 = Q2

N−1;2n
− q− Nn

2 QN−2;2nQ2
N ;n,

q N−1 QN−1;2n+2 QN−1;2n = Q2
N−1;2n+1−q− Nn

2 QN−2;2n+1QN ;n+1QN ;n,

q
N
2 QN ;n+1 QN ;n−1 = Q2

N ;n − q
(N−2)n

2 QN−1;2n,

D
(2)
N+1 : q N−1 QN−1;n+1 QN−1;n−1 = Q2

N−1;n − q− Nn
4 QN−2;nQ2

N ;n,

q
N
4 QN ;n+1 QN ;n−1 = Q2

N ;n − q
(N−2)n

4 QN−1;n,

A
(2)
2N−1 : q N QN ;n+1 QN ;n−1 = Q2

N ;n − q−n Q2
N−1;n,

A
(2)
2N : q N QN ;2n+1 QN ;2n−1 = Q2

N ;2n
− q−nQN−1;2nQN ;2n,

q N QN ,2n+2 QN ,2n = Q2
N ;2n+1 − q−n QN−1;2n+1QN ;2n+1.

(4.4)

Remark 4.2 If g �= A
(2)
2N , the evolution equations above are equivalent to the quan-

tization of the Q-system cluster algebras. These correspond to exchange matrices

[12, 32, 54]: B =
(

C t − C −C t

C 0

)
for untwisted g and B =

(
0 −C

C 0

)
for twisted

g, where C is the Cartan matrix of R. These correspond to the initial cluster data

(Qa;i : a ∈ [1, N ], i = 0, 1). We choose a skew-symmetric q-commutation matrix to

be the inverse of the skew-symmetrized matrix B, of the form

(
0 �

−�t �t − �

)
with

� = �(g) as in Definition 4.1. The quantized cluster variables obey the commutation

relations (4.2), and the relevant quantum mutations [12] are

q�
(g)
a,a Qa;n+1Qa;n−1 = (Qa;n)2 − q

1
2 D−1

a,a : Ta;n : (a = 1, 2, ..., N ), (4.5)

with Da,a = 1 except for a = N in types A
(2)
2N−1, D

(2)
N+1, where it is equal to 1

2
, 2,

respectively. The monomial Ta;k is the product of Qb;k′ appearing as the second term

in the right hand side of each Q-system relation, not including any factors of q, and

the normal ordering : · : is defined as :
∏

X
μi

i : = q
− 1

2

∑
i< j ai, j μi μ j X

μ1

1 · · · X
μk

k if

X i X j = qai, j X j X i . The quantum Q-system relations (4.3-4.4) are equivalent to the

quantum mutations (4.5) after a renormalization of the cluster variables (see [19]

Lemma 4.4).

In this section, we prove the following Theorem, which is one of the main results

of this paper:
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Theorem 4.3 For each g in Table 1, the limit t → ∞ of the generalized g-Macdonald

operators D
(g)

a;n(x, q) of Sect. 3.3.3 satisfy the corresponding quantum Q-system rela-

tions (4.2-4.4).

Therefore the algebra generated by the elements Qa;k subject to the quantum Q-

system relations has a functional representation given by the difference operators of

Sect. 3.3.3.

4.1.2 Raising/lowering operator conditions

We refer to the polynomials 	
(g)
λ (x) (3.32), which are the common eigenfuctions of

D
(g)

a;0(x; q) = D
(g)
a (x; q), as q-Whittaker polynomials. For non-twisted g, we conjec-

tured in [19] that D
(g)

a;1, D
(g)

a;−1 are raising and lowering operators acting on 	
(g)
λ (x).

The following are the statement of this result for all g in Table 1, and will be proven

in this Section:

Theorem 4.4 For any g in Table 1,

D
(g)

a;0(x)	
(g)
λ (x) = �ω∗

a 	
(g)
λ (x), (4.6)

D
(g)

a;1(x)	
(g)
λ (x) = �ω∗

a 	
(g)
λ+ωa

(x), (4.7)

where ωa and ω∗
a are fundamental weights of R or R∗, respectively.

Combining Theorem 4.4 and Theorem 4.3 with the relevant quantum Q-system

relations, it follows that D
(g)

a;−1(x) is a lowering operator:

Corollary 4.5 For all g, we have the following lowering operator conditions

D
(g)

a;−1(x)	
(g)
λ (x) = �ω∗

a (1 − �−α∗
a )	

(g)
λ−ωa

(x), (4.8)

where α∗
a are the simple roots of R∗.

Note that the prefactor guarantees that the result is 0 whenever λ−ωa is not a dominant

integral R-weight, i.e. not a g-partition.

The proof follows the steps of Sect. 2, using the Fourier transformed operators

D̄
(g)

a;n(�).

4.2 Opposite quantumQ-systems and integrability

For each g, we consider the solutions Q̄a;n which satisfy the quantum Q-system with

the opposite multiplication, referred to as the quantum Q̄-system. We construct a

representation D̄a;n(�) of the solutions Q̄a;n of the quantum Q̄-system, subject to

appropriate initial data, in terms of q-difference operators written in terms of the

quantum torus T� = 〈�i , Ti 〉N
i=1. Elements in this algebra act on functions of � as

q-difference operators in �. The initial data D̄a;0(�) are deduced from the eigenvalue
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Eq. (4.6). These are supplemented with a choice of D̄a;1(�) ensuring that the quantum

commutation relations opposite to those of Eq. (4.2) are satisfied:

D̄a;0 D̄b;1 = q
−�

(g)
a,b D̄b;1 D̄a;0, (4.9)

with �(g) as in (4.1).

Definition 4.6 For all g, define

D̄a;0 := D̄
(g)

a;0(�) = �ω∗
a , D̄a;1 := D̄

(g)

a;1(�) = �ω∗
a T ωa ,

where ωa, ω∗
a are fundamental weights of R, R∗.

These obey the relations (4.9), since �ω∗
a T ωb = q−ω∗

a ·ωb T ωb�ω∗
a . Since all Q-

system evolutions are two-step recursion relations, the following are uniquely defined:

Definition 4.7 Define D̄
(g)

a;n(�) = Q̄a;n for all n �= 0, 1 to be the solutions of the

g-type quantum Q̄-system relations subject to the initial data in Definition 4.6.

Remark 4.8 Due to the Laurent property of quantum cluster algebras [1], the solutions

D̄a;n are Laurent in the initial data {D̄a;i : i = 0, 1, a ∈ [1, N ]}. Since these are

monomials in {Ta,�a, a ∈ [1, N ]}, all quantum cluster variables are Laurent in the

quantum torus generators, therefore they are q-difference operators. Although this

argument doesn’t apply to g = A
(2)
2N , we will show that all solutions of the Q̄-system

are Laurent in this case also.

4.2.1 Time translation operator g

Theorem 4.9 Let D̄
(g)
a,n be as in Definition 4.7. For each g there exists an element

g = g(g) in a completion of the quantum torus T�, such that for all n ∈ Z:

D̄a,n = q− n
2 �

(g)
a,a gn D̄a,0 g−n, a long, (4.10)

D̄a,2n+i = q−n�
(g)
a,a gn D̄a,i g−n, i = 0, 1, a short. (4.11)

These elements are
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g(g) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

gT g�

(
1

�N−1�N
; q
)−1

∞
, g = D

(1)
N ,

(
g

1/2
T

(
1

�2
N

; q

)−1

∞

)2

g�, g = B
(1)
N ,

(gT g�)2
(

1
�N

; q
)−1

∞
, g = C

(1)
N ,

gT g�

(
1

�2
N

; q2

)−1

∞
, g = A

(2)
2N−1,

gT g�

∏∞
n=0

(
1

�N
; q

1
2

)−1

∞
, g = D

(2)
N+1,

gT g�

(
q

1
2

1
�N

; q
)−1

∞
gT g�

(
1

�N
; q
)−1

∞
, g = A

(2)
2N ,

(4.12)

where we use the shorthand gT , g� of Eqs. (2.23) and (2.26).

Note the �-dependence of g is only via �−α∗
a where α∗

a are the simple roots of R∗.

Proof The proof is by induction on n. The inductive step relies on the fact that Eqs.

(4.10) and (4.11), which can be written as

D̄a;m+ta = q−�
(g)
a,a ta/2gD̄a;m g−1, ta =

{
1 if a long

2 if a short
, (4.13)

are compatible with the Q̄-system evolution, from which D̄a;n are defined. Define for

all labels a: T̄a;n := Q̄2
a;n −q�a,a Q̄a;n−1Q̄a;n+1. If (4.13) hold for all m ≤ n, then they

hold for m = n+1 iff gT̄a;ng−1 = q�
(g)
a,a ta T̄a;n+ta . This is easily checked case-by-case.

To complete the proof, we must check (4.10-4.11) for some initial values of n. Using

the form of T̄a;n , we see that for long roots, it is enough to show that (4.10) holds for

n = −1 and n = 0, so we need the explicit expressions for D̄a,n with n = −1, 0, 1 to

start the induction, and for short roots, we also need the expression for n = 2:

D̄a,−1 = D̄a,0(1 − �−α∗
a )T −ωa , a ∈ [1, N ], (4.14)

D̄a,2 = D̄a,1(1 − �−α∗
a T −αa )T ωa , a short. (4.15)

Let hα(u) = (�−α; qu)−1
∞ , hα = hα(1) and h+

α = (q
1
2 �−α; q)−1

∞ . Then g� =∏N−1
a=1 hα∗

a
. It is useful to rewrite the g operators of (4.12) as

g = gT g� hα∗
N
(u), g = D

(1)
N , A

(2)
2N−1, D

(2)
N+1, u = 1, 2,

1

2
resp.,

g = g1g2 where g1 =

⎧
⎪«
⎪¬

g
1
2

T hα∗
N
,

gT g�,

gT g� h+
α∗

N
,

and g2 =

⎧
⎪«
⎪¬

g1 g�, g = B
(1)
N ,

g1 hα∗
N
, g = C

(1)
N ,

gT g�hα∗
N
, g = A

(2)
2N ,
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We use the exchange relations, valid for any x, y ∈ Q,

(gT )x (�a)y = q
xy2

2 (�a)y (Ta)xy (gT )x , (4.16)

hα∗
b

T ωa = T ωa (1 − �−α∗
a ) hα∗

b
,

h−1
α∗

b
T −ωa = (1 − �−α∗

a )T −ωa h−1
α∗

b
. (4.17)

Long labels. In this case, we need only verify that (4.10) hold for n = ±1, Note

that D̄a;0 = �ω∗
a commutes with g�. In the self-dual cases g = D

(1)
N , A

(2)
2N−1, D

(2)
N+1,

all labels are long and Eq. (4.10) with n = 1, gD̄a;0g−1 = q�a,a/2 D̄a;1, follows from

gT D̄a;0 = q
�a,a

2 �ω∗
a T ωa gT = q

�a,a
2 D̄a;1 gT .

For n = −1 it is equivalent to

g−1 D̄a;0 = h−1
α∗

N
g−1
� g−1

T �ω∗
a = q− �a,a

2 �ω∗
a g−1

� T −ωa h−1
α∗

N
g−1
�

= q− �a,a
2 D̄a;0 (1 − �−α∗

a )T −ωa g−1 = q− �a,a
2 D̄a;−1 g−1.

For the long labels a < N of B
(1)
N , ω∗

a = ωa , �a,a = a and (4.10) with n = ±1 follow
from

g
1/2
T hα∗

N
g

1/2
T D̄a;0 = q

a
4 g

1/2
T �ω∗

a T ωa/2 hα∗
N

g
1/2
T

= q
a
2 �ω∗

a T ωa g
1/2
T hα∗

N
g

1/2
T = q

a
2 D̄a;1g

1/2
T hα∗

N
g

1/2
T

and

g−1 D̄a;0 = g−1
� (h−1

α∗
N

g
−1/2
T )2 �ω∗

a = q− a
2 �ω∗

a g−1
� T −ω∗

a h−1
α∗

N
g

−1/2
T h−1

α∗
N

g
−1/2
T

= q− a
2 D̄a,0 (1 − �−α∗

a )T −ω∗
a g−1 = q− �a,a

2 D̄a;−1 g−1.

For the long label a = N of g = C
(1)
N , 2ω∗

N = ωN , (4.10) with n = ±1 follows from

gT g�gT D̄N ;0 = q
N
2 gT �ω∗

N g�T ω∗
N gT = q N �ω∗

N T 2ω∗
N gT g�gT = q N D̄N ;1 gT g�gT

and

g−1 D̄N ;0 = h−1
α∗

N
g−1
� g−1

T g−1
� g−1

T �ω∗
N = q− N

4 h−1
α∗

N
g−1
� g−1

T �ω∗
N T −ω∗

N g−1
� g−1

T

=q− N
2 �ω∗

N h−1
α∗

N
T −2ω∗

N (g−1
� g−1

T )2 = q− N
2 D̄N ;0 (1 − �−α∗

N )T −2ω∗
N g−1

=q− N
2 D̄N ;−1 g−1.

Therefore (4.10) holds when n = ±1 and a long.
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Short labels. Next we verify (4.11) for short labels a. We claim the following

half-evolution equations hold in types B
(1)
N , C

(1)
N , A

(2)
2N :

q− 1
2 �a,a g2 D̄a;0 g−1

2 = D̄a;1, (4.18)

q− 1
2 �a,a g1 D̄a;1 g−1

1 = D̄a;2. (4.19)

To see this, Eq. (4.18) for B
(1)
N with a = N , where ω∗

N = 2ωN , follows from

g2 D̄N ;0 g−1
2 = g

1
2

T �ω∗
N g

− 1
2

T = q
N
4 �ω∗

N T ωN = q
�N ,N

2 D̄N ;1.

For the short labels of C
(1)
N , A

(2)
2N , where ωa = ω∗

a , it follows from

g2 D̄a;0 g−1
2 = gT �ω∗

a g−1
T = q

a
2 �ω∗

a T ω∗
a = q

�a,a
2 D̄a;1.

Equation (4.19) g = B
(1)
N with a = N , where α∗

N = 2αN , follows from

g1 D̄N ;1 = g
1
2

T �ω∗
N hα∗

N
T ωN = g

1
2

T �ω∗
N T ωN (1 − �−α∗

N ) hα∗
N

= q
N
4 �ω∗

N T 2ωN (1 − q�−α∗
N T −α∗

N /2) g
1
2

T hα∗
N

= q
�N ,N

2 D̄N ;2 g1.

When a ≤ N − 1 for C
(1)
N , A

(2)
2N , for a ≤ N − 1, α∗

a = αa and

g1 D̄a;1 = gT �ω∗
a g�T ωa = gT �ω∗

a T ωa (1 − �−α∗
a ) g�

= q
a
2 D̄a;1 (1 − �−α∗

a T −α∗
a ) T ωa gT g� = q

a
2 D̄a;2 g1.

For A
(2)
2N , a = N ,

g1 D̄N ;1 = gT �ω∗
N g� h+

α∗
N

T ωN = gT �ω∗
N (1 − q− 1

2 �−α∗
N )T ωN g� h+

α∗
N

= q
N
2 D̄N ;1 (1 − �−α∗

N T −α∗
N ) gT g� h+

α∗
N

= q
N
2 D̄N ;2 g1.

Equations (4.18), (4.19) imply (4.11) follows for i = 1, n = 1.

We also have the half-evolution equations for short labels:

q
1
2 �a,a g−1

1 D̄a;1 g1 = D̄a;0, (4.20)

q
1
2 �a,a g−1

2 D̄a;0 g2 = D̄a;−1. (4.21)

Equation (4.20) is equivalent to D̄a;1 = q− 1
2 �a,a g1 D̄a;0 g−1

1 , which is unchanged if

we replace g1 by g2, as only the T -dependent part gT acts on D̄a;0, and the equation
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is therefore equivalent to (4.18). To show (4.21) for B
(1)
N ,

g−1
2 D̄N ;0 = g−1

� h−1
α∗

N
g

− 1
2

T �ω∗
N = q

N
2 �ω∗

N g−1
� h−1

α∗
N

T −ωN g
− 1

2

T

= q
N
2 �ω∗

N (1 − �−α∗
N ) T −ωN g−1

� h−1
α∗

N
g

− 1
2

T = q
N
2 D̄N ;−1 g−1

2 ,

and for a short in C
(1)
N , A

(2)
2N ,

g−1
2 D̄a;0 = q

a
2 �ω∗

a h−1
α∗

N
g−1
� T −ωa g−1

T

= q
a
2 �ω∗

a (1 − �−α∗
a )T −ωa h−1

α∗
N

g−1
� g−1

T = q
a
2 D̄a;−1 g−1

2 .

These half-evolutions imply Eq. (4.11) with i = 1, n = −1. The Theorem follows by

induction. ��

4.2.2 Integrability and conserved quantities

We claim that the time-translation operators g commute with the Pieri operators for

each g, which therefore have an interpretation as the conserved quantities of the quan-

tum Q̄-system.

Theorem 4.10 For all g, the operator g(g)(�) commutes with the first Pieri operator

H
(g)
1 (�).

The proof is by explicit calculation for each g. It is given in Appendix C.

In what follows, we need to generalize to type g the statement of Sect. 2.9 about the

uniqueness of the solutions to the first Pieri equation. Starting with D
(g)
1 (x)	

(g)
λ (x) =

�1 	
(g)
λ (x), writing 	

(g)
λ (x) = xλ p

(g)
λ (x), and conjugating (3.34) with x−λ results in

the equation

»
¼½

1

�1
+

N∑

i=1
ε=±1

φ
(g)
i,ε (x)

(
�ε

i

�1
�ε

i − 1

�1

)
− 1

¾
¿À p

(g)
λ (x) = 0.

The difference operator is polynomial in {�−α∗
i }, α∗

i the simple roots of R∗, so we

may analytically continue the solution p
(g)
λ (x) to p̂

(g)
λ (x), λ ∈ CN , and then con-

sider � to be a formal parameter. The coefficients φ
(g)
i,ε (x) have series expansions

in the variables x−αi , αi the simple roots of R, hence we may expand p̂
(g)
λ (x) =∑

β∈Q+(R) c
(g)
β (�)x−β , as well as c

(g)
β (�) =

∑
δ∈Q+(R∗) c

(g)
β,δ�

−δ . When dealing with

formal variables, we may exchange the summations and write a new series expansion,

p̂
(g)
λ (x) =

∑

δ∈Q+(R∗)

ĉ
(g)
δ (x)�−δ, ĉ

(g)
δ (x) =

∑

β∈Q+(R)

c
(g)
β,δx−β .
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The first Pieri Eq. (3.40) is also easily extended to formal λ, as the dependence on

�−α∗
a is polynomial, while Ti : � j 	→ qδi j � j .

Lemma 4.11 Let �λ(x) (λ arbitrary) be a solution of the first Pieri Eq. (3.40), such

that �λ(x) = xλ
∑

β∈Q+(R∗) τβ(x)�−β . Then when λ is evaluated as a g-partition,

	
(g)
λ = ĉ

(g)
0 (x)

τ0(x)
�λ(x).

Proof The Pieri equation is a triangular linear system for the coefficients τβ(x),

determined uniquely for β �= 0 up to the factor τ0(x). The same holds for the

coefficients ĉ
(g)
β (x) in the expansion of p̂

(g)
λ (x), up to ĉ

(g)
0 (x). We deduce that

xλ p̂
(g)
λ (x) = ĉ

(g)
0 (x)

τ0(x)
�λ(x). The Lemma follows by specialization to g-partitions.

��

Theorem 4.12 The action of g(�) on 	
(g)
λ (x) is equivalent to acting by a Gaussian

in x:

g(g)(�)	
(g)
λ (x) = γ (g)(x)	

(g)
λ (x), γ (g)(x) = γ (x)t1 , (4.22)

where t1 = 2 if 1 is a short label (i.e. g = C
(1)
N , A

(2)
2N ), and is equal to 1 otherwise.

In other words, g(g)(�) is the Fourier transform of γ (x)t1 .

Proof Like 	
(g)
λ (x), the quantity g(g)(�)	

(g)
λ (x) can be continued to arbitrary λ, and

we write it as g(g)(�)xλ p̂
(g)
λ (x). Multiplying the first Pieri equation by g(g) on the

left, we get:

g(g) H
(g)
1 (�) xλ p̂

(g)
λ (x) = H

(g)
1 (�)

(
g(g) xλ p̂

(g)
λ (x)

)
= ê1(x)

(
g(g) xλ p̂

(g)
λ (x)

)
,

hence both g(g) xλ p̂
(g)
λ (x) and xλ p̂

(g)
λ (x) obey the same first Pieri rule. Apply

Lemma 4.11 to the function �λ(x) = g(g) xλ p̂
(g)
λ (x) = g(g) xλ(ĉ

(g)
0 (x)+ O(�−α∗

i )).

Expanding g(g) = 1 + O(�−α∗
a ), we see that the leading order term in g(g) xλ p̂

(g)
λ (x)

has only contributions from the action of the gT parts of g(g) on the leading term xλ.

The total contribution of the gT terms is g
t1
T , as directly read off (4.12). Finally noting

that (gT )t1 xλ = γ (x)t1 xλT t1ξ (gT )t1 , where x = qξ (using (4.16)), we find that the

leading term is τ0(x) = γ (x)t1 ĉ
(g)
0 (x), and the Theorem follows from the relation

τ0(x)/ĉ
(g)
0 (x) = γ (x)t1 . ��

Remark 4.13 As noted in Remark 2.12, in the cases g = D
(2)
N+1, A

(2)
2N−1, D

(1)
N , the

relation (4.22) boils down to the recursion relation of [22] (Theorem 3.1) for the

coefficients J
μ
β = Jβ(x = qμ) for the root systems R = BN , CN , DN respec-

tively (see Table 1). These are the coefficients in the series expansion 	̃
(g)
λ (x) =
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xλg
(g)
� 	

(g)
λ (x) = xλ

∑
β∈Q+ Jβ(x)�−β , up to a rescaling q → q2 in the cases

g = D
(1)
N , D

(2)
N+1. Here we use the notation

g
(g)
� = g� ×

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

1/
(

1
�N

; q1/2
)

∞
for g = D

(2)
N+1, R = BN

1/

(
1

�2
N

; q2

)

∞
for g = A

(2)
2N−1, R = CN

1/
(

1
�N−1�N

; q
)

∞
for g = D

(1)
N , R = DN

.

Corollary 4.14 The Pieri operators H
(g)
a (�), a = 1, 2, ..., N of Eq. (3.37) are alge-

braically independent conserved quantities of the g-quantum Q̄-systems.

Proof To see that the time translation operator g(g)(�) commutes with all higher Pieri

operators H
(g)
a (�), a ∈ [1, N ], act with (g(g)(�))−1γ (x)t1 on the Pieri equations,

and use Theorem 4.12

g(g)(�)−1γ (x)t1 H (g)
a (�)	

(g)
λ (x) = g(g)(�)−1 H (g)

a (�) g(g)(�)	
(g)
λ (x)

= ê(g)
a (x)	

(g)
λ (x),

which implies that g(g)(�)−1 H
(g)
a (�) g(g)(�) = H

(g)
a (�) by the definition of the

Pieri operators. The statement follows by noting that any dependence between H
(g)
a (�)

would imply a dependence between ê
(g)
a (x), which are independent. ��

4.3 Proof of Theorems 4.3 and 4.4

The proof of both Theorems relies on the following.

Theorem 4.15 For all g = D
(1)
N , B

(1)
N , C

(1)
N , D

(2)
N+1, A

(2)
2N−1, A

(2)
2N we have the relation

D
(g)

a;n(x)	
(g)
λ (x) = D̄

(g)

a;n(�)	
(g)
λ (x), a ∈ [1, N ], n ∈ Z (4.23)

valid for any g-partition λ.

Theorem 4.3 follows from Theorem 4.15, as any relation satisfied by the difference

operators {D̄a;n} implies the opposite relation for the difference operators {Da;n}.
Theorem 4.4 is the particular case of (4.23) with n = 0, 1. We provide a proof of

(4.23) for long labels, short labels except for B
(1)
N , and for the short label of B

(1)
N

separately.

4.3.1 Long labels and even time short labels

In this case, the proof is similar to that in type A
(1)
N−1. Acting on both sides of the

eigenvalue Eq. (4.6), which we write as (4.23) with n = 0, with γ (x)−t1n (g(g)(�))n

and using Theorem 4.12,
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γ −t1n D
(g)

a;0(x)(g(g))n 	
(g)
λ (x)

= γ −t1n D
(g)
a,0(x)γ t1n	

(g)
λ (x)

= q
�a,a ta n

2 D
(g)

a;nta
(x)	

(g)
λ (x) = (g(g))n D̄

(g)

a;0(�) γ −t1n 	
(g)
λ (x)

= (g(g))n D̄
(g)

a;0(�) (g(g))−n 	
(g)
λ (x) = q

�a,a ta n

2 D̄
(g)

a;nta
	

(g)
λ (x),

where we have used Definition 3.15. Therefore, Eq. (4.23) holds for n a multiple of

ta .

4.3.2 Short labels, odd n for g = C
(1)
N , A

(2)
2N

In both cases, a = 1 is a short label, t1 = 2.

Lemma 4.16 For g = C
(1)
N , A

(2)
2N and for any g-partition λ,

(
D

(g)
1,1(x) − D̄

(g)
1,1(�)

)
	

(g)
λ (x) = q−1

(
D

(g)
1,−1(x) − D̄

(g)
1,−1(�)

)
	

(g)
λ (x).

Proof Applying Eq. (3.46) with n = 0, acting on 	
(g)
λ (x),

[D
(g)
1,0(x), ê1(x)] 	

(g)
λ (x) =

(
D

(g)
1,0(x)H

(g)
1 (�) − ê1(x)D̄

(g)
1,0(�)

)
	

(g)
λ (x)

=
[

H
(g)
1 (�), D̄

(g)
1,0(�)

]
	

(g)
λ (x)

= (q − 1)
(

D
(g)
1,1(x) − q−1 D

(g)
1,−1(x)

)
	

(g)
λ (x),

(4.24)

where we used the Pieri rule (3.40), and the eigenvalue Eq. (4.23) with n = 0, a = 1.

The only terms in H
(g)
1 (�) of Eqs. (3.38–3.39) which fail to commute with D̄

(g)
1,0(�) =

�1 are T1 +
(

1 − �2
�1

)
T −1

1 if N ≥ 2. Therefore,

[H
(g)
1 (�), D̄

(g)
1,0(�)] = [T1 +

(
1 − �2

�1

)
T −1

1 ,�1]

= (q − 1)�1 T1 + (q−1 − 1)(�1 − �2)T
−1
1

= (q − 1)D̄
(g)
1,1(�) + (q−1 − 1)D̄

(g)
1,−1(�),

where used D̄
(g)
1,−1(�) = (�1 − �2)T

−1
1 . The lemma follows. ��

Defining �
(g)
n = (D

(g)
1,n(x) − D̄

(g)
1,n(�))	

(g)
λ (x), Lemma 4.16 says that �

(g)
1 =

q−1 �
(g)
−1 .
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Lemma 4.17 For g = C
(1)
N , A

(2)
2N , we have:

H
(g)
1 (�)�

(g)
i = ê1(x)�

(g)
i , (i = ±1).

Proof As �
(g)
−1 = q �

(g)
1 , we may restrict ourselves to i = 1.

H
(g)
1 (�)�

(g)
1 =

(
D

(g)
1,1(x) H

(g)
1 (�) − H

(g)
1 (�) D̄

(g)
1,1(�)

)
	

(g)
λ (x)

=
(

ê1(x)D
(g)
1,1(x) + (q − 1)(D

(g)
1,2(x) − q−1 D

(g)
1,0(x))

−D̄
(g)
1,1(�) H

(g)
1 (�) − (q − 1)

(
D̄

(g)
1,2(�) − q−1 D̄

(g)
1,0(�)

) )
	

(g)
λ (x),

=
(

ê1(x) D
(g)
1,1(x) − D̄

(g)
1,1(�) H

(g)
1 (�)

)
	

(g)
λ (x) = ê1(x)�

(g)
1 , (4.25)

where we used Lemma 3.14, as well as the a = 1, n = 0, 2 cases of (4.23) proven

above. ��

Lemma 4.16, together with a uniqueness argument (Lemma 4.11), implies

that there exists a function α(g)(x) such that �
(g)
1 = α(g)(x)	

(g)
λ (x), �

(g)
−1 =

q α(g)(x)	
(g)
λ (x):

(D
(g)
1,1(x) − D̄

(g)
1,1(�) − α(g)(x))	

(g)
λ (x)

=(D
(g)
1,−1(x) − D̄

(g)
1,−1(�) − q α(g)(x))	

(g)
λ (x) = 0.

Using this equation with λ = 0, D
(g)
1,−1(x)	

(g)
0 (x) = D

(g)
1,−1(x) 1 = 0, using (3.42).

Similarly, D̄
(g)
1,−1(�)	

(g)

∅ (x) = (�1 − �2)T
−1
1 	

(g)
λ (x)|λ=0 = 0, since the prefac-

tor vanishes. Therefore, α(g)(x) = 0 and �
(g)
1 = �

(g)
−1 = 0. Multiplying �

(g)
−1 by

(g(g))nγ −2n , we conclude that for g = C
(1)
N , A

(2)
2N , a = 1, n ∈ Z and any integer

partition λ, Eq. (4.23) holds.

This result can be extended to all short labels for these algebras, as follows.

Lemma 4.18 Equation (4.23) holds for all short labels a and n odd in the case of

g = C
(1)
N , A

(2)
2N .

Proof Let Ng be as in Eq. (3.19). Then if a ≤ Ng − 1, the relations of the quantum

Q̄-system are identical to those of type A
(1)
Ng−1, and hence we can apply Theorem 2.8

of [17], which states that any solution of the relations for a = 1, 2, ..., Ng − 1

qa
Qa;n+1 Qa;n−1 = (Qa;n)2 − Qa+1;nQa−1;n, Qa;nQb;n+1 = qmin(a,b)

Qb;n+1 Qa;n,

satisfies

(−1)a(q − 1)Qa;n = [Q1;n−a+1,Qa−1;n+1]qa , (a = 1, 2, ..., Ng).
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Therefore the g-quantum Q̄-system solution D̄
(g)

a;n obeys the opposite relations

(−1)a(q − 1) D̄
(g)

a;n = [D̄
(g)

a−1;n+1, D̄
(g)

1;n−a+1]qa .

Using this and Definition 3.16, we deduce that

{D
(g)

a;2n−1(x) − D̄
(g)

a;2n−1(�)} 	
(g)
λ (x)

= (−1)a

q − 1
{[D

(g)

1;2n−a
(x), D

(g)

a−1;2n
(x)]qa

−[D̄
(g)

a−1;2n
(�), D̄

(g)

1;2n−a
(�)]qa } 	

(g)
λ (x) = 0,

by use of Eq. (4.23) for D
(g)

a−1;2n
and D

(g)

1;2n−a
with a even and for D

(g)

1;2n−a
when a is

odd. ��

4.3.3 The case of B
(1)
N for odd n

It remains to prove (4.23) for g = B
(1)
N , a = N , n odd. The methods above are

inapplicable, and instead we use expression (3.51) for D
(B

(1)
N )

N ;2n−1 in terms of Rains

operators.

Recall that B
(1)
N -partitions are both integer and half-integer partitions, due to the spin

representation with highest weight ωN and character sωN
(x) =

∏N
i=1

1+xi√
xi

. Denote

Pλ = P
(B

(1)
N )

λ = P
(t,−1,q

1
2 ,−q

1
2 )

λ , P̃λ = P
(t,−q,q

1
2 ,−q

1
2 )

λ . (4.26)

There is a factorization of Macdonald polynomials [50],

Pλ+ωN
(x) = sωN

(x) P̃λ(x), λ integer partition. (4.27)

The parameter specialization (4.26) for P̃λ is obtained by conjugating D
(B

(1)
N )

1 (x, q, t)

by s−1
ωN

and identifying the resulting parameters (a, b, c, d). We must therefore consider

the action of the difference operators on both functions 	λ = limt→∞ Pλ and 	̃λ =
limt→∞ P̃λ with λ integer partitions.

Moreover, the Rains operators map the eigenfunctions of the B
(1)
N -type differ-

ence operators to those of B
(1) ′
N -type, corresponding to different parameters. We

denote the corresponding q-Whittaker limit of the eigenfunctions functions as 	′
λ.

To these parameters there corresponds a different quantization of the Q-system, a

time-translation operator g′(�), and Hamiltonians.

Specializing to the B
(1)
N parameters (a, b, c, d) = (t,−1, q

1
2 ,−q

1
2 ) and taking the

t → ∞ limit as in (3.48), (3.8) become

R
(0)
N (x)	λ = (�1�2 · · · �N )

1
2

(
1 + 1

�N

)
	′

λ,
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R
(1)
N (x)	′

λ = (�1�2 · · · �N )
1
2 	λ, (4.28)

for integer partitions λ. We identify the B
(1) ′
N specialization to be (a, b, c, d) =

(tq
1
2 ,−q

1
2 , 1,−1),

	′
λ = 	

(B
(1) ′
N )

λ = lim
t→∞

P
(tq

1
2 ,−q

1
2 ,1,−1)

λ .

Lemma 4.19 Equations (4.28) also hold for half-integer partitions.

Proof Using the specialization (a, b, c, d) = (t,−q, q
1
2 ,−q

1
2 ) as in (4.26), in the

limit t → ∞ (3.8) becomes

R̃
(0)
N 	̃λ = q

N
4 (�1�2 · · · �N )

1
2

(
1 + q− 1

2

�N

)
	̃′

λ, R̃
(1)
N 	̃′

λ = q
N
4 (�1�2 · · · �N )

1
2 	̃λ,

where

R̃
(0)
N = lim

t→∞
t−N (N−1)/2 q− N

4 R
(1,−q

1
2 )

N = s−1
ωN

R
(0)
N sωN

,

R̃
(1)
N = lim

t→∞
t−N (N+1)/2 q− N

4 R
(t,−q

1
2 )

N = s−1
ωN

R
(1)
N sωN

,

by use of the limit of (4.27). Here, R
(0)
N and R

(1)
N are as in (3.48). Restoring the factors

sωN
,

R
(0)
N (x) sωN

	̃λ = (�̃1�̃2 · · · �̃′
N )

1
2

(
1 + 1

�̃N

)
sωN

	̃′
λ,

R
(1)
N (x) sωN

	̃′
λ = (�̃1�̃2 · · · �̃N )

1
2 sωN

	̃λ,

where �̃ = qωN � = qωN +λ. Combining this with the limit of (4.27) implies that

(4.28) is satisfied for half-integer partitions λ̃ = ωN + λ as well as integer partitions.

��

Combining Eqs. (4.28) leads to the eigenvalue equation for D̂(B
(1)
N )(x) of (3.48)

D̂
(B

(1)
N )

N (x)	λ(x) = R
(1)
N (x) R

(0)
N (x)	λ = �1�2 · · ·�N

(
1 + 1

�N

)
	λ,

which is consistent with the relation D̂
(B

(1)
N )

N = R
(1)
N R

(0)
N = DN ,0 + DN−1,0 and the

eigenvalues D̄a,0 in Definition (4.6).

The q-Whittaker limit of the difference operators for the B
(1)
N

′
parameters are

obtained as in (A.38), and are denoted by D′
a(x) = D

(B
(1) ′
N )

a (x), a = 1, 2, ..., N .
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The corresponding limit of the Rains operator (3.9) is D̂′
N (x) = R

(0)
N (x) R

(1)
N (x) =

D′
N (x)+ D′

N−1(x). This identification follows from the t → ∞ limit of Lemma A.10,

and from the eigenvalues, which are identical to those of the B
(1)
N case, since ξg = ξg′ .

As in the B
(1)
N case, We define the generalized Macdonald operators

D′
a;n(x) = q−na/2 γ −n D′

a(x) γ n, (a = 1, 2, ..., N − 1),

D′
N ;2n(x) = q−nN/2 γ −n D′

N (x) γ n,

D′
N ;2n+1(x) = q−nN/4 R

(0)
N ;n+1(x) R

(1)
N ;n(x) = q−nN/2 γ −n D′

N ;1(x) γ n .

(4.29)

Note the reversal of the order in the last product and the different time index compared

to (3.51). The operators D′
a;n will be shown to satisfy the set of recursion relations

below.

Definition 4.20 The type B
(1)
N

′
-quantum Q-system relations6 are the same as the type

B
(1)
N relations in (4.2)–(4.4) except for the two equations with a = N :

q N/2
QN ;2n+2 QN ;2n = Q

2
N ;2n+1 − q

N−1
2 −n

QN−1;n+1 QN−1;n,

q N/2
QN ;2n+1 QN ;2n−1 = (QN ;2n − q− n

2 QN−1;n)(QN ;2n + q
1−n

2 QN−1;n).

In particular, the q-commutation relations are as in type B
(1)
N (4.2).

The eigenvalue equation for D′
a corresponding to any λ is D′

a;0(x)	′
λ = �ω∗

a 	′
λ,

with ω∗
a a fundamental weight of type CN . Therefore, the candidate Fourier transforms

D̄′
a,n(�) are defined so that they satisfy the opposite quantum Q-system to that of

Definition 4.20, subject to the same initial data as in type B
(1)
N , D̄′

a;0 = �ω∗
a and

D̄′
a;1 = �ω∗

a T ωa , D̄′
N ;1 = �ω∗

N T ωN . Together with the recursions of Def. 4.20, this

determines D̄′
a;n for all a, n. In particular,

D̄′
a;−1 = D̄′

a;0

(
1 − �a+1

�a

)
T −ωa (a = 1, 2, ..., N − 1),

D̄′
N ;−1 = D̄′

N ;0

(
1 − 1

�N

)(
1 + q

1
2

�N

)
T −ωN ,

D̄′
N ;2 = D̄′

N ;1

(
1 − q

1
2

1

�2
N

1

TN

)
T ωN .

As before, these are sufficient to determine the form of the time-translation operator

g′(�).

6 This “quantum Q-system” is new, and we call it a Q-system by analogy with the other g cases.
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Lemma 4.21 The operator

g′ = g
1
2

T g′
�N

g
1
2

T g′′
�N

g�,

g′
�N

= 1

(q
1
2 �−2

N ; q)∞
, g′′

�N
= 1

(�−1
N ; q

1
2 )∞ (−q

1
2 �−1

N ; q
1
2 )∞

, (4.30)

where gT is as in (2.23) and g� as in (2.26), is the time translation operator for the

B
(1) ′
N opposite quantum Q-system. That is, for all n ∈ Z,

D̄′
a;n = q−an/2 (g′)n D̄′

a (g′)−n (a = 1, 2, ..., N − 1),

D̄′
N ;2n+i = q−Nn/2(g′)n D̄′

N ;i (g′)−n, i = 0, 1.

The Pieri rules for B
(1) ′
N are obtained by duality. Using Theorem B.1 with

(a, b, c, d) = (1,−1, tq
1
2 ,−q

1
2 ), (a∗, b∗, c∗, d∗) = (t

1
2 ,−t−

1
2 , t

1
2 q

1
2 ,−t−

1
2 q

1
2 ), the

q-Whittaker limit of the first Pieri operator is

H
(B

(1) ′
N )

1 (�) = T1 +
N∑

a=2

(
1 − �a

�a−1

)
Ta +

N−1∑

a=1

(
1 − �a+1

�a

)
T −1

a

+
(

1 − 1

�N

)(
1 + q

�N

)(
1 − q

�2
N

)
T −1

N

+q
1
2 − q− 1

2

�N

− q
1
2 + q− 1

2

�2
N

+ q− 1
2

�N−1�N

.

By direct calculation, this operator commutes with g′(�) and as a consequence

g′(�)	′
λ(x) = γ (x)	′

λ(x) . (4.31)

We want to show that DN ;1(x)	λ = D̄N ;1(�)	λ (case a = N , n = 1 of (4.23)).

Using 4.12, Definition (3.51) and the relations (4.28), we find

DN ;1(x)	λ = q− N
4 R

(1)
N ;0 R

(0)
N ;1 	λ

= q− 3N
8 g (�1 · · · �N )

1
2

(
1 + 1

�N

)
(g′)−1 (�1 · · · �N )

1
2 	λ.

(4.32)

Recall that hα∗
N

=
∏∞

n=0

(
1 − qn

�2
N

)−1

. Using

(
1 + 1

�N

)
(g′′

�N
)−1 = h−1

α∗
N
, T

1
4

N (g′
�N

)−1 = h−1
α∗

N
T

1
4

N ,
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we find

g �
1
2 ω∗

N

(
1 + 1

�N

)
(g′)−1 �

1
2 ω∗

N

= g
1
2

T hα∗
N

g
1
2

T hα∗
N

g��
1
2 ω∗

N

(
1 + 1

�N

)
g−1
� (g′′

�N
)−1g

− 1
2

T (g′
�N

)−1g
− 1

2

T �
1
2 ω∗

N

= g
1
2

T hα∗
N

g
1
2

T �
1
2 ω∗

N g
− 1

2

T (g′
�N

)−1g
− 1

2

T �
1
2 ω∗

N

= q
N
16 g

1
2

T hα∗
N

�
1
2 ω∗

N T
1
2 ωN (g′

�N
)−1 g

− 1
2

T �
1
2 ω∗

N = q
N
16 g

1
2

T �
1
2 ω∗

N T
1
2 ωN g

− 1
2

T �
1
2 ω∗

N

= q
N
8 �

1
2 ω∗

N T ωN �
1
2 ω∗

N = q
3N
8 �ω∗

N T ωN = q
3N
8 D̄N ;1. (4.33)

Combining this with (4.32) results in the relation DN ;1(x)	λ = D̄N ;1(�)	λ. Multi-

plying by γ −ngn and using (4.31):

D
(B

(1)
N )

N ;2n+1(x)	
(B

(1)
N )

λ (x) = D̄
(B

(1)
N )

N ;2n+1(�)	
(B

(1)
N )

λ (x), (n ∈ Z). (4.34)

This completes the proof of (4.23), and Theorems 4.3 and 4.4 follow.

Corollary 4.22 The D′-operators satisfy the quantum B
(1) ′
N -quantum Q-system of Def-

inition 4.20. Moreover we have the raising operator conditions for any B
(1)
N -partition

λ:

D′
a;1(x)	′

λ = �ω∗
a 	′

λ+ωa
, (a ∈ [1, N ]),

ωa, ω∗
a the fundamental weights of BN , CN .

Proof Starting from the eigenvalue equations D′
a(x)	′

λ = D̄′
a 	′

λ for a = 1, 2, ..., N

and multiplying with γ −n(g′)n , and still denoting X̄ the prime Fourier transform of

X ,

D′
a;tan(x)	′

λ = q−na/2γ −n D′
a(x) γ n 	′

λ = q−na/2(g′)n D̄′
a (g′)−n 	′

λ = D̄′
a;tan 	′

λ.

For the short label a = N , using (4.29), (4.28), (4.33) and D̄N ;1 = D̄′
N ;1 = �ω∗

N T ωN :

D′
N ;1(x)	′

λ = R
(0)

N ;1 R
(1)
N 	′

λ = q− N
8 �

1
2 ω∗

N g�
1
2 ω∗

N

(
1 + 1

�N

)
(g′)−1 	λ

= q− N
8 �

1
2 ω∗

N q
3N
8 D̄N ;1 �− 1

2 ω∗
N 	λ = D̄′

N ;1 	′
λ.

The relation can be generalized by multiplying with γ −n(g′)n , to D′
N ;2n+1(x)	′

λ =
D̄′

N ;2n+1 	′
λ for all n ∈ Z. The Corollary follows. ��
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5 Universal Solutions

The relations between Macdonald eigenvalue equations and Pieri rules are embodied

by the duality property of Macdonald polynomials (3.26). We now discuss a reformu-

lation of this duality in terms of universal solutions along the same lines as the case

of type A, treated in Sect. 2.13. This allows to re-prove the main results of this paper

in terms of universal solutions.

5.1 Universal solutions

5.1.1 Universal Koornwinder-Macdonald and g-Macdonald eigenvalue solutions

As in the case of type A, it is extremely fruitful to think directly of x and s as dual

variables, whose roles may be interchanged. To this end, we use changes of variables:

xi = qμi tρi
∗ = qμi at N−i , si = qλi tρi = qλi σ t N−i , λ, μ ∈ CN ,

where we use the notations of Sect. 3.1.4, see Eq. (3.13). Note that if we write

P
(a,b,c,d)
λ (x) = xλ p

(a,b,c,d)
λ (x) and substitute this into the Koornwinder-Macdonald

eigenvalue Eq. (3.5), we obtain

{
(1 − t N )(1 + σ t N−1)

1 − t
− σ t N−1ê1(s) +

N∑

i = 1

ε = ±1

�
(a,b,c,d)
i,ε (x)(�ε

i �
ε
i − 1)

}

× p
(a,b,c,d)
λ (x; s) = 0,

after conjugating (3.4) with x−λ. Noting that �
(a,b,c,d)
i,ε (x) can be expanded in series

of the variables x−αi , αi the BN simple roots, this suggests what we call a universal

solution P(a,b,c,d)(s; x) of the Koornwinder-Macdonald eigenvalue Eq. (3.5) in the

form

P(a,b,c,d)(x; s) = qλ·μ ∑

β∈Q+

c
(a,b,c,d)
β (s) x−β , c

(a,b,c,d)
0 (s) = 1, (5.1)

where Q+ denotes the positive cone of the root lattice of BN . The normalizing prefactor

for P(a,b,c,d)(x; s) is such that qλ·μ = xλ t−ρ∗·λ = sμ t−ρ·μ, and is invariant under

the interchange of λ ↔ μ, therefore under x ↔ s. Equation (3.5) for P(a,b,c,d)(x; s)

and generic s,

D
(a,b,c,d)
1 P(a,b,c,d)(x; s) = σ t N−1 ê1(s) P(a,b,c,d)(x; s), (5.2)

is equivalent to a linear triangular, generically nonsingular, system for the coefficients

c
(a,b,c,d)
β (s), which uniquely fixes them for all β ∈ Q+. The solution P(a,b,c,d)(x; s)
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is therefore unique, and we refer to it as the universal Koornwinder-Macdonald solu-

tion. The normalization c
(a,b,c,d)
0 (s) uniquely fixes the solution, which is otherwise

determined up to the overall normalization given by this coefficient.

Specializing the Koornwinder parameters (a, b, c, d) according to Table 1, we

obtain the universal solutions P(g)(x; s) of the first g-Macdonald eigenvalue Eqs.

(3.23):

D
(g)
1 P(g)(x; s) = tρ1 ê1(s) P(g)(x; s). (5.3)

These universal solutions have the expansion

P(g)(x; s) = qμ·λ ∑

β∈Q+(R)

c
(g)
β (s) x−β , c

(g)
0 (s) = 1, (5.4)

with the coefficients c
(g)
β (s) uniquely determined by (5.3), up to the normalization

c
(g)
0 (s).

Remark 5.1 The apparent discrepancy between Q+ in (5.1) and Q+(R) in (5.4)

is just an artifact of the specializations. For instance using the C
(1)
N specialization

(a, b, c, d) = t1/2(1,−1, q1/2,−q1/2) leads to an operator D
(CN )
1 (x; q, t) which has

an expansion as a series of the variables {xi+1/xi }1≤i≤N−1 and x−2
N , as opposed to

the generic case D
(a,b,c,d)
1 (x; q, t) which has an expansion as a series of the variables

{xi+1/xi }1≤i≤N−1 and x−1
N . This simply means that the series solution of the Mac-

donald eigenvalue equation at the specific C
(1)
N specialization is an even function of

x−1
N , i.e. the coefficients of odd powers of x−1

N vanish.

Remark 5.2 Specializing s = qλtρ to λ an integer partition, and using the uniqueness

of the universal solution, we recover the Koornwinder polynomial

P(a,b,c,d)(x; s = qλtρ) = t−ρ∗·λ P
(a,b,c,d)
λ (x). (5.5)

The specialization therefore truncates the series (5.1) to finitely many terms. Special-

izing the Koornwinder parameters to the values in Table 1,

P(g)(x; s = qλtρ) = t−ρ∗·λ P
(g)
λ (x), (5.6)

for λ an integer partition, ρ = ρ(g) and ρ∗ = ρ(g∗). Moreover, by uniqueness, (5.6)

holds also for λ any g-partition, for example the non-integer partitions in the cases

g = D
(1)
N , B

(1)
N , D

(2)
N+1. This presentation is therefore more economical, as a single

universal function P(a,b,c,d)(x; s) contains the information on all the g-Macdonald

polynomials as well.
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Another important specialization of the universal function P(a,b,c,d)(x; s) is the so-

called Koornwinder Baker-Akhiezer quasi-polynomials introduced by Chalykh [4].

The latter correspond to specializing the paramaters a, b, c, d, t to arbitrary negative

integer powers of q. The effect is again a truncation of the series to finitely many

terms.

5.1.2 Universal Pieri solutions

We also define the universal solution Q(a,b,c,d)(s; x) of the first Pieri Eq. (3.17):

Q(a,b,c,d)(s; x) = qλ·μ ∑

β∈Q+

c̄
(a,b,c,d)
β (x) s−β , c̄

(a,b,c,d)
0 (x) = 1 (5.7)

subject to:

ê1(x) Q(a,b,c,d)(s; x) = Ĥ
(a,b,c,d)
1 (s; q, t) Q(a,b,c,d)(s; x),

where

Ĥ
(a,b,c,d)
1 (s; q, t) := t−ρ∗·λ

H
(a,b,c,d)
1 (s; q, t) tρ

∗·λ

= 1

at N−1
�(a∗,b∗,c∗,d∗)(s)−1

D
(a∗,b∗,c∗,d∗)
1 (s; q, t)�(a∗,b∗,c∗,d∗)(s).

(5.8)

The series expansion (5.7) exists because Ĥ
(a,b,c,d)
1 (s; q, t) has a series expansion in

the variables s−αi . As above, the normalization c̄
(a,b,c,d)
0 (x) = 1 uniquely fixes the

solution.

Specializing the parameters (a, b, c, d) as in Table 1, we have the universal solutions

to the first g-Pieri Eqs. (3.30):

ê1(x) Q(g)(s; x) = Ĥ
(g)
1 (s; q, t) Q(g)(s; x), (5.9)

where we have used the fact that ê
(R)
1 (x) = ê1(x) for all R, and Ĥ

(g)
1 (s = �tρ; q, t) :=

t−ρ∗·λ H
(g)
1 (�; q, t) tρ

∗·λ, with H
(g)
1 (�; q, t) as in (3.31). The solution Q(g)(s; x) is

a series of the form

Q(g)(s; x) = qμ·λ ∑

β∈Q∗
+

c̄
(g)
β (x) s−β , c̄

(g)
0 (x) = 1,

where the sum extends over the positive root cone Q∗
+ of R∗. Due to triangularity, the

coefficients of the series are uniquely determined by (5.9).
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5.2 Duality

5.2.1 Duality of universal functions

The duality of Macdonald polynomials can be extended to the universal functions as

follows.

Theorem 5.3 The functions Q(a,b,c,d)(s; x) and P(a,b,c,d)(x; s) are related via

Q(a,b,c,d)(s; x) = P(a,b,c,d)(x; s)

�(a,b,c,d)(x)
, (5.10)

with �(a,b,c,d) as in (3.14).

Proof The proof is as for Theorem 2.15. The universal solution P(a,b,c,d)(x; s) also

obeys the Pieri Eq. (5.8), as a consequence of the existence of a solution to the bispectral

problem [4, 7, 45, 51], i.e. of both Koornwinder eigenvalue and Pieri equations, and

of the uniqueness of the solution up to the overall normalization determined by the

leading coefficient. Expanding the coefficients c
(a,b,c,d)
β (s) =

∑
δ∈Q+ c

(a,b,c,d)
β,δ s−δ

allows to write an expansion

P(a,b,c,d)(x; s) = qλ·μ ∑

δ∈Q+

ĉ
(a,b,c,d)
δ (x) s−δ, ĉ

(a,b,c,d)
δ (x) =

∑

β∈Q+

c
(a,b,c,d)
β,δ x−β .

Ehe Pieri equation uniquely fixes the coefficients in this expansion, up to the overall

factor ĉ
(a,b,c,d)
0 (x), hence P(a,b,c,d)(x; s) = ĉ

(a,b,c,d)
0 (x) Q(a,b,c,d)(s; x) as a series in

s−αi .

To compute ĉ
(a,b,c,d)
0 (x), we note that it can be extracted as the successive limits

s1 → ∞, s2 → ∞, ..., sN → ∞ of P(a,b,c,d)(x; s). Let us examine the m eigenvalue

Eq. (3.6), for P(a,b,c,d)(x; s) = qλ.μ(ĉ
(a,b,c,d)
0 (x) + O(�−αi )). Writing

D
(a,b,c,d)
m = d(a,b,c,d)

m (x) +
∑

I⊂[1,N ]
|I |≤m

∑

εk=±1
k∈I

dI ,ε,m(x)
∏

k∈I

�
εk

k ,

we have

{
d(a,b,c,d)

m (x) − θm êm(x) +
∑

I ⊂ [1, N ]
|I | ≤ m

∑

εk = ±1

k ∈ I

dI ,ε,m(x)
∏

k∈I

�
εk

k �
εk

k

}

× (ĉ
(a,b,c,d)
0 (x) + O(�−αi )) = 0,

where θm = σm tm(N− m+1
2 ). Dividing by �1�2 · · · �m , we find that all the terms have

a factor of the form �−β for some β ∈ Q+, and only those with β = 0 survive in the
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limit |�1| >> |�2| >> · · · >> |�m | >> 1. This leaves us with

(
�1�2 · · ·�m − θ2

m

d[1,m],(+)m ,m(x)

)
ĉ
(a,b,c,d)
0 (x) = 0. (5.11)

Let us compute d[1,m],(+)m ,m(x). From Definition A.8, and the explicit expression of

the van Diejen operators (A.8-A.9), we easily see that the coefficient of �1�2 · · · �m

in D
(a,b,c,d)
m comes from the highest order van Diejen operator V

(a,b,c,d)
m , and more

precisely from the term s = 1, J1 = J = {1, 2, ..., m} in (A.8):

d[1,m],(+)m ,m(x) =
m∏

i=1

(1 − axi )(1 − bxi )(1 − cxi )(1 − dxi )

(1 − x2
i )(1 − qx2

i )

×
∏

1≤i< j≤m

1 − t xi x j

1 − xi x j

1 − qtxi x j

1 − qxi x j

∏

1≤i≤m< j≤N

1 − t xi x j

1 − xi x j

t xi − x j

xi − x j

.

Using

θ2
m

d[1,m],(+)m ,m(x)
=

m∏

i=1

(1 − 1

x2
i

)(1 − 1

qx2
i

)

(1 − 1
axi

)(1 − 1
bxi

)(1 − 1
cxi

)(1 − 1
dxi

)

×
∏

1≤i< j≤m

1 − 1
xi x j

1 − 1
t xi x j

1 − 1
qxi x j

1 − 1
qtxi x j

∏

1≤i≤m< j≤N

1 − 1
xi x j

1 − 1
t xi x j

1 − x j

xi

1 − x j

t xi

we conclude that ĉ
(a,b,c,d)
0 (x) and �(a,b,c,d)(x) of (3.14) both obey (5.11) for m =

1, 2, ..., N , so their ratio must be a constant as it is invariant under the action of each

�i . This constant is 1, by noting that q−λ·μ P(a,b,c,d)(x; s) → 1 and �(a,b,c,d) → 1

in the limit when all x−αi → 0. The Theorem follows. ��

Using the specializations of the parameters (a, b, c, d) as in Table 1,

Corollary 5.4 The functions Q(g)(s; x) and P(g)(x; s) are related via

Q(g)(s; x) = P(g)(x; s)

�(g)(x)
, (5.12)

with �(g) as in (3.27).

It is now a simple exercise to relate the universal (a, b, c, d) Koornwinder-Pieri

solution to the universal solution of the (a∗, b∗, c∗, d∗) Koornwinder-Macdonald

eigenvalue equation. As a result we have the following duality relation between uni-

versal Pieri solutions.

Theorem 5.5 We have the following duality formulas:

Q(a∗,b∗,c∗,d∗)(x; s) = Q(a,b,c,d)(s; x), (5.13)



23 Page 62 of 100 P. Di Francesco, R. Kedem

and their g specializations:

Q(g∗)(x; s) = Q(g)(s; x). (5.14)

Proof For conciseness, we omit the superscripts (a, b, c, d) and use the superscript ∗ to

stand for (a∗, b∗, c∗, d∗). Starting from the equation Ĥ1(s) Q(s; x) = ê1(x) Q(s; x),

using (5.8), we have

D
∗
1(s)�∗(s)Q(s; x) = σ t N−1 ê1(s)�∗(s)Q(s; x).

Interchanging the variables x ↔ s, we find that �∗(x)Q(x; s) is a solution to the

(a∗, b∗, c∗, d∗) eigenvalue equation. Moreover, using the normalization of Q(x; s)

with s and x interchanged, we have for small {x−αi }: �∗(x)Q(x; s) = qλ·μ(1 +
O({x−αi })

)
. We conclude that �∗(x)Q(x; s) = P∗(x; s) by uniqueness of the solu-

tion. The Theorem follows from P∗(x; s) = �∗(x)Q∗(s; x) by Theorem 5.3 applied

to (a∗, b∗, c∗, d∗). ��

This can be rephrased as duality between Koornwinder-Macdonald eigenvalue uni-

versal solutions:

�(a∗,b∗,c∗,d∗)(s)P(a,b,c,d)(x; s) = �(a,b,c,d)(x) P(a∗,b∗,c∗,d∗)(s; x), (5.15)

and their specializations:

�(g∗)(s) P(g)(x; s) = �(g)(x) P(g∗)(s; x). (5.16)

Some of the above relations appear in different guises in the literature: explicitly

in the type A case [42] (see also Sect. 2.13), implicitly for the other types [7, 8]

where universal functions are obtained as x, s-symmetric reproducing kernels. We

now detail the explicit link between the universal function duality relation (5.15) and

the Koornwinder polynomial duality (3.12).

Theorem 5.6 The universal function duality relation (5.15) reduces to the Koorn-

winder polynomial duality relation (3.12) upon specializing the variables x = qμtρ
∗

and s = qλtρ for λ,μ integer partitions.

Proof Starting from the universal function P(a,b,c,d)(x; s), we use the specializa-

tion s = qλtρ , leading to the Koornwinder polynomial P(a,b,c,d)(x; qλtρ) =
t−ρ∗·λ P

(a,b,c,d)
λ (x). Similarly, using the specialization x = qμtρ

∗
on the function

P(a∗,b∗,c∗,d∗)(s; x) leads to P(a∗,b∗,c∗,d∗)(s, qμtρ
∗
) = t−ρ·μ P

(a∗,b∗,c∗,d∗)
μ (s). The

double specialization s = qλtρ, x = qμtρ
∗

of (5.15) results in

t−ρ∗·λ�(a∗,b∗,c∗,d∗)(qλtρ)P
(a,b,c,d)
λ (qμtρ

∗
)

= t−ρ·μ�(a,b,c,d)(qμtρ
∗
)P(a∗,b∗,c∗,d∗)

μ (qλtρ). (5.17)
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The relation (3.12) follows from the following identity:

�(a∗,b∗,c∗,d∗)(qλtρ)

�(a,b,c,d)(qμtρ
∗
)

= tρ
∗·λ−ρ·μ P

(a∗,b∗,c∗,d∗)
μ (tρ)

P
(a,b,c,d)
λ (tρ

∗
)

, (5.18)

itself a consequence of (3.15), and of the identity �(a∗,b∗,c∗,d∗)(tρ) = �(a,b,c,d)(tρ
∗
).

The Theorem follows. ��

Similarly, under the suitable specialization, the g-Macdonald duality relation (5.16)

reduces to the Macdonald polynomial duality (3.26) for x = qμtρ
∗

and s = qλtρ ,

where λ is any g-partition, and μ any g∗-partition.

5.2.2 Duality of universal solutions in the q-Whittaker limit

Universal solutions of the g-Macdonald eigenvector and g-Pieri equations simplify

drastically in the t → ∞ limit. They read:

	(g)(x;�) := lim
t→∞

tρ
∗·λ P(g)(x;�tρ) = xλ

∑

β∈Q+(R)

c
(g)
β (�) x−β , (5.19)

and

K
(g)(�; x) := lim

t→∞
tρ

∗·λ Q(g)(�tρ; x) = xλ
∑

β∈Q+(R∗)

c̄
(g)
β (x)�−β , (5.20)

with c
(g)
0 (�) = c̄

(g)
0 (x) = 1. Note that the limit t → ∞ has broken the previous

symmetry x ↔ s, as the s variable itself contained a t-dependent factor. However,

Corollary 5.4 of the previous section turns into the following.

Theorem 5.7 The universal solutions 	(g)(x;�) and K
(g)(�; x) are related via:

	(g)(x;�) = �̄(g)(x) K
(g)(�; x), �̄(g)(x)

:= lim
t→∞

�(g)(x) =
∏

α∈R̂++(g)

(1 − x−α). (5.21)

The eigenvalue and Pieri equations are:

D(g)
a (x)	(g)(x;�) = �ω∗

a 	(g)(x;�), (5.22)

H (g)
m (�) K

(g)(�; x) = ê(R)
m (x) K

(g)(�; x). (5.23)

Both equations for a, m = 1 turn into simple triangular recursion relations for the

coefficients c
(g)
β (�) and c̄

(g)
β (x) respectively.
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5.3 Fourier transform and proof of theMacdonald- Q-system conjecture

Like in the case of type A, we may reformulate the Fourier transform (1.3) in the

q-Whittaker limit in terms of universal solutions via:

f (x)	(g)(x;�) = f̄ (�)	(g)(x;�) ⇔ f (x) K
(g)(�; x) = f̄ (�) K

(g)(�; x).

The main result of Sect. 4 is the relation (4.23) which expresses the fact that D̄
(g)

a;n(�)

is the Fourier transform of D
(g)

a;n(x). In terms of the universal Pieri solution, we expect:

D
(g)

a;n(x) K
(g)(�; x) = D̄

(g)

a;n(�) K
(g)(�; x).

As a consequence any relation satisfied by the D̄’s is satisfied by the D’s in the

opposite direction, thus proving the Macdonald Q-system conjecture. The proof of

these identities is identical to that in Sect. 4, and relies on the Fourier duality between

g(g)(�) and γ (g)(x), whose adjoint action respectively generates the discrete time

translation in the � and x pictures:

γ (g)(x) K
(g)(�; x) = g(g)(�) K

(g)(�; x).

The proofs rely on a uniqueness argument which can be rephrased as follows. The

universal Pieri solution K
(g)(�; x) (5.20) is fixed by the Pieri Eq. (5.23) for m = 1,

up to an overall multiplicative function independent of �, and fixed by the leading

term normalization c̄
(g)
0 (x) = 1. Any other series solution of this Pieri equation is

therefore proportional to K
(g)(�; x), by a factor independent of �.

As we saw in Sect. 4.3.3, the case of odd times a = N for g = B
(1)
N required the

use of Rains operators, and the mapping to a companion theory B
(1) ′
N with its own

q-Whittaker polynomials and quantum Q-system. Let us rephrase the action of Rains

operators at finite t (3.8) in the B
(1)
N specialization (a, b, c, d) = (t,−1, q

1
2 ,−q

1
2 )

of Table 1 in terms of universal Macdonald functions. Let us denote for short

P(x; s) ≡ P(B
(1)
N )(x; s) and P ′(x; s) ≡ P(B

(1) ′
N )(x; s) the respective universal Mac-

donald solutions. As both B
(1)
N , B

(1) ′
N share the same ξg = ξg′ = 1

2
, i.e. σ = σ ′ = t

1
2

and R(g) = R(g′) while tρ
∗
i = t N−i+1 and t (ρ

′)∗i = q
1
2 t N−i+1, we may rewrite (3.8)

as:

R
(1,−1)
N (x) P(x; s) = F(s) P ′(x; s), R

(t,−1)
N (x) P ′(x; s) = F ′(s) P(x; s),

with

F(s) =
N∏

i=1

(1 + t−
1
2 si ), F ′(s) = t N (N+1)/2

N∏

i=1

(1 + t−
1
2 s−1

i ),
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where we have used the same notations as in the proof of Lemma A.10, with u =
ab/σ = −t

1
2 , and taken into account the product formula q |λ| = t−N 2/2

∏N
i=1 si .

Taking the limit t → ∞ results in:

R
(0)
N 	(x;�) = �

1
2 ω∗

N

(
1 + 1

�N

)
	′(x;�),

R
(1)
N 	′(x;�) = �

1
2 ω∗

N 	(x;�),

with ω∗
N the fundamental CN -weight. The steps of the proof can then be repeated

identically, in particular establishing that γ (x)	′(x;�) = g′(�)	′(x;�), and then

D′
a;n 	′(x;�) = D̄′

a;n 	′(x;�) for all a ∈ [1, N ] and n ∈ Z, as well as finally

Da;n 	(x;�) = D̄a;n 	(x;�), from which the main Theorems follow.

6 Discussion

6.1 Companion quantumQ systems

Part of the proof of our main theorem, concerning the short label in type B
(1)
N

(Sect. 4.3.3), revealed that acting with the Rains operators (3.8) and their τ+-translates

on the q-Whittaker functions gives rise to a companion system B
(1) ′
N 4.20 to the B

(1)
N

quantum Q-system. This new system has the same classical (q → 1) limit as the B
(1)
N

quantum Q-system but corresponds to a different specialization of the Koornwinder

parameters (a, b, c, d), and has different Pieri operators and time translation operator

(4.30).

One can obtain two further companion systems using the Rains operators, illustrated

in Figure 6.1, from the theories at specialization parameters corresponding to g =
A

(2)
2N−1, A

(2)
2N . These also have the same classical limit as the respective quantum Q-

systems, and may be considered as alternative quantizations. In type A
(2)
2N , which is not

a cluster algebra mutation in the first place, the companion system is, in some sense,

simpler and more natural from the quantization point of view, and appears to be the

one related to the graded tensor product character formulas of KR-modules [37].

Using the definition of the Rains operators (3.7), together with the properties (3.8) of

Sect. 3.1.3, from with the specializations of Table 1, one obtains from the g-Macdonald

polynomials P
(g)
λ (x) companion polynomials P

(g′)
λ (x), using three different special-

izations of the Rains operators, R
(0)
N = R

(1,−1)
N , R

(1)
N = R

(t,−1)
N and R

(2)
N = R

(t
1
2 ,−t

1
2 )

N .

In the cases g = D
(1)
N , D

(2)
N+1, C

(1)
N , the Rains operators leave the g-Macdonald poly-

nomials invariant up to some scalar, so that g′ = g. In those cases, the Rains operator

is itself a Koornwinder-Macdonald operator, as shown in Lemma A.13. Only the spe-

cializations g = B
(1)
N , A

(2)
2N−1 and A

(2)
2N are mapped to new companion theories g′ �= g.
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B
(1)
N

(t, −1, q
1
2 , −q

1
2 ) A

(2)
2N

(t, −1, t
1
2 q

1
2 , −t

1
2 q

1
2 )

B
(1)
N

(1, −1, tq
1
2 , −q

1
2 ) A

(2)
2N

(t, −1, t
1
2 q

1
2 , −t

1
2 q

1
2 )

A
(2)
2N−1 (t

1
2 , −t

1
2 , q

1
2 , −q

1
2 ) D

(1)
N

(1, −1, q
1
2 , −q

1
2 )

A
(2)
2N−1 (1, −1, t

1
2 q

1
2 , −t

1
2 q

1
2 ) D

(2)
N+1 (t, −1, tq

1
2 , −q

1
2 )

C
(1)
N

(t
1
2 , −t

1
2 , t

1
2 q

1
2 , −t

1
2 q

1
2 )

R
(0)
N

R
(2)
N

R
(1)
N

R
(1)
N

R
(0)
N

R
(0)
N

R
(2)
N

R
(1)
N

R
(2)
N

Fig. 1 The nine families of Koornwinder-Macdonald operators/polynomials. We have indicated the Rains

operators that intertwine the various theories, and the specializations of the Koornwinder parameters

(a, b, c, d)

In the q-Whittaker limit, the Rains operators tend to R
(0)
N , R

(1)
N of (3.49-3.50) and

to

R
(2)
N = lim

t→∞
t−(N

2)R
(t

1
2 ,−t

1
2 )

N =
∑

ε1,...,εN =±1

N∏

i=1

x
2εi

i

x
2εi

i − 1

∏

1≤i< j≤N

x
εi

i x
ε j

j

x
εi

i x
ε j

j − 1

N∏

i=1

�
εi /2
i .

These map the q-Whittaker polynomials 	λ = 	
(g)
λ to a multiple of the monic

companions 	′
λ = 	

(g′)
λ = limt→∞ P

(g′)
λ . More precisely (c.f. (4.28) for B

(1)
N ), (3.8)

implies the following mapping of polynomials:

A
(2)
2N−1 :R(0)

N 	λ = (�1�2 · · ·�N )
1
2

(
1 + 1

�N

)
	′

λ,R
(2)
N 	′

λ = (�1�2 · · ·�N )
1
2 	λ,

A
(2)
2N :R(2)

N 	λ = (�1�2 · · ·�N )
1
2 	′

λ, R
(1)
N 	′

λ = (�1�2 · · · �N )
1
2 	λ.

For the new companion cases A
(2) ′
2N−1, A

(2) ′
2N , we define companion Koornwinder-

Macdonald operators by specializing Definition A.8 for m = 1, 2, ..., N at the

appropriate values of the parameters as in Figure 6.1. Their q-Whittaker limits are

denoted by D′
m = D

(g′)
m , and their τ+-translates are defined for all a ∈ [1, N ] and

n ∈ Z as follows:

A
(2) ′
2N−1 : D′

a;2n+i = q−na γ −n D′
a;i γ n, (i = −1, 0)

A
(2) ′
2N : D′

a;n = q−na/2 γ −n D′
a γ n,
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where D′
a;−1 is defined as in (3.42) with the suitable function φ

(g′)
i,ε (x). Note that all

labels of A
(2) ′
2N−1 are short and all labels of A

(2) ′
2N are long, which is the reverse of the

case for the un-primed theories. Using the methods of this paper, it can be shown

that these new operators obey new quantum Q-systems, with the same q-commutation

relations and recursion relations as their non-primed companions, except for the label

N , where

A
(2) ′
2N−1 :q N QN ,2n+2 QN ,2n = Q2

N ,2n+1 − q−2n Q2
N−1,2n+1,

q N QN ,2n+1 QN ,2n−1 = (QN ,2n − q−n QN−1,2n)(QN ,2n + q1−n QN−1,2n),

A
(2) ′
2N :q N QN ,n+1 QN ,n−1 = Q2

N ,n − q− n
2 QN ,n QN−1,n .

for all n ∈ Z. To derive these results, we first define the candidate Fourier transforms

D̄′
a;n via the opposite quantum Q-systems and same initial data as the non-primed

companions (that is, the same values of ωa, ω∗
a), and compute the time translation

operators:

A
(2) ′
2N−1 : g′ = gT g�

1

(�−2
N ; q2)∞

gT g�

1

(�−1
N ; q)∞(−q�−1

N ; q)∞
,

A
(2) ′
2N : g′ = gT g�

1

(�−1
N ; q)∞

,

which commute, respectively, with the two Pieri operators or Toda Hamiltonians

A
(2) ′
2N−1 : H ′

1(�) = T1 +
N∑

i=2

(
1− �i

�i−1

)
Ti +

N−1∑

i=1

(
1− �i+1

�i

)
T −1

i +
(

1− 1
�N

)(
1+ q

�N

)
T −1

N ,

A
(2) ′
2N : H ′

1(�) = T1 +
N∑

i=2

(
1− �i

�i−1

)
Ti +

N−1∑

i=1

(
1− �i+1

�i

)
T −1

i +
(

1− 1
�N

)
T −1

N − q
− 1

2

�N
,

obtained from the q-Whittaker limit of the specialized operators of Theorem (B.1).

After proving that g′	λ = γ t1	′
λ (t1 = 2 for A

(2) ′
2N−1, t1 = 1 for A

(2) ′
2N ), one concludes

that Da;n	′
λ = D̄′

a;n	
′
λ and the quantum Q-system relations for Da;n follow.

Finally, matching the specialization of the formula (3.14) for �(g′) with the form

of the product over affine roots (3.27), we make the following identification of affine

roots corresponding to g′:

B
(1) ′
N : R̂++ =

{
(n− 1

2 )δ+ei : 1≤i≤N , n≥1
}
�{nδ+(ei ±e j ): 1≤i< j≤N , n≥1}

A
(2) ′
2N−1 : R̂++ ={(2n−1)δ+2ei : 1≤i≤N , n≥1}�{nδ+(ei ±e j ): 1≤i< j≤N , n≥1}

A
(2) ′
2N : R̂++ =

{
(n− 1

2 )δ+ei , 2nδ+2ei ,: 1≤i≤N , n≥1
}
�{nδ+(ei ±e j ): 1≤i< j≤N , n≥1}.
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6.2 Universal solutions and Pathmodels

In Section 5, we introduced universal solutions P(x; s) and Q(s; x) for the various

eigenvalue equations and Pieri rules, by solving an infinite triangular linear system of

equations for the expansion coefficients in each case. Remarkably, the solutions can all

be put in the form of path models, such as that for the q-Whittaker vectors in the A
(1)
N−1

case [20], see also [27]. As shown in Example 2.16, this results in an interpretation of

the solution of the triangular system as a partition function for weighted paths on the

relevant positive root cone Q+ or Q∗
+.

Let us start with the case of Q(s; x) = qλ·μ∑
β∈Q∗

+
c̄β(x) s−β , c̄0(x) = 1, the series

solution of the Pieri equation H1(s) Q(s; x) = ê1(x) Q(s; x) (either the Koornwinder

or g-Macdonald Pieri rule). The important fact is that H1(s) is a q-difference operator

in the variable s of the form H1(s) =
∑N

i=1

∑
ε=0,±1 hi,ε(s)T

ε
i , where the coeffi-

cients hi,ε are rational functions of the variables {s−α∗
i }, with α∗

i the simple roots of

R∗. Factoring out the common denominator in the coefficients, hi,ε(s) = pi,ε(s)/q(s)

with pi,ε(s) and q(s) some polynomials in {s−α∗
i }, the Pieri equation is equivalent to(

ê1(x) q(s) −
∑N

i=1

∑
ε=0,±1 pi,ε(s)xε

i T ε
i

)
q−λ·μQ(s; x) = 0. The difference oper-

ator can be written as
∑N

i=1

∑
ε=0,±1

∑
α∈U∗ hi,ε,α(x)s−αT ε

i for some x-dependent

coefficients hi,ε,α(x), where α is summed over a finite subset U∗ of Q∗
+. Noting that

T ε
i s−β = q−εei ·βs−β and that s−α s−β = s−(α+β), and collecting the coefficient of

s−β in the Pieri equation, we obtain

N∑

i=1

∑

ε=0,±1

∑

α∈U∗
hi,ε,α(x) q−εei ·(β−α) c̄β−α(x) = 0,

or equivalently

»
½∑

i,ε

hi,ε,0(x)q−εei ·β

¾
À c̄β(x) = −

∑

i,ε

∑

α∈U∗\{0}
hi,ε,α(x)q−εei ·(β−α)c̄β−α(x).

The factor on the left hand side is non-vanishing for generic x and is therefore invert-

ible. The path model interpretation goes as follows. Given the initial data c̄0(x) = 1,

the coefficient c̄β(x) is the partition function of paths from 0 to β in Q∗
+, consisting

of steps in the finite subset U∗ \ {0}. Each path has a weight equal to the product of

vertex and edge weights along the path, defined respectively as

wϕ =

»
½∑

i,ε

hi,ε,0(x)q−εei ·ϕ

¾
À

−1

, w0 = 1,

wϕ−α,ϕ = −
∑

i,ε

hi,ε,α(x)q−εei ·(ϕ−α)



Macdonald Duality and the proof... Page 69 of 100 23

for any ϕ ∈ Q∗
+, α ∈ U∗ \ {0}. The weight of a path p is a product over its vertex and

edge sets v(p), e(p):

w(p) =
∏

ϕ∈v(p)

wϕ ×
∏

(ϕ−α,ϕ)∈e(p)

wϕ−α,ϕ,

and the coefficient c̄β(x) is the partition function of all such paths

c̄β(x) =
∑

paths p in Q∗
+

from 0→β

w(p).

A similar argument leads to a formulation of the Macdonald eigenvalue equation

universal solution P(x; s) in terms of a path model on Q+.

The path model for the Pieri solution simplifies drastically in the q-Whittaker limit

as the Hamiltonians are directly polynomials of the �−α∗
i , giving rise to a small set

of steps U∗ \ {0}. For instance, by inspection of (3.38-3.39), we find that for all g,

w−1
ϕ =

∑N
i=1

∑
ε=±1 xε

i (1 − q−εβ·ei ).

Example 6.1 In the case g = A
(2)
4 , the q-Whittaker limit of the Pieri equation is

{
T1 +

(
1 − �2

�1

)
(T2 + T −1

1 ) +
(

1 − 1

�2

)
T −1

2 − 1

�2
− (x1 + x−1

1 + x2 + x−1
2 )

}

×x
λ1

1 x
λ2

2

∑

n,m≥0

c̃n,m(x)

(
�2

�1

)n (
1

�2

)m

= 0

expressed in terms of the variables �−α1 = �2
�1

,�−α2 = 1
�2

, αi the simple roots of

B2, and with the normalization c̃0,0(x) = 1. The is equivalent to the recursion relation

c̃n,m(x) = qn−1(q−m x2 + x−1
1 )c̃n−1,m(x) + (qm−n−1x−1

2 + 1)c̃n,m−1(x)

x1(q−n − 1) + x−1
1 (qn − 1) + x2(qn−m − 1) + x−1

2 (qm−n − 1)
,

which has the form c̃n,m(x) = an,m c̃n−1,m(x) + bn,m c̃n,m−1(x), the solution is

c̃n,m(x) =
∑

paths p:(0,0)→(n,m)

∏

steps s∈p

ws ,

where the is sum over all the paths on Z
2
+ with steps (1, 0) and (0, 1), from the origin

to (n, m), of the product of step weights ws where ws = ai, j for a horizontal step

(i − 1, j) → (i, j) and ws = bi, j for a vertical step (i, j − 1) → (i, j).

6.3 Universal solutions and q-Whittaker functions

We have used the terminology q-Whittaker functions for the t → ∞ limits of

Koornwinder-Macdonald polynomials. Strictly speaking, 	
(g)
λ (x) is a class-1 q-
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Whittaker function for the quantum universal enveloping algebra of a simple Lie

algebra only in the cases where the Pieri operators are known to be q-deformed

quantum Toda Hamiltonians. These correspond to quantum Q-system of types

A
(1)
N−1, D

(1)
N , D

(2)
N+1, A

(2)
2N−1, whose conserved quantities are the relativistic Toda

Hamiltonians associated with Uq(R) with R = AN−1, DN , BN and CN , respectively

(see Remark 3.10). By analogy, we call all the eigenfunctions 	
(g)
λ (x) q-Whittaker

functions for all g in this paper. These share a number of properties.

In the q-Whittaker limit, the universal series solutions of the g-Macdonald eigen-

value equations and the Pieri Equations (5.19–5.20) of Sect. 5, when specialized to

λ a g-partition, reduce respectively to the analogues of class-1 q-Whittaker functions

	
(g)
λ (x) = 	(g)(x; qλ), and the analogues of fundamental q-Whittaker functions

�
(g)
λ (x) = K(g)(x; qλ). The former is a Weyl-symmetric polynomial in x , whereas

the latter is a non-symmetric series solution of the relativistic Toda equation with pre-

scribed leading term. It is associated with the highest weight Verma module Vμ, where

μ is obtained from the variable x = qρ+μ. In the theory of Whittaker functions, the

fundamental Whittaker function is convergent only in a particular Weyl chamber. The

class-1 function is a linear combination of fundamental Whittaker functions, regular

in all the Weyl chambers. It is obtained via a symmetrization over the Weyl group

action on the fundamental solutions with suitable coefficients.

A subtlety arises in the study of convergence of the above series. In the definition

of �̄(g)(x) as an infinite product, it is assumed that |q| < 1 for convergence. On the

other hand, the series K(g)(qλ; x) or �
(g)
λ (x) is well-behaved for |q| > 1. Obviously

	
(g)
λ (x), being a polynomial, makes sense for both |q| > 1 and |q| < 1. Note that the

infinite product

�̃(g) = 1∏∞
n=0

∏
α∈R+(1 − q−n x−α)

is another solution of (2.39), convergent for |q| > 1 instead of |q| < 1. (To see

this, note that conjugating �±1
i with �̄(g)(x) or �̃(g)(x) yields the same result.). The

remarkable fact is that as a convergent series for |q| > 1, �̃(g)(x)�
(g)
λ (x) is not

equal to the polynomial class-1 q-Whittaker function 	
(g)
λ (x). We conjecture7 that

for general g it requires a symmetrization over the Weyl group, valid for |q| > 1:

	
(g)
λ (x) =

∑

w∈W

�̃(g)(wx)�
(g)
λ (wx). (6.1)

We end up with two characterizations of K(�; x): (1) as a series with |q| < 1 in

the variables �−αi , equal to 	(g)(x;�)/�̄(g)(x) (by Theorem 5.7) and (2) as a series

with |q| > 1 equal to �
(g)
λ (x) when λ is a g-partition. The polynomials 	

(g)
λ (x) are

expressed in terms of both, but with very different formulas for |q| < 1 and |q| > 1.

7 Such a symmetrization formula exists relating classical fundamental and class-1 Whittaker functions.
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Example 6.2 Let us illustrate the above in the simplest case of A
(1)
1 . Denoting by

u = x2/x1, v = �2/�1,

p(u; v) := x
−λ1

1 x
−λ2

2 	(x;�) =
∞∑

n=0

un

n−1∏

i=0

1 − vq i

1 − q−i−1
,

k(v; u) := x
−λ1

1 x
−λ2

2 K(�; x) =
∞∑

n=0

vn qn2
un

∏n
i=1(1 − q i )(1 − uq i )

.

With �̄(u) = (qu; q)∞ and �̃(u) = 1/(u; q−1)∞,

p(u; v) = �̄(u) k(v; u) (|q| < 1),

	λ1,λ2(x) = x
λ1

1 x
λ2

2 �̃(u) k(qλ2−λ1; u) + x
λ1

2 x
λ2

1 �̃(u−1) k(qλ2−λ1; u−1) (|q| > 1),

= x
λ1

1 x
λ2

2 p(u; qλ2−λ1) (|q| < 1),

where the second and third lines hold for any integers λ1 ≥ λ2 ≥ 0.

6.4 Summary/Perspectives

We have proved the Macdonald-quantum Q-system conjectures, which state that suit-

ably defined, τ+-translatedg-Macdonald difference operators, in the q-Whittaker limit,

obey the g-type quantum Q-system relations, and may as such be considered as cluster

variables in a suitable quantum cluster algebra in all cases except A
(2)
2N . The proofs

cover the cases g = A
(1)
N−1, D

(1)
N , B

(1)
N , C

(1)
N , A

(2)
2N−1, A

(2)
2N , D

(2)
N+1, and rely strongly

on the duality between the Koornwinder/Macdonald eigenvalue equations and the

associated Pieri rules.

We have proved that the conserved quantities of the g-quantum Q-systems are the

g-Pieri operators in the q-Whittaker limit, which in a number of cases can themselves

be identified with known q-difference Toda Hamiltonians. Our construction provides

explicit expressions for all (higher) Hamiltonians as well. It would be interesting

to explore the combinatorial content of these, possibly in the language of cluster

integrable systems [26].

We have constructed time-translation operators g(�) for all g that commute with

the corresponding q-difference Toda Hamiltonians. More generally, in the spirit of

[46], it would be desirable to construct commuting Baxter Q-operators Q(u;�) that

coincide with g(�)−1 at u = 1, but are in general quantum-dilogarithmic generating

functions for the Hamiltonians. In all cases but A
(2)
2N , such a construction should exist

in terms of mutations of the corresponding quantum cluster algebra.

As another by-product of our proofs, we have unearthed a remarkable structure

involving three more companion theories B
(1) ′
N , A

(2) ′
2N−1 and A

(2) ′
2N and their associ-

ated quantum Q-systems. It would be interesting to further investigate their quantum

Laurent property, as well as their combinatorial content, in particular the meaning of
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the associated fermionic sums which in the known cases provide q-multiplicities of

decompositions of KR modules onto irreducibles (see [11, 15]).

The quantum Q-system arises only in the q-Whittaker limit of Macdonald-

Koornwinder theory, but it is natural to consider the extension of some of our results to

finite t . The time-shifted Macdonald operators D
(g)

a;n(x; q, t) by iterated conjugation

by γ (x) were considered in [18] in type A
(1)
N−1, and are generators of the spherical

DAHA or, in the limit N → ∞, the quantum toroidal algebra of gl1 or the elliptic

Hall algebra. In the Koornwinder case, we again have elements of the corresponding

spherical DAHA but the limit N → ∞ is still to be understood.

Moreover, in type A
(1)
N−1 a t-deformed analogue of the time translation operator

g(�) was defined in [36] (see Proposition 4.2), and conjectured to act diagonally on the

so-called Non-stationary Ruijsenaars function, introduced in [48] as the (conjectural)

universal series solution to the elliptic Ruijsenaars operator eigenvalue equation, also

related to the geometry of affine Laumon spaces. We expect this operator to play the

same role for the finite t Macdonald case as g(�) for the q-Whittaker limit t → ∞, i.e.

to be the (Macdonald) Fourier transform of the Gaussian for finite t . We believe there

should exist a cluster algebra formulation of this operator. It would also be extremely

interesting to investigate this operator for the general Koornwinder theory.
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Appendix A: Derivation of the g-Macdonald operators

We combine several constructions [40, 43, 50] of commuting difference operators cor-

responding to the affine algebras in Table 1. The goal is to construct an appropriate set

of N commuting operators for each g, with eigenvalues proportional to the symmetric

functions in Table 2, which form a basis for the space spanned by the irreducible

fundamental characters of the Lie algebras R. This choice of g-Macdonald difference

operators is designed such that their q-Whittaker limits satisfy the type g quantum

Q-systems.

A.1 Macdonald’s operators

For each affine algebra g in Table 1, except for the case of A
(2)
2n , and for each minuscule

co-weight of S, Macdonald defines a difference operator with eigenvalue which is a

fundamental character of R∗ [40].

Let {ei }1≤i≤N be the standard basis of R
N with the standard inner product (·, ·). For

the set of variables x = (x1, ..., xN ), we denote xv = x
v1

1 · · · x
vN

N for any v =
∑

i vi ei .
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Table 4 Positive roots and fundamental weights of the finite dimensional algebras of types BCD

Algebra Positive roots R+ fundamental weights ωa

BN ei , i ∈ [1, N ]; ωi =
i∑

k=1

ek , i ∈ [1, N − 1];

ei ± e j , 1 ≤ i < j ≤ N ωN = 1

2

N∑

k=1

ek

CN ei ± e j , 1 ≤ i < j ≤ N ; ωi =
i∑

k=1

ek , i ∈ [1, N ]

2ei , i ∈ [1, N ]

DN ei ± e j , 1 ≤ i < j ≤ N ωi =
i∑

k=1

ek , i ∈ [1, N − 2];

ωN = 1

2

N∑

k=1

ek , ωN−1 = ωN − eN

There is a surjective map ∗ : R → S, α 	→ α∗ = α/uα ∈ S, for some real uα . In

the case where R �= S, uα = (α,α)
2

, so that uα = 1 in all cases but for the short roots of

type BN or the long roots of type CN , in which case it is equal to 1
2

or 2, respectively.

Let π =
∑

πi ei , and define8

�π :=
∏

α∈R+
(π,α∗)=1

1 − t xα

1 − xα
, �π =

∏

i

�
πi

i . (A.1)

For each minuscule weight π of S∨ = {2 α
(α,α)

, α ∈ S} , i.e. a weight such that

(π, α∗) ∈ {0,±1} for all α ∈ R, there is a Macdonald difference operator Eπ which

acts on functions f (x) by the symmetrization

Eπ f =
∑

w∈W

w (�π�π f ) . (A.2)

We list below the explicit formulas for each case treated in [40]. The construction

refers to the positive roots and fundamental weights for the simple Lie groups of types

BC D in Table 4.

8 We choose Macdonald’s parameters tα = t for all α, independently of the length α. This allows us to

obtain the dual q-Whittaker limit by simply taking t → ∞.
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A.1.1 Macdonald operators for D
(1)
N

Here, R = S is the root system of type DN . There are three minuscule weights:

ω1 = e1, ωN−1 and ωN . Equation (A.1) becomes

�ω1 =
N∏

j=2

1 − t x1x j

1 − x1x j

t x1 − x j

x1 − x j

, �ωN−1
=

∏

1≤i< j≤N−1

1 − t xi x j

1 − xi x j

N−1∏

i=1

t xi − xN

xi − xN

,

�ωN
=

∏

1≤i< j≤N

1 − t xi x j

1 − xi x j

.

The Weyl group of DN acts on the set (x1, x2, ..., xN ) by permutations of the indices

and inversions of an even number of variables. The three Macdonald operators are

E
(D

(1)
N )

ω1 =
∑

ε=±1

N∑

i=1

∏

j �=i

1 − t xε
i x j

1 − xε
i x j

t xε
i − x j

xε
i − x j

�ε
i , (A.3)

E
(D

(1)
N )

ωN−1
=

∑

ε1,...,εN =±1
ε1ε2···εN =−1

∏

1≤i< j≤N

1 − t x
εi

i x
ε j

j

1 − x
εi

i x
ε j

j

N∏

i=1

�
εi
2

i , (A.4)

E
(D

(1)
N )

ωN
=

∑

ε1,...,εN =±1
ε1ε2···εN =1

∏

1≤i< j≤N

1 − t x
εi

i x
ε j

j

1 − x
εi

i x
ε j

j

N∏

i=1

�
εi
2

i . (A.5)

These will be identified below as D
(D

(1)
N )

a (x; q, t) = E
(D

(1)
N )

ωa with a = 1, N − 1, N .

A.1.2 Macdonald operator for B
(1)
N

Here, R = S is the root system of BN There is a unique minuscule weight of S∨ = CN ,

π = e1 = ω1, with

�ω1 = 1 − t x1

1 − x1

N∏

j=2

1 − t x1x j

1 − x1x j

t x1 − x j

x1 − x j

.

The Weyl group W � SN � Z2 is generated by all permutations and inversions of the

variables in the set x = (x1, x2, ..., xN ), so the corresponding difference operator is

E
(B

(1)
N )

ω1 =
∑

ε=±1

N∑

i=1

1 − t xε
i

1 − xε
i

∏

j �=i

1 − t xε
i x j

1 − xε
i x j

t xε
i − x j

xε
i − x j

�ε
i .

This will be identified as D
(B

(1)
N )

1 (x; q, t) = E
(B

(1)
N )

ω1 .
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A.1.3 Macdonald operator for g = C
(1)
N

Here, R = S is the root system of type CN . There is a unique minuscule weight of

S∨ = BN , π = 1
2

∑N
i=1 ei = ωN , with

�ωN
=

N∏

i=1

1 − t x2
i

1 − x2
i

∏

1≤i< j≤N

1 − t xi x j

1 − xi x j

.

The Weyl group is is the same as for type BN , resulting in the difference operator

E
(C

(1)
N )

ωN
=

∑

ε1,...,εN =±1

N∏

i=1

1 − t x
2εi

i

1 − x
2εi

i

∏

1≤i< j≤N

1 − t x
εi

i x
ε j

j

1 − x
εi

i x
ε j

j

N∏

i=1

�
εi
2

i . (A.6)

This will be identified as D
(C

(1)
N )

N (x; q, t) = E
(C

(1)
N )

ωN
.

A.1.4 Macdonald operator for g = A
(2)
2N−1

Here, (R, S) = (CN , BN ). The map ∗ : R → S is given by (ei ± e j )∗ = ei ± e j , and

(2ei )∗ = ei . There is a unique minuscule weight of S∨ = CN , π = e1 = ω1, and

�ω1 = 1 − t x2
1

1 − x2
1

N∏

j=2

1 − t x1x j

1 − x1x j

t x1 − x j

x1 − x j

.

Summing over the Weyl group of type CN ,

E
(A

(2)
2N−1)

ω1 =
∑

ε=±1

N∑

i=1

1 − t x2ε
i

1 − x2ε
i

∏

j �=i

1 − t xε
i x j

1 − xε
i x j

t xε
i − x j

xε
i − x j

�ε
i .

This will be identified as D
(A

(2)
2N−1)

1 (x; q, t) = E
(A

(2)
2N−1)

ω1 .

Remark A.1 The algebra A
(2)
2N−1 is obtained from A

(1)
2N−1 by a folding procedure using

the natural Z2 automorphism. Remarkably, this extends to the difference operators

as follows. Consider the specialization τ of x = (x1, x2, ..., x2N ) obtained by setting

x2N+1−i = x−1
i , i = 1, 2, ..., N , and accordingly �2N+1−i = �−1

i . We have

τ
(
D

(A
(1)
2N−1)

1 (x; q, t)
)

= D
(A

(2)
2N−1)

1 (x; q, t).

However, the A
(1)
2N−1-Macdonald polynomials specialized via τ have a non-trivial

decomposition onto the basis of A
(2)
2N−1-Macdonald polynomials.
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A.1.5 Macdonald operator for g = D
(2)
N+1

Here, (R, S) = (BN , CN ). The map ∗ : R → S is given by (ei ± e j )∗ = ei ± e j ,

and (ei )∗ = 2ei . There is a unique minuscule weight π = 1
2

∑N
i=1 ei = ωN of type

S∨ = BN , so that

�ωN
=

N∏

i=1

1 − t xi

1 − xi

∏

1≤i< j≤N

1 − t xi x j

1 − xi x j

.

Summing over the Weyl group of type CN gives

E
(D

(2)
N+1)

ωN
=

∑

ε1,...,εN =±1

N∏

i=1

1 − t x
εi

i

1 − x
εi

i

∏

1≤i< j≤N

1 − t x
εi

i x
ε j

j

1 − x
εi

i x
ε j

j

N∏

i=1

�
εi /2
i . (A.7)

This will be identified as D
(D

(2)
N+1)

N (x; q, t) = E
(D

(2)
N+1)

ωN
.

A.2 Higher order Koornwinder-Macdonald operators

For generic parameters (a, b, c, d, q, t), Koornwinder defined the first order q-

difference operator whose eigenfunctions are the Koornwinder polynomials, invariant

under the Weyl group of type C . Consequently, van Diejen [50] defined a commuting

family of higher order difference operators with the same eigenfunctions. We recall

this construction in A.2.1. Using the spectrum of these operators, we construct in

A.2.2 linear combinations of these, such that their eigenvalues are proportional to

elementary symmetric functions êa(s). We add to this certain higher order operators

due to Rains [43]. Upon specialization of the parameters (a,b,c,d), we combine this in

Sect. A.2.4, with Macdonald’s construction of Sect. A.1.

A.2.1 van Diejen’s higher order Koornwinder difference operators

Definition A.2 The van Diejen operator of order m ∈ [1, N ] is

V
(a,b,c,d)
m :=

∑

J ⊂ [1, N ], |J | = m

ε j = ±1 ∀ j ∈ J

m∑

s=1

(−1)s−1

×
∑

∅�J1�···�Js=J

s∏

r=1

V
(a,b,c,d)

{x},{ε};Jr \Jr−1;Kr

»
½∏

j∈J1

�
ε j

j − 1

¾
À , (A.8)

where J0 = ∅, Kr = [1, N ] \ Jr and

V
(a,b,c,d)

{x},{ε};J ;K
:=
∏

i∈J

(1 − ax
εi

i )(1 − bx
εi

i )(1 − cx
εi

i )(1 − dx
εi

i )

(1 − x
2εi

i )(1 − qx
2εi

i )
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×
∏

i< j
i, j∈J

1 − t x
εi

i x
ε j

j

1 − x
εi

i x
ε j

j

1 − qtx
εi

i x
ε j

j

1 − qx
εi

i x
ε j

j

∏

i∈J
j∈K

1 − t x
εi

i x j

1 − x
εi

i x j

t x
εi

i − x j

x
εi

i − x j

,

(A.9)

where J , K ⊂ [1, N ] are such that J ∩ K = ∅.

When m = 1, the van Diejen operator is the Koornwinder operators of Eq. (3.2).

Example A.3 Define

A(a,b,c,d)(x) = (1 − ax)(1 − bx)(1 − cx)(1 − dx)

(1 − x2)(1 − qx2)
. (A.10)

Then

V
(a,b,c,d)
2 =

∑

1≤i1<i2≤N
ε1,ε2=±1

2∏

�=1

»
½A(a,b,c,d)(x

ε�

i�
)
∏

k �=i1,i2

1 − t x
ε�

i�
xk

1 − x
ε�

i�
xk

t x
ε�

i�
− xk

x
ε�

i�
− xk

¾
À

×
{

1 − t x
ε1

i1
x

ε2

i2

1 − x
ε1

i1
x

ε2

i2

1 − qtx
ε1

i1
x

ε2

i2

1 − qx
ε1

i1
x

ε2

i2

(�
ε1

i1
�

ε2

i2
− 1)

−
1 − t x

ε1

i1
xi2

1 − x
ε1

i1
xi2

t x
ε1

i1
− xi2

x
ε1

i1
− xi2

(�
ε1

i1
− 1)

−
1 − t x

ε2

i2
xi1

1 − x
ε2

i2
xi1

t x
ε2

i2
− xi1

x
ε2

i2
− xi1

(�
ε2

i2
− 1)

}
,

where the sum over s in (A.8) decomposes into three terms, with s = 1, J1 = J =
{i1, i2}, s = 2, J1 = {i1}, J2 = J = {i1, i2} and s = 2, J1 = {i2}, J2 = J = {i1, i2}.

The operators (A.8) form a commuting family of difference operators with common

eigenfunctions being the Koornwinder polynomials. We give a description of their

eigenvalues. Let σ =
√

abcd
q

. Recall the elementary and complete symmetric functions

ek(x) = s1k (x) and hk(x) = sm(x).

Definition A.4 For arbitrary λ1, ..., λN , and k, m ∈ [1, N ], we define the collections

of variables

u(k) := {σ tk−i }1≤i≤k,

v := {si + s−1
i }1≤i≤N ,

w(m) := {σ t N−i + σ−1t−(N−i)}m≤i≤N ,

with si = σ t N−i qλi as usual, and the functions

d(k)
m := σm tm(k− m+1

2 ) êm(u(k)), (A.11)



23 Page 78 of 100 P. Di Francesco, R. Kedem

dλ;m := σm tm(N− m+1
2 ) êm(s), (A.12)

fλ;m := σm tm(N− m+1
2 )

m∑

j=0

(−1) j em− j (v) h j (w(m)). (A.13)

The spectral theorem for van Diejen operators is

Theorem A.5 [50] The (monic) symmetric Koornwinder polynomials P
(a,b,c,d)
λ (x) sat-

isfy

V
(a,b,c,d)
m P

(a,b,c,d)
λ (x) = fλ;m P

(a,b,c,d)
λ (x). (A.14)

A.2.2 Koornwinder-Macdonald operators

Using the spectral theorem A.14, we can construct linear combinations of van Diejen’s

operators with eigenvalues equal to dλ;m . To do this we prove two combinatorial

lemmas about symmetric functions. Given a set of variables x = {x1, ..., xN }, we

define associated set x̃ = {xi + x−1
i , i ∈ [1, N ]}, and if β ≤ N , define x [β] =

{x1, ..., xβ} and x̃ [β] = {xi + x−1
i , i ∈ [1, β]}. In particular, x [0] = ∅.

Lemma A.6 For all r ≥ 0 and n ≥ 1,

θr ,n(u) :=
r∑

�=0

(−1)�er−�(u
[n−�])h�(u

[n−�+1]) = δr ,0. (A.15)

Proof When r = 0 the sum is trivially equal to 1. We consider r > 0. We define two

types of integer configurations. A fermionic configuration on {1, ..., p}with j particles,

denoted by F , is a set of j distinct integers in the set [1, p]. A bosonic configuration

on {1, ..., p′} with j ′ particles, denoted by B, is a sequence of j ′ integers in [1, p′]
which are not necessarily distinct. We assign a weight wF =

∏
i∈F ui to a fermionic

configuration, and a weight wB =
∏

i∈B(−ui ) to a bosonic configuration. Moreover,

to the pair (F, B), we assign a weight wF,B = wFwB . The partition function of j

fermions on [1, p] is e j (u
[p]), and the partition function of j ′ bosons on [1, p′] is

h j ′(−u[p′]) = (−1) j ′h j ′(u
[p′]).

We define the following set of pairs of fermionic and bosonic configurations:

Sn,r ={(F, B)| tF :=max(F) ≤ n − |B|, tB :=max(B) ≤ n − |B| + 1, |F | + |B|=r}

where |X | is the cardinality of the set X , and if |X | = 0 we define max(X) = 0. The

identity (A.15) is an identity for the partition function:

Zn,r :=
∑

(F,B)∈Sn,r

wF,B = δr ,0.

To prove this, for any r ≥ 1 we construct a fixed point-free involution � on the

set Sn,r , such that �(wFwB) = −wFwB . If such an involution exists, the partition
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1 2 3 4 5 6 7 1 2 3 4 5 6 7

Φ

(a)

B

F

F’

B’

B

F

F’

B’

(b)

Fig. 2 An illustration of the involution �. Case (a) has tF = 6 < tB = 7, hence we move the topmost

rightmost bosonic particle to a fermionic particle at position t ′
F

= tB . Case (b) has tF = 6 ≥ tB = 5,

hence we move the fermionic particle to a bosonic one at position tB′ = tF

function for any r > 0 vanishes:

∑

(F,B)∈Sn,r

w(F,B) = 1

2

∑

(F,B)∈Sn,r

(w(F,B) + w�(F,B)) = 0 .

The involution � is illustrated in Figure 2 in the language of particles, namely by

considering F, B as the sets of integer coordinates of particles along the integer line:

e.g. in the case of Fig. 2(a) we have F = {2, 4, 5, 6} and B = {1, 1, 1, 3, 4, 4, 7, 7, 7}.
Let (F, B) ∈ Sn,r . The map � acts by moving one particle between F and B,

thus preserving |F | + |B| = r and reversing the sign of the weight. It is defined

as �(F, B) = (F ′, B ′), where

(a) If tB > tF : F ′ = F ∪ tB , B ′ = B \ tB . Since |B ′| = |B| − 1, tF ′ = tB ≤
n − |B| + 1 = n − |B ′| and tB′ ≤ tB ≤ n − |B| + 1 = n − |B ′| < n − |B ′| + 1.

Therefore, (F ′, B ′) ∈ Sn,r , while wF ′,B′ = −wF,B .

(b) If tB ≤ tF : F ′ = F \ tF and B ′ = B ∪ tF . Then tF ′ ≤ tF − 1 ≤ n − |B| − 1 =
n − |B ′| and tB′ = tF ≤ n − |B| = n − |B ′| + 1, so that (F ′, B ′) ∈ Sn,r , and

wF ′,B′ = −wF,B .

The map � is clearly an involution. When r > 0, � has no fixed points, since one can

always move a particle. The Lemma follows. ��

Lemma A.7 There is an identity on symmetric functions:

êm(x) =
m∑

j=0

êm− j (y[N− j])
j∑

k=0

(−1)ke j−k(x̃)hk(ỹ[N− j+1]). (A.16)

Proof We rewrite (A.16) using the generating function Ê(z; x) of (3.1) as

Ê(z; x)|zm =
m∑

j=0

Ê(z; y[N− j])|zm− j F(z; x̃, ỹ[N− j+1])|z j , (A.17)
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where f (z)|zm is the coefficient of zm in the series expansion of f (z) around 0, and

Ê(z; y[β]) =
β∏

i=1

(1 + ỹi z + z2), F(z; x̃, ỹ[β]) =
∏N

i=1 1 + zx̃i∏β

i=1 1 + z ỹi

.

One can further decompose

N− j∏

i=1

(1 + z ỹi + z2) = (1 + z2)N− j Ê(
z

1 + z2
; ỹ) =

N− j∑

k=0

zk (1 + z2)N− j−k ek(ỹ[N− j]),

and

∏N
i=1(1 + zx̃i )∏N− j+1

i=1 (1 + z ỹi )
=

N∏

i=1

(1 + zx̃i )
∑

�≥0

(−1)�z�h�(ỹ[N− j+1]).

The right hand side of (A.17) is therefore

m∑

j=0

∑

k,�

(1 + z2)N− j−k
∣∣
zm− j−k

N∏

i=1

(1 + zx̃i )|z j−� (−1)�ek(ỹ[N− j])h�(ỹ[N− j+1])

=
m∑

r=0

∑

k, � ≥ 0

k + � = r

m−k∑

j=�

(1 + z2)N− j−k
∣∣
zm− j−k

N∏

i=1

(1 + zx̃i )|z j−�(−1)�ek(ỹ[N− j])h�(ỹ[N− j+1]),

=
m∑

r=0

m−r∑

j=0

(1+z2)N− j−r
∣∣
zm− j−r

N∏

i=1

(1+zx̃i )|z j

×
r∑

�=0

(−1)�er−�(ỹ[N− j−�])h�(ỹ[N− j−�+1]), (A.18)

where we changed variables k 	→ r − � and j 	→ j − �. Finally, using Lemma A.6

for the collection u = ỹ and n = N − j , the expression above drastically simplifies

into

m∑

j=0

(1 + z2)N− j
∣∣
zm− j

N∏

i=1

(1 + zx̃i )|z j =
N∏

i=1

(1 + zx̃i + z2)
∣∣
zm = êm(x),

which implies (A.17). ��

Definition A.8 We define the Koornwinder-Macdonald difference operators as

D
(a,b,c,d)
m (x) :=

m∑

j=0

d
(N−m+ j)
j V

(a,b,c,d)
m− j , (m = 1, 2, ..., N ),
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in terms of the van Diejen operators of Sect.A.2.1, with d
(k)
j as in (A.11).

Theorem A.9 The Koornwinder-Macdonald polynomials are common eigenfunctions

of Dm with eigenvalue dλ;m defined in (A.12):

D
(a,b,c,d)
m (x; q, t) P

(a,b,c,d)
λ (x) = dλ;m P

(a,b,c,d)
λ (x). (A.19)

Proof Equation (A.19) follows from Theorem A.5 and the relation

dλ;m =
m∑

j=0

d
(N−m+ j)

j fλ;m− j . (A.20)

Equation (A.20) is obtained by specializing Lemma A.7 to the variables xi =
σ t N−i qλi and yi = σ t N−i , and noting that the prefactors in (A.12-A.13) amount

to an overall factor of σm tm(N− m+1
2 ) on both sides of the equation. ��

A.2.3 Rains operators

The Rains operator D̂
(a,b,c,d)
N (x; q, t) defined in (3.7,3.9) has eigenvalues (3.10). This

operator is not linearly independent of the K-M operators, as is seen from the following

Lemma.

Lemma A.10 For generic (a, b, c, d) the following relation holds between the

Koornwinder-Macdonald operators and the Rains operator:

D̂
(a,b,c,d)
N = D

(a,b,c,d)
N +

N∑

m=1

(−1)m

(
ambm + cmdm

qm

)
tm(m−1)/2

D
(a,b,c,d)
N−m .

(A.21)

Proof This is a consequence of the relation between the eigenvalues:

d̂
(a,b,c,d)

λ;N
= dλ,N +

N∑

m=1

(−1)m

(
ambm + cmdm

qm

)
tm(m−1)/2 dλ;N−m . (A.22)

Using the notation σ =
√

abcd/q , u = ab/σ , u−1 = cd/qσ and si = σqλi t N−i , as

well as the expressions (A.12) for dλ,m and (3.10) for d̂λ;N , Eq. (A.22) is

q−|λ|
N∏

i=1

(1−usi )(1− u−1si )=σ N t N (N−1)/2

{
êN (s)+

N∑

m=1

(−1)m(um +u−m)êN−m(s)

}

= (−σ)N t N (N−1)/2

uN

2N∑

m=0

(−1)mum êm(s)=(−1)N σ N t N (N−1)/2

uN

N∏

i=1

(1−usi )(1−us−1
i ),

where we have used (3.1) in the last line. The equality follows from
∏N

i=1 si =
q |λ|σ N t N (N−1)/2. ��
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A.2.4 Koornwinder-Macdonald operators and Macdonald’s operators of Section A.1

The first Koornwinder-Macdonald operator in Equation of Definition A.8 is

D
(a,b,c,d)
1 (x; q, t) = V

(a,b,c,d)
1 (x; q, t) + 1 − t N

1 − t

(
1 + abcd

q
t N−1

)
,

= K
(a,b,c,d)
1 (x; q, t) + 1 − t N

1 − t

(
1 + abcd

q
t N−1

)
.

(A.23)

To relate these with some of the operators of Sect. A.1, we have the following

Lemma.

Lemma A.11 The first order Koornwinder-Macdonald operator can be written as

D
(a,b,c,d)
1 (x; q, t) = ϕ(a,b,c,d)(x) +

N∑

i=1

∑

ε=±1

�
(a,b,c,d)
i,ε (x)�ε

i ,

where

ϕ(a,b,c,d)(x) =
∑

ε=±1

(
1 − ε

q1/2 a
)(

1 − ε
q1/2 b

)(
1 − ε

q1/2 c
)(

1 − ε
q1/2 d

)

2(1 − t)(1 − q−1t)

×

⎧
«
¬

N∏

i=1

1 − ε t
q1/2 xi

1 − ε
q1/2 xi

1 − ε t
q1/2 x−1

i

1 − ε
q1/2 x−1

i

− t N

«
¬
­ . (A.24)

Proof We have:

ϕ(a,b,c,d)(x) = 1 − t N

1 − t

(
1 + abcd

q
t N−1

)
−

N∑

i=1

∑

ε=±1

�
(a,b,c,d)
i,ε (x). (A.25)

Using the simple fraction decomposition of the function

θ(z) :=
(
1 − z

a

)(
1 − z

b

)(
1 − z

c

)(
1 − z

d

)
(
1 − z2

q

)(
1 − z2

t

)
N∏

i=1

1 − z
t
xi

1 − zxi

1 − z
t
x−1

i

1 − zx−1
i

. (A.26)

We find

θ(z) = q

abcd t2N−1
+

∑

ε=±1

{
N∑

i=1

Ai,ε

1 − zxε
i

+ Bε

1 − ε z
q1/2

+ Cε

1 − ε z
t1/2

}
,
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where

Ai,ε = 1 − t

t2N

(
1 − x−ε

i

a

)(
1 − x−ε

i

b

)(
1 − x−ε

i

c

)(
1 − x−ε

i

d

)

(
1 − x−2ε

i

q

)(
1 − x−2ε

i

)
∏

j �=i

t xε
i − x j

xε
i − x j

t xε
i x j − 1

xε
i x j − 1

,

= q(1 − t)

abcd t2N−1
�

(a,b,c,d)
i,ε (x),

and

Bε =
(
1 − ε a

q1/2

)(
1 − ε b

q1/2

)(
1 − ε c

q1/2

)(
1 − ε d

q1/2

)

2 abcd t2N−1
(
1 − t

q

)
N∏

i=1

1 − ε t
q1/2 xi

1 − ε
q1/2 xi

1 − ε t
q1/2 x−1

i

1 − ε
q1/2 x−1

i

,

Cε = q

(
1 − ε a

t1/2

)(
1 − ε b

t1/2

)(
1 − ε c

t1/2

)(
1 − ε d

t1/2

)

2 abcd t N−1
(
1 − q

t

) .

By definition (A.26), θ(0) = 1, therefore

∑

ε=±1

{
N∑

i=1

�
(a,b,c,d)
i,ε (x) + abcd t2N−1

q(1 − t)

(
Bε + Cε

)
}

=
abcd

q
t2N−1 − 1

1 − t
.

(A.27)

Using

∑

ε=±1

{
t

2

(
1 − ε

a

t1/2

)(
1 − ε

b

t1/2

)(
1 − ε

c

t1/2

)(
1 − ε

d

t1/2

)

−q

2

(
1 − ε

a

q1/2

)(
1 − ε

b

q1/2

)(
1 − ε

c

q1/2

)(
1 − ε

d

q1/2

)}
=

(
1 − q

t

)(
t − abcd

q

)
,

we have:

∑

ε=±1

abcd t2N−1

q(1 − t)
Cε = t N

2(1 − t)
(
1 − q

t

)
∑

ε=±1

∏

u=a,b,c,d

(
1 − ε

u

t1/2

)

=
t N − abcd

q
t N−1

1 − t
− t N

2(1 − t)
(
1 − t

q

)
∑

ε=±1

∏

u=a,b,c,d

(
1 − ε

u

q1/2

)
.

The Lemma follows by substituting this into (A.27), and using the result to reexpress

ϕ(a,b,c,d)(x) as given by (A.25). ��

When c = q1/2 and d = −q1/2, ϕ(a,b,q1/2,−q1/2)(x) = 0. Using Table 1, we obtain

the following.



23 Page 84 of 100 P. Di Francesco, R. Kedem

Corollary A.12 In the cases g = D
(1)
N , B

(1)
N , A

(2)
2N−1 the first Macdonald operator is

equal to the first specialized Koornwinder-Macdonald operator:

D
(g)
1 (x; q, t) =

N∑

i=1

∑

ε=±1

�
(g)
i,ε (x)�ε

i = E
(g)
1 (x; q, t). (A.28)

By direct inspection, the specialized Rains operators of (3.7) and (3.9) can also be

expressed in terms Macdonald’s operators.

Lemma A.13 In the cases g = D
(1)
N , C

(1)
N , D

(2)
N+1 we have the identifications

D
(1)
N : E

(D
(1)
N )

ωN
(x; q, t) + E

(D
(1)
N )

ωN−1
(x; q, t) = R

(1,−1)
N (x; q, t),

D̂
(1,−1,q1/2,−q1/2)

N =
(
R

(1,−1)
N

)2
;

C
(1)
N : E

(C
(1)
N )

ωN
(x; q, t) = R

(t1/2,−t1/2)
N (x; q, t),

D̂
(t1/2,−t1/2,t1/2q1/2,−t1/2q1/2)

N =
(
R

(t1/2,−t1/2)
N

)2

;

D
(2)
N+1 : E

(D
(2)
N+1)

ωN
(x; q, t) = R

(t,−1)
N (x; q, t),

D̂
(t,−1,tq1/2,−q1/2)

N =
(
R

(t,−1)
N

)2
.

(A.29)

A.3 g-Macdonald operators and their eigenvalues

For each g, we have chosen a list of N linearly independent commuting difference

operators (see Def. 3.5) using the operators in the preceding sections of this Appendix.

These have the property that in the q-Whittaker limit, they and their time-translates

provide solutions of the various quantum Q-systems. We first explore redundancies

between the various definitions to justify Def. 3.5. Then we describe the eigenvalues

of the g-Macdonald operators, and conclude with a remark on the choice leading to

Def. 3.5.

A.3.1 Redundancies

Specializing the parameters (a, b, c, d) as in Table 1 in the difference operators of

Theorem A.9 gives a list of N commuting difference operators for each g. As noted

in Corollary A.12, some of these are Macdonald’s operators listed in Sect. A.1. In

addition, there are non-linear relations9:

E
(D

(1)
N )

ωN
E

(D
(1)
N )

ωN−1
=

� N−1
2 �∑

α=0

tα(2α+1)
D

(a,b,c,d)
N−2α−1,

9 These relations are proved using the same argument as in the proof of Theorem A.9, using identities

between eigenvalues. Some are a direct consequence of the identifications with Rains operators from

Theorem A.13.
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(E
(D

(1)
N )

ωN
)2 + (E

(D
(1)
N )

ωN−1
)2 = D

(a,b,c,d)
N + 2

� N
2 �∑

α=0

tα(2α−1)
D

(a,b,c,d)
N−2α ,

for the D
(1)
N specialization. Similarly, for the C

(1)
N and D

(2)
N+1 specializations,

(
E

(g)
ωN

)2
= D

(a,b,c,d)
N + 2

N∑

α=1

t
α(α+1)

2 D
(a,b,c,d)
N−α .

In those cases, the Macdonald operators carry more information than the specializa-

tion of the Koornwinder-Macdonald operators D
(a,b,c,d)
m . This justifies the choice in

Def. 3.5.

A.3.2 The eigenvalues of g-Macdonald operators

Definition A.14 If m ≤ Ng, let d
(g)
λ,m to be the specialization of Eq. A.12 to the param-

eters corresponding to g in Table 1:

d
(g)
λ,m := dλ,m = tm(N+ξg− m+1

2 ) êm(s), m ∈ [1, Ng], (A.30)

where s = tρ
(g)

qλ, i.e. si = qλi t N−i+ξg . Otherwise, define

g = D
(1)
N : d

(D
(1)
N )

λ;β = t
N (N−1)

4 ê
(DN )
β (s), β = N − 1, N ,

g = C
(1)
N , D

(2)
N+1 : d

(g)

λ;N
= t

N (N+1)
4 ê

(BN )
N (s),

(A.31)

where

ê
(DN )
β (x) :=

∑

ε1,...,εN =±1∏
εi =2(β−N )+1

N∏

i=1

x
εi /2
i (β = N − 1, N ),

ê
(BN )
N (x) :=

N∏

i=1

1 + xi√
xi

= ê
(DN )
N−1 (x) + ê

(DN )
N (x). (A.32)

The functions ê
(R∗)
m (s) have the property that their dominant monomial (in powers

of t) is sω∗
m , where ω∗

m are the fundamental weights of R∗.

Theorem A.15 The g-specialized Koornwinder polynomials are common eigenvectors

of the g-Macdonald operators, satisfying the eigenvalue equation

D
(g)
m (x) P

(g)
λ = d

(g)

λ;m P
(g)
λ , m ∈ [1, N ], (A.33)
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with d
(g)

λ;m = θ
(g)
m ê

(R∗)
m (s) (ê

(R∗)
m = êm for m ≤ Ng) and

θ (g)
m = tm(N+ξg− m+1

2 ), m ≤ Ng, (A.34)

θ
(D

(1)
N )

β = t
N (N−1)

4 , β = N − 1, N ,

θ
(g)
N = t

N (N+1)
4 , g = C

(1)
N , D

(2)
N+1.

(A.35)

A.3.3 Remark about our choice of Macdonald operators

We made the choice of g-Macdonald operators for simplicity. A more natural choice

is to choose eigenvalues proportional to the fundamental characters of R∗. This leads

to a more complicated choice of the difference operators, but in the q-Whittaker limit,

they have the same limit as our g-Macdonald operators.

For Macdonald’s operators in Sect. A.1, the eigenvalue equation is

D
(g)
m (x) P

(g)
λ (x) = θ (g)

m s(R∗)
ωm

(s) P
(g)
λ (x),

where the Schur functions s
(R∗)
ωm are the fundamental characters of R∗ with highest

weight ω∗
m . We may choose the set of difference operators D̃

(g)
m (x), with eigenvalues

proportional to the fundamental characters of R∗ for all m as above. These are related

to D
(g)
m via a triangular change of basis, as can be seen from the relation between the

fundamental characters and e
(R)
m :

DN : s(DN )
ωm

= ê(DN )
m , m ∈ [1, N ],

BN : s(CN )
ωm

= êm − êm−2, m ∈ [1, N ],
CN : s(BN )

ωm
= êm + êm−1 m ∈ [1, N − 1],

s(BN )
ωN

= ê
(BN )
N .

Therefore D̃(g) are

g = D
(1)
N : D̃

(g)
m := D

(g)
m (m ∈ [1, N ]),

g = B
(1)
N , A

(2)
2N−1, A

(2)
2N : D̃

(g)
m := D

(g)
m − (1 − δm,1)

θ
(g)
m

θ
(g)
m−2

D
(g)
m−2 (m ∈ [1, N ]),

g = C
(1)
N , D

(2)
N+1 : D̃

(g)
m := D

(g)
m + θ

(g)
m

θ
(g)
m−1

D
(g)
m−1 (m ∈ [1, N − 1]),

D̃
(g)
N := D

(g)
N , (A.36)

with the convention that D
(g)
0 = 1. This choice guarantees the following:
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Theorem A.16 For all m = 1, 2, ..., N and all g,

D̃
(g)
m Pλ(x) = θ (g)

m s(R∗)
ωm

(s) Pλ(x), s = qλ tρ
(g)

. (A.37)

A.4 q-Whittaker limit of the g-Macdonald operators

The q-Whittaker limit corresponds to sending t → ∞. The quantity A(a,b,c,d)(x) of

(A.10), which appears in the van Diejen operators (A.8), tends to σ = tξg under the

specialization of Table 1. All terms in (A.8) have the same leading behavior as that

with s = 1 and J = J1 = {1, 2, ..., m}, namely a sum of three contributions from

(A.9):

mξg + m(m − 1) + 2m(N − m) = m(2N − m − 1 + ξg).

Therefore, V
(g)
m ∼ (θ

(g)
m )2 V

(g)
m , where the difference operator V

(g)
m is independent of

t . Similarly D
(g)
m ∼ (θ

(g)
m )2 D

(g)
m where D

(g)
m independent of t , for m = 1, 2, ..., Ng.

By inspection, we find the same leading behavior for Ng < m ≤ N , using (A.35).

This leads to the definitions:

D(g)
m (x) := lim

t→∞
(θ (g)

m )−2
D

(g)
m (x), V (g)

m := lim
t→∞

(θ (g)
m )−2

V
(g)
m (A.38)

with θ
(g)
m as in (A.34-A.35).

Remark A.17 The limit t → ∞ of D
(g)
m is the same as that of D̃

(g)
m of Sect. A.3.3:

Using D
(g)
m � (θ

(g)
m )2 D

(g)
m at leading order in t , the statement follows immediately

from (A.36) by noting that for m ≤ Ng:

lim
t→∞

θ
(g)
m−1

θ
(g)
m

= 0 (m ≥ 1; g = C
(1)
N , D

(2)
N+1),

lim
t→∞

θ
(g)
m−2

θ
(g)
m

= 0 (m ≥ 2; g = B
(1)
N , A

(2)
2N−1, A

(2)
2N ).

For any g, define 	
(g)
λ = limt→∞ t−ρ∗·λ P

(g)
λ . We refer to these as q-Whittaker

functions, although they coincide with the usual definition only for the case of g = D
(1)
N

and the twisted algebras in Table 1. The spectral theorem for D
(g)
m is as follows.

Theorem A.18 The functions 	
(g)
λ are common eigenfunctions of D

(g)
m , with

D(g)
m (x)	

(g)
λ (x) = �ω∗

m 	
(g)
λ (x).

Proof The eigenvalues are the limits

δ
(g)

λ;m = lim
t→∞

(θ (g)
m )−1ê(R∗)

m (s), si = qλi t N+ξg−i .
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The limit extracts the leading monomial of the s variables in the symmetric function,

which is the term involving s1, s2, ..., sm with positive powers. For m = 1, 2, ..., Ng

this gives, using (A.30) (A.34) and (A.12):

δ
(g)

λ;m = lim
t→∞

t−m(N+ξg− m+1
2 )êm(s) = qλ1+λ2+···+λm .

By inspection, using (A.31), (A.35) and (A.32),

D
(1)
N : δ

(D
(1)
N )

λ;N
= q

1
2 (λ1+λ2+···+λN−1+λN ), δ

(D
(1)
N )

λ;N−1 = q
1
2 (λ1+λ2+···+λN−1−λN ),

C
(1)
N : δ

(C
(1)
N )

λ;N
= q

1
2 (λ1+λ2+···+λN−1+λN ),

D
(2)
N+1 : δ

(D
(2)
N+1)

λ;N
= q

1
2 (λ1+λ2+···+λN−1+λN ).

The result can be uniformly written as �ω∗
m = qω∗

m ·λ, ω∗
m the fundamental weights of

R∗. ��

Remark A.19 Using the convention V
(g)
0 = 1, Def. A.8 implies

D(g)
m =

m∑

j=0

V
(g)
j , m ≤ Ng. (A.39)

Appendix B: Pieri rules

In this section, we list some of the Pieri operators implementing the first Pieri rule

for Koornwinder and g-Macdonald polynomials. Their q-Whittaker limit gives q-

difference Toda Hamiltonians for certain root systems.

B.1 First Pieri rule for Koornwinder polynomials

The first Pieri operator for generic (a, b, c, d) is the q-difference operator H
(a,b,c,d)
1 (s)

of Theorem (3.3).

Theorem B.1 The first Pieri operator for Koornwinder polynomials is

H
(a,b,c,d)
1 (s; q, t) = a−1t1−N ϕ(a∗,b∗,c∗,d∗)(s) +

N∑

i=1

⎡
£

»
½

i−1∏

j=1

si − t−1s j

si − s j t i− j

qsi − ts j

qsi − s j

¾
À Ti

+
∏

u∈{a∗,b∗,c∗,d∗}(1 − u−1si )(q − usi )

(1 − s2
i )(q − s2

i )2(q2 − s2
i )

×

»
½

N∏

j=i+1

t−1si − s j

si − s j

tsi − qs j

si − qs j

∏

j �=i

q − tsi s j

q − si s j

1 − t−1si s j

1 − si s j

¾
À T −1

i

¤
⎦,
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where

ϕ(a∗,b∗,c∗,d∗)(x) =
∑

ε=±1

(
1 − ε

q1/2 a∗)(1 − ε
q1/2 b∗)(1 − ε

q1/2 c∗)(1 − ε
q1/2 d∗)

2(1 − t)(1 − q−1t)

×

⎧
«
¬

N∏

i=1

1 − ε t
q1/2 xi

1 − ε
q1/2 xi

1 − ε t
q1/2 x−1

i

1 − ε
q1/2 x−1

i

− t N

«
¬
­ ,

and (a∗, b∗, c∗, d∗) are the dual Koornwinder parameters (3.11).

Proof We use the formula (3.18) with (a, b, c, d) → (a∗, b∗, c∗, d∗). For simplicity,

we work with the values (a, b, c, d) and interchange them with their duals at the end.

We need the following.

Lemma B.2

�(a,b,c,d)(x)−1�i�
(a,b,c,d)(x)

=
(1 − 1

x2
i

)(1 − 1

qx2
i

)

(1 − 1
axi

)(1 − 1
bxi

)(1 − 1
cxi

)(1 − 1
dxi

)

i−1∏

j=1

1 − qxi

t x j

1 − qxi

x j

N∏

j=i+1

1 − x j

xi

1 − x j

t xi

∏

j �=i

1 − 1
xi x j

1 − 1
t xi x j

�i ,

�(a,b,c,d)(x)−1�−1
i �(a,b,c,d)(x)

=
(1 − q

axi
)(1 − q

bxi
)(1 − q

cxi
)(1 − q

dxi
)

(1 − q

x2
i

)(1 − q2

x2
i

)

i−1∏

j=1

1 − xi

x j

1 − xi

t x j

N∏

j=i+1

1 − qx j

t xi

1 − qx j

xi

∏

j �=i

1 − q
txi x j

1 − q
xi x j

�−1
i .

Using Lemma A.11, the conjugation of the D
(a,b,c,d)
1 operator boils down to that

of the terms �
(a,b,c,d)
i,ε �ε

i . We have:

�(a,b,c,d)(x)−1�
(a,b,c,d)
i,+ �i�

(a,b,c,d)(x) = abcd

q
t2N−2

»
½

i−1∏

j=1

1 − x j

t xi

1 − x j

xi

1 − qxi

t x j

1 − qxi

x j

¾
À �i ,

�(a,b,c,d)(x)−1�
(a,b,c,d)
i,− �−1

i �(a,b,c,d)(x)

= t2N−2
(1 − a

xi
)(1 − q

axi
)(1 − b

xi
)(1 − q

bxi
)(1 − c

xi
)(1 − q

cxi
)(1 − d

xi
)(1 − q

dxi
)

(1 − 1

x2
i

)(1 − q

x2
i

)2(1 − q2

x2
i

)

×

»
½

N∏

j=i+1

1 − xi

t x j

1 − xi

x j

1 − qx j

t xi

1 − qx j

xi

∏

j �=i

1 − q
txi x j

1 − q
xi x j

1 − xi x j

t

1 − xi x j

¾
À �−1

i .

We finally use the formula (3.18) for m = 1 and substitute the above results with the

change (a, b, c, d) → (a∗, b∗, c∗, d∗), and the Theorem follows. ��
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B.2 First Pieri rules for g

We may now specialize the result of Theorem B.1 to g, according to Table 1. We first

treat the cases where g = D
(1)
N , C

(1)
N , A

(2)
2N−1 for which the constant term ϕ(g∗)(x)

vanishes10:

H
(D

(1)
N )

1 =
N∑

i=1

⎧
«
¬

∏

j<i

t i− j−1� j − �i

t i− j� j − �i

t i− j+1� j − q�i

t i− j� j − q�i

Ti

+
∏

j>i

t j−i+1�i − q� j

t j−i�i − q� j

t j−i−1�i − � j

t j−i�i − � j

×
∏

j �=i

1 − t2N−i− j−1�i� j

1 − t2N−i− j�i� j

t2N−i− j+1�i� j − q

t2N−i− j�i� j − q
T −1

i

«
¬
­,

H
(C

(1)
N )

1 =
N∑

i=1

⎧
«
¬

∏

j<i

t j−i+1�i − � j

t j−i�i − � j

� j − qt j−i−1�i

� j − qt j−i�i

Ti

+ 1 − t N−i�i

1 − t N+1−i�i

t N+2−i�i − q

t N+1−i�i − q

∏

j>i

t j−i+1�i − q� j

t j−i�i − q� j

� j − t j−i−1�i

� j − t j−i�i

×
∏

j �=i

1 − t2N+1−i− j�i� j

1 − t2N+2−i− j�i� j

t2N+3−i− j�i� j − q

t2N+2−i− j�i� j − q
T −1

i

«
¬
­ .

H
(A

(2)
2N−1)

1 =
N∑

i=1

⎧
«
¬

∏

j<i

t j−i+1�i − � j

t j−i�i − � j

� j − qt j−i−1�i

� j − qt j−i�i

Ti

+
t2N−2i�2

i − 1

t2N+1−2i�2
i − 1

t2N+2−2i�2
i − q2

t2N+1−2i�2
i − q2

∏

j>i

t j−i+1�i − q� j

t j−i�i − q� j

t j−i−1�i − � j

t j−i�i − � j

×
∏

j �=i

t2N−i− j�i� j − 1

t2N+1−i− j�i� j − 1

t2N+2−i− j�i� j − q

t2N+1−i− j�i� j − q
T −1

i

«
¬
­ .

We now treat the cases g = B
(1)
N , D

(2)
N+1, A

(2)
2N for which ϕ(g∗) has a non-trivial

contribution. We find:

H
(B

(1)
N )

1 = G(B
(1)
N )(�) +

N∑

i=1

⎧
«
¬

∏

j<i

t j−i+1�i − � j

t j−i�i − � j

� j − qt j−i−1�i

� j − qt j−i�i

Ti

+
1 − t2N−2i�2

i

1 − t2N+1−2i�2
i

q − t2N−2i�2
i

q − t2N+1−2i�2
i

t2N+2−2i�2
i − q2

t2N+1−2i�2
i − q2

t2N+2−2i�2
i − q

t2N+1−2i�2
i − q

10 Here we show the explicit dependence on �i and t (rather than si = �i tξg+N−i ), as ξg varies with g.

This makes the limit t → ∞ easier to follow.
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×
∏

j>i

t j−i+1�i − q� j

t j−i�i − q� j

� j − t j−i−1�i

� j − t j−i�i

×
∏

j �=i

1 − t2N−i− j�i� j

1 − t2N+1−i− j�i� j

t2N+2−i− j�i� j − q

t2N+1−i− j�i� j − q
T −1

i

«
¬
­ ,

where

G(B
(1)
N )(�) = −1 + 1

2

∑

ε=±1

N∏

i=1

t N+ 3
2 −i�i − εq1/2

t N+ 1
2 −i�i − εq1/2

t N− 1
2 −i�i − εq−1/2

t N+ 1
2 −i�i − εq−1/2

.

H
(D

(2)
N+1)

1 = G(D
(2)
N+1)(�) +

N∑

i=1

⎧
«
¬

∏

j<i

t j−i+1�i − � j

t j−i�i − � j

qt j−i−1�i − � j

qt j−i�i − � j

Ti

+ 1 − t N−i�i

1 − t N+1−i�i

q1/2 − t N−i�i

q1/2 − t N+1−i�i

q − t N+2−i�i

q − t N+1−i�i

q1/2 − t N+2−i�i

q1/2 − t N+1−i�i

×
∏

j �=i

1 − t2N+1−i− j�i� j

1 − t2N+2−i− j�i� j

q − t2N+3−i− j�i� j

q − t2N+2−i− j�i� j

×
∏

j>i

t j−i−1�i − � j

t j−i�i − � j

t j−i+1�i − q� j

t j−i�i − q� j

T −1
i

«
¬
­,

where

G(D
(2)
N+1)(�)= (1 − tq−1/2)(1 + q−1/2)

1 − tq−1

{
N∏

i=1

q1/2 − �i t
N+2−i

q1/2 − �i t N+1−i

1 − q1/2�i t
N−i

1 − q1/2�i t N+1−i
−1

}
,

and finally

H
(A

(2)
2N )

1 = G(A
(2)
2N )(�) +

N∑

i=1

⎧
«
¬

∏

j<i

t j−i+1�i − � j

t j−i�i − � j

qt j−i−1�i − � j

qt j−i�i − � j

Ti

+ 1 − t N−i�i

1 − t N+1−i�i

q − t2N−2i+1�2
i

q − t2N+2−2i�2
i

q − t2N+3−2i�2
i

q − t2N+2−2i�2
i

q − t N+2−i�i

q − t N+1−i�i

×
∏

j>i

t j−i−1�i −� j

t j−i�i −� j

t j−i+1�i −q� j

t j−i�i −q� j

×
∏

j �=i

1−t2N+1−i− j�i� j

1−t2N+2−i− j�i� j

q−t2N+3−i− j�i� j

q−t2N+2−i− j�i� j

T −1
i

«
¬
­,
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where

G(A
(2)
2N )(�) =

∑

ε=±1

(1−εtq−1/2)(1+εq−1/2)

2(1−tq−1)

{
N∏

i=1

q1/2−ε�i t
N+2−i

q1/2−ε�i t N+1−i

ε−q1/2�i t
N−i

ε−q1/2�i t N+1−i
−1

}
.

Remark B.3 When we consider the q-Whittaker limit t → ∞, the constant pieces

G(g)(�) in the latter three cases g = B
(1)
N , D

(2)
N+1, A

(2)
2N provide an extra constant term

in the limiting Hamiltonians H
(g)
1 . These read respectively:

G(B
(1)
N )(�) → q−1

�N−1�N

− 1 + q−1

�2
N

, G(D
(2)
N+1)(�) → −1 + q−1/2

�N

,

G(A
(2)
2N )(�) → − 1

�N

.

Appendix C: Proof of Theorem 4.10

Here, we provide the proof of Theorem 4.10, that the time translation operators g(g)

of Eq. (4.12) commute with the limiting first Pieri operator/Toda Hamiltonian H
(g)
1

of Eq. (3.38):

g(g)H
(g)
1 = H

(g)
1 g(g). (C.1)

We divide each Hamiltonian into bulk and boundary pieces, study how g commutes

with each, and then sum up the contributions to prove the commutation (C.1).

Lemma C.1 For all g,

gT

(
1 − �−αa

)
=

(
1 − q�−αa

)
T −αa gT (a = 0, 1, ..., N − 1),

(C.2)

g�

(
1 − �−αa

)
Ta =

(
1 − q−1�−αa+1

)
Ta+1 g� (a = 1, 2, ..., N − 2),

(C.3)

g�

(
1 − �−αa

)
T −1

a =
(

1 − q−1�−αa−1

)
T −1

a g� (a = 1, 2, ..., N − 1),

(C.4)

with the convention α0 = 0.
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C.1 Bulk and boundary terms

Each of the first Pieri operators (3.38) is the sum of a bulk and boundary piece, where

the bulk piece has the same form for all g:

H
[m]
1 :=

m∑

a=1

(
1 − �a

�a−1

)
Ta +

(
1 − �a+1

�a

)
1

Ta

,

with the convention that 1
�0

= 0, for suitable value of m = mg: mg = N − 2 for

g = D
(1)
N , B

(1)
N , A

(2)
2N , and mg = N − 1 for all other cases.

The operators g(g) of (4.12) also have some common structures. For g =
B

(1)
N , A

(2)
2N−1, D

(2)
N+1, g = g

1
2

T αg
1
2

T g�β where α, β are functions of �N only. For

g = D
(1)
N g = gT g�β with β a function of �N−1�N only. The cases g = C

(1)
N , A

(2)
2N

are different, and have a g operator of the form g = gT g�αgT g�β, where α, β are

functions of �N only.

Lemma C.2 For all g and m ≤ mg, and t1 = 2 for g = C
(1)
N , A

(2)
2N , t1 = 1 otherwise,

g(g) H
[m]
1 (g(g))−1 = (gT g�)t1 H

[m]
1 (gT g�)−t1 .

Proof The only subtleties arise in the cases g = B
(1)
N , A

(2)
2N . When g = B

(1)
N , with

g = g
1
2

T αg
1
2

T g�β, the action of g
1
2

T g�β on H
[m]
1 creates a term proportional to Tm+1,

as a consequence of

gT g�

(
1 − �a

�a−1

)
Ta =

(
Ta − �a+1

�a

Ta+1

)
gT g� (C.5)

for a = m. This term commutes with α only if m + 1 ≤ N − 1, hence we set

mg = N − 2. Similarly, when g = A
(2)
2N , with g = gT g�αgT g�β, the action of

gT g�β on H
[m]
1 creates a term proportional to Tm+1 which commutes with α only if

m + 1 ≤ N − 1, hence we set mg = N − 2 as well. ��

Lemma C.3 We have the commutation relations for m = 1, 2, ..., N − 1:

gT g� H
[m]
1 =

{
H

[m]
1 + �m+1

�m

(
1

Tm

− Tm+1

)}
gT g�.

Proof We simply sum over the relevant values of a the commutation relations (C.5),

as well as the following:

gT g�

(
1 − �a+1

�a

)
1

Ta

=
(

1

Ta

− �a

�a−1

1

Ta−1

)
gT g�, (C.6)

obtained by combining (C.2-C.4). ��
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The cases g = C
(1)
N and A

(1)
2N are special, as we will have to use Lemma C.3 twice.

This is deferred to Sect. C.6 below.

For all the other cases, we apply Lemmas C.2 and C.3 to commute g through the

relevant bulk contributions to H
(g)
1 corresponding to a = 1, 2, .., mg. The remaining

terms of H
(g)
1 are the “boundary” terms, corresponding to mg < a ≤ N and possibly

to constant terms independent of T ±1
a . We address them individually in the following

Sections C.2 through C.5. In all cases, the Lemma 4.10 follows from summing all

contributions from the bulk a = 1, 2, ..., mg and the boundary a = mg + 1, ..., N

plus constant terms.

C.2 Case g = D
(1)
N

Recall that g = gT g�

∏∞
n=0

(
1 − qn

�N−1�N

)−1
, and that mg = N −2. For a = N −1,

we have:

g

(
1 − �N−1

�N−2

)
TN−1 =

(
TN−1 − �N

�N−1
TN − 1

�N−1�N

T −1
N + 1

�2
N−1

T −1
N−1

)
g,

g

(
1 − �N

�N−1

) (
1 − 1

�N−1�N

)
T −1

N−1 =
(

T −1
N−1 − �N−1

�N−2
T −1

N−2

)
g,

and for a = N :

g

(
1 − �N

�N−1

)
TN =

(
TN − 1

�N−1�N

T −1
N−1

)
g,

g

(
1 − 1

�N−1�N

)
T −1

N =
(

T −1
N − �N

�N−1
T −1

N−1

)
g.

Eq. (C.1) follows by summing all bulk and boundary contributions.

C.3 Case g = B
(1)
N

Recall that g = g1 g2, g1 = g
1
2

T α, g2 = g1g� with α =
∏∞

n=0

(
1 − qn

�2
N

)−1

, and that

mg = N − 2. The terms a = N − 1, N and the constant term read

g

(
1− �N

�N−1

)
T −1

N−1 = T −1
N−1 g

1
2

T αg
1
2

T

(
1 − �N−1

�N−2

)
α g�

=
(

T −1
N−1 − �N−1

�N−2
T −1

N−2

)
g,

g

(
1− �N−1

�N−2

)
TN−1 = TN−1g1g

1
2

T

(
1− �N

�N−1

)
αg�

= g1

(
TN−1−q− 1

2
�N

�N−1
T

1
2

N−1T
1
2

N

)
g2,
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g

(
1 − �N

�N−1

)
TN = g1

(
1 − 1

�2
N

T −1
N

) (
1 − q−1 1

�2
N

T −1
N

)
TN g2,

g

(
1 − 1

�2
N

) (
1 − q

1

�2
N

)
T −1

N = g1

(
T −1

N − q− 1
2

�N

�N−1
T

− 1
2

N−1T
− 1

2

N

)
g,

g

(
q−1

�N−1�N

− 1 + q−1

�2
N

)
= g1

(
q− 1

2

�N−1�N

T
− 1

2

N−1T
− 1

2

N − q
1 + q−1

�2
N

T −1
N

)
g2.

(C.7)

Summing the last four terms leads to:

g

{(
1 − �N−1

�N−2

)
TN−1 +

(
1 − �N

�N−1

)
TN

+
(

1 − 1

�2
N

)(
1 − q

1

�2
N

)
T −1

N + q−1

�N−1�N

− 1 + q−1

�2
N

}

= g1

{(
1 − 1

�2
N

) (
1 − q

1

�2
N

)
T −1

N −
(

1 − 1

�2
N

)
q− 1

2
�N

�N−1
T

− 1
2

N−1T
− 1

2

N

+ TN−1 − q− 1
2

�N

�N−1
T

1
2

N T
1
2

N−1 + TN − 1 + q−1

�2
N

}
g2

=
{

TN−1 +
(

1 − �N

�N−1

)
TN − �N

�N−1
T −1

N−1

+
(

1 − 1

�2
N

)(
1 − q

1

�2
N

)
T −1

N + q−1

�N−1�N

− 1 + q−1

�2
N

}
g.

Finally adding the first term of (C.7) gives

g

{(
1 − �N

�N−1

)
T −1

N−1 +
(

1 − �N−1

�N−2

)
TN−1 +

(
1 − �N

�N−1

)
TN

+
(

1 − 1

�2
N

)(
1 − q

1

�2
N

)
T −1

N + q−1

�N−1�N

− 1 + q−1

�2
N

}

=
{

TN−1 +
(

1 − �N

�N−1

)
TN − �N−1

�N−2
T −1

N−2 +
(

1 − �N

�N−1

)
T −1

N−1

+
(

1 − 1

�2
N

)(
1 − q

1

�2
N

)
T −1

N + q−1

�N−1�N

− 1 + q−1

�2
N

}
g.

Eq. (C.1) follows by summing all bulk and boundary contributions.
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C.4 Case g = A
(2)
2N−1

Recall that g = gT g�α, with α =
∏∞

n=0

(
1 − q2n

�2
N

)−1

, and mg = N −1. For the two

boundary terms for a = N we have:

g

(
1 − �N

�N−1

)
TN = gT

(
1 − q−2 1

�2
N

)
TN g� α =

(
TN − 1

�2
N

T −1
N

)
g,

g

(
1 − 1

�2
N

)
T −1

N g−1 = gT

(
1 − q−1 �N

�N−1

)
T −1

N g� α =
(

T −1
N − �N

�N−1
T −1

N−1

)
g.

Eq. (C.1) follows by summing all bulk and boundary contributions.

C.5 Case g = D
(2)
N+1

Recall that g = gT g�α, with α =
∏∞

n=0

(
1 − q

n
2

�N

)−1

, and mg = N −1. For the two

boundary terms for a = N and the constant term we have:

g

(
1 − �N

�N−1

)
TN =

(
TN − 1 + q− 1

2

�N

+ q

�2
N

T −1
N

)
g

g

(
1 − 1

�N

) (
1 − q

1
2

�N

)
T −1

N =
(

T −1
N − �N

�N−1
T −1

N−1

)
g

g

(
−1 + q− 1

2

�N

)
= −1 + q

1
2

�N

T −1
N g

Eq. (C.1) follows by summing all bulk and boundary contributions.

C.6 Cases g = C
(1)
N

,A
(2)
2N

Recall the general structure of the operator g = g1g2 with g1 = gT g�α and g2 =
gT g�β, where α, β are functions of �N only. We note that g2 is the same for both

cases, with β =
∏∞

n=0

(
1 − qn

�N

)−1
. We note also that H

[N−1]
1 is the same for both

cases, and Lemma C.3 gives the commutation of g2 through H
[N−1]
1 :

g2 H
[N−1]
1 =

{
H

[N−1]
1 + �N

�N−1

(
1

TN−1
− TN

)}
g2. (C.8)
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We now need to add the boundary and constant terms. For g = C
(1)
N we have for

a = N (and no constant term):

g2

(
1 − �N

�N−1

)
TN =

(
TN − q− 1

2

�N

)
g2

g2

(
1 − 1

�N

)
T −1

N =
(

T −1
N − �N

�N−1
T −1

N−1

)
g2.

For g = A
(2)
2N we have for a = N and the constant term:

g2

(
1 − �N

�N−1

)
TN = gT

(
1 − q−1

�N

)
TN g� β =

(
TN − q− 1

2

�N

)
g2,

g2

(
1 − 1

�N

)
T −1

N =
(

T −1
N − �N

�N−1
T −1

N−1

)
g2,

g2

(
1 − 1

�N

)
=

(
1 − q

1
2

�N

T −1
N

)
g2.

Adding these to the bulk contributions (C.8), we deduce the following commutations:

g = C
(1)
N : g2 H1 =

{
H1 + 1

�N

(T −1
N − q− 1

2 )

}
g2, (C.9)

g = A
(2)
2N : g2 H1 =

{
H1 + 1 − q

1
2

�N

(T −1
N − q− 1

2 )

}
g2. (C.10)

We must now commute g1 through this. For both cases, we split again H1 into a bulk

piece H
[N−1]
1 and boundary pieces and constant terms. For the bulk contribution, we

use again Lemma C.3 to write in both cases

g1 H
[N−1]
1 =

{
H

[N−1]
1 + �N

�N−1

(
1

TN−1
− TN

)}
g1. (C.11)

Then for g = C
(1)
N and a = N :

g1

(
1 − �N

�N−1

)
TN = TN g1,

g1

(
1 − 1

�N

)
T −1

N =
(

1 − q
1
2

�N

T −1
N

) (
T −1

N − �N

�N−1
T −1

N−1

)
g1,
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and for g = A
(2)
2N , a = N and the constant term:

g1

(
1 − �N

�N−1

)
TN = gT

(
1 − q− 1

2

�N

)
TN g� α =

(
TN − 1

�N

)
g1,

g1

(
1 − q

1
2

�N

)
T −1

N =
(

T −1
N − �N

�N−1
T −1

N−1

)
g1,

g1

(
1 − q− 1

2

�N

)
=

(
1 − 1

�N

T −1
N

)
g1.

Summing these with the bulk contributions (C.9)and (C.10) respectively, we arrive at

g = C
(1)
N : g1

{
H1 + 1

�N

(T −1
N − q− 1

2 )

}
= H1 g1, (C.12)

g = A
(2)
2N : g1

{
H1 + 1 − q

1
2

�N

(T −1
N − q− 1

2 )

}
= H1 g1. (C.13)

Finally, Lemma 4.10 follows for g = C
(1)
N , A

(2)
2N by combining the commutation

relations (C.9-C.10) and (C.12-C.13). In all cases, Eq. (C.1) follows by summing all

bulk and boundary contributions.
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