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Multiplicity-Free Key Polynomials

Reuven Hodges and Alexander Yong

Abstract. The key polynomials, defined by Lascoux—Schiitzenberger, are
characters for the Demazure modules of type A. We classify multiplicity-
free key polynomials. The proof uses two combinatorial models for key
polynomials. The first is due to Kohnert. The second is in terms of
Searles’ rule for the quasi-key polynomials of Assaf—Searles. Our argument
proves a sufficient condition for a quasi-key polynomial to be multiplicity-
free.

1. Introduction

This is the companion paper to [5]. That work proposed a framework for
studying spherical Schubert geometry in terms of the multiplicity-freeness of
key polynomials. Motivated by this, our Theorem 1.1 classifies the multiplicity-
free key polynomials.

Let Pol,, = Z[z1,...,x,]. The Demazure operator m; : Pol,, — Pol, is
defined by
z;if —zjpa1sif
[ 2L 2T where sif = flz1,...,Tj41,25,.. ., Tn).
Tj— Tj+1
A weak composition of length n is a = (au,...,a,) € Z%,. Let Comp,,

be the set of such «a. If @ € Comp,, is weakly decreasing, the key polynomial
K is 2% = 2" -+ - 2%, Otherwise,

ko = Tj(ka) where & = (1, ..., @j41, 04, ..., ) and a1 > .

The key polynomials for & € Comp,, form a Z-basis of Z[z1, ..., x,]; see work
of Reiner-Shimozono [11] and of Lascoux [8] (and references therein) for more
on Ky. In [5, Section 4.4], Hodges and Yong use the fact that x,, is the character
of a Demazure module of B C GL,, [6,10,11]. This is not needed in this paper,
which is entirely combinatorial.
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Let Comp := [J,2, Comp,,. For a = (ay,...,),8 = (B1,...,Bk) €
Comp, «a contains the composition pattern (3 if there exists integers j; < jo <
-+ < ji that satisfy:

o o; < ay, if and only if Bs < Gy,
® ‘ajs 70&jt| 2 |Bs *5t|'
If @ does not contain 3, « avoids 3. Let

KM = {(0,1,2),(0,0,2,2),(0,0,2,1),(1,0,3,2),(1,0,2,2)}.
Define KM,, to be those a € Comp,, avoiding all compositions in KM. The

expansion
Ko = E ey
~v€Comp,,

is multiplicity-free if ¢, € {0,1} for all v € Comp,,.
Theorem 1.1. k, is multiplicity-free if and only if a € KM,,.

Ezample 1.2. The composition (0,1,2) contains the composition patterns
(1,1,2) and (8,8). However, (0,1,2) does not contain the composition
pattern (0,0,2) since |2 — 1] % |2 — 0. The composition (1,1,5,6)
contains the composition pattern (0,0,2,1) but does not contain (1,0, 3,2),
(2,0), or (2,6).

O

Ezample 1.3. a = (0,1,1) € KM3. ko = 273 + 2103 + 2oz is multiplicity-
free. ]

Example 1.4. a = (0,2,1,2) € KMy (contains (0, 1,2) in the underlined posi-
tions).

Ko = x%x%m + J;fm%xg + 2]}%$2.7331‘4 + l‘%lﬁgﬂ?i + x%xzmg + x%xgxi
+x%x§x4 + 2xlz§x3x4 —+ xlngcﬁ + xlxgxg -+ $1$2£L'3xi + x1x2x§x4
—&—x%xgaci + x%m%m,
has multiplicity. O

In [5], the authors initiated a study of the notion of split multiplicity-free
problems. Theorem 1.1 concerns the “most split” case of these problems (the
“[n —1]” case, in the terminology of ibid.).

The sufficiency proof uses the quasi-key model of key polynomials due
to Assaf—Searles [2] and the quasi-key tableaux of Searles [12]. In Sect. 2, we
prove a preparatory theorem (Theorem 2.6), which gives sufficient conditions
for their quasi-key polynomials to be multiplicity-free. The conclusion of the
proof of Theorem 1.1 is given in Sect. 3. There, the necessity proof uses the
older Kohnert diagram model [7].

Fink-Mészaros—St. Dizier’s [4, Theorem 1.1] characterizes multiplicity-
free Schubert polynomials in terms of classical pattern avoidance of permuta-
tions. Since Schubert polynomials are linear combinations of key polynomials
with positive integer coefficients (see [11, Theorem 4]), our results are related.
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We do not know how to derive one result from the other. The proof methods
are different. As suggested by [5, Section 4.3], one can look forward to finding
“split” generalizations of both theorems.

An anonymous referee has kindly pointed out to us the relevance of recent
work of Armon-Assaf-Bowling—Ehrhard [1] (written after the preprint version
of this work was made available). That work shows that for all “NW-diagrams”,
the Kohnert polynomials of Assaf—Searles [3] have a representation-theoretic
interpretation as characters of flagged Schur modules. Said referee has sug-
gested that this context is an appropriate level of generalization of this paper.
That is, which of the Kohnert polynomials for NW-diagrams are multiplicity-
free? Indeed, a special case of these polynomials are the key polynomials.
Moreover, the referee proposes that the methods of [4] might extend in this
direction. The techniques of this paper do not seem to (readily) modify to an-
swer the referee’s question. Hence, we report it as an interesting open question
for future work.

2. Quasi-key Polynomials of Assaf-Searles

2.1. Multiplicity-Freeness

Dominance order on Comp,, is

t t
aZDom/BifZaiZZﬂi forall 1 <t <n.

i=1 i=1
For any o € Comp,,, the skyline diagram is
D(a) ={(4,j) : 1 <i<n, 1 <j<al,

where ¢ indexes the rows, south to north, and j indexes the columns, left to
right.

We will use notions introduced in Assaf-Searles’ [2] and Searles’ [12]. In
particular, we use the quasi-key tableau of [12], which are a variation on the
quasi-Kohnert tableaux of [2] (see [12, Remark 2.14]).

Definition 2.1. A quasi-key tableau T of shape « fills D(«) with Z~¢ such that

(QK1) Entries weakly decrease, left to right, along rows. Entries in row i are
at most .

(QK2) Entries in each column are distinct. Entries increase upward in the first
column.

(QK3) If i appears above k in the same column and ¢ < k, then there is a j
that appears immediately to the right of that k, and ¢ < j.

(QK4) Ifr < s, o < ag, and (r,¢), (s,c+1) € D(a) then T'(r,c) < T'(s,c+1).

Let gKT(a) be the set of quasi-key tableaux of shape «. Given T €
gKT (), let wt(T) = (w1, wa, ..., w,), where w; is the number of i’s appearing
inT.
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Definition 2.2. The quasi-key polynomial ©,, is
Do = Z 2T

TeqKT (o)

Definition 2.3. A left swap of a € Comp,, is (a1,...,@j,...,04,...,ay,) where
a; < a; for some i < j. Let Iswap(c) C Comp,, be all compositions obtained
by iteratively applying (a possibly empty sequence of) left swaps to «. For
a € Comp,,, let flat(a) € Comp,, be @ with all 0’s removed. Now define

Qlswap(a) = { € Iswap(«) : v <pom 7, for all 7 € Iswap(«) such that flat(y)
= flat(7)}.
Theorem 2.4. ([2])

R = Z @g.

BEQlIswap(a)
Ezample 2.5. Let a = (3,2,1,3,2). Then
3,.2..3 2.3 3.2 3,.2 3,223
Ko = x1x2x3m4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2w3x4x5 + x7T5230,05

3 2,22 2
+x1x2x3x4x5 + m1x2x3x4x5 + x1x213x4x5

and Iswap(a) = {(37 27 17 37 2)7 (37 37 17 27 2)7 (37 27 37 17 2)7 (37 27 27 3a 1)7
(3,3,2,1,2),(3,3,2,2,1),(3,2,3,2,1) }.
Since o contains no 0’s, Qlswap(a) = Iswap(a) (in fact, this will be the case
starting in Sect. 2.2). For all 8 € Iswap(a), except 8 = a, #qKT(8) = 1; the
unique tableau is the super quasi-key tableau: the one that places only b’s in
row b. Hence, Dg = 2% in those cases. When 8 = « there are two quasi-key
tableaux, namely

Thus, D, = vir3z32302 + 3rdr3z322. This all agrees with Theorem 2.4. [

Define
mfl ={a €KM, :a; >1for1<i<n}.

Theorem 2.6. D is multiplicity-free if 5 € Qlswap(a) and o € Wfl.

In particular, ®,, is multiplicity-free if a € Wf 1. It would be interesting
to characterize precisely when ®, is multiplicity-free. D. Brewster, H. Raza
and the first author have conjectured that the hypothesis that «; > 1 in
Theorem 2.6 can be dropped.

The remainder of this section is devoted to the proof of Theorem 2.6.
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2.2. Lemmas

> —_ >

We need lemmas about KM;l, and gKT () for a € KM;l. Given a € Comp,,,
let 47 < --- < i, be all indices such that «;._1 < «;, . For convenience, let
19 =1, 941 =n+ 1,00 = 00, and v, ., = 0. The mth segment of o is

seg,. (@) = {im-1,tm-1+1,...,0m — 1},

and it is denoted seg,, when the composition is clear by context.
Define

segl ={bcseg,, | >},
seg? :={b € seg,, |a, <min(ay, 1,05, — 1) and b < i,, — 1},

S08m = {im — 1} otherwise.

Lemma 2.7. Let o € Wfl.

(a) seg,, = seg,, Usegy, Lseg),.

(b) segl, is a consecutive sequence of integers, fori € {1,2,3}.
(c) #segt, > 1 form > 1.

(d) If b € seg3, (that is, b=1im, — 1) then a;,,_,—1 > .

(e) If b € seg,, and o, , -1 < au, then b € segl .

Proof. By definition of seg,,,, o, _, > &, _,4+1 > ... > «;, —1. Thus, (b) holds.
For the same reason, segl  seg?  segd are disjoint. Since o avoids (0,1,2),
there is no b € seg,, such that «;, ,—1 < ap < «,,. This proves seg,, =
segl U seg?, U segd : hence (a) holds. Next, if m > 1 and (c) is false, then
;-1 <a;, _, <a; formsa (0,1,2) pattern, a contradiction.

If (d) is false then (a;,, ,—1 < v, —1 < o,,) is a (0,1, 2) pattern, a con-
tradiction. Finally, (e) follows from (d), the definition of seg?,
and (a). O

Ezample 2.8. Let @ = (10,4,12,9,8,8,4,2,5,1,3). Then « € Wﬁl, k=3,
io = l,il = 377;2 = 9,i3 = 11,i4 = 12, and

Seg, = {17 2}7 S€go = {3747 5a Ga 75 S}a Segs3 = {97 10}a and S€gy = {11}

with
segi = {}, seg? = {1}, and seg} = {2}
Seg% = {3a47 576}a Seg% = {7}, and segg = {8}
segy = {9}, segz = {}, and seg3 = {10}
segj = {11}, seg? = {}, and segi = {}

O

In this proof and the sequel, it will be convenient to write, e.g.,
(Qa, ap,y ey, q) =~ (1,0,3,2) if the subsequence (ay, ap, ae, o) of a forms a
(1,0,3,2) pattern.
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—>1
Lemma 2.9. Suppose « € KM and fixr 1 < m < k+1. Ifs < iy, —1 and
r > i,, then either

® oy > Qyp; OT

o a; < ap withoas =a;,-1 and o, =0y =0, 1 + 1.

Proof. If ag > «, we are done. Assume oy < a,. We have s < i, — 1 <
im < 7 with oy 1 < ay,,. Since a avoids (0, 1,2), so must the subsequence
A= (as, i, —1,04,,0,). Thus, ag > a;, 1 and a;, > a,. Since A € KM,
A#(1,0,3,2),(1,0,2,2). Hence, oy = v, —1. Since A % (0,0,2,1), o, = .
Finally, since A # (0,0,2,2), o = o, _, + 1. O

a)

Lemma 2.10. If D(«) contains a southwest s x t rectangle and T € qKT(
then T(r,c) =71 foralll1<r<sand1<c<t.

Proof. By (QK1) and (QK2). O

Lemma 2.11. Suppose o € Wil. Let T € gKT (). If

(a) b € segy, b € segl with oy, _,_1 >y, b € seg2,, orb € seg>, then row b
of T only contains b’s.

(b) b € segl, with o, ,—1 < ay then the leftmost o, ,—1 + 1 bozes of row
b only contain b’s.

Proof. (a): First suppose b € seg;. Row 1 of T must only contain 1’s by (QK1).
If 2 € seg, then a; > an, so by (QK1) and (QK2) row 2 of T must only contain
2’s. The same holds for all rows in seg;, by induction.
Now suppose we satisfy one of the other possibilities of (a). Since b €
S,
Qo Z Qp, Z.'m—l S r S b. (1)
Since « avoids (0, 1,2),
ap 2, -1, 1 <r<ip_g -1 (2)
By the hypothesis (if b € segl,), the definition of seg?,, or Lemma 2.7(d) (if
b€ segd),

Qi =1 2 (3)
By (1), and by (2) combined with (3), we conclude that a, > « for all
1 <7 < b. Now apply Lemma 2.10 to this b x ay, southwest rectangle in D(«).

(b): By (2), the hypothesis «;,_, -1 < ap, and (1),
ar > a1, 1 <r<b. (4)
This implies there is a southwest b x «a;, _, -1 rectangle in D(«). Hence,
by Lemma 2.10, T(r,c) = r for 1 < r < band 1 < ¢ < a;, _,—1. Since
1 < ay, -1 < ag for i1 —1 < s < b, we are done by (QK1), (QK2)
and (QK4). O

Ezample 2.12. Let o = (10,4,12,9,8,8,4,2,5,1, 3). Figure 1 shows the forced
entries for quasi-key tableaux in qKT(«). O
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FIGURE 1. Forced entries of the quasi-key tableaux for Ex-
ample 2.12

Lemma 2.13. Suppose « € Wfl. Let T € gKT(«). Let y be a box such that
row(y) > ty—1. Then T(y) > ipym—1 — 1.

Proof. To reach a contradiction, suppose
T(y) < i1 — 1. (5)

Case 1: (a5 > Qrow(y) for 1 < s < T(y)) By Lemma 2.10, T'(s,c) = s for all
1 <5< T(y)and 1 < ¢ < Qron(y). Since col(y) < arow(y), T(T(y),col(y)) =
T'(y). This, with (5), and the hypothesis row(y) > i,,_1, shows the label T'(y)
occurs twice in col(y), contradicting (QK2).

Case 2: (a5 < Qrow(y) for some 1 < s < T'(y)) Lemma 2.9 (applied to ip_1,
r = row(y)) shows that for any 1 < s < T'(y) such that as < crew(y), Crow(y) =
o, =0, -1+ 1=a,+1. So,

Qs > Quow(y) — 1 for alll <s < T(y). (6)
Hence Lemma 2.10 shows
T(s,c)=sforall 1 <s<T(y)and 1 < ¢ < qpow(y) — 1. (7)
Let

t =max{l < s <T(y),as < Qrow(y)}

t is finite by this case’s assumption. By (6) (and the case assumption), cow(y) —
1 = 4. Therefore, by the maximality of ¢,

Qrow(y) — 1 = ¢ < oy, for t <u < T(y). (8)
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Thus (7), (8) and (QK4) imply t = T(t, arow(y) — 1) < T'(t, Qow(y)), for t <
u < T(y). Hence, by inductively applying (QK1) and (QK2) we conclude
T (U, Qrow(y)) = u, fort <u < T(y). (9)
Finally, by the definition of ¢, a; < Qow(y)- So (7) and (QK4) imply
t="T(t, crowyy — 1) < T(row(y), Qrow(y))- (10)

However, by (9) we have t + 1 = T(t + 1, dyow(y)). Hence, by (10) and (QK2),
t+1 < T(row(y), drow(y)). Repeating this argument replacing ¢+ 1 successively
with ¢ +2,¢ +3,...,T(y) in (9) we arrive at T'(y) < T'(row(y), trow(y)); this
contradicts (QK1). O

Lemma 2.14. Suppose o € mil. LetT € qKT (), b € seg,, for1 <m < k+1
with a;,, -1 <oy, and ¢ > oy, ,—1+ 1. Then
#{x € D(«) : b < row(x),col(x) = ¢, T(x) < b} < 1.
Proof. Suppose there were two rows
b <r <’ such that T(r',c),T(r,c) < b. (11)

By hypothesis, a;,,_,—1 < ap. Thus, if ap < a, then (ay,,_,—1,p, ) =~

(0,1,2), contradicting « € Wfl. Hence a3 > «,. Suppose o, < ;.. Now
r € seg; for some f > m. If a;; ,_1 > a, then Lemma 2.11(a) would imply
row r contains only r’s. Since this is not the case by (11), it must be that
a;;_,—1 < ap. Thus, (e, 1,0, ) is a (0,1,2) pattern, a contradiction.
Therefore,

Q> o > (12)

(where the latter inequality is by (11)). By (11) together with (QK1) and
(QK2), there exists two rows s < s’ < r with

O, 0tgr < C. (13)

Since (av, o, i, i) € KMy then it follows straightforwardly from (12) and
(13) that

as = ay and o, = ap = ag + 1. (14)

In fact (14) holds for any s < s’ < r satisfying (13). In particular, by hypothesis
a;, _,—1 < c. Hence, there is at least one pair s, s’ satisfying (13) with either
$=1im-1—1lors =iy,_1—1 Then by (12) and (14), c< a, =, _, -1+ 1,
contradicting the hypothesis on c. O
2.3. Proof of Theorem 2.6

The next two propositions immediately give Theorem 2.6.

—>
Proposition 2.15. If a € KM;l, then ©, is multiplicity-free.



Multiplicity-Free Key Polynomials 395

Proof. Suppose not. There exists distinct T, T’ € qKT(«) such that wt(T") =
wt(7T"). Define

b:=max{v: I, T(x) = v,T"(x) # v}.
Since wt(T") = wt(T"”), then
3x" such that T"(x") = b, T(x") # b. (15)
Let ¥ = max{v : Ix,T'(x) = v, T(x) # v}. We claim that b = ¥'. First, (15)
implies b < ¥'. Since wt(T') = wt(T"”), the definition of ¥’ indicates there exists

an x" such that T'(x") = 0" with T7(x") # &'. If b’ > b, this would contradict the
definition of b. Hence, b = V' and

b:=max{v: I, T(x) =v,T"(x) # v} = max{v : I, T"(x) = v, T(x) # v}.
(16)
Let
pr := max{c: T(b,c) = b} and pr = max{c: T (b,c) = b}.
Since a; > 1 for all 1 < ¢ < n, (QK1) and (QK2) imply that T'(b,1) =
T’(b,1) = b and hence finite maximums exist (pr,pr- > 1). By swapping T
and 7" (if necessary), we may assume
pr < pr- (17)
O

Claim 2.16. Let b € seg,, for1 <m < k+1 with a;,, ,—1 < .
(I) T(y) > bif row(y) > b and col(y) > pr. Similarly, T'(y) > b if row(y) > b

and col(y) > ppv.
(I1) T(y) =T'(y) if row(y) > b and col(y) > pr.

Proof. Proof of Claim 2.16: (I): We prove the assertion for T'; the T claim
is the same. By definition of pr and (QK1), T'(b,c) < b for any ¢ > pr. By
hypothesis a;,_,—1 < ap, and hence Lemma 2.7(e) implies b € seg’ . Thus
Lemma 2.11(b) indicates that

pr 2 Q-1+ L (18)

Hence, ¢ > «;,, ,—1 + 1. Thus, the hypotheses of Lemma 2.14 hold, and the
conclusion of that lemma is that T'(y) > b if row(y) > b and col(y) = ¢(> pr).

Thus we may assume row(y) > b and col(y) = pr. Suppose pr = .
If T(y) < b = T(b,pr), then by (QKS3), there is a box of D(a) in position
(b,pr+1) = (b,ap + 1), contradicting the definition of D(«). Hence, pr < a.
Let

L=T(b,pr+1) and d=T(y). (19)

We want to show d > b; suppose not. By the definition (19) of ¢ together with
(QK1),

£ <b. (20)

Thus, there are three cases:



396 R. Hodges, A. Yong

Case 1: (¢ < d < b) T violates (QK3) (where here i = d,k = b and j = £ in
that rule).

Case 2: (d < im—1 — 1) Since b € seg,, = {im-1,tm-1 + 1,...,im — 1} (by
hypothesis), b > 4,,—1. Lemma 2.13 states that d = T(y) > 4,,,—1 — 1 since
row(y) > b > i,,—1. Hence this case cannot occur.

Case 3: (im—1—1<d < {) Since b € seg,, (by hypothesis), and ¢ < b by (20),
the assumption of this case says d + 1 € seg,,,. Hence, by definition of seg,,,

Qg1 2 Qp > G, 1
(the latter inequality by the hypothesis). We claim
T(s,pr)=sford+1<s<b. (21)

If pr = o, _,—1+1, then Lemma 2.11(b) implies (21). Otherwise (18) implies
pr > ¢y, ,—1 + 1. Thus, Lemma 2.14 applied to column pr and row d + 1
implies

#{s>d+1:T(s,pr) <d+1} <1. (22)

However, T'(y) = d and we assumed row(y) > b > £ > d+1 (the last inequality
being this case’s assumption). The previous sentence, combined with (22) and
(QK1) says that T'(d + 1,pr) = d + 1. Iterating this argument, using (QK2),
for d + 2 < s < b implies (21).

Now apply (QK3) to T(y) =d < T(s,pr) to see that T'(s,pr+1) > d for
d+1 < s <b. On the other hand, (QK1) says T(s,pr+1) < bfor d+1 < s <b.
The definition of pr means T'(s,pr + 1) # b. Concluding,

d<T(s,pr+1)<b, ford+1<s<hb.

By pigeonhole, two of {T(s,pr +1) : d+ 1 < s < b} are equal, contradicting
(QK2).

Hence, d > b, as desired.

(IT): Suppose not and let T'(y) # T’(y) for some y such that row(y) > b
and col(y) > pr. In particular, at least one of T'(y) and T”(y) is not b. If
max{T(y),T'(y)} < b we contradict (I). Hence max{T'(y),T"(y)} > b. This
contradicts (16). O

There are four possible cases to consider.
Case 1: (b € segy, b € segl with a;, _, 1 > ap, or b € seg?)) Let b € seg,,
(1<m<k+1). By Lemma 2.11(a),

T(b,c) =b, T'(b,c) =bfor all 1 < ¢ < . (23)

By (QK1), b cannot appear in T in any row s strictly south of . On the other
hand, if s € seg,,, and s > b, then o < . Hence, by (QK2), b cannot appear
in row s of T'. Now suppose s > i,,. Since i,, € seg,, 1, thus i,, > b+1. Hence,
by Lemma 2.13, no labels < i, — 1 appear in rows strictly north of row i,,.
In particular, b does not appear in those rows. What we have just written also
applies to T”, thus

T(r,c) =b=1="b,iy, and T'(r',c) = r' = b,in. (24)
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Let x' be the box defined in (15). By (23), in both T" and 7", row b is filled
entirely by b’s. Hence, row(x’) # b. Thus, by (24), row(x’) = i,,. Now since
wt(T) = wt(T") row iy, has the same number of b’s in T' and T”. Now, by
(QK1), all labels left of the b’s in row i,, of T are strictly larger; the exact
same statement is true of T”. However, those larger labels cannot differ between
T and T’ by (16). Hence, in fact, the b’s in row i, are exactly in the same
place in T and 7", contradicting the definition (15) of x'.

Case 2: (b € seg>,) By Lemma 2.11(a),

T(b,c) =b, T'(b,c) =b for all 1 < c < ay. (25)

By (QK1), b cannot appear in T in any row s strictly south of b. Let x" be the
box defined in (15). By (25), in both 7" and 7", row b is filled entirely by b’s.
Hence, row(x’) # b. Notice

T(y) =T'(y) for all y such that row(y) > i,. (26)

Indeed, by Lemma 2.13, T(y),T’(y) > im — 1 = b. Then (16) shows T'(y) =
T'(y).

It remains to consider if row(x’) = i,, is possible. The contradiction in
this case is derived exactly as in the final four sentences of Case 1.
Case 3: (b € segl, for 1 <m < k+ 1 with o, _,_1 < oy, and pr = pr/) By
(QK1) any entry in row b of T or T” is < b. Thus, since pr = prv,

Thc)=b = 1<c<prand T'(b,d)=b < 1< <pr(=pr).
(27)
Hence, row(x) # b. Thus, by (QK1), row(x’) > b. Then (27) and (QK2) implies
col(x’) > pr. Thus, Claim 2.16(IT) says that T'(x") = T"(x’), which contradicts
the definition (15) of x'.
Case 4: (b € segl for 1 <m < k+1with o, 1 < ap, and pp > pr+) Since
T(he)=b < 1<c<prand T'(b,d) =b <= 1< <pp(<pr),
(28)
by (QK1) and wt(T) = wt(T"), we have
#{z € D(a) : T'(z) = b,T(z) # b,row(z) > b} > pr — pr. (29)
For all z in the set from (29), we have that col(z) > pr by (28) combined
with (QK2). Moreover, by Claim 2.16(II), T'(z) = T'(z) if col(z) > pr and
row(z) > b. Hence, col(z) < pr. Summarizing, by (29) there are pr — ppr of
these boxes z that satisfy pr» < col(z) < pr. By pigeonhole, at least two of

these z are in the same column. This contradicts (QK2). O
We conclude that no such T, T’ can exist.

Proposition 2.17. Suppose a € Wil and B € Qlswap(c). Then Dg is
multiplicity-free.

Proof. By Proposition 2.15, it suffices to show that Qlswap(a) C Wfl. Since
a has no parts equal to 0, Qlswap(«) = Iswap(«). Hence, by induction, it
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is enough to prove that if 5 = (..., a;,...,q;,...) is a left swap of « then

B e Wf ' To reach a contradiction, assume ( ¢ Wf "

There are five cases to consider. In each subcase, the contradiction de-
rived is that « contains a pattern from KM = {(0,1,2),(0,0,2,2), (0,0,2,1),
(1,0,3,2),(1,0,2,2)}.

(I) (Bay»Bags Bag) = (0,1,2). Since G is a left swap of a, {i,j} Z {a1,a2,a3}.
Also, since a € Wfl, {i, 7} N{a1,az,a3} # 0.

Subcase 1: (a1 = 1) a; < gy < Qqy. Hence, (a;, gy, 0ay) =~ (0,1, 2).

Subcase 2: (ag = 1) If ag, < ay, then a,, < a; < a,, and hence (aq, , @, Gy) ™
(0,1,2). Thus assume g, > a;. If j > as, then (ay,, o, 0y, ) ~ (0,0,2,1)
or ~ (1,0,3,2). Otherwise j < ag and hence o; < a; < (rgy-

Subcase 3: (a3 =1) g, < g, < 5.

Subcase 4: (a1 = 7) o < gy < Qg

Subcase 5: (az = ) If agy > o, then o, < o < gy If gy < 5 with @ < aq,
then (a, aa,, @, aqy) ~ (1,0,2,2) or ~ (1,0,3,2). If @y, < a; with i > ay,
then aq, < oy < a;.

Subcase 6: (a3 = j) q, < Qq, < .

(II) (/80417/8112750‘3’5@4) = (1707 3’ 2)'

Subcase 1: (a1 =1, az = j) a; < aj < Qq,.

Subcase 2: (a3 =1, as = j) g, < a4 < ;.

Subcase 3: (ay =i and j ¢ {a1,az2,a3,a4}) If a; > a,, then (a;, aq,, Aay, )
contains either (1,0,3,2) or (0,0,2,1). If a; < g, then a; < g, < g,.
Subcase 4: (ay =i and j ¢ {a1,a2,a3,a4}) (Qay, @iy Qay, @a,) = (1,0,3,2).
Subcase 5: (az =i and j ¢ {a1,az2,a3,a4}) If a; > ay,, then (ag,, da,, @i, )
~ (1,0,3,2) or ~ (1,0,2,2). If ag, < a; < g, then a4, < o; < ;. If
Qq, > a; and j > aq, then o; < aq, < ;. If oy, > @; and j < a4, then
(g, a4, 05, g, ) ~ (1,0, 3,2).

Subcase 6: (as =1 and j ¢ {a1,a2,a3,a4}) (Qays Qay, Qag, 05) ~ (1,0,3,2).
Subcase 7: (aqx = j and i ¢ {a1,a2,a3,a4}) (i, Qayy Qas, Qa, ) >~ (1,0,3,2).
Subcase 8: (az = j and i ¢ {a1,a2,a3,a4}) If o < gy, then (aq,, @), agy, Aa,)
~ (0,0,2,1) or ~ (1,0,3,2). If ag, < 0 < Qq,, then a5 < a; < ag,. If
0q, < o and ¢ < aq, then oy < o, < ;. If ag, < a; and @ > ay, then
(qay s iy Oy, gy ) =~ (1,0, 3,2).

Subcase 9: (a3 = j and i ¢ {a1,a2,a3,a4}) (Qa,, Qay, 0, aq,) =~ (1,0,3,2).
Subcase 10: (as = jand i ¢ {a1, a2, a3,a4}) If aj < gy, then (o, , gy, day, @)
~ (1,0,3,2) or ~ (1,0,2,2). If aj > gy, then aq, < aq, < ;.

We leave the cases (Ba;, Bass Bas» Bas) =~ (1,0,2,2),(0,0,2,1),(0,0,2,2)
to the reader. O

3. Proof of Classification Theorem of Multiplicity-Free Key
Polynomials

3.1. Kohnert Diagrams and Proof of Necessity
Assume o ¢ KM,,. We will now show that k., has multiplicity.
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We use Kohnert’s rule to compute k4. The set KD(a) of Kohnert dia-
grams is recursively defined as follows. Initially D(a) € KD(«). At each stage
thereafter, given D € KD(a) a box (i,j) € D is movable if it is the rightmost
box of D in row ¢ and there exists ¢’ < i such that (i’,j) ¢ D. For any such
movable box, a Kohnert diagram D’ is obtained by replacing (4, j) with (¢, j)
where ¢’ is largest among all choices. Generate a D’ from D for every choice
of moveable (i,j). Now KD(«) is the (finite) set (not multiset) of Kohnert
diagrams obtained starting from D(«).

For D € KD(«) let

Kohwt(D) = H xf&{ji(i,j)eD}.

1<i<n
Theorem 3.1. (Kohnert [7]) ko = }_perp(q) Kohwt(D).

Ezample 3.2. Let o = (0,0,2,1). The 14 Kohnert diagrams in KD(«) are listed
below.

~ L r
LT

L, L Lo
r .

2 2 2 2
Ko = T3T4 + 22324 + X2X3 + X523 + 12304 + 123 + 2x122x3

Thus

2 2 2 2
+T122x4 + 2]T4 + X723 + T12223 + T 125 + X7 T2.

O
Given D € D(«), call a row ¢ initial if it is empty or the boxes in that
row are precisely (i, 1), (4,2), ..., (4,7) for some j € Z>;.

Lemma 3.3. Suppose D € KD(«a), ¢/ < i and j' < j. If (¢/,5") and (i,7) are
the rightmost bozes of their rows, and all rows i’ < i" < i are initial, then D’
obtained by replacing (i,7) with (i',7), is in KD(«).
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Proof. The hypotheses on i,j,4',j’ guarantee that (,j) is moveable. Since
each row ¢’ is initial, (¢,j5) — (¢”,7) is a Kohnert move (giving a diagram
D" whenever j” < j (where (i”, ") is the rightmost box of row ). If indeed
i’ = i’ we are done, i.e., D = D”. Otherwise since i is initial in D(«), it
must be that (i/,7) is the rightmost box of its row in D", and is, therefore,
moveable. Then since all rows i’ < """ < 4" are initial in D" (since they were

in D), the claim follows by induction on i — i’ 0

Corollary 3.4. Suppose D = D(«), i’ <1, j' < j. Let (¢',j") and (i,j) be the
rightmost boxes of their rows. Then D' as defined in Lemma 3.3 is in KD(«).

Proof. All rows of D(«) are initial, so Lemma 3.3 applies. O

In what follows, (i, ji) is the rightmost box of row iy.
Case 1: (a contains (0, 1,2).) Let ig < 41 < ig be the rows of the “0”, “1” and
“2” respectively. By Corollary 3.4 we can replace (ig, j2) with (i, j2) in D(a),
resulting in D’ € Koh(a). On the other hand, by Corollary 3.4 one can obtain
E' € Koh(a) by replacing (i1,71) with (ig,j1). Since the rows r > 41 in E’
are still initial, we can apply Lemma 3.3 to obtain E” € KD(«a) by replacing
(i2, j2) with (i1, j2) in D”. The net effect in both cases is to place an additional
box in row iy and remove a box from row iy. Hence, Kohwt(D’) = Kohwt(E");
therefore by Theorem 3.1, [Kohwt(D')]kq > 2, as desired.
Case 2: (« contains (0,0,2,1).) Let igr < 99 < i2 < i1 be the indices of the
(0,0,2,1) pattern (in the respective order). By Corollary 3.4, D’ obtained from
D(a) by the swap (i1, 1) — (i, 1) is in KD(«). Since all rows r > ig of D" are
initial, we can use Lemma 3.3 to move (i3, j2) — (ig, j2) giving D" € KD(«).
On the other hand, starting from D(«) we can again use Corollary 3.4 to
define E’ € KD(«) by the swap (i2,72) — (ior,j2). Then Lemma 3.3 allows us
to move (i1,71) — (i, 1) giving E” € KD(«). Now one can see D" # E” but
both have the same Kohwt, as needed.
Case 3: (« contains (1,0,3,2).) This is the same argument as Case 2 except
that we use i1 < 19 < i3 < iz in place of igy < iy < i3 < i1, respectively.
Case 4: (a contains (0,0,2,2).) Let ig < ip < i < g be the rows of (0,0, 2, 2)
in that respective order. By Corollary 3.4 turn D(«) into D’ € KD(«) by the
move (igr,jor) — (igr,j2r). Now since all rows r > ig of D’ are initial, we
can apply the argument of Case 1 using rows ig < 49 < iy rather than the
i < i1 < 19 of that case.
Case 5: (o contains (1,0,2,2).) Let iy < ig < i < ig be the rows of (0,0, 2, 2)
in that respective order. We can apply the argument of Case 4, where these
indices play the role of igr < ig < i3/ < i3 from that case.

This completes the necessity argument.

3.2. Proof of Sufficiency

In this section, given o € Wfl and 7,7 € Qlswap(a) = Iswap(«), we will
show that there is no coincidence in the monomials of ®, and ©,. Thus xq
is multiplicity-free if each ® 3 in the quasi-key polynomial expansion of k, is
multiplicity-free. Thus, sufficiency follows from Theorem 2.6.
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Let b € seg,,, for some 1 <m < k + 1. Define
. ] Qi -1 >
rming (b) = {iml —1 otherwise (30)

b+1 if Qpy1 2> Qy,
i otherwise

rmaxq (b) = { (31)

flexa(b) — {armaxa(b) = Qrming (b) — L if Armax, (b) > Arming, (b) (32

~—

0 otherwise

Ezample 3.5. Consider o = (10,4,12,9,8,8,4,2,5,1,3). Then k = 3, ip :=
1,41 = 3,49 = 9,43 = 11,44 := 12. Let b = 5 € seg,. Then rmin, (b) = i; = 2,
since a;;, < ap. Since apr1 > @4y, rmaxe(b) = b+ 1 = 6. Thus, flex,(b) =
Armaxg (b) — Frming (b) — l=ag—az—1=3.

Lemma 3.6. Suppose « € KT\/ITZL1 and T € qKT («) with p = wt(T). Then
(I) a <pom M-
(II) pr+ -+ <ap+ -+ ap + flex, (b), for 1 <b<n.
Proof. (I): By (QK1), ay + -+ ap < 1 + -+ + p, for 1 < b < n. Thus,

& <pom M-
(IT): Any T € qKT () only uses entries < b in the first b rows. Thus

#{x: T(x) < b,row(x) <b} =ay + ...+ ap. (33)
Define
Fo(b) = {x: T(x) < b, row(x) > b}. (34)
We claim that
#Fo(b) < flexa (b). (35)

Clearly (33) combined with (35) proves (II).
It remains to prove (35). Fix b; thus b € seg,,, for some 1 <m < k + 1.
Let y € F,(b). If b ¢ seg3, then b < i, — 1. Lemma 2.13 asserts that b cannot

m
appear in rows strictly greater than i,,, i.e., i,, > row(y). Therefore, in view

of the definition (34), we have
b < row(y) < ip,.
By definition of seg,,, maxy<,<i,, {0} = Qrmax, (b)- Thus
col(y) < rmax, (v)- (36)

If b € seg),, then since v is (0, 1,2) avoiding, maxy<r<n{a,} = @i,, = Qrmaxe, (b)-
Thus, (36) holds for all b.
We claim

C0|(y) > Arming, (b) +2. (37)

Case 1: (e, _,—1 > ap) By this case’s assumption, and the definition (30),
rming (b) = b. If 4,1 < s < b then by definition of seg,,,,

s > op = Xrming, (b) - (38)
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If s = 4,,—1 — 1, then (38) holds by the assumed inequality of this case. Finally,
if s < dp—1 — 1 then a5 > oy, ,—1 since a avoids (0, 1,2); hence (38) holds
again. By Lemma 2.10, T'(r,¢) = r for 1 <r < band 1 < ¢ < ap. Thus, by
(QK2), T(r,c) > b whenever r > b and ¢ < ap. Lastly, if there exists r > b
such that o, > Qmin, (v), then (QK4) implies T'(7, Qmin, vy +1) > b. Therefore,
(37) holds.

Case 2: (o, _,—1 < ap) By this case’s assumption, and the definition (30),
rming (b) = 41— 1. If 4,1 < s <bthen oy > ap > i, 1 = Qumin,, (b), and
in particular:

Qg 2 0y, 1= Arming (b) - (39)

If s = ip—1 — 1 then (39) holds trivially. Finally if 1 < s < 4,—1 — 1 then
since « is (0,1, 2)-avoiding, as > o, ,—1 and (39) again holds. Hence, by
Lemma 2.10, T(r,c) = r for 1 < r <band 1 < ¢ < a;, ,—1. Thus, by
(QK2), T(r,c) > b whenever r > b and ¢ < «a;,,_, 1. If there exists r > b such
that a, > amin, () = Q,,_,—1, then (QK{) implies T'(7, rmin, ) + 1) > b.
Therefore, (37) holds.

By (36) and (37),

Xyming, (b) +2< col(y) < Qrmax,, (b)- (40)

Therefore y can appear in < flex,(b) columns of T. If we show at most
one y € Fyo(b) can have col(y) = ¢, for aymin, ) +2 < ¢ < Qrmax, (») then (35)
follows.

Case 1: (e, _,—1 > ap) By this case’s assumption, and definition (30), rmin,,(b)
= b. If Qmin, (b)) = Qrmax, (b), then by (32) flex,(b) = 0. By (40) #F,(b) = 0.
And hence, #F, (b) < flex,(b), proving (35).

Thus, we assume Qmin, (v) < Crmaxe, (b)- 1f 0 € seg> , then rmax, (b) = i, =
b+ 1. Otherwise, ap11 < ap = Qrmin,, () < Qrmaxa (b), Where the first inequality
follows from the definition of seg,,. This implies rmax,(b) # b+ 1. Thus, by
(31), rmaxq(b) = im,.

Let b < § < ip,. Then o, _, -1 > ap > as. So Lemma 2.11(a), applied to
s says that only s’s appear in row s; in particular there are no entries < b in
row s. Thus, if y € F,(b), then

row(y) > i, = rmaxq(b). (41)

We apply Lemma 2.14 to row i, € seg,,,1, and ¢ > Qmin, ) T 2 =
ap +2 > oy, —1 + 1 (the final inequality follows from the definition of seg,, ).
We conclude that at most one y € F,,(b) can have row(y) > i,, and col(y) = c.
This, combined with (41), implies (35).

Case 2: (o, _,—1 < ap) By this case’s assumption, and (30), rmin,(b) =
im—1— 1. If Qymin,, (b) > Qrmaxa (b), We get #F (D) = 0 = flexo(b) in exactly the
same way as the previous case.

Hence we again assume Qmin,, (5) < Qrmax, (b)- If rmaxq (b) = b+ 1, then by
our assumption &, ;-1 = Qming (b) < Ormax, (b) = Qb+1- Lhus, we may apply
Lemma 2.14 to row b + 1, and ¢ > Qmin,») + 2 > @j,,_,—1 + 1. We conclude
that at most one y € F,(b) can have col(x) = c.

Otherwise, rmax, (b) = i,.
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Subcase 2.1 (o, ,—1 > apy1) Let b < s < ip,. Then oy, 1 > apy1 > as.
Thus Lemma 2.11(a), applied to s says that only s’s appear in row s; there
are no entries < b in row s. Thus if y € F,(b), then

row(y) > i,, = rmax,(b). (42)

We have v, ;-1 = Qmin, (b)) < Qrmaxa (b) = Qi,, - We apply Lemma 2.14
to TOW iy, € seg,,. 1, and ¢ > min,b) +2 > @i, -1+ 1 > aq, -1+ 1 (the
final inequality holds since « avoids (0,1, 2)). The lemma implies that at most
one y € F,(b) can have row(y) > i,, and col(x) = ¢. This, combined with (42),
implies (35).

Subcase 2.2 (a;,, ,—1 < opt1) Apply Lemma 2.14 to row b+ 1, and ¢ >
Qrming (b) +2 > ,,_,—1 + 1. So, at most one y € Fi,(b) has row(y) > b+ 1 and
col(x) = ¢, proving (35). O

Given 7 € Iswap(c), define a left swap sequence of v to be v, ... ~®)
such that (9 = a, v) = ~, and 4+ is a left swap of 49 for 0 < i < t.

Lemma 3.7. Let v, 7 € Iswap(a) with v > T and b= min{i : v; > 7;}.
(I) There exists a left swap sequence of v equal to FO A and of T
equal to 7. .. 7 such that =~ = 70) with B, = v = 75 for all
1<s<hb.

(IT) ~, T € Iswap(3).
(III) No left swap sequence from (3 to v (or T ) involves the indices 1,2, ...,b—1.

Proof. (I): Given (x1,...,x%) € Zgo let (zf,...,x},) be the coordinates sorted
into weakly increasing order (z} < x4 < ... < z}). Given (x1,...,zx),
(Y1, k) € ZE, we write

(@1, zk) 2 (Yay e y) if 2 <yffor 1 <i<k.
Recall (see, e.g., [9, Proposition 2.1.11)), if u,v € &,, then
u<pv <= (u(l),u(2),...,uk))

=< (v(1),v(2),...,v(k)) for 1 <k <n, (43)
where <pg is the Bruhat order. In particular,
u<pv=u(l) <ov(l) (44)

Special case: (o € &,,) Hence, @« <p 7, 7. Induct on n, the base n = 1 being
trivial. Suppose n > 1. If b = 0 (i.e., y(1) # 7(1)), 6 = « satisfies (I). Thus,
assume b > 1, and let T = (1) = 7(1). Thus, by (44), a(1) < T.Let a(j) = T.
There exists a sequence of left swaps that show

a<pd =T a2)aB)...a(j—1) a(j +1)...a(n).

It is straightforward from (43) that o/ <p ~,7. Let o,7%,7 be the list of
rightmost n — 1 entries of «,7,7 (respectively); these are permutations of
&,,_1 on [n] — {T}. By induction, obtain 3 € &,,_; satisfying (I) with respect
to o/,7,7. Then

B:=TBR(1)B(2)...3(n—1) € Iswap(a)
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satisfies (I) with respect to «, 3,7, as desired (the two swap sequences to go
from @ — v and a — 7 being the “concatenation” of the sequence from
a — o with the two sequences that send o/ — % and o — 7, interpreted in
the obvious manner).

General case: (o € Comp,,) Let @ € &,, be the permutation “standardizing”
a, i.e.

(),
()
Define ¥ € &,, by applying the same sequence (in terms of positions) of

left swaps to @ used to obtain v from «. Similarly, define 7. By the definition
of left swaps and (45),

a(i) < a(j) = a(i)

a(i) = a(j) with i < j = a(i) (45)

2 2

<
<

aSB §7?

(if u,v € 6,, and v is obtained from u by a left swap, then v <p v; this
follows from, e.g., (43)). Call two labels ¢, € [n] to be a-equivalent (i = j)
if a(i) = a(j). Now apply left swaps to 4 so that all equivalent labels are in
decreasing order. Similarly one defines 7.

Ezample 3.8. If o = (2,2,4,2,2,4) then @ = 125346. Consider o =
(2,2,4,2,2,4) — (2,2,4,4,2,2) — (4,2,4,2,2,2) = 4. Then 5 = 625143. Here
{1,2,3,4} and {5,6} are the two a-equivalence classes. So 7 = 645321. O

By simple considerations about Bruhat order,
a<py<p7, anda<pT<pT. (46)
By construction,
N >lex T (47)
and
¥(i) = 7(4), for 1 <i <b. (48)

In view of (46), (47) and (48) we can apply the Special Case to construct
B € &, and left swap sequences, that satisfy (I) with respect to &, 7, 7.

Define § from 3 by replacing the label ¢ with «(7). To define the swap
sequence from « to 3 we apply the same left swaps (i.e., interchange the same
positions) as the sequence from & to 3, with the exception that we skip left
swaps of the underlying permutations that involve equivalent labels. Similarly,
one defines continuation of this sequence to 7, and separately, to 7. The claim
follows.

(IT): This is trivial from (I).

(ITI): Suppose such a left swap exists, say with ¢ € [1,b — 1]. We may
assume 4 is the minimal such index. Then 7; = +; = (; is replaced with a
strictly larger number, and it follows that v; > §;, a contradiction. g
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Lemma 3.9. Assume o € Wfl. Let v, 7 € Iswap(a) with v >je; T and b =
min{i : y; > 7}. Let b € seg,,(8) and (3 be from Lemma 3.7. There exists a
(minimum,) index v > b such that

Yo = Br > By (49)

Let iy (B) <i2(B) < ... <im(B) < ... be such that o;_(3y-1 < a;_(). The
indices b, r satisfy one of the following.

(A) b€ seg? (B) and r > i, (3),

(B) b€ segd (8) and r € seg,lnﬂ(ﬁ),
(C) besegd (B) and r > ipmi1(B).

Proof. By Lemma 3.7, v,7 € Iswap(/3). Hence, by the reasoning in the proof
of that lemma (the characterization of Bruhat order) and the definition of b,

Vor Ty 2> P (50)

If v, = B, then 7, > ~, (by (50)). This contradicts the definition of b,
hence 7, > (. This, combined with the definition of left swaps, implies (49).
Case 1: (b € seg’ (3)) By the definition of segl (3) (and a simple induction),
By > B for all b < s. This contradicts (49). That is, this case cannot actually
occur.

Case 2: (b € seg?,(8)) By definition of seg,,, r ¢ seg,,. Hence, r > i,,(3) €
seg,,41; this is (A).
Case 3: (b € seg?,(8)) By definition, r & seg?, ., (3). If r € seg3 () then

(Bira(8) 11 Binns1(8)~ 15 Bimya(5)) = (0,1,2),
a contradiction. Thus, only (B) and (C) are possible, as desired. O
Lemma 3.10. Ifa € Wfl, i€segt (1<m<k+1), and o, ,—1 < a; then
a; > oy foralli < j.
Proof. Say i < j but oy < ¢j. Then (e, ,—1,, ;) ~ (0,1,2), contradicting
—>1

ae KM, . O
Proposition 3.11. Let o € Wfl. If v, 7 € Iswap(a) and v >, T there exists
z € [1,n] such that

T T flex(2) <y 4+ e (51)

Proof. Our analysis is based on the cases (A), (B), (C) from Lemma 3.9, as
well as the notation from that lemma. By the (proof of) Proposition 2.17,

5 e KM, (52)

Case (A): (b € seg? (B) and r > i,,(8)) Let t > b such that 8, > . By
the definition of seg,,, t > im(6). If t > i, (5), then by (52) we can apply
Lemma 2.9 to 3, m, r = t, and s = b. The lemma concludes that 3; (3) = B;.
Otherwise, t = i,,(3), and B = f3;,, (3)- Thus,

Bt = B;,,.(p) for allt > b such that §; > B. (53)



406 R. Hodges, A. Yong

By Lemma 3.10,

T <Y = Br < Bi,.(8)- (54)
Consider a sequence of left swaps transforming 3 to 7. None of these left swaps
involve the index b: Otherwise, by Lemma 3.7(III), b is the left index of such

a swap, and some ¢ > b such that 3; > (3 is the right index. This contradicts
(53) and (54) combined. Thus,

T = Py (55)

By Lemma 3.10, f3;  (g) > 3, for all v > b. That is max{3, : v > b} <

B:,. (- However, notice that {8, : v > b} = {7, : v > b} since {8, : v < b} =
{7y : v < b}. Therefore,

Trmax, (b) < ﬁim(ﬁ)~ (56)

The assumption b € seg?, (3) means 3, < B;,._,—1. Then the definition of
B and (55) imply 7, < 7;,, ,—1 (since b > ip,—1 — 1 € seg? ). Hence, by (30),
rmin,(b) = b and
Trmin, (b) = Tb- (57)
Case (A).1: (Trmin, (b) = Trmax, (b)) By (32), flex-(b) = 0. Then the definition of
b implies
i+t mtflex, () =71+ +1 <4+,
establishing (51).
Case (A),Q (TrminT(b) < TrmaxT(b)) Thus, erxT(b) = Trmax,(b) — Trmin, (b) — 1, and
T R S ﬂexT(b) = 61 + -+ ﬂb + Trmax, (b) — Trmin, (b) — 1
<Bi+- A+ Bo+ Bi 3 — B — 1 (58)
=p1++B1+ B8 — 1,
where the first equality follows from (55), and the inequality is by (56) and
(57).
We have two subcases:
Case (A4).2.1 (r =im(B)) Then (49) and (58) imply
T T flexs (b)) < Bt A+ Boo1 + Bi s = W
which proves (51).
Case (A).2.2 (r > in(8)) By (49), By < B,. Combining this with (52), we may
apply Lemma 2.9 to 8 with r,m being as above, and s = b, to conclude that
By = ﬁim(ﬁ)fl and Bi'm,(ﬁ) =06.=0Fp+ 1. Applying this to (58) yields
T4+ flex (b)) < B+ + Bp1 + Bi3) — 1
=0+ +B-1+(Bp+1) -1
=B+ + 06
<71+,

where the final inequality follows from (49) and the definition of 3; this again
proves (51).
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Case (B): (b € seg>,(B) (i.e., b="1in(8) —1) and r € segp, . 1(8)) fb< s <r,
then s € segy, .1 (3) and thus 85 > 3,. For such an s, if a left swap involving
indices b and s occurred in the transformation from S to 7, then it follows
from Lemma 3.7(I1T) that

Ty > s 2 Br = (59)
This contradicts b’s definition. So such a left swap cannot exist. This, with
Lemma 3.7(IIT) means s is not the right index of a left swap in the § to 7
transformation. Notice

Bi(3)—1 = Bo < Br < Bs,

where the middle inequality is by (49). Thus, since s € seg;, (), by applying
Lemma 3.10 to § with i = s we conclude that

Bs > B for allt > s. (60)

Hence, s cannot be the leftmost index of a left swap that transforms 3 to 7.
All of the above analysis, together with the definition of 3, shows that

Bs = 75 for 1 < s < rwith s # b. (61)
A similar argument proves
Bs = s for 1 < s < r with s # b. (62)

More precisely, if b < s < r then s € seg} . ;(08) and B > 3, (by the minimality
of ). From this, we get a variation of (59) which says v, > 85 > G = 7 (a
contradiction). The remainder of the argument is the same.

Further, we claim:

o< <W=0<Bs=1sforb<s<r. (63)

The first inequality is by Lemma 3.7(III). The next inequality is from the
definition of b. The equality thereafter is (49). The next inequality is since
s <rand s,r € segl, ., (B). The remaining equality is (61).

Now, (63) says, in particular, that 7, < 7p41. Since 7 € mfl (by the
proof of Proposition 2.17), it avoids (0, 1, 2). Hence, 7,1 > 7. This combined
with (61) implies

b€ seg, (1) and i, (B) = im(7) = b+ 1. (64)

If r = 4,(8), then r —1 = b (by this case’s assumption). Since b €

segs (1), then By, < ;. (3)—1 (otherwise (3;,  (3)-1, 5, Bo+1) =~ (0,1,2)).
Hence, rmin,(r — 1) = rmin,(b) = b. Otherwise, if r > 4,,(3), then (61) and
(63) imply rmin,(r — 1) = b. Hence,
Trmin, (r—1) = Tb- (65)
If r = 4, (0), then r — 1 = b (by this case’s assumption). By definition
(31) and (64), rmax,(b) = iy (7) = i, (8) = b+ 1 = r. Otherwise, r > i,,(5).
Now, by (60), 8, > 0 for all ¢ > r. This, combined with (61) and (63), implies
7, > 7 for all ¢ > r. This implies, by definition (31), that rmax.(r — 1) = r.
This, combined with (61), implies

Trmax, (r—1) = Tr = Br- (66)
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Case (B).1: (Trmin, (r—1) = Trmax, (r—1)) BY (32), flex,(r — 1) = 0. Then (61),
(62), and the definition of b, imply
4ty Hflex,(r=1)=m 4+ 11 <Y1 4+ Yo

Case (B)Q (Trmin.r(r—l) < 7'rmaxT(r—l)) Her67 erxT(r - 1) = Trmax, (r—1) —
Trmin, (r—1) — 1, and (61), (65), (66), (62), and (49) (in that order) give

T4 AT Hlex, (r — 1)
= ﬂl +-+ ﬂb 1+7+ ﬂb-&-l +o 4+ ﬂr—l + 7_|'ma><7(b)77_rmin.r(b)71
:51+"‘+5b71+7b+5b+1+ ‘+5r71+ﬂ7“_7—b_1
=6+ +Bo-1+ B+ Byt + B — 1
<y +- A+ Y1

Case (C): (b €segd (8) (i.e., b=1i,,(3) — 1) and r > i,,11(8)) Define
z =max{v: v € seg,, 1 (B), Bv = Bi,. 1 (), and Bu > By, (5)-1}.  (67)

Note that z € [1, n] since the set is nonempty: it always contains i,,(3). Clearly,
z < rsince 1 > ipm41(8) € seg,, 0. Let b < s < z < r. Then 3, # (3, by the
minimality of 7. By definition of seg,,.; and of z, Bs > 8. > 3;, (3)—1- Thus,
if 35 < By, then (83;, (3)-1,Bs, Br) =~ (0,1,2). Hence, Bs > (.. For such an s, if
a left swap involving indices b and s occurred in the transformation from g to
7, then it follows from Lemma 3.7(III) that

Ty > ﬂs > 67" = b (68)
This contradicts b’s definition. Thus, such a left swap cannot exist. This, with

Lemma 3.7(IIT) means s is not the right index of any left swap in the trans-
formation from ( to 7. Notice

ﬂim(ﬁ)fl =B < Br < Bs,
where the middle inequality is by (49). Thus, since 8, > 8. > §;, (g)—1 and
s € seg,,,1(f), we may apply Lemma 3.10 to § with ¢ = s to conclude that

Bs > B for all t > s. (69)

Hence s cannot be the leftmost index of a left swap that transforms 3 to 7.
All of the above analysis, together with the definition of 3, shows that

Bs = 75 for 1 < s < z with s # b. (70)
The same argument, replacing 7 with v throughout proves
Bs = s for 1 < s < z with s # b. (71)
Further, we have the following inequality
o <mp<W=0<fBs=Tsforb<s<z<r. (72)

The first inequality is by Lemma 3.7(III). The next inequality is from the
definition of b. The equality thereafter is (49). The next inequality is by the
minimality of r. The remaining equality is (70).

Then (72) implies 7;, (gy—1 = T < 7. This, with (70) and (72), implies
rmin,(z) = b. Thus,

Trmin, (z) = Tb- (73)
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Let z <t < ipm11(B). First suppose §;, . (3 < 8. Then the maximality
of z implies 3; < B3;,,(3)—1- This implies 3. < 3;, ... (3) < Bt < Bi,.(3)-1 = Bb
(where the first inequality follows from Lemma 3.10 applied t0 4,41 (5)). This
inequality contradicts (49). Hence,

ﬂi7n+1(6) > /Bt' (74)

Lemma 3.10 applied to 4,,11(3), implies §; . (3 > By for all v > ip1(5).
Combining this with (74) shows that in fact

Binir(8) = B, for all v > 2. (75)
Now, by (70) and (75), 8;,.,,(8) > Tv, for all v > z . Since rmax,(z) > 2z
(by definition),
Trmax, (2) < Bipsr(8)- (76)
Case (C).1: (Tamin, (2) = Trmax, (z)) BY (32), flex;(z) =0. Then (70), (71), and
b’s definition imply
A A flex,(2) =T 4 T <+
Case (C).2: (Tamin, () < Trmax, (2)) Now, flex;(2) = Timax, (z) = Trmin, () — 1, and
(70), (73), (76) shows

14+ 7 +Hlex, (2)
=01+ -+ B+t Bopr + o+ B+ Trmax, (z) — Trmin, (z) — 1
<SPt A B+t Bt B+ B -1
=bi+- A+ b1+ B3 T B+ 0 -1

We have two subcases:
Case (C).2.1: (r =im+1(08)) Then (49), (71) and (77) give
Tit T flexe(2) < Brtccc o+ Boo1 + By T B+t B
=Y+t

Case (C).2.2: (r > im+1(0)) By (52), we may apply Lemma 2.9 to § with
r,m+ 1 being as above, and s = b. Since (49) says 3, < 3., said lemma shows
Bi,1(3) = Br = By + 1. Applying this to (77) yields

Tt T flex (2) KB+ Boot + Biae) B+ B -1

(77)

=p+- -+ 0.
<7+t
where the final inequality follows from (49) and (71). O

Corollary 3.12. Let v, T € lswap(a) withy >1e. 7. If T € qKT(7), S € gKT(7),
then wt(T) # wt(S).

Proof. Suppose not, and p = wt(T') = wt(S). Then the two parts of Lemma
3.6 give

Nt F St ST+ T+ flex (D)
for all b € [1,n]. This contradicts Proposition 3.11. O
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Conclusion of the proof of sufficiency: Define o/ € Comp,, by o = «a; + 1.
Since @ € KM,, then o/ € Wil. Observe, kKo = X1+ Xy - Ko. Therefore, kg,
is multiplicity-free if and only if k. is multiplicity-free. Now, ko is the sum
of ®g for B € Qlswap(a’) = Iswap(c’). Each of these D s’s are multiplicity-free
by Theorem 2.6. Their sum is multiplicity-free by Corollary 3.12. Hence k,, is
multiplicity-free. d
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