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Multiplicity-Free Key Polynomials

Reuven Hodges and Alexander Yong

Abstract. The key polynomials, defined by Lascoux–Schützenberger, are

characters for the Demazure modules of type A. We classify multiplicity-

free key polynomials. The proof uses two combinatorial models for key

polynomials. The first is due to Kohnert. The second is in terms of

Searles’ rule for the quasi-key polynomials of Assaf–Searles. Our argument

proves a sufficient condition for a quasi-key polynomial to be multiplicity-

free.

1. Introduction

This is the companion paper to [5]. That work proposed a framework for
studying spherical Schubert geometry in terms of the multiplicity-freeness of
key polynomials. Motivated by this, our Theorem 1.1 classifies the multiplicity-
free key polynomials.

Let Poln = Z[x1, . . . , xn]. The Demazure operator πj : Poln → Poln is
defined by

f �→
xjf − xj+1sjf

xj − xj+1
, where sjf := f(x1, . . . , xj+1, xj , . . . , xn).

A weak composition of length n is α = (α1, . . . , αn) ∈ Zn
≥0. Let Compn

be the set of such α. If α ∈ Compn is weakly decreasing, the key polynomial
κα is xα := xα1

1 · · · xαn
n . Otherwise,

κα = πj(κα̂) where α̂ = (α1, . . . , αj+1, αj , . . . , αn) and αj+1 > αj .

The key polynomials for α ∈ Compn form a Z-basis of Z[x1, . . . , xn]; see work
of Reiner–Shimozono [11] and of Lascoux [8] (and references therein) for more
on κα. In [5, Section 4.4], Hodges and Yong use the fact that κα is the character
of a Demazure module of B ⊂ GLn [6,10,11]. This is not needed in this paper,
which is entirely combinatorial.
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Let Comp :=
⋃∞

n=1 Compn. For α = (α1, . . . , α�), ³ = (³1, . . . , ³k) ∈
Comp, α contains the composition pattern ³ if there exists integers j1 < j2 <
· · · < jk that satisfy:

• αjs
f αjt

if and only if ³s f ³t,
• |αjs

− αjt
| g |³s − ³t|.

If α does not contain ³, α avoids ³. Let

KM = {(0, 1, 2), (0, 0, 2, 2), (0, 0, 2, 1), (1, 0, 3, 2), (1, 0, 2, 2)}.

Define KMn to be those α ∈ Compn avoiding all compositions in KM. The
expansion

κα =
∑

γ∈Compn

cγxγ

is multiplicity-free if cγ ∈ {0, 1} for all ´ ∈ Compn.

Theorem 1.1. κα is multiplicity-free if and only if α ∈ KMn.

Example 1.2. The composition (0, 1, 2) contains the composition patterns
(1, 1, 2) and (8, 8). However, (0, 1, 2) does not contain the composition
pattern (0, 0, 2) since |2 − 1| � |2 − 0|. The composition (1, 1, 5, 6)
contains the composition pattern (0, 0, 2, 1) but does not contain (1, 0, 3, 2),
(2, 0), or (2, 6).

�

Example 1.3. α = (0, 1, 1) ∈ KM3. κα = x2x3 + x1x3 + x2x1 is multiplicity-
free. �

Example 1.4. α = (0, 2, 1, 2) �∈ KM4 (contains (0, 1, 2) in the underlined posi-
tions).

κα = x2
1x

2
2x4 + x2

1x
2
2x3 + 2x2

1x2x3x4 + x2
1x2x

2
4 + x2

1x2x
2
3 + x2

1x3x
2
4

+x2
1x

2
3x4 + 2x1x

2
2x3x4 + x1x

2
2x

2
4 + x1x

2
2x

2
3 + x1x2x3x

2
4 + x1x2x

2
3x4

+x2
2x3x

2
4 + x2

2x
2
3x4,

has multiplicity. �

In [5], the authors initiated a study of the notion of split multiplicity-free
problems. Theorem 1.1 concerns the “most split” case of these problems (the
“[n − 1]” case, in the terminology of ibid.).

The sufficiency proof uses the quasi-key model of key polynomials due
to Assaf–Searles [2] and the quasi-key tableaux of Searles [12]. In Sect. 2, we
prove a preparatory theorem (Theorem 2.6), which gives sufficient conditions
for their quasi-key polynomials to be multiplicity-free. The conclusion of the
proof of Theorem 1.1 is given in Sect. 3. There, the necessity proof uses the
older Kohnert diagram model [7].

Fink–Mészáros–St. Dizier’s [4, Theorem 1.1] characterizes multiplicity-
free Schubert polynomials in terms of classical pattern avoidance of permuta-
tions. Since Schubert polynomials are linear combinations of key polynomials
with positive integer coefficients (see [11, Theorem 4]), our results are related.
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We do not know how to derive one result from the other. The proof methods
are different. As suggested by [5, Section 4.3], one can look forward to finding
“split” generalizations of both theorems.

An anonymous referee has kindly pointed out to us the relevance of recent
work of Armon–Assaf–Bowling–Ehrhard [1] (written after the preprint version
of this work was made available). That work shows that for all “NW-diagrams”,
the Kohnert polynomials of Assaf–Searles [3] have a representation-theoretic
interpretation as characters of flagged Schur modules. Said referee has sug-
gested that this context is an appropriate level of generalization of this paper.
That is, which of the Kohnert polynomials for NW-diagrams are multiplicity-
free? Indeed, a special case of these polynomials are the key polynomials.
Moreover, the referee proposes that the methods of [4] might extend in this
direction. The techniques of this paper do not seem to (readily) modify to an-
swer the referee’s question. Hence, we report it as an interesting open question
for future work.

2. Quasi-key Polynomials of Assaf–Searles

2.1. Multiplicity-Freeness

Dominance order on Compn is

α gDom ³ if
t∑

i=1

αi g
t∑

i=1

³i for all 1 f t f n.

For any α ∈ Compn, the skyline diagram is

D(α) = {(i, j) : 1 f i f n, 1 f j f αi},

where i indexes the rows, south to north, and j indexes the columns, left to
right.

We will use notions introduced in Assaf–Searles’ [2] and Searles’ [12]. In
particular, we use the quasi-key tableau of [12], which are a variation on the
quasi-Kohnert tableaux of [2] (see [12, Remark 2.14]).

Definition 2.1. A quasi-key tableau T of shape α fills D(α) with Z>0 such that

(QK1) Entries weakly decrease, left to right, along rows. Entries in row i are
at most i.

(QK2) Entries in each column are distinct. Entries increase upward in the first
column.

(QK3) If i appears above k in the same column and i < k, then there is a j
that appears immediately to the right of that k, and i < j.

(QK4) If r < s, αr < αs, and (r, c), (s, c+1) ∈ D(α) then T (r, c) < T (s, c+1).

Let qKT(α) be the set of quasi-key tableaux of shape α. Given T ∈
qKT(α), let wt(T ) = (w1, w2, . . . , w�), where wi is the number of i’s appearing
in T .
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Definition 2.2. The quasi-key polynomial Dα is

Dα =
∑

T∈qKT(α)

xwt(T ).

Definition 2.3. A left swap of α ∈ Compn is (α1, . . . , αj , . . . , αi, . . . , αn) where
αi < αj for some i < j. Let lswap(α) ⊆ Compn be all compositions obtained
by iteratively applying (a possibly empty sequence of) left swaps to α. For
α ∈ Compn, let flat(α) ∈ Compn be α with all 0’s removed. Now define

Qlswap(α) = {´ ∈ lswap(α) : ´ fDom τ, for all τ ∈ lswap(α) such that flat(´)

= flat(τ)}.

Theorem 2.4. ([2])

κα =
∑

β∈Qlswap(α)

Dβ .

Example 2.5. Let α = (3, 2, 1, 3, 2). Then

κα = x3
1x

2
2x

3
3x

2
4x5 + x3

1x
2
2x

3
3x4x

2
5 + x3

1x
3
2x

2
3x

2
4x5 + x3

1x
3
2x

2
3x4x

2
5 + x3

1x
2
2x

2
3x

3
4x5

+x3
1x

3
2x3x

2
4x

2
5 + x3

1x
2
2x3x

3
4x

2
5 + x3

1x
2
2x

2
3x

2
4x

2
5

and lswap(α) = {(3, 2, 1, 3, 2), (3, 3, 1, 2, 2), (3, 2, 3, 1, 2), (3, 2, 2, 3, 1),

(3, 3, 2, 1, 2), (3, 3, 2, 2, 1), (3, 2, 3, 2, 1)}.

Since α contains no 0’s, Qlswap(α) = lswap(α) (in fact, this will be the case
starting in Sect. 2.2). For all ³ ∈ lswap(α), except ³ = α, #qKT(³) = 1; the
unique tableau is the super quasi-key tableau: the one that places only b’s in
row b. Hence, Dβ = xβ in those cases. When ³ = α there are two quasi-key
tableaux, namely

5 5
4 4 4
3
2 2
1 1 1

and 5 5
4 4 3
3
2 2
1 1 1

.

Thus, Dα = x3
1x

2
2x3x

3
4x

2
5 + x3

1x
2
2x

2
3x

2
4x

2
5. This all agrees with Theorem 2.4. �

Define

KM
≥1

n := {α ∈ KMn : αi g 1 for 1 f i f n}.

Theorem 2.6. Dβ is multiplicity-free if ³ ∈ Qlswap(α) and α ∈ KM
≥1

n .

In particular, Dα is multiplicity-free if α ∈ KM
≥1

n . It would be interesting
to characterize precisely when Dα is multiplicity-free. D. Brewster, H. Raza
and the first author have conjectured that the hypothesis that αi g 1 in
Theorem 2.6 can be dropped.

The remainder of this section is devoted to the proof of Theorem 2.6.
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2.2. Lemmas

We need lemmas about KM
≥1

n , and qKT(α) for α ∈ KM
≥1

n . Given α ∈ Compn,
let i1 < · · · < ik be all indices such that αir−1 < αir

. For convenience, let
i0 = 1, ik+1 = n + 1, α0 = ∞, and αik+1

= 0. The mth segment of α is

segm(α) = {im−1, im−1 + 1, . . . , im − 1},

and it is denoted segm when the composition is clear by context.

Define

seg1
m :={b ∈ segm |αb g αim

},

seg2
m :={b ∈ segm |αb f min(αim−1−1, αim

− 1) and b < im − 1},

seg3
m :=

{
∅ if m = k + 1

{im − 1} otherwise.

Lemma 2.7. Let α ∈ KM
≥1

n .

(a) segm = seg1
m � seg2

m � seg3
m.

(b) segi
m is a consecutive sequence of integers, for i ∈ {1, 2, 3}.

(c) #seg1
m g 1 for m > 1.

(d) If b ∈ seg3
m (that is, b = im − 1) then αim−1−1 g αb.

(e) If b ∈ segm and αim−1−1 < αb, then b ∈ seg1
m.

Proof. By definition of segm, αim−1
g αim−1+1 g . . . g αim−1. Thus, (b) holds.

For the same reason, seg1
m, seg2

m, seg3
m are disjoint. Since α avoids (0, 1, 2),

there is no b ∈ segm such that αim−1−1 < αb < αim
. This proves segm =

seg1
m � seg2

m � seg3
m; hence (a) holds. Next, if m > 1 and (c) is false, then

αim−1−1 < αim−1
< αim

forms a (0, 1, 2) pattern, a contradiction.

If (d) is false then (αim−1−1 < αim−1 < αim
) is a (0, 1, 2) pattern, a con-

tradiction. Finally, (e) follows from (d), the definition of seg2
m,

and (a). �

Example 2.8. Let α = (10, 4, 12, 9, 8, 8, 4, 2, 5, 1, 3). Then α ∈ KM
≥1

11 , k = 3,
i0 := 1, i1 = 3, i2 = 9, i3 = 11, i4 := 12, and

seg1 = {1, 2}, seg2 = {3, 4, 5, 6, 7, 8}, seg3 = {9, 10}, and seg4 = {11}

with

seg1
1 = {}, seg2

1 = {1}, and seg3
1 = {2}

seg1
2 = {3, 4, 5, 6}, seg2

2 = {7}, and seg3
2 = {8}

seg1
3 = {9}, seg2

3 = {}, and seg3
3 = {10}

seg1
4 = {11}, seg2

4 = {}, and seg3
4 = {}

�

In this proof and the sequel, it will be convenient to write, e.g.,
(αa, αb, αc, αd) 
 (1, 0, 3, 2) if the subsequence (αa, αb, αc, αd) of α forms a
(1, 0, 3, 2) pattern.
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Lemma 2.9. Suppose α ∈ KM
≥1

n and fix 1 f m f k + 1. If s < im − 1 and
r > im then either

• αs g αr; or
• αs < αr with αs = αim−1 and αim

= αr = αim−1 + 1.

Proof. If αs g αr we are done. Assume αs < αr. We have s < im − 1 <
im < r with αim−1 < αim

. Since α avoids (0, 1, 2), so must the subsequence
A = (αs, αim−1, αim

, αr). Thus, αs g αim−1 and αim
g αr. Since A ∈ KM,

A �
 (1, 0, 3, 2), (1, 0, 2, 2). Hence, αs = αim−1. Since A �
 (0, 0, 2, 1), αim
= αr.

Finally, since A �
 (0, 0, 2, 2), αr = αim−1
+ 1. �

Lemma 2.10. If D(α) contains a southwest s × t rectangle and T ∈ qKT(α)
then T (r, c) = r for all 1 f r f s and 1 f c f t.

Proof. By (QK1) and (QK2). �

Lemma 2.11. Suppose α ∈ KM
≥1

n . Let T ∈ qKT(α). If

(a) b ∈ seg1, b ∈ seg1
m with αim−1−1 g αb, b ∈ seg2

m, or b ∈ seg3
m then row b

of T only contains b’s.
(b) b ∈ seg1

m with αim−1−1 < αb then the leftmost αim−1−1 + 1 boxes of row
b only contain b’s.

Proof. (a): First suppose b ∈ seg1. Row 1 of T must only contain 1’s by (QK1).
If 2 ∈ seg1 then α1 g α2, so by (QK1) and (QK2) row 2 of T must only contain
2’s. The same holds for all rows in seg1, by induction.

Now suppose we satisfy one of the other possibilities of (a). Since b ∈
segm,

αr g αb, im−1 f r f b. (1)

Since α avoids (0, 1, 2),

αr g αim−1−1, 1 f r f im−1 − 1. (2)

By the hypothesis (if b ∈ seg1
m), the definition of seg2

m, or Lemma 2.7(d) (if
b ∈ seg3

m),

αim−1−1 g αb (3)

By (1), and by (2) combined with (3), we conclude that αr g αb for all
1 f r f b. Now apply Lemma 2.10 to this b × αb southwest rectangle in D(α).

(b): By (2), the hypothesis αim−1−1 < αb, and (1),

αr g αim−1−1, 1 f r f b. (4)

This implies there is a southwest b × αim−1−1 rectangle in D(α). Hence,
by Lemma 2.10, T (r, c) = r for 1 f r f b and 1 f c f αim−1−1. Since
1 f αim−1−1 < αs for im−1 − 1 < s f b, we are done by (QK1), (QK2)
and (QK4). �

Example 2.12. Let α = (10, 4, 12, 9, 8, 8, 4, 2, 5, 1, 3). Figure 1 shows the forced
entries for quasi-key tableaux in qKT(α). �
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11 11

10

9 9 9

8 8

7 7 7 7

6 6 6 6 6

5 5 5 5 5

4 4 4 4 4

3 3 3 3 3

2 2 2 2

1 1 1 1 1 1 1 1 1 1

Figure 1. Forced entries of the quasi-key tableaux for Ex-
ample 2.12

Lemma 2.13. Suppose α ∈ KM
≥1

n . Let T ∈ qKT(α). Let y be a box such that
row(y) > im−1. Then T (y) g im−1 − 1.

Proof. To reach a contradiction, suppose

T (y) < im−1 − 1. (5)

Case 1: (αs g αrow(y) for 1 f s f T (y)) By Lemma 2.10, T (s, c) = s for all
1 f s f T (y) and 1 f c f αrow(y). Since col(y) f αrow(y), T (T (y), col(y)) =
T (y). This, with (5), and the hypothesis row(y) > im−1, shows the label T (y)
occurs twice in col(y), contradicting (QK2).
Case 2: (αs < αrow(y) for some 1 f s f T (y)) Lemma 2.9 (applied to im−1,
r = row(y)) shows that for any 1 f s f T (y) such that αs < αrow(y), αrow(y) =
αim−1

= αim−1−1 + 1 = αs + 1. So,

αs g αrow(y) − 1 for all1 f s f T (y). (6)

Hence Lemma 2.10 shows

T (s, c) = s for all 1 f s f T (y) and 1 f c f αrow(y) − 1. (7)

Let

t = max
s

{1 f s f T (y), αs < αrow(y)};

t is finite by this case’s assumption. By (6) (and the case assumption), αrow(y)−
1 = αt. Therefore, by the maximality of t,

αrow(y) − 1 = αt < αu, for t < u f T (y). (8)
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Thus (7), (8) and (QK4) imply t = T (t, αrow(y) − 1) < T (u, αrow(y)), for t <
u f T (y). Hence, by inductively applying (QK1) and (QK2) we conclude

T (u, αrow(y)) = u, fort < u f T (y). (9)

Finally, by the definition of t, αt < αrow(y). So (7) and (QK4) imply

t = T (t, αrow(y) − 1) < T (row(y), αrow(y)). (10)

However, by (9) we have t + 1 = T (t + 1, αrow(y)). Hence, by (10) and (QK2),
t+1 < T (row(y), αrow(y)). Repeating this argument replacing t+1 successively
with t + 2, t + 3, . . . , T (y) in (9) we arrive at T (y) < T (row(y), αrow(y)); this
contradicts (QK1). �

Lemma 2.14. Suppose α ∈ KM
≥1

n . Let T ∈ qKT(α), b ∈ segm for 1 < m f k+1
with αim−1−1 < αb, and c > αim−1−1 + 1. Then

#{x ∈ D(α) : b f row(x), col(x) = c, T (x) < b} f 1.

Proof. Suppose there were two rows

b f r < r′ such that T (r′, c), T (r, c) < b. (11)

By hypothesis, αim−1−1 < αb. Thus, if αb < αr then (αim−1−1, αb, αr) 


(0, 1, 2), contradicting α ∈ KM
≥1

n . Hence αb g αr. Suppose αr < αr′ . Now
r ∈ segf for some f g m. If αif−1−1 g αr, then Lemma 2.11(a) would imply

row r contains only r’s. Since this is not the case by (11), it must be that
αif−1−1 < αr. Thus, (αif−1−1, αr, αr′) is a (0, 1, 2) pattern, a contradiction.
Therefore,

αr g αr′ g c (12)

(where the latter inequality is by (11)). By (11) together with (QK1) and
(QK2), there exists two rows s < s′ < r with

αs, αs′ < c. (13)

Since (αs, αs′ , αr, αr′) ∈ KM4 then it follows straightforwardly from (12) and
(13) that

αs = αs′ and αr = αr′ = αs + 1. (14)

In fact (14) holds for any s < s′ < r satisfying (13). In particular, by hypothesis
αim−1−1 < c. Hence, there is at least one pair s, s′ satisfying (13) with either
s = im−1 − 1 or s′ = im−1 − 1. Then by (12) and (14), c f αr = αim−1−1 + 1,
contradicting the hypothesis on c. �

2.3. Proof of Theorem 2.6

The next two propositions immediately give Theorem 2.6.

Proposition 2.15. If α ∈ KM
≥1

n , then Dα is multiplicity-free.
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Proof. Suppose not. There exists distinct T, T ′ ∈ qKT(α) such that wt(T ) =
wt(T ′). Define

b := max{v : ∃x, T (x) = v, T ′(x) �= v}.

Since wt(T ) = wt(T ′), then

∃x′ such that T ′(x′) = b, T (x′) �= b. (15)

Let b′ = max{v : ∃x, T ′(x) = v, T (x) �= v}. We claim that b = b′. First, (15)
implies b f b′. Since wt(T ) = wt(T ′), the definition of b′ indicates there exists
an x′ such that T (x′) = b′ with T ′(x′) �= b′. If b′ > b, this would contradict the
definition of b. Hence, b = b′ and

b := max{v : ∃x, T (x) = v, T ′(x) �= v} = max{v : ∃x, T ′(x) = v, T (x) �= v}.

(16)

Let

pT := max{c : T (b, c) = b} and pT ′ = max{c : T ′(b, c) = b}.

Since αi g 1 for all 1 f i f n, (QK1) and (QK2) imply that T (b, 1) =
T ′(b, 1) = b and hence finite maximums exist (pT , pT ′ g 1). By swapping T
and T ′ (if necessary), we may assume

pT ′ f pT . (17)

�

Claim 2.16. Let b ∈ segm for 1 < m f k + 1 with αim−1−1 < αb.

(I) T (y) g b if row(y) > b and col(y) g pT . Similarly, T ′(y) g b if row(y) > b
and col(y) g pT ′ .

(II) T (y) = T ′(y) if row(y) > b and col(y) g pT .

Proof. Proof of Claim 2.16: (I): We prove the assertion for T ; the T ′ claim
is the same. By definition of pT and (QK1), T (b, c) < b for any c > pT . By
hypothesis αim−1−1 < αb, and hence Lemma 2.7(e) implies b ∈ seg1

m. Thus
Lemma 2.11(b) indicates that

pT g αim−1−1 + 1. (18)

Hence, c > αim−1−1 + 1. Thus, the hypotheses of Lemma 2.14 hold, and the
conclusion of that lemma is that T (y) g b if row(y) > b and col(y) = c(> pT ).

Thus we may assume row(y) > b and col(y) = pT . Suppose pT = αb.
If T (y) < b = T (b, pT ), then by (QK3), there is a box of D(α) in position
(b, pT + 1) = (b, αb + 1), contradicting the definition of D(α). Hence, pT < αb.
Let

� = T (b, pT + 1) and d = T (y). (19)

We want to show d g b; suppose not. By the definition (19) of � together with
(QK1),

� < b. (20)

Thus, there are three cases:



396 R. Hodges, A. Yong

Case 1: (� f d < b) T violates (QK3) (where here i = d, k = b and j = � in
that rule).
Case 2: (d < im−1 − 1) Since b ∈ segm = {im−1, im−1 + 1, . . . , im − 1} (by
hypothesis), b g im−1. Lemma 2.13 states that d = T (y) g im−1 − 1 since
row(y) > b g im−1. Hence this case cannot occur.
Case 3: (im−1 − 1 f d < �) Since b ∈ segm (by hypothesis), and � < b by (20),
the assumption of this case says d + 1 ∈ segm. Hence, by definition of segm,

αd+1 g αb > αim−1−1

(the latter inequality by the hypothesis). We claim

T (s, pT ) = s ford + 1 f s f b. (21)

If pT = αim−1−1 +1, then Lemma 2.11(b) implies (21). Otherwise (18) implies
pT > αim−1−1 + 1. Thus, Lemma 2.14 applied to column pT and row d + 1
implies

#{s g d + 1 : T (s, pT ) < d + 1} f 1. (22)

However, T (y) = d and we assumed row(y) > b > � g d+1 (the last inequality
being this case’s assumption). The previous sentence, combined with (22) and
(QK1) says that T (d + 1, pT ) = d + 1. Iterating this argument, using (QK2),
for d + 2 f s f b implies (21).

Now apply (QK3) to T (y) = d < T (s, pT ) to see that T (s, pT +1) > d for
d+1 f s f b. On the other hand, (QK1) says T (s, pT +1) f b for d+1 f s f b.
The definition of pT means T (s, pT + 1) �= b. Concluding,

d < T (s, pT + 1) < b, for d + 1 f s f b.

By pigeonhole, two of {T (s, pT + 1) : d + 1 f s f b} are equal, contradicting
(QK2).

Hence, d g b, as desired.
(II): Suppose not and let T (y) �= T ′(y) for some y such that row(y) > b

and col(y) g pT . In particular, at least one of T (y) and T ′(y) is not b. If
max{T (y), T ′(y)} < b we contradict (I). Hence max{T (y), T ′(y)} > b. This
contradicts (16). �

There are four possible cases to consider.
Case 1: (b ∈ seg1, b ∈ seg1

m with αim−1−1 g αb, or b ∈ seg2
m) Let b ∈ segm

(1 f m f k + 1). By Lemma 2.11(a),

T (b, c) = b, T ′(b, c) = b for all 1 f c f αb. (23)

By (QK1), b cannot appear in T in any row s strictly south of b. On the other
hand, if s ∈ segm, and s > b, then αs f αb. Hence, by (QK2), b cannot appear
in row s of T . Now suppose s > im. Since im ∈ segm+1, thus im > b+1. Hence,
by Lemma 2.13, no labels < im − 1 appear in rows strictly north of row im.
In particular, b does not appear in those rows. What we have just written also
applies to T ′, thus

T (r, c) = b ⇒ r = b, im and T ′(r′, c) ⇒ r′ = b, im. (24)
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Let x′ be the box defined in (15). By (23), in both T and T ′, row b is filled
entirely by b’s. Hence, row(x′) �= b. Thus, by (24), row(x′) = im. Now since
wt(T ) = wt(T ′) row im has the same number of b’s in T and T ′. Now, by
(QK1), all labels left of the b’s in row im of T are strictly larger; the exact
same statement is true of T ′. However, those larger labels cannot differ between
T and T ′ by (16). Hence, in fact, the b’s in row im are exactly in the same
place in T and T ′, contradicting the definition (15) of x′.
Case 2: (b ∈ seg3

m) By Lemma 2.11(a),

T (b, c) = b, T ′(b, c) = b for all 1 f c f αb. (25)

By (QK1), b cannot appear in T in any row s strictly south of b. Let x′ be the
box defined in (15). By (25), in both T and T ′, row b is filled entirely by b’s.
Hence, row(x′) �= b. Notice

T (y) = T ′(y) for all y such that row(y) > im. (26)

Indeed, by Lemma 2.13, T (y), T ′(y) g im − 1 = b. Then (16) shows T (y) =
T ′(y).

It remains to consider if row(x′) = im is possible. The contradiction in
this case is derived exactly as in the final four sentences of Case 1.
Case 3: (b ∈ seg1

m for 1 < m f k + 1 with αim−1−1 < αb, and pT = pT ′) By
(QK1) any entry in row b of T or T ′ is f b. Thus, since pT = pT ′ ,

T (b, c) = b ⇐⇒ 1 f c f pT and T ′(b, c′) = b ⇐⇒ 1 f c′ f pT (= pT ′).

(27)

Hence, row(x′) �= b. Thus, by (QK1), row(x′) > b. Then (27) and (QK2) implies
col(x′) > pT . Thus, Claim 2.16(II) says that T (x′) = T ′(x′), which contradicts
the definition (15) of x′.
Case 4: (b ∈ seg1

m for 1 < m f k +1 with αim−1−1 < αb, and pT > pT ′) Since

T (b, c) = b ⇐⇒ 1 f c f pT and T ′(b, c′) = b ⇐⇒ 1 f c′ f pT ′(< pT ),

(28)

by (QK1) and wt(T ) = wt(T ′), we have

#{z ∈ D(α) : T ′(z) = b, T (z) �= b, row(z) > b} g pT − pT ′ . (29)

For all z in the set from (29), we have that col(z) > pT ′ by (28) combined
with (QK2). Moreover, by Claim 2.16(II), T (z) = T ′(z) if col(z) g pT and
row(z) > b. Hence, col(z) < pT . Summarizing, by (29) there are pT − pT ′ of
these boxes z that satisfy pT ′ < col(z) < pT . By pigeonhole, at least two of
these z are in the same column. This contradicts (QK2). �

We conclude that no such T, T ′ can exist.

Proposition 2.17. Suppose α ∈ KM
≥1

n and ³ ∈ Qlswap(α). Then Dβ is
multiplicity-free.

Proof. By Proposition 2.15, it suffices to show that Qlswap(α) ⊆ KM
≥1

n . Since
α has no parts equal to 0, Qlswap(α) = lswap(α). Hence, by induction, it
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is enough to prove that if ³ = (. . . , αj , . . . , αi, . . .) is a left swap of α then

³ ∈ KM
≥1

n . To reach a contradiction, assume ³ /∈ KM
≥1

n .
There are five cases to consider. In each subcase, the contradiction de-

rived is that α contains a pattern from KM = {(0, 1, 2), (0, 0, 2, 2), (0, 0, 2, 1),
(1, 0, 3, 2), (1, 0, 2, 2)}.
(I) (³a1

, ³a2
, ³a3

) 
 (0, 1, 2). Since ³ is a left swap of α, {i, j} �⊆ {a1, a2, a3}.

Also, since α ∈ KM
≥1

n , {i, j} ∩ {a1, a2, a3} �= ∅.
Subcase 1: (a1 = i) αi < αa2

< αa3
. Hence, (αi, αa2

, αa3
) 
 (0, 1, 2).

Subcase 2: (a2 = i) If αa1
< αi, then αa1

< αi < αa3
and hence (αa1

, αi, αa3
) 


(0, 1, 2). Thus assume αa1
g αi. If j > a3, then (αa1

, αi, αa3
, αj) 
 (0, 0, 2, 1)

or 
 (1, 0, 3, 2). Otherwise j < a3 and hence αi < αj < αa3
.

Subcase 3: (a3 = i) αa1
< αa2

< αj .
Subcase 4: (a1 = j) αi < αa2

< αa3
.

Subcase 5: (a2 = j) If αa3
> αj , then αa1

< αj < αa3
. If αa3

f αj with i < a1,
then (αi, αa1

, αj , αa3
) 
 (1, 0, 2, 2) or 
 (1, 0, 3, 2). If αa3

f αj with i > a1,
then αa1

< αi < αj .
Subcase 6: (a3 = j) αa1

< αa2
< αj .

(II) (³a1
, ³a2

, ³a3
, ³a4

) 
 (1, 0, 3, 2).

Subcase 1: (a1 = i, a2 = j) αi < αj < αa3
.

Subcase 2: (a3 = i, a4 = j) αa2
< αi < αj .

Subcase 3: (a1 = i and j /∈ {a1, a2, a3, a4}) If αi g αa2
, then (αi, αa2

, αa3
, αa4

)
contains either (1, 0, 3, 2) or (0, 0, 2, 1). If αi < αa2

, then αi < αa2
< αa3

.
Subcase 4: (a2 = i and j /∈ {a1, a2, a3, a4}) (αa1

, αi, αa3
, αa4

) 
 (1, 0, 3, 2).
Subcase 5: (a3 = i and j /∈ {a1, a2, a3, a4}) If αi g αa4

, then (αa1
, αa2

, αi, αa4
)


 (1, 0, 3, 2) or 
 (1, 0, 2, 2). If αa2
< αi < αa4

, then αa2
< αi < αj . If

αa2
g αi and j > a4, then αi < αa4

< αj . If αa2
g αi and j < a4, then

(αa2
, αi, αj , αa4

) 
 (1, 0, 3, 2).
Subcase 6: (a4 = i and j /∈ {a1, a2, a3, a4}) (αa1

, αa2
, αa3

, αj) 
 (1, 0, 3, 2).
Subcase 7: (a1 = j and i /∈ {a1, a2, a3, a4}) (αi, αa2

, αa3
, αa4

) 
 (1, 0, 3, 2).
Subcase 8: (a2 = j and i /∈ {a1, a2, a3, a4}) If αj f αa1

, then (αa1
, αj , αa3

, αa4
)


 (0, 0, 2, 1) or 
 (1, 0, 3, 2). If αa1
< αj < αa4

, then αi < αj < αa4
. If

αa4
f αj and i < a1, then αi < αa1

< αj . If αa4
f αj and i > a1, then

(αa1
, αi, αa3

, αa4
) 
 (1, 0, 3, 2).

Subcase 9: (a3 = j and i /∈ {a1, a2, a3, a4}) (αa1
, αa2

, αj , αa4
) 
 (1, 0, 3, 2).

Subcase 10: (a4 = j and i /∈ {a1, a2, a3, a4}) If αj f αa3
, then (αa1

, αa2
, αa3

, αj)

 (1, 0, 3, 2) or 
 (1, 0, 2, 2). If αj > αa3

, then αa2
< αa3

< αj .
We leave the cases (³a1

, ³a2
, ³a3

, ³a4
) 
 (1, 0, 2, 2), (0, 0, 2, 1), (0, 0, 2, 2)

to the reader. �

3. Proof of Classification Theorem of Multiplicity-Free Key

Polynomials

3.1. Kohnert Diagrams and Proof of Necessity

Assume α �∈ KMn. We will now show that κα has multiplicity.
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We use Kohnert’s rule to compute κα. The set KD(α) of Kohnert dia-
grams is recursively defined as follows. Initially D(α) ∈ KD(α). At each stage
thereafter, given D ∈ KD(α) a box (i, j) ∈ D is movable if it is the rightmost
box of D in row i and there exists i′ < i such that (i′, j) �∈ D. For any such
movable box, a Kohnert diagram D′ is obtained by replacing (i, j) with (i′, j)
where i′ is largest among all choices. Generate a D′ from D for every choice
of moveable (i, j). Now KD(α) is the (finite) set (not multiset) of Kohnert
diagrams obtained starting from D(α).

For D ∈ KD(α) let

Kohwt(D) =
∏

1≤i≤n

x
#{j:(i,j)∈D}
i .

Theorem 3.1. (Kohnert [7]) κα =
∑

D∈KD(α) Kohwt(D).

Example 3.2. Let α = (0, 0, 2, 1). The 14 Kohnert diagrams in KD(α) are listed
below.

Thus

κα = x2
3x4 + x2x3x4 + x2x

2
3 + x2

2x3 + x1x3x4 + x1x
2
3 + 2x1x2x3

+x1x2x4 + x2
1x4 + x2

1x3 + x1x2x3 + x1x
2
2 + x2

1x2.

�

Given D ∈ D(α), call a row i initial if it is empty or the boxes in that
row are precisely (i, 1), (i, 2), . . . , (i, j) for some j ∈ Z≥1.

Lemma 3.3. Suppose D ∈ KD(α), i′ < i and j′ < j. If (i′, j′) and (i, j) are
the rightmost boxes of their rows, and all rows i′ f i′′ < i are initial, then D′

obtained by replacing (i, j) with (i′, j), is in KD(α).



400 R. Hodges, A. Yong

Proof. The hypotheses on i, j, i′, j′ guarantee that (i, j) is moveable. Since
each row i′′ is initial, (i, j) → (i′′, j) is a Kohnert move (giving a diagram
D′′) whenever j′′ < j (where (i′′, j′′) is the rightmost box of row i′′). If indeed
i′′ = i′ we are done, i.e., D = D′′. Otherwise since i′′ is initial in D(α), it
must be that (i′′, j) is the rightmost box of its row in D′′, and is, therefore,
moveable. Then since all rows i′ < i′′′ < i′′ are initial in D′′ (since they were
in D), the claim follows by induction on i − i′. �

Corollary 3.4. Suppose D = D(α), i′ < i, j′ < j. Let (i′, j′) and (i, j) be the
rightmost boxes of their rows. Then D′ as defined in Lemma 3.3 is in KD(α).

Proof. All rows of D(α) are initial, so Lemma 3.3 applies. �

In what follows, (ik, jk) is the rightmost box of row ik.
Case 1: (α contains (0, 1, 2).) Let i0 < i1 < i2 be the rows of the “0”, “1” and
“2” respectively. By Corollary 3.4 we can replace (i2, j2) with (i0, j2) in D(α),
resulting in D′ ∈ Koh(α). On the other hand, by Corollary 3.4 one can obtain
E′ ∈ Koh(α) by replacing (i1, j1) with (i0, j1). Since the rows r g i1 in E′

are still initial, we can apply Lemma 3.3 to obtain E′′ ∈ KD(α) by replacing
(i2, j2) with (i1, j2) in D′′. The net effect in both cases is to place an additional
box in row i0 and remove a box from row i2. Hence, Kohwt(D′) = Kohwt(E′′);
therefore by Theorem 3.1, [Kohwt(D′)]κα g 2, as desired.
Case 2: (α contains (0, 0, 2, 1).) Let i0′ < i0 < i2 < i1 be the indices of the
(0, 0, 2, 1) pattern (in the respective order). By Corollary 3.4, D′ obtained from
D(α) by the swap (i1, j1) → (i0′ , j1) is in KD(α). Since all rows r g i0 of D′′ are
initial, we can use Lemma 3.3 to move (i2, j2) → (i0, j2) giving D′′′ ∈ KD(α).
On the other hand, starting from D(α) we can again use Corollary 3.4 to
define E′ ∈ KD(α) by the swap (i2, j2) → (i0′ , j2). Then Lemma 3.3 allows us
to move (i1, j1) → (i0, j1) giving E′′ ∈ KD(α). Now one can see D′′′ �= E′′ but
both have the same Kohwt, as needed.
Case 3: (α contains (1, 0, 3, 2).) This is the same argument as Case 2 except
that we use i1 < i0 < i3 < i2 in place of i0′ < i0 < i2 < i1, respectively.
Case 4: (α contains (0, 0, 2, 2).) Let i0′ < i0 < i2′ < i2 be the rows of (0, 0, 2, 2)
in that respective order. By Corollary 3.4 turn D(α) into D′ ∈ KD(α) by the
move (i2′ , j2′) → (i0′ , j2′). Now since all rows r g i0 of D′ are initial, we
can apply the argument of Case 1 using rows i0 < i2′ < i2 rather than the
i0 < i1 < i2 of that case.
Case 5: (α contains (1, 0, 2, 2).) Let i0′ < i0 < i2′ < i2 be the rows of (0, 0, 2, 2)
in that respective order. We can apply the argument of Case 4, where these
indices play the role of i0′ < i0 < i2′ < i2 from that case.

This completes the necessity argument.

3.2. Proof of Sufficiency

In this section, given α ∈ KM
≥1

n and ´, τ ∈ Qlswap(α) = lswap(α), we will
show that there is no coincidence in the monomials of Dγ and Dτ . Thus κα

is multiplicity-free if each Dβ in the quasi-key polynomial expansion of κα is
multiplicity-free. Thus, sufficiency follows from Theorem 2.6.
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Let b ∈ segm for some 1 f m f k + 1. Define

rminα(b) =

{
b αim−1−1 g αb

im−1 − 1 otherwise
(30)

rmaxα(b) =

{
b + 1 if αb+1 g αim

im otherwise
(31)

flexα(b) =

{
αrmaxα(b) − αrminα(b) − 1 if αrmaxα(b) > αrminα(b)

0 otherwise
(32)

Example 3.5. Consider α = (10, 4, 12, 9, 8, 8, 4, 2, 5, 1, 3). Then k = 3, i0 :=
1, i1 = 3, i2 = 9, i3 = 11, i4 := 12. Let b = 5 ∈ seg2. Then rminα(b) = i1 = 2,
since αi1 < αb. Since αb+1 > αi2 , rmaxα(b) = b + 1 = 6. Thus, flexα(b) =
αrmaxα(b) − αrminα(b) − 1 = α6 − α2 − 1 = 3.

Lemma 3.6. Suppose α ∈ KM
≥1

n and T ∈ qKT(α) with μ = wt(T ). Then

(I) α fDom μ.
(II) μ1 + · · · + μb f α1 + · · · + αb + flexα(b), for 1 f b f n.

Proof. (I): By (QK1), α1 + · · · + αb f μ1 + · · · + μb, for 1 f b f n. Thus,
α fDom μ.

(II): Any T ∈ qKT(α) only uses entries f b in the first b rows. Thus

#{x : T (x) f b, row(x) f b} = α1 + . . . + αb. (33)

Define

Fα(b) = {x : T (x) f b, row(x) > b}. (34)

We claim that

#Fα(b) f flexα(b). (35)

Clearly (33) combined with (35) proves (II).
It remains to prove (35). Fix b; thus b ∈ segm for some 1 f m f k + 1.

Let y ∈ Fα(b). If b /∈ seg3
m then b < im − 1. Lemma 2.13 asserts that b cannot

appear in rows strictly greater than im, i.e., im g row(y). Therefore, in view
of the definition (34), we have

b < row(y) f im.

By definition of segm, maxb<r≤im
{αr} = αrmaxα(b). Thus

col(y) f αrmaxα(b). (36)

If b ∈ seg3
m, then since α is (0, 1, 2) avoiding, maxb<r≤n{αr} = αim

= αrmaxα(b).
Thus, (36) holds for all b.

We claim

col(y) g αrminα(b) + 2. (37)

Case 1: (αim−1−1 g αb) By this case’s assumption, and the definition (30),
rminα(b) = b. If im−1 f s f b then by definition of segm,

αs g αb = αrminα(b). (38)
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If s = im−1 −1, then (38) holds by the assumed inequality of this case. Finally,
if s < im−1 − 1 then αs g αim−1−1 since α avoids (0, 1, 2); hence (38) holds
again. By Lemma 2.10, T (r, c) = r for 1 f r f b and 1 f c f αb. Thus, by
(QK2), T (r, c) > b whenever r > b and c f αb. Lastly, if there exists r > b
such that αr > αrminα(b), then (QK4) implies T (r, αrminα(b) +1) > b. Therefore,
(37) holds.
Case 2: (αim−1−1 < αb) By this case’s assumption, and the definition (30),
rminα(b) = im−1 −1. If im−1 f s < b then αs g αb g αim−1−1 = αrminα(b), and
in particular:

αs g αim−1−1 = αrminα(b). (39)

If s = im−1 − 1 then (39) holds trivially. Finally if 1 f s < im−1 − 1 then
since α is (0, 1, 2)-avoiding, αs g αim−1−1 and (39) again holds. Hence, by
Lemma 2.10, T (r, c) = r for 1 f r f b and 1 f c f αim−1−1. Thus, by
(QK2), T (r, c) > b whenever r > b and c f αim−1−1. If there exists r > b such
that αr > αrminα(b) = αim−1−1, then (QK4) implies T (r, αrminα(b) + 1) > b.
Therefore, (37) holds.

By (36) and (37),

αrminα(b) + 2 f col(y) f αrmaxα(b). (40)

Therefore y can appear in f flexα(b) columns of T . If we show at most
one y ∈ Fα(b) can have col(y) = c, for αrminα(b) + 2 f c f αrmaxα(b) then (35)
follows.
Case 1: (αim−1−1 g αb) By this case’s assumption, and definition (30), rminα(b)
= b. If αrminα(b) g αrmaxα(b), then by (32) flexα(b) = 0. By (40) #Fα(b) = 0.
And hence, #Fα(b) f flexα(b), proving (35).

Thus, we assume αrminα(b) < αrmaxα(b). If b ∈ seg3
m, then rmaxα(b) = im =

b + 1. Otherwise, αb+1 f αb = αrminα(b) < αrmaxα(b), where the first inequality
follows from the definition of segm. This implies rmaxα(b) �= b + 1. Thus, by
(31), rmaxα(b) = im.

Let b < s < im. Then αim−1−1 g αb g αs. So Lemma 2.11(a), applied to
s says that only s’s appear in row s; in particular there are no entries f b in
row s. Thus, if y ∈ Fα(b), then

row(y) g im = rmaxα(b). (41)

We apply Lemma 2.14 to row im ∈ segm+1, and c g αrminα(b) + 2 =
αb + 2 > αim−1 + 1 (the final inequality follows from the definition of segm).
We conclude that at most one y ∈ Fα(b) can have row(y) g im and col(y) = c.
This, combined with (41), implies (35).
Case 2: (αim−1−1 < αb) By this case’s assumption, and (30), rminα(b) =
im−1 − 1. If αrminα(b) g αrmaxα(b), we get #Fα(b) = 0 = flexα(b) in exactly the
same way as the previous case.

Hence we again assume αrminα(b) < αrmaxα(b). If rmaxα(b) = b+1, then by
our assumption αim−1−1 = αrminα(b) < αrmaxα(b) = αb+1. Thus, we may apply
Lemma 2.14 to row b + 1, and c g αrminα(b) + 2 > αim−1−1 + 1. We conclude
that at most one y ∈ Fα(b) can have col(x) = c.

Otherwise, rmaxα(b) = im.
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Subcase 2.1 (αim−1−1 g αb+1) Let b < s < im. Then αim−1−1 g αb+1 g αs.
Thus Lemma 2.11(a), applied to s says that only s’s appear in row s; there
are no entries f b in row s. Thus if y ∈ Fα(b), then

row(y) g im = rmaxα(b). (42)

We have αim−1−1 = αrminα(b) < αrmaxα(b) = αim
. We apply Lemma 2.14

to row im ∈ segm+1, and c g αrminα(b) + 2 > αim−1−1 + 1 g αim−1 + 1 (the
final inequality holds since α avoids (0, 1, 2)). The lemma implies that at most
one y ∈ Fα(b) can have row(y) g im and col(x) = c. This, combined with (42),
implies (35).
Subcase 2.2 (αim−1−1 < αb+1) Apply Lemma 2.14 to row b + 1, and c g
αrminα(b) + 2 > αim−1−1 + 1. So, at most one y ∈ Fα(b) has row(y) g b + 1 and
col(x) = c, proving (35). �

Given ´ ∈ lswap(α), define a left swap sequence of ´ to be ´(0), . . . , ´(t)

such that ´(0) = α, ´(t) = ´, and ´(i+1) is a left swap of ´(i) for 0 f i < t.

Lemma 3.7. Let ´, τ ∈ lswap(α) with ´ >lex τ and b = min{i : ´i > τi}.

(I) There exists a left swap sequence of ´ equal to ´(0), . . . , ´(t) and of τ
equal to τ (0), . . . , τ (u) such that ³ = ´(i) = τ (j) with ³s = ´s = τs for all
1 f s < b.

(II) ´, τ ∈ lswap(³).
(III) No left swap sequence from ³ to ´ (or τ) involves the indices 1, 2, . . . , b−1.

Proof. (I): Given (x1, . . . , xk) ∈ Z
k
≥0 let (x′

1, . . . , x
′
k) be the coordinates sorted

into weakly increasing order (x′
1 f x′

2 f . . . f x′
k). Given (x1, . . . , xk),

(y1, . . . , yk) ∈ Z
k
≥0 we write

(x1, . . . , xk) � (y1, . . . , yk) if x′
i f y′

i for 1 f i f k.

Recall (see, e.g., [9, Proposition 2.1.11]), if u, v ∈ Sn then

u fB v ⇐⇒ (u(1), u(2), . . . , u(k))

� (v(1), v(2), . . . , v(k)) for 1 f k f n, (43)

where fB is the Bruhat order. In particular,

u fB v ⇒ u(1) f v(1) (44)

Special case: (α ∈ Sn) Hence, α fB ´, τ . Induct on n, the base n = 1 being
trivial. Suppose n > 1. If b = 0 (i.e., ´(1) �= τ(1)), ³ = α satisfies (I). Thus,
assume b g 1, and let T = ´(1) = τ(1). Thus, by (44), α(1) f T . Let α(j) = T .
There exists a sequence of left swaps that show

α fB α′ := T α(2) α(3) . . . α(j − 1) α(j + 1) . . . α(n).

It is straightforward from (43) that α′ fB ´, τ . Let α′, ´, τ be the list of
rightmost n − 1 entries of α′, ´, τ (respectively); these are permutations of
Sn−1 on [n] − {T}. By induction, obtain ³ ∈ Sn−1 satisfying (I) with respect
to α′, ´, τ . Then

³ := T³(1)³(2) . . . ³(n − 1) ∈ lswap(α)
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satisfies (I) with respect to α, ³, ´, as desired (the two swap sequences to go
from α → ´ and α → τ being the “concatenation” of the sequence from
α → α′ with the two sequences that send α′ → ´ and α′ → τ , interpreted in
the obvious manner).

General case: (α ∈ Compn) Let α̂ ∈ Sn be the permutation “standardizing”
α, i.e.

α(i) < α(j) =⇒ α̂(i) < α̂(j),

α(i) = α(j) with i < j =⇒ α̂(i) < α̂(j).
(45)

Define ˜́ ∈ Sn by applying the same sequence (in terms of positions) of
left swaps to α̃ used to obtain ´ from α. Similarly, define τ̃ . By the definition
of left swaps and (45),

α̂ fB ˜́, τ̃

(if u, v ∈ Sn and v is obtained from u by a left swap, then u fB v; this
follows from, e.g., (43)). Call two labels i, j ∈ [n] to be α-equivalent (i ≡ j)
if α(i) = α(j). Now apply left swaps to ̂́ so that all equivalent labels are in
decreasing order. Similarly one defines τ̂ .

Example 3.8. If α = (2, 2, 4, 2, 2, 4) then α̂ = 125346. Consider α =
(2, 2, 4, 2, 2, 4) → (2, 2, 4, 4, 2, 2) → (4, 2, 4, 2, 2, 2) = ´. Then ˜́ = 625143. Here
{1, 2, 3, 4} and {5, 6} are the two α-equivalence classes. So ̂́ = 645321. �

By simple considerations about Bruhat order,

α̂ fB ˜́ fB ̂́, and α̂ fB τ̃ fB τ̂ . (46)

By construction,

̂́ >lex τ̂ (47)

and

̂́(i) = τ̂(i), for 1 f i f b. (48)

In view of (46), (47) and (48) we can apply the Special Case to construct

³̂ ∈ Sn, and left swap sequences, that satisfy (I) with respect to α̂, ̂́, τ̂ .

Define ³ from ³̂ by replacing the label i with α(i). To define the swap
sequence from α to ³ we apply the same left swaps (i.e., interchange the same

positions) as the sequence from α̂ to ³̂, with the exception that we skip left
swaps of the underlying permutations that involve equivalent labels. Similarly,
one defines continuation of this sequence to ̂́, and separately, to τ̂ . The claim
follows.

(II): This is trivial from (I).

(III): Suppose such a left swap exists, say with i ∈ [1, b − 1]. We may
assume i is the minimal such index. Then τi = ´i = ³i is replaced with a
strictly larger number, and it follows that ´i > ³i, a contradiction. �
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Lemma 3.9. Assume α ∈ KM
≥1

n . Let ´, τ ∈ lswap(α) with ´ >lex τ and b =
min{i : ´i > τi}. Let b ∈ segm(³) and ³ be from Lemma 3.7. There exists a
(minimum) index r > b such that

´b = ³r > ³b. (49)

Let i1(³) < i2(³) < . . . < im(³) < . . . be such that αiz(β)−1 < αiz(β). The
indices b, r satisfy one of the following.

(A) b ∈ seg2
m(³) and r g im(³),

(B) b ∈ seg3
m(³) and r ∈ seg1

m+1(³),
(C) b ∈ seg3

m(³) and r g im+1(³).

Proof. By Lemma 3.7, ´, τ ∈ lswap(³). Hence, by the reasoning in the proof
of that lemma (the characterization of Bruhat order) and the definition of b,

´b, τb g ³b. (50)

If ´b = ³b, then τb g ´b (by (50)). This contradicts the definition of b,
hence ´b > ³b. This, combined with the definition of left swaps, implies (49).
Case 1: (b ∈ seg1

m(³)) By the definition of seg1
m(³) (and a simple induction),

³b g ³s for all b < s. This contradicts (49). That is, this case cannot actually
occur.
Case 2: (b ∈ seg2

m(³)) By definition of segm, r �∈ segm. Hence, r g im(³) ∈
segm+1; this is (A).

Case 3: (b ∈ seg3
m(³)) By definition, r �∈ seg2

m+1(³). If r ∈ seg3
m+1(³) then

(³im(β)−1, ³im+1(β)−1, ³im+1(β)) 
 (0, 1, 2),

a contradiction. Thus, only (B) and (C) are possible, as desired. �

Lemma 3.10. If α ∈ KM
≥1

n , i ∈ seg1
m (1 < m f k +1), and αim−1−1 < αi then

αi g αj for all i f j.

Proof. Say i < j but αi < αj . Then (αim−1−1, αi, αj) 
 (0, 1, 2), contradicting

α ∈ KM
≥1

n . �

Proposition 3.11. Let α ∈ KM
≥1

n . If ´, τ ∈ lswap(α) and ´ >lex τ there exists
z ∈ [1, n] such that

τ1 + · · · + τz + flexτ (z) < ´1 + · · · + ´z. (51)

Proof. Our analysis is based on the cases (A), (B), (C) from Lemma 3.9, as
well as the notation from that lemma. By the (proof of) Proposition 2.17,

³ ∈ KM
≥1

n (52)

Case (A): (b ∈ seg2
m(³) and r g im(³)) Let t > b such that ³t > ³b. By

the definition of segm, t g im(³). If t > im(³), then by (52) we can apply
Lemma 2.9 to ³, m, r = t, and s = b. The lemma concludes that ³im(β) = ³t.
Otherwise, t = im(³), and ³t = ³im(β). Thus,

³t = ³im(β) for allt > b such that ³t > ³b. (53)
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By Lemma 3.10,

τb < ´b = ³r f ³im(β). (54)

Consider a sequence of left swaps transforming ³ to τ . None of these left swaps
involve the index b: Otherwise, by Lemma 3.7(III), b is the left index of such
a swap, and some t > b such that ³t > ³b is the right index. This contradicts
(53) and (54) combined. Thus,

τb = ³b. (55)

By Lemma 3.10, ³im(β) g ³v for all v > b. That is max{³v : v > b} f
³im(β). However, notice that {³v : v > b} = {τv : v > b} since {³v : v f b} =
{τv : v f b}. Therefore,

τrmaxτ (b) f ³im(β). (56)

The assumption b ∈ seg2
m(³) means ³b f ³im−1−1. Then the definition of

³ and (55) imply τb f τim−1−1 (since b > im−1 − 1 ∈ seg3
m−1). Hence, by (30),

rminτ (b) = b and

τrminτ (b) = τb. (57)

Case (A).1: (τrminτ (b) g τrmaxτ (b)) By (32), flexτ (b) = 0. Then the definition of
b implies

τ1 + · · · + τb + flexτ (b) = τ1 + · · · + τb < ´1 + · · · + ´b,

establishing (51).
Case (A).2: (τrminτ (b) < τrmaxτ (b)) Thus, flexτ (b) = τrmaxτ (b) − τrminτ (b) − 1, and

τ1 + · · · + τb + flexτ (b) = ³1 + · · · + ³b + τrmaxτ (b) − τrminτ (b) − 1
f ³1 + · · · + ³b + ³im(β) − ³b − 1
= ³1 + · · · + ³b−1 + ³im(β) − 1,

(58)

where the first equality follows from (55), and the inequality is by (56) and
(57).

We have two subcases:
Case (A).2.1 (r = im(³)) Then (49) and (58) imply

τ1 + · · · + τb + flexτ (b) < ³1 + · · · + ³b−1 + ³im(β) = ´1 + · · · + ´b,

which proves (51).
Case (A).2.2 (r > im(³)) By (49), ³b < ³r. Combining this with (52), we may
apply Lemma 2.9 to ³ with r,m being as above, and s = b, to conclude that
³b = ³im(β)−1 and ³im(β) = ³r = ³b + 1. Applying this to (58) yields

τ1 + · · · + τb + flexτ (b) f ³1 + · · · + ³b−1 + ³im(β) − 1

= ³1 + · · · + ³b−1 + (³b + 1) − 1

= ³1 + · · · + ³b

< ´1 + · · · + ´b,

where the final inequality follows from (49) and the definition of ³; this again
proves (51).
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Case (B): (b ∈ seg3
m(³) (i.e., b = im(³) − 1) and r ∈ seg1

m+1(³)) If b < s f r,
then s ∈ seg1

m+1(³) and thus ³s g ³r. For such an s, if a left swap involving
indices b and s occurred in the transformation from ³ to τ , then it follows
from Lemma 3.7(III) that

τb g ³s g ³r = ´b. (59)

This contradicts b’s definition. So such a left swap cannot exist. This, with
Lemma 3.7(III) means s is not the right index of a left swap in the ³ to τ
transformation. Notice

³im(β)−1 = ³b < ³r f ³s,

where the middle inequality is by (49). Thus, since s ∈ seg1
m+1(³), by applying

Lemma 3.10 to ³ with i = s we conclude that

³s g ³t for allt > s. (60)

Hence, s cannot be the leftmost index of a left swap that transforms ³ to τ .
All of the above analysis, together with the definition of ³, shows that

³s = τs for 1 f s f rwith s �= b. (61)

A similar argument proves

³s = ´s for 1 f s < r with s �= b. (62)

More precisely, if b < s < r then s ∈ seg1
m+1(³) and ³s > ³r (by the minimality

of r). From this, we get a variation of (59) which says ´b g ³s > ³r = ´b (a
contradiction). The remainder of the argument is the same.

Further, we claim:

³b f τb < ´b = ³r f ³s = τs for b < s f r. (63)

The first inequality is by Lemma 3.7(III). The next inequality is from the
definition of b. The equality thereafter is (49). The next inequality is since
s f r and s, r ∈ seg1

m+1(³). The remaining equality is (61).

Now, (63) says, in particular, that τb < τb+1. Since τ ∈ KM
≥1

n (by the
proof of Proposition 2.17), it avoids (0, 1, 2). Hence, τb−1 g τb. This combined
with (61) implies

b ∈ seg3
m(τ) and im(³) = im(τ) = b + 1. (64)

If r = im(³), then r − 1 = b (by this case’s assumption). Since b ∈
seg3

m(τ), then ³b f ³im−1(β)−1 (otherwise (³im−1(β)−1, ³b, ³b+1) 
 (0, 1, 2)).
Hence, rminτ (r − 1) = rminτ (b) = b. Otherwise, if r > im(³), then (61) and
(63) imply rminτ (r − 1) = b. Hence,

τrminτ (r−1) = τb. (65)

If r = im(³), then r − 1 = b (by this case’s assumption). By definition
(31) and (64), rmaxτ (b) = im(τ) = im(³) = b + 1 = r. Otherwise, r > im(³).
Now, by (60), ³r g ³t for all t > r. This, combined with (61) and (63), implies
τr g τt for all t > r. This implies, by definition (31), that rmaxτ (r − 1) = r.
This, combined with (61), implies

τrmaxτ (r−1) = τr = ³r. (66)
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Case (B).1: (τrminτ (r−1) g τrmaxτ (r−1)) By (32), flexτ (r − 1) = 0. Then (61),
(62), and the definition of b, imply

τ1 + · · · + τr−1 + flexτ (r − 1) = τ1 + · · · + τr−1 < ´1 + · · · + ´r−1.

Case (B).2: (τrminτ (r−1) < τrmaxτ (r−1)) Here, flexτ (r − 1) = τrmaxτ (r−1) −
τrminτ (r−1) − 1, and (61), (65), (66), (62), and (49) (in that order) give

τ1+· · ·+τr−1+flexτ (r − 1)
= ³1 + · · · + ³b−1 + τb + ³b+1 + · · · + ³r−1 + τrmaxτ (b)−τrminτ (b)−1
= ³1 + · · · + ³b−1 + τb + ³b+1 + · · · + ³r−1 + ³r − τb − 1
= ³1 + · · · + ³b−1 + ³r + ³b+1 + · · · + ³r−1 − 1
< ´1 + · · · + ´r−1.

Case (C): (b ∈ seg3
m(³) (i.e., b = im(³) − 1) and r g im+1(³)) Define

z = max{v : v ∈ segm+1(³), ³v g ³im+1(β), and ³v > ³im(β)−1}. (67)

Note that z ∈ [1, n] since the set is nonempty: it always contains im(³). Clearly,
z < r since r g im+1(³) ∈ segm+2. Let b < s f z < r. Then ³s �= ³r by the
minimality of r. By definition of segm+1 and of z, ³s g ³z > ³im(β)−1. Thus,
if ³s < ³r, then (³im(β)−1, ³s, ³r) 
 (0, 1, 2). Hence, ³s > ³r. For such an s, if
a left swap involving indices b and s occurred in the transformation from ³ to
τ , then it follows from Lemma 3.7(III) that

τb g ³s > ³r = ´b. (68)

This contradicts b’s definition. Thus, such a left swap cannot exist. This, with
Lemma 3.7(III) means s is not the right index of any left swap in the trans-
formation from ³ to τ . Notice

³im(β)−1 = ³b < ³r < ³s,

where the middle inequality is by (49). Thus, since ³s g ³z > ³im(β)−1 and
s ∈ segm+1(³), we may apply Lemma 3.10 to ³ with i = s to conclude that

³s g ³t for all t > s. (69)

Hence s cannot be the leftmost index of a left swap that transforms ³ to τ .
All of the above analysis, together with the definition of ³, shows that

³s = τs for 1 f s f z with s �= b. (70)

The same argument, replacing τ with ´ throughout proves

³s = ´s for 1 f s f z with s �= b. (71)

Further, we have the following inequality

³b f τb < ´b = ³r < ³s = τs for b < s f z < r. (72)

The first inequality is by Lemma 3.7(III). The next inequality is from the
definition of b. The equality thereafter is (49). The next inequality is by the
minimality of r. The remaining equality is (70).

Then (72) implies τim(β)−1 = τb < τz. This, with (70) and (72), implies
rminτ (z) = b. Thus,

τrminτ (z) = τb. (73)



Multiplicity-Free Key Polynomials 409

Let z < t < im+1(³). First suppose ³im+1(β) f ³t. Then the maximality
of z implies ³t f ³im(β)−1. This implies ³r f ³im+1(β) f ³t f ³im(β)−1 = ³b

(where the first inequality follows from Lemma 3.10 applied to im+1(³)). This
inequality contradicts (49). Hence,

³im+1(β) > ³t. (74)

Lemma 3.10 applied to im+1(³), implies ³im+1(β) g ³v for all v g im+1(³).
Combining this with (74) shows that in fact

³im+1(β) g ³v, for all v > z. (75)

Now, by (70) and (75), ³im+1(β) g τv, for all v > z . Since rmaxτ (z) > z
(by definition),

τrmaxτ (z) f ³im+1(β). (76)

Case (C).1: (τrminτ (z) g τrmaxτ (z)) By (32), flexτ (z) = 0. Then (70), (71), and
b’s definition imply

τ1 + · · · + τz + flexτ (z) = τ1 + · · · + τz < ´1 + · · · + ´z.

Case (C).2: (τrminτ (z) < τrmaxτ (z)) Now, flexτ (z) = τrmaxτ (z) − τrminτ (z) − 1, and
(70), (73), (76) shows

τ1+· · ·+τz+flexτ (z)
= ³1 + · · · + ³b−1 + τb + ³b+1 + · · · + ³z + τrmaxτ (z)−τrminτ (z) − 1
f ³1 + · · · + ³b−1 + τb + ³b+1 + · · · + ³z + ³im+1(β) − τb − 1
= ³1 + · · · + ³b−1 + ³im+1(β) + ³b+1 + · · · + ³z − 1

(77)

We have two subcases:
Case (C).2.1: (r = im+1(³)) Then (49), (71) and (77) give

τ1 + · · · + τz + flexτ (z) < ³1 + · · · + ³b−1 + ³im+1(β) + ³b+1 + · · · + ³z

= ´1 + · · · + ´z.

Case (C).2.2: (r > im+1(³)) By (52), we may apply Lemma 2.9 to ³ with
r,m + 1 being as above, and s = b. Since (49) says ³b < ³r, said lemma shows
³im+1(β) = ³r = ³b + 1. Applying this to (77) yields

τ1 + · · · + τz + flexτ (z) f ³1 + · · · + ³b−1 + ³im+1(β) + ³b+1 + · · · + ³z − 1

= ³1 + · · · + ³z

< ´1 + · · · + ´z,

where the final inequality follows from (49) and (71). �

Corollary 3.12. Let ´, τ ∈ lswap(α) with ´ >lex τ . If T ∈ qKT(´), S ∈ qKT(τ),
then wt(T ) �= wt(S).

Proof. Suppose not, and μ = wt(T ) = wt(S). Then the two parts of Lemma
3.6 give

´1 + · · · + ´b f μ1 + · · · + μb f τ1 + · · · + τb + flexτ (b)

for all b ∈ [1, n]. This contradicts Proposition 3.11. �
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Conclusion of the proof of sufficiency: Define α′ ∈ Compn by α′
i = αi + 1.

Since α ∈ KMn then α′ ∈ KM
≥1

n . Observe, κα′ = x1 · · · xn · κα. Therefore, κα

is multiplicity-free if and only if κα′ is multiplicity-free. Now, κα′ is the sum
of Dβ for ³ ∈ Qlswap(α′) = lswap(α′). Each of these Dβ ’s are multiplicity-free
by Theorem 2.6. Their sum is multiplicity-free by Corollary 3.12. Hence κα is
multiplicity-free. �

Acknowledgements

We thank Mahir Can for helpful communications. We thank David Brewster
and Husnain Raza for writing computer code (as part of their NSF RTG
funded ICLUE program) that was useful for checking parts of the proof. We
used the Maple packages ACE and Coxeter/Weyl in our investigations. AY
was partially supported by a Simons Collaboration Grant, and an NSF RTG
grant. RH was partially supported by an AMS-Simons Travel Grant.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states
that there is no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

[1] S. Armon, S. Assaf, G. Bowling, H. Ehrhard, Kohnert’s rule for flagged Schur

modules, preprint, 2020. arXiv:2012.05382

[2] S. Assaf and D. Searles, Kohnert tableaux and a lifting of quasi-Schur functions.

J. Combin. Theory Ser. A 156 (2018), 85–118.

[3] S. Assaf and D. Searles, Kohnert polynomials, Experiment. Math (2019), in press.
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