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Abstract. We give a construction of generalized cluster varieties and gen-

eralized cluster scattering diagrams for reciprocal generalized cluster al-

gebras, the latter of which were defined by Chekhov and Shapiro. These

constructions are analogous to the structures given for ordinary clus-

ter algebras in the work of Gross, Hacking, Keel, and Kontsevich. As a

consequence of these constructions, we are also able to construct theta

functions for generalized cluster algebras, again in the reciprocal case,

and demonstrate a number of their structural properties.
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1. Introduction

The theory of cluster algebras was originally introduced by Fomin and Zelevin-
sky in 2000 as a tool for studying total positivity [17]. Since their initial
appearance, cluster algebra structures have also arisen in a diverse array of
mathematical settings, including Poisson geometry [22], higher Teichmüller
theory [44,56], category theory [37,54], discrete dynamical systems [36,42],
Donaldson-Thomas theory [41,48], representation theory of quivers and finite-
dimensional algebras [38], enumerative properties of associahedra [6,7], and
various areas of mathematical physics. Two particularly celebrated structural
features of cluster algebras are the Laurent phenomenon and positivity. Al-
though the Laurent phenomenon was proved in the original work of Fomin
and Zelevinsky, a proof of positivity for skew-symmetric (resp. arbitrary) clus-
ter algebras did not appear until the work of Lee and Schiffler in 2015 [55]
(resp. Gross, Hacking, Keel, and Kontsevich in 2018 [33]).

Generalized cluster algebras were introduced by Chekhov and Shapiro
to study the Teichmüller spaces of Riemann surfaces with holes and orbifold
points of arbitrary order [9,10]. In this generalization, the hallmark binomial
exchange relations of ordinary cluster algebras are replaced with polynomials
with arbitrarily many terms. Consequently, to define the exchange polynomi-
als, we need an additional finite set of coefficients, which we denote as {ai,j}
and typically treat as formal variables. Generalized cluster algebra structures
have since been discovered in the representation theory of quantum affine alge-
bras [27,28], the representation theory of quantum loop algebras [29], the study
of exact WKB analysis [35], the cyclic symmetry of Grassmannians [19], the
study of the Drinfeld double of GLn [23–26], and in certain Caldero–Chapoton
algebras of quivers with relations [43].

Generalized cluster algebras exhibit many of the same structural proper-
ties as ordinary cluster algebras. For instance, in [10], Chekhov and Shapiro
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show that generalized cluster algebras exhibit the celebrated Laurent phenom-
enon and admit the same finite-type classification as ordinary cluster algebras.
Further, Chekhov and Shapiro prove that generalized cluster algebras exhibit
positivity when the initial cluster has size two and conjecture that positivity
holds in general. This was followed by work of Nakanishi which gives structural
results for the subclass of reciprocal generalized cluster algebras where the ex-
change polynomials are required to be palindromic and monic [49]. Follow-up
work by Nakanishi and Rupel [50] further related reciprocal generalized cluster
algebras to pairs of skew-symmetrizable cluster algebras which they refer to
as companion algebras.

Inspired by their proof of positivity for ordinary cluster algebras, in this
paper, we describe how the methods of Gross, Hacking, Keel, and Kontsevich
can be extended to the case of reciprocal generalized cluster algebras. To this
end, we show that the definitions of cluster varieties and cluster ensembles, as
defined by Fock and Goncharov [16], may be generalized to obtain generalized
cluster varieties associated to reciprocal generalized cluster algebras.

Because generalized cluster algebras exhibit many of the same structural
properties as ordinary cluster algebras, another natural question is whether
bases defined for ordinary cluster algebras have natural extensions in this gen-
eralized setting. Many subclasses of cluster algebras have known bases, includ-
ing the cluster monomial basis for finite type, the generic basis for affine type
[4], the generic basis for acyclic type [20,21], and the bangle and band bases
for cluster algebras of surface type [47]. In addition to their proof of positivity
for cluster variables, Gross, Hacking, Keel, and Kontsevich also proved the
existence of the theta basis for arbitrary cluster algebras [33].

Their proofs, both of positivity and the existence of the theta basis,
used scattering diagrams, a tool from algebraic geometry. Scattering diagrams
were first introduced in two dimensions by Kontsevich and Soibelman in [40]
and then in arbitrary dimension by Gross and Siebert in [32] as a tool for
constructing mirror spaces in mirror symmetry.

The main results of this paper parallel the work of Gross, Hacking, Keel,
and Kontsevich and construct generalized cluster scattering diagrams and their
theta functions in the context of reciprocal generalized cluster algebras. More
precisely, we construct generalized cluster varieties whose rings of regular func-
tions are generalized cluster algebras. Simultaneously, we develop scattering
diagrams which lie in the tropicalization of the Fock–Goncharov dual of said
varieties. This allows us to establish theta functions for such algebras.

Structure of the Article

We begin, in Sect. 2, by providing background that compares and contrasts
the cases of ordinary and generalized cluster algebras. This section concludes
with an in-depth description of cluster varieties, cluster scattering diagrams,
and theta functions for the case of ordinary cluster algebras.

In Sect. 3, the definitions of generalized cluster varieties and generalized
cluster scattering diagrams are given, with an emphasis on the changes that
need to be made to extend to the setting of generalized cluster algebras. These
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definitions are given in full detail so that the reader already familiar with the
ordinary case can skip Sect. 2 and begin here instead. Many of our results are
given for the subclass of reciprocal generalized cluster algebras. This restriction
is necessary in the proof of Theorem 3.25, which establishes the mutation in-
variance of generalized cluster scattering diagrams. We explain in Remarks 3.9
and 3.36 the motivation behind some of the definitions chosen in this paper.
A generalized cluster scattering diagram appears in Example 3.23, and one in
the presence of principal coefficients appears in Example 3.38.

After constructing generalized cluster scattering diagrams, we give a con-
struction of the scheme Ascat from these diagrams and show in Theorem 3.41
that Ascat is isomorphic to the generalized A cluster varieties in the case with
principal coefficients. Note that while one may follow [31] to construct schemes
from generalized cluster scattering diagrams, it does not directly follow that
the algebra of the scheme is the associated generalized cluster algebra until
one shows that the spaces Ascat and A are isomorphic.

Section 4 introduces broken lines and theta functions in the context of
generalized cluster scattering diagrams. One major result of this section is:

Theorem 1.1. (Theorem 4.8) The generalized cluster monomials can be ex-
pressed in terms of theta functions.

Another major result is the sign-coherence of g-vectors:

Theorem 1.2. (Theorem 4.15) Given fixed data as defined in Definition 3.1,
consider an initial generalized torus seed s = {(ei, (ai,j))} as defined in Defi-

nition 3.2. The torus seed s defines the usual set of dual vectors {fi = d−1
i e∗

i }.
If s′ is a mutation equivalent generalized torus seed, then the i-th coordinates
of the g-vectors for the cluster variables in s′ are either all non-negative or all
non-positive when expressed in the basis {f1, . . . , fn}.

In Sect. 5, we define theta functions on A and X and describe the product
structures of particular collections of theta functions on Aprin, A, and X . As a
consequence, we show that theta functions on Aprin form a (topological) basis
for a topological R-algebra completion of up(Aprin) in Corollary 5.7.

Finally, we conclude with Sect. 6 where we illustrate the relationship be-
tween generalized cluster algebras, their associated generalized cluster scatter-
ing diagrams, and the aforementioned companion algebras. These companion
algebras were introduced by Nakanishi and Rupel [50] and encode much of the
same structural data as the associated generalized cluster algebra.

Remark 1.3. As we were completing our paper, the preprint [45] by Mou was
posted. Our work in this paper is independent of and contemporaneous to his
work, but comparing our distinct approaches may be useful in future work. In
particular, we note that we work with a different subclass of generalized cluster
algebras. Our work concerns generalized cluster algebras in the sense of [10]
that satisfy the reciprocity condition used by [49,50]. In the subclass that we
consider, the exchange polynomials and wall-crossing automorphisms cannot
necessarily be written as products of binomials with positive coefficients. We
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explain the relevance of this hypothesis on the format of wall-crossing auto-
morphisms in Remark 4.9.

Remark 1.4. Preliminary versions of the present paper appeared in [12] and
[39].

2. Background

Ordinary cluster algebras were introduced by Fomin and Zelevinsky in 2002
to study total positivity and dual canonical bases in semisimple groups [17].
An ordinary cluster algebra A with clusters of size n is a commutative subring
of an ambient field F of rational functions in n variables. One of the hallmark
structural properties of an ordinary cluster algebra is that it can be presented
without enumerating its entire set of generators and relations. Instead, an or-
dinary cluster algebra can be presented by specifying a set of cluster seed data:
a collection of n distinguished generators {x1, . . . , xn}, where the xi are known
as cluster variables and the entire subset as a cluster ; a collection of coeffi-
cients {y1, . . . , yn}; and an exchange matrix B which encodes the exchange
relations between cluster variables. From the seed data, one can generate the
remainder of the cluster variables and coefficients via an involutive process
called mutation. The full set of cluster variables generates A as a subring of
F .

Another hallmark property of ordinary cluster algebras is that the ex-
change relations encoded by B are binomial, i.e., they have the form

xkx′
k = monomial + monomial.

One natural question is to ask what happens when these binomial relations
are replaced by other types of polynomials. In this paper, we consider a gener-
alization of this type, introduced by Chekhov and Shapiro, which is described
in more detail in the following subsection.

Computing the full set of cluster variables requires multiple iterations of
mutation. For any choice of initial cluster, a sequence of mutations can be used
to express every cluster variable in terms of that initial cluster. Remarkably,
in a phenomenon known as the Laurent phenomenon, these expressions turn
out to be Laurent polynomials. Perhaps even more remarkably, these Laurent
polynomials have strictly non-negative coefficients. This property is referred
to as positivity. Although the Laurent phenomenon was proved in Fomin and
Zelevinsky’s original paper, positivity for arbitrary ordinary cluster algebras
remained conjectural until the work of Gross, Hacking, Keel, and Kontsevich
in 2018 [33].

2.1. Generalized Cluster Algebras

One natural generalization of a cluster algebra, introduced by Chekhov and
Shapiro [10], is to allow the characteristic binomial exchange relations to in-
stead contain arbitrarily many terms. The resulting algebras, referred to as
generalized cluster algebras, have already been the object of significant study.
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The introduction of generalized cluster algebras was originally motivated
by the study of Teichmüller spaces of Riemann surfaces with holes and orbifold
points of arbitrary order [8,9]. In particular, drawing on the work of Felikson,
Shapiro, and Tumarkin [14,15] which defines ordinary cluster algebras from
orbifolds, in [10], Chekhov and Shapiro show that triangulations of orbifolds
provide a geometric model for a certain subclass of generalized cluster algebras
and demonstrate positivity for such cases.

For the somewhat broader subclass of reciprocal generalized cluster alge-
bras, which we will define later in this section, Nakanishi shows in [49] that
much of the structural theory of cluster seeds for ordinary cluster algebras
still holds. In particular, Nakanishi extends the notions of c-vectors, g-vectors,
and F -polynomials to the generalized setting and then used these notions to
write formulas for the generalized cluster variables and coefficients. In [50],
Nakanishi and Rupel subsequently define companion algebras of reciprocal
generalized cluster algebras and showed that these companion algebras, which
are themselves ordinary cluster algebras, encode much of the structural data
of the original generalized cluster algebra. We discuss companion algebras in
much greater detail in Sect. 6.

In this section, we review some of the basic definitions and properties
of generalized cluster algebras, largely following the structure of definitions in
[49]. Two important differences in our presentation, however, are that we use
the wide convention rather than the tall convention (i.e., our B matrix would
be the matrix BT in [49]) and that we use ri in the place of di. We make this
latter change in notation to avoid a conflict with the usage of di that arises in
our discussion of ‘fixed data’ in the context of scattering diagrams.

Let (P,⊕) be a semifield and F be isomorphic to the field of rational
functions in n independent variables with coefficients in P.

Definition 2.1. A labeled generalized cluster seed is a quintuple Σ = (x,y, B,
[rij ],a) such that

• x = (x1, . . . , xn) is a free generating set for F ,
• y is an n-tuple with elements in P,
• B = [bij ] is an n × n skew-symmetrizable matrix with entries in Z,
• [rij ] is an n × n diagonal matrix with positive integer entries whose i-th

diagonal entry is denoted ri,
• and a = (ai,j)i∈[n],s∈[ri−1] is a collection of elements in P. We later will

consider these ai,j ’s to be formal variables in a ground ring R = k[ai,j ].

We refer to x = (x1, . . . , xn) as the cluster of Σ, y = (y1, . . . , yn) as the coeffi-
cient tuple, B as the generalized exchange matrix, [rij ] as the exchange degree
matrix, and a as the exchange coefficient collection. The elements x1, . . . , xn

are the cluster variables of Σ and y1, . . . , yn are its coefficient variables.

Together, the exchange degrees {ri} and the exchange coefficient collec-
tion a determine a set of exchange polynomials 1 + ai,1u + · · · + ai,ri−1u

ri−1 +
uri ∈ ZP[u]. The structure of the exchange relations for mutation in direction
k are determined by the kth exchange polynomial. We will work in the same
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specialized setting as [49] and impose the additional requirement that

ai,j = ai,ri−s,

i.e., all exchange polynomials are reciprocal polynomials. Although this condi-
tion does not hold for all generalized cluster algebras, restricting our attention
to this subset allows us to focus on a more tractable subclass of generalized
cluster algebras.

Definition 2.2. For a generalized cluster seed Σ = (x,y, B, [rij ],a), generalized

mutation μ
(r)
k in direction k is defined by the following exchange relations:

b′
ij =

{
−bij i = k or j = k

bij + rk ([−bik]+bkj + bik[bkj ]+) i, j �= k

y′
i =

{
y−1

k i = k

yi

(
y
[bik]+
k

)rk

(
⊕rk

s=0 ak,sy
s
k)

−bik i �= k

x′
i =

{
x−1

k

(∏n
j=1 x

[−bkj ]+
j

)rk ∑rk
s=0 ak,sŷs

k

⊕
rk
s=0ak,sys

k

i = k

xi i �= k

a′
k,s = ak,rk−s,

where [ · ]+ = max( · 0) and

ŷi := yi

n∏

j=1

x
bij

j . (1)

Remark 2.3. The mutation relation for b′
ij in Definition 2.2 is for the general-

ized exchange matrix, B. This is equivalent to writing that the matrix formed
by the product B[rij ], whose entries we abbreviate as (br)ij , mutates according
to the relation

(br)′
ij = (br)ij + ([−(br)ik]+(br)kj + (br)ik[(br)kj ]+).

On the matrix level, this reflects the fact that mutation commutes with right

multiplication by [rij ], that is, μk(B[rij ]) = μ
(r)
k (B)[rij ], where μk denotes

ordinary matrix mutation and μ
(r)
k denotes the generalized matrix mutation

given in Definition 2.2.

Remark 2.4. In their original paper, Chekhov and Shapiro use matrices B and
β in their exchange relations [10]. Their B matrix is our B[rij ] matrix and their
β matrix is our B matrix. Note that if the matrix B is skew-symmetrizable,
then the matrix B[rij ] is also skew-symmetrizable.

The generalized cluster algebra associated with a particular generalized
cluster seed can then be defined as:

Definition 2.5. The generalized cluster algebra A = A(x,y, B, [rij ],a) associ-
ated to a generalized cluster seed Σ is the ZP-subalgebra of F generated by
the cluster variables x = {xi}i∈[n] of Σ.
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It is important to note that there is some potential for notational con-
fusion because it is also common to simply write A when referring to the
A-variety. Typically, it is clear from context whether A refers to a (general-
ized) cluster algebra or (generalized) cluster variety and, therefore, we use this
notation to be consistent with the literature.

Finally, we can give a statement of the Laurent phenomenon for general-
ized cluster algebras.

Theorem 2.6. (Theorem 2.5 of [10]) Let A = A(x,y, B, [rij ],a) be an arbitrary
generalized cluster algebra. Its cluster variables can be expressed in terms of
any cluster of A as Laurent polynomials with coefficients in ZP.

Note that in the above theorem, the Laurent polynomial coefficients are
in ZP. Although these coefficients are in fact strictly non-negative for certain
subclasses of generalized cluster algebras [1,10], there is currently no proof of
positivity for arbitrary generalized cluster algebras. Because ordinary cluster
scattering diagrams were used to prove positivity for arbitrary ordinary cluster
algebras, the conjectural positivity of arbitrary generalized cluster algebras is
a powerful motivator for defining generalized cluster scattering diagrams.

Remark 2.7. For the remainder of the paper, we use the geometric language of
(generalized) cluster varieties rather than the combinatorial language of (gen-
eralized) cluster algebras. These two viewpoints are two sides of the same coin
but the geometric language will be more conducive for defining (generalized)
cluster scattering diagrams.

2.2. Ordinary Cluster Varieties

Before we can embark on any discussion of scattering diagrams, we must first
establish some basic definitions. In this section, we will largely follow the expo-
sition in [16,30] and will develop these ideas in the context of ordinary cluster
algebras. In Sect. 3, we modify these definitions for the new context of gener-
alized cluster algebras and explain how the ordinary definitions in this section
can be recovered as specializations.

We begin with definitions of fixed data and torus seed data, from [30],
which together encode the information of a cluster seed. We will work over
characteristic zero field k.

Definition 2.8. The following data are referred to as fixed data, denoted by Γ:

• The cocharacter lattice N with skew-symmetric bilinear form {·, ·} : N ×
N → Q.

• A saturated sublattice Nuf ⊆ N called the unfrozen sublattice.
• An index set I with |I| = rank(N) and subset Iuf ⊆ I such that |Iuf| =

rank(Nuf)

• A set of positive integers {di}i∈I such that gcd(di) = 1
• A sublattice N◦ ⊆ N of finite index such that {Nuf, N

◦} ⊆ Z and {N,Nuf∩
N◦} ⊆ Z

• A lattice M = Hom(N, Z) called the character lattice and sublattice
M◦ = Hom(N◦, Z).
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The name ‘fixed data’ refers to the fact that these data are fixed under muta-
tion.

Definition 2.9. Given a set of fixed data, the associated torus seed data are a
collection s = {ei}i∈I such that {ei}i∈I is a basis for N , {ei}i ∈ Iuf is a basis
for Nuf, and {diei}i∈I is a basis for N◦. The torus seed data defines a new
bilinear form

[·, ·]s : N × N → Q

[ei, ej ]s = εij = {ei, ej}dj

which gives the skew-symmetrizable matrix as in the cluster literature.

Remark 2.10. Because we use the “wide” convention for the exchange matrices
of cluster algebras, our B and ε matrices coincide. In the “tall” convention, used
by Fomin and Zelevinsky [17], the matrices are instead related by a transpose,
i.e. then ε = BT .

A choice of torus seed s = {ei}i∈I defines a dual basis {e∗
i }i∈I for M and

a basis {fi = d−1
i e∗

i }i∈I for M◦. It also defines two associated algebraic tori:

Xs = TM = Spec k[N ],

As = TN◦ = Spec k[M◦].

The torus Xs has coordinates y1, . . . , yn, where yi = zei and the torus As

has coordinates x1, . . . , xn, where xi = zfi . Although it is common in some
portions of the literature to use the notation A1, . . . , An for the coordinates
of As and X1, . . . , Xn for the coordinates of Xs, our choice of notational con-
vention is consistent with a large portion of the cluster algebra literature (c.f.:
[17,49,50]) and, in particular, is consistent with the original definition of gen-
eralized cluster algebras [10].

The bilinear form {·, ·} : N×N → Q naturally defines maps p∗
1 : Nuf → M◦

and p∗
2 : N → M◦/N⊥

uf as

p∗
1 (n ∈ Nuf) = (n′ ∈ N◦ �→ {n, n′}) ,

p∗
2 (n ∈ N) = (n′ ∈ Nuf ∩ N◦ �→ {n, n′}) .

Based on these maps, we can then choose a map p∗ : N → M◦ such that we
have the restriction p∗|Nuf

= p∗
1 and the composition of p∗ with the quotient

map M◦ → M◦/N⊥
uf agrees with p∗

2. It is important to note that the choice of p∗

is not unique because there is more than one possible choice of map N/Nuf →
N⊥

uf . It is also important to note that for an arbitrary choice of fixed data, the
map p∗

1 : Nuf → M◦ is not necessarily injective. It is, however, always injective
for the principal coefficient case discussed in Sect. 2.2.1. The assumption that
p∗
1 is injective is sometimes referred to as the injectivity assumption.

The injectivity assumption is, in fact, a crucial ingredient in many of
the arguments given by Gross, Hacking, Keel, and Kontsevich for arbitrary
ordinary cluster algebras and therefore many of their results are proved via
the principal coefficient case. For the same reason, we will also work via the
principal coefficient case in our generalized setting.



624 M.-W. Cheung et al.

Because the fixed data and torus seed data encode information from a
cluster seed, there should also be a notion of mutation.

Definition 2.11. Given torus seed data s and some k ∈ Iuf, a mutation in
direction k of the torus seed data is defined by the following transformations
of basis vectors:

e′
i :=

{
ei + [εik]+ek i �= k

−ek i = k

f ′
i :=

{
−fk +

∑
j∈Iuf

[−εkj ]+fj i = k

fi i �= k

The basis mutation induces the following mutation of the matrix [εij ]:

ε′
ij := {e′

i, e
′
j}dj =

⎧
⎪«
⎪¬

−εij k = i or k = j

εij k �= i, j and εikεkj f 0

εij + |εik|εkj k �= i, j and εikεkj g 0

Note that mutation of torus seeds is not an involution, so μk(μk(s)) �= s.
Mutation of torus seed data s in direction k defines birational maps μk : Xs →
Xμk(s) and μk : As → Aμk(s) via the pull-backs

μ∗
kzm = zm(1 + zvk)−〈dkek,m〉 for m ∈ M◦, (2)

μ∗
kzn = zn(1 + zek)−[n,ek] for n ∈ N, (3)

where vk := p∗
1(ek). Explicitly, using dual bases, one can compute

vk = ek [εij ] =
∑

j∈Iuf

εkjfj .

Some of the most iconic equations in the study of cluster algebras are the
mutation relations for the cluster variables and coefficients. We can explicitly
see the familiar forms of those mutation relations by applying μ∗

k to the cluster
variables xi = zfi and yi = zei :

μ∗
kx′

i =

⎧
⎪«
⎪¬

x−1
k

(
∏

εkj>0
x

εkj

j +
∏

εkj<0
x

−εkj

j

)
i = k

xi i �= k

(4)

μ∗
ky′

i =

⎧
«
¬

yi

(
1 + y

−sgn(εik)
k

)−εik

i �= k

y−1
k i = k.

(5)

Remark 2.12. Equations (4) and (5) can be obtained from Eqs. (2) and (3) by
setting n = ei and m = fi. For example, consider the mutation of xi = zfi

and yi = zei in direction k. If i = k, then

μ∗
k(y′

k) = μ∗
k

(
ze′

k

)
= μ∗

k

(
z−ek

)
= z−ek (1 + zek)

−[−ek,ek]
= z−ek = y−1

k

and
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μ∗
k(x′

k) = μ∗
k

(
zf ′

k

)
= μ∗

k

(
z

−fk+
∑

j∈Iuf
[−εkj ]+fj

)

= z
−fk+

∑
j∈Iuf

[−εkj ]+fj (1 + zvk)
−〈dkek,−fk+

∑
j∈Iuf

[−εkj ]+fj〉

= z−fk

⎛
¿∏

j∈Iuf

z[−εkj ]+fj

À
⎠ (1 + zvk)

〈dkek,fk〉

= z−fk

⎛
¿∏

j∈Iuf

z[−εkj ]+fj

À
⎠
⎛
¿1 +

∏

j∈Iuf

zεkjfj

À
⎠

1

= z−fk

⎛
¿ ∏

j∈Iuf, εkj<0

z−εkjfj +
∏

j∈Iuf, εkj>0

zεkjfj

À
⎠

= x−1
k

⎛
¿ ∏

εkj<0

x
−εkj

j +
∏

εkj>0

x
εkj

j

À
⎠ .

If i �= k, then

μ∗
k(y′

i) = μ∗
k

(
ze′

i

)
= μ∗

k

(
zei+[εik]+ek

)

= zei+[εik]+ek (1 + zek)
−[ei+[εik]+ek,ek]

= zeiz[εik]+ek (1 + zek)
−[ei,ek]

= zeiz[εik]+ek (1 + zek)
−εik .

If εik > 0, then

zeiz[εik]+ek (1 + zek)
−εik = zei

(
1 + z−ek

)−εik = zei

(
1 + z−sgn(εik)ek

)−εik

.

If εik < 0, then

zeiz[εik]+ek (1 + zek)
−εik = zei

(
1 + z−sgn(εik)ek

)−εik

.

Hence, in both cases, we have

μ∗
k (y′

i) = yi

(
1 + y

−sgn(εik)
k

)−εik

.

Finally, μ∗
k(x′

i) = μ∗
k

(
zf ′

i

)
= μ∗

k

(
zfi
)

= zfi(1 + zvk)−〈dkek,fi〉 = zfi = xi.

Let T be a directed infinite rooted tree where each vertex has |Iuf| out-
going edges, labeled by the elements of Iuf. Let v be the root of the tree and
associate some initial torus seed s with mutation class [s] to v. To indicate this
choice of initial seed, we write Tv. In some contexts, we write Ts to indicate
both the rooted infinite tree and the torus seed associated to the root vertex.
An edge with label k ∈ Iuf corresponds to mutation in direction k. Hence,
any simple path beginning at vertex v determines a sequence of mutations
according to the sequence of attached edge labels. These mutation sequences
determine an associated torus seed sw for each vertex w of Tv. We can also
attach copies of Xsw

and Asw
to each vertex w.
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Proposition 2.4 of [30] then allows the collection {Asw
}, where w ranges

over all vertices of T, to be glued along the open pieces where the μk given in
Equation (2) are defined. This produces a scheme A, known as the A cluster
variety. Similarly, the collection {Xsw

} can be glued using the μk given in
Equation (3) to obtain a scheme X , known as the X cluster variety.

The upper cluster algebra associated with a cluster variety V is defined as
up(V ) := Γ(V,OV ) [2]. Let L be an arbitrary lattice and TL := Spec k[L∗]. A
global monomial on V =

⋃
s TL,s is a regular function on V that restricts to a

character on some torus TL,s in the atlas for V . For A-type cluster varieties, the
set of global monomials is exactly the set of cluster monomials. The ordinary
cluster algebra ord(V ) is defined as the subalgebra of up(V ) generated by the
set of global monomials on V .

2.2.1. Principal Coefficients. As mentioned in the previous section, many of
the important results of [33] were obtained via the principal coefficient case.
Recall that an ordinary cluster algebra with principal coefficients, using the
wide convention for exchange matrices, is an ordinary cluster algebra where the
n×n exchange matrix has been extended to a 2n×2n skew-symmetrizable block
matrix whose upper right block is the n × n identity matrix and whose lower
right block is the n × n zero matrix [18]. Including this additional information
requires the following modifications to the fixed and torus seed data:

Definition 2.13. ([30, Construction 2.11]) Given fixed data Γ, the fixed data
for the cluster variety with principal coefficients, Γprin, are defined by

• The double of the lattice N , Ñ := N ⊕M◦, with skew-symmetric bilinear
form given by

{(n1,m1), (n2,m2)} = {n1, n2} + 〈n1,m2〉 − 〈n2,m1〉.

Here, 〈·, ·〉 : N × M◦ → Q denotes the canonical pairing given by evalua-
tion, 〈n,m〉 �→ m(n).

• The unfrozen sublattice Ñuf := Nuf ⊕ 0 ∼= Nuf.
• The sublattice Ñ◦ := N◦ ⊕ M of Ñ .
• The lattice M̃ = Hom(Ñ , Z) = M ⊕ N◦.

• The lattice M̃◦ = M◦ ⊕ N , which has sublattice M̃ .

• The index set Ĩ given by the disjoint union of two copies of I.

• The unfrozen index set, Ĩuf given by thinking of the original Iuf as a
subset of the first copy of I.

• A collection of integers {di}i∈Ĩ taken such that within each disjoint copy
of I, the di agree with the original torus seed s.

For a cluster algebra with principal coefficients, there is an implicit choice
of the tropical semifield P = Trop(y1, . . . , yn) in Definition 2.1.

Definition 2.14. (Construction 2.11 of [30]) Given a torus seed s, the torus
seed with principal coefficients sprin is defined as

sprin := {(ei, 0), (0, fi)}i∈Ĩ .
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For ease of notation, we will use i and j to denote indices corresponding to
basis elements of the form (ei, 0) and α and β to denote indices corresponding
to basis elements of the form (0, f³). Because of the way the collection {di}
is chosen, the entries of the matrix ε̃ defined by the principal fixed data are
determined by the following relationships:

ε̃ij = εij , ε̃i´ = δi´ , and ε̃³j = −δ³j .

That is, ε̃ is a block matrix of the form

ε̃ =

[
ε Id

−Id 0

]
,

where Id denotes the |I| × |I| identity matrix.

As before, the choice of sprin defines dual bases for M̃ and M̃◦. The

previous choice of a map p∗ : N → M◦ allows us to define a map p∗ : Ñ → M̃◦

as

p∗(ei, 0) = (p∗(ei), ei),

p∗(0, f³) = (−f³, 0).

The new map p∗ : Ñ → M̃◦ is now necessarily injective. In fact, p∗ : Ñ → M̃◦

is actually an isomorphism.
The choice of sprin also defines the associated algebraic tori

Xsprin
:= T

M̃
= Spec k[Ñ ],

Asprin
:= T

Ñ◦ = Spec k[M̃◦].

The principal cluster varieties Xprin and Aprin are then obtained by gluing
along the birational mutation maps μk : Xsprin

→ Xμk(sprin)
and μk : Asprin

→
Aμk(sprin)

, as previously.

There are several important observations to make about the principal
cluster varieties. First, the ring of global functions on Aprin is the upper clus-
ter algebra with principal coefficients at the seed s. Second, Aprin has useful
relationships with the cluster varieties X and A which arise from the natural
inclusions

p̃∗ : N → M̃◦,

n �→ (p∗(n), n)

and

π̃ : N → M̃◦, (6)

n �→ (0, n). (7)

For any torus seed s, the map p̃∗ induces the exact sequence of algebraic
tori:

1 → TN◦ → Asprin

p̃
−→ Xs → 1.

The map p̃ : Asprin
→ Xs defined by this exact sequence commutes with the

mutations μk on Asprin
and Xs, yielding a morphism p̃ : Aprin → X . Similarly,
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the TN◦ action on Asprin
yields a TN◦ action on Aprin. The quotient Aprin/TN◦

is the X -variety.

The map π∗ induces the projection π : Aprin → TM . Let At := π−1(t).
Then the fiber Ae, where e ∈ TM is the identity element, is the A-variety.

2.3. Cluster Scattering Diagrams

Scattering diagrams first appeared in the literature in two dimensions, in work
by Kontsevich and Soibelman [40], and then in arbitrary dimension in the
work of Gross and Siebert [32]. Our discussion of cluster scattering diagrams
will loosely follow the structure of the exposition in Section 1 of [33].

To construct a cluster scattering diagram, we begin with a choice of fixed
data Γ and initial seed data s and let k be a field of characteristic zero. Let
σ ⊆ MR be a strictly convex top-dimensional cone and define the associated
monoid P := σ ∩ M◦ such that p∗

1(ei) ∈ J := P\P× for all i ∈ Iuf. Here,
P× = {0} is the group of units of P and J is a monomial ideal in the polynomial

ring k[P ]. Let k̂[P ] denote the completion of k[P ] with respect to J .

The construction also requires the assumption that p∗
1 : Nuf → M◦ is an

injective map. It is important to note that this assumption does not hold for
all choices of fixed data, but does hold for fixed data corresponding to the prin-
cipal coefficient case. Because arbitrary cluster algebras can be considered as
specializations of the principal coefficient case, it is sufficient for the injectivity
assumption to hold for that case.

Set

N+ := N+
s :=

{∑

i∈Iuf

aiei

∣∣∣∣∣ ai g 0,
∑

ai > 0

}

and choose a linear function d : N → Z such that d(n) > 0 for n ∈ N+.

Definition 2.15. ([33, Definition 1.4]) A wall in MR is a pair (d, fd) ∈ (N+, k̂[P ])
such that for some primitive n0 ∈ N+,

1. fd ∈ k̂[P ] has the form 1 +
∑∞

j=1 cjz
jp∗

1(n0) with cj ∈ k

2. d ⊂ n⊥
0 ⊂ MR is a (rank(M) − 1)-dimensional convex rational polyhedral

cone.

We refer to d ⊂ MR as the support of the wall (d, fd).

Let m denote the ideal in k̂[P ] which consists of formal power series with
constant term zero.

Definition 2.16. ([33, Definition 1.6]) A scattering diagram D for N+ and s

is a set of walls {(d, fd)} such that for every degree k > 0, there are a finite
number of walls (d, fd) with fd �= 1 mod mk+1.

For a scattering diagram D,
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Supp(D) :=
⋃

d∈D

d,

Sing(D) :=

(⋃

d∈D

∂d

)
∪

⎛
⎜⎜¿

⋃

d1,d2∈D

dim(d1∩d2)=n−2

d1 ∩ d2

À
⎟⎟⎠

are defined as the support and singular locus of the scattering diagram. When
D is finite, its support is a finite polyhedral cone complex. A (n−2)-dimensional
cell of this complex is referred to as a joint. In this case, Sing(D) is simply
the union of the set of all joints of D. A wall d ⊂ n⊥

0 is called incoming if
p∗
1(n0) ∈ d. Otherwise, d is called outgoing.

Each wall d ∈ D has an associated wall-crossing automorphism.

Definition 2.17. ([33, Definition 1.2]) For n0 ∈ N+, let m0 := p∗
1(n0) and

f = 1 +
∑∞

k=1 ckzkm0 ∈ k̂[P ]. Then pf ∈ k̂[P ] denotes the automorphism

pf (zm) = zmf 〈n′
0,m〉,

where n′
0 generates the monoid R≥0n0 ∩ N◦.

These wall-crossing automorphisms can be composed to compute auto-
morphisms associated to paths on the scattering diagram that pass through
multiple walls. Such compositions are called path-ordered products.

Definition 2.18. Let γ : [0, 1] → MR\Sing(D) be a smooth immersion which
crosses walls transversely and whose endpoints are not in the support of D.
Let 0 < t1 f t2 f · · · f ts < 1 be a sequence such that at time ti the path γ
crosses the wall di such that fi �= 1 mod mk+1. Definition 2.16 ensures that
this is a finite sequence. For each i ∈ {1, . . . , s}, set εi := −sgn(〈ni, γ

′(ti)〉),
where ni ∈ N+ is the primitive vector normal to di. For each degree k > 0,
define

pk
µ,D := pεs

fdts

◦ · · · ◦ pε1
fdt1

,

where pfdti
is defined as in Definition 2.17. Then,

pµ,D := lim
k→∞

pk
µ,D.

We refer to pµ,D as a path-ordered product.

A scattering diagram D is consistent if pµ,D depends only on the end-
points of γ. Two scattering diagrams, D and D′, are considered equivalent if
pµ,D = pµ,D′ for all paths γ for which both path-ordered products are defined.

Gross, Hacking, Keel, and Kontsevich consider a particular scattering
diagram, which we refer to as the cluster scattering diagram. This diagram is
defined by the fixed and torus seed data as follows.

Definition 2.19. Given a set of fixed data Γ and torus seed s, let vi = p∗
1(ei)

for all i ∈ Iuf. The initial scattering diagram Din,s is defined as

Din,s := {(e⊥
i , 1 + zvi) : i ∈ Iuf}.
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The following theorems are two of the main results of [33].

Theorem 2.20. ([33, Theorem 1.12, 1.13]) There is a scattering diagram Ds

such that

1. Ds is consistent
2. Ds ⊃ Din,s

3. Ds\Din,s consists of only outgoing walls

The scattering diagram Ds is equivalent to a scattering diagram whose walls
(d, fd) all have wall-crossing automorphisms of the form fd = (1 + zm)c for

some m = p∗(n), n ∈ N+, and positive integer c. In particular, all the nonzero
coefficients of fd are positive integers. The diagram is unique up to equivalence.

Example 2.21. Consider the ordinary cluster algebra A

(
x,y,

[
0 1

−1 0

])
with

seed data s = ((1, 0), (0, 1)). This algebra has initial scattering diagram

Din,s =
{(

(0, 1)⊥, 1 + z(−1,0)
)

,
(
(1, 0)⊥, 1 + z(0,1)

)}
,

which can be drawn as

d1

d2

γ
fd1

= 1 + z(−1,0)

fd2
= 1 + z(0,1)

We can see that Din,s is not consistent by computing pµ,Din,s
(z(0,1)) as:

z
(0,1) d1�−→ z

(0,1)
(
1 + z

(−1,0)
)〈(0,1),(0,−1)〉

=
z(0,1)

1 + z(−1,0)

d2�−→
z(0,1)

(
1 + z(0,1)

)〈(0,1),(1,0)〉

1 + z(−1,0)
(
1 + z(0,1)

)〈(−1,0),(1,0)〉

=
z(0,1)

(
1 + z(0,1)

)

1 + z(0,1) + z(−1,0)

d1�−→

z(0,1)
(
1 + z(−1,0)

)〈(0,1),(0,1)〉
(
1 + z(0,1)

(
1 + z(−1,0)

)〈(0,1),(0,1)〉
)

1 + z(0,1)
(
1 + z(−1,0)

)〈(0,1),(0,1)〉
+ z(−1,0)

(
1 + z(−1,0)

)〈(−1,0),(0,1)〉

=
z(0,1)

(
1 + z(0,1) + z(−1,1)

)

1 + z(0,1)
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d2�−→

z(0,1)
(
1+z(0,1)

)〈(0,1),(−1,0)〉
(
1+z(0,1)

(
1+z(0,1)

)〈(0,1),(−1,0)〉
+z(−1,1)

(
1+z(0,1)

)〈(−1,1),(−1,0)〉
)

1+z(0,1)
(
1+z(0,1)

)〈(0,1),(−1,0)〉

= z
(0,1)

(
1 + z

(−1,1)
)

.

In a consistent diagram, for any loop γ, we should get pµ,Din,s
(zm) = zm.

Whereas, here pµ,Din,s

(
z(0,1)

)
�= z(0,1). Making the diagram Din,s consistent

requires adding the single wall d3 =
(
R≥0(1,−1), 1 + z(−1,1)

)
. Following the

same loop γ as above, our calculation now has the additional step

z(0,1)
(
1 + z(−1,1)

)
d3�−→ z(0,1)

(
1 + z(−1,1)

)〈(0,1),(−1,−1)〉

·
(

1 + z(−1,1)
(
1 + z(−1,1)

)〈(−1,1),(−1,−1)〉
)

=
z(0,1)

1 + z(−1,1)

(
1 + z(−1,1)

)

= z(0,1)

and now pµ,Ds

(
z(0,1)

)
= z(0,1). In this example, the necessary wall-crossing au-

tomorphism can be seen by inspection of pµ,Din,s

(
z(0,1)

)
. In cluster scattering

diagrams with more than one outgoing wall, it is difficult to determine the sup-
port and associated wall-crossing automorphisms of those walls by inspection
of a similar calculation. Instead, there is a simple algorithm to produce Ds from
Din,s which was introduced in two dimensions by Kontsevich and Soibelman
[40] and then extended for arbitrary dimension by Gross and Siebert [32].

Mutation Invariance of Ordinary Cluster Scattering Diagrams. An ordinary
cluster algebra can be equivalently specified by any possible choice of initial
cluster - there is no particular canonical choice. In the language of scattering
diagrams, this means there should be no special choice of torus seed data. If two
torus seeds, s and s′ are mutation equivalent, we should therefore expect that
the corresponding cluster scattering diagrams Ds and Ds′ are also equivalent.
This expectation reflects the fact that Ds and Ds′ encode information about
the same ordinary cluster algebra.

To make the notion of mutation invariance precise, we must define the
following half-spaces and piecewise linear transformation:

Definition 2.22. (Definition 1.22 of [33]) For k ∈ Iuf, define

Hk,+ := {m ∈ MR : 〈ek,m〉 g 0},

Hk,− := {m ∈ MR : 〈ek,m〉 f 0}.

The piecewise linear transformation Tk : M◦ → M◦ is defined as

Tk(m) :=

{
m + vk〈dkek,m〉 m ∈ Hk,+

m m ∈ Hk,−

The shorthand notation Tk,− and Tk,+ is sometimes used to refer to Tk in the
respective regions Hk,− and Hk,+.
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Intuitively, the map Tk gives us a way to “mutate” cluster scattering
diagrams. By applying the map Tk to Ds, we obtain a new cluster scattering
diagram Tk(Ds) via the following algorithm (Definition 1.22 of [33]):

1. The wall dk = (e⊥
k , 1 + zvk) is replaced by d′

k := (e⊥
k , 1 + z−vk),

2. For each wall (d, fd) ∈ Ds\{dk}, there are either one or two walls in
Tk(Ds). The potential walls are

(Tk(d ∩ Hk,−), Tk,−(fd)) and (Tk(d ∩ Hk,+), Tk,+(fd)),

where Tk,±(fd) denotes the formal power series obtained by applying
Tk,± to each exponent in fd. The first wall is dropped if dim(d)∩Hk,− <
rank(M)−1 and the second wall is dropped if dim(d)∩Hk,+ < rank(M)−
1.

The following theorem justifies why we should think of the action of Tk as
mutation of the cluster scattering diagram.

Theorem 2.23. ([33, Theorem 1.24]) If the injectivity assumption holds, then
Tk(Ds) is a consistent scattering diagram and the diagrams Dμk(s) and Tk(Ds)
are equivalent.

Applying Theorem 2.23 multiple times gives the equivalence of Tk�
◦

· · · ◦ Tk1
(Ds) and Ds′ , where s and s′ are related by an arbitrary sequence of

mutations μk1
, . . . , μk�

, i.e. s′ = μk�
◦ · · · ◦ μk1

(s).
One frequently used semifield structure on Z is the max-plus structure,

where addition of elements is taken to be the maximum and multiplication to
be ordinary addition. We denote this semifield structure as ZT and refer to it
as the Fock–Goncharov tropicalization. The map Tk given in Definition 2.22
is in fact the Fock–Goncharov tropicalization of the birational mutation map
μk : As → As defined by the pullback μ∗

kzm = zm(1 + zvk)−〈dkek,m〉 as in
Equation (2).

Chamber Structure. The map Tk also gives rise to a chamber structure on
the cluster scattering diagram Ds. Within Ds, there are two important named
chambers.

Definition 2.24. Given a torus seed s, we define C±
s ⊆ MR as

C+
s := {m ∈ MR| 〈ei,m〉 g 0 for i ∈ Iuf},

C−
s := {m ∈ MR| 〈ei,m〉 f 0 for i ∈ Iuf}.

When s is clear from context, we omit the subscript and simply write C±. We
refer to C+ as the positive chamber and C− as the negative chamber.

The chambers C±
s are closures of connected components of MR\Supp(Ds).

Similarly, the chambers C±
μk(s) are closures of connected components of MR\

Supp(Dμk(s)). We can observe that this means the chambers T−1
k (C±

μk(s)) are

closures of connected components of MR\Supp(Ds). Further, C±
s and

T−1
k (C±

μk(s)) share a codimension one face with support e⊥
k . This creates the

following chamber structure on a subset of MR\Supp(Ds).
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Let Tv be the infinite tree with root v defined in Sect. 2.2. Let w be an
arbitrary distinct vertex of Ts. Then the sequence of edges between v and
w determines a map Tw : Tk�

◦ · · · ◦ Tk1
: MR → R. By Theorem 2.23, we

know that Tw(Ds) = Dsw
and so the chambers C±

w := T−1
w (C±

sw
) are closures

of connected components of MR\Supp(Ds).

Definition 2.25. (Definition 1.32 of [33]) Let ∆+
s denote the set of chambers

{C±
w } where w runs over the vertices of Ts. The elements of ∆+

s are referred
to as cluster chambers.

In fact, this chamber structure coincides with the Fock–Goncharov cluster
complex [16]. For further details, see Construction 1.30 and Section 2 of [33].

The chamber structure of a cluster scattering diagram is determined by
the structural properties of the associated cluster algebra. The Laurent expan-
sion of a cluster variable with respect to a particular initial cluster can be spec-
ified via two statistics: its F -polynomial and its g-vector. In [18], Fomin and
Zelevinsky give a definition of g-vectors in terms of a particular Zn-grading of
the ring of Laurent polynomials in x whose coefficients are integer polynomials
in y. Gross, Hacking, Keel, and Kontsevich [33] give a description of g-vectors
as the tropical points of theta functions. In the context of cluster scattering
diagrams, there is a correspondence between the g-vectors and the support
of the walls of the diagram. There is then also a correspondence between the
cluster chambers and initial seeds of the cluster algebra.

2.4. Theta Basis for Ordinary Cluster Algebras

One of the major results of the work of Gross, Hacking, Keel, and Kontsevich
[33] is the existence of the theta basis, a canonical basis for ordinary cluster
algebras. The collections of the theta functions which form this basis can be
defined on scattering diagrams via combinatorial objects called broken lines.

Definition 2.26. ([33, Definition 3.1]) Let D be a scattering diagram, m0 be
a point in M◦\{0}, and Q be a point in MR\Supp(D). A broken line with
endpoint Q and initial slope m0 is a piecewise linear path γ : (−∞, 0] →
MR\Sing(D) with finitely many domains of linearity. Each domain of linear-
ity, L, has an associated monomial cLzmL ∈ k[M◦] such that the following
conditions are satisfied:

1. γ(0) = Q
2. If L is the first domain of linearity of γ, then cLzmL = zm0 .
3. Within the domain of linearity L, the broken line has slope −mL—in

other words, γ′(t) = −mL on L.
4. Let t be a point at which γ is non-linear and is passing from one domain

of linearity, L, to another domain of linearity, L′, and define

Dt = {(d, fd) ∈ D : γ(t) ∈ d.}

Then the formal power series pµ|(t−ε,t+ε),Dt
(cLzmL) contains the term

cL′zmL′ .

Broken lines allow for a beautifully concrete and combinatorial definition
of a theta function:
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Definition 2.27. ([33, Definition 3.3]) Suppose D is a scattering diagram and
consider points m0 ∈ M◦\{0} and Q ∈ MR\Supp(D). For a broken line γ
with initial exponent m0 and endpoint Q, we define I(γ) = m0, b(γ) = Q, and
Mono(γ) = c(γ)zF (µ), where Mono(γ) is the monomial attached to the final
domain of linearity of γ. We then define

ϑQ,m0
:=
∑

µ

Mono(γ),

where the summation ranges over all broken lines γ with initial exponent m0

and endpoint Q. When m0 = 0, then for any endpoint Q we define ϑQ,0 = 1.

One of the key steps in proving that the theta functions form a basis is to
show that the cluster variables and cluster monomials, i.e. products of cluster
variables from a particular cluster, are themselves theta functions. Although
we will not reproduce the full proof, we will highlight several important in-
termediate properties and results. For the full set of definitions and technical
details of the proof, we refer the reader to [33, Sections 3, 4, 6, and 7].

One important property is that theta functions with the same initial
slope m0 but with distinct endpoints Q and Q′ are related by a path-ordered
product.

Theorem 2.28. ([33, Theorem 3.5]) Let D be a consistent scattering diagram,
m0 be a point in M\{0}, and consider a pair of points Q and Q′ in MR\Supp(D)
such that Q and Q′ are linearly independent over Q. Then for any path γ with
endpoints Q and Q′ for which pµ,D is defined, we have

ϑQ′,m0
= pµ,D(ϑQ,m0

).

Another important property is the existence of a bijection between broken
lines in the diagram Ds and in the diagram Dμk(s). Because the diagrams Ds

and Dμk(s) correspond to the same cluster algebra, this is a clearly desirable
property if the theta functions are going to form a canonical basis. That is,
any choice of initial cluster (i.e., cluster corresponding to the positive chamber)
should produce the same canonical basis, up to isomorphism. For V = At,

Proposition 2.29. ([33, Proposition 3.6]) The transformation Tk gives a bijec-
tion between broken lines with endpoint Q and initial slope m0 in Ds and broken
lines with endpoint Tk(Q) and initial slope Tk(m0) in Dμk(s). In particular,

ϑ
μk(s)
Tk(Q),Tk(m0)

=

{
Tk,+

(
ϑs

Q,m0

)
Q ∈ Hk,+

Tk,−

(
ϑs

Q,m0

)
Q ∈ Hk,−,

where the superscript indicates which scattering diagram is used to define the
theta function and Tk,± acts linearly on the exponents in ϑs

Q,m0
.

Although Proposition 2.29 gives a bijection between cluster scattering
diagrams generated by seeds that are related by a single mutation, repeated
applications of the proposition yield such bijections for any pair of cluster
scattering diagrams which correspond to the same cluster algebra.
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Finally, the theta functions have structure constants with an elegant com-
binatorial definition in terms of pairs of broken lines. Let p1, p2, and q be points

in M̃◦
s and z be a generic point in M̃◦

R,s. There are finitely many pairs of broken
lines γ1, γ2 such that γi has initial slope pi, both γ1 and γ2 have endpoint z,
and the sum of the slopes of their final domains of linearity is q. Define

αz(p1, p2, q) :=
∑

(µ1,µ2)
I(µi)=pi,b(µi)=z
F (µ1)+F (µ2)=q

c(γ1)c(γ2).

For points z sufficiently close to q, the constant αz(p1, p2, q) is independent of
the choice of z and we write α(p1, p2, q) := αz(p1, p2, q) [33, Proposition 6.4].
Products of theta functions can then be written as

ϑp1
· ϑp2

=
∑

q∈M̃s

α(p1, p2, q)ϑq ∈ ̂up(A
s

prin) ⊗
k[N+

s ] k[N ].

Hence, the theta functions form a legitimate vector space basis.

Moving from proving results about theta functions on scattering diagrams
to proving results about the ordinary cluster algebras requires formalizing the
connection between cluster scattering diagrams and cluster varieties. To do so,
Gross, Hacking, Keel, and Kontsevich construct a space Ascat from the cluster
scattering diagram Ds by attaching a copy of the torus TN◦ to each cluster
chamber of Ds and then gluing these copies according to the birational maps
given by the wall-crossing automorphisms. Up to isomorphism, this space is
independent of the choice of torus seed s within a given mutation class. Gross,
Hacking, Keel, and Kontsevich then show that the space Ascat is isomorphic
to the cluster variety As.

Once this identification is made, it is then possible to formalize the rela-
tionship between the theta functions and cluster monomials. Consider a set of
fixed data Γ and torus seeds s, sw = (e′

1, . . . , e
′
n). In this geometric context, a

cluster monomial on sw is defined as a monomial on TN◦,w ⊂ A of the form
zm where m =

∑n
i=1 aif

′
i with all ai non-negative. Such monomials extend to

regular functions on A. A cluster monomial on A is then a regular function
which is a cluster monomial on some torus seed of A. The following theorem
identifies the cluster monomials on A with theta functions.

Theorem 2.30. ([33, Theorem 4.9]) Let Γ be a set of fixed data which satisfies
the Injectivity Assumption and s be a choice of torus seed. Consider a point
Q ∈ C+

s and m ∈ σ ∩ M◦ for some cluster chamber σ ∈ ∆+
s . Then ϑQ,m is a

positive Laurent polynomial which expresses a cluster monomial of A in terms
of the initial torus seed s. Further, all cluster monomials can be expressed in
this way.

Gross, Hacking, Keel, and Kontsevich define the middle cluster algebra
to prove that the theta functions form a basis for the ordinary cluster algebra.
Their proof works primarily with Aprin and is then extended to A and X
using the fact that these varieties appear as a fiber and quotient, respectively,
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of Aprin. Let A∨
prin denote the Langlands dual of Aprin, defined in Sect. 6.1.

The middle cluster algebra associated with Aprin is then defined as

mid (Aprin) :=
⊕

q∈Θ

k · ϑq,

where Θ ⊂ A∨
prin(ZT ) is the collection of m0 such that for any generic point

Q ∈ σ ∈ ∆+, there are only finitely many broken lines with initial slope m0

and endpoint Q. The structure constants αz(p1, p2, q) make mid (Aprin) into
an associative and commutative k[N ]-algebra.

Gross, Hacking, Keel, and Kontsevich show there are canonical inclusions

ord (Aprin) ⊂ mid (Aprin) ⊂ up (Aprin) ,

and that, therefore, the theta functions form a basis for the ordinary cluster
algebra when the ordinary cluster algebra and upper cluster algebra coincide.
For the definitions of ord(Aprin) and up(Aprin), see Sect. 2.2.

3. Generalized Cluster Scattering Diagrams

In this section, we describe the construction of cluster scattering diagrams
for reciprocal generalized cluster algebras and prove important properties of
such diagrams. Definitions of generalized fixed data, generalized torus seed
data, generalized cluster varieties, and other fundamental objects are given in
Sect. 3.1. The construction of generalized cluster scattering diagrams is then
given in Sect. 3.2. The restriction to reciprocal generalized cluster algebras
will be necessary in the proof of Theorem 3.25, which establishes the mutation
invariance of generalized cluster scattering diagrams. Subsequently, Sect. 3.3
defines mutation at the diagram level and verifies that our generalized cluster
scattering diagrams are mutation invariant. Section 3.4 extends the description
of the chamber structure to generalized cluster scattering diagrams, thereby
showing that the Fock–Goncharov cluster chambers are the maximal cones of
a simplicial fan. In Sect. 3.5, we extend the definitions from Sect. 3.1 for the
principal coefficient case. Finally, in Sect. 3.6, we describe how to construct
a space Ascat from a generalized cluster scattering diagram and then how to
identify Ascat with the A-variety.

3.1. Fixed Data, Seed Data, and Generalized Cluster Varieties

We begin by updating some definitions for the generalized setting. First, we
update the definition of fixed data to include data from the exchange degree
matrix [rij ].

Definition 3.1. The following data are referred to as generalized fixed data,
denoted Γ:

• A lattice N called the cocharacter lattice with skew-symmetric bilinear
form {·, ·} : N × N → Q.

• A saturated sublattice Nuf ⊆ N called the unfrozen sublattice.
• An index set I with |I| = rank(N) and subset Iuf ⊆ I such that |Iuf| =

rank(Nuf).
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• A set of positive integers {di}i∈I such that gcd(di) = 1.
• A sublattice N◦ ⊆ N of finite index such that {Nuf, N

◦} ⊆ Z and {N,Nuf∩
N◦} ⊆ Z.

• A lattice M = Hom(N, Z) called the character lattice and sublattice
M◦ = Hom(N◦, Z).

• A set of positive integers {ri}i∈I .
• A collection {ai,j}i∈Iuf,j∈[ri−1] of formal variables.

The adjective ‘fixed’ refers to the fact that these data are fixed under mutation.

Note that the exchange polynomial coefficients {ai,j}i∈Iuf,j∈[ri−1] are for-
mal variables, rather than elements of k. As such, we must work over the
ground ring R = k[ai,j ], where k is a field of characteristic zero, rather than
over k as in the ordinary case. In doing so, we follow the work of [3] on cluster
varieties with coefficients. In particular, this will be necessary in the proof of
Proposition 5.8, but is not necessary to construct cluster scattering diagrams
and theta functions or to express generalized cluster monomials as theta func-
tions.

We also establish the notion of a generalized torus seed, also denoted s.

Definition 3.2. Given a set of generalized fixed data, we can define associated
generalized torus seed data s = {(ei, (ai,j))}i∈Iuf,j∈[ri−1] such that the collec-

tion {ei}i∈Iuf
satisfies the conditions for ordinary torus seed data and each

(ai,j) is a tuple of formal variables taken from the collection specified in the
fixed data.

Analogous to the ordinary case, this defines a dual basis {e∗
i }i∈I for M

and {fi = d−1
i e∗

i }i∈I for M◦. Note that when ri = 1 for all i, our definitions
reduce to the definitions for an ordinary torus seed.

We will confine our attention to the subclass of reciprocal generalized
cluster algebras:

Definition 3.3. A generalized torus seed s is called reciprocal if its scalar tuples
(ai,j) satisfy the reciprocity condition ai,j = ai,ri−j . We refer to the associated
algebra as a reciprocal generalized cluster algebra.

Note that in the definition [10] of a generalized cluster algebra, the mu-
tations of the exchange polynomial coefficients ak,s are of the form

a′
k,s = ak,rk−s,

and, therefore, mutation does not introduce new exchange polynomial coef-
ficients. This allows us to include the collection of all exchange polynomial
coefficients {ai,j} in the fixed data and work over the ground ring R = k[ai,j ]
when working with generalized cluster algebras. Because we work only with
reciprocal generalized cluster algebras, whose exchange polynomials are fixed
under mutation, we do not necessarily need to include the exchange polynomial
coefficients ai,j in the seed data. However, we include the (ordered) exchange
polynomial coefficients as part of that data to allow for future extension to
arbitrary generalized cluster algebras.
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Example 3.4. The generalized cluster algebra

A

(
x,y,

[
0 1

−1 0

]
,

[
3 0
0 1

]
, ((1, a, a, 1), (1, 1))

)

has generalized fixed data Γ with a rank 2 lattice N = N◦, the dual lattice
M = M◦, d = (1, 1), r = (3, 1), I = Iuf = {1, 2}, and skew-symmetric bilinear
form {·, ·} : N ×N → Z specified by the exchange matrix. One possible choice
of generalized torus seed data is

s = {(e1 = (1, 0), (1, a, a, 1)), (e2 = (0, 1), (1, 1))}.

Definition 3.5. Given generalized torus seed data s and some k ∈ Iuf, a muta-
tion in direction k of the generalized torus seed data is defined by the following
transformations of basis vectors and exchange polynomial coefficients:

e′
i :=

{
ei + rk[εik]+ek i �= k

−ek i = k

f ′
i :=

{
−fk + rk

∑
j∈Iuf

[−εkj ]+fj i = k

fi i �= k

a′
k,s := ak,rk−s.

The basis mutation induces the following mutation of the matrix [εij ]:

ε′
ij := {e′

i, e
′
j}dj =

⎧
⎪«
⎪¬

−εij k = i or k = j

εij k �= i, j and εikεkj f 0

εij + rk|εik|εkj k �= i, j and εikεkj g 0.

Note that when all rk = 1, the formulas in Definition 3.5 coincide with
those in Definition 2.11. Given generalized torus seed data s, we can then define
associated algebraic tori As and Xs. As we are working over the ground ring
R = k[ai,j ], we will consider the tori over the ring R = k[ai,j ]. More precisely,
for a lattice L, let

TL(R) := Spec (R[L∗] ⊗k R) = TL ×k Spec(R).

This notation then allows us to state the following definition:

Definition 3.6. A choice of generalized torus seed data s defines the tori:

Xs = TM (R) = TM ×k Spec(R) = Spec (k[N ]) ×k Spec(R)

As = TN◦(R) = TN◦ ×k Spec(R) = Spec (k[M◦]) ×k Spec(R).

Just as in the ordinary case, there are several common notational con-
ventions for the coordinates of these algebraic tori. We will use y1, . . . , yn for
the coordinates of Xs and x1, . . . , xn for the coordinates of As to be consistent
with the prevailing notation for ordinary and generalized cluster algebras.

Definition 3.7. We define birational maps μk : Xs → Xμk(s) and μk : As →
Aμk(s) via the pull-back of functions
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μ∗
kzm = zm

(
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + zrkvk

)−〈dkek,m〉

(8)

μ∗
kzn = zn

(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + zrkek

)−[n,ek]

(9)

for n ∈ N and m ∈ M◦.

Remark 3.8. The exchange relations given in Definition 2.2 can be recovered
from equations (8) and (9) by setting m = fi and n = ei. Consider the muta-
tion of xi = zfi and yi = zei in direction k. If i = k, then

μ∗
k(y′

k) = μ∗
k

(
ze′

k

)
= μ∗

k

(
z−ek

)
= z−ek (1 + · · · + zrkek)

−[−ek,ek]
= z−ek = y−1

k

and

µ
∗
k(x′

k) = µ
∗
k

(
z

f ′
k

)

= µ
∗
k

(
z

−fk+rk

∑
j∈Iuf

[−εkj ]+fj

)

= z
−fk+rk

∑
j∈Iuf

[−εkj ]+fj

(
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + z

rkvk

)−〈dkek,−fk+rk

∑
j∈Iuf

[−εkj ]+fj〉

= z
−fk

⎛
¿ ∏

j∈Iuf

z
[−εkj ]+fj

À
⎠

rk (
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + z

rkvk

)〈dkek,fk〉

·

⎛
¿ ∏

j∈Iuf

(
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + z

rkvk

)−〈dkek,[εkj ]+fj〉

À
⎠

= z
−fk

⎛
¿ ∏

j∈Iuf

z
[−εkj ]+fj

À
⎠

rk (
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + z

rkvk

)

= z
−fk

⎛
¿ ∏

j∈Iuf

z
[−εkj ]+fj

À
⎠

rk
⎛
¿1 + ak,1

⎛
¿ ∏

j∈Iuf

z
εkjfj

À
⎠+ · · · +

⎛
¿ ∏

j∈Iuf

z
εkjfj

À
⎠

rk
À
⎠

= x
−1
k

⎛
¿ ∏

j∈Iuf

x
[−bkj ]+
j

À
⎠

rk
⎛
¿1 + ak,1

⎛
¿ ∏

j∈Iuf

x
bkj

j

À
⎠+ · · · +

⎛
¿ ∏

j∈Iuf

x
bkj

j

À
⎠

rk
À
⎠ .

If i �= k, then

µ
∗
k(y′

i) = µ
∗
k

(
z

e′
i

)

= µ
∗
k

(
z

ei+rk[εik]+ek

)

= z
ei+rk[εik]+ek

(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + z

rkek

)−[ei+rk[εik]+ek,ek]

= z
eiz

rk[εik]+ek

(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + z

rkek

)−[ei,ek]

= z
ei

(
z
[εik]+ek

)rk
(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + z

rkek

)−εik

= yi

(
y
[bik]+
k

)rk (
1 + ak,1yk + · · · + ak,rk−1y

rk−1
k + y

rk

k

)−bik



640 M.-W. Cheung et al.

and

μ∗
k(x′

i) = μ∗
k

(
zf ′

i

)
= μ

(
zfi
)

= zfi (1 + ak,1z
vk + · · · + zrkvk)

−〈dkek,fk〉

= zfi = xi.

Remark 3.9. Let us examine why the ri − 1 scalars are included as extra data
in fixed data. We note that in Definition 2.2, which is the definition of gener-
alized cluster algebras from [49, Definition 2.2], Nakanishi [49, Equation (2.1)]
emphasised that his di (which is our ri) are not the scalars used to make the
exchange matrix skew-symmetric. While Eqs. (8) and (9) appear to be two
different type of mutations, we should always bear in mind that the y vari-
ables come from the cluster algebras with principal coefficients, i.e. one can
obtain the X mutation in Eq. (9) from Eq. (8) as the A case with princi-
pal coefficients. Although the notation is developed in later sections, one can
jump ahead to Remark 3.36 to see how we can obtain the X mutations from
the Aprin mutations. One can further consult Example 3.20 to see the effect
that varying the ri values can have even when the resulting exchange matrices
associated to the companion algebras (Sect. 6) are ‘the same’.

We are now working over polynomial ring R = k[ai,j ] instead of a char-
acteristic zero field k. Proposition 2.4 in [30] can be generalized to this setting
by working through [34]. We will state the version in [3] for this setting.

Proposition 3.10. ([3, Lemma 3.10]) Let {Si} be a collection of integral, sep-
arate schemes of finite type over a locally Noetherian ring R, with birational
maps fij : Si → Sj for all i, j, with fii = Id and fjk ◦ fij = fik as rational
maps. Let Uij ⊂ Si be the largest open subscheme such that fij : Uij → fij(Uij)
is an isomorphism. Then there exists a scheme

S :=
⋃

i

Si

which is obtained by gluing the Si along the open sets Uij via the maps fij.

As in the ordinary setting, let Tv be a directed infinite rooted tree where
each vertex has |Iuf| outgoing edges, labeled by the elements of Iuf. An edge
with label k ∈ Iuf now corresponds to generalized mutation in direction k.
Hence, any simple path beginning at vertex v determines a sequence of muta-
tions and an associated generalized torus seed sw for each vertex w of Tv. We
attach copies of Xsw

and Asw
to each vertex w.

Definition 3.11. The generalized A cluster variety is the scheme

A :=
⋃

s∈T

As

obtained using Proposition 3.10 to glue the collection of algebraic tori {As}s∈T

according to the birational maps μk : As → Aμk(s) specified in Definition 3.7.
Analogously, the generalized X cluster variety is defined to be the scheme

X :=
⋃

s∈T

Xs
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obtained by gluing the collection {Xs}s∈T according to the birational maps
μk : Xs → Xμk(s).

For readability, we will often refer to the these schemes simply as the A-
variety and X -variety when it is clear from context that they are generalized
cluster varieties rather than ordinary cluster varieties.

The upper generalized cluster algebra up(V ) associated to a generalized
cluster variety V is defined as up(V ) := Γ(V,OV ). Equivalently, it is defined
in [23] as

up (A) :=
⋂

clusters{x1,...,xn} of A

R[x±1
1 , . . . , x±1

n ] ⊂ F .

The generalized cluster algebra gen(V ) associated to a generalized cluster va-
riety V is the subalgebra of up(V ) generated by the set of global monomials
on V .

Intuitively, we expect that the construction of the generalized A-variety
and X -variety should not depend on the choice of seed—that is, mutation
equivalent seeds s and s′ should yield isomorphic schemes. The two smaller
commutative diagrams in the following proposition show that structures of
the tori given in Definition 3.6 are compatible with generalized torus seed
data mutation. This induces a similar compatibility for A and X .

Proposition 3.12. Let K = ker(p∗
2) and K◦ = K ∩ N◦. For a given general-

ized torus seed s and mutation direction k ∈ [n], the following diagrams are
commutative:

TK◦ As Xs TK∗

TK◦ Aμk
(s) Xμk(s) TK∗

=

p

μk μk =

p

T(N/N∗
uf)

Xs As TN◦/(Nuf∩N◦)

T(N/N∗
uf)

Xμk(s) Aμk(s) TN◦/(Nuf∩N◦)

= μk μk =

Proof. There are several unlabeled maps in the above commutative diagrams.
Those maps come from the following structures, as described in [30]:

1. The inclusion K ⊆ N induces a map Xs → TK∗ .
2. The inclusion K◦ → N◦ induces a map TK◦ → As.
3. Let N⊥

uf := {m ∈ M◦ : 〈m,n〉 = 0 for all n ∈ Nuf}. Then the inclusion
N⊥

uf ⊆ M◦ induces a map As → TN◦/(Nuf∩N◦).
4. The choice of the map p∗ : N → M◦ defines a map p : As → Xs. The

map p∗ : N → M◦ induces maps p∗ : K → N⊥
uf and p∗ : N/Nuf → (K◦)∗

which define maps p : TN/(Nuf∩N◦) → TK∗ and p : TK◦ → T(N/N∗
uf)

.

Using the definitions of these maps, p, and μk, it is straightforward to check
the commutativity of each square. �
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3.2. Generalized Cluster Scattering Diagrams

As in the ordinary case, we will be interested in a particular scattering diagram
which is defined by the generalized fixed and torus seed data. To define this
diagram, which we refer to as the generalized cluster scattering diagram, we
begin by modifying the definition of a wall to reflect the fact that we are now
working over the ground ring R = k[ai,j ] rather than over k.

As before, we assume that the map p∗
1 : Nuf → M◦ is injective. This Injec-

tivity Assumption ensures that we are able to choose a convex top-dimensional
cone σ ⊂ MR with associated monoid P := σ ∩ M◦ such that p∗

1(ei) ∈
J := P\P× for all i ∈ Iuf. If p∗

1 is not injective, then P may fail to be
full-dimensional. Although injectivity is not guaranteed for an arbitrary set
of fixed data, it is guaranteed in the principal coefficient case, which we will
discuss in Sect. 3.5. For this reason, the results in Sect. 5 are proved via the
principal coefficient case and then extended to arbitrary generalized cluster
varieties.

As in Sect. 2.3, set

N+ := N+
s :=

{∑

i∈Iuf

aiei

∣∣∣∣∣ ai g 0,
∑

ai > 0

}

and choose a linear function d : N → Z such that d(n) > 0 for n ∈ N+.

Definition 3.13. A wall in MR is a pair (d, fd) ∈ (N+, R̂[P ]) such that for some
primitive n0 ∈ N+,

1. fd ∈ R̂[P ] has the form 1 +
∑∞

j=1 cjz
jp∗

1(n0) with cj ∈ R.

2. d ⊂ n⊥
0 ⊂ MR is a (rank M − 1)-dimensional convex rational polyhedral

cone.

We refer to d ⊂ MR as the support of the wall (d, fd).

Let m now denote the ideal in R̂[P ] which consists of formal power series
with constant term zero. The definitions of a scattering diagram, wall-crossing
automorphism, and path-ordered product must then either be updated to re-
flect the change in ground ring or read with the understanding that m now

denotes an ideal in R̂[P ] rather than in k̂[P ]. We give the statements of these
definitions in the generalized setting below, for the sake of completeness.

Definition 3.14. A scattering diagram D for N+ and s is a set of walls {(d, fd)}
such that for every degree k > 0, there are a finite number of walls (d, fd) ∈ D

with fd �= 1 mod mk+1.

Definition 3.15. For n0 ∈ N+, let m0 := p∗
1(n0) and f = 1 +

∑∞
k=1 ckzkm0 ∈

R̂[P ]. Then pf ∈ R̂[P ] denotes the automorphism

pf (zm) = zmf 〈n′
0,m〉

where n′
0 generates the monoid R≥0n0 ∩ N◦.



Cluster Scattering Diagrams and Theta Functions 643

Definition 3.16. Let γ : [0, 1] → MR\Sing(D) be a smooth immersion which
crosses walls transversely and whose endpoints are not in the support of D.
Let 0 < t1 f t2 f · · · f ts < 1 be a sequence such that at time ti the path γ
crosses the wall di such that fi �= 1 mod mk+1. Definition 2.16 ensures that
this is a finite sequence. For each i ∈ {1, . . . , s}, set εi := −sgn(〈ni, γ

′(ti)〉),
where ni ∈ N+ is the primitive vector normal to di. For each degree k > 0,
define

pk
µ,D := pεs

fdts

◦ · · · ◦ pε1
fdt1

,

where pfdti
is defined as in Definition 3.15. Then,

pµ,D := lim
k→∞

pk
µ,D.

We refer to pµ,D as a path-ordered product.

Generalized cluster scattering diagrams have the same notions of equiva-
lence and uniqueness as ordinary scattering diagrams. To define them, we first
define the initial scattering diagrams for generalized cluster algebras.

Definition 3.17. Let vi = p∗
1(ei) for i ∈ Iuf. Then we define

Din,s := {(e⊥
i , 1 + ai,1z

vi + ai,2z
2vi + · · · + ai,ri−1z

(ri−1)vi + zrivi)}i∈Iuf
.

Similar to [33, Theorem 1.12], we obtain:

Theorem 3.18. Given a generalized torus seed s, there exists a consistent scat-
tering diagram Ds such that Din,s ⊂ Ds and Ds\Din,s consists only of walls
d ⊂ n⊥

0 with p∗
1(n0) �∈ d. The scattering diagram Ds is unique up to equivalence.

Proof. The proof given in Section 1.2 and Appendix C of [33] for ordinary
cluster scattering diagrams holds in our generalized setting. That proof is a
special case of results from [32] and [40] and holds in our setting because it
does not require that the wall-crossing automorphisms are strictly binomial.

�

The generalized cluster scattering diagram Ds is the unique (up to equiv-
alence) consistent scattering diagram obtained by adding walls to Din,s.

Example 3.19. The generalized cluster algebra from Example 3.4 has bira-
tional maps μ1, μ2 defined by the pullbacks

μ∗
X ,1z

n = zn(1 + az(1,0) + az(2,0) + z(3,0))−[n,(1,0))],

μ∗
A,1z

m = zm(1 + az(0,1) + az(0,2) + z(0,3))−〈(1,0)),m〉,

μ∗
X ,2z

n = zn(1 + z(0,1))−[n,(0,1)],

μ∗
A,2z

m = zm(1 + z(−1,0))−〈(0,1),m〉.

Since the p∗ map is injective in this case, the initial A scattering diagram is
of the form

Din,s = {((0, 1)⊥, 1 + z(−1,0)), ((1, 0)⊥, 1 + az(0,1) + az(0,2) + z(0,3))},

which can be drawn as
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d1

d2

γ

γ′

fd1
= 1 + z(−1,0)

fd2
= 1 + az(0,1) + az(0,2) + z(0,3)

Consider the paths γ (drawn in red, on the left) and γ′ (drawn in blue, on
the right). We can demonstrate that the diagram Din,s is not consistent by
computing pµ,Din,s

and pµ′,Din,s
. We compute pµ,Din,s

as

z(1,1) d2�−→ z(1,1)
(
1 + az(0,1) + az(0,2) + z(0,3)

)〈(1,1),(1,0)〉

= z(1,1)
(
1 + az(0,1) + az(0,2) + z(0,3)

)

d1�−→ z(1,1)
(
1 + z(−1,0)

)〈(1,1),(0,1)〉

·
(

1+az(0,1)
(
1+z(−1,0)

)〈(0,1),(0,1)〉
+ az(0,2)

(
1 + z(−1,0)

)〈(0,2),(0,1)〉

+z(0,3)
(
1 + z(−1,0)

)〈(0,3),(0,1)〉

)

= z(1,1)
(
1 + z(−1,0)

)(
1 + az(0,1)

(
1 + z(−1,0)

)

+az(0,2)
(
1 + z(−1,0)

)2

+ z(0,3)
(
1 + z(−1,0)

)3
)

.

Similarly, we compute pµ′,Din,s
as

z(1,1) d1�−→ z(1,1)
(
1 + z(−1,0)

)〈(1,1),(0,1)〉

= z(1,1)
(
1 + z(−1,0)

)

d2�−→ z(1,1)
(
1 + az(0,1) + az(0,2) + z(0,3)

)〈(1,1),(1,0)〉

(
1 + z(−1,0)

(
1 + az(0,1) + az(0,2) + z(0,3)

)〈(−1,0),(1,0)〉
)

= z(1,1)
(
1+az(0,1)+az(0,2)+z(0,3)

)(
1+

z(−1,0)

(
1 + az(0,1) + az(0,2) + z(0,3)

)
)

= z(1,1)
(
1 + az(0,1) + az(0,2) + z(0,3) + z(−1,0)

)
.
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Observe that pµ,Din,s
�= pµ′,Din,s

. Hence, Din,s is by definition not consistent.
Making the diagram consistent requires adding four walls:

d3 =
(
R≥0(1,−3), 1 + z(−1,3)

)
,

d4 =
(
R≥0(1,−2), 1 + az(−1,2) + az(−2,4) + z(−3,6)

)
,

d5 =
(
R≥0(2,−3), 1 + z(−2,3)

)
,

d6 =
(
R≥0(1,−1), 1 + az(−1,1) + az(−2,2) + z(−3,3)

)
.

The consistent diagram is shown in Example 3.23.

Example 3.20. Consider the family of generalized cluster algebras

Ab,r =

(
(x1, x2), (y1, y2),

[
0 b2

−b1 0

]
,

[
r1 0
0 r2

]
, (a1, a2)

)
,

where r1b1 = r2b2 = 2. Each generalized cluster algebra has I = Iuf = {1, 2}
and skew-symmetric bilinear form {·, ·} : N × N → Q given by {ei, ej} = δij .
The rest of the generalized fixed data associated to each such generalized
cluster algebra is summarized in the following table:

A(2,2),(1,1) A(2,1),(1,2) A(1,2),(2,1) A(1,1),(2,2)

b (2, 2) (2, 1) (1, 2) (1, 1)
r (1, 1) (1, 2) (2, 1) (2, 2)
N span{e1, e2} span{e1, e2} span{e1, e2} span{e1, e2}
N◦ span{2e1, 2e2} span{2e1, e2} span{e1, 2e2} span{e1, e2}
M span{e∗

1, e
∗
2} span{e∗

1, e
∗
2} span{e∗

1, e
∗
2} span{e∗

1, e
∗
2}

M◦ span
{

1
2e∗

1,
1
2e∗

2

}
span

{
1
2e∗

1, e
∗
2

}
span

{
e∗
1,

1
2e∗

2

}
span {e∗

1, e
∗
2}

{ai,j} ∅ {a2,1 = a} {a1,1 = a} {a1,1 = a, a2,1 = b}.

Let e1 = (1, 0) and e2 = (0, 1). One natural choice of a set of generalized
torus seeds for this family of generalized cluster algebras is

sA(2,2),(1,1)
:= ((e1, (1, 1)), (e2, (1, 1))) ,

sA(2,1),(1,2)
:= ((e1, (1, 1)), (e2, (1, a, 1))) ,

sA(1,2),(2,1)
:= ((e1, (1, a, 1)), (e2, (1, 1))) ,

sA(1,1),(2,2)
:= ((e1, (1, a, 1)), (e2, (1, b, 1))) .

For this set of generalized torus seeds, we have

Din,A(2,2),(1,1)
=
{(

(1, 0)⊥
, 1 + z

(0,2)
)

,

(
(0, 1)⊥

, 1 + z
(−2,0)

)}
,

Din,A(2,1),(1,2)
=
{(

(1, 0)⊥
, 1 + z

(0,1)
)

,

(
(0, 1)⊥

, 1 + az
(−2,0) + z

(−4,0)
)}

,

Din,A(1,2),(2,1)
=
{(

(1, 0)⊥
, 1 + az

(0,2) + z
(0,4)

)
,

(
(0, 1)⊥

, 1 + z
(−1,0)

)}
,

Din,A(1,1),(2,2)
=
{(

(1, 0)⊥
, 1 + az

(0,1) + z
(0,2)

)
,

(
(0, 1)⊥

, 1 + bz
(−1,0) + z

(−2,0)
)}

.
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A(2,2),(1,1)

d
−

0

d
+
0

d
+
1

d
+
2
...

d
−

1 d
−

2
. . . f

f
d

−

0

= 1 + z(0,2)

f
d
+

0

= 1 + z(−2,0)

f
d

−

n

= 1 + z(−2n,2(n+1))

f
d
+
n

= 1 + z(−2(n+1),2n)

f =
1

(1 − z(−2,2))2

A(2,1),(1,2)

d
−

0

d
+
0

d
+
1
...

...

d
−

1

f

f
d

−

0

= 1 + z(0,1)

f
d
+

0

= 1 + az(−2,0) + z(−4,0)

f
d

−

n

=

{

1 + az(−2(n+1),n+2) + z(−4(n+1),2(n+2)) n odd

1 + z(−(n+1),(n+2)/2) n even

f
d
+
n

=

{

1 + z(−2(n+1),n) n odd

1 + az(−(n+1),n/2) + z(−2(n+1),n) n even

A(1,2),(2,1)

d
−

0

d
+
0

d
+
1

. . .d
−

1
. . . f

f
d

−

0

= 1 + az(0,2) + z(0,4)

f
d
+

0

= 1 + z(−1,0)

f
d

−

n

=

{

1 + z(−n,2(n+1)) n odd

1 + az(−n/2,n+1) + z−n,2(n+1) n even

f
d
+
n

=

{

1 + az−(n+4),2(n+3) + z(−2(n+4),4(n+3)) n odd

1 + z(−(n+4)/2,n+3) n even

A(1,1),(2,2)

d
−

0

d
+
0

d
+
1

d
+
2
...

d
−

1 d
−

2
. . . f

f
d

−

0

= 1 + az(−1,0) + z(−2,0)

f
d
+

0

= 1 + bz(0,1) + z(0,2)

f
d
+
n

=

{

1 + bz(−(n+1),n) + z(−2(n+1),2n) n odd

1 + az(−(n+1),n) + z(−2(n+1),2n) n even

f
d

−

n

=

{

1 + az(−n,n+1) + z(−2n,2(n+1)) n odd

1 + bz(−n,n+1) + z(−2n,2(n+1)) n even

Figure 1. The known ordinary cluster scattering diagram
for A(2,2),(1,1) and partially computed generalized cluster scat-
tering diagrams for A(1,2),(2,1), A(2,1),(1,2), and A(1,1),(2,2) dis-
cussed in Example 3.20
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Table in Fig. 1 shows the known cluster scattering diagram for A(2,2),(1,1) and
partially computed cluster scattering diagrams for A(1,2),(2,1), A(2,1),(1,2), and
A(1,1),(2,2). While Theorem 3.18 guarantees the existence of consistent gener-
alized cluster scattering diagrams, the wall structures of the diagrams are not
explicitly laid out.

Observe that when a = b = 0, the generalized cluster scattering diagram
for A(1,1),(2,2) reduces to the known cluster scattering diagram for A(2,2),(1,1),
where the wall-crossing automorphisms are known. See [53] for the X setting,
and [11, Figure 2] for the A setting. For A(1,2),(2,1), A(2,1),(1,2), and A(1,1),(2,2),
the incoming walls can be computed by definition and the outgoing walls in
the cluster complex follow from the generalized mutation rule. It is difficult,
however, to determine what wall-crossing automorphism f should be attached
to the limiting ray to make the diagram consistent.

3.3. Mutation Invariance of Generalized Cluster Scattering Diagrams

We must slightly tweak the mutation of ordinary scattering diagrams. We use
the same definitions of Hk,+ and Hk,−, but modify the definition of Tk and
the procedure for applying Tk as follows:

Definition 3.21. We define the piecewise linear transformation Tk : M◦ → M◦

as

Tk(m) :=

{
m + rkvk〈dkek,m〉 m ∈ Hk,+

m m ∈ Hk,−.

As before, we sometimes use the shorthand Tk,− and Tk,+ to refer to Tk in,
respectively, the regions Hk,+ and Hk,−.

Definition 3.22. The scattering diagram Tk(Ds) is obtained from Ds via the
following procedure:

1. For each wall (d, fd) in Ds other than dk := (e⊥
k , 1 + a1z

vk + · · · +

ark−1z
(rk−1)vk + zrkvk), there are either one or two corresponding walls

in Tk(Ds). If dim(d ∩ Hk,−) g rank(M) − 1, then add to Tk(Ds) the wall
(Tk(d∩Hk,−), Tk,−(fd)) where the notation Tk,±(fd) indicates the formal
power series obtained by applying Tk,± to the exponent of each term of
fd. If dim(d∩Hk,+) g rank(M)−1, add the wall (Tk(d∩Hk,+), Tk,+(fd)).

2. The wall dk in Ds becomes the wall d′
k = (e⊥

k , 1 + a1z
−vk + · · · + ark−1

z−(rk−1)vk + z−rkvk) in Tk(Ds).

Example 3.23. Consider the generalized cluster algebra

A

(
x,y,

[
0 1

−1 0

]
,

[
3 0
0 1

]
, ((1, a, a, 1), (1, 1))

)

with seed data s = (((1, 0), (1, a, a, 1)), ((0, 1), (1, 1))). Note that the injectivity
assumption is satisfied in this example. For this algebra, we have r1 = 3, r2 = 1,
and d1 = d2 = 1. By definition, this means that

ε12 = {e1, e2}d2 = 1

ε21 = {e2, e1}d1 = −1
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v1 = p∗
1((1, 0)) = (0, 1)

v2 = p∗
1((0, 1)) = (−1, 0)

and the initial cluster scattering diagram is

Din,s =
{

((1, 0), 1 + z(−1,0)), ((0, 1), 1 + az(0,1) + az(0,2) + z(0,3))
}

.

Adding walls to make Din,s consistent, we obtain the following:

d1

d2

d6

d5d4d3

C+
fd1

= 1 + z(−1,0)

fd2
= 1 + az(0,1) + az(0,2) + z(0,3)

fd3
= 1 + z(−1,3)

fd4
= 1 + az(−1,2) + az(−2,4) + z(−3,6)

fd5
= 1 + z(−2,3)

fd6
= 1 + az(−1,1) + az(−2,2) + z(−3,3)

By definition, we have the half-planes

H2,+ = {(0, y) : y > 0}

H2,− = {(0, y) : y < 0}

which are shown on Ds in blue, for H2,+, and red, for H2,−. To mutate in
direction k = 2, we will use the linear transformation

T2(m) =

{
m + (−1, 0)〈(0, 1),m〉 m ∈ H2,+

m m ∈ H2,−.

Because T2 fixes the walls in H2,−, the only walls that change under T2 are d1

and d2 ∩ R≥0(0, 1). Because the support of d1 is e⊥
2 = (1, 0), it is transformed

via the procedure outlined in (2) of Definition 3.22 and becomes

d′
1 = (e⊥

2 , 1 + z(1,0))

To determine the image of d2 ∩ R≥0(0, 1), we compute

T2((0, 1)) = (0, 1) + (−1, 0)〈(0, 1), (0, 1)〉 = (−1, 1)

Because T2 is a linear transformation, we know that T2((0, 2)) = (−2, 2) and
T2((0, 3)) = (−3, 3). As such,

T2(d2 ∩ R≥0(0, 1)) = (R≥0(−1, 1), 1 + a(−1,1) + az(−2,2) + z(−3,3))

and we draw T2(Ds) as
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(d1, 1 + z(1,0))

d2

d6

d5d4d3

C+

where fd2
, fd3

, fd4
, fd5

, and fd6
are the same automorphisms as in Ds. We can

also compute the new basis vectors e′
1 and e′

2 using Definition 3.5:

e′
1 = e1 + r2[ε12]+e2

= (1, 0) + (0, 1)

= (1, 1)

e′
2 = −e2 = (0,−1).

Because A has exchange polynomials with reciprocal coefficients, the exchange
polynomial coefficients are fixed under mutation. So we have

μ2(s) = (((1, 1), (1, a, a, 1)), ((0,−1), (1, 1))).

Recall that by definition, the basis vectors e1 = (1, 0) and e2 = (0, 1) of the
original torus seed s form a basis for the lattice N . Observe that the vectors
e′
1 = (1, 1) and e′

2 = (0,−1) obtained via torus seed mutation are another
choice of basis for N .

Each cluster mutation μk can be defined by a triple (n,m, r) ∈ N ×M ×
Z≥0 with 〈n,m〉 = 0. Emulating the notation of [30], we denote this mutation
as μ(n,m,r). It is defined by the pullback

μ∗
(n,m,r)

(
zm′
)

= zm′

·
(
1 + a1z

m + · · · + ar−1z
(r−1)m + zrm

)〈n,m′〉

,

where a1, . . . , ar−1 are scalars and r ∈ Z≥0.
Recall from Sect. 2.3 that we refer to the max-plus tropicalization of Z as

the Fock–Gonacharov tropicalization and denote it as ZT . Let μ : TN → TN

be a positive birational map. Then μT : N → N denotes the induced map
TN (ZT ) → TN (ZT ).

Proposition 3.24. (Analogue of Proposition 2.4 of [33]) The map Tk : M◦ → M◦

given in Definition 3.21 is the Fock–Goncharov tropicalization of the map
μ(vk,dkek,rk).

Proof. The map μ(dkek,vk,rk) : TM◦ → TM◦ is defined by the pullback

μ∗
(vk,dkek,rk) (zm) = zm

(
1 + a1z

vk + · · · + ark−1z
(rk−1)vk + zrkvk

)〈dkek,m〉
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By definition, μ〈dkek,vk,rk〉 has Fock–Goncharov tropicalization

μT
dkek,vk,rk

: N → N

x �→ x + rk[〈dkek, x〉]+vk.

Observe that when x ∈ Hk,−, then 〈dkek, x〉 f 0 and the above map reduces
to x �→ x. When x ∈ Hk,+, then 〈dkek, 〉 g 0 and the map reduces to x �→
x+ rkvk〈dkek, x〉. Hence, the tropicalization agrees exactly with our definition
of Tk, as desired. �

Theorem 3.25. ([33, Theorem 1.24]) If the injectivity assumption holds, then
Tk(Ds) is a consistent scattering diagram for N+

μk(s). Moreover, the diagrams

Dμk(s) and Tk(Ds) are equivalent.

We need to show that Tk(Ds) is a scattering diagram for gμk(s) and

N+
μk(s). As in the ordinary case, the major technical hurdle in doing so is the

fact that the wall-crossing automorphisms of Ds and Dμk(s) live in different

completed monoid rings. Those in Ds live in R̂[P ], where P is the monoid

generated by {vi}i∈Iuf
. Those in Dμk(s) live, instead, in R̂[P ′], where P ′ is the

monoid generated by {v′
i}i∈Iuf

.

To overcome this difficulty, we define an additional monoid P which con-
tains both P and P ′. Let σ ⊆ M◦ be a top-dimensional cone which contains
the vectors {vi}i∈Iuf

and −vk, such that σ ∩ (−σ) = Rvk. For a fixed choice of

σ, let P := σ ∩ M◦ and J = P\(P ∩ Rvk) = P\P
×

.

Even after choosing an appropriate monoid P , we still have to deal with
the fact that the wall-crossing automorphism associated to the wall

dk =
(
e⊥
k , 1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + zvk

)
=: (e⊥

k , fk)

is an automorphism of the localization R̂[P ]fk
rather than the ring R̂[P ], where

the completions are with respect to the ideal J . Let pdk
∈ R̂[P ]fk

denote the
automorphism associated with crossing dk from Hk,− into Hk,+. By definition,

pdk
(zm) = zm(1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + zvk)−〈dkek,m〉.

We can then define

N+,k
s :=

⎧
«
¬
∑

i∈Iuf

aiei

∣∣∣∣∣ ai ∈ Z≥0 for i �= k, ak ∈ Z, and
∑

i∈Iuf\{k}

ai > 0

«
¬
­ .

Because s′ = (s\{vk}) ∪ {−vk}, the conditions of this definition mean that

N+,k
s = N+,k

s′ . As such, we can use the abbreviated notation N+,k without
introducing any ambiguity.

To allow us to work in P , we need to slightly modify the definition of a
scattering diagram:

Definition 3.26. Given the monoid P and ideal J , a wall is a pair (d, fd) such
that for some primitive n0 ∈ N+,k,
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1. fd ∈ R̂[P ] has the form 1 +
∑∞

k=1 ckzkp∗(n0) and is congruent to 1 mod
J ,

2. and d ⊂ n⊥
0 ⊂ MR is a (rank(N) − 1)-dimensional convex rational poly-

hedral cone.

For a seed s, the slab is dk = (e⊥
k , 1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + zvk).

Because vk ∈ P
×

, the slab does not qualify as a wall under the above definition.
So we extend the definition of a scattering diagram D such that:

1. D contains a collection of walls and potentially the slab dk, and
2. for k > 0, we have fd ≡ 1mod Jk for all but finitely many walls of D.

In this modified scattering diagram, crossing a wall or slab (d, fd) induces

an automorphism p±1
fd

∈ R̂[P ]fk
. Note that the localization at fk is only really

required when crossing dk, as otherwise fd lives in R̂[P ].
The proof of Theorem 3.25 requires the following result:

Theorem 3.27. (Analogue of Theorem 1.28 of [33]) There exists a scattering
diagram Ds such that

• Ds ⊇ Din,s,

• Ds\Din,s consists of only outgoing walls,

• and the path-ordered product pµ,D ∈ R̂[P ]fk
depends only on the endpoints

of γ.

Such Ds is unique up to equivalence. Further, because Ds is also a scattering
diagram for N+

s , it is equivalent to Ds. Moreover, this implies that the only
wall contained in e⊥

k is the slab dk

The proof given in [33] in the ordinary setting also holds in our generalized
setting. Because that proof is quite lengthy, we do not reproduce it here.

We will also need the following definition:

Definition 3.28. A codimension two convex rational polyhedral cone j is a joint
of the scattering diagram D if either every wall d ⊆ n⊥ that contains j has
direction −p∗(n) = −{n, ·} tangent to j or direction not tangent to j. In the
first case, where every wall is tangent to j, we call the joint parallel. In the
second case, we call the joint perpendicular.

We are now prepared to prove Theorem 3.25:

Proof. Let s = {ei}i∈I be a fixed choice of generalized torus seed and s′ :=
μk(s) = {e′

i}i∈I . From Theorem 3.27, we know that the scattering diagrams
for s and s′ are unique up to equivalence and therefore we can choose repre-
sentative scattering diagrams Ds and Ds′ .

Notice that if zm ∈ J i for some i > 0, then zTk,±(m) ∈ J i. As such,
Tk(Ds) is also a scattering diagram for the seed s′ in the slightly extended
sense of Definition 3.26. To use Theorem 3.27 to show that Ds′ and Tk(Ds)
are equivalent, we need to (1) verify that Tk(Ds) is consistent and (2) show
that both diagrams are equivalent to diagrams with the same set of slabs and
incoming walls.
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We can begin by showing that Tk(Ds) is consistent. To do so, we need to
show that pµ,Tk(Ds) = id for any loop γ for which the path-ordered product is
defined. Because Ds is consistent and so by definition pµ,D = id whenever the
path-ordered product is defined, one strategy is to show that pµ,Tk(Ds) = pµ,Ds

and, therefore, pµ,Tk(Ds) = id. In areas of Ds, where Tk is linear, the consistency
of a loop in Tk(Ds) is an immediate consequence of linearity since each wall is
crossed either not at all or in both possible directions.

Therefore, we need only be concerned about when γ is a loop around a
joint j of Ds which is contained in the slab dk. Given such γ, we can subdivide
it as γ = γ1γ2γ3γ4 where γ1 crosses dk, γ2 ⊆ Hk,+ contains all the crossings of
walls in Ds which contain j and lie in Hk,+, γ3 crosses d4, and γ4 contains all
the crossings of walls in Ds that contain j and lie in Hk,−. We can also assume
that it has a basepoint Q in Hk,−.

One example of a possible subdivision of γ is shown below:

. . .

. . .

Q

γ2

γ4

γ1 γ3

Hk,+

Hk,−

Let pdk
denote the wall-crossing automorphism for crossing dk from Hk,− into

Hk,+. Similarly, let pdk
denote crossing d′

k from Hk,− into Hk,+. Explicitly, we
have

pdk
(zm) = zm

(
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + zrkvk

)−〈dkek,m〉

pd′
k
(zm) = zm

(
1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z−rkvk

)−〈dkek,m〉

.

Because dk is the only wall contained in e⊥
k , we know that pµ1,Ds

= pdk

and pµ3,Ds
= p−1

dk
. Let α : k[M◦] → k[M◦] be the automorphism α(zm) =

zm+rkvk〈dkek,m〉 induced by Tk,+. Let v′
i = p∗(e′

i). Because e′
k = −ek, observe

that the slab for s′ is

d′
k =

(
(e′

k)⊥, 1 + ak,1z
v′

k + · · · + ak,rk−1z
(rk−1)v′

k + zrkv′
k

)

=
(
e⊥
k , 1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z−rkvk

)
,

We can then observe the following relationships:

pµ1,Tk(Ds) = pd′
k

pµ2,Tk(Ds) = α ◦ pµ2,Ds
◦ α−1

pµ3,Tk(Ds) = p−1
d′

k
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pµ4,Tk(Ds) = pµ4,Ds
.

So we have

pµ,Ds
= pµ4,Ds

◦ pµ3,Ds
◦ pµ2,Ds

◦ pµ1,Ds

= pµ4,Ds
◦ p−1

dk
◦ pµ2,Ds

◦ pdk
,

pµ,Tk(Ds) = pµ4,Tk(Ds) ◦ pµ3,Tk(Ds) ◦ pµ2,Tk(Ds) ◦ pµ1,Tk(Ds)

= pµ4,Ds
◦ p−1

d′
k

◦ α ◦ pµ2,Ds
◦ α−1 ◦ pd′

k
,

and showing that pµ,Ds
= pµ,Tk(Ds) reduces to showing that α−1 ◦ pd′

k
= pdk

.
Using the fact that ak,i = ak,rk−i, observe that

α
−1 (

pd
′
k
(zm)

)

= α
−1

(
z

m
(
1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z

−rkvk

)−〈dkek,m〉
)

= z
m−rkvk〈dkek,m〉

(
1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z

−rkvk

)−〈dkek,m〉

= z
m
(
z

rkvk

(
1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z

−rkvk

))−〈dkek,m〉

= z
m
(
z

rkvk + ak,1z
(rk−1)vk + · · · + ak,rk−1z

vk + 1
)−〈dkek,m〉

= z
m
(
z

rkvk + ak,rk−1z
(rk−1)vk + · · · + ak,1z

vk + 1
)−〈dkek,m〉

= pdk (zm) ,

as desired. As such, we have that pµ,Ds
= pµ,Tk(Ds) and, therefore, pµ,Tk(Ds) =

id and Tk(Ds) is consistent.
Next, we want to show that Tk(Ds) and Ds′ have, up to equivalence, the

same set of slabs and incoming walls. Recall that Din,s′ contains only the slab
and incoming walls of Ds′ , so it will suffice to show that the incoming walls
and slab of Tk(Ds) appear in Din,s.

First, observe that if d ⊆ n⊥ is an outgoing wall in Ds, then it is mapped
to an outgoing wall in Tk(Ds). This follows from the definition—recall that
d is outgoing if p∗

1(n) �∈ d. Because Tk is injective, having p∗
1(n) �∈ d implies

Tk(p∗
1(n)) �∈ Tk(d). Hence, we need only consider the slab and incoming walls

of Tk(Ds). Equivalently, we consider the walls of Tk(Din,s).

Recall that the slab for s′ is d′
k =

(
e⊥
k , 1 + ak,1z

−vk + · · · +

ak,rk−1z
−(rk−1)vk + z−rkvk

)
, which appears in both Din,s′ and Tk(Din,s) by

definition. Next, we consider the walls di = (e⊥
i , 1 + ai,1z

vi + · · · + zrivi) for
i �= k. To do so, we need to divide our argument into three cases based on
whether 〈vi, ek〉 is positive, zero, or negative. Because di is an incoming wall,
it will necessarily lie in both Hk,+ and Hk,−.

Case 1: If 〈ek, vi〉 = 0, then the two halves of di ∈ Din,s are mapped to the
walls

((e⊥
i ∩ Hk,+), 1 + ai,1z

Ti,+(vi) + · · · + ai,ri−1z
Tk,+((ri−1)vi) + zTk,+(rivi)),
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((e⊥
i ∩ Hk,−), 1 + ai,1z

Tk,−(vi) + · · · + ai,ri−1z
Tk,−((ri−1)vi) + zTk,−(rivi))

whose union is the wall(
(ei)

⊥, 1 + ai,1z
vi + · · · + ai,ri−1z

(ri−1)vi + zrivi

)

because having 〈vi, ek〉 = 0 means that v′
i = Tk,±(vi) = vi. Because e′

i = ei,
the above wall in Tk(Din,s) is the same as the wall

(
(e′

i)
⊥, 1 + ai,1z

v′
i + · · · + ai,ri−1z

(ri−1)v′
i + zriv

′
i

)
,

which we know by definition appears in Din,s′ .

Case 2: Suppose 〈ek, vi〉 > 0. We must consider where di ∩ Hk,+ is mapped by
Tk. This portion of di becomes the wall

d
′
i,+ :=

(
Tk(Hk,+ ∩ e

⊥
i ), 1 + ai,1z

Ti,+(vi) + · · · + ai,ri−1z
Tk,+((ri−1)vi) + z

Tk,+(rivi)
)

in Tk(Ds). To see that d′
i,+ is incoming in Tk(D)in,s, observe that p∗

1(ei) = vi ∈

(Hk,+ ∩ e⊥
i ) and therefore Tk(p∗

1(ei)) = Tk(vi) ∈ d′
i,+. To argue that d′

i,+ also

appears as an incoming wall in Ds′ , we need to show that Tk(Hk,+∩e⊥
i ) ⊆ (e′

i)
⊥

and that Tk,+(vi) = v′
i. Observe that for m ∈ Hk,+ ∩ e⊥

i ,

〈e′
i, Tk(m)〉 = 〈ei + rk[εik]+ek,m + rkvk〈dkek,m〉〉

= 〈ei,m〉 + 〈ei, rkvk〈dkek,m〉〉 + 〈rk[εik]+ek,m〉

+〈rk[εik]+ek, rkvk〈dkek,m〉〉

= rk〈dkek,m〉〈ei, vk〉 + rk[εik]+〈ek,m〉

= rk〈dkek,m〉〈ei, p
∗
1(ek)〉 + rkdk{ei, ek}〈ek,m〉

= rkdk{ek, ei}〈ek,m〉 + rkdk{ei, ek}〈ek,m〉

= rkdk〈ek,m〉 ({ek, ei} + {ei, ek})

= 0

and, therefore, Tk(m) ∈ (e′
i)

⊥. Next, observe that

Tk,+(vi) = vi + rkvk〈dkek, vi〉

= vi + rkdkvk〈ek, p∗
1(ei)〉

= vi + rkdkvk{ei, ek}

= vi + rkεikvk

= p∗
1(ei) + rkεikp∗

1(ek)

= {ei, ·} + rkεik{ek, ·}

= {ei + rkεikek, ·}

= {e′
i, ·}

= p∗
1(e

′
i)

= v′
i.

As such, di ∩ Hk,+ ∈ Ds is mapped to the wall

d′
i =
(
Tk(Hk,+ ∩ e⊥

i ), 1 + ai,1z
v′

i + · · · + ai,ri−1z
(ri−1)v′

i + zv′
i

)
∈ Tk(Din,s),
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which is half of the wall(
(e′

i)
⊥, 1 + ai,1z

v′
i + · · · + ai,ri−1z

(ri−1)v′
i + zv′

i

)
∈ Din,s′ .

Case 3: Finally, let 〈ek, vi〉 < 0. The half of di with support di∩Hk,− is mapped
by Tk to

d
′
i,− :=

(
Tk(Hk,− ∩ e

⊥
i ), 1 + ai,1z

Tk,−(vi) + · · · + ai,ri−1z
Tk,−((ri−1)vi) + z

Tk,−(rivi)
)

.

Since Tk,−(m) = m for m ∈ Hk,− ∩ e⊥
i and Tk,−(vi) = vi, we have

d′
i,− =

(
Hk,− ∩ e⊥

i , 1 + ai,1z
vi + · · · + ai,ri−1z

(ri−1)vi + z(rivi

)
.

Because 〈ek, vi〉 = {ei, ek} < 0, we know that εik = dk{ei, ek} < 0. Therefore,

e′
i = ei + rk[εik]+ek = ei

v′
i = p∗

1(e
′
i) = p∗

1(ei) = vi

and so d′
i,− is simply half of the wall

((e′
i)

⊥, 1 + ai,1z
v′

i + · · · + ai,ri−1z
(ri−1)v′

i + zriv
′
i) ∈ Din,s′ .

Hence, we see that after dividing some of the walls of Din,s′ into two
halves, the diagrams Tk(Din,s) and Din,s′ have the same set of incoming walls.
Therefore, up to the same halving of walls, the diagrams Tk(Ds) and Ds′ also
have the same set of incoming walls. �

3.4. Chamber Structure

Analogously to the ordinary case, the generalized Tk map defined in Sect. 3.3
determines a chamber structure on the generalized cluster scattering diagram
Ds. Because this structure arises in the same manner as in the ordinary case,
the exposition in this section will largely focus on stating properties and results
that are necessary for proofs in later sections. For more details about the
ordinary case, we refer the reader to either Sect. 2.3 or [33].

Let Tv be the infinite rooted tree defined in Sect. 3.1, sv be the generalized
torus seed associated to vertex v, and w �= v be an arbitrary vertex in Tv.
Then the sequence of edge labels k1, . . . , k� on a simple path between v and
w determine a map Tw = Tk�

◦ · · · ◦ Tk1
: MR → MR, where each Tki

is
defined with respect to the basis vector eki

in the mutated generalized torus
seed μki−1

◦ · · · ◦ μk1
(sv) rather than the original generalized torus seed sv. It

follows from Theorem 3.25 that Tw(Ds) = Dsw
, where sw denotes a generalized

torus seed associated with the vertex w.
Let Σ be a set of generalized fixed data that satisfies the injectivity as-

sumption and s be a choice of associated generalized torus seed. By construc-
tion, Ds must include a collection of incoming walls with support {e⊥

k }k∈Iuf
.

As in the ordinary case, we define

C+
s := {m ∈ MR : 〈ei,m〉 g 0 for all i ∈ Iuf},

C−
s := {m ∈ MR : 〈ei,m〉 f 0 for all i ∈ Iuf},
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and refer to C+
s as the positive chamber. The chambers C±

s are closures of con-
nected components of MR\Supp(Ds). Let C±

μk(s) denote the chambers where

either all 〈e′
i,m〉 g 0 or 〈e′

i,m〉 f 0, respectively. Then C±
μk(s) is similarly the

closure of a connected component of MR\Supp(Dμk(s)). Hence, T−1
k (C±

μk(s)) is

the closure of a connected component of MR\Supp(Ds) which shares a codi-
mension one face, given by e⊥

k , with C±
s . This extends to generalized torus

seeds related to s by longer mutation sequences. Let w be a vertex of Ts that
is reachable from the root vertex via a simple path of arbitrary length. It fol-
lows from Theorem 3.25 and the previous paragraph that C±

w := T−1
w

(
C±
sw

)
is

a closure of a connected component of MR\Supp(Ds). It is important to note,
however, that the collection of cones C±

v will not always form a dense subset
of MR.

Let C±
w denote the chamber of Supp(Ds) which corresponds to the vertex

w ∈ Ts and ∆±
s denote the collection of chambers C±

w as w runs over the
vertices of Ts. As before, we refer to elements of ∆+

s as cluster chambers.
This chamber structure coincides with the natural generalization of the Fock–
Goncharov cluster complex.

Definition 3.29. (Analogue of Definition 2.14 of [16]) Fix a set of generalized
fixed data Σ and an associated generalized torus seed s. Then for a generalized
torus seed s′ = {(e′

i, (a
′
i,j))} which is reachable via a mutation sequence from

s, the Fock–Goncharov cluster chamber associated to s′ is the subset {x ∈

A∨(RT ) : (ze′
i)T (x) f 0 for all i ∈ Iuf}, which is identified with the subset

{x ∈ A∨(Rt) : (ze′
i)t(x) f 0 for all i ∈ Iuf}} via the canonical sign-change

map i : A∨(RT ) → A∨(Rt).

Lemma 3.30. (Analogue of Lemma 2.10 of [33]) Let Σ be a set of generalized
fixed data which satisfies the injectivity assumption and s be an accompanying
choice of generalized torus seed. Let s′ = {(e′

i, (a
′
i,j))} be a distinct generalized

torus seed which is reachable via some mutation sequence from s. Then the
positive chamber C+

s′ ⊂ M◦
R,s′ = A∨(RT ) (which can be identified with A∨(Rt)

via the sign-change map i) is the Fock–Goncharov cluster chamber associated
to s′. Therefore, the Fock–Goncharov cluster chambers are the maximal cones
of a simplicial fan and ∆+ is identified with ∆+

s for every choice of generalized
torus seed s which gives an identification of A∨(RT ) with M◦

R,s.

Proof. The proof given by [33] holds in the generalized setting, because we
showed in Proposition 3.24 that our modified Tk map is the Fock–Goncharov
tropicalization of the generalized mutation map μ(vk,dkek,rk). �

It follows from the previous proposition, when the injectivity assumption
holds, that:

Theorem 3.31. (Analogue of Theorem 2.13 of [33]) For any set of initial data,
the Fock–Goncharov cluster chambers in A∨(RT ) are the maximal cones of a
simplicial fan.
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3.5. Principal Coefficients

The injectivity assumption is not satisfied in most cases. We can still han-
dle those cases when we include principal coefficients in the setting. We will
now rephrase the construction for generalized cluster algebras with principal
coefficients.

Definition 3.32. Given generalized fixed data Γ, the generalized fixed data
Γprin for the principal coefficient case is defined in the same way as for or-
dinary cluster algebras, with the additional requirement that r̃ = (r, r), i.e.
that r̃ consists of two copies of r with r̃i = ri for i ∈ I, and we now include
the collection {ai,j}i∈Iuf,j∈[ri−1].

Definition 3.33. Given a generalized torus seed s, the generalized torus seed
with principal coefficients is defined as

sprin := s̃ = {((ei, 0),ai), ((0, fi),ai)}i∈I .

We can then use these updated definitions to define the cluster varieties
with principal coefficients. Recall that we work over the ring R = k[ai,j ].

Definition 3.34. Given a generalized torus seed s, we define the associated
algebraic tori

Xsprin
:= T

M̃
(R) = Spec k[Ñ ] ×k Spec(R),

Asprin
:= T

Ñ◦(R) = Spec k[M̃◦] ×k Spec(R).

The generalized A cluster variety with principal coefficients and generalized X
cluster variety with principal coefficients are then defined as in the ordinary
case.

As before, the generalized A-variety is given by the fiber Ae and the
generalized X -variety is given by the quotient Aprin/TN◦ .

Proposition 3.35. (Analogue of Proposition B.2 of [33]) Given a set of gener-
alized fixed data Γ:

1. There is the following commutative diagram, where the dotted arrows are
only present if there are no frozen variables:

At Aprin X Xprin A

t TM TK∗ TM e

π

p̃

p

λ

ρ

w

ξ

where t is any point in TM , e ∈ TM is the identity, and p is an isomor-
phism which is canonical if there are no frozen variables.

2. There is a torus action of TN◦ on Aprin; TK◦ on A; TN⊥
uf

on X ; and T
K̃◦

on Aprin, where K̃◦ is the kernel of the map N◦ ⊕ M → N∗
uf given by

(n,m) �→ p∗
2(n) − m. The action of TN◦ and T

K̃◦ on TM is such that the
map π : Aprin → TM is TN◦-equivariant and T

K̃◦-equivariant. The map
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p̃ : Aprin → X = Aprin/TN◦ is a TN◦-torsor. Furthermore, there is a map
T

K̃◦ → TN⊥
uf

such that p̃ is compatible with the actions of these tori on,

respectively, Aprin and X . Hence, τ : Aprin → X/TN⊥
uf

is a T
K̃◦-torsor.

Proof. Because the map definitions remain the same, the proof given in [33]
holds in the generalized setting. �

Remark 3.36. In Sect. 5.2, we will define theta functions in both the A and X
cases. Here, we briefly preview the content of Lemma 5.15. From the discussion
above, Aprin is a TN◦ -torsor over X . Hence, the global functions on X are given
by TN◦ -invariant global monomials ϑm on Aprin, where m lies in the cluster
complex of Aprin and in the slice w−1(0) for w : (m,n) �→ m − p∗(n). This
leads to the slicing that we will illustrate in Example 3.38. We can further
understand the discussion in terms of mutation maps. In the Aprin case, the
A mutation in direction k given in Equation (8) is

μ∗
kz(m,n) = z(m,n)

(
1 + ak,1z

(vk,ek) + · · · + ak,rk−1z
(rk−1)·(vk,ek)

+ zrk(vk,ek)

)−〈(dkek,0),(m,n)〉

,

for (m,n) ∈ M◦⊕N . Having (m,n) ∈ w−1(0) implies that (m,n) = (p∗(n), n).
This yields the mutation transformation

μ∗
kz(p∗(n),n) = z(p∗(n),n)

(
1 + ak,1z

(vk,ek) + · · · + ak,rk−1z
(rk−1)·(vk,ek)

+ zrk(vk,ek)

)−〈(dkek,0),(p∗(n),n)〉

.

By the change of variable z(p∗(n),n) �→ zn, we obtain

μ∗
kzn = zn

(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + zrkek)

)−〈dkek,p∗(n)〉

= zn
(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + zrkek

)−{n,dkek}

= zn
(
1 + ak,1z

ek + · · · + ak,rk−1z
(rk−1)ek + zrkek

)−[n,ek]

,

which is precisely the X mutation from Equation (9). We further emphasize
that the change of variables z(p∗

1(n),n) �→ zn exactly matches the treatment
in Fomin–Zelevinsky [18] of cluster algebras with principal coefficients, see
Eq. (1).

Next, we update the definition of the initial generalized cluster scattering
diagram.
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Definition 3.37. Given a generalized seed s, let ṽi := (vi, ei) = (p∗
1(ei), ei). The

corresponding initial Aprin scattering diagram, according to Definition 3.17, is
of the form

D
Aprin

in,s =
{(

(ei, 0)⊥, 1 + ai,1z
ṽ1 + · · · + ai,ri−1z

(ri−1)ṽi + zriṽi

)}
.

The following example examines the scattering diagram D
Aprin
s for a gen-

eralized cluster algebra with principal coefficients. Beginning with this scat-

tering diagram D
Aprin
s for the case with principal coefficients, we outline how

to obtain the scattering diagrams for the A and the X cases. In this particular
two-dimensional example, the A scattering diagram is well defined; however,
this is not true in general as the injectivity assumption fails. Formally, we can
only define the A and X theta functions in scattering diagrams with princi-
pal coefficients, as discussed in Sect. 5.2. One can then construct A and X
diagrams which give us the A and X theta functions. The following example
illustrates this idea.

Example 3.38. Consider the generalized cluster algebra with B =

[
0 −1
1 0

]
,

d = (1, 1), and [rij ] =

[
3 0
0 1

]
, as in Example 3.4. The generalized fixed data

Γprin has index set Ĩ = I � I, Ĩuf = {1, 2}, d̃ = (1, 1, 1, 1), r̃ = (3, 1, 3, 1) and

lattices Ñ = N ⊕ M◦, Ñ◦ = N◦ ⊕ M , M̃ = M ⊕ N◦, and M̃◦ = M◦ ⊕ N , all
of which have basis {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. By definition,
we have

D
Aprin

in,s =

{
d̃1 =

(
(0, 1, 0, 0)⊥, 1 + z(−1,0,0,1)

)
,

d̃2 =
(
(1, 0, 0, 0)⊥, 1 + az(0,1,1,0) + az(0,2,2,0) + z(0,3,3,0)

)
}

which can be completed, using the definition of consistency, to give a gen-

eralized cluster scattering diagram for Aprin, denoted D
Aprin
s . Because this

diagram is four dimensional, the figure below shows the projection of D
Aprin
s

onto M◦ with labels that indicate the corresponding walls and wall-crossing
automorphisms in Aprin. To illustrate this projection, consider the wall d̃1 ∈

D
Aprin
s with support (0, 1, 0, 0)⊥ ⊂ R4, i.e. the three-dimensional hyperplane

span{(1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. When we project from M̃◦
R

onto M◦
R
,

the wall d̃1 is projected onto R(1, 0) ⊂ R2, i.e. the one-dimensional hyperplane

span{(1, 0)}. Similarly, d̃2 is projected onto R(0, 1), i.e. the one-dimensional
hyperplane span{(0, 1)}.

The A scattering diagram can be obtained from the projection M◦⊕N →
M , (m,n) �→ m. The walls of the A diagram will be the same as in Fig. 2 while
the wall functions are of the form 1+zm rather than 1+z(m,n) listed in Fig. 2.

Next, we can obtain the scattering diagram for Xs from D
Aprin
s . A full

discussion of this construction is laid out in [13, Section 2.2.1]. As in the earlier
remark, the idea is to take the slicing

w−1(0) = {m ∈ M◦ : m = p∗(n), n ∈ N}
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d̃1

d̃2

d̃6

d̃5d̃4d̃3

f
d̃1

= 1 + z(−1,0,0,1)

f
d̃2

= 1 + az(0,1,1,0) + az(0,2,2,0) + z(0,3,3,0)

f
d̃3

= 1 + z(−1,3,3,1)

f
d̃4

= 1 + az(−1,2,2,1) + az(−2,4,4,2) + z(−3,6,6,3)

f
d̃5

= 1 + z(−2,3,3,2)

f
d̃6

= 1 + az(−1,1,1,1) + az(−2,2,2,2) + z(−3,3,3,3)

Figure 2. 2-Dimensional projection of the scattering dia-

gram D
Aprin
s

of D
Aprin
s . As we later point out in Sect. 5.2, restrictions of path-ordered prod-

ucts to w−1(0) are well defined for paths γ that lie entirely in the slice. For

example, consider the wall d̃3 and a path γ̃ in D
Aprin
s as demonstrated in the

projection below:

γ

By definition, for (0,−1,−1, 0) lies in the slice, we have

pµ̃

(
z(0,−1,−1,0)

)
= z(0,−1,−1,0)

(
1 + z(−1,3,3,1)

)〈(0,−1,−1,0),(−3,−1,0,0)〉

= z(0,−1,−1,0)
(
1 + z(−1,3,3,1)

)
.

By change of variables z(p∗(n),n) �→ zn, the path-ordered product becomes
pµ(z(−1,0)) = z(0,−1)(1 + z(3,1)), from which we can read off the wall-crossing

automorphism for d3 as fd3
= 1+z(3,1). Similar computations for the remaining

walls allow us to draw DX
s , as follows.
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d2

d1

d6

d5 d4 d3

fd1
= 1 + z(0,1)

fd2
= 1 + az(1,0) + az(2,0) + z(3,0)

fd3
= 1 + z(3,1)

fd4
= 1 + az(2,1) + az(4,2) + z(6,3)

fd5
= 1 + z(3,2)

fd6
= 1 + az(1,1) + az(2,2) + z(3,3)

Alternately, note that the wall d̃k in D
Aprin
s has support containing either

R · (p∗(n), n) or R≥0 · (p∗(n), n). Hence, in this 2-dimensional setting the wall
dk in DXs has support given by either R · n or R≥0 · n for n ∈ N .

3.6. Building Ascat from a Generalized Cluster Scattering Diagram

In this section, we parallel the exposition in Section 4 of [33], which describes
how to build the space Ascat from an ordinary scattering diagram and then
identifies Ascat with the A variety. We review relevant portions of their con-
structions and statements, pointing out where modifications are needed to
extend the results to generalized cluster algebras with reciprocal coefficients.

Let Γ be a set of generalized initial data such that the diagram Ds yields
a cluster chamber structure ∆+

s . We will often want to discuss multiple copies
of the lattices N,M,N◦, and M◦ which arise from different choices of seed
s. To allow us to distinguish between these copies, we index both the seeds
and lattices by either the vertices v of Tv or chambers σ of ∆+

s . For example,
the seed sv gives rise to the diagram Dsv

on the lattice M◦
R,sv

. The chambers

in Dsv
give the Fock–Goncharov cluster complex ∆+ under the identification

M◦
R,sv

= A∨(RT ). Because the space A∨(RT ) is independent of the choice of
the initial seed s, there is a canonical bijection between the cluster chambers
of Dsv

and Dsv′ as a consequence of this identification.

Definition 3.39. ([33, Construction 4.1]) Given a seed s, we want to construct
a space, Ascat,s using the chambers σ ∈ ∆+

s . For distinct σ, σ′ ∈ ∆+
s , there

exists a path γ from σ′ to σ. This path gives rise to an automorphism pµ,Ds
:

R̂[P ] → R̂[P ] which depends only on the choice of σ and σ′ and is independent
of choice of path.

For each chamber in ∆+
s , attach a copy of the torus TN◦,σ := TN◦ . If γ

is chosen such that it lies in the support of the cluster complex, then the wall-
crossing automorphisms attached to walls crossed by γ are birational maps of
TN◦ . Therefore the path-ordered product pµ,Ds

can be viewed as a well-defined
map of fields of fractions pµ,Ds

: R(M◦) → R(M◦) which induces a positive
birational map pσ,σ′ : TN◦,σ → TN◦,σ′ .
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The space Ascat,s is constructed by gluing the collection of tori {TN◦,σ}σ∈∆+
s

using the birational maps {pσ,σ′}σ,σ′∈∆+
s

according to the method described

in Proposition 2.4 of [30].

Proposition 3.40. (Analog of Proposition 4.3 of [33]) Let s be a seed, v be the
root of Ts, and v′ be any other vertex of Ts. Let μT

v′,v : M◦
v′ → M◦

v be the Fock–

Goncharov tropicalization of μv′,v : TM◦,v′ → TM◦,v. The restriction μT
v′,v

∣∣
σ′

:

M◦
σ′ → M◦

σ to each cluster chamber σ′ of ∆+
sv′

gives a linear isomorphism from

σ′ to the corresponding cluster chamber σ := μT
v′,v(σ′) in ∆+

s and induces an
isomorphism

Tv′,σ : TN◦,σ → TN◦,σ′ .

When σ ranges across all the cluster chambers of ∆+
sv

, the isomorphisms Tv′,σ

glue together to yield an isomorphism between Ascat,sv
and Ascat,sv′ .

Proof. We follow the structure of the proof in [33]. In general, v and v′ are
related by a composition of mutations and μv′,v is the inverse of that com-
position. Proving this statement for arbitrary v and v′, then, essentially con-
sists of proving the statement for the special case where v and v′ are re-
lated by a single mutation. In this case, μT

v′,v = T−1
k and the isomorphism

Tv′,σ : TN◦,σ → TN◦,Tk(σ) is induced by the restriction T−1
k

∣∣
Tk(σ)

.

To show that gluing together these isomorphisms for all σ ∈ ∆+
sv

gives an
isomorphism between Ascat,sv

and Ascat,sv′ , we need to show commutativity
of the diagram

TN◦,σ TN◦,σ′

TN◦,σ̃ TN◦,σ̃′

Tv′,σ

pσ,σ̃ pσ′,σ̃′

Tv′,σ̃

where σ and σ̃ are chambers in ∆+
sv

and σ′ = Tk(σ) and σ̃′ = Tk(σ̃) are
chambers in ∆sv′ . Note that the map pσ,σ̃ indicates a wall-crossing in Ds and
pσ′,σ̃′ indicates a wall crossing in Ds′ .

If σ and σ̃ both fall in Hk,−, then commutativity is immediate because
Tk fixes the wall-crossing automorphism on the wall between σ and σ̃. If both
chambers fall in Hk,+, then commutativity follows from Theorem 3.25 because
by definition the path-ordered product between a given pair of points is equal
in equivalent diagrams. Hence, the important case to consider is when σ and
σ̃ are on opposite sides of the wall with support e⊥

k .

Without loss of generality, we can assume that σ is the chamber in Hk,+,
where ek is non-negative. We know that the only wall in Ds contained in e⊥

k is

the slab dk = (e⊥
k , 1+ak,1z

vk + · · ·+ak,rk−1z
(rk−1)vk + zrkvk). In Ds′ , the slab

contained in e⊥
k is d′

k = (e⊥
k , 1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z−rkvk).

As such, the only way for σ and σ̃ to be on opposite sides of e⊥
k is for the wall

between them to be dk in Ds and d′
k in Ds′ . Pictorially, we can envision:
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1 + ak,1z
vk + · · · + zrkvk

pσ,σ̃
σ̃ ∈ Hk,−

σ ∈ Hk,+

in Ds and similarly

1 + ak,1z
−vk + · · · + z−rkvk

p′
σ′,σ̃

σ̃′ ∈ Hk,+

σ′ ∈ Hk,−

in Ds′ . We can then compute that

T ∗
v′,σ

(
p∗

σ′,σ̃′(zm)
)

= T ∗
v′,σ

(
zm(1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk )−〈dkek,m〉

)

= T ∗
v′,σ (zm) T ∗

v′,σ

(
(1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk )−〈dkek,m〉

)

= µT
v′,v (zm) µT

v′,v

(
(1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk )−〈dkek,m〉

)

= T
−1
k (zm) T

−1
k

(
(1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk )−〈dkek,m〉

)

= zm−rkvk〈dkek,m〉(1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk )−〈dkek,m〉

= zm
(
z−rkvk

)−〈dkek,m〉
(1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk )−〈dkek,m〉

= zm(zrkvk + ak,1z(rk−1)vk + · · · + ak,rk−1zvk + 1)−〈dkek,m〉

= zm
(
1 + ak,1zvk + · · · + ak,rk−1z(rk−1)vk + zrkvk

)−〈dkek,m〉

= p∗
σ,σ̃ (zm) .

Because Hk,+ and Hk,− are reversed in Ds and Ds′ , our assumption that
m ∈ Hk,+ in Ds means that m ∈ Hk,− in Ds′ . As such, zm = T ∗

v,σ̃(zm) and we

have T ∗
v′,σ

(
p∗

σ′,σ̃′(zm)
)

= p∗
σ,σ̃

(
T ∗

v,σ̃(zm)
)

and the desired commutativity holds.
Note that this computation relies on the reciprocity condition ak,i = ak,ri−i.

�

Theorem 3.41. (Analogue of Theorem 4.4 of [33]) For a given generalized torus
seed s, let v denote the root of Ts and v′ be another arbitrary vertex in Ts. Let
φ∗

v,v′ : M◦
v′ → M◦

v′ be the linear map μT
v,v′

∣∣
C+

v′∈s

and φv,v′ : TN◦,v′ → TN◦,v′ be

the map between the associated tori. Then the collection {φv,v′}v′ glue to give
an isomorphism

As :=
⋃

v′

TN◦ → Ascat,s :=
⋃

v′

TN◦,v′

and the diagram

As Ascat,s

Asv′ Ascat,sv′
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commutes, where the horizontal maps are the isomorphisms that were just
defined, the right-hand vertical map is the isomorphism described in Proposi-
tion 3.40 and the left-hand map is the natural open immersion As ↪→ Asv′ .

Proof. The proof of this theorem is identical to that of Theorem 4.4 from
[33]; previous propositions check that despite the differences in wall-crossing
automorphisms, we have the necessary commutativity of diagrams. �

This allows us to identify the rings of regular functions on Ascat and As.

Definition 3.42. ([33, Definition 4.8]) Let Γ be a generalized fixed data and
s be an associated initial generalized torus seed. Let sw = (e′

1, . . . , e
′
n) be a

generalized torus seed with dual basis {(e′
i)

∗}i and f ′
i = d−1

i (e′
i)

∗. A cluster
monomial in sw is a monomial in TN◦,w ⊂ A of the form zm with m =∑n

i=1 aif
′
i for ai ∈ Z≥0. We refer to any regular function which is a cluster

monomial in some seed of A as a cluster monomial on A.

4. Broken Lines and Theta Functions

Broken lines have a similar definition in the generalized setting as in the ordi-
nary setting, with the caveat that we now work over the ground ring R = k[ai,j ]
and so the monomials attached to the domains of linearity of a broken line lie
in R[M◦] rather than k[M◦].

Definition 4.1. Let D be a generalized cluster scattering diagram, m0 be a
point in M◦\{0}, and Q be a point in MR\Supp(D). A broken line with
endpoint Q and initial slope m0 is a piecewise linear path γ : (−∞, 0] →
MR\Sing(D) with finitely many domains of linearity. Each domain of linear-
ity, L, has an associated monomial cLzmL ∈ R[M◦] such that the following
conditions are satisfied:

1. γ(0) = Q
2. If L is the first domain of linearity of γ, then cLzmL = zm0 .
3. Within the domain of linearity L, the broken line has slope −mL. In other

words, γ′(t) = −mL on L.
4. Let t be a point at which γ is non-linear and is passing from one domain

of linearity, L, to another, L′, and define

Dt = {(d, fd) ∈ D : γ(t) ∈ d.}

Then the power series pµ|(t−ε,t+ε),Dt
(cLzmL) contains the term cL′zmL′ .

As in Definition 3.15, here the power series pµ|(t−ε,t+ε),Dt
(cLzmL) is over

the ground ring R and may contain many more terms than in the ordinary
case.

The definition of a theta function in terms of broken lines remains the
same, except that we are now working over the ground ring R.

Definition 4.2. Suppose D is a generalized cluster scattering diagram and con-
sider points m0 ∈ M◦\{0} and Q ∈ MR\Supp(D). For a broken line γ with
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initial exponent m0 and endpoint Q, we define I(γ) = m0, b(γ) = Q, and
Mono(γ) = c(γ)zF (µ) where Mono(γ) is the monomial attached to the final
domain of linearity of γ. We then define

ϑQ,m0
:=
∑

µ

Mono(γ),

where the summation ranges over all broken lines γ with initial exponent m0

and endpoint Q. When m0 = 0, then for any endpoint Q we define ϑQ,0 = 1.

We show that just as in the ordinary case, theta functions defined via
generalized cluster scattering diagrams satisfy several crucial properties, such
as the following: the collection of them include cluster monomials, agreement
of theta functions and path-ordered products for cluster monomials, and Lau-
rentness.

Theorem 4.3. ([33, Theorem 3.5]) Let D be a consistent scattering diagram, m0

be a point in M\{0}, and consider a pair of points Q and Q′ in MR\Supp(D)
such that Q and Q′ are linearly independent over Q. Then for any path γ with
endpoints Q and Q′ for which pµ,D is defined, we have

ϑQ′,m0
= pµ,D(ϑQ,m0

).

Proof. As in the ordinary setting, this is a special case of the results of Section
4 of [5]. Those results do not assume that the wall-crossing automorphisms are
binomials and are therefore also applicable to our setting. �

In Sect. 3.3, we discussed the mutation invariance of generalized cluster
scattering diagrams. It is also important that the theta functions exhibit this
mutation invariance. Recall that the positive chamber of a cluster scattering
diagram corresponds to a choice of initial torus seed s for the associated gener-
alized cluster algebra. If the cluster scattering diagrams Ds and Ds′ are related
by a single application of the map Tk, then the initial torus seeds are related
by a single mutation, i.e. s′ = μk(s). The following proposition exhibits a bi-
jection between the sets of broken lines and theta functions defined on Ds and
Ds′ .

Proposition 4.4. (Analog of Proposition 3.6 of [33]) The transformation Tk

gives a bijection between broken lines with endpoint Q and initial slope m0 in
Ds and broken lines with endpoint Tk(Q) and initial slope Tk(m0) in Dμk(s).
In particular,

ϑ
μk(s)
Tk(Q),Tk(m0)

=

{
Tk,+

(
ϑs

Q,m0

)
Q ∈ Hk,+

Tk,−

(
ϑs

Q,m0

)
Q ∈ Hk,−,

where Tk,± acts linearly on the exponents in ϑs
Q,m0

.

Proof. We follow the structure of the proof of Proposition 3.6 from [33].
Let γ be a broken line in a scattering diagram Ds and Tk(γ) denote the

composite map Tk◦γ : (−∞, 0] → MR. If any domain of linearity of γ is in both
Hk,+ and Hk,−, we can subdivide that domain of linearity at the point where
it crosses between Hk,+ and Hk,−. As such, we can assume for any domain
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of linearity L that γ(L) falls either entirely inside Hk,+ or entirely inside
Hk,−. For any domain of linearity L that has been subdivided in this way, the

associated monomial cLzmL will be sent to either cLzTk,+(mL) or cLzTk,−(mL)

depending on the portion of L being considered. We know from Theorem 3.25
that Dμk(s) = Tk(Ds), so we can think about Tk(Ds) when thinking about the
broken line in Dμk(s).

We know that e⊥
k lies on the boundary between Hk,+ and Hk,−. So to

understand what happens to the subdivided domains of linearity, which orig-
inally were in both Hk,+ and Hk,−, we need to analyze what happens when
γ crosses e⊥

k . First, consider the original broken line γ in Ds. Suppose that
one domain of linearity, L, has been subdivided into L1 and L2 such that γ
crosses e⊥

K at the point where it passes from the first domain of linearity, L1,
to the second domain of linearity, L2. By definition, we know that when the
monomial cL1

zmL1 passes through e⊥
k , it is mapped to

cL1
zmL1

(
1 + ak,1z

vk + · · · + ak,rk−1z
(rk−1)vk + zrkvk

)|〈dkek,mL1
〉|

and that cL2
zmL2 must appear as a term in this polynomial.

We can then consider the image of γ in Tk(Ds). If L1 ⊆ Hk,− and

L2 ⊆ Hk,+, then cL2
zTk,+(mL2

) must appear as a term in the polynomial

cL1
z

Tk,+(mL1
) (1 + · · · + zrkvk )−〈dkek,mL1

〉

= cL1
z

mL1
+rkvk〈dkek,mL1

〉 (1 + · · · + zrkvk )−〈dkek,mL1
〉

= cL1
z

mL1
(
z−rkvk (1 + · · · + zrkvk )

)−〈dkek,mL1
〉

= cL1
z

mL1

(
z−rkvk + ak,1z−(rk−1)vk + · · · + ak,rk−1z−vk + 1

)−〈dkek,mL1
〉

= cL1
z

Tk,−(mL1
)
(
z−rkvk + ak,1z−(rk−1)vk + · · · + ak,rk−1z−vk + 1

)−〈dkek,mL1
〉
.

Due to the assumption that the exchange polynomials have reciprocal coeffi-
cients, i.e., that ak,i = ak,rk−i - this polynomial is equal to

cL1
zTk,−(mL1

)
(
1 + ak,1z

−vk + · · · + ak,rk−1z
−(rk−1)vk + z−rkvk

)−〈dkek,mL1
〉

and, therefore, Tk(γ) satisfies the rules for bending as it crosses

d′
k = (e⊥

k , 1 + ak,1z
−vk + · · · + ak,rk−1z

−(rk−1)vk + z−rkvk)

in Tk(Ds). Similarly, if L1 ⊆ Hk,+ and L2 ⊆ Hk,−, then cL2
zTk,−(mL2

) =
cL2

zmL2 must appear as a term in

cL1
z

Tk,−(mL1
) (1 + · · · + zrkvk )〈dkek,mL1

〉

= cL1
z

mL1

(
1 + ak,1zvk + · · · + ak,rk−1z(rk−1)vk + zrkvk

)〈dkek,mL1
〉

= cL1
z

mL1

(
1 + ak,rk−1zvk + · · · + ak,1z(rk−1)vk + zrkvk

)〈dkek,mL1
〉

= cL1
z

mL1

(
zrkvk (z−rkvk + ak,rk−1z−(rk−1)vk · · · + ak,1z−vk + 1)

)〈dkek,mL1
〉

= cL1
z

mL1
+rkvk〈dkek,mL1

〉
(
1+ak,1z−vk +· · ·+ak,rk−1z−(rk−1)vk +z−rkvk

)〈dkek,mL1
〉

= cL1
z

Tk,+(mL1
)
(
1 + ak,1z−vk + · · · + ak,rk−1z−(rk−1)vk + z−rkvk

)〈dkek,mL1
〉
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and, therefore, Tk(γ) also satisfies the rules for bending at d′
k in this case. As

such, we’ve verified that for any broken line γ in Ds, its image Tk(γ) is also a
broken line in Dμk(s) = Tk(Ds). To see that Tk is, in fact, a bijection, we must

verify that T−1
k (Tk(γ)) = γ. First, we define T−1

k : Dμk(s) → Ds as

T−
k (m) =

{
m m ∈ H′

k,+

m − rkvk〈dkek,m〉 m ∈ H′
k,−,

where H′
k,+ and H′

k,− are defined relative to e′
k. Notice, however, that because

mutation in direction k sends ek to e′
k = −ek, we have H′

k,+ = Hk,− and

H′
k,− = Hk,+. As such, showing that T−1

k (Tk(γ)) = γ amounts to showing

that T−1
k,+ ◦ Tk,− = id and T−1

k,− ◦ Tk,+ = id. The first equality follows trivially
from the definitions and we can verify the second by observing that

T −1
k,− ◦ Tk,+(m) = T −1

k,− (m + rkvk〈dkek, m〉)

= (m + rkvk〈dkek, m〉) − rkvk〈dkek, m + rkvk〈dkek, m〉〉

= m + rkvk〈dkek, m〉 − rkvk〈dkek, m〉 − rkvk〈dkek, rkvk〈dkek, m〉〉

= m − rkvk〈dkek, m〉〈dkek, rkvk〉.

By definition, we know that vk = p∗
1(ek) and so 〈dkek, rkvk〉 = 0 and the above

expression reduces to T−1
k,− ◦ Tk,+(m) = m, as desired. �

In fact, such a bijection exists for any pair of diagrams Ds and Ds′ where
s and s′ are mutation equivalent. The explicit bijection can be obtained by sim-
ply iterating the previous proposition for each step in the mutation sequence
between s and s′ (Fig. 3).

The following proposition is crucial in showing that the generalized clus-
ter variables are, in fact, theta functions.

Proposition 4.5. [33, Proposition 3.8] For a point Q in Int(C+
s ) and a point

m in C+
s ∩ M◦, we have

ϑQ,m = zm.

Proof. The proof of this proposition is identical to the proof given for the
ordinary version in [33]. The fact that the wall-crossing automorphisms now
contain additional terms, which offer more options for scattering, can be ac-
counted for in the choice of the normal vectors ni in that proof. �

One immediate corollary is that the cluster monomials are also theta
functions. As with ordinary cluster algebras, this is a highly desirable property
for a basis for generalized cluster algebras.

Corollary 4.6. [33, Corollary 3.9] Let σ ∈ ∆+
s be a cluster chamber. Then for

any points Q ∈ Int(σ) and m ∈ σ ∩ M◦, we have ϑQ,m = zm

Proof. The result follows from Propositions 4.4 and 4.5. �

As in the ordinary case, Theorem 4.3 and Corollary 4.6 give us a way
to compute theta functions using path-ordered products within the cluster
complex. This was noted also in [52, Theorem 5.6], which relies on [33, Theorem
3.5] and [33, Corollary 3.9].
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z(−1,2)z(−1,−1)

z(0,−1)

az(−1,1)
z(−1,−1)

z(0,−1)

az(−1,0)
z(−1,−1)

z(0,−1)

z(−1,−1)

z(0,−1)

z(0,−1)

Q

Figure 3. The broken lines for ϑ(0,−1),Q in Ds for the gen-
eralized cluster algebra and generalized torus seed from Ex-
ample 3.4

Proposition 4.7. Consider m0 ∈ M◦\{0} such that there exists a path γ from
m0 to some point Q in the positive chamber C+ which passes through finitely
many chambers. Then

ϑQ,m0
= pµ,D(zm0).

Proof. By assumption, we know that the path γ from m0 to Q passes through
finitely many chambers. Let σ1 denote the first chamber through which γ
passes and let Q′ be a point in σ1 which lies on γ. By Proposition 4.5, we
know that ϑQ′,m0

= zm0 . Let Q′′ be a point in C+
s such that the coordinates of

Q′ and Q′′ are linearly independent over Q and let γ′ denote a path between
Q′ and Q′′ which follows γ until within the interior of the positive chamber
C+
s , at which point it goes to Q′′ rather than Q. By Theorem 4.3, we know

that ϑQ′′,m0
= pµ′ (ϑQ′,m0

) = pµ′ (zm0).

Because both path-ordered products and theta functions are independent
of the exact location of their endpoints within the interior of a chamber, we
therefore have
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ϑQ′′,m0
= ϑQ,m0

= pµ′(zm0) = pµ(zm0).

�

We can then establish a weaker version of Theorem 4.9 of [33], without
the guaranteed positivity of Laurent polynomial coefficients:

Theorem 4.8. For generalized fixed data Γ, which satisfies the injectivity as-
sumption, and a choice of initial generalized torus seed s, consider a point
Q ∈ C+

s and a point m ∈ σ ∩ M◦ for some chamber σ ∈ ∆+
s . Then ϑQ,m

expresses a cluster monomial of A in s as a Laurent polynomial. Moreover, all
cluster monomials can be expressed as ϑQ,m for some choice of Q and m.

Proof. The proof of Theorem 4.9 from [33] holds in the generalized setting,
except for the proof of positivity. �

Remark 4.9. The proof of positivity in [33] uses an earlier result, Theorem
1.13, for which we do not currently have a generalized analogue. In particular,
[33, Theorem 1.13] states (in the case of ordinary cluster algebras) that the
scattering diagram Ds is equivalent to one such that all walls can be expressed
as (d, fd) where fd = (1 + zm)c with m = p∗(n) for some n ∈ N+ which is
normal to d and c ∈ Z>0. In [45], Mou works under the assumption that walls
are indeed expressed in this restricted way, and is able to obtain positivity in
that setting. Since we are allowing polynomial exchanges that are not simply
binomials, we allow ourselves to work with scattering diagrams that are not
necessarily equivalent to one with walls only of this form.

4.1. The g-Vectors in Cluster Scattering Diagrams

Recall from Sect. 2.3 that g-vectors can be defined as the tropical points of
theta functions. This formulation allows for a definition of g-vectors on all
types of ordinary cluster varieties (Aprin, A, and X ). In this section, we give the
analogous definition in the context of generalized cluster scattering diagrams
and generalized cluster varieties.

There is a TN◦ action on Aprin that can be specified at the level of cochar-
acter lattices as

N◦ → N◦ ⊕ M,

n �→ (n, p∗(n)).

Under this TN◦ action, each cluster monomial on Aprin is a TN◦ -eigenfunction
as stated in Sect. 5.2. Via this action, choosing a generalized torus seed s

determines a canonical extension of each cluster monomial on A to a cluster
monomial on Aprin. This allows us to define the g-vector of a cluster monomial
of A.

Definition 4.10. (Analogue of Definition 5.6 of [33]) The g-vector with respect
to the generalized torus seed s associated to a cluster monomial of A is the
TN◦ -weight of its lift determined by s.

There is another way to characterize g-vectors which is extensible to the
other types of generalized cluster varieties.
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Definition 4.11. (Analogue of Definition 5.8 of [33]) Consider the generalized
cluster variety A =

⋃
s TN◦,s. Let x denote a cluster monomial of the form zm

on a chart TN◦,s′ where s′ = {(e′
i,a

′
i)}. Identify A∨(RT ) with M◦

R,s′ Because

(ze′
i)T (m) f 0 for all i, m is identified with a point in the Fock–Goncharov

cluster chamber C+
s′ ⊆ A∨(RT ). Define g(x) to be this point in C+

s′ ⊆ A∨(RT ).

Definition 4.12. (Analogue of Definition 5.10 of [33]) Consider a generalized
cluster variety V =

⋃
s TL,s. Let f be a global monomial on V and s be a

generalized torus seed such that f |TL,s
⊂ V is the character zm for m ∈

Hom(L, Z) = L∗. Then the g-vector of f , denoted g(f), is the image of m
under the identifications V ∨(ZT ) = TL∗,s(Z

T ) = L∗.

From Definitions 4.11 and 4.12, we obtain the following corollary.

Corollary 4.13. (Analogue of Corollary 5.9 of [33]) Let s be a generalized torus
seed and x be a cluster monomial on the associated generalized A-variety. The
seed s gives an identification A∨(RT ) = M◦

R,s under which g(x) is the g-vector
of the cluster monomial x with respect to s.

We can then extend the definition of a g-vector beyond the generalized
A-variety to any type of generalized cluster variety.

Definition 4.14. (Analogue of Definition 5.10 of [33]) Consider a generalized
cluster variety V =

⋃
s TL,s. Let f be a global monomial on V and s be a

generalized torus seed such that the restriction f |TL,s
⊂ V is the character

zm for some m ∈ Hom(L, Z) = L∗. We then define the g-vector of f , denoted
g(f), as the image of m under the identifications V ∨(ZT ) = TL∗,s(Z

T ) = L∗.

Although it is not a priori clear from this definition, we will see in
Lemma 5.15 that this definition of g-vector is actually independent of the
choice of generalized torus seed s. As in the ordinary case, this formulation
of g-vectors allows for a very quick and elegant proof that the g-vectors are
sign-coherent.

Theorem 4.15. (Analogue of Theorem 5.11 of [33]) Consider an initial gener-
alized torus seed s = {(ei, (ai,j))}, which defines the usual set of dual vectors

{fi = d−1
i e∗

i }. If s′ is a mutation equivalent generalized torus seed, then the
ith coordinates of the g-vectors for the cluster variables in s′ are either all
non-negative or all non-positive when expressed in the basis {f1, . . . , fn}.

For both Corollary 4.13 and Theorem 4.15, the proof given in [33] holds in
the generalized setting as well, using the appropriate analogues of intermediate
results.

5. The Product Structure of Theta Functions

In this section, we develop a number of properties satisfied by theta functions
and show how this allows us to construct the A- and X -generalized cluster
varieties from Aprin. To begin, we recall some useful notation from Sect. 2.4.
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For a broken line γ, let Mono(γ) = c(γ)zF (µ) be the monomial attached to
its final domain of linearity. Then c(γ) denotes the coefficient and F (γ) the
exponent in that final domain of linearity. Let I(γ) and b(γ) denote the initial
slope and endpoint, respectively, of γ.

With this notation, we can then define structure constants for the mul-
tiplication of theta functions.

Proposition 5.1. (Analogue of Definition-Lemma 6.2 in [33]) Let p1, p2, and q

be points in M̃◦
s and z be a generic point in M̃◦

R,s. There are at most finitely
many pairs of broken lines γ1, γ2 such that γi has initial slope pi, both broken
lines have endpoint z, and F (γ1) + F (γ2) = q. Let

az(p1, p2, q) :=
∑

(µ1,µ2)
I(µi)=pi,b(µi)=z
F (µ1)+F (µ2)=q

c(γ1)c(γ2).

The αz(p1, p2, q) are linear combinations of the formal variables {ai,j}.

Proof. The proof of this proposition is identical to that given in [33], except
that in the generalized setting, the broken line monomials lie in R[P ] instead
of k[P ]. However, this does not change the essence of the proof. �

We then obtain the following decomposition of products of theta func-
tions:

Lemma 5.2. (Analogue of Proposition 6.4(3) of [33]) Let p1, p2, and q be points

in M̃◦
s and z be a generic point in M̃◦

R,s. Then

ϑp1
· ϑp2

=
∑

q∈M̃◦
s

αz(q)(p1, p2, q)ϑq

for z(q) sufficiently close to q. When z is sufficiently close to q, az(p1, p2, q)
is independent of the choice of z and we can simply write α(p1, p2, q) :=
az(p1, p2, q).

Proof. The argument given in [33] for the analogous result for ordinary clus-
ter scattering diagrams holds in our generalized setting. No portion of that
argument assumes that the wall-crossing automorphisms are binomials. �

5.1. The Product Structure of Theta Functions for Aprin

In this section, we will describe the product structure of theta functions on
Aprin and show that the collection of theta functions gives a topological basis
for a topological R-algebra completion of the upper cluster algebra of Aprin.
Later, in Sect. 5.2, we will descend to the A and X cases using the fact that
the A-variety appears as a fiber of Aprin → TM and the X -variety appears as
the quotient Aprin/TN◦ .

We wish to associate a formal summation
∑

q∈A∨
prin(ZT ) α(g)(q)ϑq, with

coefficients α(g)(q) ∈ k[ai,j ], to each universal Laurent polynomial g on Aprin.
In doing so, we follow the structure of Section 6 of [33] for the ordinary case,
with modifications when necessary to accommodate our generalized setting.
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We begin by giving such a summation for a fixed choice of generalized torus
seed s, then show that the coefficients α(g)(q) are, in fact, independent of the
choice of generalized torus seed.

Fix a choice of generalized torus seed s = {(ei, {ai,j})}. Recall that in the
generalized setting, we are working over the ground ring R = k[ai,j ] rather than
over k. Let yi := zei and Is = (y1, . . . , yn) ⊂ R[y1, . . . , yn]. When principal
coefficients are taken as the frozen variables, there is a partial compactification
As

prin ⊆ A
s

prin constructed in the same manner as in [33, Construction B.9].

Then, set

An
(y1,...,yn),R,k := Spec R[y1, . . . , yn]/Ik+1

s ,

A
s

prin,k := A
s

prin ×An
y1,...,yn

An
(y1,...,yn),k.

The map π : Aprin → TM induces a map π : A
s

prin → An
y1,...,yn

, which

then subsequently induces a map π : A
s

prin,k → An
(y1,...,yn),R,k. Let

̂
up
(
A

s

prin

)
:= lim

←−
up
(
A

s

prin,k

)

For any g ∈ up(Aprin), we have zng ∈ up(Aprins) where zn is some
monomial in the yi. This fact induces the inclusion

up(Aprin) ⊂ ̂up(A
s

prin) ⊗R[N+
s ] R[N ] (10)

where N+
s ⊂ N denotes the monoid generated by e1, . . . , en. Let πN : M̃◦ =

M◦ ⊕ N → N be the projection map and define M̃◦,+
s := π−1

N (N+
s ). Let

Ps ⊂ M̃◦
s be the monoid generated by (v1, e1), . . . , (vn, en).

We begin by establishing the following proposition, which defines canon-

ical functions ϑq on up(A
s

prin) ⊗R[N+] R[N ] for q ∈ M̃◦,+
s and then shows

that two particular collections of such ϑq form bases for up(A
s

prin,k). For each

σ ∈ ∆+
s , let Qσ denote a generic point in σ.

Proposition 5.3. (Analogue of Proposition 6.4(1,2) of [33])

1. Given a point q ∈ M̃s

◦,+
, the function ϑQσ,q is a regular function on

Vs,σ,k. As σ varies, the ϑQσ,q glue to yield a canonically defined function

ϑq,k ∈ up
(
A

s

prin,k

)
.

2. For q ∈ A∨
prin and k′ g k, ϑq,k′ |As

prin,k
= ϑq,k. Hence, the collection

{ϑq,k}k≥0 canonically defines a function

ϑq ∈
̂

up
(
A

s

prin

)
⊗R[N+

s ] R[N ].

Let can(Aprin) denote the R-vector space

⊕

q∈A∨
prin(Z

T )

R · ϑq.
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The ϑq are linearly independent, so there is a canonical inclusion of R-
vector spaces

can(Aprin) ⊂
̂

up
(
A

s

prin

)
⊗R[N+

s ] R[N ].

Proof. The proof given in [33] for the ordinary case holds in our setting. �

To associate a formal summation
∑

α(g)(q)ϑq to each universal Laurent
polynomial g on Aprin, we will first associate a formal summation

∑
αs(g)(q)ϑq

which depends on the choice of generalized torus seed s. To do so, we must
first define the function αs.

Proposition 5.4. (Analogue of Proposition 6.5 of [33]) There is a unique in-
clusion

αs :
̂

up
(
A

s

prin

)
⊗R[N+

s ] R[N ] ↪→ Homsets

(
A∨

prin(ZT ) = M̃◦
s , R

)

given by the map g �→ (q �→ αs(g)(q)). For all n ∈ N , αs(z
n · g)(q + n) =

αs(g)(q).

Proof. One consequence of Proposition 5.3 and Lemma 5.2 is that every g ∈
̂up(A

s

prin) can be uniquely expressed as a convergent formal sum
∑

q∈M̃◦
s

,+

αs(g)(q)ϑq where the coefficients αs(g)(q) lie in R. This immediately implies
the desired unique inclusion. �

Definition 5.5. (Analogue of Definition 6.6 of [33]) Let g be a universal Laurent
polynomial on up(Aprin). On the torus chart T

Ñ◦,s
of Aprin, we can write

g =
∑

q∈M̃◦
s

βs(g)(q)zq. Because zmg ∈ ̂up(A
s

prin) for some m ∈ M̃◦
s , we can

also write a formal expansion g =
∑

q∈M̃◦
s

αs(g)(q)ϑq. Let

Sg,s := {q ∈ M̃◦
s : βs(g)(q) �= 0}, Sg,s := {q ∈ M̃◦

s : αs(g)(q) �= 0},

and Ps be the monoid generated by {(vi, ei)}i∈Iuf
.

It follows from the construction of the theta functions that Sg,s ⊆ Sg,s +
Ps.

We are then ready to prove that on up(Aprin), the function αs is actually
independent of the choice of generalized torus seed s.

Theorem 5.6. (Analogue of Theorem 6.8 of [33]) There is a unique function

α : up (Aprin) → Homsets

(
A∨

prin

(
ZT
)
, R
)

such that

1. The function α is compatible with the R[N ]-module structure on up (Aprin)
and the N -translation action on A∨

prin

(
ZT
)
, i.e.

α (zn · g) (x + n) = α(g)(x)

for all g ∈ up (Aprin), n ∈ N , and x ∈ A∨
prin

(
ZT
)
.
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2. For any s, the formal sum
∑

q∈A∨
prin(Z

T ) α(g)(q)ϑq converges to g in ûp(
A

s

prin

)
⊗R[N+

s ] R[N ].

3. If zn · g lies in up
(
A

s

prin

)
, then α (zn · g) (q) = 0 unless πN (q) ∈ N+

s .

Moreover,

zn · g =
∑

πN,s(q)∈N+
s \(N+

s )k+1

α(zn · g)(q)ϑq mod
(
Ik+1
s

)

and the coefficients α(zn · g)(q) are the coefficients for the expansion of

zn · g when it is viewed as an element of up
(
A

s

prin

)
and written in terms

of the collection {ϑq : q ∈ M̃◦,+
s \M◦,+

s,k+1}.

4. For any generalized torus seed s′ reachable from s via a sequence of mu-
tations, the map α is the composition of inclusions

up (Aprin) ⊂
̂

up
(
A

s′

prin

)
⊗R[N+

s
′ ]

R[N ]] ⊂ Homsets

(
A∨

prin(ZT ) = M̃◦
s′ , k
)

from Proposition 5.4 and Eq. (10). This maps the cluster monomial A ∈
up (Aprin) to the delta function δg(A), where g(A) ∈ A∨

prin(ZT ) is its
g-vector.

Moreover, α(g)(m) = αs′(g)(m) for any generalized torus seed s′.

Proof. The proof given in [33] for the ordinary case holds in our generalized
setting, with minor modifications due to the polynomial mutation maps of the
generalized setting. For details, see Theorem 4.10.5 of [39]. �

This theorem implies, as a corollary, that the theta functions form a
topological basis for a natural topological R-algebra completion of up(Aprin).

Corollary 5.7. (Analogue of Corollary 6.11 of [33]) For n ∈ N , let the map

n∗ : Homsets(A
∨
prin(ZT ), k) → Homsets(A

∨
prin(ZT ), k)

denote precomposition by translation by n on A∨
prin(ZT ). Let up(Aprin) ⊂

Homsets(A
∨
prin(ZT ) be the vector subspace of functions f such that for each

generalized torus seed s, there exists n ∈ N such that the restriction of n∗(f)
to A∨

prin(ZT )\π−1
N,s((Ns+)k) has finite support for all k > 0. Then, we have the

inclusions

up(Aprin) ⊂ up(Aprin) =
⋂

s

̂
up(A

s)

prin ⊗R[N+
s ] R[N ] ⊂ Homsets(A

∨
prin(ZT ), k)

and up(Aprin) is a complete topological vector space under the weakest topology

so that each inclusion up(Aprin) =
⋂

s

̂
up(A

s)

prin ⊗R[N+
s ] R[N ] is continuous.

Let ϑq = δq ∈ up(Aprin) be the delta function associated to q ∈ A∨
prin(ZT ).

Then {ϑq}q∈A∨
prin(Z

T ) is a topological basis for up(Aprin) and there is a unique

topological R-algebra structure on up(Aprin) such that ϑp ·ϑq =
∑

r α(p, q, r)ϑr

with structure constants α(p, q, r) as in Proposition 5.1.
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Next, we show that the theta function ϑQ,m0
, for Q ∈ σ ∈ ∆+ and

m0 ∈ A∨
prin(ZT ), is a universal Laurent polynomial on R[M̃◦].

Proposition 5.8. (Analogue of Proposition 7.1 of [33]) Let s = {(ei, (ai,j))}
be a generalized torus seed. Fix some m0 ∈ A∨

prin(ZT ). If for some generic

choice of Q ∈ σ ∈ ∆+ there are finitely many broken lines γ in Ds with
I(γ) = m0 and b(γ) = Q, then this holds for any generic Q′ ∈ σ′ ∈ ∆+.

Hence, ϑQ,m0
∈ R[M̃◦] is a universal Laurent polynomial.

Even though our statement is similar to the one in [33, Proposition 7.1],
there are several significant differences in the proof. Because the positivity of
theta functions in the generalized setting has not yet been proven, we cannot
make use of this positivity as in the argument given in [33] for the ordinary
setting. Because we only consider ϑQ for Q,Q′ ∈ ∆+, however, we make use
of the fact that the chambers in the cluster complex can be associated with
generalized torus seed data for which the wall functions are simply the mu-
tation maps. Hence, we can assert the positivity of the wall functions within
the cluster complex. For this proof, we need ai,j to be formal variables rather
than simply arbitrary elements in P. Hence, we consider the generalized cluster
algebras over the ring R when defining the fixed data.

Proof. By Theorem 4.3, we know that for basepoints Q and Q′ in different
chambers, the theta functions ϑQ,m0

and ϑQ′,m0
are related by a composition of

wall-crossings. When the basepoint varies within a chamber, the corresponding
theta function does not change. Hence, it is sufficient to check that if Q ∈ σ
and Q′ ∈ σ′ are in adjacent chambers with Q′ close to the wall σ ∩ σ′, then
ϑQ,m0

having finitely many terms implies that ϑQ′,m0
also has finitely many

terms.

Fix some generalized torus seed s. Let the wall σ∩σ′ be in n⊥
0 for n0 ∈ Ñ◦

with 〈n0, Q〉 > 0 and denote the wall-crossing automorphism when moving
from Q to Q′ by p. Recall that a chamber of Ds is called reachable if there
exists a finite, transverse path between that chamber and the positive chamber
C+
s ⊂ Ds. By Lemma 2.10 of [33], there exists a bijection between torus seeds

that are mutation equivalent to the initial torus seed s and reachable chambers
of Ds. A consequence of this bijection, as described in [46], is that there exists
a sequence of mutations μk1

, . . . , μk�
and corresponding piecewise linear maps

Tk�
, . . . , Tk1

such that s′ = μk�
◦ · · · ◦ μk1

(s), Ds′ = Tk�
◦ · · · Tk1

(Ds), and
Tki−1

◦ · · · ◦ Tk1
(σ′) ⊂ Hki,− for each i ∈ {1, . . . , �}.

Recall that p(zm) = zmf 〈n0,m〉. When both chambers, σ and σ′ are reach-

able, f has the form 1+a1z
q+· · ·+ar−1z

(r−1)q+zrq for some q ∈ n⊥
0 ⊂ M̃◦ and

r ∈ Z>0. In particular, note that f is a Laurent polynomial where a1, . . . , ar−1

are formal variables. One can verify that f has this form by recalling that the
wall-crossing automorphisms associated with the positive chamber C+

s′ ⊂ Ds′

have the form 1 + ak,1z
vk + · · · + zrkvk for some k ∈ I and then applying

the appropriate sequence of piecewise linear maps Tk1
, . . . , Tk�

to obtain the
wall-crossing automorphism p.
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Monomials zm can be classified into three groups, based on the sign of
〈n0,m〉. The arguments for 〈n0,m〉 = 0 or 〈n0,m〉 > 0 given in [33] will work
here also. Briefly, when 〈n0,m〉 = 0, the monomial is fixed by p and so these
terms coincide in ϑQ,m0

and ϑQ′,m0
. When 〈n0,m〉 > 0, the monomial zm is

sent to zmf 〈n0,m〉, which is by definition a polynomial. So each such zm in
ϑQ,m0

corresponds to finitely many terms in ϑQ′,m0
.

The last case is when 〈n0,m〉 < 0. Consider a broken line in Ds with
endpoint Q′ ∈ σ′ ⊂ Ds and a monomial of the form czm with 〈n0,m〉 < 0
attached to its final domain of linearity. To complete the proof, it remains to
show that there are finitely many such broken lines. By way of contradiction,
assume that there actually infinitely many.

The direction vector of such a broken line must be towards the wall σ∩σ′,
so its final domain of linearity can be extended to some point Q′′ ∈ σ. When
crossing σ ∩ σ′ from σ′ into σ, we have

czm �→ czm
(
1 + a1z

q + · · · + ar−1z
(r−1)q + zrq

)〈−n0,m〉

.

Note that the primitive normal vector −n0 appears in this wall-crossing com-
putation rather than n0 because by assumption 〈n0, Q〉 > 0, so n0 is directed
into the chamber σ rather than into σ′. The fact that a1, . . . , ar−1 are all formal
variables means that there are no cancellations. Because ϑQ,m0

is independent
of the location of Q within the chamber σ, this means there are infinitely many
broken lines with initial slope m0 and endpoint Q, a contradiction. �

Definition 5.9. ([33, Definition 7.2]) Let Θ ⊂ A∨
prin(ZT ) be the collection of

m0 such that for any generic point Q ∈ σ ∈ ∆+, there exist finitely many
broken lines with initial slope m0 and endpoint Q.

Theorem 5.10. (Analogue of Theorem 7.5 of [33]) Let

∆+(Z) :=
⋃

σ∈∆+

σ ∩ A∨
prin(ZT )

be the set of integral points in the chambers of the cluster complex. Then

1. ∆+(Z) ⊂ Θ.
2. There is an inclusion of R[N ]-algebras

gen(Aprin) ⊂ ̂up(Aprin,s) ⊗R[N+
s ] R[N ],

where each cluster monomial Z ∈ gen(Aprin) is identified with ϑg(Z) ∈

̂up(Aprin,s)⊗R[N+
s ] R[N ], where g(Z) ∈ ∆+(Z) denotes the g-vector of Z.

Proof. The proof of (1) follows from Corollary 4.6 and Proposition 4.7.
For (2), we know from Proposition 5.8 that each ϑQ,p is a universal

Laurent polynomial in R[M̃◦], for all p ∈ Aprin(ZT ) and Q ∈ ∆+. When
p ∈ ∆+(Z), we know by Theorem 5.6(4) that ϑQ,p is the corresponding cluster
monomial. The inclusion follows from Proposition 5.3. �

As an immediate consequence, we obtain:
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Corollary 5.11. (Analogue of Corollary 7.6 of [33]) There are canonically de-
fined non-negative structure constants

α : A∨
prin(ZT ) × A∨

prin(ZT ) × A∨
prin(ZT ) → Z≥0 ∪ {∞}

that are given by counts of broken lines.

As in the ordinary case, we can verify that the theta functions are well
behaved with respect to the canonical torus action on Aprin.

Proposition 5.12. (Analogue of Proposition 7.7 of [33]) For q ∈ A∨
prin(Z),

ϑq ∈ up(Aprin) is an eigenfunction for the natural T
K̃◦ action on Aprin with

weight w(q) given by the map w : M̃◦ = (Ñ◦)∗ → (K̃◦)∗. Moreover, ϑq is an
eigenfunction for the subtorus TN◦ ⊂ T

K̃◦ with weight w(q) given by the map

w : M̃◦ → M̃◦ defined by the mapping (m,n) �→ m − p∗(n).

Proof. The proof given in [33] for the ordinary case holds in the generalized
case as well, since we still have w(vi, ei) = vi − p∗(ei) = 0, by definition. �

5.2. From Aprin to At and X

As in the ordinary case, our results for Aprin induce similar results on the A
and X varieties. In this section, we adapt the results of section 7.2 of [33] for
our generalized setting.

Similar to the ordinary case, the choice of generalized torus seed data
s = {(ei, (ai,j))} gives a toric model for the generalized cluster variety V . The
generalized torus seed s specifies a fan Σs,V . More precisely, the fans for the
A and X cases are

Σs,A := {0} ∪ {R≥0ei : i ∈ Iuf} ,

Σs,X := {0} ∪ {−R≥0vi : i ∈ Iuf} .

The fan Σs,V then defines a toric variety TV (Σs,V ). Note that in our setting we
consider the toric varieties with base change to the ground ring R. The cluster
varieties can be seen as (up to codimension 2) blowups Y → TV (Σs,V ) of the
toric varieties along the closed subschemes given by the mutation maps. Note
that we can simply follow [30, Construction 3.4] which does not necessarily
depend on the mutations being binomials but only on the mutation functions
being polynomials in a single variable.

These toric models allow us to determine the global monomials:

Lemma 5.13. (Analogue of Lemma 7.8 of [33]) For m ∈ Hom(Ls, Z), the char-
acter zm on TL,s ⊂ V is a global monomial if and only if zm is regular on
TV (Σs,V ). The character zm is regular on TV (Σs,V ) if and only if 〈m,n〉 g 0
for the primitive generators n of each ray in Σs,V . When V is an A-type clus-
ter variety, the set of global monomials exactly coincides with the set of cluster
monomials. That is, every global monomial is a monomial in the variables of
a single cluster with non-negative exponents on the non-frozen variables.

Proof. The proof given in [33] for the ordinary case holds in the generalized
setting, with one minor change: the support of Zi is now defined by the zero
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locus of polynomials rather than binomials, i.e., its support is now 1+ai,1z
vi +

· · · + ai,ri−1z
(ri−1)vi + zrivi = 0 rather than 1 + zvi = 0. Subsequent portions

of the proof still hold after this change is made.
Note also that the proof in the ordinary case uses the Laurent phenom-

enon. Because the Laurent phenomenon holds in the reciprocal generalized
setting, see Theorem 2.6, this portion of the proof extends to our setting with-
out modification. �

Definition 5.14. For a generalized cluster variety V =
⋃

s TL,s, let C+
s (Z) ⊂

V ∨(ZT ) denote the set of g-vectors for global monomials that are characters
on the torus TL,s ⊂ V and ∆+

V (Z) ⊂ V ∨(ZT ) denote the union of all C+
s (Z).

Recall that At = π−1(t), where π is the canonical fibration Aprin →
TM . Consider the maps ρ : A∨

prin → A∨ and ξ : X ∨ → A∨
prin which have

tropicalizations

ρT : (m,n) �→ m,

ξT : n �→ (−p∗(n),−n).

The map ρT identifies A∨(ZT ) and the quotient of A∨
prin(ZT ) by the natural

action of N . Let w : A∨
prin → TM◦ be the weight map given by w(m,n) =

m− p∗(n). Because ξ identifies X ∨ with the fiber of w : A∨
prin → TM◦ over the

identity element e, the map ξT identifies X ∨(ZT ) with w−1(0).

Lemma 5.15. (Analogue of 7.10 of [33])

1. When V is a generalized A-variety, C+
s (Z) is the set of integral points of

the cone C+
s in the Fock–Goncharov cluster complex which corresponds to

the seed s.
2. For any type of generalized cluster variety, C+

s (Z) is the set of integral
points of a rational convex cone C+

s and the relative interiors of C+
s as

s varies are disjoint. The g-vector g(f) ∈ V ∨(ZT ) depends only on the
function f . That is, if f restricts to a character on two distinct seed tori
then the g-vectors they determine are the same.

3. For m ∈ w−1(0)∩∆+
Aprin

(Z), the global monomial ϑm on Aprin is invariant

under the TN◦ action and thus gives a global function on X = Aprin/TN◦ .
This is a global monomial and all global monomials on X occur in this
way. Moreover, m = g(ϑm).

Proof. The proof given in [33] for the ordinary case holds in our generalized
setting, as we have proven analogs of all the necessary previous results. We
quickly review the proof given in [33] to point out each place where we are
instead using an analogous result for the generalized setting.

First, consider (1) for a generalized A-variety. By Lemma 3.30 and Lemma
5.13, the positive chamber C+

s is the Fock–Goncharov cluster chamber associ-
ated to s and a maximal cone of a simplicial fan. By Theorem 3.31, ∆+

A(Z)
forms a simplicial fan.

The A case, which includes Aprin, of (2) follows from Sect. 4.1. The X
case follows from the Aprin case. Recall that the map p̃ : Aprin → X given
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by z(n,m) �→ zm−p∗(n) makes Aprin into a TN◦ -torsor over X . Hence, pulling
back a monomial on X yields a TN◦ -invariant global monomial on Aprin. By
Proposition 5.12, we have the inclusion ∆+

X (Z) ⊆ w−1(0)∩∆+
Aprin

. Conversely,

suppose m ∈ w−1(0) and m = g(f) for some global monomial f on Aprin.
Then there exists some generalized torus seed s = {(ei,ai)} such that f is
represented by a monomial zm on T

Ñ,s
. Since m ∈ w−1(0), it must be of the

form m = (p∗(n), n) for some n ∈ N . By Lemma 5.13, m is non-negative on the
rays R≥0(ei, 0) of Σs,Aprin

and therefore n is non-negative on the rays −R≥0vi of

Σs,X and zn is a global monomial on X . As such, ∆+
X (Z) = w−1(0)∩∆+

Aprin
(Z)

and the cones for X are given by intersecting the cones for Aprin with w−1(0).
This also gives (3). �

Broken Lines and Theta Functions for the A and X Cases. The maps ρ and
w allow us to define broken lines for the A and X cases. Recall that each wall
in D

Aprin
s has an associated wall-crossing automorphism that is a power series

in z(p∗(n),n) for some n. Hence, w(m,n) = w(p∗(n), n) = 0 for every exponent
which appears in one of these wall-crossing automorphisms.

First, consider the X case. Suppose γ is a broken line in D
Aprin
s with both

I(γ) and the initial domain of linearity lying in w−1(0). Because every exponent
that appears in a wall-crossing function lies in w−1(0), the monomials attached
to each subsequent domain of linearity must also lie in w−1(0). In particular,
this means that F (γ) and b(γ) both lie in w−1(0). We define the set of broken
lines in X ∨(RT ) to be the set of such broken lines. The X theta functions are
the theta functions defined by those broken lines. Next, consider the A case.
Here, the set of broken lines in A∨(RT ) is defined as {ρT (γ)} where γ ranges
over the set of broken lines in A∨

prin(RT ). Similarly, the A theta functions are
the theta functions defined by those broken lines.

To define functions on the A and X varieties, we would restrict to the
set Θ. Hence, we define

Θ(X ) := Θ (Aprin) ∩ w−1(0),

Θ(At) := ρT (Θ (Aprin)) .

Because A∨(ZT ) is identified with the quotient of A∨
prin(ZT ) under the

natural N -action, it follows that Θ(Aprin) is invariant under N -translation

and, therefore, Θ(Aprin) =
(
ρT
)−1

(Θ(At)). In fact, any section Σ : A∨(ZT ) →

A∨
prin(ZT ) of ρT will induce a bijection between Θ(Aprin) and Θ(At) × N .

The space At = ∪sTN◦,s consists of tori glued by birational maps that
depend on t. When tropicalized, however, these maps are independent of t and
so it is natural to define A∨

t (ZT ) := A∨(ZT ). With that notation, we can state
the following results for At and X :

Theorem 5.16. (Analogue of Corollary 7.13 of [33]) For X ,

1. There are canonically defined structure constants

α : X ∨ × X ∨(ZT ) × X ∨(ZT ) → Z≥0

given by counts of broken lines.
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2. The subset Θ(X ) contains the g-vector of each global monomial, i.e.
∆+(Z) ⊂ Θ(X ).

Theorem 5.17. (Analogue of Theorem 7.16 of [33]) For V = At,

1. Given a choice of section Σ : A∨(ZT ) → A∨
prin(ZT ), there exists a map

αV : A∨
t (ZT ) × A∨

t (ZT ) × A∨
t (ZT ) → k ∪ {∞},

given by the mapping

(p, q, r) �→
∑

n∈N

αAprin
(σ(p),Σ(q),Σ(r) + n) zn(t)

if the summation is finite. Otherwise, αV (p, q, r) = ∞. If p, q, r ∈ Θ(At),
then the summation will be finite.

2. The subset Θ contains the g-vector of each global monomial, i.e. ∆+
V (ZT ) ⊂

Θ.

By taking t = e, we obtain these statements for A.

For both, the arguments given in [33] for the ordinary setting still hold
in our generalized setting.

6. Companion Cluster Algebras

Given a generalized cluster algebra, Nakanishi and Rupel define the notion of
companion algebras, which are a pair of ordinary cluster algebras associated
to the generalized cluster algebra [50].

Recall that (P,⊕) is an arbitrary semifield. Let QP denote the field of
fractions of this semifield and QP(x) = QP(x1, . . . , xn) denote the field of ratio-
nal functions in the algebraically independent variables x1, . . . , xn. In earlier
sections we referred to QP(x) as F , but here it will be convenient to write
QP(x) since we will also want to discuss fields of rational functions in other
sets of algebraically independent variables.

Fix a generalized cluster seed Σ = (x,y, B, [rij ],a). The corresponding
fixed data Γ has lattices N , M , M◦, N◦ and collections of scalars {di} and
{ri}, as specified in Definition 3.1. Consider the initial generalized torus seed
data be s = {(ei, (ai,s))}, where {ei} forms a basis for N , {diei} for N◦, and
{fi = 1

di
e∗
i } for M◦. As usual, we let vi = p∗

1(ei) ∈ M◦ for i ∈ Iuf .
Let A denote the generalized cluster algebra defined by Σ. We can then

state the definitions of the companion algebras as:

Definition 6.1. ([50]) Let Lx = x1/r = (Lx1, . . . ,
Lxn) := (x

1/r1

1 , . . . , x
1/rn
n )

in QP(x1/r) The left companion algebra of A is the ordinary cluster algebra
LA ⊂ QP(x1/r) with seed (Lx, Ly, B[rij ]). Let Lcj ,

Lgj , and LFj denote the
c-vectors, g-vectors, and F -polynomials of LA.

Definition 6.2. ([50]) Let Rx = x and Ry = yr = (Ry1, . . . ,
Ryn) = (yr1

1 , . . . , yrn
n ).

The right companion algebra of A is the ordinary cluster algebra RA ⊂ QP(x)
with seed (x,yr, [rij ]B). Let Rcj ,

Rgj , and RFj denote the c-vectors, g-vectors,
and F -polynomials of RA.
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Remark 6.3. Note that because the mutation formulas used in this article are
the transpose of those used by Fomin and Zelevinsky [17], our definitions of
the companion algebras are not identical to the definitions given in [50]. As
compared to Nakanishi and Rupel, we switch the roles of the exchange matrices
[rij ]B and B[rij ] in the definitions of the left and right companion algebras.

6.1. Langlands Duality and Tropical Duality

In this subsection, we largely restrict our attention to ordinary cluster algebras
and quickly review background material about two types of duality. We also
briefly state the definition of the Langlands dual in the generalized setting. In
the next subsection, we will discuss one way that these notions appear in the
context of generalized cluster algebras.

Langlands Duality. In [16], Fock and Goncharov give the following definitions
for the Langlands dual of a set of fixed data and a torus seed:

Definition 6.4. Given fixed data Γ and torus seed s, let D := lcm(d1, . . . , dn).
The Langlands dual of Γ is the fixed data Γ∨ defined by N∨ := N◦, I∨ := I,
I∨
uf := Iuf, and d∨

i := d−1
i D with Q-valued skew symmetric form {·, ·}∨ :=

D−1{·, ·}. The Langlands dual of s is the torus seed s∨ := (d1e1, . . . , dnen).

In the generalized setting, this definition is updated as follows.

Definition 6.5. Given generalized fixed data Γ and generalized torus seed s, the
Langlands dual of Γ is the generalized fixed data Γ∨ defined as in the ordinary
case, with the addition that r∨

i = lcm(r1, . . . , rn)/ri and the collection of
formal variables {ai,j} remains the same. The Langlands dual of s is then the
generalized torus seed s∨ := {(ei, (a

′
i,j))}i∈Iuf,j∈[r∨

i −1].

From these definitions, we can observe the following relationship between
the bilinear forms of Γ and Γ∨.

{ei, ej}dj =
1

di
{diei, djej}

= −D−1{djej , diei}

(
D

di

)

= −{e∨
j , e∨

i }∨(d∨
i ).

It follows that εij = −ε∨
ji and that, on the matrix level, ε = −(ε∨)T . Recall

from Definition 2.9 that the exchange matrix B (in the Fomin–Zelevinsky
sense) can be represented as

bij = εij = {ei, ej}dj

for a given choice of torus seed s. Hence, the Langlands dual of an ordinary
cluster algebra defined by the exchange matrix B = [εij ] is simply the ordinary
cluster algebra defined by −BT = [−εT

ij ].
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Tropical Duality. The study of cluster algebras often involves a different type
of duality, called tropical duality. In [18], Fomin and Zelevinsky define c-vectors
and g-vectors as the tropicalizations of the A and X cluster variables. As noted
in earlier sections, Gross, Hacking, Keel, and Kontsevich showed in Lemma
2.10 of [33] that given a choice of seed data s, M◦

R,s
∼= A∨(RT ), where A∨(RT )

denotes the tropicalization of the Fock–Goncharov dual variety. By explaining
the connection between the lattices used in [33] and the c-vectors and g vectors,
we can connect these seemingly disparate statements.

Consider the fixed data Γ and choice of initial torus seed data sin = (ein,i).
By definition, the basis vectors of Nsin are {ein,i}i∈I and the basis vectors of
M◦

sin
are {fin,i}i∈I , where fin,i = 1

di
e∗
in,i. Recall that A cluster variables have

the form zm with m ∈ M◦
sin

and that the X cluster variables have the form
zn with n ∈ Nsin . Because the c-vectors and g-vectors are the tropicalizations
of these cluster variables, we can express them as csin,i =

∑
k cikein,k and

gsin,i =
∑

k gikfin,k.

Now, consider an arbitrary seed s = (es,i). Now, the lattice Ns has basis
vectors {es,i}i∈I and the lattice Ms has basis vectors {fs,i}i∈I . The correspond-
ing A and X cluster variables have g-vectors and c-vectors which we can write
as gs,i = fs,i =

∑
k gikfin,k and cs,i = es,i =

∑
k cikein,k. We denote by Cε

s

(respectively, Gε
s) the integer matrix with columns c1;s, . . . , cn;s (respectively,

with columns g1;s, . . . , gn;s), where ε = [εij ] is the matrix defined by sin.

Nakanishi and Zelevinsky proved the following identity, referred to as a
tropical duality, between the c-vectors and g-vectors.

Theorem 6.6. ([51, Theorem 1.2]) For any torus seed s and the associated
matrix ε = [εij ] = [{ei, ej}dj ], take εin = ε and let εs denote the matrix
associated with the torus seed s. Then,

(Gε
s)

T = (C−εT

s )−1. (11)

We can also understand this tropical duality in the language of cluster
scattering diagrams. In the previous subsection, we saw that replacing ε with
−εT in the fixed data Γ is equivalent to considering its Langlands dual, Γ∨.
Consider some choice of torus seed s = {es,i}i∈I associated to Γ. As explained
above, the associated collections of g-vectors and c-vectors are, respectively,
{fs,i} and {es,i}. The associated collections of g-vectors and c-vectors of the
Langlands dual torus seed data s∨ are therefore {f∨

s,i = diD
−1fs,i} and {e∨

s,i =
dies,i}, respectively. One can immediately see that the bases {fs,i} and {e∨

s,i =
dies,i} are dual, because

〈e∨
s,i, fs,i〉 = 〈dies,i, d

−1
i e∗

s,i〉 = 〈es,i, e
∗
s,i〉 = 1,

which implies the tropical duality in the language of seed basis vectors.

6.2. Fixed Data for the Companion Algebras

Fix a generalized cluster seed Σ = (x,y, B, [rij ],a), which defines the gen-
eralized cluster algebra A. We will assume that A is a reciprocal general-
ized cluster algebra, so we can use our construction of cluster scattering dia-



Cluster Scattering Diagrams and Theta Functions 683

grams for reciprocal generalized cluster algebras. The corresponding general-
ized fixed data Γ has lattices N , M , M◦, N◦; index sets I and Iuf; collections of
scalars {di} and {ri}; and the collection of formal variables {ai,j}i∈I,j∈[ri−1],
as specified in Definition 3.1. Consider the initial generalized torus seed data
s = {(ei, (ai,j))}i∈I , where {ei}i∈I forms a basis for N , {diei}i∈I for N◦,
{e∗

i }i∈I for M , and {fi = 1
di

e∗
i }i∈I for M◦. As usual, we let vi = p∗

1(ei) ∈ M◦

for i ∈ Iuf .

As explained in earlier section, the generalized cluster algebra A has an
associated pair of companion algebras, LA and RA. We can explicitly described
the fixed data associated with the left and right companion algebras. In doing
so, we will use the superscript C to indicate when we are considering an object
in a generic companion algebra and the superscripts L and R, respectively,
to denote the corresponding notions in the left and right companion algebras.
The data associated with the left and right companion algebras in the following
table:

Left Right

{·, ·} {·, ·} {·, ·}
Cdi

Ldi = diri
Rdi = di

ri
Cei

Lei = ei
Rei = riei

Cfi
Lfi = 1

Ldi

Le
∗
i = 1

diri
e∗

i = 1
ri

fi
Rf i = 1

Rdi

Re
∗
i = ri

di

1
ri

e∗
i = fi

CN LN = N RN = span {riei}
CN◦ LN

◦
= span {ri(diei)}

RN
◦

= span {diei}
CM LM = span {e∗

i } = M RM = span { 1
ri

e∗
i }

CM◦ LM
◦

= span {Lfi}
RM

◦
= span {Rf i}

Cxi
Lxi = z

Lf i = x
1/ri

i
Rxi = z

Rf i = xi
Cyi

Lyi = z
Lei = zei = yi

Ry = z
Rei = zriei = yri

i
Cŷ Lŷi = z(vi,ei) = ŷ Rŷi = z(rivi,riei) = ŷri

Cvi
Lvi = {Lei, ·} = {ei, ·} = vi

Rvi = {Rei, ·} = {riei, ·} = rivi
C〈diei, fi〉 〈Ldi

Lei,
Lfi〉 = 〈diriei,

1
ri

fi〉 = 1 〈Rdi
Rei,

Rfi〉 = 〈dir
−1
i (riei), fi〉 = 1

Observe that if di = 1 for all i, then the left and right companion algebras
are Langlands dual (up to the scalar factor lcm({ri}i∈I)) to each other. The
term di

ri
being rational may raise some questions. Note that it is possible for

a right companion algebra to have fixed data such that some Rdi are non-
integral. In fact, Rdi will be non-integral whenever ri �= 1. To ensure that
all Rdi are integral, one could scale Rd = (Rdi) by a factor of lcm(ri). Any
computations done using a cluster scattering diagram generated by the scaled
fixed data would then require that we account for this scaling. Further, this
rational lattice is consistent with the fact that [50] defines this companion
algebra as a subalgebra of QP(x1/r).

In fact, the unscaled fixed data RΓ can still be used to define a sensible
cluster scattering diagram that allows for easy computation of cluster variables,
etc. To understand the impact of non-integral values of Rdi on the construction
of a cluster scattering diagram, we can consider the impact on the associated
lattices and initial cluster scattering diagram. It is clear that RN will always
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be an integral lattice, since RN = span{riei}. The scaling of Rei guarantees
that RN◦ is always an integral lattice since

RN◦ = span
{

Rdi
Rei

}
= span

{
di

ri
riei

}
= span {diei} .

Note that this scaling also means that

RM◦ = span{Rfi} = span

{
1

Rdi

(
Rei

)∗}
= span

{
ri

di

1

ri
e∗
i

}

= span

{
1

di
e∗
i

}
= span{fi}.

By definition, RA has initial scattering diagram
RDin =

{
((Rei)

⊥, 1 + z
Rvi)
}

i∈Iuf

=
{
((riei)

⊥, 1 + zrivi)
}

i∈Iuf
,

where all the wall-crossing automorphisms have integral exponents. As such,
the algorithm for producing a consistent scattering diagram that was intro-
duced by Kontsevich and Soibelman in two dimensions and then extended
to higher dimensions by Gross and Siebert can be applied to RDin. Likewise,
other major results of Gross, Hacking, Keel, and Kontsevich [33] which rely
on the wall-crossing automorphisms having integer exponents still hold for the
resulting consistent scattering diagram.

Example 6.7. Consider the generalized cluster algebra from Example 3.23,

A

(
x,y,

[
0 1

−1 0

]
,

[
3 0
0 1

]
, ((1, a, a, 1), (1, 1))

)
.

This generalized cluster algebra has companion algebras:

LA =

(
(x

1/3
1 , x2), (y1, y2),

[
0 1

−3 0

])

RA =

(
(x1, x2), (y

3
1 , y2),

[
0 3

−1 0

])
.

Recall from Example 3.4 that A has fixed data d = (1, 1), r = (3, 1), I =
Iuf = {1, 2}, N = N◦ = 〈e1, e2〉, M = M◦ = 〈e∗

1, e
∗
2〉, and skew-symmetric

form {·, ·} : N◦ × N◦ → Z specified by the exchange matrix. The fixed and
seed data of its associated companion algebras, in terms of the fixed data of
the generalized cluster algebra, are summarized in the following table.

LA RA

Cd (3, 1)
(

1
3 , 1
)

Cei e1, e2 3e1, e2
Cfi

1
3f1, f2 f1, f2

CN span {e1, e2} span {3e1, e2}
CN◦ span {3e1, e2} span {e1, e2}
CM span {e∗

1, e
∗
2} span

{
1
3e∗

1, e
∗
2

}
CM◦ span

{
1
3f1, f2

}
span {f1, f2}

Cvi v1, v2 3v1, v2
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The cluster scattering diagrams for LA and RA are shown below (on the
top and bottom, respectively). Although the data in the above table is stated
in terms of the fixed data of the generalized cluster algebra, the following
ordinary cluster scattering diagrams are drawn from the fixed data of the
companion algebras and the wall functions are stated in terms of the Lxi and
Rxi. In this example, we note that the generalized and companion fixed data
mostly coincide, but notably

Lf1 =
1

3
f1,

Re1 = 3e1, and Rv1 = 3v1.

Because of this, we need to be careful to avoid confusion about which variables
are being used when writing the wall functions. The wall functions in the
following diagrams use the variables of the companion algebra, but could also
be written using the variables of the generalized algebra. For instance, observe
that

Lfd1
= 1 + Lz(Lv2) = 1 + Lz−3(Lf1) = 1 + Lz(−3,0) = 1

+(Lx1)
−3 = 1 + (x

1/3
1 )−3 = 1 + x−1

1 = 1 + zv2 .

d1

d2

d6

d5

d4

d3

Lfd1
= 1 + Lz(−3,0)

Lfd2
= 1 + Lz(0,1)

Lfd3
= 1 + Lz(−3,3)

Lfd4
= 1 + Lz(−3,2)

Lfd5
= 1 + Lz(−6,3)

Lfd6
= 1 + Lz(−3,1)

d1

d2

d6

d5d4d3

Rfd1
= 1 + Rz(−1,0)

Rfd2
= 1 + Rz(0,3)

Rfd3
= 1 + Rz(−1,3)

Rfd4
= 1 + Rz(−3,6)

Rfd5
= 1 + Rz(−2,3)

Rfd6
= 1 + Rz(−3,2)

Remark 6.8. Note that under the hypothesis di = 1, the left and right com-
panion algebras are, up to isomorphism and the scalar factor lcm({ri}i∈I),
Langlands dual according to the definition given in Sect. 6.1. In particular, let
A be a reciprocal generalized cluster algebra where all di = 1 with companion
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algebras LA and RA. Let LΓ and RΓ denote the fixed data of LA and RA,
respectively, then
(
LΓ
)∨

� RΓ and
(
RΓ
)∨

� LΓ, up to the scalar factor lcm({ri}i∈I).

Based on the explicit fixed data of the companion algebras, we can make
several other useful observations. First, the c-vectors of the left companion
algebras and the generalized algebras coincide because the torus seed basis
vectors are the same. On the other hand, for the g-vectors, we have

Lgs,j =
1

rj
gs,j

=
1

rj

∑

i

gjifin,i

=
1

rj

∑

i

ri

rj
gji

Lfin,i.

Hence, we have Lgs,j = [ ri

rj
gji]i∈I as in Corollary 4.2 of [50]. We can

similarly deduce that the g-vectors of the right companion algebras and the
generalized algebra are the same, since fi = Rfi. The c-vectors are related as

Rcs,j = rjcs,j

= rj

∑

i

cjicin,i

=
∑

i

rj

ri
cji

Rcin,i,

which also agrees with Corollary 4.1 of [50].
We can also explore the relationship between mutation of the generalized

cluster algebra and mutation of its associated companion algebras. Consider a
reciprocal generalized cluster algebra A with fixed data Γ. Again, let us con-
sider a fixed generalized torus seed s and the associated scattering diagram
with principal coefficients, Ds,prin. The fixed data for the left and right com-
panion algebras of A are as specified earlier in this section. By definition, the
initial scattering diagram for LA is of the form

LDin
s,prin =

{(
Ldk = (rkdkek, 0)⊥, Lfdk

= 1 + z(vk,ek)
)

, for k ∈ Iuf

}
.

Note that the dual lattice of LM
◦

is LN
◦

= span{ridiei}i∈I . Hence, the prim-
itive vectors normal to the wall dk in LDin

s,prin have the form (±rkdkek, 0).

By convention, we will choose to use the primitive normal vector (rkdkek, 0)
when calculating path-ordered products. Now, consider the cluster variables
Lŷi = z(vi,ei) and let

vi =
∑

k

Lνik
Lfk =

∑

k

Lνik · (rkfk).

Mutating Lŷi in direction k is equivalent to applying the wall-crossing auto-
morphism associated with Ldk to the monomial z(vi,ei). Hence, we can calculate
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μk(Lŷi) by computing

Lŷi = z(Lvi,ei)
L
dk�−−→ z(vi,ei)

(
Lfdk

)〈(rkdkek,0),(vi,ei)〉

= z(Lvi,ei)
(
Lfdk

)〈rkdkek,
∑

j∈I
Lvij

Lfj〉

= z(Lvi,ei)
(
Lfdk

)∑
j∈I〈rkdkek,Lvij

Lfj〉
.

Observe that

〈rkdkek, Lvij
Lfj〉 = rkdk

Lvij〈ek, Lfj〉 = rkdk
Lvij〈ek,

1

rjdj
e∗
j 〉 =

{
Lvij j = k

0 j �= k.

Hence, we have

Lŷi = z(Lvi,ei)
L
dk�−−→ z(Lvi,ei)

(
Lfdk

)Lvij
.

Recall that the variables of the generalized cluster algebra and the left compan-

ion algebra are related by Lxi = x
1/ri

i and Lyi = yi. Recall also that Lvi = vi

and therefore Lŷi = z(Lvi,ei) = z(vi,ei) = ŷi. Hence, we can rewrite the above
map as

ŷi

L
dk�−−→ z(vi,ei)

(
Lfdk

)Lvikrk
,

which agrees with the F -polynomial transformation given in Proposition 4.3 of
[50]. The analogous computation for mutation in the right companion algebra
also agrees with Proposition 4.6 of [50].
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