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Abstract

The SL(2, Z)-symmetry of Cherednik’s spherical double affine Hecke algebras in
Macdonald theory includes a distinguished generator which acts as a discrete time
evolution of Macdonald operators, which can also be interpreted as a torus Dehn twist
in type A. We prove for all twisted and untwisted affine algebras of type ABC D that
the time-evolved g-difference Macdonald operators, in the 1 — 0o g-Whittaker limit,
form a representation of the associated discrete integrable quantum Q-systems, which
are obtained, in all but one case, via the canonical quantization of suitable cluster alge-
bras. The proof relies strongly on the duality property of Macdonald and Koornwinder
polynomials, which allows, in the g-Whittaker limit, for a unified description of the
quantum Q-system variables and the conserved quantities as limits of the time-evolved
Macdonald operators and the Pieri operators, respectively. The latter are identified with
relativistic ¢g-difference Toda Hamiltonians. A crucial ingredient in the proof is the use
of the “Fourier transformed” picture, in which we compute time-translation operators
and prove that they commute with the Pieri operators or Hamiltonians. We also discuss
the universal solutions of Koornwinder-Macdonald eigenvalue and Pieri equations, for
which we prove a duality relation, which simplifies the proofs further.
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1 Introduction
1.1 Overview

The purpose of this paper is to determine, in a uniform manner, a certain discrete
integrable structure associated with the finite-dimensional representations of quantum
affine algebras or Yangians of affine algebras g, and to understand the relation of
this structure with Koornwinder-Macdonald theory and spherical double affine Hecke
algebras (sDAHA) for all g of non-exceptional type.

Specifically, the characters of a special subset of representations of these algebras,
known as KR-modules [5, 34], satisfy recursion relations which can be viewed as
discrete time evolution equations. These evolutions, called Q-systems [28, 29], are
known to have an integrable structure for a subset of algebras g. When g = A%)_l,
the integrable structure was shown to be a Coxeter-Toda system [13, 25], and this was

generalized [54] to g = D,(\}), Agzl\),fl, DS)H using the refactorization map [30]. In

type g = B](Vl) the system was shown to be integrable [53] using a Goncharov-Kenyon
type dimer model [26]. Generally, discrete integrability was a conjecture and does
seem to be related to refactorization maps.

The combinatorial structure of Q-system evolution equations is such that, in almost
all cases, they can be interpreted as mutations in a cluster algebra of geometric type [12,
32]. This structure can be encoded in the form of a quiver, which, in type Ag\})_ | appears
in various contexts such as K -theoretic Coulomb branches [47], gauge theories [3],
factorization maps [54] and shifted quantum affine algebras or Yangians [2, 18, 24].

Cluster algebras have a natural quantization [1], and in [15, 38] it was shown that
this quantization is associated to the grading of the so-called fusion product of KR-
modules [23]. That is, the character of the graded fusion product can be expressed as a
constant term identity involving the corresponding solutions of the quantum Q-system.

The Hamiltonians associated with the quantum Q-system in type AE\RI are the
q-difference (or relativistic) quantum Toda Hamiltonians of [21], and therefore the
graded characters of fusion products of fundamental representations in this type can
be identified with g-Whittaker functions of U, (s[y) [11]. More generally, the quantum
Q-system generators can be identified with the algebra of creation and annihilation
operators of generalized g-Whittaker functions or graded characters. This algebra was
identified in [11, 16, 18] with the g-Whittaker limit # — oo of the spherical double
affine Hecke algebra of type A [9] as follows. There is a natural SL(2, Z)-symmetry of
the SDAHA, and the generator 7 € SL(2, Z) acts on the functional representation as
conjugation by Cherednik’s Gaussian. The subset of the SDAHA generators consisting
of all 7 -translates of the commuting Macdonald difference operators can be identified,
in the ¢g-Whittaker limit, as the set of solutions of the quantum Q-system. This gives
a functional representation of the quantum Q-system as an algebra of difference oper-
ators. In particular, single 7 -translates of Macdonald operators are the g-Whittaker
limits of the Kirillov-Noumi raising operators for Macdonald polynomials [33].

There are generalizations of DAHAs and their functional representation to the
other classical affine root systems [6, 9]. The corresponding Macdonald operators have
generalized Macdonald polynomials as common eigenfunctions. The latter can also be
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obtained as specializations of the Koornwinder polynomials, which depend on several
extra parameters (a, b, ¢, d) [35, 50, 55] (see Table 1). These are eigenfunctions of
the Koornwinder difference operator, the first in a family of N commuting difference
operators [50], where N is the rank of the finite sub-algebra R. These are elements in
the functional representation [41] of a DAHA depending on (a, b, ¢, d).

Quantum Q-systems can be defined for all affine algebras. It is natural to expect
that some selected commuting family of difference operators together with their 7. -
translates will, in the g-Whittaker limit, satisfy these non-commutative evolution
equations. For a subset of algebras g, we presented a conjectural family of such dif-
ference operators in [19]. In this paper, we generalize and prove these conjectures for
all non-exceptional g using duality and the Fourier transform.

In type Ag\p_ |» We present a simpler, alternative proof to that of [11], that the 7 -
translates of the Macdonald difference operators, in the g-Whittaker limit, satisfy the
quantum Q-system. An essential ingredient in the simplification of the proof is the
use of the Macdonald duality property [39]. The Macdonald difference operators are
elements of C;(x)[I';], written in terms of the generators of the quantum torus

Ty o= (x;, Ti)izinve Tixj =% x;T; (1.1

acting on functions of x = (xy, ..., x). The monic, symmetric Macdonald polynomi-
als P;(x) are the common eigenfunctions of the Macdonald difference operators,
depending on two sets of parameters, the variables x as well as integer parti-
tions A = (A1 > Ao > --- > Apn). Encoding the partitions using the variables
s = (s1,...,sn) with s; = A;tPi, A; = qki and p is the half-sum of positive roots
(pi = N —1i), the duality of Macdonald theory is a symmetry property of the properly
normalized eigenfunctions of the Macdonald operators under the interchange of the
variables x and s [7, 39, 51].

This symmetry can be used to relate the Macdonald operator eigenvalue equations to
the Pieri rules, which express the effect of multiplication of the Macdonald polynomial
by elementary symmetric functions, as the action of g-difference operators in the
variables s or A. These difference operators are Pieri operators, and can be written in
terms of the quantum torus

Ta = (A, Tizt,ny TiAj =" AT}, (1.2

The eigenvalue equations for Macdonald operators with eigenfunctions P; (x) can
be thought of as a special case of the SDAHA “Fourier transform”, which is a map
from operators f(x) to operators f(A), such that

f(x) Pu(x) = f(A) Pr(x) (1.3)

for all A. In particular, the Fourier transforms of the Macdonald operators are the ele-
mentary symmetric functions in the variable s, and the transform of the Pieri operators
are the elementary symmetric functions in x.

In the g-Whittaker limit, switching to the “Fourier transformed” T s picture results
in drastic simplifications. Indeed, the transforms of the Macdonald operators in the
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g-Whittaker limit are the limits of the elementary symmetric function in s, which
are the leading monomials in A; due to the dependence of s on 7. Because of this,
the 7 -translates of the Fourier-transformed operators are simpler. In the functional
representation as difference operators in x-variables, the action of 7 is expressed as
conjugation by the Cherednik Gaussian y (x) [9], which is independent of ¢. In the
Fourier-transformed picture in A-variables, we find the explicit operator g(A) which
represents the 7 -translation, generates the discrete time evolution of the quantum
Q-system, and commutes with the Hamiltonians.

The operator g(A) is interpreted as a Dehn twist [46] from a quantum higher
Teichmiiller theory interpretation in type A, and can be expressed as a product of
quantum dilogarithms. It was shown to be a specialization of the Baxter Q-operator of
[46] for the Q-system quiver of type AE\})_ |- The Baxter Q-operator is the generating
function of commuting g-difference Toda Hamiltonians [21], which coincide with the
g-Whittaker limit of the Macdonald Pieri rules.

The above discussion for type Ag\}ll can be extended to the affine algebras, twisted

or untwisted, of the form g = X 5\;)’ with X a classical Lie algebra of type ABCD

and r = 1, 2, in the notation of [29, 31]. This includes the cases presented as conjec-
tures in [19]. In this paper, we prove the relation between the the g-Whittaker limit of
the SL(2, Z)-translates of appropriately chosen g-difference Koornwinder-Macdonald
operators, for each algebra g, with the solutions of the type g quantum Q-system sys-
tems.

At the same time, we find a uniform description of the integrable structure of
the quantum Q-systems as discrete dynamical systems with commuting integrals of
motion. These are versions of the g-difference Toda Hamiltonians for the various
root systems. The classical Q-systems associated with the affine root systems of types
Ag\}) , Dz(\}) , A;zl\),_ I DI(&r | are known [54] to be the evolution equations of the refac-
torization maps of types A, D, C, B, respectively. As such, their integrable structure
is given by a classical Toda-type lattice [30, 44]. The integrable structure of the Q-
systems for g = B,(\}), C ](Vl) and Ag\),, also given by a Toda-type Hamiltonian, but do
not arise from factorization dynamics.

Here, we show that the unifying structure in the case of the quantum Q-systems is
given, instead, by the Koornwinder-Macdonald operators [40, 45, 51] via the duality
relating the eigenvalue equations to the Pieri rules, which become g-difference Toda
equations [21, 27] in the g-Whittaker limit t — oco.

In this limit, the symmetry in the duality relations is broken, and as a result the
Fourier transform of the Macdonald operators acting on A-space is greatly simplified.
The rationale of our proofs is to identify the Fourier transforms of the SL(2, Z)-
translates of the Macdonald operators in the g-Whittaker limit and to transform the
relations occurring in A-space back to x-space.

We also use another formulation of duality, based on the notion of the “universal
solution” P (x; s) to the Koornwinder-Macdonald eigenvalue equations (c.f. [7, 10] and
the asymptotically-free basic Harish-Chandra series of [49]). In [42] such solutions are
explicitly computed in type A 5\}11 . In the Koornwinder case and its specializations, this
suggests the definition of series solutions for the eigenvalue equation in the formal vari-
ables (x, s). These truncate to the polynomial eigenfunctions when A is specialized to
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g-partitions corresponding to dominant integral weights of g, where s is a discrete vari-
able. Duality relates the universal solution P (x; s) of the eigenvalue equation, to the
universal solution Q (s; x) of the Pieri equations, and formalizes the Fourier transform.

1.2 Summary of the main results

All the results here refer to all affine algebras g of type X %) with X = A, B,C, D
and » = 1,2. The subsequent labeling of theorems refers to both Sect. 2 (dedi-

cated to the case of Ag\}ll for pedagogical reasons) and Sect. 4 which addresses
a= B0 DY AG)_,, DY), and A%

For each such algebra g, we define a preferred set of N commuting g-difference
operators {@L(lg)(x; q,t), a € [1, N]}, chosen via specializations of linear combi-
nations of van Diejen’s higher Koornwinder operators, augmented by Rains and
Macdonald operators for each algebra. The operators are chosen so that their eigenval-
ues form a basis for the space spanned by the fundamental characters of the underlying
finite subalgebras R* listed in Table 1, with R* = Ay_ in the case of g = A\ .

Once an appropriate family of commuting difference operators is constructed, we
define the g-Whittaker limit # — oo of the family, {Dflg)(x; q)}, as well as their
Tl € SL(2, Z)-translates, {D;?r)l(x; q),n € 7Z}. These operators satisfy the g-type
quantum Q-systems, (2.13), (2.14) or (4.2)—(4.4). The main results of this paper may
be stated as the following Theorems:

Theorems 2.3, 4.3. For each g, the set of q-difference operators {D;?r)l (x;9),a €
[1, N1,n € Z} defined in Sections 2.2 and 3.3.3 satisfy the corresponding quantum
Q-system relations.

These operators can be viewed as generalized raising or lowering operators, and in
particular, we prove

Theorem 4.4. The g-difference operators {D‘(fi) (x;q) : i = 0,1} satisfy eigenvalue
and raising operator properties:

D ) TP (1) = A% TP (),
D8 ) TP () = A% T, (x),

where w,, W} are fundamental weights of R, R* the finite root lattices of g, g*.

The proof uses the + — oo limit of the “Fourier transform” (1.3) (sometimes
called g-Whittaker transform), which relies on the completeness of eigenfunctions
of the g-Whittaker difference operators. Let H;g)(x) be the set of common eigen-

functions of the operators D((lg)(x) = D((f% (x), i.e. limits of Macdonald polynomials.

The Fourier transform relates operators f(x) in T, to operators f(A) in T, via
f(x) Hf\g) (x) = f(A) H§g>(x). Then we define the g-difference operators acting on
the index variables A, fof,z (A), starting from the initial (Macdonald eigenvalue) con-
dition D;?())(x) Hf\g)(x) = DL%(A) Hig)(x), and further constrained to obey the g
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quantum Q-system with the opposite multiplication. Finally we set out to prove that
the operators Dﬂ(f,)l (A) are the Fourier transforms of the operators DL(I?,)Z (x).

To this end, we first find the explicit time-translation operators n — n+1 (orn+2)
acting on the operators Dé?,{ for each g:

Theorems 2.7, 4.9. There is a unique, up to scalar multiple, function g = g'® (A) in
the generators of the quantum torus T 5, such that

N —wrwata/2 1 -1
Da,n+ta =dq @awala/ gDa,ng y

where t, = 1 for all labels a except for the so-called short labels N in type BI(VI),
[1, N — 1] in type C](Vl) and [1, N] in type AS\),, in which case t, = 2. Here w, (@)
are fundamental weights of R (R*).

The g operators are listed in (2.27) and (4.12). They can be expressed as explicit
products of quantum dilogarithms. In the case of AS\Q] the operator g !
evaluation of the Baxter Q-operator of [46].

Next, we use the duality in Koornwinder-Macdonald theory, which relates the eigen-

value equation of the Koornwinder-Macdonald operators for g to the Pieri rules for

is a particular

the dual g*, where all cases are self-dual except B,(V])* = C,(\}) and C](\})* = B](V]). In
the g-Whittaker limit, the Pieri operators are interpreted as (relativistic) g-difference

Toda Hamiltonians, and the polynomials H;Lg) (x) as g-Whittaker functions. The First
Pieri operators for I"Iig) (x) are listed in (2.12) and (3.38). They express the effect of
multiplying Hig) (x) with the first elementary symmetric function in x, e1 (x) in type
Ag\l,)_ poreép(x) = Z,N: (i +x; 1 for all other g. The N commuting Pieri operators

Hcfg) (A), which can be thought of as g-difference Toda Hamiltonians, commute with
the time-translation operator g‘® (A). Thus, we have

Corollaries 2.13, 4.14. The Pieri operators {Htgg)(A), a € [1, N1} are algebraically
independent conserved quantities of the opposite quantum Q-system for type g.

The origin of the operators g‘® (A) is clarified by the following theorem:

Theorems 2.11,4.12. The operators g'® (A) are the Fourier transforms of Cherednik’s
Gaussian operator y (x)", with y (x) as in Equation (2.16) the functional representa-
tion of the SL(2, 7)) generator t4.:

2if g = A%, €\,

1 — o(@ _
Yy L(x) = gV (M)I(x), 1= {1 otheraise.

Using these properties, and a uniqueness argument involving series solutions of the
first Pieri rule, we finally prove

Theorems 2.6, 4.15. For all g,
DM () = DA (MM (), (e
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valid for any g-partition A and any root label a € [1, N1].

In other words, the operators l_)(g) (A) are the Fourier transforms of the Whittaker

limits of Macdonald operators D(g ) (x). This completes the proof of the main claim of
this paper (Theorems 2.3,4.3 and 4 4) and the conjectures of [19], that the g-difference
operators D,(Z?,), (x; q) satisfy the quantum Q-system of type g.

We consider duality in terms of the universal solutions of the eigenvalue and
Pieri equations, P(x;s) and Q(s; x). These are continuations of the Koornwinder
or Macdonald polynomials to arbitrary values of the parameters A, with s = g*¢°
and x = q”tp* with p a function of (a, b, ¢, d) as in Sect. 3.1.4. The series have
the form P (x; s) = g** Y peo, cp(s)x P and Q(s; x) = g™+ ZﬂeQi cp(x)sP,
with normalizations co(s) = co(x) = 1, and Q, Q7 are the positive root lattices
of the root systems R, R*. Under specialization of the parameters (a, b, ¢, d), uni-
versal solutions of the Koornwinder equation specialize g-Macdonald solutions, and
whenenever A corresponds to any dominant integral R-weight, the series truncates to a
polynomial. They also specialize to Chalykh’s Baker-Akhiezer quasi-polynomials [4]
when parameters a, b, c, d, t (resp. t) are specialized to negative (half-)integer (resp.
integer) powers of ¢, while A remains arbitrary.

We establish the following relation between the series P(x; s) and Q(x; s) ,and a
simple subsequent reformulation of duality.

Theorem 5.3, Corollary 5.4, Theorem 5.5. The universal Koornwinder functions
Q@b.cd) (s xy and P@b<-d (x: 5) and their g-specializations are related via

P(a,b,c,d) (x; S)
Ala.b,c.d) (x) ’

p(g)(x; s)

(@) (c- _ e
QO (55 x) = AW (x)

QP e (s: x) =

with A@b¢D g5 in (3.14), and A® as in (3.27). Moreover the duality of Koornwinder
and g-Macdonald polynomials extends to universal solutions as follows

QU (x; ) = QWP D (s x), Q) (x5 5) = QD (s; ),

1.3 Outline of the paper

This paper is organized as follows.

We first revisit the A type in Sect. 2 as an illustration of the concepts used for
other types in the remainder of the paper. After recalling the definition of Macdonald
operators and polynomials, and showing how eigenvalue equations relate to Pieri
rules via duality, we discuss the g-Whittaker limit # — oo and the quantum Q-system
(Sects. 2.1-2.4). Our main character is the time translation operator, whose adjoint
action allows to advance Macdonald operators D, (x) in discrete time, thus producing
operators D,.,(x). In x space it takes the form of the (scalar) Gaussian operator
y (x) (Sect. 2.5). To prove that the Macdonald operators obey the quantum Q-system
we switch to A space: in Sect. 2.6, using the eigenvalue D,.o(A) of the Macdonald
operator D, (x) as initial data, we define the candidate Fourier duals l_)a;,, (A) of the
translated Macdonald operators as solutions of the opposite quantum Q-system for
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this initial data. In Sect. 2.7 we derive the associated explicit time translation operator
g(A). Finally the latter is shown to be the Fourier transform of the Gaussian y (x)
in Sect. 2.10 leading to the proof of the main Theorem 2.3 for type A by identifying
D, (x) with the Fourier transform of Da;n (A). Akey ingredient is the commutation of
g (A) with the first Pieri operator Hj(A), shown in Sect. 2.8. This allows to identify the
Pieri operators as the commuting conserved quantities of the quantum Q-system, also
known as the relativistic Toda Hamiltonians of type A (Sect. 2.12). Finally Sect. 2.13
is devoted to a reformulation of the duality properties, Fourier transform, and proofs
in terms of the universal solution of the Macdonald eigenvalue equation considered
by [42].

The remainder of the paper focusses on the other types. In Sect. 3, we define suit-
able families of commuting Macdonald operators, borrowing from various existing
constructions. The first approach uses the known specialization scheme of the Koorn-
winder operator to Macdonald operators, completed by van Diejen and Rains into a set
of commuting difference operators (Sects. 3.1 and 3.2, and details in Appendix A). The
duality of Koornwinder polynomials descends to a duality between Macdonald oper-
ators and Pieri rules for dual types. Sect. 3.3 describes the g-Whittaker limit + — oo,
and provides detailed definitions of the translated limiting Macdonald operators D;?l:
for all types. Some new subtleties arise for non-A types, in particular the distinction
between long and short labels a for which the time translation has to be defined sepa-
rately (type A only has long labels). Section 4 defines the quantum Q-systems for all
types and presents the main results of this paper, Theorems 4.3 and 4.4 (Sect. 4.1),
and their proof (Sect. 4.2 complemented by Appendices B and C), along the same
lines as for the case of type A. We define candidate Fourier transforms l_)fr)l (A) of
the translated Macdonald operators by use of the opposite g-quantum Q-system, and
construct the time translation operators g(® (A) explicitly. The latter commute with
the Toda Hamiltonians, identified as the conservation laws of the quantum Q-systems,
thus allowing us to identify g(® (A) with the Fourier transform of the Gaussian oper-

ator y(g) (x). Finally in Sect. 4.3 we prove that the D;?,)l (A) are the Fourier transforms

of the translated Macdonald operators D;?z (x), from which the main results follow.

Section 5 is an extension of the constructions of Sect. 2.13. In Sect. 5.1 we intro-
duce universal solutions P (x, s) to the Koornwinder-Macdonald eigenvalue equations
in the form of power series of the variables x %, 5% where o, oz;" are the sim-
ple roots of suitable lattices. P (x, s) has the remarkable property that it reduces to
Koornwinder-Macdonald polynomials upon specializing s = ¢*t* for A a (g-) par-
tition. In Sect. 5.2 we extend the duality of Koornwinder-Macdonald polynomials to
some relation between P (x, s) and its dual P*(s, x). Finally in Sect. 5.3 we show how
this new formulation allows to rewrite the proofs of this paper more elegantly.

We finally gather some concluding remarks in Sect. 6. We comment on the three
additional “companion” quantum Q-systems obtained as a by-product of our study
and the associated representation by g-difference operators, which were not part of the
original setting (Sect. 6.1). We discuss path models for the various universal functions
of the paper in Sect. 6.2. We interpret the universal function results in terms of g-
Whittaker functions in Sect. 6.3. Sect. 6.4 summarizes our results and lists related
open questions.
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2 Duality property in type A(”

The main result of [11] is a theorem which states that the g-Whittaker limit of the
A-type Macdonald operators and their 7 -translates satisfy the quantum Q-system of
type Aﬁ\}ll. To prove this, we used the explicit form of these difference operators in
x-space. In this section we will give a different method for proving the same theorem
by using Macdonald’s duality relation and the Fourier transform of these operators.

We use the notation for the roots and weights of gl as follows. Let {eq, ..., ex} be
the standard basis of RV, then the simple roots are {¢; = ¢; —e;j41;i =1,..., N —1},
the gly fundamental weights (including wy) are {w; = e; +---+¢;,i = 1,..., N},
the positive roots are Ry = {¢; —e;,1 <i < j < N},and p = Z,N:1(N —1i)e;.
Foru,v e RY, we use the notation u - v for the standard scalar product. We consider
q €C* lgq| < 1.

2.1 Macdonald operators and polynomials

Let x = (x1,...,xy) be formal variables, and define the g-difference operators
Da(x; q, t) be the a-th Macdonald g-difference operator in type A(l) 1 [39]:

Daxig,)= Y. ]‘[(”’ x’)]_[r,,

I1c{l,...,N} j¢l iel
[I|l=a i€l
aefl,.,N}, Tix;=q%x;T;. 2.1

These difference operators form a commuting family and preserve the space of
symmetric polynomials in x. The common eigenvectors are the monic symmetric
Macdonald polynomials Py (x), where A = (A1 > Ap > --- > Ay > 0) is an integer
partition:

Dax; g, OPL(x) =1 Deg(s)Po(x)  (a=1,2,..., N), 2.2)
where, e, (s) is the ath elementary symmetric function in s = (s, ..., Sy ), With s; =

tN=i g% . Macdonald polynomials form a basis for the space of symmetric polynomials
of x.

2.2 Duality

The Macdonald polynomials Pj (x) satisfy a remarkable duality property, which is a
symmetry under the interchange of the variables x and s. Under the specialization
x = tPgH with u an integer partition, Macdonald showed that [39]

Pi(t°q")  Pu(t"q")
PutP)  Pu(tP)

(2.3)
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for all integer partitions A, i.

Remark 2.1 The duality property has a formal generalization to arbitrary values of
W, A, see the discussion on the universal function in Sect. 2.13.

The denominators in Eq. (2.3) can be obtained as specializations of an infinite
product expression. Let

1 —qg"x® 1—xP
so-T - 1 s o

n>1aeR+ /361%_;_4.

where the second product extends over the set Ié++ of strictly positive affine roots
B =nd+ >, Biai,n > 1,8 € Zy, and we use the shorthand notation xP =
q ™" IT;(xi/xi41)P. Then [39]'

A(tP)

Pt =t ———.
5.(17) AGPgh)

(2.5)

Next we use Macdonald’s evaluation homomorphism u,, defined on functions of
x by u, (f(x)) = f(g"t”). It maps the generators of quantum torus T to u, (x;) =

q"tN=" and u, (T';) = ¢’ which acts as the translation 11; > j1; 4 1 while leaving
Mj, j # i unchanged. Applying u, for p an integer partition on the eigenvalue Eq.
(2.2), and using duality (2.3) gives

cat’ g Pu(t°q") = 1B PP uy (Dulx; ¢, 1)) Put”) ™" PutPqh)
= [1O A g (Das g.0) A g PGP,
Let us finally interchange the partition labels 1 <> p in the above equation, and note
moreover that since the polynomial P; (x) is entirely determined by its values at the

discrete specializations x = t?g* with p taking values in integer partitions, we can
conclude that P, (x) satisfies the Pieri equations:

Ha(A; g, 1) Pr(x) = eq(x) Pr(x) (a=1,2,..,N), 2.6)
with
Ha(As g, 1) = 1D P As) uy (Dalx; q, 1)) As)t P 2.7)

The Pieri rules for the Macdonald polynomials express the multiplication of Pj (x)
by an elementary symmetric function e,(x) as a linear combination of Macdonald
polynomials with shifted partitions.

1 Our definition of the infinite product A differs slightly from that of Macdonald’s At but is better suited
for taking the limit # — oo below.
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Remark22 Note that in (2.7) the evaluation u; maps x; — ¢*t¥~" = s; and
I — €% . The same evaluation map sends the generators of the quantum torus
Tx to respectlvely A = gMand T, — e i, By a slight abuse of notation, we simply
express the operator H,(A; ¢, t) in terms of the generators A; and 7; and omit the
mention of the evaluation map from now on. This amounts to evaluating the left action
of the quantum torus T4 on functions of the variables (Ay, ..., Ay). There is also a
right action of the evaluation of T4 on the basis of Macdonald polynomials P; in
which A; acts diagonally P, A; = Py q*i and T; by a shift P, T; = P; ;. We adopt a
single notation using the quantum torus generators, to denote either left or right action.

Explicitly the commuting operators H,(A; g, t) acting on functions of A or s are

ti_j_lAj—Al' ti_j+1 —qA
Ha(Aig.t) = Y ]‘[ A, A TA _qA [[7. @38
IC[1,N]iel, j¢I J iel

|I=a j<i

where the g-difference operator T; acts as T; A; = q%i A jT;. They can be thought

of as Macdonald Hamiltonians of type Ag\})_lz In the g-Whittaker limit, they become
relativistic g-difference Toda Hamiltonians (see Sect. 2.12 below).

2.3 The g-Whittaker limit

By a slight abuse of languge, we call the limit # — oo of the difference operators and
eigenfunctions above the g-Whittaker limit (as opposed to the standard ¢+ — 0). The
g-Whittaker functions?® are the limits of the Macdonald polynomials [10]:

IM).(x) = tl—l>ngo P;.(x).

In this limit we use the -independent variables A; = ¢* instead of s;. The symmetry
between the eigenvalue equation and the Pieri rules under exchange of x and s is lost
in this limit. However, the limit of the difference equations still makes sense. The
q-Whittaker functions satisfy the difference equations

Dy(x; I (x) = AT (x),  A“ =A1---Ag; 2.9
Hy(A; T (x) = eq (x)TT; (x). (2.10)

Here, the difference operators are

Dy(x; q) = tl_i)rgot“(“_N)Da(x; q,t) = E i (2.11)
IC{lo N} jel ™ T el
[I|l=a i€l

2 This is a slight abuse of language, as these are strictly speaking q*l—Whittaker functions. ITy (x) is
interpreted as a (class 1) g-Whittaker function where x is the representation index, and X the argument.
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and the Pieri operators are

Hu(Aiq) = lim H(Aig.0= Y [] (1—%>ﬂn (2.12)

IC[1,N] iel iel
[I|=a i—1¢1

with the convention that A := oo. Note the simplified form of these equations: the
Pieri operators are polynomials in A™% where «; are the simple roots, rather than
rational functions. Moreover, the eigenvalues of operators D, (x; ¢) are monomials in
A, because e, (s) isreplaced by its leading term in #, A+, where w, are the fundamental
weights.

2.4 Type A,(\;l1 quantum Q-system

The main result of [11] is that the set of all . -translations of the operators D, (x; q)
satisfy the quantum Q-system equations® of type A%l]. To define this system, let
{Qux : a € {1,...., N}, k € Z} be invertible elements in some non-commutative
algebra over C(g), subject to two types of relations: A g-commutation relation

Quik Qprkyi = ¢ ™MD Q4 Q0k,  ke€Z, a,bell,N], il <1, (2.13)

and a cluster exchange-type relation, which can be thought of as a discrete time evo-
lution in the variable k:

una;k+IQa;k—l = Qg;k - Qa—l;kQa+1;ks a€cll,N], keZ, (2.14)

subject to the boundary conditions Qp.x = 1, Qyy1.x = 0. The algebra generated
by the set {Q,.x : @ € [1, NI, k € Z} and their inverses is a subalgebra in a certain
quantum cluster algebra [14].

Define the generalized g-Whittaker difference operators, acting on the space of
functions in the variables {xi, ..., x5} with coefficients in C(x1, ..., xy, ¢):

Dyx(iq) = ) ]_[xf]_[< al )HFi, ae[l,N], keZ.

Xi — X;
Ic{l,...N}iel  jeI 17 el
[I|=a

(2.15)

When k = 0 these are just the g-Whittaker difference operators (2.9). The main result
of [11] is that these operators provide a functional representation of the quantum
Q-system:

Theorem 2.3 ([11]) The g-difference operators D,.x(x; q) of (2.15) satisfy the quan-
tum Q-system relations (2.13) and (2.14).

3 This was referred to as the type Ay_1 Q-systemine.g. [11].
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The original proof of the theorem consisted of working directly with the difference
operators D,.x(x; g). Here, we present a simplification of the proof which uses the
duality of Sect. 2.2. This method has the advantage that it can be generalized to other
root systems.

2.5 The action of 7 on the difference operators

The difference operators D, (x; g, t) are representations of elements of the spherical
DAHA acting on the space of functions in N variables. There is an action of SL,(Z)
on DAHA, and the SL;(Z)-generator 7 acts on the functional representation by the
adjoint action of Cherednik’s Gaussian operator [9]

>N log(x;)?
i=1 Zlog(q) (2.16)

y(x)=e
In the g-Whittaker limit, the adjoint action of y (x) is well-defined. In particular, the
difference operators (2.11) are the t-translates of D, (x; g):

Lemma 2.4 ([18])

Dak(x; @) = ¢~y (x)*Da(x; @)y (0)F. (2.17)

The proof follows from
1
y () 'Tiy (x) = g2 x; Ty
2.6 Fourier transform

The g-Whittaker functions {I1, (x)}, with A ranging over integer partitions, form a
complete basis of the space of symmetric polynomials. Suppose that a set of difference
operators {D,(x)} in the variables of T, satisfies

Dy (x) T, (x) = Da(A) i (x)

for all A, where the difference operators Dq(A) act in the variables of T A=q*- If

the operators {D, (M)} satisfy certain relations R, then the set of operators {D,(x)}
satisfy the relations R°P with the opposite multiplication. The operators D (A) are
the “Fourier transforms” of the operators D, (x).

The strategy is to define the operators l_)a;k(A; q), starting with initial data
{Da;o, Du;l :a € [1, N]}, by using the quantum Q-system relations with the oppo-
site multiplication. We will then show that the corresponding Fourier-dual operators
Dy (x; g) are the difference operators (2.15), which therefore satisfy the quantum
Q-system. The simplification of the proof in the Fourier transformed picture is due to
the simple form of the initial data in T s, which allows us to compute the 7. action on

the Fourier transformed operators directly.
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2.6.1 Initial data

To find appropriate initial data for the opposite quantum Q-system, we start with the
eigenvalue Eq. (2.9), which we write as

Dao(x; @)T(x) = Dao(A; @)T(x),  Daio(A;q) = A”,  ae[l,N].
(2.18)

For the operators Da; k(As q) € Cy(M)[T] to be well-defined fr_om the opposite
quantum Q-system for all k, we need another set of initial data, {D,.1(A; q), a €
[1, N1}, such that (we drop the arguments A, g from now on):

Da;O Db;l =q—min(a,b) Db;l Da;Os [Da;lv Db;l] =0, a,bell,N]
(2.19)
These are 2N relations on the quantum torus T of dimension 2N, so they determine

{l_)a; 1} up to scalar multiple, which commutes with T, i.e. an element in C(q). We
choose this constant to be 1:

Dy =A%T% = Ay AT - Ty (2.20)
2.6.2 The set {5a;k}

Given the set of 21\{ initial data {Da; . k €{0, 1}, a € [1, N1}, which form an alternate
basis for T, all D, are uniquely defined by the requirement that they satisfy the
opposite quantum Q-system relation:

qa Da;k—l Da;k+l = Dik - Da+l;k Da—l;kv DO;k =1, DN—H;k =0.
2.21)

Remark 2.5 The quantum Q-system variables are cluster variables in a quantum cluster
algebra, and therefore, due to the Laurent property of these algebras, all D, are in fact
Laurent polynomials in the initial data (2.18) and (2.20). As the latter are monomial
in the variables of the quantum torus T, so are the l_)a; € Cy [AT!, T,

The main theorem to be proven is
Theorem 2.6
Da;k(A§ q) I (x) = Da;k(X; q) IT;.(x)

foralla € [1, N]and k € Z, with Dg.k(x; q) the difference operators of Eq. (2.15)

Since D,.x(A;q) satisfy the opposite quantum Q-system relations, then the
operators Dg.x(x; g) satisfy the quantum Q-system. Theorem 2.6 therefore implies
Theorem 2.3.
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The proof of this theorem performed over the next several subsections as follows.
First, in 2.7 we compute a “time translation” operator g(A), whose adjoint action on
Da; t(A; q) gives Da; k+1(A; g) in accordance with the opposite Q-system recursion
evolution. We then show in 2.8 that this time-translation commutes with the Pieri
operator or Hamiltonian H;(A; ¢). In 2.9 we prove the uniqueness of the solution of
the Pieri equation Hi(A, g) f = é(x) f. This implies, as shown in 2.10, that g(A)
is the Fourier transform of the Gaussian y(x). The proof of Theorem 2.6 follows
(Sect. 2.11) from a simple argument using the Fourier transform.

2.7 The action of 7 on I_Ja;k(l\; 9

The key to proving theorem 2.6 is to find an element g(A) in the completion of the
space of rational functions in T, which realizes the action of y (x) in the Fourier
transformed picture*:

Theorem 2.7 There is a unique, up to scalar multiple, function g = g(A) acting on
the variables of T s, such that

Dok =q 2 gk Dygg™* (2.22)

is a solution of the opposite quantum Q-system for all a, k.

Proof Theelement g is determined by the commutation relation (2.19) and the subset of
Q-system relations (2.21) corresponding to k = 1. Indeed, assuming such an element
g exists, we first note that g [Dg.0, Dp.0olg ™™ = q“T"/2[Dy 1, Dp.m] = 0 for all
m € Z. Similarly, conjugating (2.19) and (2.21) for k = 1 with g gives

8" (Da,0 Dp,i — q™™ P Dy 1 Dao)g ™"

= q“t"2(Dy m Dams1 — ™™ Dyms1 Dam) =0,
8" (q"Da,—1Da,1—D} +Da—1,0Dat1,008 "

=q""(q" Da,m—lDa,m—i—l_bim‘i‘ba—l,ml_)a+1,m) =0.

We therefore obtain the opposite of (2.13) and (2.14) for all m € Z.

We now prove the existence of g by construction. Assume g = grga, where gr
commutes with all 7, and go commutes with all A,. Up to a scalar multiple, g7 is
determined by the N Eqgs. (2.22) with k = 1:

q g Daog™ =g gr A% g7 = Dy = A T™,  ae[l,N],
because gn commutes with Da;O = A“ by assumption. This has the solution

(og Ty)?
gr = [Je e, (2.23)

a=1

4 The element g(A) is referred to as the “Dehn twist” generator in the geometric formulation of Ref. [46],
which uses a different but related definition of the Fourier transform, under the name of Whittaker transform.

) Birkhauser



23 Page 16 of 100 P. Di Francesco, R. Kedem

where we used the identity

(log Ta)? _ (ogTa)? (log g Ta)? —(log Ty )? 12
e 2logg Aa e 2logg — Aa e 2logq =q Aa Ta.

To find g, we use the Q-system (2.21) with k = I:

Dyn=AT> (1 —g A~ T %) ae[l,N—1], Dyao=A"Y TN,
(2.24)

To simplify the equations below, we set Ay11 = 0 and Ag = o0, i.e. we define
ap, oy by A% = A% = (. The function g, is defined from

Dui =q*? ¢ Dung = q"% 81" 87" D grga = A% T (2.25)
Acting on (2.24) by the adjoint action of g, !, we have

q“ g7" Dup g1 = A% T (1 — A™%).

Using
0 ()
[Ta—q" A7 =7 (1 = A=)~ T](1 - g" A™)
n=0 n=0

we can choose

N-1 oo
an= ] 9L, (@be=]]0-1a. (2.26)
a=1 n=0

We conclude that the function

N ,\ N—1 _1
(log Ta) A
g= ( e 2oeq ) [ (K—“;q) (2.27)
a= a

satisfies the conditions of Theorem 2.7. O

2.8 Commutation with the first Pieri operator

In general, the translation operator g commutes with each of the Pieri operators
H,(A; g). It is sufficient for our purposes to show that it commutes with the first,
Hi(A; q):

Theorem 2.8 The function g(A) of Theorem 2.7 commutes with the Pieri operator
Hi(A; q) of Eq. (2.12).
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Proof From (2.12),

N N NflA |
Hi(Arg) =) (1= AT, =3 T = 3 == Tap.
a=1 a=1 a=1 ¢

Foralla € [1, N],
gl — A N Tg ™ = gr(1 — ¢ 'A™)T,g7" = (T, — A Tp),

again with the convention that A™* = A7*¥ = 0. Summing overalla = 1,2, ..., N
results in g H1(A; ¢)g~' = Hi(A; q). O

2.9 Uniqueness of the Pieri solution

To prove the result of next section, we resort to a uniqueness argument regarding the
solutions to the first Pieri Eq. (2.30).

Recall that IT, (x) is eigenfunction of the Macdonald operator: D I, = A IT,.
Writing [T, (x) = x)‘p;\ (x), and D; = Y, ¢ (x) I';, the eigenvalue equation turns
into

Aj
(1 - Z¢i(x) a Fi) pi(x) =0. (2.28)

This equation makes it easy to analytically continue p; (x) to a function p; (x) with
A € CN, as the dependence on A is explicit (in fact polynomial of the variables A =%,
«a; the simple roots of Ay _1). Writing p; (x) as a series of the variables x ~%: p; (x) =
> pe0. CB (A)x—P, 0 the positive cone of the root lattice of Ay_1, (2.28) turns into
a linear triangular system for the coefficients cg(A), which are uniquely determined
(with cg(A) = 1), and rational functions of the A~%. Moreover, specializing A to
an integer partition in py (x) recovers p; (x). Expanding cg(A) = 28€Q+ clg,(gA"3
allows to view IT; (x) as the specialization of a series in A:

x* pi(x) = x* Z Es(x) A0, Gs(x) = Z cpoxP.
50 BeQ+

Lemma 2.9 Assume we have a (non necessarily polynomial) solution ®, (x) of the
first Pieri rule (2.30), which admits a series expansion of the form ®,(x) =
x* ZﬂeQ+ 78(x) AP for » € CN. Then we have, for A an integer partition:

Co(x)

T0(x)

I, (x) = 0;.(x),

where Co(x) is the leading coefficient in the series p; (x) that specializes to 1, (x) for
integer partitions .
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Proof Write ©; (x) = x*8; (x). By use of (2.12) for a = 1, the Pieri equation turns
into

N
(in {(1— A=)T} — 1}) 03 (x) = 0.
i=1

This is a linear triangular system for the coefficients 74 (x), which are uniquely deter-
mined for B # 0, proportional to 7o(x). The same holds for the coefficients cg(x)
of py(x) in terms of ¢y(x). We deduce that x* p; (x) = ;gg; ®;, (x), and the Lemma

follows by specialization. O

Remark 2.10 The argument used in this section prefigures the reformulation in terms
of universal solutions performed in Sect. 2.13 below, and extends to all types.

2.10 Fourier duality of gand y

The final piece of information we need to prove Theorem 2.6 is that g acting on the
g-Whittaker functions is equal to the Gaussian y (x) acting on the same functions:

Theorem 2.11
g(A) I (x) =y (x) I (x). (2.29)
Proof Acting with g(A) on both sides of the first Pieri rule
Hi(A5 q) I (x) = er(x) I (x) (2.30)

and noting that g and y commute with both Hj(A;¢q) and e;(x), we see that
y 1 g II;(x) obeys the same first Pieri rule. We use the uniqueness argument of
the previous section for the solutions of (2.30). Applying Lemma 2.9 to ®; =
y ! g x* p;.(x), the latter must be proportional to IT; (x) when specialized to an inte-
ger partition A. To determine the proportionality constant, we compute the leading
coefficient of the series expansion x * y~! g x* p, (x). Since g, is a power series in
{A~%} with leading term 1, the leading term is determined by the action of g7 on
x* éo(x).
We claim that

grxt =y x’gp,

where g7. acts only by shifting A by powers of ¢, leaving the leading term ¢o(x)
unchanged.

To see this, let a, b be elements in an algebra such that [a, [a¢,b]] = 0 and
[b, [a, b]] = ¢ commutes with both a and b. Then the Campbell-Hausdorff formula
implies:
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b e ot — ea+h+%[a,b]—,17[b,[a,b]]e—a—b+%[a,h]+,‘7[b,[a,h]] — pla.bl+s

2.31)

32
Choosing ¢* = gr and ¢’ = x*,ie.a = Y, TTogg and b = ) _; 2 logx; leads to

1 i O 1 —
la,b]=3"; Oixgq'\’ and e2¢ = y(x)~!, which commutes with el?]. Finally,

log x; 9y,

a b = o5 plabl b, =y 1,20 Togg i i logx; er

log x;

_VXAHTlogq =yx)hg/T’

log x; 0;..
8Yi % b = > i Ailogx; hence

where the last step uses again (2.31), witha = ), oz

elebl = y2 and ¢ = 0.
We conclude that y‘l g I, (x) = I, (x), and the theorem follows. O

Remark 2.12 The relation g(A) IT, (x) = y(x) IT,(x) is equivalent to the recursion
relation for the quantities denoted J [; in [22] (Theorem 3.1), which we denote as
Jg(x = qM) below These can be 1dent1ﬁed as the coefficients in the formal expan-
sion of the series l'I,x(x) =gallhi(x) =x ZﬁeQ Jﬁ(x)A . Theorem 2.11 says
that g7 ga Ty (x) = y (x)II,(x), which implies (gAgT)H;L(x) = y(x) l'l)\(x). As a
recursion relation for coefficients, this means

Z V(CI ) 75]6;1

g, 9 p-s

with the notation (q @a = [1;(g. q)o;, Where we have used the series expansion

gA = Yueo, T e as well as the relation y) T xTrgrat AT = y(g®)(Ax) 7P,
A similar connectlon holds for certain other root systems, see Remark 4.13.

Corollary 2.13 The (higher) q-difference Toda Hamiltonians H,(A\) are algebraically
independent conserved quantities of the opposite quantum Q-system (2.21).

Proof Multiply the Pieri equation e, (x) Ty (x) = H,(A) 1) (x) on the left by g y’l,
and use Theorem 2.11 to rewrite:

g7 ea()T(x) = e ()T (x) = g Hy(A) g7 ' TIi(x) = Ha(A) T (x),

hence g commutes withall H,(A),a = 1, 2, ..., N. The latter are Laurent polynomials
of the elements of the quantum torus Ty, hence of the initial data D, .0, Di;1 as well,
which are invariant under any time translation (Dl 0, Di:1) — (D, s Dy nt1), 1 € Z.
These are independent conserved quantities of the opposite quantum Q-system that
governs the Da;n, as any dependence between H,(A) would imply a dependence
between the ¢, (x) by inverse Fourier transform. m]
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2.11 Proof of Theorem 2.6

The proof of the main Theorem 2.6 now follows.

Proof Acting on D,.o(x; ¢)I1, (x) by y(x)_k gk (A), we have

Y * 8" Duo(x; @) TH.(x) = v * Dyo(x; @) 8 T (x) = ¥ Daso(x: @) y* T (x)
= g% Dy (x; @) T (x).

Using the eigenvalue Eq. (2.9), this is equal to
V_k gk Da;O M(x) = gk Da;O )’_k M, (x) = gk Da;O g_k M (x) = qak/Z Da;k ) (x),

which is the statement of Theorem 2.6. O

2.12 Pieri operators, conserved quantities and Toda Hamiltonians

Let us compare the result of Corollary 2.13 with the conserved quantities of the (oppo-
site) quantum Q-system of [11, 13, 14]. Those references use a different normalization
of the Q-system variables, resulting in the system

Qa;n Qb;n+l = U_Aa‘b Qb;n+l Qa;n
vAa'a Qa;n—l Qa;n+1 = (Qa;n)2 - Qa—l;n Qa+1;n (232)

with A, = min(a, b) (N — max(a, b)). The precise relation with the operators
Dk (A3 q) is

Qun =4~ ¥ (D)™ ¥ Dayn (2.33)

with v = ¢!/N. The conserved quantities C,, of the quantum system (2.32) are
expressed in terms of the initial cluster {Qa;o, Qa; 1} as hard particle partition func-
tions (i.e. generating polynomials of independent sets of vertices) on a graph (Figure
3 of [13]) with ordered vertices labeled 1, 2, ..., 2N — 1, with a weight y; per occupied
vertex labeled i, where:

Y20-1 = 0a-1:0(Qa:0) "' (Qu-1.07" Q1 (a=1,2,..., N),
Y20 = =0a-1:0(0a:0) " (Qu:)) ™' Qui11 (@=1,2,...,N —1).

Using (2.33),

_ _1 _ _1 Aa+1
Yoa—1 =0 21, Y2g = —V 2
Ag

Ta—ﬁ—la

hence the resulting conserved quantities are related to the Hamiltonians (2.12) by
Hyu(A) = v/ Cp.
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InRef. [11], it was shown that the conserved quantities C,, can be interpreted as type
A (relativistic) g-difference Toda Hamiltonians [21]. This justifies the identification
of the Pieri operators (2.12) as g-difference Toda Hamiltonians.

2.13 Universal solutions and duality

The results of the previous sections may be rephrased in the more uniform context of
universal solutions, obtained explicitly in the case of type A in [42]. The following
discussion treats the two sets x and s on equal footing, as formal variables, and implies
that the duality property is more general.

2.13.1 Universal Macdonald and Pieri solutions and duality

We now consider s = t”q* as a formal variable which we may specialize to integer
partitions A, and similarly write x = ¢*¢°. If we consider the difference operators
(2.1) in the space C(g, t)[[{x % }]][[1, ..., Cx], i.e. expanded as power series of the
variables x;41/x; with 1 <i < N — 1, then there is a unique series solution P (x; s)
to the Macdonald eigenvalue equation

Di(x;q,1) P(x;5) = er(x) P(x;s) (2.34)
of the form
P(x;s) =qg™* Z cp(s; q, NDx7 P, colsiq. ) =1. (2.35)
B0+

Note that g*#* = x* t~P* = g# t~P* is symmetric with respect to the interchange of x
and s. The uniqueness of the solution follows from the fact that (2.34) is a nonsingular
triangular system for the coefficients cg(s; g, t).

The series (2.35) is called the universal Macdonald solution because, under the
specialization of the variables s = ¢* ¢” with A an integer partition, the function
tP* P(x; s) specializes to the symmetric Macdonald polynomial P; (x):

Po(x) = tP*P(x;g* "),  A=(a>--->Ay), A €Zso.  (2.36)

That is, the infinite series (2.35) truncates to a finite number of terms, and the prefactor
tP*g** = x* ensures that the function is a symmetric polynomial of xp, ..., xy. All
Macdonald polynomials P (x) are obtained as specializations of P (x; s). On the other
hand, the series P (x;s) also specializes to the Baker-Akhiezer quasi-polynomials
introduced by Chalykh [4]. In this case, the relevant specialization consists in taking
t = g%, k some positive integer. One can check that another truncation occurs leaving
us with a finite sum.

Example 2.14 Let us illustrate the phenomenon of truncation in the simplest case of
A%l) of rank N = 2. The universal Macdonald series is expressed in terms of the
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variables u = xp/x; and v = Ay /A as

n—1

0 . .

1—vg 1—1t71g7"

P(x;s)—x1‘ )”ZFM E u" | | —— —
0 1—t'vg" 1—g¢q

The first type of truncation occurs for v = ¢*2~*1 = ¢~ for some integer k > 0.
We see that the first factor in the numerator of the coefficient in the series vanishes as
soon as n > k (for i = k). The second type of truncation occurs when r = g~ for
some integer k > 0 and arbitrary A. In that case the second factor vanishes as soon as
n > k.

Similarly, if we consider H(A; ¢, t) as a power series in {s;1/s;}, then the equa-
tion

1P (A g, DO (s x) = e (x) O(s; x) (2.37)

has a unique “universal Pieri” solution of the form

060 =g Y Gsq.s . Gign=1. (239
BeQ+

An outcome of the study of [42] is a relation between the universal Macdonald and
Pieri solutions, which we re-prove below.

Theorem 2.15 The universal Macdonald and Pieri solutions are related via

P(x;s) = A(x) Q(s; x),
with A(x) as in (2.4).

Proof First note that P (x; s) obey both Macdonald eigenvalue and Pieri equations [4,
7]. Expanding the coefficients of P (x;s) as series of s~ cg(s) = ZSeQ+ c;;s,;s_‘S
allows to rewrite P (x;s) = g*™* 2 sc0, Cs(x) 570, where ¢s(x) = 2 peo, cpsxP.
Now both P(x; s) and Q(s; x) can be viewed as two different solutions of the Pieri
equation. By uniqueness, they must be proportional up to an s-independent factor. We
deduce that P(x;s) = ¢o(x)Q(s; x). To compute ¢o(x), note that it is the limit of
g VPP (x;8) = Go(x) + O(s™), when we take |s1]| >> [s3] >> ---[sy| >> 1,
so that all s7* — 0. Using the a-th Macdonald eigenvalue Eq. (2.2) and the explicit
formula (2.1), and dividing by A®* = AjAy -+ Ag,

_qa ea(s) Ixj — X;j —a;
Oy ]‘[ — A%HAF (Go() +0(x")) =0
IC[1,N] j¢l 1
\Cll =a {zl e
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In the limit A;41/A; — 0, all the terms tend to zero except for the leading term in
the eigenvalue, and the term corresponding to I = {1, 2, ..., a} in the sum:

_N
- 1 1—’;‘] It éo(x) = 0. (2.39)
I<i<a<j<N =~ xi

We verify that ¢o(x) and A(x) of (2.4) both obey (2.39) fora = 1,2, ..., N. Their
ratio must therefore be independent of x as it is invariant under each I';, and is easily
identified to 1 by taking the limit when all x =% — 0 and using ¢g o = 1. The Theorem
follows. O

Repeating the argument of Sect. 2.2 starting with (2.34), including the interchange
of the labels x and s, we see that

PRI (A g, D Q(xs 8) = e1(x) Q(xs ),

where the expansion in s of Q(x; s) = P(s; x)/A(s) has the form g** (1 +O(s~%)).
By uniqueness of the solution,

Ox;8) =0(s;x) & A(s) P(x;5) = Ax) P(s; x). (2.40)
The duality (2.40) states that the series Q(s; x) in s is equal to the series Q(x; s)
in x. The specialization of A and u to integer partitions reduces to the Macdonald

polynomial duality relation (2.3). We may therefore interpret (2.40) as a universal
extension of the duality of Macdonald theory.

2.13.2 g-Whittaker limit

The symmetry (2.40) is replaced in the ¢+ — oo limit by

Mex; A) = A@WK(A:x),  A@ =[] @™ @)oo (2.41)

OZER+

where the universal g-Whittaker function IT(x; A) and Pieri solution K(A; x) read
respectively

M(x; A) = lim " P(x;5), K(A;x) = lim t"*Q(s; x)
—00 1—0o0
and satisfy the limiting Macdonald eigenvalue equations and Pieri rules:

Dqg(x; q) TH(x; A) = A® TT(x; A) (2.42)
Hy (A5 ) K(A; x) = ea(x)K(A; x) (2.43)
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As in the case of the Macdonald function, the universal functions IT(x; A) and
K(A; x) are uniquely determined from the difference Eqgs. (2.42) and (2.43) as series
of the form

M A) =x" > cp(hig)x™, co(Aiq) =1, (2.44)
B0+

K(A; x) = x* Z cr; AP, Colxsq) = 1. (2.45)
B0+

Example 2.16 Letus compute K(A; x) explicitly as a solution of the first Pieri equation
Hi(A; q) K(A; x) = e1(x)K(A; x) with Hi(A; g¢) asin (2.12) fora = 1, by use of a
path model. The equation reduces to the following triangular system for the coefficients
cp(x; q) from (2.45):

N N—-1
{in(qﬁilﬂi _ 1)} p(x;q) = Z i1 PP e, (),
i=1

i=1

with f = ZlN:j] Biei and By = By = 0 by convention. The system is nonsingu-
lar for x generic, and we may express cg(x; ¢) as a path model partition function,
namely as the sum over all paths p from O to 8 in the positive quadrant Zﬁ “Lof
path weights w(p). The path weight is defined as a product along the path of its ver-
tex weights wy,(a) = (Q_7_; xi(g“—' "% — 1))~! per vertex a visited and edge step
weights w, (s) = xj41 ¢ ~%i+17! per edge step s = b — ¢; — b:

)= Y [T w@ J] wes

paths p:0—p  vertexaof p edgestep s of p
This construction parallels that of Whittaker vectors performed in [20].

The Fourier transform may be restated in terms of the universal g-Whittaker
function as follows: f(x) IT(x; A) = f(A)TII(x; A), and our main theorem 2.6 as
Dy.x(x;q) II(x; A) = l_)a;k(A; q) IT(x; A), which is also a consequence of the rela-
tion g(A) IT(x; A) = y(x) [T(x; A).

3 Duality property for other classical root systems

In this section we present a generalization of the methods of Sect. 2 for the root sys-
tems corresponding to the affine algebras in the classical series, listed in Table 1. In
these cases, the underlying double affine Hecke algebra is of BC-type, correspond-
ing to finite-type Weyl groups of types Cy or Dy, and the commuting g-difference
operators and their eigenfunctions are Koornwinder/Macdonald operators and poly-
nomials. A key ingredient is the duality property, which implies a relation between
the Koornwinder/Macdonald eigenvalue equations and the Pieri rules [8, 45, 51].
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Our goal is to choose a set of N commuting difference operators for each algebra
g such that, in the g-Whittaker limit, these difference operators and their SL(2, Z)-
translates satisfy the g-type quantum Q-system. There are several known constructions
of the difference operators. Koornwinder introduced a first order operator [35] depend-
ing on generic parameters (q, f, a, b, ¢, d), which was extended by van Diejen to a
complete set of N commuting difference operators [50]. Upon specialization of the
parameters (a, b, ¢, d), these correspond to the root systems of g. In some cases,
van Diejen’s operators must be supplemented by operators introduced by Macdonald
[40], who used the structure of specific root systems to produce difference operators
for miniscule co-weights. We combine these constructions and define a set of N com-
muting g-Macdonald operators in Appendix A, whose eigenvalues form a basis for
the space of fundamental characters of the finite algebra R* = R(g*) (see Table 1).

This section is organized as follows. We introduce the Koornwinder operators for
generic values of (a, b, ¢, d) in (Sect. 3.1). The specialization of the parameters cor-
responding to g of Table 1 are explained in Sect. 3.2. Finally, the g-Whittaker limit of
the g-Macdonald operators is described in Sect. 3.3, together with their 7 -translates.
We will prove that the 7 translation is the discrete time evolution of the associated
quantum Q-systems in Sect. 4.

3.1 Koornwinder Operators, Polynomials and Pieri rules
3.1.1 The Koornwinder operators

Let IF be the field of rational functions in the indeterminates a, b, ¢, d, q%, t% and
W the Weyl group of type Cy. It acts on functions in F(x1, ..., xy) by permutations
and inversions of the variables. The W-invariant space of Laurent polynomials in x
is generated by the elementary symmetric functions ¢(x), defined via the generating
function

N 2N
E(z:x) = l_[ H (1 +zxf) = sz éx(x), 3.1
k=0

i=1le=%£l

so that é;(x) = Z?:l (x; + xl._l). The space F[x, x W is preserved by the action of
the Koornwinder operator, defined as follows.

Definition 3.1 The Koornwinder operator fKﬁa’b’C’d) (x; g, t) is the g-difference oper-
ator acting on F[x, x~ 1

N
b,c,d b s
1D g =30 3 @m0 (Tf =D, Tixj =g,
i=1e==%l1
3.2)
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where

(1 —ax{)(1 —bx{)(1 —cxf)(1 — dx;) 1—[ txi —xjtxix;—1

(a,b,c,d)
d>4 ()C) =
(1 =71 = gx7)

€ Xy — 1
ki xi —xj x;x;—1
Koornwinder polynomials are the unique monic, symmetric, Laurent polynomial
eigenfunctions of the eigenvalue equation

51D g, 0 PO @) = 0tV (@n(s) — 1(017) PV ()

where A is any integer partition coding the leading term x* of Pk(a’b’c’d) (x). We make
use of the notations

si=q"t"o, o =\labcd/q, pi=N—-i (i=12,..,N). (3.3)

As an example, the first two Koornwinder polynomials are Péa’b’c’d) (x) = 1, with
eigenvalue 0, and

(a,b,c,d)
Pigo o)

R 1—YN abed@ Y+ 4l +d HiV 1 —(@+b+c+d)
=e1(x)+ N2 .
1—1t¢ 1 —abcedt

3.1.2 Koornwinder-Macdonald operators

We define the Koornwinder-Macdonald operators to be the set of mutually commuting
difference operators, which commute with the Koornwinder operator, chosen so that
their eigenvalues are proportional to the elementary symmetric functions ¢, (s). The
first order Koornwinder-Macdonald operator (A.23) is

1 —N bed
D(la,b,c,d)(x; q. 1) = :Kga,b,c,d)(x; q, 1)+ — (1 n a qC IN]> ) (34)

The additive constant in (3.4) is o 1Y =1 é,(c¢?), so that Koornwinder polynomials
satisfy the eigenvalue equation

DD (1 g, 1) PPV () = 0tV ey (5) PP OD (). (3.5)

Definition 3.2 The Koornwinder-Macdonald operators are a commuting family of dif-
ference operators {Dﬁ,’f’b’c’d) (x;¢g,t) :m € [1, N]}, which are linear combinations of
van Diejen’s commuting difference operators [S1], uniquely defined by their eigen-
values:

,Dfrcl,,byc,d) (X; q I)P)Sa,b,c,d) ()C) _ d}(\f{f,f,c,d) P)fa,b,c,d) (x)’

m+

. 1
d\hed — gmmN=100 (). 3.6)
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These operators are explicitly constructed in Appendix A, see Definitions A.2, A.8
and Theorem A.9.

3.1.3 Rains operators

A useful alternative “N-th order” difference operator was constructed by Rains [43]°
in his study of BC-symmetric polynomials. Rains shows that the operators

R%’U)(x;q,t)z Z l—[(l ux’)(l—vx’)

51
€1,€2,....,ey=x1i=1 X

]_[ e/ (3.7)

l—tx x

are maps between W-invariant spaces with different values of the parameters
(a, b, c,d). They act between bases of Koornwinder polynomials as follows:

(o by boed (% /ac,/qd)
RV (11 g, PP () = g l_[(l—abq 1N’)Pff (x),

i=1

(%,4) il _ . (Jga.Jqb, 4L
Ry (.0 PP (o) = g8 T = cdg =¥y p VI .
i=1
(3.8)
where [A| = Y-~ | A;. The product
11
DD aig.n) = RGP g RY 71 TV (xig.n) 3.9)

commutes with the Koornwinder operators, since Koornwinder polynomials satisfy
the eigenvalue equation

@x,b,c,d) (X; q Z) P)Ea,b,c,d) ()C) d(a b,c,d) P(a b,c, d)( )

with eigenvalues

N
A0 = g - abg* eV =1 = edg™ =N, (3.10)
i=1

The operator (3.9) is not linearly independent of the set of Koornwinder-Macdonald
operators: See Sect. A.2.3, Lemma A.10 for the explicit expression. However, its
factored form will play a crucial role in the proof of our main theorems below.

5 Some of these operators actually appeared in earlier works of van Diejen, but Rains’ construction is more
systematic.
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3.1.4 Duality
Due to the existence of an anti-involution * of the DAHA, Koornwinder polynomials

obey a remarkable duality property [45, 51]. The involution acts on the parameters
(a,b,c,d) as

ot — (ubcd)l/Z’ bt — _< ab)1/2’ o =< ac>1/2’ g — _< ad)l/Z’

4 q d q bd q e

(3.11)

so that o* = a. The duality property for Koornwinder polynomials is
PP gy BT gk 312
P(a,b,c,d)(tp*) - P(a*,b*,c*,d*)(tp) : (G.12)

A 2
where 1, A are both integer partitions. p, p* are defined by

X (a,b,c,d) . % a* . b* . c*.d¥) .

1P = tPi =otNT P =P =atV (3.13)

3.1.5 Pieri rules

Using the duality relation (3.12), one obtains the Pieri rules for Koornwinder poly-
nomials with parameters (a, b, ¢, d) from the eigenvalue equation with parameters
(a*, b*, c*, d*). It is useful to define the function

(@b.ed) ﬁ (;I__2§q>oo
AGDED (x) = .

il G oo (s oo (G oo (Zh @)oo

(0 o
x ]"[ qu— (3.14)

1si<j<Ne=+1 (375 @)oo

The normalization factor in the duality (3.12) is given by (See Theorem 5.1 of [51]):

A(a*,b*,c*,d*)(tp)

(a,b,c.d) ;. p*\ __ ,p*A
P; ()=t AT T gy’

Ala.b.c.d) (t,o*)

(@*,b*,c*,d*) (.py _ (Pl
P (") =1 Ao (gir7)’ (3.15)
Using the parametrization x = g"tP" in the eigenvalue Eq. (3.6),
Din(g" 1775 4, DPG" 177) = O &0 (q*17) Pi(g" 1), m € [1,N],
(3.16)
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where 6,, = o™ tm(N’mTH) and I'; : uj = w; + & ; in the difference operator
Dy = Dﬁ,‘f bed) Upon specializing u to integer partitions, we use the duality relation
(3.12), where we replace the normalization factor by (3.15). Eq. (3.16) becomes

Omém(q"1”) P (g 1)
= P}(t") Dm(g" 1”5 q.1) PE(t") ™" Pi(g™ 1P)
= ("8G )T D" 7 g0 Mg 1)) Pig ).

Acting with the involution * on the parameters and interchanging the roles of A and
u (i.e. x and s) above, we arrive at the following Pieri rules.

Theorem 3.3 The Pieri rules for the Koornwinder polynomials are
35D 51 g, 1) POTOD () = 8 () PO (), (3.17)

where the Pieri operators 9{5,? :b.c.d) (s; g, t) are obtained from conjugating the Koorn-
winder operator of the dual theory:

1 *, ® Pk gk _ H Pk Lk TR H Pk Lk TR .
}(;{V(ll’b,C’d)(s;qv [) — 7[,0 )\.A(u b*c*d )(S) I‘D,(:lz b*c*d )(S, qv Z)A(a b*c*d )(S)l 14 )\..
m

(3.18)

In the difference operators H,y, s is specialized to g* t° with A an integer partition,
+1
Oy = a™t"N="3) and Tithj—>Aj+8i ;.

The explicit first Pieri operator }Cgu’b""d) (s;g,t) is derived in Theorem B.1 of
Appendix B.

3.2 Specialization of the parameters (a, b, c, d)

3.2.1 g-Macdonald operators and polynomials

The Macdonald operators for type g are a set of N commuting operators which com-
mute with the specialization of the Koornwinder operators at values of (a, b, ¢, d)
indicated in Table 1. The list of operators is given in Definition A.8. In most cases, these
are just the specialized Koornwinder-Macdonald operators, but for a few exceptions,
where the operators are chosen so that their eigenvalues be fundamental characters of
the finite-dimensional algebra R* = R(g*). This occurs when R* = By or Dy.
Remark 3.4 The case of Ag\), is special, as R = BCy = R* is non-reduced. In this
case, we must use the set of simple roots o, = o for By, and the set of fundamental
weights w, = w for Cy.
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Table 1 Specialization of the Koornwinder parameters a, b, ¢, d corresponding to the affine algebra g. The
pair (R, S) refer to a pair of classical root systems corresponding to Macdonald’s notation [40], used in

Appendix A, except for A(z)

g g* a b c d R S R* &g
1 1
Dy DY 1 -1 g2 —q2 Dy Dy Dy 0
1 1
B cy t -1 q2 —q2 By By  Cy ’
1) (1) 1 1 11 11
Cy By 12 —t2 t2q2 —t2q2 Cn Cn By 1
> 2 1 1 1 1
AR AR i i g2 —q2 Cn By  Cn i
1 1
DY, DY, t ~1 1q? —q2 By Cy By 1
1 1 1 1
A(zzzx)/ Ag\)/ -1 12q2 —t2q2 BCy - BCy 1

Table 2 The list of chosen

~(R)
symmetric functions forming a R g ()
basis for the fundamental

ST 5 ~(DN) A(D )
characters of the finite Lie Dy el N2, 8y N] ey
algebra R. The exceptional (B N)
symmetric functions in the table By €182, N1, 8y
are given in (A.32) Cn, BCn el,€2, ..., eN

The principle for the choice of g-Macdonald operators is that their spectrum gen-
erates the Grothendieck ring of the algebra R* associated to each g. The choice is not
unique. Define

N, forg=AD B0 AD | AD).
Ng:=1{ N —1, forg:C](Vl),D(z) (3.19)

N+1°
N —2, forg = Dﬁvl).

Definition 3.5 For m < Ny, the g-Macdonald operators "D,(f) = D,(,?)(x) are

DW= Dlabed e [1, Ny,

where Df,‘f ob.e.d) are as in Definition 3.2 with (a, b, ¢, d) specialized according Table 1.

For Ny < m < N, we use the operators constructed by Macdonald, described in
Sect. A.1:

(1) (1)

p{: D) — eV a=N-1N; (3.20)
(1) (1)

cl: DV =), 3.21)
el P

DR, DYV = e, (3.22)
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(D (N”) (o) @ i)

where €,," 7, oy’ L Ewy are as in (A.4-A.5),(A.6),(A.7) respectively.

The choice of higher commuting difference operators (3.5) is such that the eigen-
value equation for the mth g-Macdonald operator is (see Theorem A.15):

DO (x: g, ) PV (x) = 09 2R (5) P (x), (3.23)

where 9,5,9) are as in (A.34-A.35) and ,(nR)(x) are listed in Table 2 (as these involve
the fundamental weights we choose the same eigenvalues for type BCy and Cy, see
Remark 3.4).

In particular, the first g-Macdonald operators are simply the specialization of the
Koornwinder-Macdonald operator (3.4).

N
9,
DIP(ig.n=ra@?)+ 3 30 Y. 0@~ D, (24)

i=1 e=%£1
The factor o under the specialization is t%s (see Table 1), so that
(@
si= gV = ghip (G =1,2,... N), (3.25)

where p‘® = p(S) is the half-sum of positive roots of S (except when g = Ag\),). The
functions qﬁl.(i) (x;q,1) are

1, g_D(l)
txf—1
i~ 1 _ 3.
xf—1 g N
ZE—lth 1 1)
2 =Cy'
€ —1 qxe—l
txx 25
¢,(‘?(xqt)—]_[]_[ ée/ x 1 —1’ g= A
J#i€'= l ] xlze 1 -
.X —1tql/2 6—1 _D(z)
]q1/2 € ]’ N+1°
txf —1t x2‘—1
q2 ’ g_A(Z)
xi =1 gxf<—1

The unique monic eigenfunction P)fg ) (x) of D§g ) (x; ¢, t) with eigenvalue ¢ ' e1(s),
where A is g-partition, is the g-type Macdonald (Laurent) polynomial.

Definition 3.6 A g-partition is aset A = (A1, ..., Ax) such that ), A;e; is a dominant
integral weight of R = R(g).
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Table 3 The subset §++ of the affine roots for each affine algebra g

G Affine roots in Ry

D) né+(ejte;) (1<i<j<Ninx>1)

B nd+e(1<i<Nynd+(etep)(I1<i<j<Nnzl
cy né+2¢; (1<i <N),nd+(ejte))(1<i<j<Nnxzl
AR 28 +2¢; (1 <i < N)nd+(ej+tej) (1<i<j<Ninzl)
Dz(\%ll 58+ei(1<i<N),nd+(e+ej) (1<i<j<Ninx=1
AQ né+ej, 2n—1)8+2¢ (1<i <N,

2N ns+(ejtej) (I1<i<j<Ninzl)

The g-partitions are simply integer partitions except in the cases R = By, Dy. In
type Dy, & € {(Z)N ! x ZYO{@ADN T ) @ AD ), d = - = dver = Al
and in type By A € (Z )N U (Zo+DN, Ay =A== Ay = 0.

Remark 3.7 The g-Macdonald polynomial Pk(g)(x) with A an integer partition is the
specialization of the Koornwinder polynomial, indexed by the same partition, to the
parameters of Table 1. For non-integer partitions, g-Macdonald polynomials can be
obtained from a different specialization of the parameters [50], see Sect. 4.3.3 in type
B. Alternatively, we can use the specialization of the universal functions of Sect. 5,
see remark 5.2.

3.2.2 Duality

The involution * acting on the parameters (a, b, ¢, d) implies an involution g — g* and
R +— R*, as listed in Table 1. In particular, g = g* except in the cases (CI(\}))* = BI(\})
and (B\)* = ).

The duality relation (3.12), specialized to g-Macdonald polynomials is

L W S ()
POty PE )

(3.26)

Note, however, that the range of validity of (3.26) is wider, as A can be any g-partition,
while p is any g*-partition, and these are not necessarily integer partitions as in (3.12).
First conjectured by Macdonald, the duality (3.26) was successively proved for all
types in the case of integer partitions: for type A, it appears in [39], for other types
the main proof is in [7], supplemented by [51] and [45] upon specialization of (3.12).
See Section 5 for a more general duality statement.

Fora =né+aj+---+ay € R, define x* = g "x{" -+ x{". The function A in
Eq. (3.14) has the following specializations:

@ =
Ao =11 ==
aeRt

(3.27)
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where §++ ={a+né € R:ace Ry, n > 0} is a subset of the affine roots of g,
see Table 3. In all cases but g = Ag\),, A is closely related to a simplified version of
Macdonald’s function AT [40], suitable for taking the dual g-Whittaker limit r — oo.
The function A enters the duality relation (3.26) via the evaluation formulas (see (0.6)
in [7])

.y A(G*)(ﬂ’)
AW@) (ghtr)’

A@ r"y

P/\(g)([p*) — P plgg*)(tp) — P
3.2.3 Pierirules
As in the case of generic (a, b, c, d), the Pieri rules follow from the eigenvalue Eqs.

(3.23) and the duality (3.26). Start with (3.23) with x = g" t*", and specialize 1 to a
g*-partition:

DD (g 17" q, )PP (q" ") = 69 e KD (g*17) PP (g" "), (3.29)

where (x, I') is specialized to (q“tp*, e%). Following the same steps as in Sect. 3.1.5,
using the duality relation (3.26), one obtains the g-Pieri formulas:

Theorem 3.8 The Pieri rules for g-Macdonald polynomials are
HE (51,0 PV () = 60 (x) PV (v), (3.30)

where the difference operators ﬂ{ff)(s; q,t) are given in terms ofDﬁ,?*)(s; q,t):

H(s:q,1) = P A ()T D (51, 1) A () 1P (331)

oy

The explicit Pieri operators 9—[59)(s; q, t) are listed in Sect. B.2.

3.3 The g-Whittaker limit

The Macdonald polynomials have a symmetry (¢, ¢) — (t~!, g~"). For certain root
systems, the g-Whittaker polynomials are the t+ — 0 limit of the Macdonald poly-
nomials, and therefore the ¢ ~'-Whittaker polynomials are the # — oo limit of these
polynomials. In this paper, we define the various functions and operators so that they
have well-defined limits as ¢+ — oo. We refer to this as the g-Whittaker limit by slight
abuse of terminology. We also call g-Whittaker polynomials what technically should
be called ¢ ~'-Whittaker polynomials.
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3.3.1 Whittaker difference operators

The eigenvalue equations and Pieri rules of the previous section have well-defined
g-Whittaker limits. Define

N ) = lim P\¥(x) (3.32)
11— 00
and
DP(x;q) = lim @) DP(x:q.0),  (@=12..N).  (3.33)

The first g-Whittaker difference operators are obtained from Eq. (3.2.1):

D (x;q) =1+ Z $2 (0)ITf = 1), (3.34)
el=_11
with
1
1 (DY)
X <1)
X _ax (1)
xG xEx X’_2€_1 qx25 1’ (C )
(@) _ i it x2€ @)
S(x X 4 N 3.35
vew =]l e AZ_p. 639
J#i ' 1
x§ 2
xf—1 3 (D()])
i qu?f
X qxe 2)
xl_f_l qx; 2e_1° (A )

The limiting eigenvalues of D,(,?) (x; g) are not symmetric functions because of the
dependence of s on ¢. Instead, they are given by the dominant term in ¢ in the functions
é((,R )(s), A%, The eigenvalue equations are (see Sect. A.4, Theorem A.18)

D (x; ) ¥ (x) = A% 1P (x). (3.36)
3.3.2 Pieri rules and Toda Hamiltonians
The Pieri operators (3.31) have well-defined limits as + — co. Let

H® (A g) = lim HP (s = Ar?” g 0. (3.37)

Using the Pieri operators from Sect. B.2 (see also Remark B.3), and taking the t — oo
limit, we obtain the following list of first Pieri operators.
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Theorem 3.9 For all g, the first Pieri operators take the form

NR*
HP(A: g) _2(1 — ATNDT 4+ Y (1= AT+ M@ (A g),
i=1 i=1
(3.38)

where the roots a} are the simple roots of R* and ag = 0 by convention. Here,
Ngx = N — 1 if R* = By, N — 2 if R* = Dy, and is equal to N otherwise. The
boundary terms M® (A; q) are as follows:

(1—A’°‘TV)(T1;1+(1—A“’E—1)Tﬁll), g= D(])
A=A"N)(1—g A~ N)T +A TN (@ AT N-1—(1+¢" ")) g = Bz(vl),
H @
M@ (A;q) = {o. 1 a=Cy. A%,
(1-A™N)(1—g T AN Ty, 9= Dﬁip
AT, g=A%.

Explicitly, the first Pieri operators are:

(D ) = A
YA =T § - 1— 23t
( ) 1+ ( A ) i+ 1 ( A; i

+(1=2 ) (4 ! 7'+ (1 ! Ty
ANy An—1Ay ) N1 An—1Ay ) V7

N

(B) A; Nl At
NN =T + JR—— 1 — 2 ot
w=n+Y (1= 2 )ne Y (1- 57,

i=2

N
BNy =1+

e N
(Dyip)
H, M =Ti+)

@& N A; . Ait 1 1 -1
a0 =3 (1 ) 1Y (1) (- L)
i - N

N

A

) A Nl Aiv 1 1
AV (M) = T, T; -2 - — )7y —— .
) 1+2( A,_l)’@( ) (- )t
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The first g-Whittaker Pieri rule is
(9) (9) A (9)
H= (M) I (x) = e (x) T (x). (3.40)

Alternatively this equation can be interpreted as the eigenvector equation for g-
Whittaker functions in which the roles of variables A and x are interchanged.

Remark 3.10 The Pieri operators H l(g)(A; g) match the relativistic U, (R)-Toda
Hamiltonians acting on functions of A [27, 52] upon the following correspondence:

1) (2 (2)
Dy’ — Dy, DN+] — By, A2N71 — Cn.

The equivalence uses the Etingof automorphism [21] T; — T2y, A; = A;T_4,; and

v = q% in the notations of [27]. To our knowledge, the cases g = B](vl), C](\}), A(ZZA),
do not appear in the literature in relation to standard constructions of ¢g-Whittaker
functions for quantum groups. By a slight abuse of terminology, we still call the cor-
responding limits of Macdonald polynomials ¢g-Whittaker functions, and the limiting
Pieri operators Toda Hamiltonians, and keep our labeling with (twisted) affine algebras
to avoid confusion. The same correspondence in the ¢ = 1 limit occurs in relation
to factorization dynamics [54], where the By, Cn cases match classical Q-system
evolutions for the twisted algebras g = Dl(\?)ﬂ’ A(ﬁ\)}fl respectively.

3.3.3 Generalized g-Whittaker difference operators

In this section, we consider the 74 € SL(2, Z)-action on the g-Whittaker difference
operators of Sect. 3.3.1. Let y (x) be as in Eq. (2.16). We will define “translated” oper-

ators D;%)l foralla = 1,2, ..., N and n € Z, by suitable use of iterated conjugations

with y~!. There is a subtlety arising from a distinction according to whether a is a
long or short label. These do not necessarily correspond to long and short roots of R,
but are determined instead by the Q-system evolutions described in the next section.

Definition 3.11 All labels a € [1, N] are long except for the following cases: a = N
for B](Vl), ae[l, N—1]for C(l), and a € [1, N] for Ag\),

In general, we think of the integer n as a discrete time, and as Ady—l as a “time
translation” operator.
Definition of Dgﬂz (x) and properties We start with the definition of the operators

Dfi)l (x), which depends on whether a = 1 is a long or short label.

Definition 3.12 When the labela = 1islong (g = Df\}), B,(\}), A;zl\),fl, Dﬁll)’ define,
for any n € Z,
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D) =gy " DI¥(x;q)y" =g 7 + Z¢<9><x) (rs — g7 9),
(3.41)
with ¢/% (x) as in (3.35).
Definition 3.13 When the label a = 1 is short (g = C(l) A(z)) define

DT (1) =" o )X (Tf 1), (3.42)

i€
with d)i(i) (x) asin (3.35). Then for all n € Z and for i = 0, —1, define

(9)
Dl ;2n+i

x)=q "y Dfi) (x:q) y™, (3.43)
@ .y _ p@ .
where Dl,o(x, q) = D" (x; q).

Conjugating (3.34) and (3.42) by y 2", we have, when g = C(l) Ag\),,
D (1) =g "+ Z 32 (x) (FTE =g, (3.44)

DY ()= qu“”(x)x C(x2MerE — gy, (3.45)

The main difference between the cases of Definitions 3.12 and 3.13 is that in the

latter case the translation splits into distinct even and odd time evolution Egs. (3.44—
3.45).

Lemma 3.14 We have the commutation relation
D). 6101 =(q—DDE )+ @ ' —DDE_ ().  (346)

Proof Using

[Tf. 61001 = (¢° — DTS + (¢~ — Dx; “TF = Y (g — Dx*“T*.
we have

N
(D}, "] Z qsi,ex“[rf,él(x)]: Y prex"TOqe — re,

e==+ i€

]
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Definition of higher generalized ¢-Whittaker operators
The higher, generalized g-Whittaker operators are denoted by D‘(fr)l (x), with a €
[1, N] and n € Z. They are defined as follows.

Definition 3.15 For all a € [1, N] and for all n,

D(g)

a,ty

n(x) — q—ntaa)z.wa/zy—tlnDég) (x)y”",

where Dég)(x) are defined in (3.33) and w, (w}) are fundamental weights of R (R*),
t, = 2 for short labels and 7, = 1 for long labels in Definition 3.11.

Definition 3.16 For the short labels a > 2 of C](vl) and Ag\),, define

— (_1)11 [D(B)

— @D e, (mel), (3.47)

where [A, B], = [A, B], = AB — pBA. Then

(9) - —2n (@) |, 2n _ (=D (9) (9)
Da;2n71 =4q " 14 " Da;f] 4 "= q— 1 [Dl;2n7a’ Daf];Zn]qa‘

Definition 3.16 anticipates on the desired connection to the quantum Q-systems of
the next section and uses a recursive reformulation of the quantum Q-system solution
obtained in [17].

Finally, to define the generalized difference operators with odd n corresponding to
the labela = N, g = B(l), we use the Rains operators 9%5\';’”) and @ﬁ’b’c’d)of 3.7
and (3.9), with the specialization (a, b, ¢, d) = (¢, —1, ql/z, —ql/z):

~BYY _ A1~1.4"2—4") _ o) )
DNN :DN ::RN 52N

with
1) _ p.—D ©0) _ p(l,=D
Ry =Ry 7, Ry =Ry .
In the g-Whittaker limit t — oo, these become

0 NN
DY) = tim VDUV = RV RO, (3.48)

—00
with

N _
RO = fim ~ gD

11— 00
= iyl y FVT 3.49
= 2 Il w==II" (3.49)
€1, omen=%11<i<j<N %i Xj i=1
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R = lim ¢ (N)R(t

1—00

[1 e HFG’/Z (3.50)

€],....ey=x1li= 1 1<1<]<N i=1

gD
The factorized form of D By

follows:

can be used to define the discrete time evolution as

Definition 3.17 Let n € Z. Define

RD =q %y RVy", =01,
By G 0
DN;gn—l =9 4 RE\/;),, 1 R( ) (351)
. . (BY) T (B‘”) -
Note in particular that D Non—1 =4 2 v "Dy 1)/ similarly to the even n

1 1
B o B<>) "

case where Dy 5~ = ¢ 2y D

4 Quantum Q-systems and Macdonald operator conjecture

For any affine algebra g, there is a corresponding Q-system [28, 29], which is a
recursion relation satisfied by the characters of the KR-modules [5] of the Yangian
Y (g). Their deformation into recursion relations for non-commuting variables, called
quantum Q-systems, were first defined [15] using the identification of the Q-system
recursion relations as mutations in a cluster algebra. In that case, one may use the
canonical quantization of the cluster algebra [1], and in [15, 37, 38] it is shown that
this quantization is related to the graded fusion characters for g. In special cases, these
are known to be related to g-Whittaker functions.

One of the main conjectures presented in [19] is that for untwisted g in Table 1,

some g-difference operators D(g) (x) satisfy the quantum Q-system relations of type
g, and that the operators D(g) and D(g) | act as raising and lowering operators when

acting on the eigenfunctions Hig)(x) of D(g) The purpose of this section is to prove
these statements for all g of Table 1.

4.1 Statement of the main theorems
4.1.1 Quantum Q-systems
For each g, we consider an algebra generated by invertible, non-commuting elements

{Q;t.}i :a € [1,N],n € Z}. The quantum Q-system of type g is a set of relations
among these generators, which depend on the root data of g.
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Definition 4.1 For each g, let A‘® be the N x N matrix defined by
A =l oy abell N, (4.1)

where @, and ] are the fundamental weights of type R and R* respectively, and - is
the standard inner product.

In the case of untwisted g, A@ is the inverse of the Cartan matrix C of R, since

@)

& = o, . For the case g = Dy’ |, A@ is the inverse of the symmetrized Cartan

@y

matrix of type By, and for g = AE&,), it is the inverse of the symmetrized Cartan
matrix of type CL Mg

min(a, b), (a,b < N)

Dy, gD \
A,(/l,bNH) = (Da,a)_l Ai’év : = %mm(a, b), @= N, orb=N)
N, (a=b=N),
(A(2)7 ) (A(Z)) B (C(l)) .
Aa,sz Vo Aa’sz = (D;’a) lAa,bN = min(a, b).

Here, D = diag(1,1,...,1,2) and D' = D~ ! are such that C = CB¥) D and C =
CC¥) D' are symmetric. These are chosen so that Aggl) = 1. Defining ¢, = 2 for o, a
short simple root of R, #, = 1 for a, long, t1/t, is Dy 4 for type B and D), , for type
C.

The quantum Q-system relations are of two types. The first are g-commutation

relations:

A(g) j—A(g)i ..
Qustehti ikt j =g av? "0a” Qi i Quepkri, G, J=0,1,k € Z).
“4.2)

The second type of relations are evolution equations in the discrete time variable n,
and have the form g%« Quin+19:n—1 = Qi;n — J4:n for some monomials T,.,. Let

Ng be the maximal integer such that (A®), , = a fora < Ny + 1:

LN _ p) ~) H©) .
ND;J)ZN—??, Ng—N—Z,g—BN,CN,DN_H,

N 2 2
Ng=N-1,g= Aéz\)l Agl\)/—l'
The evolution equations are

qa Qa;n—H Qa;n—l = Q(Zl;n - Qa+1;n Qa—l;m aell, Ng]y all g. (4.3)
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0 g¥29 Q Q2 ~ QN 3 Q1 Q
DN -q N=2n+1 “N-2in—1 = ~N_2., — 4 4 N—=3;n ¥N—1;n ¥N;n>»
N 2 (N—4)n
g% Av—1;:n+1 Qv—1;0-1 = QN—l;n —q % 9Qv_2,
N 2 (N—4)n
g% Qvint1 Uvin—1 = QN;n —q & Qn-2,

. N-1 2
Byt g Q-1 Qv—tin—1 = Qy 1., — Iv—2:0Qn;2ms
N
> 2 - 2
9’ On2n+1 QNvion—1 = Q. — qN" Ay pons
y 2 N o
q7? Q2042 QN;2n = QN;2n+l —q 27" QN 11 QN1
(O N—1 2 —hn 2
Cy © q" Av-tont1 1,201 =y _ 19, — ¢ . 2 On—2:20 Q.5
N—-1 2 -5t
q ON—1:2n42 Qn—1:20 = QN_l;zn_H_q 2 ON 2:20419N;0 419N
N (N=2)n
5 2
4?7 Qnint1 Qvin—1 = Uy, —a 2 Av—130m,
@ . -1 2 —n 2
DN+1 . CIN QN—l;n+1 QN—l;n—l = QN—l;n —q 4 QN—Z;nQN;n»
N ) (N=2)n
q% QN1 Uvin—1 :QN;n_q T On_1;ns
2 . N 2 —n 02
AZN*I -4 QN?"‘H QN?”—I = QN;n —q" QN—I;n’
@) . N 2 -
A2N ©g” Qg1 Qv = QN;Zn —q7"Av_1;:2:9N;20,
N 2 -
q QN,2n+2 QN,Zn = QN;2n+] —-q " QN—l;Zn—HQN;2n+1-

4.4)

Remark4.2 If g # Ag\),, the evolution equations above are equivalent to the quan-
tization of the Q-system cluster algebras. These correspond to exchange matrices

t_ ot
[12, 32, 54]: B = <C ¢-c 0 for twisted

c 0 for untwisted g and B = c 0

g, where C is the Cartan matrix of R. These correspond to the initial cluster data
(Qu:i ra e[l,N],i =0, 1). We choose a skew-symmetric g-commutation matrix to

. . . A .
be the inverse of the skew-symmetrized matrix B, of the form (_(3\, Al — A) with
A = A® as in Definition 4.1. The quantized cluster variables obey the commutation
relations (4.2), and the relevant quantum mutations [12] are

(9) 1p-1
qA“‘“ Qain+19%;:n—-1 = (Qa;n)2 - qua‘a CTan (@=1,2,..,N), 45)

B

with D, , = 1 except fora = N in types Ag\),_l, Dj(\%il, where it is equal to %, 2,

respectively. The monomial 7,4 is the product of Q. appearing as the second term
in the right hand side of each Q-system relation, not including any factors of ¢, and
the normal ordering : - : is defined as : [] X/": = qiéZf<f‘”v«f""“«fX’f1 D (i
X;X; = q“iX;X;. The quantum Q-system relations (4.3-4.4) are equivalent to the
quantum mutations (4.5) after a renormalization of the cluster variables (see [19]
Lemma 4.4).

In this section, we prove the following Theorem, which is one of the main results
of this paper:
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Theorem 4.3 For each g in Table 1, the limit t — o0 of the generalized g-Macdonald
operators D‘(ﬁr)l (x, q) of Sect. 3.3.3 satisfy the corresponding quantum Q-system rela-
tions (4.2-4.4).

Therefore the algebra generated by the elements Q . subject to the quantum Q-
system relations has a functional representation given by the difference operators of
Sect. 3.3.3.

4.1.2 Raising/lowering operator conditions

We refer to the polynomials H;g)(x) (3.32), which are the common eigenfuctions of
Dég()) (x;q9) = Dflg ) (x; g), as g-Whittaker polynomials. For non-twisted g, we conjec-

tured in [19] that foi, D‘(IE,‘)_l are raising and lowering operators acting on T\ (x).
The following are the statement of this result for all g in Table 1, and will be proven
in this Section:

Theorem 4.4 For any g in Table 1,

D) MY (x) = A% TP (x), (4.6)
D) M (x) = A% ¥ (x), 4.7

where w, and w}; are fundamental weights of R or R*, respectively.

Combining Theorem 4.4 and Theorem 4.3 with the relevant quantum Q-system
relations, it follows that D;*,’i 1 (x) is a lowering operator:

Corollary 4.5 For all g, we have the following lowering operator conditions
D(g) (x) H(g)(x) — Aa)Z (1 _ A,a;k) H(g) ()C) (4 8)
a;—1 s A—wy ’ .

where a; are the simple roots of R*.

Note that the prefactor guarantees that the result is 0 whenever A — w,, is not adominant
integral R-weight, i.e. not a g-partition.

The proof follows the steps of Sect. 2, using the Fourier transformed operators
D5 (A).

4.2 Opposite quantum Q-systems and integrability

For each g, we consider the solutions Qa;n which satisfy the quantum Q-system with
the opposite multiplication, referred to as the quantum Q-system. We construct a
representation Da;n(A) of the solutions Qa;n of the quantum Q-system, subject to
appropriate initial data, in terms of g-difference operators written in terms of the
quantum torus Ty = (A;, T;) th |- Elements in this algebra act on functions of A as
g-difference operators in A. The initial data Da;o(A) are deduced from the eigenvalue
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Eq. (4.6). These are supplemented with a choice of D,.(A) ensuring that the quantum
commutation relations opposite to those of Eq. (4.2) are satisfied:

_ _ _A(g) — _
Dg;0 Dp;1 = q ¢ Dp;1 Dg0, 4.9

with A® as in (4.1).

Definition 4.6 For all g, define

Da; _ D(Q)(A) Da;l _ D(g)(A) Aa)Z Twa,
where w,, w} are fundamental weights of R, R*.

These obey the relations (4.9), since A%T® = g~®® T A Since all Q-
system evolutions are two-step recursion relations, the following are uniquely defined:

Definition 4.7 Define D(g) (A) = Qg for all n # 0,1 to be the solutions of the

g-type quantum Q- system relations subject to the initial data in Definition 4.6.

Remark 4.8 Due to the Laurent property of quantum cluster algebras [1], the solutions
l_)a;n are Laurent in the initial data {l_)a;i i =0,1,a € [1, N]}. Since these are
monomials in {7, Ay, a € [1, N1}, all quantum cluster variables are Laurent in the
quantum torus generators, therefore they are g-difference operators. Although this
argument doesn’t apply to g = A(2 A),, we will show that all solutions of the Q-system
are Laurent in this case also.

4.2.1 Time translation operator g

Theorem 4.9 Let [)f}?,i be as in Definition 4.7. For each g there exists an element
g = &9 in a completion of the quantum torus T , such that for all n € Z.:

(9)

A
zaa

l_)a,n =gq l_)g,o g ", along, (4.10)

8
©
nAala “¢"Dyig™", i=0,1, ashort 4.11)

Da,2n+i = C]

These elements are
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. _ p
ngA (ANflAN’ >809 g_DN7
—1
12 1
(gT/ <$ q> ) 8A» g= Bz(v)’
o0
21
2(_1 (1)
Ao 9 = C ’
g(g)= (gr gA) (AN 51)_()? g N (4.12)
2
8T 8A <AL2 q2> ) g= Aé&,l,
N 00 ]
[ A @
gr ga [1h20 (H 2)00 , g=Dy,.
1 -1 -1 2
87T 8A (qZﬁ;qko 87T 8A (ﬁ;q)oo o= AN,

where we use the shorthand gr, ga of Eqs. (2.23) and (2.26).

Note the A-dependence of g is only via A~ where o are the simple roots of R*.

Proof The proof is by induction on n. The inductive step relies on the fact that Egs.
(4.10) and (4.11), which can be written as

A@ - _ 1 if a lon
Da;m+1, = 4 A“‘”t“ﬂgDa;mg Lot { g

2 if a short ’ @.13)

are compatible with the Q—system_ evolution, from which Dy, are defined. Define for
all labels a: Ty, := Qi,n — ghaa Qu:n—194:n+1. If (4.13) hold for all m < n, then they

hold form = n+1iff g‘j'a;ng_1 = qA%’“ ‘j'a;ntha . This is easily checked case-by-case.
To complete the proof, we must check (4.10-4.11) for some initial values of n. Using
the form of ‘Ta;n, we see that for long roots, it is enough to show that (4.10) holds for
n = —1 and n = 0, so we need the explicit expressions for Da,n withn = —1,0, [ to
start the induction, and for short roots, we also need the expression for n = 2:

Dy.—1 = Dao(1 = A™%)T~% qel[l,N], (4.14)
Dy2 = Dy1(1 = A™%T~)T% g short. (4.15)

Let ho () = (A ¢")5) s ha = ho(1) and hf = (q7A™* ¢)5). Then gs =
I—[QV;II hgx. It is useful to rewrite the g operators of (4.12) as

D @ 2 1
g=gr8nhy, ). g=Dy ATy | Dy, u=12, 5 resp.

1 1

g72" ha;‘\,a 81 8A> g= Bj(vl)v

g = 8182 where g1 = g7 g,, and g =1 81hyy, 9= cy.
+ 2

8T 8A g . gr8nhay, 8= A,
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We use the exchange relations, valid for any x, y € Q,

2
(gr)" (A = q}T( Aa) (T (g7)*, (4.16)
hoyr T® = T (1 — A—“Z‘)ha;,
h;zl T~% = (] — A~%)T @ h;zl. (4.17)

Long labels. In this case, we need only verify that (4.10) hold for n = %1, Note
that Dmo = A% commutes with ga- In the self-dual cases g = D(l) A;zl\), 1> D(z)

. N+1°
all labels are long and Eq. (4.10) withn = 1, gDa;og’1 = ghaal2 D,.1, follows from

Aaa —

gr Duo =¢ eyt aT%gr =q 2 Dg1 8T-

For n = —1 it is equivalent to
—1 D h Awa _ A%’a 1\(1);k 71T—a)a h71 —1
8 a:0 = gA gT q 1N ol 8A
Aa.a — Aaa -

=q 2 Da;O(l_Aiaa)Tiwagilzqi 2 Da;flgil-

For the long labels a < N of B}, 0¥ = w4, Ay o = a and (4.10) with n = £1 follow
from

1/2 1/2 R a 1/2 * 1/2
gT/ hal’(, gT/ Dy = q4g7'/ A% T2 h"‘z*v gT/
a * 1/2 1/2 a = 1/2 1/2
= g3 AT g hyr 87 = ¢ Dargr” har, 87

and

-1 p —1,-1_—1/2 * _a _1/2 _12
§ 1D“;Ongl(hmklgT Py A% = g7 A% “g ' T ‘”“h < 8T h }'{];gT/
Aa,a

G 2Dy (1= A )T g™l =g~ D, g7\,

For the long label a = N of g = C\’, 20% = wy, (4.10) with n = £1 follows from

— N * * * * —
878787 Dnio = 2 gT A“NgaT“N g1 = gV ANT**Ngrgagr = q" Dy.1 878487
and
-1 A —1 -1 _—1 _—1 _—1 ot N1 1 1o r—wf, —1 —1
g IDN;OZha;gA 87 8&x &7 AN =q 4 ha;(ng 87 ACNT ngA 8r
=g~ T AN R TN (6367 )2 = g7 F Do (1 — AR T 200 !
N
_N = —1
=q 2 Dy,—18 .
Therefore (4.10) holds when n = £1 and a long.
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Short labels. Next we verify (4.11) for short labels a. We claim the following
half-evolution equations hold in types BI(\}), CI(\}), Ag\),:

7lAn.a N -1 J— N
q 2 82 Da;ng = Dg.1, (4.18)

“18aag Doy gt = D 4.1
q 81 Uqg;1 81 = Ua;2- (4.19)

To see this, Eq. (4.18) for B\ with a = N, where o%, = 2wy, follows from

1 ANN -

— _ 1 k — N *
g2DN;0821=g72*AngT2 =qiANTN =g~ 2 Dy:1.

For the short labels of C ](Vl)’ A(zzl\),, where o, = w}, it follows from

Ag,a -

©Dagogy = grAigr =g AT = ¢~ Dy

Equation (4.19) g = Bl(vl) with a = N, where a]’f, = 2ay, follows from

— 1 * 1 * *
81Dyt = g7 ANhox TN = gg A®NTN (1 — A7) hyy,
N * * * 1 AN,N -
=q* ANT?N(1 —gA™ONT N/ g2 hes, =q 2 Dn;2g1.

Whena < N — 1 for C](\}),Ag\),,fora <N-1,af =a,and

1Dy = gr A gaT® = gr A% T (1 — A™%) gp
=q? Doyt (1 = AT ™) T g7 gn = q? Dy 81

(2)
For Ajy,a =N,
_ * * L
g1 Dy:.1 = g7 A®N g h:;JTwN =gr AN(1 — g 2ATIN)TON gp h;f*N
¥ = —ay, —oy + y =
=q% Dy (1 = ANT V) g7 gahye =g 2 D2 81-

Equations (4.18), (4.19) imply (4.11) follows fori = 1,n = 1.
We also have the half-evolution equations for short labels:

YAhaa -1 1 _F
q 81 Da:181 = Dqgo, (4.20)
g_l D40 82 = Dg;—1- 4.21)

Equation (4.20) is equivalent to l_)a;l = q’%A“ﬂgl Da;O gfl, \ivhich is unchanged if
we replace g1 by g2, as only the T-dependent part g7 acts on D,.q, and the equation
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is therefore equivalent to (4.18). To show (4.21) for B(l)

1

1
) —1,—-1 _—2 * N x 1,1 _ 1
8 Dn:o=gx hai,gTzAwN =g AN gy hy T Ngr?
N * % _ _ o _1 N -
= g7 AN (A= AT Vg Yl gr? =47 Dyic1gy

and for a short in C(l) A;Z]\),

1 = a4 ot =1 —lp—w, —1
8 Dao=q? A ha’;,gA T g

=q2 A% (1 — A~%)T % h;}%gxl g;l =q? Dy gz_l.

These half-evolutions imply Eq. (4.11) withi = 1, n = —1. The Theorem follows by
induction. o

4.2.2 Integrability and conserved quantities

We claim that the time-translation operators g commute with the Pieri operators for
each g, which therefore have an interpretation as the conserved quantities of the quan-
tum Q-system.

Theorem 4.10 For all g, the operator g9 (A) commutes with the first Pieri operator
H](g) (A)

The proof is by explicit calculation for each g. It is given in Appendix C.

In what follows, we need to generalize to type g the statement of Sect. 2.9 about the
uniqueness of the solutions to the first Pieri equation. Starting with Dgg ) (x) Hig ) (x) =
Ay 1'[§9)(x), writing Hgg)(x) = xxpig) (x), and conjugating (3.34) with x ~* results in
the equation

1 (® Af o 1T PP (x) =
+Z¢ (x)( s A1> | )@ =o.

e—l

The difference operator is polynomial in (A%, a} the simple roots of R*, so we
may analytically continue the solution p'® (x) to pf\g)(x) A € CV, and then con-
sider A to be a formal parameter. The coefficients ¢(g)(x) have series expansions
in the Vanables x~% o; the simple roots of R, hence we may expand p(g)(x) =

ZﬂeQJr(R) cﬂ (A)x B, as well as c/(sg) N = 23€Q+(R*) c‘?’aA . Whe?n dealing With
formal variables, we may exchange the summations and write a new series expansion,

(9)(x) Z étgg) (x)Af‘S, é((Sg) ()C) — Z gggx*ﬁ
8€Q4(R%) BeQ+(R)
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The first Pieri Eq. (3.40) is also easily extended to formal A, as the dependence on
A% is polynomial, while 7; : Ajr—> q‘si.iAj.

Lemma4.11 Let ®,(x) (A arbitrary) be a solution of the first Pieri Eq. (3.40), such
that ©; (x) = x* ZﬂngR*) 8 (x)A~P. Then when X is evaluated as a g-partition,

A(9)
@ _ S0 &)
Y = —0 .
A TO(X) A(x)

Proof The Pieri equation is a triangular linear system for the coefficients 7g(x),

determined uniquely for 8 # O up to the factor 7o(x). The same holds for the
(9) A (9) ~(9)

coefficients 6}3 (x) in the expansion of p,” (x), up to ¢5 (x). We deduce that
A(9)

x* ﬁ)@(x) = C%,(S;) ©;,(x). The Lemma follows by specialization to g-partitions.

O

Theorem 4.12 The action of g(A) on Hgg)(x) is equivalent to acting by a Gaussian
inx:

PN NP0) =y @ NP k), y@w) =y, (4.22)

where t1 = 2 if | is a short label (i.e. g = CI(\}), Ag\),), and is equal to 1 otherwise.

In other words, g(g)(A) is the Fourier transform of y (x).

Proof Like Hig) (x), the quantity g‘® (A) Hig) (x) can be continued to arbitrary A, and
we write it as ¢@ (A)x* p\? (x). Multiplying the first Pieri equation by g® on the
left, we get:

@ Hl(g)(A)x)‘ﬁ/(\g)(x) _ Hfg)(A) <g<g> x)‘ﬁig)(x)) = o1(x) <g<g> x*ﬁﬁg)(x)),

hence both g® x*5'¥ (x) and x*p\? (x) obey the same first Pieri rule. Apply
Lemma 4.11 to the function ®; (x) = g(®@ xlﬁf\g) (x) = g® x)‘(é(()g)(x) +O0(A™%)).
Expanding g® =1+ 0 (A %), we see that the leading order term in g(® xkﬁ)(\g) (x)
has only contributions from the action of the g7 parts of g(® on the leading term x*.
The total contribution of the g7 terms is gtT] , as directly read off (4.12). Finally noting
that (g7)" x* = y (x)" x*T"¢ (g7)"", where x = ¢° (using (4.16)), we find that the

leading term is tp(x) = y(x)" 6(()9) (x), and the Theorem follows from the relation
10 (x0) /6 (x) = y ()" O
Remark 4.13 As noted in Remark 2.12, in the cases g = DI(\?)H’ A(j\),fl, DI(\}), the
relation (4.22) boils down to the recursion relation of [22] (Theorem 3.1) for the
coefficients Jg = Jg(x = g") for the root systems R = By, Cy, Dy respec-

tively (see Table 1). These are the coefficients in the series expansion I:I;g)(x) =
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x’\gﬁ\g) Hgg)(x) = x* ZﬂeQJr Jﬂ(x)A_ﬁ, up to a rescaling ¢ — ¢? in the cases

g= DI(\}), D}&rl. Here we use the notation

1/ (s:4'?)  forg=DJ\ R=8
/\ay4 o e N+1 N
2
g =gax{ 1/ (ﬁ;q2> forg=ASy |, R=Cy .
x

. —pWb p_
1/(m,q>oo forg_DN,R_DN

Corollary 4.14 The Pieri operators H;g)(A), a=12,.., N ofEq. (3.37) are alge-
braically independent conserved quantities of the g-quantum Q-systems.

Proof To see that the time translation operator g(® (A) commutes with all higher Pieri
operators Hcgg)(A), a € [1, N1, act with (@ (A))~'y(x)"" on the Pieri equations,
and use Theorem 4.12
§O Wy @ HE W) P () = g @) B 4) ¢ () T (x)
=& (1) P (x),
which implies that g@ (A) "1 H® (A) g@(A) = HP(A) by the definition of the

Pieri operators. The statement follows by noting that any dependence between Ha(g ) (A)
would imply a dependence between éég) (x), which are independent. O

4.3 Proof of Theorems 4.3 and 4.4

The proof of both Theorems relies on the following.

Theorem 4.15 Forallg = Dl(\}), Bl(vl), C,(\}), D}(\a], Aézl\),i], A;zl\), we have the relation

DL NP =D WM x), aell.NLnek (4.23)

valid for any g-partition A.

Theorem 4.3 follows from Theorem 4.15, as any relation satisfied by the difference
operators {D,.,} implies the opposite relation for the difference operators {D,.,}.
Theorem 4.4 is the particular case of (4.23) with n = 0, 1. We provide a proof of

(4.23) for long labels, short labels except for B(l), and for the short label of Bl(vl)
separately.

4.3.1 Long labels and even time short labels
In this case, the proof is similar to that in type Ag\})_ |- Acting on both sides of the

eigenvalue Eq. (4.6), which we write as (4.23) with n = 0, with y (x) ™" (g(® (A))"
and using Theorem 4.12,
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y D 0 () P ()
=y " D @YY ()

Aa,atan _ _

=g D), NP ) = @) DG (M) y " I (o)
- Ag,atan -

= (@) DEA) ¢ )" TP ) = ¢ BE), P (),

where we have used Definition 3.15. Therefore, Eq. (4.23) holds for n a multiple of
tq.

4.3.2 Short labels, odd n for g = C,fI”, Agv)

In both cases, a = 1 is a short label, t; = 2.

Lemma4.16 For g = CI(\}), Ag\), and for any g-partition A,
(% @) = DI () P (x) = ¢ (DI () = DIP, (1)) NP ).
Proof Applying Eq. (3.46) with n = 0, acting on T\ (x),

(D), 11 M () = (DG H® (8) = e 0D () T ()
=[H® @), D] 1 @)

=@ -1 (D% —q7 DI, 0) NP ),
(4.24)

where we used the Pieri rule (3.40), and the eigenvalue Eq. (4.23) withn = 0,a = 1.
The only terms in Hl(g ) (A) of Egs. (3.38-3.39) which fail to commute with D}% (A) =

Ajare T1 + (1 — 2—?) Tfl if N > 2. Therefore,

_ A
[Hl(g)(A), D%(A)] =[T1 + (1 - A_?> Tl_l, A1]

=(@—-DATi+ (g "= DA — AT
= (g — DDA ) + (g~ = DD (),

where used [)i?il(A) =(A — A2)Tl_l. The lemma follows. O

Defining =,¥ = (D{%)(x) — D{®)(A)) ;¥ (x), Lemma 4.16 says that | =

q—l 2(791).
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Lemma4.17 Forg = CI(VI), Ag\),, we have:
HPM)s® =402, (=+1).
Proof As E(_gl) =q Z%g), we may restrict ourselves to i = 1.

HPW £ = (D) H® (8) — HP1) DFW) 1P ()
= (a4@DH W + (¢ = DG — g7 DR
=D HE W) - @ = D (D) - g7 DIHW) )1 ),
= (él(x)Dg?f(x) - Df?f(A)Hfg’(A)) 9w =é s, (425

where we used Lemma 3.14, as well as the a = 1, n = 0, 2 cases of (4.23) proven
above. O

Lemma 4.16, together with a uniqueness argument (Lemma 4.11), implies
that there exists a function «® (x) such that Efg) = a@(x) H;Lg) (), E(_gl) =

qa®(x) P (x):

(D (x) — DI (A) — @ @)Y (x)
=D, (x) = DI (M) — gD ()T (x) = 0.

Using this equation with A = 0, Di?ll(x) H(()g)(x) = D{f‘ll(x) 1 = 0, using (3.42).
Similarly, D{’, (A) TP (x) = (A1 — AT TP ()50 = 0, since the prefac-
tor vanishes. Therefore, «(®(x) = 0 and ¥ = =@ = 0. Multiplying =@ by

(g(g))”y’z”, we conclude that for g = Cl(vl), Ag\),, a = 1,n € 7Z and any integer

partition A, Eq. (4.23) holds.
This result can be extended to all short labels for these algebras, as follows.

Lemma 4.18 Equation (4.23) holds for all short labels a and n odd in the case of

Proof Let Ny be as in Eq. (3.19). Then if a < Ny — 1, the relations of the quantum
Q-system are identical to those of type Ag\g_l, and hence we can apply Theorem 2.8
of [17], which states that any solution of the relations fora = 1,2, ..., Ng — 1

qa Qa;n+1 Qa;n—l = (Qa;n)2 - Qa+l;nQa—1;n» Qa;nQb;n+l = qmin(a,b) Qb;n+1 Qa;na
satisfies
(_l)a(q - 1)Qa;n = [Ql;n—a+ls Qa—l;n+1]q”’ (a = 17 2, cees Ng)-
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Therefore the g-quantum Q-system solution fo_’}z obeys the opposite relations

HN@ _ rp® NE))
(_I)a(q - 1) Da;n — [Da—l;n+1’ Dl;n—a—}-l]qa'

Using this and Definition 3.16, we deduce that

(9) H(9)
{Da?Zn—l(x) - Da;g2n—

_ =D p@ D©

- q— 1 {[ 1;2n—a(x)’ a—1;2n(x)]qa

LMy ()

H(® H(9)
_[Da71;2n (A), D

1;2n—a

(Mg} T (x) =0,
by use of Eq. (4.23) for D;g_)”n and Di,gz)n_a with a even and for Di%)n_a when a is
odd. O

4.3.3 The case of B,(V” foroddn

It remains to prove (4.23) for g = B](Vl), a = N, n odd. The methods above are

: . . . BY) . .
inapplicable, and instead we use expression (3.51) for D;V,g’n)_ , in terms of Rains

operators.

Recall that B,(\,l) -partitions are both integer and half-integer partitions, due to the spin
N 14x;

representation with highest weight wy and character s, (x) = [[;_; N Denote
(BY) (t—1.g%.—q?) ~ (t—q.q% —q7)
po=p N =p T Py = P ITT (4.26)
There is a factorization of Macdonald polynomials [50],
Piton (X) = suy (X) P, (x), A integer partition. 4.27)
. < ) L (BY)
The parameter specialization (4.26) for Pj, is obtained by conjugating D, ™ "(x, g, 1)

bys, 1\1] and identifying the resulting parameters (a, b, ¢, d). We must therefore consider
the action of the difference operators on both functions IT; = lim;_, o, P, and I, =
limy 00 P with & integer partitions.

Moreover, the Rains operators map the eigenfunctions of the Bl(\,l)-type differ-
ence operators to those of B](Vl)/—type, corresponding to different parameters. We
denote the corresponding g-Whittaker limit of the eigenfunctions functions as IT).
To these parameters there corresponds a different quantization of the Q-system, a
time-translation operator g’(A), and Hamiltonians.

Specializing to the BI(\}) parameters (a, b, c,d) = (t, —1, q%, —q%) and taking the
t — oo limit as in (3.48), (3.8) become

1 1
RO, = (AAs-- Ay} (1 + A—> .
N
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RV I, = (AjAy--- Ay)2 TI;, (4.28)

for integer partitions A. We identify the Bl(vl)/ specialization to be (a,b,c,d) =
(tq7. —q%. 1.~ 1),

= H(B(” ) _ Tim (lq2 —g21, -1

— 00

Lemma 4.19 Equations (4.28) also hold for half-integer partitions.

Proof Using the specialization (a, b, ¢, d) = (t, —q, q%, —q%) as in (4.26), in the
limit # — oo (3.8) becomes

1

5(0) N 1 q 2\ =/ 50 N 1~
Ry I =q% (AAy--- An)?2 1+T IT,, Ry Il =q% (A1Az---An)2 Iy,
N

where

I"é](\(/)) — —N(N-1)/2 —ffR(l _q2) —1 R(O)

lim ¢

t—00 Son -

p (1) ; N(N+1 2 Tl —617) (1)
Ry :t1_1>ngot (N+1/ 4fR sz Ry Swy s

by use of the limit of (4.27). Here, R](\?) and R](\}) are as in (3.48). Restoring the factors

sz ’

() SRR XNk 1 Fr
Ry (X) Sy T = (A1A--- A2 | 1+ . Swy I,
N

1 ~ 5 = < 1 ~
R () sy 1, = (AAs -~ Ay)2 54y Ty,

where A = g®¥ A = ¢“V*t*. Combining this with the limit of (4.27) implies that
(4.28) is satisfied for half-integer partitions A = wy + A as well as integer partitions.
O

Combining Egs. (4.28) leads to the eigenvalue equation for 13(35\} ) (x) of (3.48)

1) |
DY () M) = RY () RY (0 T = AiAz - Ay (1 + A—) ;.
N

. . . . . ~ (B
which is consistent with the relation D;V )

eigenvalues Du,o in Definition (4.6).

= R(l) R(O) Dy o+ Dy—1,0 and the

The g-Whittaker limit of the difference operators for the B](\})/ parameters are

'
obtained as in (A.38), and are denoted by D) (x) = D(B )(x), a=12,.. N.
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The corresponding limit of the Rains operator (3.9) is ﬁ}v x) = R](\?) (x) Rz(\}) x) =
D), (x)+ D/y_, (x). This identification follows from the # — oo limit of Lemma A. 10,

and from the eigenvalues, which are identical to those of the BI(\}) case, since §5 = &y/.

As in the BI(VI) case, We define the generalized Macdonald operators

D)., (x)=q "y ™" D,x)y", (a=1,2,...N -1,
Dy () = g2y 7" Dy ) ",
— 0 1 — _
D;V;2n+l(x) =49 A R§V311+1(x) REV;)n(x) =9 2 14 " D;\’;l(x) Vn'
(4.29)

Note the reversal of the order in the last product and the different time index compared
to (3.51). The operators D/ ~will be shown to satisfy the set of recursion relations
below.

Definition 4.20 The type B](vl)/-quantum Q-system relations® are the same as the type
B](\}) relations in (4.2)—(4.4) except for the two equations with a = N:

N/2 2 NoL_,
q / QN;2n+2 QN;2n = QN;2n+1 —q 2 QN—l;n-H QN—l;nv

_n 1-n
gV Qnont1 Qvizn—1 = Qnian — 4~ 2 Qv 1) (Qnsan + ¢ 2 Qn—1in)-

In particular, the g-commutation relations are as in type Bl(\,l) 4.2).

The eigenvalue equation for Dy, corresponding to any A is D, (x) IT; = A% TT),
with w7 a fundamental weight of type Cy . Therefore, the candidate Fourier transforms
Dy, ,(A) are defined so that they satisfy the opposite quantum Q-system to that of
Definition 4.20, subject to the same initial data as in type B}(Vl), D;;o = A% and
D;;l = A% T®, D;v;l = ACNTON, Together with the recursions of Def. 4.20, this

determines Dz/z'n for all a, n. In particular,

_ _ A
Dy, = D (1 - —*‘) T™% (a=12,..N-1),

As before, these are sufficient to determine the form of the time-translation operator
/
g (N).

6 This “quantum Q-system” is new, and we call it a Q-system by analogy with the other g cases.
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Lemma 4.21 The operator

1 1
g =87 &hy &7 &h 8A-
/ 1 1" 1 4
Ay = T v 8ANy T 1 1 Lo 1 ’ (4.30)
(@20 oo (AN'592)o0 (—q2 AN G200

where g1 is as in (2.23) and ga as in (2.26), is the time translation operator for the
B,(\}) opposite quantum Q-system. That is, for all n € 7Z,

D)., =q @)D, (@=12..,N=1,
Diyionsi = 4 ") Dy, (g)™", i =0.1.

The Pieri rules for Bz(\})/ are obtained by duality. Using Theorem B.l1 with
(a,b,c,d) = (1, —1,1q%, —q?), (a*, b*, ¢*,d*) = (11, —t"2,11q2, —t~1q7), the
g-Whittaker limit of the first Pieri operator is

3" N Ag iy Agt1 |
a _
H'V (M) =T +a§_2 <1 - ) T, + ;—1 <1 vy ) T

a—1

1 q q -1
—— )1+ L) (1-L)r
+< AN)( +AN>( A%) N
1
2 —2
- Aula R, R
Ay Ay An_1Ay

By direct calculation, this operator commutes with g’(A) and as a consequence
§'(M) T} (x) = y () T} (x) . (4.31)

We want to show that Dy.1(x)IT = l_)N;l(A)HA (casea = N,n = 1 of (4.23)).
Using 4.12, Definition (3.51) and the relations (4.28), we find

N

4 1 0
Dy (x) Ty = g~ 5 R\ RY), T,

_3N 1 1 =l 1
=q 3 g(A1---AN)? 1+A—N (&) (Ar---An)2 I,
(4.32)

-1
Recall that hi,x = [,20 (1 - Z—;) . Using
N

=%

1 11 i SRR P
(1+E) (&hy) =ha;, Ty(ghy) =hy Ty,
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we find

* 1 *
8 A%wN (1 + A_) (g/)_l A%wN

N

1 1 1 1\ _ ol o1,
= 87 hat, 87 hay, gAAsz<1+E> gn (A "er (ghy) eyt AN

1 1 1 % -1 — - 1%
= g7 hay 87 D2V gr? (84,0 &r° AZN
1

1 1 1
= q%g%h . A%”TVT%wN(g’ )"l gp? ATON = gTo g2 ATONT 19N g7 2 A3OK

= q8 AZON TON A 29N —q 5 ACN TON =gq ¥ Dy.1. (4.33)

Combining this with (4.32) results in the relation Dy.1(x)IT; = ﬁN; 1 (A)TT,,. Multi-
plying by y ~"¢" and using (4.31):

(B (1)) ( (1) ( (1)) (B(I))
DA (o) T '(x) = DS (MY (x),  (neZ).  (434)

This completes the proof of (4.23), and Theorems 4.3 and 4.4 follow.

Corollary 4.22 The D'-operators satisfy the quantum Bj(vl) ,-quantum Q-system of Def-

inition 4.20. Moreover we have the raising operator conditions for any B](Vl)—partition
A

D () = A% T, . (a€ll, N,
g, W) the fundamental weights of By, Cy.
Proof Starting from the eigenvalue equations D, (x) IT), = D, 1, fora=1,2,...N

and multiplying with ¥ " (g’)", and still denoting X the prime Fourier transform of
Xs

Dy, T, = 72y ™" Dy () y" T = q 7" (¢))" D (¢ ™" 1M = Dy, T

For the short label a = N, using (4.29), (4.28), (4.33)and Dy, = D/y., = A°NT®N:

* * 1
Na T = RO RY T = ¢~ % AR gasel (1 + A_N> (g)~' 1,
=g ¥ A2 gF Dy, A2V I, = D)., T,

The relation can be generalized by multiplying with y ~"(g")", to D)y, &) 1, =

D/

Noont1 IT; for all n € Z. The Corollary follows. O
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5 Universal Solutions

The relations between Macdonald eigenvalue equations and Pieri rules are embodied
by the duality property of Macdonald polynomials (3.26). We now discuss a reformu-
lation of this duality in terms of universal solutions along the same lines as the case
of type A, treated in Sect. 2.13. This allows to re-prove the main results of this paper
in terms of universal solutions.

5.1 Universal solutions
5.1.1 Universal Koornwinder-Macdonald and g-Macdonald eigenvalue solutions

As in the case of type A, it is extremely fruitful to think directly of x and s as dual
variables, whose roles may be interchanged. To this end, we use changes of variables:

xi = gl Y- g“atN Tl s =g 1P = ghiotN A, e CV,

where we use the notations of Sect. 3.1.4, see Eq. (3.13). Note that if we write
P)\(“’b’c’d) (x) = x* pia‘b’c’d) (x) and substitute this into the Koornwinder-Macdonald
eigenvalue Eq. (3.5), we obtain

N
otV e+ Y @D AsT - 1)}
i=1
€ ==+1

(1= +o"hH
1—1¢

x py e (x; 5) =0,

after conjugating (3.4) with x~*. Noting that @lgaé’b’c’d) (x) can be expanded in series
of the variables x ™%, ¢; the By simple roots, this suggests what we call a universal
solution P@b:¢d (s x) of the Koornwinder-Macdonald eigenvalue Eq. (3.5) in the
form

P@bed (yis) =gt N D xF Vs =1, (5
BeQ+

where O denotes the positive cone of the root lattice of By . The normalizing prefactor
for P@-b-.c.d)(x: 5) is such that gt = x* t=P"h = g =P i and is invariant under
the interchange of A <> p, therefore under x <> s. Equation (3.5) for plab.ed) y. )
and generic s,

PHeD pabed (yis) = N1 e (5) P@LCD (x; ), (5.2)

is equivalent to a linear triangular, generically nonsingular, system for the coefficients

cfga’b’c’d) (s), which uniquely fixes them for all 8 € Q.. The solution P@?¢9 (x: s)
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is therefore unique, and we refer to it as the universal Koornwinder-Macdonald solu-
tion. The normalization c(()a’b’c’d) (s) uniquely fixes the solution, which is otherwise
determined up to the overall normalization given by this coefficient.

Specializing the Koornwinder parameters (a, b, ¢, d) according to Table 1, we
obtain the universal solutions P‘® (x; s) of the first g-Macdonald eigenvalue Egs.
(3.23):

DI PO (x;5) = 171 &1(s) P (x; 9). (5.3)
These universal solutions have the expansion

PO =g"" 3 fox" @@ =1 (5.4)
BeQ+(R)

with the coefficients c/(gg)(s) uniquely determined by (5.3), up to the normalization
(g)
¢y (8).

Remark 5.1 The apparent discrepancy between Q4 in (5.1) and Q4 (R) in (5.4)
is just an artifact of the specializations. For instance using the CI(VI) specialization
(a,b,c,d) = tl/z(l, -1, ql/Z, —ql/z) leads to an operator Dgc"’)(x; q,t) which has
an expansion as a series of the variables {x;y1/x;}1<i<ny—1 and x&z, as opposed to
the generic case D(la’b’c’d) (x; g, t) which has an expansion as a series of the variables
{xi+1/xi}1<i<n—1 and x;,l. This simply means that the series solution of the Mac-
donald eigenvalue equation at the specific CI(\;) specialization is an even function of

1

Xy »i.e. the coefficients of odd powers of x;,l vanish.

Remark 5.2 Specializing s = ¢*t” to A an integer partition, and using the uniqueness
of the universal solution, we recover the Koornwinder polynomial

P(a,b,c,d)(x; 5 = qktp) — P P)Ea,h,c,d)(x). (5.5)

The specialization therefore truncates the series (5.1) to finitely many terms. Special-
izing the Koornwinder parameters to the values in Table 1,

PO (x;s =g"t?) =177+ PO (), (5.6)

for A an integer partition, p = p® and p* = 089 Moreover, by uniqueness, (5.6)
holds also for A any g-partition, for example the non-integer partitions in the cases

g= Df\}), B](\}), Dﬁil. This presentation is therefore more economical, as a single
universal function P@b-c.d) (x; s) contains the information on all the g-Macdonald
polynomials as well.
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Another important specialization of the universal function P@?:¢-® (x: s) is the so-
called Koornwinder Baker-Akhiezer quasi-polynomials introduced by Chalykh [4].
The latter correspond to specializing the paramaters a, b, ¢, d, t to arbitrary negative
integer powers of g. The effect is again a truncation of the series to finitely many
terms.

5.1.2 Universal Pieri solutions

We also define the universal solution Q(“””C’d) (s; x) of the first Pieri Eq. (3.17):

Q(a’b’c’d)(s; Xx) = qx-ﬂ Z E‘(ga,b,c,d)(x)s—ﬁ’ E(()a,b,c,d)(x) -1 (5.7)
BeQ+

subject to:

é1(x) QP (s; x) = F WPV (5: g, 1) Q@PeD (s, x),
where

TP D s g, 1) = 17 I (1 g0

1 * Lk kg% L S L * Lk kg%
— —  Al@bhd )(S)—l D(la b c*.d )(s;q,t) NG )(S).

atN-1
(5.8)

The series expansion (5.7) exists because }Cga’b'c’d) (s; g, t) has a series expansion in

the variables s % . As above, the normalization E(()”’b’c’d) (x) = 1 uniquely fixes the

solution.
Specializing the parameters (a, b, ¢, d) asin Table 1, we have the universal solutions
to the first g-Pieri Eqs. (3.30):

e1(x) 0@ (s; x) = HV(s: 9, 1) 09 (s; x), (5.9)

where we haveusedthefactthatéim (x) = ej(x) forall R,andﬂtfig)(s = AtP;q,1) ;=

=" 3O (A; g, 1) 1P+, with HIP(A; g, 1) as in (3.31). The solution Q@ (s; x) is
a series of the form

09 i) =g"" Y ef s fP ) =1,
BeQl

where the sum extends over the positive root cone Q% of R*. Due to triangularity, the
coefficients of the series are uniquely determined by (5.9).
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5.2 Duality
5.2.1 Duality of universal functions

The duality of Macdonald polynomials can be extended to the universal functions as
follows.

Theorem 5.3 The functions Q@%¢D (s; x) and P@-¢4 (x: s) are related via

P(a,b,c,d) (x; S)

(a,b,c,d) . —
Q (s! x) - A(a,b,c,d)(x) k)

(5.10)

with A@b-¢-d g in (3.14).

Proof The proof is as for Theorem 2.15. The universal solution P (%<9 (x; ) also
obeys the Pieri Eq. (5.8), as a consequence of the existence of a solution to the bispectral
problem [4, 7, 45, 51], i.e. of both Koornwinder eigenvalue and Pieri equations, and
of the uniqueness of the solution up to the overall normalization determined by the
leading coefficient. Expanding the coefficients cg"b’c’d) () = Xseo, c/(;féb’c’d)s_‘s
allows to write an expansion

P@bed (g = gt 3 P @y s Gy = 3 oD P,
seQy BeQ+

Ehe Pieri equation uniquely fixes the coefficients in this expansion, up to the overall

factor é(()a’b’c’d) (x), hence P@b-c.d)(x: §) = éé”’b’c’d) (x) Q@b-c:d) (. x) as a series in

—a
s

To compute E(()a’b’c’d) (x), we note that it can be extracted as the successive limits
$] —> 00, §2 —> 00, ..., SN — 00 of P@b.c.d) (x; 5). Let us examine the m eigenvalue

Eq. (3.6), for P@hed (x; 5) = g7 (& PD (x) 4 O(A~%)). Writing

DEbed = glehedy 1 3 dy o [T

IC[1,N] eg==%1 kel
l<m kel
we have
{d,ﬁf””““(x) —Omen)+ > drem]] AR r;k}
I C[1, N]e = %1 kel

Ul <m kel

x (@700 + 0(A™)) =0,

where 6,, = amt”‘(N’mTH). Dividing by A1A3 - - - A, we find that all the terms have
a factor of the form A~ for some B € Q. and only those with 8 = 0 survive in the
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limit |A1] >> |Ap| >> -+ >> |A,;| >> 1. This leaves us with

92
<r1r2.-.rm——> et ed oy = (5.11)
dn m],(+)m m (X)

Let us compute d[q ], (), m (x). From Definition A.8, and the explicit expression of
the van Diejen operators (A.8-A.9), we easily see that the coefficient of I'| T --- Ty,
in ZDS,‘Z L¢d comes from the highest order van Diejen operator Vf,'f ’b’c’d), and more
precisely from the term s = 1, J1 = J = {1, 2, ..., m} in (A.8):

—ax;)(1 — bx;)(1 — cx;)(1 — dx;)
(1= x)(1 —gx})
1—[ I —txixj 1 —qtxix; I —1xixj tx; — x;

m (1
diim),(+ymm(X) = l_[

i=1

X

1 —xixj 1—gx; 1 —xixj xi —xj

Y
I<i<j<m J i<ism<j<N

Using

02 m (=20 - 25)
ditm), (+ym.m (X) l:[ (11— 200 — 51— 2 — 2=

_ ; 1 — 1 1 — L 1%

1—[ Xl'Xj qxin 1—[ X,‘Xj Xi

X —
[ S I S — L X

I<i<j<m 1XiXj qtxixj 1<i<m<j<N 1X; X tx;

we conclude that & (x) and A@?¢4 (x) of (3.14) both obey (5.11) for m =
1,2, ..., N, so their ratio must be a constant as it is invariant under the action of each
I';. This constant is 1, by noting that q_k‘“P(“’b’”’d) (x;8) — 1l and Aabed) 5
in the limit when all x =% — 0. The Theorem follows. O

Using the specializations of the parameters (a, b, ¢, d) as in Table 1,
Corollary 5.4 The functions Q9 (s; x) and P9 (x; s) are related via

PW(x;s)

(9) (- _ W)
0¥ (s;x) = ADG)

(5.12)

with A® as in (3.27).

It is now a simple exercise to relate the universal (a, b, ¢, d) Koornwinder-Pieri
solution to the universal solution of the (a*, b*, ¢*, d*) Koornwinder-Macdonald
eigenvalue equation. As a result we have the following duality relation between uni-
versal Pieri solutions.

Theorem 5.5 We have the following duality formulas:
QU (x;5) = QWP (53 x), (5.13)
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and their g specializations:
0% (x;5) = Q@ (s; x). (5.14)

Proof For conciseness, we omit the superscripts (a, b, ¢, d) and use the superscript * to
stand for (a*, b*, c*, d*). Starting from the equation H; (s) Q(s; x) = €1 (x) Q(s; x),
using (5.8), we have

Di(s) A*(5)Q(s; x) = otN 1 81(5) A*(5)Q(s: x).

Interchanging the variables x <> s, we find that A*(x)Q(x; s) is a solution to the
(a*, b*, c*, d*) eigenvalue equation. Moreover, using the normalization of Q(x; s)
with s and x interchanged, we have for small {x~%}: A*(x)Q(x;s) = q)"“(l +
O({x—« })). We conclude that A*(x) Q(x; s) = P*(x; s) by uniqueness of the solu-
tion. The Theorem follows from P*(x; s) = A*(x) Q*(s; x) by Theorem 5.3 applied
to (a*, b*, c*, d*). O

This can be rephrased as duality between Koornwinder-Macdonald eigenvalue uni-
versal solutions:

A(a*,b*,c*,d*)(S)P(a,b,c,d)(x; S) — A(a,b,c,d)(x) P(a*,b*,c*,d*)(s; x)’ (515)
and their specializations:
AT (5) P® (x;5) = AW (x) PO (s; x). (5.16)

Some of the above relations appear in different guises in the literature: explicitly
in the type A case [42] (see also Sect. 2.13), implicitly for the other types [7, 8]
where universal functions are obtained as x, s-symmetric reproducing kernels. We
now detail the explicit link between the universal function duality relation (5.15) and
the Koornwinder polynomial duality (3.12).

Theorem 5.6 The universal function duality relation (5.15) reduces to the Koorn-
winder polynomial duality relation (3.12) upon specializing the variables x = q“tp*
and s = gt for A, u integer partitions.

Proof Starting from the universal function pla.b.ed) (x;s), we use the specializa-
tion s = g¢’t”, leading to the Koornwinder polynomial P24 (x; g*tP) =
1P P/\(a’b’c’d) (x). Similarly, using the specialization x = ¢*#*" on the function
PrH ) (5; x) Teads to PP (5, g0y = o PN (), The
double specialization s = g*t?, x = g*t”" of (5.15) results in

(PN (@) PP D ity

= 1 PHpAbed) (gupTy plat b dT) (g (5.17)
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The relation (3.12) follows from the following identity:

Ala* " e d*)( )Ltp) P(d b* ¢t d* )(tp)

,pkpu

Ala,b,c d)(qut,o ) P}Ea,b,c,d) (tp ) (5.18)

itself a consequence of (3.15), and of the identity A@ . d) 4oy — Alabied) 1oty
The Theorem follows. O

Similarly, under the suitable specialization, the g-Macdonald duality relation (5.16)

reduces to the Macdonald polynomial duality (3.26) for x = ¢*t*" and s = ¢*1”,
where A is any g-partition, and pu any g*-partition.

5.2.2 Duality of universal solutions in the g-Whittaker limit

Universal solutions of the g-Macdonald eigenvector and g-Pieri equations simplify
drastically in the t — oo limit. They read:

9 x; A) = lim PO APy =2t (g)(A)x . (5.19)
—00
BeQ+(R)

and

K®(A; x) = lim WAy =t Y P AP (5.20)
—00
BeQ+(R*)

with c(g)(A) = c(g) (x) = 1. Note that the limit # — oo has broken the previous
symmetry x <> s, as the s variable itself contained a 7-dependent factor. However,
Corollary 5.4 of the previous section turns into the following.

Theorem 5.7 The universal solutions TI'® (x; A) and K@ (A; x) are related via:

H(g)(x; A) = A(B)(x) K(g)(A;x), A(G)(x)
= lim AP = J] a—-x. (5.21)

@eR 41 (g)

The eigenvalue and Pieri equations are:

D) NP (x; A) = A% I (x; A), (5.22)
H® (A K@ (A; x) = 6B () KO(A; x). (5.23)

Both equations for a, m = 1 turn into simple triangular recursion relations for the
coefficients c(g) (A) and c(g)(x) respectively.
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5.3 Fourier transform and proof of the Macdonald- Q-system conjecture

Like in the case of type A, we may reformulate the Fourier transform (1.3) in the
g-Whittaker limit in terms of universal solutions via:

fOIP0A) =FM)TP0A) & FOKPAx) =F(A)KP(A;x).

The main result of Sect. 4 is the relation (4.23) which expresses the fact that Dflf’,)l (A)

is the Fourier transform of DS r)l (x). In terms of the universal Pieri solution, we expect:
D) K@ (A; x) = D@ (A) K (A; x).

As a consequence any relation satisfied by the D’s is satisfied by the D’s in the
opposite direction, thus proving the Macdonald Q-system conjecture. The proof of
these identities is identical to that in Sect. 4, and relies on the Fourier duality between
2@ (A) and y @ (x), whose adjoint action respectively generates the discrete time
translation in the A and x pictures:

y @) KD (A; x) =g @ (A) KD (A; x).

The proofs rely on a uniqueness argument which can be rephrased as follows. The
universal Pieri solution K@ (A; x) (5.20) is fixed by the Pieri Eq. (5.23) form =1,
up to an overall multiplicative function independent of A, and fixed by the leading
term normalization E(()g)(x) = 1. Any other series solution of this Pieri equation is
therefore proportional to K'® (A; x), by a factor independent of A.

As we saw in Sect. 4.3.3, the case of odd times a = N for g = BI(VI) required the
use of Rains operators, and the mapping to a companion theory B,(\})/ with its own
q-Whittaker polynomials and quantum Q-system. Let us rephrase the action of Rains
operators at finite ¢ (3.8) in the BI(\}) specialization (a, b, c,d) = (¢, —1, q%, —q%)
of Table 1 in terms of universal Macdonald functions. Let us denote for short
P(x;s) = P(Bl(vl))(x; s)and P'(x;s) = P&y )(x; 5) the respective universal Mac-
donald solutions. As both BI(\}), Bl(vl)/ share the same §5 = &5 = %, le.o=0d =12
and R(g) = R(g)) while 17 = (N=i+1 and 1) = q%tN_iJ“l, we may rewrite (3.8)
as:

Ry V@) PO = F@) Plx;s), RV Plxss) = F/(s) Pxs 9),

with

N N
Fis)y=]]a 4 Y, Fl(s) = (NN 1o L,
i=1

i=1
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where we have used the same notations as in the proof of Lemma A.10, with u =
1 . 2

ab/o = —t7, and taken into account the product formula gl = r=N°/2 ]_[fv:1 Si.

Taking the limit + — oo results in:

. 1
RO M(x; A) = AZ9N <1 + —> M (x: A),
AN

RV I (x; A) = AZ9 T(x; A),

with w}, the fundamental Cy-weight. The steps of the proof can then be repeated
identically, in particular establishing that y (x) " (x; A) = g'(A) IT'(x; A), and then
D! T'(x;A) = D TI'(x;A) foralla € [1,N]and n € Z, as well as finally

Dy TH(x; A) = Dy TI(x; A), from which the main Theorems follow.

6 Discussion

6.1 Companion quantum Q systems

Part of the proof of our main theorem, concerning the short label in type Bz(\})
(Sect. 4.3.3), revealed that acting with the Rains operators (3.8) and their 7 -translates

on the g-Whittaker functions gives rise to a companion system B](vl) " 4.20 to the Bl(vl)

quantum Q-system. This new system has the same classical (g — 1) limit as the BZ(\J)
quantum Q-system but corresponds to a different specialization of the Koornwinder
parameters (a, b, c, d), and has different Pieri operators and time translation operator
(4.30).

One can obtain two further companion systems using the Rains operators, illustrated
in Figure 6.1, from the theories at specialization parameters corresponding to g =
A;zl\),f], A;zl\), These also have the same classical limit as the respective quantum Q-

systems, and may be considered as alternative quantizations. In type Ag%\),, which is not

a cluster algebra mutation in the first place, the companion system is, in some sense,
simpler and more natural from the quantization point of view, and appears to be the
one related to the graded tensor product character formulas of KR-modules [37].
Using the definition of the Rains operators (3.7), together with the properties (3.8) of
Sect. 3.1.3, from with the specializations of Table 1, one obtains from the g-Macdonald

polynomials P)fg) (x) companion polynomials P)fg/) (x), using three different special-

TR
izations of the Rains operators, fRE\(,)) = ng\l,’*l), IRE\I,) = fRs\t,‘*l) and fR%) = ngf,z —t2),
In the cases g = DS), Dﬁil, C](Vl), the Rains operators leave the g-Macdonald poly-
nomials invariant up to some scalar, so that g’ = g. In those cases, the Rains operator
is itself a Koornwinder-Macdonald operator, as shown in Lemma A.13. Only the spe-

cializations g = Bl(vl), Ag\),fl and Agz}\)/ are mapped to new companion theories g’ # g.
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B](\}) (t’il’q%’iq%) A(2%\)7 (t7717t%q%37t%q%)
iRg\}) (\ ERE\?) :RS\}) (\ 13253)
Bg\})/ (17717“]%77(]%) Agl\)/'/ (tvilat%q%aft%q%)
A§21371 (t%7_t%7q%7_q%> Rg\?)c Dg\}) (17_17q%7_q%)

Fig. 1 The nine families of Koornwinder-Macdonald operators/polynomials. We have indicated the Rains
operators that intertwine the various theories, and the specializations of the Koornwinder parameters
(a,b,c,d)

In the g-Whittaker limit, the Rains operators tend to Rf\(,)), Rf\}) of (3.49-3.50) and
to

2¢;
Xi

1 1 N
@ _ o i~ (N pt2,—12) _
Ry’ = lim ¢ Q)xy, = > Il=

€lyen=%1i=1 %

€ € N

I I Xi X l_l Fff/Z

-1 xS —1 b
I<i<j<N "i 7] i=1

These map the g-Whittaker polynomials [T, = l'[gg) to a multiple of the monic

companions I, = H;g/) = lim;_ P)fg/). More precisely (c.f. (4.28) for B,(\})), 3.8)
implies the following mapping of polynomials:

2 0 1 2 1
AGu - RY o= (Arha - Aw)? (14 25 ) TLRY T, = (ArAz-+ Aw)P T,
AR RP T, = (A Ay - Ay)2TIL, RV = (A1 Ay Ay)2TI,.

’ ’
For the new companion cases Ag\),_l, Ag\), , we define companion Koornwinder-

Macdonald operators by specializing Definition A.8 for m = 1,2, ..., N at the
appropriate values of the parameters as in Figure 6.1. Their ¢g-Whittaker limits are

denoted by D), = D,(ng/), and their 7 -translates are defined for all @ € [1, N] and
n € 7 as follows:

2)’ — — .
ANt Dy =47 "y " Dl vy (i ==1,0)
Aézl\)]/ : D;yn — q—na/z y—n D; yn’
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where D;;l is defined as in (3.42) with the suitable function ¢i(i/) (x). Note that all

labels of Aézl\),/_l are short and all labels of AS\),/ are long, which is the reverse of the
case for the un-primed theories. Using the methods of this paper, it can be shown
that these new operators obey new quantum Q-systems, with the same g-commutation
relations and recursion relations as their non-primed companions, except for the label
N, where

2)’ _
A;]\)I_l :qN ON.2n+2 ONon = Q%\I’QJH_] —q 2n Q%V—1,2n+1’
g ON 2041 ON2n—1 = (ON.20 — 4 " ON=122)(ON20 + ¢ " ON120),
2)’ _n
A(zj\)/ 161N ONn+1 ONn—1 = Q%V,n —q 20NnON-11-

for all n € Z. To derive these results, we first define the candidate Fourier transforms
D;; , Vvia the opposite quantum Q-systems and same initial data as the non-primed
companions (that is, the same values of w,, ®}), and compute the time translation
operators:

AR ¢ =graa ! gT8A !
2N—1 - _ — — )
AV ¢Ho (AN Do (=g AN D)oo
, 1
2
Ay g =erean ———,
(AN Qoo

which commute, respectively, with the two Pieri operators or Toda Hamiltonians

N
AL O =1 32 () 3 (T ()T
i=2 =1

=
L

=

RS L e

AN
1

N
2)’ ,
Afv s W) =T+ ) (15

i=2 i

obtained from the g-Whittaker limit of the specialized operators of Theorem (B.1).

After proving that g'ITy, = y"'IT} (t; = 2 for Aézl\),,_l .t = 1 for Agzj\),/), one concludes

that D, IT) = D, TT; and the quantum Q-system relations for Dg;, follow.
Finally, matching the specialization of the formula (3.14) for A@) with the form

of the product over affine roots (3.27), we make the following identification of affine
roots corresponding to g’

! o~
Bl(vl) S :{(n—%)a+el-: 1<i<N, nzl}u{n5+(ei:t6j): 1<i<j<N.nx1}
’ o~
Ag\)/—l D Ryy ={@n—1)8+2¢;: 1<i<N, n=1}u{nd+(ejxe;): 1<i<j<N, n>1}
A(Z%\)l . R++ ={(n—%)5+ei,2n6+2e,-,: 1<i<N, nzl}u{n5+(ei:|:e]-): I<i<j<N, nzl}‘
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6.2 Universal solutions and Path models

In Section 5, we introduced universal solutions P (x; s) and Q(s; x) for the various
eigenvalue equations and Pieri rules, by solving an infinite triangular linear system of
equations for the expansion coefficients in each case. Remarkably, the solutions can all
be put in the form of path models, such as that for the ¢g-Whittaker vectors in the A%l]
case [20], see also [27]. As shown in Example 2.16, this results in an interpretation of
the solution of the triangular system as a partition function for weighted paths on the
relevant positive root cone Q or Q% .

Letus start with the case of Q(s; x) = g** ZﬂeQi cp(x) s7P,&0(x) = 1, the series
solution of the Pieri equation Hj (s) Q(s; x) = €1(x) Q(s; x) (either the Koornwinder
or g-Macdonald Pieri rule). The important fact is that 3{; (s) is a g-difference operator
in the variable s of the form H;(s) = Y, D e—0.+1 i e($)TS, where the coeffi-
cients h; . are rational functions of the variables {s —of }, with of the simple roots of
R*.Factoring out the common denominator in the coefficients, ; < (s) = pi ¢(s)/q(s)
with p; «(s) and g (s) some polynomials in {s""? }, the Pieri equation is equivalent to

(él x)q(s) — ZlNzl D041 p,-,e(s)xfo> g~ " Q(s; x) = 0. The difference oper-

ator can be written as Y"1 | "o 1 Yy ey hie.a(x)sTTE for some x-dependent
coefficients h; ¢ o (x), where « is summed over a finite subset U* of Q*+. Noting that
Tf sTh = q‘“"‘ﬂs"3 and that s~% s 8 = s=@+8) and collecting the coefficient of
s7# in the Pieri equation, we obtain

N
DD D hica)g TP g (x) =0,

i=1 €=0,+1 acU*

or equivalently

D hico@)g P | egx) ==Y D hical)g e, (x).
i€

ie acU*\{0}

The factor on the left hand side is non-vanishing for generic x and is therefore invert-
ible. The path model interpretation goes as follows. Given the initial data ¢co(x) = 1,
the coefficient ¢g(x) is the partition function of paths from 0 to g in Q7 , consisting
of steps in the finite subset U* \ {0}. Each path has a weight equal to the product of
vertex and edge weights along the path, defined respectively as

-1

wy = [ Y hicog |, wo=1,

i€

Wpap = Y i calr)g~

i€
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forany ¢ € Q% ,a € U*\ {0}. The weight of a path p is a product over its vertex and
edge sets v(p), e(p):

wp)= [[ wex J]  we-ap

pev(p) (p—a,p)ee(p)

and the coefficient cg(x) is the partition function of all such paths

=Y. wp),

paths p in Q%
from 0—

A similar argument leads to a formulation of the Macdonald eigenvalue equation
universal solution P (x; s) in terms of a path model on Q.

The path model for the Pieri solution simplifies drastically in the g-Whittaker limit
as the Hamiltonians are directly polynomials of the AT, giving rise to a small set
of steps U* \ {0}. For instance, by inspection of (3.38-3.39), we find that for all g,

=Y Y X (1 =g Pey.

Example 6.1 In the case g = Af), the g-Whittaker limit of the Pieri equation is

W+ (1- Az (T +T7H+(1— 1 y Pl 1 — i 4x o +Egh
Al 1 n )2 s 1 2
1 m
xxl x2 Z C"m(x)<A1) (A—z) =0
n,m=>0
expressed in terms of the variables A™% = ﬁ—?, AT = Al , o; the simple roots of

B,, and with the normalization ¢g o(x) = 1. The is equivalent to the recursion relation

"*l(q*mxz+x;1)an L () + (" "y 4 D1 ()
2@ =D +x @ = D+ x@ " =D+ @ —1)

En,m (x) =

which has the form ¢, (X) = @, mCn—1,m(x) + bp mCn,m—1(x), the solution is

5n,m(x) = Z 1_[ Wy ,

paths p:(0,0)— (n,m) stepss€p
where the is sum over all the paths on Zi with steps (1, 0) and (0, 1), from the origin

to (n, m), of the product of step weights wy; where wy, = a; ; for a horizontal step
(i —1,j) — (i, j) and wy = b; ; for a vertical step (i, j — 1) — (i, j).

6.3 Universal solutions and g-Whittaker functions

We have used the terminology g-Whittaker functions for the + — oo limits of
Koornwinder-Macdonald polynomials. Strictly speaking, Hig)(x) is a class-1 g-
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Whittaker function for the quantum universal enveloping algebra of a simple Lie
algebra only in the cases where the Pieri operators are known to be g-deformed
quantum Toda Hamiltonians. These correspond to quantum Q-system of types
Axl], Df\}), D/(\%jr] R Agz\)/fl’ whose conserved quantities are the relativistic Toda
Hamiltonians associated with U, (R) with R = Ay_1, Dy, By and Cy, respectively
(see Remark 3.10). By analogy, we call all the eigenfunctions Hig)(x) g-Whittaker
functions for all g in this paper. These share a number of properties.

In the g-Whittaker limit, the universal series solutions of the g-Macdonald eigen-
value equations and the Pieri Equations (5.19-5.20) of Sect. 5, when specialized to
A a g-partition, reduce respectively to the analogues of class-1 ¢g-Whittaker functions
Hgg)(x) = M@ (x; ¢*), and the analogues of fundamental g-Whittaker functions
\D)(Lg)(x) = K@ (x; ¢*). The former is a Weyl-symmetric polynomial in x, whereas
the latter is a non-symmetric series solution of the relativistic Toda equation with pre-
scribed leading term. It is associated with the highest weight Verma module V,,, where
w is obtained from the variable x = g”*#. In the theory of Whittaker functions, the
fundamental Whittaker function is convergent only in a particular Weyl chamber. The
class-1 function is a linear combination of fundamental Whittaker functions, regular
in all the Weyl chambers. It is obtained via a symmetrization over the Weyl group
action on the fundamental solutions with suitable coefficients.

A subtlety arises in the study of convergence of the above series. In the definition
of A®(x) as an infinite product, it is assumed that |¢| < 1 for convergence. On the
other hand, the series K(g)(qk; Xx) or ‘-I-fig)(x) is well-behaved for |g| > 1. Obviously

Hf\g)(x), being a polynomial, makes sense for both |¢| > 1 and |g| < 1. Note that the
infinite product

1

A® — =
Hn:O HaeR+(1 —q7"x7%)

is another solution of (2.39), convergent for lg| > 1 instead of |g] < 1. (To see
this, note that conjugating I''™! with A(® (x) or A® (x) yields the same result.). The

remarkable fact is that as a convergent series for |g| > 1, A®(x) \Il)(\g) (x) is not

equal to the polynomial class-1 g-Whittaker function H;g)(x). We conjecture’ that
for general g it requires a symmetrization over the Weyl group, valid for |g| > 1:

M) = > A wx) v (wx). 6.1)
weW

We end up with two characterizations of K(A; x): (1) as a series with |g| < 1 in
the variables A™%, equal to 1@ (x; A) / AW (x) (by Theorem 5.7) and (2) as a series
with |¢g| > 1 equal to lllig)(x) when A is a g-partition. The polynomials H;g)(x) are
expressed in terms of both, but with very different formulas for |¢| < 1 and |g| > 1.

7 Such a symmetrization formula exists relating classical fundamental and class-1 Whittaker functions.
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Example 6.2 Let us illustrate the above in the simplest case of Agl). Denoting by
u=x3/x1,v=»7/Aq,

n—1

1 —vqg’
puv) = a; My P T A) = Z ]"[l_q,l,

o qn u”
k(v u) i=x; "y 2 K(A: x) =Z”" [T/, (1 —g)(d —ug’)’
T

With A(u) = (qu; q)oo and A(u) = 1/(u; ¢~ eo,

p;v) = Awksuw) (gl < ),
My () = X7 25% AW k(@™ M50 + 2572 A k(@507 (gl > 1,

=211 p(u: g7 (Iq] < D),
where the second and third lines hold for any integers A > A, > 0.

6.4 Summary/Perspectives

We have proved the Macdonald-quantum Q-system conjectures, which state that suit-
ably defined, 74 -translated g-Macdonald difference operators, in the ¢g-Whittaker limit,
obey the g-type quantum Q-system relations, and may as such be considered as cluster
variables in a suitable quantum cluster algebra in all cases except A(z) The proofs
cover the cases g = A%ll, D(l) B(l) C(l) gz}\)] 1> A;zl\),, DS)H, and rely strongly
on the duality between the Koornwmder/Macdonald eigenvalue equations and the
associated Pieri rules.

We have proved that the conserved quantities of the g-quantum Q-systems are the
g-Pieri operators in the g-Whittaker limit, which in a number of cases can themselves
be identified with known g-difference Toda Hamiltonians. Our construction provides
explicit expressions for all (higher) Hamiltonians as well. It would be interesting
to explore the combinatorial content of these, possibly in the language of cluster
integrable systems [26].

We have constructed time-translation operators g(A) for all g that commute with
the corresponding g-difference Toda Hamiltonians. More generally, in the spirit of
[46], it would be desirable to construct commuting Baxter Q-operators Q (u; A) that
coincide with g(A)~! at u = 1, but are in general quantum-dilogarithmic generating
functions for the Hamiltonians. In all cases but Ag\),, such a construction should exist
in terms of mutations of the corresponding quantum cluster algebra.

As another by-product of our proofs, we have unearthed a remarkable structure
involving three more companion theories Bj(vl) Ag]\)] | and Ag\),/ and their associ-
ated quantum Q-systems. It would be interesting to further investigate their quantum
Laurent property, as well as their combinatorial content, in particular the meaning of
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the associated fermionic sums which in the known cases provide g-multiplicities of
decompositions of KR modules onto irreducibles (see [11, 15]).

The quantum Q-system arises only in the g-Whittaker limit of Macdonald-
Koornwinder theory, but it is natural to consider the extension of some of our results to
finite ¢. The time-shifted Macdonald operators D;?i (x; g, t) by iterated conjugation

by y (x) were considered in [18] in type A%)_l, and are generators of the spherical
DAHA or, in the limit N — oo, the quantum toroidal algebra of gl; or the elliptic
Hall algebra. In the Koornwinder case, we again have elements of the corresponding
spherical DAHA but the limit N — oo is still to be understood.

Moreover, in type A%)_l a t-deformed analogue of the time translation operator
g(A) was defined in [36] (see Proposition 4.2), and conjectured to act diagonally on the
so-called Non-stationary Ruijsenaars function, introduced in [48] as the (conjectural)
universal series solution to the elliptic Ruijsenaars operator eigenvalue equation, also
related to the geometry of affine Laumon spaces. We expect this operator to play the
same role for the finite r Macdonald case as g (A) for the g-Whittaker limitr — oo, i.e.
to be the (Macdonald) Fourier transform of the Gaussian for finite . We believe there
should exist a cluster algebra formulation of this operator. It would also be extremely
interesting to investigate this operator for the general Koornwinder theory.
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Appendix A: Derivation of the g-Macdonald operators

We combine several constructions [40, 43, 50] of commuting difference operators cor-
responding to the affine algebras in Table 1. The goal is to construct an appropriate set
of N commuting operators for each g, with eigenvalues proportional to the symmetric
functions in Table 2, which form a basis for the space spanned by the irreducible
fundamental characters of the Lie algebras R. This choice of g-Macdonald difference
operators is designed such that their g-Whittaker limits satisfy the type g quantum
Q-systems.

A.1 Macdonald’s operators
For each affine algebra g in Table 1, except for the case of Agj , and for each minuscule
co-weight of §, Macdonald defines a difference operator with eigenvalue which is a
fundamental character of R* [40].

Let {e;}1<i<n be the standard basis of RY with the standard inner product (-, -). For
the set of variables x = (x1, ..., xn), we denote xV = xf' . ~xK,N foranyv =), vie;.
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Table 4 Positive roots and fundamental weights of the finite dimensional algebras of types BCD

Algebra Positive roots R4 fundamental weights @,
i
By ei, i € [1,N]; wp =Y e i €[l,N—1J;
k=1
1 N
eitej, 1<i<j<N wN:EZek
k=1
i
CN ejtej, 1<i<j<N; wj =Y e i€ll,N]
k=1
2e;, i €[1,N]
i
Dy ejtej, 1<i<j<N wj =Y e i€ll,N=-2]
k=1
N

1
oN =3 D ek, o1 =oy —ey
k=1

There is a surjective map » : R — S, o = oy = «/uy € S, for some real uy. In
the case where R # S, uy = (“’2—“), so that u, = 1 in all cases but for the short roots of

type By or the long roots of type Cy, in which case it is equal to % or 2, respectively.
Letw =) me;, and define8

) 1 —1x® s
aERL i
(7, 0)=1

For each minuscule weight 7 of SV = {2(a“a), o € S}, i.e. a weight such that

(m, ay) € {0, £1} for all @ € R, there is a Macdonald difference operator £, which
acts on functions f(x) by the symmetrization

Exf =) w(®alnf). (A2)

weW

We list below the explicit formulas for each case treated in [40]. The construction
refers to the positive roots and fundamental weights for the simple Lie groups of types
BCD in Table 4.

8 We choose Macdonald’s parameters 7, = ¢ for all «, independently of the length «. This allows us to
obtain the dual g-Whittaker limit by simply taking t — oco.

) Birkhauser



23 Page 74 of 100 P. Di Francesco, R. Kedem

A.1.1 Macdonald operators for D,(V”

Here, R = S is the root system of type Dy. There are three minuscule weights:
w1 = e1, ony—1 and wy. Equation (A.1) becomes

N
1—[ I —tx1xj tx; —xj ® l—[ I —1xix; l—[ tx; —xN
- l—x1x; xj—x; VU7 1 —xix; X —X
j=2 1A A=Ay l<i<j<N-1 irjoop M N
1 —tx;x;
1_[ j
q)wN = - -
L1 —xix;j
1<i<j<N

The Weyl group of Dy acts on the set (x1, x2, ..., xy) by permutations of the indices
and inversions of an even number of variables. The three Macdonald operators are

D( >) Z Zl_[ — txf i X tx x'jl"f, (A3)

—_ x X S — X
e=x1i=1 j#i J 7
) 1—tx'x}
Dy F
Eony | = E | | 1 , | |F (A4)
€l,.ney==%1 I<i<j<N * / i=1
€16 ey=—1
pW) 1 - tx

e’ = 1 T ]_[r (A.5)

€],...ey=F1 1<i<j<N
€rer-en=1

(1) (1))

These will be identified below as D i) (x;q,1) = 8 witha=1,N —1, N.

A.1.2 Macdonald operator for B/(\P

Here, R = S is the root system of By There is a unique minuscule weight of S = Cy,
T = e] = wi, With

N
1—1tx; 1—[ I —txyxjtx; —x
1—X1x]' xl—xj'

The Weyl group W =~ Sy X Z; is generated by all permutations and inversions of the
variables in the set x = (x1, x2, ..., x5 ), so the corresponding difference operator is

B(>) Z Z l_[l—txfx.j tx )c,r6

1 —xfx; xf —x;
e=+1i=1 J#i UM J

BY) BY)
This will be identified as D (x q,1) =EuN .
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A.1.3 Macdonald operator for g = C,f,”

Here, R = S is the root system of type Cy. There is a unique minuscule weight of
SV = By, T = %Z;V:I e; = wy, with

e =

: 1 —xix
i=1 i 1<i<j<N et

The Weyl group is is the same as for type By, resulting in the difference operator

. €
) 1—txfix? N g
(Cy) Z 1—[ 1—[ i 1—[ +
loen=tlizt 1 =X l<i<j<N "~ Xj =1

" )
This will be identified as D Noxs g, 1) = EgyY

A.1.4 Macdonald operator for g = AS,) ]

Here, (R, S) = (Cn, By). Themap * : R — Sis givenby (¢; £e;)x = ¢; £ ¢, and
(2¢;)+« = e;. There is a unique minuscule weight of S¥ = Cy, 7 = ¢ = wy, and

_l—txll—ll—txlxjtxl—x]
1 —xj i I —xixj x1—xj

Summing over the Weyl group of type Cy,

(A ) I —itxfxjtx; —x
ZNI_ZZ Hl_xlex_xjjre

e=+1i=1 i

(ASy_D (ASy ’
This will be identified as D, ¥ " (x; g, 1) = €4,

Remark A.1 The algebra A; N1 1s obtained from Ag 1\), | by a folding procedure using
the natural Z, automorphism. Remarkably, this extends to the difference operators
as follows. Consider the specialization T of x = (x, X2, ..., Xo) obtained by setting

XON41—i = x;l,i = 1,2, ..., N, and accordingly 'y 41—; = Flfl. We have
AW 4@
‘L'(Di 2Nfl)(x; q, t)) = D( N 1)()c, q,t).

However, the Agll\), ,-Macdonald polynomials specialized via T have a non-trivial

decomposition onto the basis of A2 ~_1-Macdonald polynomials.
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(2

A.1.5 Macdonald operator for g = Dy |,

Here, (R, S) = (By,Cy). The map * : R — S is given by (¢; £ ¢;)s = ¢; L ¢;,
and (e;)x = 2e;. There is a unique minuscule weight 7 = % ZIN=1 e; = wy of type
SV = By, so that

ﬁl—tx, I —1xix;

1 Xi l—x,-xj'

i=1 1<i<j<N

Summing over the Weyl group of type Cy gives

1 —txfixS N
i 7j € /2
— L Tre2 A
1_[ 1 _ xiEt x;l ll] !

€1,...ey=%1i=1 i I<i<j<N

2
(DY)
wWN

e

(DY) (DY)
This will be identified as D, """ (x; g, 1) = €, .

A.2 Higher order Koornwinder-Macdonald operators

For generic parameters (a, b, c,d, q,t), Koornwinder defined the first order g-
difference operator whose eigenfunctions are the Koornwinder polynomials, invariant
under the Weyl group of type C. Consequently, van Diejen [50] defined a commuting
family of higher order difference operators with the same eigenfunctions. We recall
this construction in A.2.1. Using the spectrum of these operators, we construct in
A.2.2 linear combinations of these, such that their eigenvalues are proportional to
elementary symmetric functions ¢, (s). We add to this certain higher order operators
due to Rains [43]. Upon specialization of the parameters (a,b,c,d), we combine this in
Sect. A.2.4, with Macdonald’s construction of Sect. A.1.

A.2.1 van Diejen’s higher order Koornwinder difference operators
Definition A.2 The van Diejen operator of order m € [1, N]is

m
yabed = N N !

JCILNL [J=m s=1
cj=%l1VjelJ

N
(a,b,c,d) €;
X Z 1_[ Ve I\ 1: K, H ry—=1], (A%
PCI G Cly=J r=1 jed

where Jo = 0, K, = [1, N]\ J; and

y@bed) l—[(l—axfi)(l—bxfi)(l—cxfi)(l—dxfi)
{x}.{e}; J; K ot (1 _ xiZe,-)(l _ qxiki)
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€ €j € €j € €
I—oxi'x; 1 —qtx;'x; 1 —tx; xjtx;" —x;
) 1_[ 1—xfxS 1 —gxfix? 1_[ 1 —xix; xf P
i<j it qx; xi
i,jeJ jek

(A.9)

where J, K C [1, N] are such that J N K = (.

When m = 1, the van Diejen operator is the Koornwinder operators of Eq. (3.2).

Example A.3 Define

(1 —ax)(1 —bx)(1 —cx)(1 —dx)

(a,b,c,d) _
AT = (1= x2)(1 — gx2)

(A.10)

Then
2 _ _
Vga,b,c,d) _ Z 1—[ b, Cd)(xq) 1—[ 1—1x] xk tx Xk
1<i; <iy<N t=1 k#u,tz x B x M
€1,6==%1
1— txe1 -62 1— thél 2
X, €] €2
N1 e T —qxxe T Ty, =1
x;! X, qx;,
€1, -
_1 — 1X; X, txi] Xiy T 1
1-— x.qx,- )c.€l —x, N
2 2
1—tx S iy tx =Xy .
— T2 =D,
1 —x; Xy x —x;; 2

where the sum over s in (A.8) decomposes into three terms, with s = 1, J1 = J =
lin,iohs =2, 1 ={i1}, h=J ={i1,i2}and s = 2, J; = {ia}, o = J = {iy, i2}.

The operators (A.8) form a commuting family of difference operators with common
eigenfunctions being the Koornwinder polynomials. We give a description of their

eigenvalues. Leto = |/ %. Recall the elementary and complete symmetric functions
er(x) = sk (x) and hg(x) = sy (x).

Definition A.4 For arbitrary Ay, ..., Ay, and k, m € [1, N], we define the collections
of variables
u® = {ot* ) 1<i.
= {s; + 57 =iz,

W) 1= {atN_i + U_lt_(N_i)}mSiSNa

with s; = otV ~g* as usual, and the functions

m+1

2 8 (u), (A.11)

4 = o -
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o = 0" "N 8, (s), (A.12)
m

fram = 0" "N S 1) 6 ) By (wim)- (A.13)
j=0

The spectral theorem for van Diejen operators is

Theorem A.5 [50] The (monic) symmetric Koornwinder polynomials P)fa’b’c’d) (x) sat-

isfy
yabed plabed vy = g, POPOD ). (A.14)
A.2.2 Koornwinder-Macdonald operators

Using the spectral theorem A.14, we can construct linear combinations of van Diejen’s
operators with eigenvalues equal to dj.,,. To do this we prove two combinatorial
lemmas about symmetric functions. Given a set of variables x = {xi, ..., xn}, we
define associated set x = {x; + xi_l,i € [1,N]}, and if B < N, define xAl =
{x1, ., xp} and 8 = {x; + x;, i € [1, B1}. In particular, x°! = ¢,

LemmaA.6 Forallr > 0andn > 1,

r

Or () ==Y (=D, @ D"~ =5, . (A.15)
=0

Proof When r = 0 the sum is trivially equal to 1. We consider r > 0. We define two
types of integer configurations. A fermionic configurationon {1, ..., p} with j particles,
denoted by F, is a set of j distinct integers in the set [1, p]. A bosonic configuration
on {1, ..., p'} with j particles, denoted by B, is a sequence of j’ integers in [1, p]
which are not necessarily distinct. We assign a weight wr = [[; .y u; to a fermionic
configuration, and a weight wg = [[;.5(—u;) to a bosonic configuration. Moreover,
to the pair (F, B), we assign a weight wr p = wrwp. The partition function of j
fermions on [1, p] is e;(u!P!), and the partition function of j’ bosons on [1, p'] is
hj/(—u[p/]) = (—l)j/hj/(u[l’/]).
We define the following set of pairs of fermionic and bosonic configurations:

Snr={(F, B)|tp:==max(F) <n — |B|,tp:=max(B) <n — [B|+ L, |F| +|B|=r}

where | X| is the cardinality of the set X, and if | X| = 0 we define max(X) = 0. The
identity (A.15) is an identity for the partition function:

Zyy = Z WF,B = 5}',0-
(F,B)eS, ,

To prove this, for any » > 1 we construct a fixed point-free involution @ on the
set 8., such that ®(wrwp) = —wrwp. If such an involution exists, the partition
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F—'—~—'—o—o—o—r F —o——e—2o—o—
B—§:o—8::§— B—o—8—o—§—o—L

0]
F’ FFf——e—+—0o o+ +
B’—§ —o—8—++ 8 B’—o—8—o—§—o—o—o—
12 3 4 5 6 7 12 3 4 5 6 7
(a) (b)

Fig. 2 An illustration of the involution ®. Case (a) has tr = 6 < tp = 7, hence we move the topmost
rightmost bosonic particle to a fermionic particle at position I/F =tp.Case (b)hastyp =6 > tp =5,
hence we move the fermionic particle to a bosonic one at position fgr =t

function for any » > 0 vanishes:

1
Z WF.B) =5 Z (w(r,B) + wor,p) =0.
(F,B)€Sy., (F,B)ESn.r

The involution @ is illustrated in Figure 2 in the language of particles, namely by
considering F, B as the sets of integer coordinates of particles along the integer line:
e.g. in the case of Fig. 2(a) we have F = {2,4,5,6}and B = {1,1,1,3,4,4,7,7,7}.
Let (F,B) € &,,. The map @ acts by moving one particle between F and B,
thus preserving |F| 4+ |B| = r and reversing the sign of the weight. It is defined
as ®(F, B) = (F', B'), where
(a) If tg > tF: F' = F Utp, B = B\ tp. Since |B/| = |B|l—1,tpr =t <
n—|Bl+1=n—|B|andtg <tg<n—|B|+1=n—|B'|<n—|B'|+1.
Therefore, (F', B') € 8,.r, while wg g = —wp p.

(b) Iftg <tp: F/=F\tpand B = BUtp.Thentp <tp—1<n—|B|—1=
n—|B'|and tgr = tr < n—|B| =n—|B'|+ 1, so that (F/, B’) € 8, and

Wp Bt = —WF B.
The map @ is clearly an involution. When » > 0, ® has no fixed points, since one can
always move a particle. The Lemma follows. O

Lemma A.7 There is an identity on symmetric functions:

m J
n() =Y em ;OGN (=D, kO GFN . (Al6)
j=0 k=0
Proof We rewrite (A.16) using the generating function E (z; x) of (3.1) as
m
E@z )l =Y E@ YN ) ey F(z 5, 3T, (A.17)

j=0
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where f(z)|;» is the coefficient of z" in the series expansion of f(z) around 0, and

B N ~

- - - i—1 1+ 2%

E@yPh=T]0+5iz+2), F@iiP)= —H’ﬂ‘l —.
i=1 [Tio 1 +23i

One can further decompose

N—j N—j
[Ta+i+=a+2VTEG 9= 3 Fa+H" T aghh,
i=1 k=0

and

N N
1+ zx) 5 TN
Ql ]lfl 2 =[]a+z%8) ) (=D h NI+,
[li= " A+z3) o =0

The right hand side of (A.17) is therefore

N

DD A+ [T+ 28 e (D e G 1Y)

j=0 k.¢ i=1

m m—k N
=Y Y D a+DNIH L]0+ E e (=D e G T GV ),
r=0 kt>0 j=t i=1
k+t=r

mm-—r

=Y A+ ,]‘[(1+zx,)|z,

r=0;=0
x Z( D', NN GV, (A.18)
where we changed variables k — r — £ and j +— j — £. Finally, using Lemma A.6

for the collection u = y and n = N — j, the expression above drastically simplifies
into

m N N
S+ NI TTa+ 280l =[]0+ 28 + 25| 0 = én ),
j=0 i=1 i=1
which implies (A.17). O

Definition A.8 We define the Koornwinder-Macdonald difference operators as

m
D@bed vy = Zdj(.N""*’) vfj'_bf'd), (m=1,2,...N),
j=0
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in terms of the van Diejen operators of Sect.A.2.1, with djk) asin (A.11).

Theorem A.9 The Koornwinder-Macdonald polynomials are common eigenfunctions
of Dy, with eigenvalue d,.,, defined in (A.12):

D@D (3 g, 1) PO () = dyyyu PP (). (A.19)

Proof Equation (A.19) follows from Theorem A.5 and the relation

m

dom =Y dS" D frin . (A.20)
j=0

Equation (A.20) is obtained by specializing Lemma A.7 to the variables x; =
otV g% and y; = otV 7!, and noting that the prefactors in (A.12-A.13) amount

m(N—

+1 . .
to an overall factor of o't “37) on both sides of the equation. O

A.2.3 Rains operators

The Rains operator @gg’b’c’d) (x; g, t) defined in (3.7,3.9) has eigenvalues (3.10). This
operator is not linearly independent of the K-M operators, as is seen from the following
Lemma.

Lemma A.10 For generic (a,b,c,d) the following relation holds between the
Koornwinder-Macdonald operators and the Rains operator:

mdm

N
_~ C
Qx,b,c,d) Dﬁ@"”’”’d) Z( 1y (ambm +— ) fm(m—1)/2 Dg\c;ﬁ,nc,d).

m=1

(A.21)
Proof This is a consequence of the relation between the eigenvalues:

N m jm
n c"'d -
A0 D =dyy + Y (=1)" <ambm + q—m) DRy (A22)

m=1

Using the notation o = /abcd/q, u = ab/o,u™' = cd/qo and s; = oqhitN 7 as
well as the expressions (A.12) for d; ,, and (3.10) for d.n, Eq. (A.22) is

N N
g M Ja—usna— u1s,-)=aNtN<N1>/2{éN(s)+Z(—1)m(u’"+u’”)éN,,,(s)

i=1 m=1
_ 2N N _N NN-1)/2 N
(—O‘)N l’N(N 1)/2 R (—l) oMt B
=) ()" (s)= — [[a—usy—us™,
m=0 i=1

where we have used (3.1) in the last line. The equality follows from ]_[,N: 1Si =
q\/\IUN (NIN=-1)/2 O
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A.2.4 Koornwinder-Macdonald operators and Macdonald’s operators of Section A.1

The first Koornwinder-Macdonald operator in Equation of Definition A.8 is

11—V bed
DD (x1 g, 1) = V"D (i q.0) + (1 + & tN‘>,

1—1t q
11—tV bed
=KD (i g, 1) + <1 + tN_1>.
1—1¢ q
(A.23)

To relate these with some of the operators of Sect. A.1, we have the following
Lemma.

Lemma A.11 The first order Koornwinder-Macdonald operator can be written as
,D(a hcd)(x q, f) = (p(a ,b, Cd)(x) + Z Z @(ﬂ b, Cd)(x)r
i=1 e==%l1

where

(1 - gea) (1= 572D)(1 - ) (1 - 56d)
20 =01 —q~ 1)

w(a,b,c,d) ()C) — Z

e==%1

1 i
X ]_[1 — — V1. (A.24)
i=1 g2 =g

Proof We have:

1—¢N abcd
plabed) () — <1+ (N 1) Z > "D (x). (A25)

i=1 e==%1

Using the simple fraction decomposition of the function

0(z) ==

We find

N
q Ai € Be Cg
0(z) = ———v— + E E <4 + ,
abed t2N-1 il ol £ 01— e—qf/z 1—eis
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where
o Lo (=) =) =) (=) n”f xj txfxj — 1
e 12N ( szg)(l _xi—Ze) it x§ —Xj .X;.Xj —1
g —1) (abcd)()
"~ abed 12N-1
and
(l—eq{lﬁ)(l—eli/z)(l—eql%)(l—eq%) N 1—;1—12)5,' l—qéﬁ)ci_1
Be= 2abed PN (1 — L ] e
abca't ( q) il g2t 1 J77 i
o _ o)l —e ) (1= e7) (1 = €,7)
.=

/
2abed tN=1 (1 — %)

By definition (A.26), 6(0) = 1, therefore

N 2N—1
abed t
e+ = A (B C) =
e=+1 Li=1 gl =1
Using
a c d
Ggl{z(l eI —eqz) (1 —eqz) (1 —e35)
q a c
e - ep) - e - = 1
we have:
abed N1
76‘6:
GIX:t:l q(l_t) t) 1_7 EX:E:IM—}_b[Cd 1/2

N _ a};cdtN 1 ;

1—1t

Ta1-n(-1) 2 11 (1_6

e=+1u=a,b,c.d

abed tZN—l -1

q
1—1t

(A.27)

u
g2

)

The Lemma follows by substituting this into (A.27), and using the result to reexpress

@ @beD (x) as given by (A.25).

172

When ¢ = ¢!/
the following.

Zandd = —q 172 ,(p(“’b’q

]

.=4"%)(x) = 0. Using Table 1, we obtain
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Corollary A.12 In the cases g = D](\}), B](VI), AS\),_I the first Macdonald operator is
equal to the first specialized Koornwinder-Macdonald operator:

DI (x;9.1) = Z Y @ rs =€ (xiq.1). (A.28)
i=1 e==%x1

By direct inspection, the specialized Rains operators of (3.7) and (3.9) can also be
expressed in terms Macdonald’s operators.

Lemma A.13 In the cases g = Dm C(l) D(2Jrl we have the identifications

) ( b)) p) (L1)
Dy’ : (x q, t)+8wN l(x;q,t):ﬂQN (x;4,1),
@(1’_1"11/2’_(]1/2) _ fR(l’_l) 2

’

1
(()

1 / _ 4172
e g =2y Daig.n, . (A.29)
A(tl/zy_ 12 1212 12412y 12, —112)\2 .
D¢ = (=, )
D@ . g® ﬁll)(x. B = RED (s
Nl ig, ) =Ry (xiq,0),

N—1,1q"2,=g") _ (6, =1
DY = (®Y

A.3 g-Macdonald operators and their eigenvalues

For each g, we have chosen a list of N linearly independent commuting difference
operators (see Def. 3.5) using the operators in the preceding sections of this Appendix.
These have the property that in the g-Whittaker limit, they and their time-translates
provide solutions of the various quantum Q-systems. We first explore redundancies
between the various definitions to justify Def. 3.5. Then we describe the eigenvalues
of the g-Macdonald operators, and conclude with a remark on the choice leading to
Def. 3.5.

A.3.1 Redundancies

Specializing the parameters (a, b, ¢, d) as in Table 1 in the difference operators of
Theorem A.9 gives a list of N commuting difference operators for each g. As noted
in Corollary A.12, some of these are Macdonald’s operators listed in Sect. A.1. In

addition, there are non-linear relations’:

(DY) (D) T autl) qy@b.e.d)
oy le—Zt DyZ3e -1

9 These relations are proved using the same argument as in the proof of Theorem A.9, using identities
between eigenvalues. Some are a direct consequence of the identifications with Rains operators from
Theorem A.13.
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15
p p B
Eo )2+ € )? = g ed g 37 eash plabied)
a=0

for the D](\}) specialization. Similarly, for the Cl(vl) and Dz(\?ir | specializations,

N
2 aa+1)
(5((5;13) :@gg,b,c,d)_i_zztiz plabed)

a=1

In those cases, the Macdonald operators carry more information than the specializa-

tion of the Koornwinder-Macdonald operators fo,’ bed) g justifies the choice in
Def. 3.5.

A.3.2 The eigenvalues of g-Macdonald operators

Definition A.14 If m < Ny, let d)(\f% to be the specialization of Eq. A.12 to the param-
eters corresponding to g in Table 1:

m+l) ~

d)(hg’)n = d)t,m — tm(N+‘§57 2 em(s)’ m e [1’ Ng]’ (A30)

@ 5 . N .
where s = t?"V g%, i.e. s; = g* 1N ~*5a_ Otherwise, define

) _
g:D](\}) d)(\gN)th(Azl; 5} é;;DN)(S)’ ﬁZN—l,N, (A1)
—ch p@ . @ _ NNED ~(By) '
g=Cy Dy idsy =17 ey (s),
where
N
~ i/2
e (x) 1= oo [ B=N-1N),
€1,.nns ey=x1 i=l1
[Tei=2(B—N)+1
N 1+ x
~(BN) . i ~(Dy) ~(Dy)
e (x) = — =y i (x)+e (x). (A.32)
N ll] \/‘x—l N-—1 N

The functions é,(nR ) (s) have the property that their dominant monomial (in powers
. * .
of 1) is s“m, where w;, are the fundamental weights of R*.

Theorem A.15 The g-specialized Koornwinder polynomials are common eigenvectors
of the g-Macdonald operators, satisfying the eigenvalue equation

DP ) P =d® P®  me[l NI, (A.33)
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with d\%, = 652 & (5) (4 = &y form < Ng) and

oW — N+ = < N, (A.34)
G(Dj\})) N Y
B (A.35)
(@) _  N¥sD ONe)
Oy =t 4, g=Cy.Dy.,.

A.3.3 Remark about our choice of Macdonald operators

We made the choice of g-Macdonald operators for simplicity. A more natural choice
is to choose eigenvalues proportional to the fundamental characters of R*. This leads
to a more complicated choice of the difference operators, but in the g-Whittaker limit,
they have the same limit as our g-Macdonald operators.

For Macdonald’s operators in Sect. A.1, the eigenvalue equation is

DY (x) P (x) = 69 5K (5) PP (1),
(R*)

where the Schur functions s, ’ are the fundamental characters of R* with highest
weight o . We may choose the set of difference operators @,(ng)(x), with eigenvalues
proportional to the fundamental characters of R* for all m as above. These are related
to Dg,?) via a triangular change of basis, as can be seen from the relation between the
fundamental characters and e,(nR):

Dy : S‘(UQN):@’(”DN), m € [1, NJ,
By : Sé)iN) = ém — ém—2, m € [1, N1,

Cn: sV =¢,+éuy mell,N—1],
Sc(va) — ég\?zv)'

Therefore D@ are

g=D{: DY :=D9  (mell N,
9(9)

0= B AD AL B =D — (10 DO, e, W),
0m—2
1 2 _ 9(9)
g=Cy. DYy, DY =D+ D (mellN- 1],
9m71
DY .= D, (A.36)

with the convention that D(()g) = 1. This choice guarantees the following:
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Theorem A.16 Forallm = 1,2, ..., N and all g,

p(g).

D P0) = 6,0 550 () (). s =gt (A.37)

A.4 g-Whittaker limit of the g-Macdonald operators

The g-Whittaker limit corresponds to sending  — oc. The quantity A@?¢9 (x) of
(A.10), which appears in the van Diejen operators (A.8), tends to o = %9 under the
specialization of Table 1. All terms in (A.8) have the same leading behavior as that
withs = 1 and J = J; = {1, 2, ..., m}, namely a sum of three contributions from
(A.9):

még+m(m — 1) +2m(N —m) =mQ@2N —m — 1 + &g).

Therefore, V& ~ (6\)2 V¥’ where the difference operator V,\®’ is independent of
t. Similarly Dﬁf) ~ (9,519))2 D,(ng) where D,(,,g) independent of ¢, form = 1,2, ..., Ny.
By inspection, we find the same leading behavior for Ny < m < N, using (A.35).
This leads to the definitions:

DY (x) = lim O 2DW (x), VO = Jlim @H2ve  (A38)

with 6% as in (A.34-A.35).

Remark A.17 The limit 1 — oo of D is the same as that of D of Sect. A.3.3:
Using "Di,?) ~ (8,29))2 D,(”g) at leading order in ¢, the statement follows immediately
from (A.36) by noting that for m < Ng:

()
m U0 s 1= W, D2,
t—00 9519) - N> TN+
9(9)

m—2 . p 4@ (2)
1_1)%10—9’519) =0 (m>2,9g=By ,A2N71,A2N).

For any g, define Hig) = lim; oot " P)\(g). We refer to these as g-Whittaker
functions, although they coincide with the usual definition only for the case of g = Dg})

and the twisted algebras in Table 1. The spectral theorem for D,(,,g) is as follows.

Theorem A.18 The functions Hig ) are common eigenfunctions of D,(,?) , With
D@ H(E) — A®n H(B)
m (X) T (x) = n (X))
Proof The eigenvalues are the limits
59, = lim OP)1fIs), s = gV
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The limit extracts the leading monomial of the s variables in the symmetric function,
which is the term involving s1, s2, ..., 5, With positive powers. Form = 1,2, ..., Ny
this gives, using (A.30) (A.34) and (A.12):

—m(N+&g—"FL) Aot

em (s)=gq
By inspection, using (A.31), (A.35) and (A.32),

(1) (1)
D](\}) . 5)(»D1</V ) — q%()hl+)\2+"'+)»N—]+)»N) 8)(LDI\IIV )1 — q%(K|+Xz+--'+AN—1*)~N)

1
CI(\;) . 3&?[{/\/5 — q%()\l+)»2+'“+)\N—l+)\N)7

) DOV )
D;\’l—l :SA./QVH = g1 (that Ay n),

The result can be uniformly written as A®n = qwfn')‘, w;, the fundamental weights of
R*. ]

Remark A.19 Using the convention Vo(g) = 1, Def. A.8 implies

m
D = Z Vj(g), m < Ng. (A.39)
=0

Appendix B: Pieri rules

In this section, we list some of the Pieri operators implementing the first Pieri rule
for Koornwinder and g-Macdonald polynomials. Their g-Whittaker limit gives g-
difference Toda Hamiltonians for certain root systems.

B.1 First Pieri rule for Koornwinder polynomials

The first Pieri operator for generic (a, b, ¢, d) is the g-difference operator H ga’b’c’d) (s)
of Theorem (3.3).

Theorem B.1 The first Pieri operator for Koornwinder polynomials is

N i—1

-1
- _ _ ® Ok ok pk Si t S qs; ts]
j_((u,b,c,d) s1q.1) =a lll N __(a*,b*,c*,d*) s i ]‘ T:
i (s39,1) @ ©+) Hsi_sj,z_] asi—s; |

i—1 | \j=1
[uetar b e .an (1 — u=lsi)(q — usi)
(1 =sP)(g —sH2(q*> —s})

N

s — 5 1s; —qs; q—tsisj 1 — tilsiSj -1
>< H H i ’
g, g — s g5 1 —siss i

jmip1 SiTSP ST aSj G q =SS S8
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where

(1- #a*)(l - qfﬁb*)(l - #c*)(l - qud*)
21 —)(1 — g~ 1)

q)(a ,b ,C ,d )(x) — Z

e==1
N | — €1, 1] €t~
1 >Xi 1 S N

m

T
— € 5. e —1
! gt l_mxi

and (a*, b*, ¢*, d*) are the dual Koornwinder parameters (3.11).
Proof We use the formula (3.18) with (a, b, ¢, d) — (a*, b*, c*, d*). For simplicity,
we work with the values (a, b, ¢, d) and interchange them with their duals at the end.

We need the following.

Lemma B.2

A(a,b,c,d) (x)fll"i A(a,b,c,d) (x)

_ 1 _ 1 i qxi X; 1
B (1 x?)(l qxiz) ll_il—E ﬁ I_Ti l_[ l_xin .
a-Ha-Ho-bHa- - Il LAy L b
i i i i j=1 Xjo =i+l tx; 1xixj

A(a,b,c,d) (x)—l F;l A(a,b,c,d) (x)

(= )1 = )= (1 -yl 1= N9
= ! L ‘ 11_[ l_[ 11_[ i F71

2 TR q%; —q_ i
(- )%)(1 - ?72) Jj=1 0Xj j=i+l -~ xij JAi Xixj
Using Lemma A.11, the conjugation of the Dga’b’c’d) operator boils down to that

of the terms q>§“€*”’“d)r§. We have:

abcd izl — 2L I
(a,b,c,d) —1g(@b.c.d) . A (a,b,c,d) _ 2N-2 1x; 1Xj .
A (x) CDl-,_,’_ A (x) = ——t BT i
j=1 Xi Xj

A(a,b,c,d)(x)—lq)gflib,c,d)ri—lA(a,b,c,d)(x)

_ w2 (1= = a0 = 90 = 55— 5~ ZHd = D~ 7)

- 2
(1= ) =421 -4

xl
N _ X qx; _ _4 XiXj
! T ! my L == )
| T e T .
1 — &% 24 1 — L1 —xx; !
j=i+1 Xj Xi ji XiX; J

We finally use the formula (3.18) for m = 1 and substitute the above results with the
change (a, b, c,d) — (a*, b*, ¢*, d*), and the Theorem follows. O
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B.2 First Pieri rules for g

We may now specialize the result of Theorem B.1 to g, according to Table 1. We first
treat the cases where g = DI(\}), CI(\;), Aézl\),_ | for which the constant term w(g*)(x)

vanishes!0:

N . . . .

1) 0= A A fTHLA . g A
s S A A A g
PTIAN; =N PTIA— gl

i=1 | j<i
l‘j_H—lA,’ —qu Zj_i_lAi — Aj
l‘jiiAi—qu l‘jiiA,'—Aj

j>i

. I_[l _ tZNfifjflAiAj t2N7i7j+lAl,Aj —q T—l
1-— t2N7i7inAj tszifinAj —q

’

J#L
g_c(ci(\})) _ Z tj7i+1Ai — AJ Aj —ql-iiiill\,‘ :
- P ) 1
l o s YT A A gtTA

1— IN_iAi Z‘N+2_iA,' — l_[ lj7i+1Ai —qu Aj — l*iiiilAl‘
l—tN+l_iAi l‘N'H_iA,‘—q 11 l‘j_iA,'—qA‘ A'—l‘j_iA,'
i J j

1— t2N+]—i—jA,A. t2N+3_i_jA'A' —
P4} £y q T-71
1— t2N+2—i—inAj t2N+2—i—inAj —q L

<1
J#i
N .. .
J{(A(Zzﬂ)’*‘) = Z 1‘[ TN — A Ay —qti LA -
1 t=iA —Aj Aj—qtimin;

i=1 | j<i
2N—=2i A2 2N+2-2i A2 2 j—i+1 j—i—1
t lAi—l t lAi—q =it A,‘—qul‘J ! A,’—Aj

+ - - — —
t2N+172zAl‘2 -1 t2N+172zAi2 _ q2 LL yj=ip; — qu t=ip; — Aj
J=>t

NTZIN N — 1 PNT2EIEIN N — g -

i t2N+17i7jAl.Aj -1 t2N+17i7jAl.Aj —q i

X

We now treat the cases g = Bl(vl), Dl(gzrl, A%), for which ¢®") has a non-trivial
contribution. We find:

l‘jii‘HAi — Aj Aj —quiiilAi
l‘jiiAi—Aj Aj—qufiA,'

N
(1) )
o = 60+ 3 T

i=1 | j<i

_ 2N-2i 52 _ 2N=2i A2 2N42-2i A2 _ 2 O2N+2-2i A2 _
1 —t*079A7 g —t"" At A;—q-t A;—q

i

+ - - - .
1 — NHI=2ip2 g 2NHI-2i g2 (INHI-2i A2 _ g2 ANH1-2ip2 _ g

10" Here we show the explicit dependence on A; and ¢ (rather than s; = A; FatN=iy ag &g varies with g.
This makes the limit 1 — oo easier to follow.
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l‘j_i—HAi —qu Aj —tj_i_lAl'
; tjfiAi—qu Aj—l‘jiil\l'

J>

y 1_[ 1— tZN—i—inAj t2N+2_i_inAj —q T_—l
j#il _ I2N+17171AiAj t2N+]717/Al‘A]’ —q i

where

N N3 12 N—4—i —1/2
By _ 1 VT2 —eq /T2 A —€q
GAI(A) = —1+ > 11

T . T .
INFITIA —eql/2 tNTITIA — g2

e=xli=1
3PN _ O (A . U — Aj gt A — A T
= + ;
1 ( Hl; }:[ HTA = A gt A=A

1 _thiAi q1/2_thiAi q—lN+27iAiq]/2—lN+27iAi
1 — tN-H—iAl. q1/2 _ tN+l—iAl. q— tN+1—iAl. q1/2 _ tN+l_iAi
1— t2N+1—i—jAl_Aj q— t2N+3—i—jAl_Aj

X — —
j;&il _ t2N+27’71AiAj q— t2N+27zfjAl.Aj
[j_i_lAi — Aj l‘j_i—HAi —C]Aj 71
i tjiiAi—Aj l‘jiiAi—qu ! ’

where
G(Dz(vzjrl)(A)—(l _,q—l/z)(l +q—1/2) N ql/Z_AitN+2—i l—ql/zAitN—i B
= 1_tq—1 [=1q1/2_AitN+1—i l_ql/zA[tN+1_i 5
and finally

tj_i'HAl' —Aj qtj_i_lAl' —Aj T
=N — A qti=iA —A;

N
A(Z) 2
5" = 64 )+ Y AT
i=1 |j<i

—i 2N=2i+1 A2 2N+3-2i A2 —i
1—tN=IA; g — 2N 72HIAY g — PNPIHAS g — (N2,

1 —¢N+I=ip; q— t2N+2—2iAi2 q— t2N+2—2iAi2 q— (NFI=i A
tj_i_lAi—Aj tj_H_lAi—qu
tj_iAi—Aj tj_iAi—qu

j>i

1—t2N+l_i_jA'A' —t2N+3_i_jA'A'
« A Y A et
j#il_t2N+2—l—/AiAj q_t2N+2—1—/AiAj i
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where

G(AEZIJ)(A) B Z(l_etq—l/z)(l+6q—1/2)llﬁ[ ql/z_GAitN+2—i G_ql/ZAitN—i
- = 2(1—t1g—1) LZI g2 —e AitNH1=1 e —gl/2 N N+1-

Remark B.3 When we consider the g-Whittaker limit 1 — oo, the constant pieces
G(g)(A) in the latter three cases g = B](Vl), Dz(aw Ag]\), provide an extra constant term

in the limiting Hamiltonians H l(g). These read respectively:

-1 -1 ~1/2
4 _I+a ,G(Dl(\?irl)(A) — e

(BY)
GBVA) — .
AN_1AN AN AN

3

G(Ag&)(A) N _L.
AN

Appendix C: Proof of Theorem 4.10

Here, we provide the proof of Theorem 4.10, that the time translation operators g®

of Eq. (4.12) commute with the limiting first Pieri operator/Toda Hamiltonian H 1(9)
of Eq. (3.38):

gOHY = gPg® (C.1)

We divide each Hamiltonian into bulk and boundary pieces, study how g commutes
with each, and then sum up the contributions to prove the commutation (C.1).

Lemma C.1 For all g,

gr (1 — A_a“) = (1 — qA_“") T %gr (a=0,1,....,N —1),

(C2)

gn (1= A7) T, = (1 - q—lA—%+1) Torign (@=1,2,..,N —2),
(C3)

gn (1= A7) 77! = (1 —q_lA_"“’*]> T lgn (a=1,2,.,N— 1),
(C4)

with the convention oy = 0.
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C.1 Bulk and boundary terms

Each of the first Pieri operators (3.38) is the sum of a bulk and boundary piece, where
the bulk piece has the same form for all g:
m

A A 1
[m] a a+l

H™ = 1 - T, 11— —
Py e () 7

a1 a—1

with the convention that ALO = 0, for suitable value of m = mg: mg = N — 2 for
g= DI(\}), BI(\,I), Ag\),, and mg = N — 1 for all other cases.
The operators g® of (4.12) also have some common structures. For g =
o1
Bl(\}), Ag\),_l, Dﬁll, g = gragy&aB where a, B are functions of Ay only. For

g= D,(\}) g = grgaf with B a function of Ay_1 Ay only. The cases g = Cj(vl), A;zl\),
are different, and have a g operator of the form g = grgaagrga B, where «, B are
functions of Ay only.

LemmaC.2 Forallgand m < mg, andty =2 for g = C,(\}), A;ZI\),, t1 = 1 otherwise,

g9 H"™ () = (gr gA)" H™ (g7 g0) 7M.

Proof The only subtleties arise in the cases g = B](VD, Ag\), When g = B](VD, with

Lo 1
g = 8787 8P, the action of g7 gx S on Hl[m] creates a term proportional to 7,41,
as a consequence of

A Agy1
8T 8A (1 my z ) T, = (Ta - Z+ Ta+1) 8r8A (C.5)

a—1 a

for a = m. This term commutes with @ only if m + 1 < N — 1, hence we set
mg = N — 2. Similarly, when g = Ag\),, with ¢ = grgaagrgaB, the action of
grgapon H 1[’"] creates a term proportional to 7,41 which commutes with « only if
m+1 <N —1, hence we setmg = N — 2 as well. O

Lemma C.3 We have the commutation relations form = 1,2, ..., N — 1:

A 1
or gn Hl[m] _ {Hl[m] 4 A (_ B

T, .
A T m+l>} 8T 8A

Proof We simply sum over the relevant values of a the commutation relations (C.5),
as well as the following:

(1 Aa+1) 1 ( 1 A 1 ) o)
8T 8A - =\ - 8T 8A .
Aa Ta Ta Aa—l Ta—l

obtained by combining (C.2-C.4). O
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The cases g = CI(\}) and Aéll\), are special, as we will have to use Lemma C.3 twice.
This is deferred to Sect. C.6 below.

For all the other cases, we apply Lemmas C.2 and C.3 to commute g through the
relevant bulk contributions to H l(g) corresponding to a = 1, 2, .., my. The remaining
terms of Hl(g) are the “boundary” terms, corresponding to mgy < a < N and possibly
to constant terms independent of Tfl . We address them individually in the following
Sections C.2 through C.5. In all cases, the Lemma 4.10 follows from summing all
contributions from the bulk a = 1,2, ..., my and the boundary @ = mg + 1, ..., N
plus constant terms.

C.2 Caseg = D:(v1)

P
Recall that g = g7ga T2 (1 = 755y ) »and thatmg = N —2.Fora = N -1,
we have:

g<1—AN_1)TN1— Tn—1 — A Ty — ! T71+;T7l g
An—2 B T An-r An_iAy N '

AN 1 1 1 AN,1 1
1— l—— | Ty, =|Ty_y ——T, )
§ ( AN—l) ( AN—IAN> N=l ( N=l Ay, N2 &

and fora = N:

Eq. (C.1) follows by summing all bulk and boundary contributions.

C.3 Caseg = B,(v”

-1
1 n
Recall that g = g1 g2, 81 = g7, &2 = g18a Witha =[];2, (1 - Z—z) , and that
N

mg =N —2.The terms a = N — 1, N and the constant term read
Ay ) -1 13 3 An-1
g|1— Ty, =Ty_, 8708 1 - o gA
( AN*I N—1 N—16T T AN

An_

—1 N—1 -1

= <TN71 A TN72>g’
N-2

AN i AN
1— Tn_1 = Tn— 21—
(M), sl

Ay 1
= T —1— T
81( N-1—4 Ay _

I —
S
ZN]N\—

N———
oQ
i
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PN e (o L) 7
8 AN_1 N 81 A%\; N q A%\; N N 82,
1 1 -1 0 1 Ay b
el1-=)(1-a— )7 =g1<T B R A
( A%\})( A?\[) N N ANfl N—1"N

—1 —1 -1 -1
q 14g¢ q 2 -1 -1 144 1
— = —T T — T, .
g(AN—lAN A% ) 81 (AN—IAN N=1"N 1 A% No) 82

(C.7)

Summing the last four terms leads to:

AN—l) ( An )
1— Tn—1+ (1 - Tn
8 {( AN—2 AN-—1

L An L4 144!
+Ty-1—q 2 TyTy_;+Tn 82
Ay NIN-1 A2
A A
={TN1+<1— ol )T e
An—1 An—

Finally adding the first term of (C.7) gives

g{(l 3 AZ;,}:) Tl + (1 — iz_;) Tn—1+ (1 - AZZ,A;) Ty
+ (1 - %) (1 _qA_1%v> Ty'+ ANq—_llAN - 1-'1_\;\/_1}

= {TN—I + <1 - AA/?VN1> = 2::; Ty=a+ (1 - AI’\VN‘> e
(o) (o) ot -]

Eqg. (C.1) follows by summing all bulk and boundary contributions.
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C4 Caseg = A;z,\}_1

—1
2n
Recall that g = grgaa, witha = []02, (1 - ;1\—2) ,andmg = N — 1. For the two
N

boundary terms for @ = N we have:

An 1 T
8 1_AN71 In=gr |l—¢q T%v Ty grna = TN_T%\,TN 8
1 1 _1 AN _ - Ay
g(l—A2>TN181=gT (l—q IAN1>TngAa=(TN1_AN1TN11>g'
2 _ _

Eq. (C.1) follows by summing all bulk and boundary contributions.

p?

C.5 Caseg =Dy,

n\ —1

Recall that g = grgaa, witha = []72, (1 — %) ,andmg = N — 1. For the two

boundary terms for @ = N and the constant term we have:

1
AN l+qg2 q -1
1- In=\|\Tyn ———+ —T
g( AN]) N <N An +A%VN 8
1
1 g%\ .. -1 Av
- 1= = (17 = T
g( AN>< AN> v <N Ay V1) 8

1 1
1+q77 1+q2
_ — _ T

Eqg. (C.1) follows by summing all bulk and boundary contributions.

C.6 Cases g = C,(v”, A;zld

Recall the general structure of the operator g = g1g2 with g1 = grgaw and g =
gr8gA B, where «, B are functions of Ay only. We note that g; is the same for both

n

—1
cases, with 8 = [0, (1 — KN> . We note also that HI[N_I] is the same for both

cases, and Lemma C.3 gives the commutation of g, through HI[N_I]:

_ _ A 1
g HN = {HI[N Ny = ( — TN)} 2. (C.8)
An-1 \Tn-1
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(1)

We now need to add the boundary and constant terms. For g = C,;~ we have for

a = N (and no constant term):

1
AN ) q 2
& |1- Iy =|Tn — 82
( AN-1 ( AN)
1 -1 -1 AN o
2 l——)T =<T — Ty ] g2-
( Av) N N Ay Nl

For g = Ag%\), we have for @ = N and the constant term:

1
AN ) < 611> q2
Q|l———|Ty=g7 |1——|TvgaB=Tn ——] 22,
< AN71 AN AN
1

Adding these to the bulk contributions (C.8), we deduce the following commutations:

r _1
g=Cy: ng1={H1+E(TN‘—q 2)}g2, C9)
1

27 —qi)} 2. (C.10)

1_
g= AEN gH| = {Hl +

We must now commute g; through this. For both cases, we split again H; into a bulk
piece H 1[N7“ and boundary pieces and constant terms. For the bulk contribution, we
use again Lemma C.3 to write in both cases

A 1
An—1 \Tn—1

Then for g = Cz(\}) anda =N

(l An )T T,
11— N =Tn g1,
An_q
1 -1 qz —1 Ay —1
1—— )Ty = 1——T T T ,
8 ( AN) N ( Ay N )(N ANy 81
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(2

and for g = Ay, a = N and the constant term:

AN q_% 1
81 1—AN1 Ty =gr 1_E Tngaa=|T T AN g1,

Summing these with the bulk contributions (C.9)and (C.10) respectively, we arrive at

r _1
g=Cy: ai {H1+A—N(TN1—q 2)}=H1g1, (C.12)
1
1—qg2 1
o=A% a1 (i Ty g = Hig (C.13)

(1

Finally, Lemma 4.10 follows for g = Cy Agz}\)/ by combining the commutation
relations (C.9-C.10) and (C.12-C.13). In all cases, Eq. (C.1) follows by summing all
bulk and boundary contributions.
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