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1. Introduction

1.1. History and motivation

In his essay [19] on representation theory and invariant theory, R. Howe discusses the 

significance of multiplicity-free actions as an organizing principle for the subject. Clas-
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sical invariant theory focuses on actions of a reductive group G on symmetric algebras, 

which is to say, coordinate rings of vector spaces. Now one also considers G-actions on 

varieties X and their coordinate rings C[X]. Such an action is multiplicity-free if C[X]

decomposes, as a G-module, into irreducible G-modules each with multiplicity one. An 

important example is when X is the base affine space of a complex, semisimple algebraic 

group G [3]; in this case the coordinate ring is a multiplicity-free direct sum of the ir-

reducible representations of G. Lustzig’s theory of dual canonical bases [27] provides a 

basis for it. In the early 2000s, understanding this basis was a motivation for S. Fomin 

and A. Zelevinsky’s theory of Cluster algebras [13].

The notion of multiplicity-free actions is closely connected to that of spherical vari-

eties. Let G be a connected, complex, reductive algebraic group; we say that a variety 

X is a G-variety if X is equipped with an action of G that is a morphism of varieties. 

A spherical variety is a normal G-variety where a Borel subgroup of G has an open, 

and therefore dense, orbit. An normal, affine G-variety X is spherical if and only if 

C[X] decomposes into irreducible G-modules each with multiplicity one [34]. If X is 

instead a normal, projective G-variety then one can still recover one direction of this 

implication. That is, if the induced G-action on the homogeneous coordinate ring of X

is multiplicity-free, then X is G-spherical [17, Proposition 4.0.1].

Spherical varieties possess numerous nice properties. For instance, projective spherical 

varieties are Mori Dream Spaces. Moreover, Luna-Vust theory describes all the birational 

models of a spherical variety in terms of colored fans; these fans generalize the notion of 

fans used to classify toric varieties (which are themselves spherical varieties). N. Perrin’s 

excellent survey covers additional background on spherical varieties [30].

It is an open problem to classify all spherical actions on products of flag varieties. 

This is solved in the case of Levi subgroups; we point to the work of P. Littelmann 

[26], P. Magyar–J. Weyman–A. Zelevinsky [28,29], J. Stembridge [32,33], R. Avdeev–

A. Petukhov [1,2]. Connecting back to the representation-theoretic perspective of [19], 

in [32,33], J. Stembridge relates this classification problem to the multiplicity-freeness 

of restrictions of Weyl modules [14, Lecture 6]. Indeed, the homogeneous coordinate 

ring of a single flag variety is a multiplicity-free sum of spaces of global sections on the 

variety with respect to line bundles associated to each dominant integral weight. By the 

Borel-Weil-Bott theorem, these spaces are isomorphic to the irreducible representations 

of G. This is the central object of interest in Standard Monomial Theory [25] and is 

closely related to the coordinate ring of base affine space mentioned above. As remarked 

above a product of flag varieties is G-spherical if its homogeneous coordinate ring is 

multiplicity-free as an G-module.

This paper solves a related problem. We classify all Levi-spherical Schubert varieties 

in a single flag variety; that is, Schubert varieties that are spherical for the action of a 

Levi subgroup. Here, the relevant ring is the homogeneous coordinate ring of a Schubert 

variety and the attendant representation theory is that of Demazure modules [12], which 

are Borel subgroup representations. Critically for this paper, they are also Levi subgroup 

representations. Multiplicity-freeness in this setting refers to the decomposition of these 
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modules into irreducible Levi subgroup representations. This study was initiated in [18]

and the authors solved the problem for the GLn case in [15]. In [16] we conjectured 

an answer for all finite rank Lie types; this paper proves that conjecture. During the 

completion of this article, we learned that M. Can-P. Saha [10] independently proved the 

conjecture.

1.2. Background

Throughout, let G be a complex, connected, reductive algebraic group and let B ≤ G

be a choice of Borel subgroup along with a maximal torus T contained in B. The Weyl 

group is W := NG(T )/T , where NG(T ) is the normalizer of T in G. The orbits of the 

homogeneous space G/B under the action of B by left translations are the Schubert cells

X◦
w, w ∈ W . Their Zariski closures

Xw := X◦
w

are the Schubert varieties. It is relevant below that these varieties are normal [11,31].

A parabolic subgroup of G is a closed subgroup B ⊂ P � G such that G/P is a 

projective variety. Each such P admits a Levi decomposition

P = L � Ru(P )

where L is a reductive subgroup called a Levi subgroup of P and Ru(P ) is the unipotent 

radical. One parabolic subgroup is Pw := stabG(Xw). Any of the parabolic subgroups 

B ⊆ Q ⊆ Pw act on Xw.

Let LQ be a Levi subgroup of Q. A variety X is H-spherical for the action of a 

complex reductive algebraic group H if it is normal and contains an open, and therefore 

dense, orbit of a Borel subgroup of H. Our reference for spherical varieties is [30]; toric 

varieties are examples of spherical varieties.

Definition 1.1 ([18, Definition 1.8]). Let B ⊆ Q ⊆ Pw be a parabolic subgroup of G. 

Xw ⊆ G/B is LQ-spherical if has a dense, open orbit of a Borel subgroup of LQ under 

left-translations.

1.3. The main result

We give a root-system uniform combinatorial criterion to decide if Xw is LQ-spherical. 

Let Φ := Φ(g, T ) be the root system of weights for the adjoint action of T on the Lie 

algebra g of G. It has a decomposition Φ = Φ+ ∪ Φ− into positive and negative roots. 

Let ∆ ⊂ Φ+ be the base of simple roots. The parabolic subgroups Q = PI ⊃ B are in 

bijection with subsets I of ∆; let LI := LQ. The set of left descents of w is

DL(w) = {β ∈ ∆ : �(sβw) < �(w)},
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where �(w) = dim Xw is the Coxeter length of w. Under the bijection, Pw = PDL(w), and 

B ⊂ Q ⊆ Pw = PDL(w) satisfy Q = PI for some I ⊆ DL(w).

For I ⊂ ∆, a parabolic subgroup WI ⊆ W is the subgroup generated by SI := {sβ :

β ∈ I}. A standard Coxeter element c ∈ WI is any product of the elements of SI listed in 

some order. Let w0(I) be the longest element of WI . The following definition was given 

in type A in [15, Definition 1.1] and in general type in [16, Section 4]:

Definition 1.2. Let w ∈ W and I ⊆ DL(w) be fixed. Then w is I-spherical if w0(I)w is a 

standard Coxeter element for WJ where J ⊆ ∆.

We first note that if I ⊆ DL(w), then the left inversion set I(w), defined in Section 3, 

contains all the positive roots in the root subsystem generated by I, and thus w = w0(I)d

is a length-additive expression for some d ∈ W , by Proposition 3.1.3 in [4].

Theorem 1.3. Fix w ∈ W and I ⊆ DL(w). Xw is LI-spherical if and only if w is I-

spherical.

Theorem 1.3 resolves the main conjecture of the authors’ earlier work [16, Con-

jecture 4.1] and completes the main goal set forth in [18]. In [15], Theorem 1.3 was 

established in the case G = GLn using essentially algebraic combinatorial methods con-

cerning Demazure characters (or in their type A embodiment, the key polynomials). In 

contrast, the geometric arguments of this paper are quite different, significantly shorter, 

but require more background of the reader in algebraic groups. Theorem 1.3 is a gen-

eralization of work of P. Karuppuchamy [24] that characterizes Schubert varieties that 

are toric, which in our setup means spherical for the action of L∅ = T . Using work of 

R. S. Avdeev–A. V. Petukhov [1], Theorem 1.3 may also be seen as a generalization of 

some results of P. Magyar–J. Weyman–A. Zelevinsky [28] and J. Stembridge [32,33] on 

spherical actions on G/B; see [18, Theorem 2.4]. Previously, there was not even a finite 

algorithm to decide LI -sphericality of Xw in general.

1.4. Organization

Examples of the main result are given in Section 2. Sections 3 and 4 prove Theorem 1.3. 

Section 5 offers an application of our main result to the study of Demazure modules [12].

2. Examples of Theorem 1.3

We begin with a few examples illustrating Theorem 1.3.

Example 2.1 (E8 cf. [18, Example 1.3]). The E8 Dynkin diagram is 
1

2

3 4 5 6 7 8
. One 

associates the simple roots βi (1 ≤ i ≤ 8) with this labeling and writes si := sβi
. Suppose
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w = s2s3s4s2s3s4s5s4s2s3s1s4s5s6s7s6s8s7s6 ∈ W.

Then DL(w) = {β2, β3, β4, β5, β7, β8}. Let I = DL(w). Here

w0(I) = s3s2s4s3s2s4s5s4s3s2s4s5 · s7s8s7 and w0(I)w = s1s6s7s8.

Since w = w0(I)c where c = s1s6s7s8 is a standard Coxeter element, Theorem 1.3 asserts 

that Xw is LI -spherical in the complete flag variety for E8.

Example 2.2 (F4 cf. [18, Example 1.5]). The F4 diagram is 
1 2 3 4

. First suppose

w = s4s3s4s2s3s4s2s3s2s1s2s3s4 (I = DL(w) = {β2, β3, β4}).

Then w0(I) = s2s3s2s3s4s3s2s3s4 and w0(I)w = s1s2s3s4 is standard Coxeter. Hence 

Xw is LI -spherical. On the other hand if

w′ = s2s1s4s3s2s1s3s2s4s3s2s1 (I = DL(w′) = {β2, β4}),

then w0(I) = s2s4 and w0(I)w = s1s3s2s1s3s2s4s3s2s1 is not standard Coxeter and Xw

is not LI -spherical.

Example 2.3 (D4). The D4 diagram is 
1 2

3

4

. Let

w = s3s2s3s4s2s1s2 (I = DL(w) = {β2, β3}).

Thus w0(I) = s2s3s2 and w0(I)w = s4s2s1s2 is not standard Coxeter. Hence Xw is not 

LI -spherical. The interested reader can check w is I-spherical in the (different) sense of 

[18, Definition 1.2]. Therefore, this w provides a counterexample to [18, Conjecture 1.9]

in type D4. This counterexample was also (implicitly) verified in [16] using a different 

method, namely Demazure character computations, the topic of Section 5.

3. An equivariant isomorphism

The primary goal of this section is to construct a torus equivariant isomorphism from 

a specified affine subspace of the open cell of a Schubert variety to the open cell of a 

distinguished Schubert subvariety. In what follows, we assume standard facts from the 

theory of algebraic groups. References we draw upon are [20,6,25].

Let w ∈ W . Let nw be a coset representative of w in NG(T ). By definition of NG(T )

being the normalizer of T in G, t �→ nwtn−1
w defines an automorphism γw : T → T .

Lemma 3.1. The automorphism γw does not depend on our choice of coset representative 

nw.
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Proof. Suppose that mw is another coset representative of w. Then mw = nws for some 

s ∈ T . Hence mwtm−1
w = nwsts−1n−1

w = nwtss−1n−1
w = nwtn−1

w . �

In light of Lemma 3.1, henceforth for w ∈ W we will also let w denote a coset 

representative of w in NG(T ). Let X be a T -variety with action denoted by ·. For each 

w ∈ W we define an action ·w on X by t ·w x = γw(t) · x for all x ∈ X and t ∈ T .

Lemma 3.2. For all w ∈ W , the T -variety X has an open, dense T -orbit for the action ·

if and only if it has an open, dense T -orbit for the action ·w. Indeed, the set of T -orbits 

in X for these two actions is identical.

Proof. Let O be a T -orbit in X for the · action. Let x, y ∈ O and t ∈ T be such that 

t · x = y. As γw is an automorphism, there exists a t′ ∈ T such that γw(t′) = t. Then

t′
·w x = γw(t′) · x = t · x = y.

Thus O is contained in the T -orbit O′ of x for the action ·w. The reverse containment is 

true by definition of ·w. The lemma follows. �

For the remainder, we fix · to be the restriction to T of the action of G on G/B by 

left multiplication. The left inversion set of w ∈ W is

I(w) := Φ+ ∩ w(Φ−) = {α ∈ Φ+|w−1(α) ∈ Φ−}.

Recall two standard facts regarding left inversion sets [21, Chapter 1]. For w ∈ W ,

|I(w)| = �(w) = dimC Xw, (1)

and

I(w0(I)) = Φ+(I), (2)

where Φ(I) = Φ(lI , T ) is the root system for the adjoint action of T on lI = Lie(LI).

We say that an algebraic group H is directly spanned by its closed subgroups 

H1, . . . , Hn, in the given order, if the product morphism

H1 × · · · × Hn → H

is bijective. For w ∈ W , define Uw := U ∩ wU−w−1, where U consists of the unipotent 

elements of B and similarly, U− is the unipotent part of B− := w0Bw0. This is a 

subgroup of U that is closed and normalized by T . Hence, by [6, §14.4], Uw is directly 

spanned, in any order, by the root subgroups Uα, α ∈ Φ+, contained in Uw. Since by [22, 

Part II, 1.4(5)],
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wUαw−1 = Uw(α), (3)

these are the Uα such that α ∈ Φ+ ∩ w(Φ−) = I(w). Thus

Uw =
∏

α∈I(w)

Uα, (4)

where the products Uα may be taken in any order.

Lemma 3.3. For a coset wB ∈ G/B, we have

X◦
w := BwB = UwwB =

∏

α∈I(w)

Uα wB. (5)

Moreover, X◦
w is isomorphic to the affine space A�(w) (as varieties).

Proof. It is a well-known fact that Uw is isomorphic to X◦
w (as varieties) under the map 

u �→ uwB, u ∈ Uw [6, §14.12]. The final equality in (5) is (4). By [6, Remark in §14.4], 

Uw is isomorphic, as a variety, to A�(w). �

We say that w = uv ∈ W is length additive if �(uv) = �(u) + �(v). Under this 

hypothesis, by [5, Ch. VI, §1, Cor. 2 of Prop. 17] one has

I(uv) = I(u) � u(I(v)).

Therefore, in particular, if we assume w0(I)d ∈ W is length additive, then

I(w0(I)d) = I(w0(I)) � w0(I)(I(d)). (6)

Define

Vd := w0(I)Udw0(I)−1 = w0(I)Udw0(I).

Lemma 3.4. Vd is a closed subgroup of Uw0(I)d that is normalized by T .

Proof. Since Ud is a closed subgroup normalized by T , so is Vd. Indeed, Vd is a subgroup 

of Uw0(I)d since

Vd = w0(I)
∏

α∈I(d)

Uαw0(I) =
∏

α∈w0(I)(I(d))

Uα ≤ Uw0(I)d, (7)

where the first equality is (4), the second is (3), and the subgroup claim is (4) and (6). �

Lemma 3.5. Uw0(I)d is directly spanned by Uw0(I) and Vd:

Uw0(I)d = Uw0(I)Vd = VdUw0(I). (8)
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Proof. This follows from (4), (6), and (7) combined. �

Define

Õ := Vdw0(I)dB ⊆ G/B.

Lemma 3.6. Õ is T -stable for the action ·.

Proof. The claim follows since

Vdw0(I)dB = (tVdt−1)tw0(I)dB ⊆ Vdw0(I)dB,

where the final step follows from the fact that Vd is normalized by T and that w0(I)dB

is a T -fixed point in G/B. �

The following is the main point of this section:

Proposition 3.7. If w0(I)d ∈ W is length additive then

X◦
w0(I)d = Uw0(I)d w0(I)dB.

Hence Õ ⊂ X◦
w0(I)d

. Moreover, Õ with the T -action · is T -equivariantly isomorphic to 

X◦
d with the T -action ·w0(I).

Proof. By (5), X◦
w0(I)d

= Uw0(I)d w0(I)dB. Combining this with Lemma 3.4, one con-

cludes that Õ ⊆ X◦
w0(I)d

. Define a map

φ : Õ −→ X◦
d

aB �−→ w0(I)aB.

Now,

φ(Õ) = w0(I)Vd w0(I)dB = Ud dB = X◦
d ,

where the second equality is by the definition of Vd, and the final equality is Lemma 3.3. 

Thus φ is well-defined and surjective.

As φ is simply left multiplication by w0(I) it is injective. Further, by Lemma 3.3 X◦
d

is isomorphic as a variety to A�(d), and thus is smooth, and in particular normal. Hence, 

by Zariski’s main lemma, φ is an isomorphism of varieties.

To see that φ is T -equivariant for the specified actions, let t ∈ T and aB ∈ Õ. Then

φ(t · aB) = w0(I)taB = w0(I)tw0(I)w0(I)aB = γw0(I)(t) · φ(aB) = t ·w0(I) φ(aB). �
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4. Proof of the main result

We need a lemma examining the LI-action on Õ. This lemma is then used in con-

junction with Proposition 3.7 to prove our main result.

Let BLI
= LI ∩ B and let ULI

be the unipotent radical of BLI
. Then BLI

is a Borel 

subgroup in LI [6, §14.17] with ULI
= BLI

∩ U and BLI
= T � ULI

. Since LI is the 

subgroup of G generated by T and {Uα | α ∈ Φ(I)} [25, §3.2.2], it is straightforward to 

show that

ULI
=

∏

α∈Φ+(I)

Uα,

where the product is taken in any order [6, §14.4].

Lemma 4.1. Let w = w0(I)d ∈ W be length additive. Let x ∈ X◦
w0(I)d

\ Õ and y, z ∈ Õ.

(i) uy /∈ Õ for all u ∈ ULI
with u �= e.

(ii) tx /∈ Õ for all t ∈ T .

(iii) There exists b ∈ BLI
such that by = z if and only if there exists t ∈ T such that 

ty = z.

Proof. (i) We have

ULI
=

∏

α∈Φ+(I)

Uα = Uw0(I),

where the final equality is (4). Thus u ∈ Uw0(I).

Since y ∈ Õ, we have that y = vw0(I)dB for some v ∈ Vd. By Lemma 3.5, uv ∈

Uw0(I)d \ Vd for u �= e. Thus uvw0(I)dB ∈ X◦
w0(I)d

\ Õ by Lemma 3.3.

(ii) This follows immediately from the fact that Õ is T -stable.

(iii) The Borel BLI
= T �ULI

, and thus for all b ∈ BLI
we may express b = tu for unique 

t ∈ T, u ∈ ULI
. If u �= e, then uy /∈ Õ by (i) and so by = tuy /∈ Õ by (ii). Hence, if by = z, 

then u = e and b = t ∈ T . The converse direction is immediate since T ⊆ BLI
. �

We now have the necessary ingredients to complete the proof of our main result.

Proof of Theorem 1.3: (⇐) Let w be I-spherical. Then w = w0(I)c is length additive and 

c is a standard Coxeter element. Our goal is to exhibit a x ∈ Õ such that dim(BLI
·x) =

dim X◦
w0(I)c

.

The Schubert variety Xc is a toric variety [24]; it contains an open, dense T -orbit O

for the T -action ·. Since X◦
c is an open, dense subset of Xc, O ∩ X◦

c is open and dense 

in X◦
c ; since X◦

c is T -stable we have that O ∩ X◦
c is a T -orbit in X◦

c for the T -action ·. 

Lemma 3.2 implies that O ∩ X◦
c is an open, dense T -orbit for the T -action ·w0(I).
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By Proposition 3.7, there is a T -equivariant isomorphism φ : Õ → X◦
c . Let

Θ = φ−1(O ∩ X◦
c );

this is an open, dense T -orbit in Õ for the T -action ·. Let x ∈ Θ. By Lemma 4.1(iii), the 

isotropy subgroup (BLI
)x is equal to the isotropy subgroup Tx. By [8, Proposition 1.11], 

for any variety X equipped with the action of an algebraic group H, the orbit H · x, 

x ∈ X, is a subvariety of X of dimension dim H − dim Hx,

dim(H · x) = dim H − dim Hx. (9)

The above combine to imply that

dim(BLI
)x = dim Tx = dim T − dim(T · x) = dim T − dim Θ = dim T − �(c). (10)

We conclude, applying (9) and (10), that

dim(BLI
· x) = dim BLI

− dim(BLI
)x

= �(w0(I)) + dim T − (dim T − �(c))

= �(w0(I)) + �(c)

= �(w0(I)c),

and thus there exists an dense BLI
-orbit in Xw0(I)c. Indeed, this dense orbit must also 

be open in its closure by [6, Proposition 1.8]. Hence, Xw0(I)c is LI -spherical.

(⇒) Suppose w is not I-spherical. Then w = w0(I)d where d is not a standard Cox-

eter element. Moreover, by the hypothesis that I ⊆ DL(w), this factorization is length 

additive.

The Schubert variety Xd is not a toric variety for the · action of T [24]. If X◦
d contained 

an open, dense T -orbit, then Xd would be a toric variety for ·. Thus X◦
d is not a toric 

variety for ·. In general, a normal G-variety is spherical if and only if it has finitely many 

B-orbits (see [30, Theorem 2.1.2]). If G = T then B = T and hence there are infinitely 

many T -orbits in X◦
d for T -action ·; and for the T -action ·w0(I) by Lemma 3.2.

By Proposition 3.7, Õ is T -equivariantly isomorphic as an affine variety to X◦
d . Thus, 

there are infinitely many T -orbits in Õ for T -action ·. Let O1 and O2 be two such 

orbits, and x1 ∈ O1, x2 ∈ O2. The fact that x1 and x2 reside in different orbits implies 

that there does not exist a t ∈ T such that tx1 = x2. Thus Lemma 4.1(iii) implies 

BLI
·x1 ∩BLI

·x2 = ∅. As these were an arbitrary pair among the infinite T -orbits, there 

must be infinitely many BLI
orbits in X◦

w0(I)d
and hence in Xw0(I)d. We conclude that 

Xw0(I)d is not LI -spherical by the same result [30, Theorem 2.1.2] mentioned above. �
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5. Application to Demazure modules

As an application of these results we give a sufficient condition for a Demazure module 

to be a multiplicity-free LI -module; equivalently, a sufficient condition for a Demazure 

character to be multiplicity-free with respect to the basis of irreducible LI-characters.

Let X(T ) denote the lattice of weights of T ; our fixed Borel subgroup B determines 

a subset of dominant integral weights X(T )+ ⊂ X(T ). The finite-dimensional irreducible 

G-representations are indexed by λ ∈ X(T )+. Denoting the associated representation by 

Vλ, there is a class of B-submodules of Vλ, first introduced by Demazure [12], that are 

indexed by w ∈ W . If vλ is a nonzero highest weight vector, then the Demazure module

V w
λ is the minimal B-submodule of Vλ containing wvλ.

There is a geometric construction of these Demazure modules. For λ ∈ X(T )+, let Lλ

be the associated line bundle on G/B. For w ∈ W , we write Lλ|Xw
for the restriction of 

Lλ to the Schubert subvariety Xw ⊆ G/B. Then the Demazure module V w
λ is isomorphic 

to the dual of the space of global sections of Lλ|Xw
, that is

V w
λ

∼= H0(Xw,Lλ|Xw
)∗.

This geometric perspective highlights the fact that V w
λ is not just a B-module, but is in 

fact also a LI -module via the action induced on H0(Xw, Lλ|Xw
) by the left multiplication 

action of LI on Xw.

As LI is a reductive group over characteristic zero, any LI-module decomposes into 

a direct sum of irreducible LI-modules. Let XLI
(T )+ be the set of dominant integral 

weights with respect to the choice of maximal torus and Borel subgroup T ⊆ BI ⊆ LI . 

For μ ∈ XLI
(T )+, let VLI ,μ be the associated irreducible LI -module. If M is a LI -module 

and

M =
⊕

μ∈XLI
(T )+

V
⊕mLI ,µ

LI ,μ

is the decomposition into irreducible LI-modules, then we say that M is a multiplicity-

free LI-module if mLI ,μ ∈ {0, 1}. Similarly, if char(M) is the formal T -character of M

and

char(M) =
∑

μ∈XLI
(T )+

mLI ,μchar(VLI ,μ),

then we say that char(M) is I-multiplicity-free if mLI ,μ ∈ {0, 1}.

The following argument was given for type A in [18, Theorem 4.13(II)]. We include 

the general type argument (which is essentially the same) for sake of completeness:

Theorem 5.1. Let w ∈ W with I ⊆ DL(w). Then Xw is LI-spherical if and only if for 

all λ ∈ X(T )+, the Demazure module V w
λ is multiplicity-free LI-module.
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Proof. Let X be a quasi-projective, normal variety with the action of a complex, con-

nected, reductive algebraic group G. Then X is G-spherical if and only if the G-module 

H0(X, L) is a multiplicity free G-module for all G-linearized line bundles L [30, Theorem 

2.1.2].

All Schubert varieties Xw ⊆ G/B are normal, quasi-projective varieties [23]. Further, 

as LI is reductive and we are in characteristic zero, V w
λ is a multiplicity-free LI -module if 

and only if its dual space (V w
λ )∗ = H0(Xw, Lλ|Xw

) is a multiplicity-free LI -module [20, 

§31.6]. The above combines to imply our desired result once we show that the LI -

linearized line bundles on Xw are precisely of the form Lλ|Xw
for λ ∈ X(T )+.

The line bundles, with non-trivial spaces of global sections, on G/B are precisely Lλ, 

for λ ∈ X(T )+; these line bundles are all G-linearized [7, §1.4]. Every line bundle on Xw

is the restriction of a line bundle on G/B [7, Proposition 2.2.8]. We are done since the 

restriction Lλ|Xw
of the G-linearized line bundle Lλ, for λ ∈ X(T )+, is LI -linearized. �

Corollary 5.2. Let w ∈ W be I-spherical for I ⊆ DL(w). For all λ ∈ X(T )+, the De-

mazure module V w
λ is a multiplicity-free LI-module.

Proof. By Theorem 1.3, if w is I-spherical then Xw is LI -spherical. Therefore, by The-

orem 5.1, V w
λ is a multiplicity-free LI -module for λ ∈ X(T )+. �

Corollary 5.3. Let w ∈ W be I-spherical for I ⊆ DL(w). For all λ ∈ X(T )+, the De-

mazure character char(V w
λ ) is I-multiplicity-free.

These two corollaries appear non-trivial from a combinatorial perspective, even for a 

specific choice of dominant weight λ with fixed w ∈ W . The Demazure character can 

be recursively computed using Demazure operators. There is also a combinatorial rule 

for the character in terms of crystal bases (in instantiations such as the Littelmann path 

model or the alcove walk model); see, e.g., the textbook [9]. However, an argument based 

on these methods eludes in general type, although we have an argument in type A [15].
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