

Levi-spherical Schubert varieties

Yibo Gao^a, Reuven Hodges^{b,*}, Alexander Yong^c^a Beijing International Center for Mathematical Research, Peking University, Beijing, China^b Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA^c Department of Mathematics, U. Illinois at Urbana-Champaign, Urbana, IL 61801, USA

ARTICLE INFO

Article history:

Received 30 April 2023

Received in revised form 6 December 2023

Accepted 24 December 2023

Available online 18 January 2024

Communicated by Ezra Miller

ABSTRACT

We prove a short, root-system uniform, combinatorial classification of Levi-spherical Schubert varieties for any generalized flag variety G/B of finite Lie type. We apply this to the study of multiplicity-free decompositions of a Demazure module into irreducible representations of a Levi subgroup.

© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC license (<http://creativecommons.org/licenses/by-nc/4.0/>).

Keywords:

Schubert varieties

Spherical varieties

Levi subgroups

Toric varieties

Demazure modules

1. Introduction

1.1. History and motivation

In his essay [19] on representation theory and invariant theory, R. Howe discusses the significance of multiplicity-free actions as an organizing principle for the subject. Clas-

* Corresponding author.

E-mail addresses: gaoyibo@bicmr.pku.edu.cn (Y. Gao), rmhodges@ku.edu (R. Hodges), ayong@illinois.edu (A. Yong).

sical invariant theory focuses on actions of a reductive group G on symmetric algebras, which is to say, coordinate rings of vector spaces. Now one also considers G -actions on varieties X and their coordinate rings $\mathbb{C}[X]$. Such an action is multiplicity-free if $\mathbb{C}[X]$ decomposes, as a G -module, into irreducible G -modules each with multiplicity one. An important example is when X is the *base affine space* of a complex, semisimple algebraic group G [3]; in this case the coordinate ring is a multiplicity-free direct sum of the irreducible representations of G . Lustzig's theory of dual canonical bases [27] provides a basis for it. In the early 2000s, understanding this basis was a motivation for S. Fomin and A. Zelevinsky's theory of Cluster algebras [13].

The notion of multiplicity-free actions is closely connected to that of *spherical varieties*. Let G be a connected, complex, reductive algebraic group; we say that a variety X is a G -variety if X is equipped with an action of G that is a morphism of varieties. A spherical variety is a normal G -variety where a Borel subgroup of G has an open, and therefore dense, orbit. A normal, affine G -variety X is spherical if and only if $\mathbb{C}[X]$ decomposes into irreducible G -modules each with multiplicity one [34]. If X is instead a normal, projective G -variety then one can still recover one direction of this implication. That is, if the induced G -action on the homogeneous coordinate ring of X is multiplicity-free, then X is G -spherical [17, Proposition 4.0.1].

Spherical varieties possess numerous nice properties. For instance, projective spherical varieties are Mori Dream Spaces. Moreover, Luna-Vust theory describes all the birational models of a spherical variety in terms of colored fans; these fans generalize the notion of fans used to classify toric varieties (which are themselves spherical varieties). N. Perrin's excellent survey covers additional background on spherical varieties [30].

It is an open problem to classify all spherical actions on products of flag varieties. This is solved in the case of Levi subgroups; we point to the work of P. Littelmann [26], P. Magyar–J. Weyman–A. Zelevinsky [28,29], J. Stembridge [32,33], R. Aydeev–A. Petukhov [1,2]. Connecting back to the representation-theoretic perspective of [19], in [32,33], J. Stembridge relates this classification problem to the multiplicity-freeness of restrictions of *Weyl modules* [14, Lecture 6]. Indeed, the homogeneous coordinate ring of a single flag variety is a multiplicity-free sum of spaces of global sections on the variety with respect to line bundles associated to each dominant integral weight. By the Borel-Weil-Bott theorem, these spaces are isomorphic to the irreducible representations of G . This is the central object of interest in *Standard Monomial Theory* [25] and is closely related to the coordinate ring of base affine space mentioned above. As remarked above a product of flag varieties is G -spherical if its homogeneous coordinate ring is multiplicity-free as an G -module.

This paper solves a related problem. We classify all *Levi-spherical* Schubert varieties in a single flag variety; that is, Schubert varieties that are spherical for the action of a Levi subgroup. Here, the relevant ring is the homogeneous coordinate ring of a Schubert variety and the attendant representation theory is that of *Demazure modules* [12], which are Borel subgroup representations. Critically for this paper, they are also Levi subgroup representations. Multiplicity-freeness in this setting refers to the decomposition of these

modules into irreducible Levi subgroup representations. This study was initiated in [18] and the authors solved the problem for the GL_n case in [15]. In [16] we conjectured an answer for all finite rank Lie types; this paper proves that conjecture. During the completion of this article, we learned that M. Can-P. Saha [10] independently proved the conjecture.

1.2. Background

Throughout, let G be a complex, connected, reductive algebraic group and let $B \leq G$ be a choice of Borel subgroup along with a maximal torus T contained in B . The *Weyl group* is $W := N_G(T)/T$, where $N_G(T)$ is the normalizer of T in G . The orbits of the homogeneous space G/B under the action of B by left translations are the *Schubert cells* $X_w^\circ, w \in W$. Their Zariski closures

$$X_w := \overline{X_w^\circ}$$

are the *Schubert varieties*. It is relevant below that these varieties are normal [11,31].

A *parabolic subgroup* of G is a closed subgroup $B \subset P \subsetneq G$ such that G/P is a projective variety. Each such P admits a *Levi decomposition*

$$P = L \ltimes R_u(P)$$

where L is a reductive subgroup called a *Levi subgroup* of P and $R_u(P)$ is the unipotent radical. One parabolic subgroup is $P_w := \text{stab}_G(X_w)$. Any of the parabolic subgroups $B \subseteq Q \subseteq P_w$ act on X_w .

Let L_Q be a Levi subgroup of Q . A variety X is *H -spherical* for the action of a complex reductive algebraic group H if it is normal and contains an open, and therefore dense, orbit of a Borel subgroup of H . Our reference for spherical varieties is [30]; toric varieties are examples of spherical varieties.

Definition 1.1 ([18, Definition 1.8]). Let $B \subseteq Q \subseteq P_w$ be a parabolic subgroup of G . $X_w \subseteq G/B$ is *L_Q -spherical* if has a dense, open orbit of a Borel subgroup of L_Q under left-translations.

1.3. The main result

We give a root-system uniform combinatorial criterion to decide if X_w is L_Q -spherical. Let $\Phi := \Phi(\mathfrak{g}, T)$ be the root system of weights for the adjoint action of T on the Lie algebra \mathfrak{g} of G . It has a decomposition $\Phi = \Phi^+ \cup \Phi^-$ into positive and negative roots. Let $\Delta \subset \Phi^+$ be the base of simple roots. The parabolic subgroups $Q = P_I \supset B$ are in bijection with subsets I of Δ ; let $L_I := L_Q$. The set of *left descents* of w is

$$\mathcal{D}_L(w) = \{\beta \in \Delta : \ell(s_\beta w) < \ell(w)\},$$

where $\ell(w) = \dim X_w$ is the *Coxeter length* of w . Under the bijection, $P_w = P_{\mathcal{D}_L(w)}$, and $B \subset Q \subseteq P_w = P_{\mathcal{D}_L(w)}$ satisfy $Q = P_I$ for some $I \subseteq \mathcal{D}_L(w)$.

For $I \subset \Delta$, a *parabolic subgroup* $W_I \subseteq W$ is the subgroup generated by $S_I := \{s_\beta : \beta \in I\}$. A *standard Coxeter element* $c \in W_I$ is any product of the elements of S_I listed in some order. Let $w_0(I)$ be the longest element of W_I . The following definition was given in type A in [15, Definition 1.1] and in general type in [16, Section 4]:

Definition 1.2. Let $w \in W$ and $I \subseteq \mathcal{D}_L(w)$ be fixed. Then w is I -spherical if $w_0(I)w$ is a standard Coxeter element for W_J where $J \subseteq \Delta$.

We first note that if $I \subseteq \mathcal{D}_L(w)$, then the left inversion set $\mathcal{I}(w)$, defined in Section 3, contains all the positive roots in the root subsystem generated by I , and thus $w = w_0(I)d$ is a length-additive expression for some $d \in W$, by Proposition 3.1.3 in [4].

Theorem 1.3. Fix $w \in W$ and $I \subseteq \mathcal{D}_L(w)$. X_w is L_I -spherical if and only if w is I -spherical.

Theorem 1.3 resolves the main conjecture of the authors' earlier work [16, Conjecture 4.1] and completes the main goal set forth in [18]. In [15], Theorem 1.3 was established in the case $G = GL_n$ using essentially algebraic combinatorial methods concerning *Demazure characters* (or in their type A embodiment, the *key polynomials*). In contrast, the geometric arguments of this paper are quite different, significantly shorter, but require more background of the reader in algebraic groups. Theorem 1.3 is a generalization of work of P. Karuppuchamy [24] that characterizes Schubert varieties that are toric, which in our setup means spherical for the action of $L_\emptyset = T$. Using work of R. S. Avdeev–A. V. Petukhov [1], Theorem 1.3 may also be seen as a generalization of some results of P. Magyar–J. Weyman–A. Zelevinsky [28] and J. Stembridge [32,33] on spherical actions on G/B ; see [18, Theorem 2.4]. Previously, there was not even a finite algorithm to decide L_I -sphericality of X_w in general.

1.4. Organization

Examples of the main result are given in Section 2. Sections 3 and 4 prove Theorem 1.3. Section 5 offers an application of our main result to the study of Demazure modules [12].

2. Examples of Theorem 1.3

We begin with a few examples illustrating Theorem 1.3.

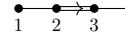
Example 2.1 (E_8 cf. [18, Example 1.3]). The E_8 Dynkin diagram is <img alt="Dynkin diagram of type E8. It consists of a horizontal chain of 8 nodes labeled 1, 3, 4, 5, 6, 7, 8. Node 4 is a double node, indicated by a dot with a superscript 2. The nodes are connected by straight lines." data-bbox="720 879 850 935]). One associates the simple roots <math>\beta_i ($1 \leq i \leq 8$) with this labeling and writes $s_i := s_{\beta_i}$. Suppose

$$w = s_2 s_3 s_4 s_2 s_3 s_4 s_5 s_4 s_2 s_3 s_1 s_4 s_5 s_6 s_7 s_6 s_8 s_7 s_6 \in W.$$

Then $\mathcal{D}_L(w) = \{\beta_2, \beta_3, \beta_4, \beta_5, \beta_7, \beta_8\}$. Let $I = \mathcal{D}_L(w)$. Here

$$w_0(I) = s_3 s_2 s_4 s_3 s_2 s_4 s_5 s_4 s_3 s_2 s_4 s_5 \cdot s_7 s_8 s_7 \text{ and } w_0(I)w = s_1 s_6 s_7 s_8.$$

Since $w = w_0(I)c$ where $c = s_1 s_6 s_7 s_8$ is a standard Coxeter element, Theorem 1.3 asserts that X_w is L_I -spherical in the complete flag variety for E_8 .

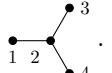
Example 2.2 (F_4 cf. [18, Example 1.5]). The F_4 diagram is . First suppose

$$w = s_4 s_3 s_4 s_2 s_3 s_4 s_2 s_3 s_2 s_1 s_2 s_3 s_4 \quad (I = \mathcal{D}_L(w) = \{\beta_2, \beta_3, \beta_4\}).$$

Then $w_0(I) = s_2 s_3 s_2 s_3 s_4 s_3 s_2 s_3 s_4$ and $w_0(I)w = s_1 s_2 s_3 s_4$ is standard Coxeter. Hence X_w is L_I -spherical. On the other hand if

$$w' = s_2 s_1 s_4 s_3 s_2 s_1 s_3 s_2 s_4 s_3 s_2 s_1 \quad (I = \mathcal{D}_L(w') = \{\beta_2, \beta_4\}),$$

then $w_0(I) = s_2 s_4$ and $w_0(I)w = s_1 s_3 s_2 s_1 s_3 s_2 s_4 s_3 s_2 s_1$ is not standard Coxeter and X_w is not L_I -spherical.

Example 2.3 (D_4). The D_4 diagram is . Let

$$w = s_3 s_2 s_3 s_4 s_2 s_1 s_2 \quad (I = \mathcal{D}_L(w) = \{\beta_2, \beta_3\}).$$

Thus $w_0(I) = s_2 s_3 s_2$ and $w_0(I)w = s_4 s_2 s_1 s_2$ is not standard Coxeter. Hence X_w is not L_I -spherical. The interested reader can check w is I -spherical in the (different) sense of [18, Definition 1.2]. Therefore, this w provides a counterexample to [18, Conjecture 1.9] in type D_4 . This counterexample was also (implicitly) verified in [16] using a different method, namely Demazure character computations, the topic of Section 5.

3. An equivariant isomorphism

The primary goal of this section is to construct a torus equivariant isomorphism from a specified affine subspace of the open cell of a Schubert variety to the open cell of a distinguished Schubert subvariety. In what follows, we assume standard facts from the theory of algebraic groups. References we draw upon are [20, 6, 25].

Let $w \in W$. Let n_w be a coset representative of w in $N_G(T)$. By definition of $N_G(T)$ being the normalizer of T in G , $t \mapsto n_w t n_w^{-1}$ defines an automorphism $\gamma_w : T \rightarrow T$.

Lemma 3.1. *The automorphism γ_w does not depend on our choice of coset representative n_w .*

Proof. Suppose that m_w is another coset representative of w . Then $m_w = n_w s$ for some $s \in T$. Hence $m_w t m_w^{-1} = n_w s t s^{-1} n_w^{-1} = n_w t s s^{-1} n_w^{-1} = n_w t n_w^{-1}$. \square

In light of Lemma 3.1, henceforth for $w \in W$ we will also let w denote a coset representative of w in $N_G(T)$. Let X be a T -variety with action denoted by \cdot . For each $w \in W$ we define an action \cdot_w on X by $t \cdot_w x = \gamma_w(t) \cdot x$ for all $x \in X$ and $t \in T$.

Lemma 3.2. *For all $w \in W$, the T -variety X has an open, dense T -orbit for the action \cdot if and only if it has an open, dense T -orbit for the action \cdot_w . Indeed, the set of T -orbits in X for these two actions is identical.*

Proof. Let \mathcal{O} be a T -orbit in X for the \cdot action. Let $x, y \in \mathcal{O}$ and $t \in T$ be such that $t \cdot x = y$. As γ_w is an automorphism, there exists a $t' \in T$ such that $\gamma_w(t') = t$. Then

$$t' \cdot_w x = \gamma_w(t') \cdot x = t \cdot x = y.$$

Thus \mathcal{O} is contained in the T -orbit \mathcal{O}' of x for the action \cdot_w . The reverse containment is true by definition of \cdot_w . The lemma follows. \square

For the remainder, we fix \cdot to be the restriction to T of the action of G on G/B by left multiplication. The *left inversion set* of $w \in W$ is

$$\mathcal{I}(w) := \Phi^+ \cap w(\Phi^-) = \{\alpha \in \Phi^+ \mid w^{-1}(\alpha) \in \Phi^-\}.$$

Recall two standard facts regarding left inversion sets [21, Chapter 1]. For $w \in W$,

$$|\mathcal{I}(w)| = \ell(w) = \dim_{\mathbb{C}} X_w, \tag{1}$$

and

$$\mathcal{I}(w_0(I)) = \Phi^+(I), \tag{2}$$

where $\Phi(I) = \Phi(\mathfrak{l}_I, T)$ is the root system for the adjoint action of T on $\mathfrak{l}_I = \text{Lie}(L_I)$.

We say that an algebraic group H is *directly spanned* by its closed subgroups H_1, \dots, H_n , in the given order, if the product morphism

$$H_1 \times \dots \times H_n \rightarrow H$$

is bijective. For $w \in W$, define $U_w := U \cap wU^-w^{-1}$, where U consists of the unipotent elements of B and similarly, U^- is the unipotent part of $B^- := w_0 B w_0$. This is a subgroup of U that is closed and normalized by T . Hence, by [6, §14.4], U_w is directly spanned, in any order, by the *root subgroups* U_α , $\alpha \in \Phi^+$, contained in U_w . Since by [22, Part II, 1.4(5)],

$$wU_\alpha w^{-1} = U_{w(\alpha)}, \quad (3)$$

these are the U_α such that $\alpha \in \Phi^+ \cap w(\Phi^-) = \mathcal{I}(w)$. Thus

$$U_w = \prod_{\alpha \in \mathcal{I}(w)} U_\alpha, \quad (4)$$

where the products U_α may be taken in any order.

Lemma 3.3. *For a coset $wB \in G/B$, we have*

$$X_w^\circ := BwB = U_w wB = \prod_{\alpha \in \mathcal{I}(w)} U_\alpha wB. \quad (5)$$

Moreover, X_w° is isomorphic to the affine space $\mathbb{A}^{\ell(w)}$ (as varieties).

Proof. It is a well-known fact that U_w is isomorphic to X_w° (as varieties) under the map $u \mapsto uwB$, $u \in U_w$ [6, §14.12]. The final equality in (5) is (4). By [6, Remark in §14.4], U_w is isomorphic, as a variety, to $\mathbb{A}^{\ell(w)}$. \square

We say that $w = uv \in W$ is *length additive* if $\ell(uv) = \ell(u) + \ell(v)$. Under this hypothesis, by [5, Ch. VI, §1, Cor. 2 of Prop. 17] one has

$$\mathcal{I}(uv) = \mathcal{I}(u) \sqcup u(\mathcal{I}(v)).$$

Therefore, in particular, if we assume $w_0(I)d \in W$ is *length additive*, then

$$\mathcal{I}(w_0(I)d) = \mathcal{I}(w_0(I)) \sqcup w_0(I)(\mathcal{I}(d)). \quad (6)$$

Define

$$V_d := w_0(I)U_d w_0(I)^{-1} = w_0(I)U_d w_0(I).$$

Lemma 3.4. *V_d is a closed subgroup of $U_{w_0(I)d}$ that is normalized by T .*

Proof. Since U_d is a closed subgroup normalized by T , so is V_d . Indeed, V_d is a subgroup of $U_{w_0(I)d}$ since

$$V_d = w_0(I) \prod_{\alpha \in \mathcal{I}(d)} U_\alpha w_0(I) = \prod_{\alpha \in w_0(I)(\mathcal{I}(d))} U_\alpha \leq U_{w_0(I)d}, \quad (7)$$

where the first equality is (4), the second is (3), and the subgroup claim is (4) and (6). \square

Lemma 3.5. *$U_{w_0(I)d}$ is directly spanned by $U_{w_0(I)}$ and V_d :*

$$U_{w_0(I)d} = U_{w_0(I)}V_d = V_d U_{w_0(I)}. \quad (8)$$

Proof. This follows from (4), (6), and (7) combined. \square

Define

$$\tilde{O} := V_d w_0(I) dB \subseteq G/B.$$

Lemma 3.6. \tilde{O} is T -stable for the action \cdot .

Proof. The claim follows since

$$V_d w_0(I) dB = (t V_d t^{-1}) t w_0(I) dB \subseteq V_d w_0(I) dB,$$

where the final step follows from the fact that V_d is normalized by T and that $w_0(I) dB$ is a T -fixed point in G/B . \square

The following is the main point of this section:

Proposition 3.7. *If $w_0(I)d \in W$ is length additive then*

$$X_{w_0(I)d}^\circ = U_{w_0(I)d} w_0(I) dB.$$

Hence $\tilde{O} \subset X_{w_0(I)d}^\circ$. Moreover, \tilde{O} with the T -action \cdot is T -equivariantly isomorphic to X_d° with the T -action $\cdot_{w_0(I)}$.

Proof. By (5), $X_{w_0(I)d}^\circ = U_{w_0(I)d} w_0(I) dB$. Combining this with Lemma 3.4, one concludes that $\tilde{O} \subseteq X_{w_0(I)d}^\circ$. Define a map

$$\begin{aligned} \phi : \tilde{O} &\longrightarrow X_d^\circ \\ aB &\longmapsto w_0(I)aB. \end{aligned}$$

Now,

$$\phi(\tilde{O}) = w_0(I)V_d w_0(I)dB = U_d dB = X_d^\circ,$$

where the second equality is by the definition of V_d , and the final equality is Lemma 3.3. Thus ϕ is well-defined and surjective.

As ϕ is simply left multiplication by $w_0(I)$ it is injective. Further, by Lemma 3.3 X_d° is isomorphic as a variety to $\mathbb{A}^{\ell(d)}$, and thus is smooth, and in particular normal. Hence, by Zariski's main lemma, ϕ is an isomorphism of varieties.

To see that ϕ is T -equivariant for the specified actions, let $t \in T$ and $aB \in \tilde{O}$. Then

$$\phi(t \cdot aB) = w_0(I)taB = w_0(I)tw_0(I)w_0(I)aB = \gamma_{w_0(I)}(t) \cdot \phi(aB) = t \cdot_{w_0(I)} \phi(aB). \quad \square$$

4. Proof of the main result

We need a lemma examining the L_I -action on \tilde{O} . This lemma is then used in conjunction with Proposition 3.7 to prove our main result.

Let $B_{L_I} = L_I \cap B$ and let U_{L_I} be the unipotent radical of B_{L_I} . Then B_{L_I} is a Borel subgroup in L_I [6, §14.17] with $U_{L_I} = B_{L_I} \cap U$ and $B_{L_I} = T \ltimes U_{L_I}$. Since L_I is the subgroup of G generated by T and $\{U_\alpha \mid \alpha \in \Phi(I)\}$ [25, §3.2.2], it is straightforward to show that

$$U_{L_I} = \prod_{\alpha \in \Phi^+(I)} U_\alpha,$$

where the product is taken in any order [6, §14.4].

Lemma 4.1. *Let $w = w_0(I)d \in W$ be length additive. Let $x \in X_{w_0(I)d}^\circ \setminus \tilde{O}$ and $y, z \in \tilde{O}$.*

- (i) $uy \notin \tilde{O}$ for all $u \in U_{L_I}$ with $u \neq e$.
- (ii) $tx \notin \tilde{O}$ for all $t \in T$.
- (iii) There exists $b \in B_{L_I}$ such that $by = z$ if and only if there exists $t \in T$ such that $ty = z$.

Proof. (i) We have

$$U_{L_I} = \prod_{\alpha \in \Phi^+(I)} U_\alpha = U_{w_0(I)},$$

where the final equality is (4). Thus $u \in U_{w_0(I)}$.

Since $y \in \tilde{O}$, we have that $y = vw_0(I)dB$ for some $v \in V_d$. By Lemma 3.5, $uv \in U_{w_0(I)d} \setminus V_d$ for $u \neq e$. Thus $uvw_0(I)dB \in X_{w_0(I)d}^\circ \setminus \tilde{O}$ by Lemma 3.3.

(ii) This follows immediately from the fact that \tilde{O} is T -stable.

(iii) The Borel $B_{L_I} = T \ltimes U_{L_I}$, and thus for all $b \in B_{L_I}$ we may express $b = tu$ for unique $t \in T, u \in U_{L_I}$. If $u \neq e$, then $uy \notin \tilde{O}$ by (i) and so $by = tuy \notin \tilde{O}$ by (ii). Hence, if $by = z$, then $u = e$ and $b = t \in T$. The converse direction is immediate since $T \subseteq B_{L_I}$. \square

We now have the necessary ingredients to complete the proof of our main result.

Proof of Theorem 1.3: (\Leftarrow) Let w be I -spherical. Then $w = w_0(I)c$ is length additive and c is a standard Coxeter element. Our goal is to exhibit a $x \in \tilde{O}$ such that $\dim(B_{L_I} \cdot x) = \dim X_{w_0(I)c}^\circ$.

The Schubert variety X_c is a toric variety [24]; it contains an open, dense T -orbit \mathcal{O} for the T -action \cdot . Since X_c° is an open, dense subset of X_c , $\mathcal{O} \cap X_c^\circ$ is open and dense in X_c° ; since X_c° is T -stable we have that $\mathcal{O} \cap X_c^\circ$ is a T -orbit in X_c° for the T -action \cdot . Lemma 3.2 implies that $\mathcal{O} \cap X_c^\circ$ is an open, dense T -orbit for the T -action $\cdot_{w_0(I)}$.

By Proposition 3.7, there is a T -equivariant isomorphism $\phi: \tilde{O} \rightarrow X_c^\circ$. Let

$$\Theta = \phi^{-1}(\mathcal{O} \cap X_c^\circ);$$

this is an open, dense T -orbit in \tilde{O} for the T -action \cdot . Let $x \in \Theta$. By Lemma 4.1(iii), the isotropy subgroup $(B_{L_I})_x$ is equal to the isotropy subgroup T_x . By [8, Proposition 1.11], for any variety X equipped with the action of an algebraic group H , the orbit $H \cdot x$, $x \in X$, is a subvariety of X of dimension $\dim H - \dim H_x$,

$$\dim(H \cdot x) = \dim H - \dim H_x. \quad (9)$$

The above combine to imply that

$$\dim(B_{L_I})_x = \dim T_x = \dim T - \dim(T \cdot x) = \dim T - \dim \Theta = \dim T - \ell(c). \quad (10)$$

We conclude, applying (9) and (10), that

$$\begin{aligned} \dim(B_{L_I} \cdot x) &= \dim B_{L_I} - \dim(B_{L_I})_x \\ &= \ell(w_0(I)) + \dim T - (\dim T - \ell(c)) \\ &= \ell(w_0(I)) + \ell(c) \\ &= \ell(w_0(I)c), \end{aligned}$$

and thus there exists an dense B_{L_I} -orbit in $X_{w_0(I)c}$. Indeed, this dense orbit must also be open in its closure by [6, Proposition 1.8]. Hence, $X_{w_0(I)c}$ is L_I -spherical.

(\Rightarrow) Suppose w is not I -spherical. Then $w = w_0(I)d$ where d is not a standard Coxeter element. Moreover, by the hypothesis that $I \subseteq \mathcal{D}_L(w)$, this factorization is length additive.

The Schubert variety X_d is not a toric variety for the \cdot action of T [24]. If X_d° contained an open, dense T -orbit, then X_d would be a toric variety for \cdot . Thus X_d° is not a toric variety for \cdot . In general, a normal G -variety is spherical if and only if it has finitely many B -orbits (see [30, Theorem 2.1.2]). If $G = T$ then $B = T$ and hence there are infinitely many T -orbits in X_d° for T -action \cdot ; and for the T -action $\cdot_{w_0(I)}$ by Lemma 3.2.

By Proposition 3.7, \tilde{O} is T -equivariantly isomorphic as an affine variety to X_d° . Thus, there are infinitely many T -orbits in \tilde{O} for T -action \cdot . Let \mathcal{O}_1 and \mathcal{O}_2 be two such orbits, and $x_1 \in \mathcal{O}_1, x_2 \in \mathcal{O}_2$. The fact that x_1 and x_2 reside in different orbits implies that there does not exist a $t \in T$ such that $tx_1 = x_2$. Thus Lemma 4.1(iii) implies $B_{L_I} \cdot x_1 \cap B_{L_I} \cdot x_2 = \emptyset$. As these were an arbitrary pair among the infinite T -orbits, there must be infinitely many B_{L_I} orbits in $X_{w_0(I)d}^\circ$ and hence in $X_{w_0(I)d}$. We conclude that $X_{w_0(I)d}$ is not L_I -spherical by the same result [30, Theorem 2.1.2] mentioned above. \square

5. Application to Demazure modules

As an application of these results we give a sufficient condition for a Demazure module to be a multiplicity-free L_I -module; equivalently, a sufficient condition for a Demazure character to be multiplicity-free with respect to the basis of irreducible L_I -characters.

Let $\mathfrak{X}(T)$ denote the lattice of weights of T ; our fixed Borel subgroup B determines a subset of dominant integral weights $\mathfrak{X}(T)^+ \subset \mathfrak{X}(T)$. The finite-dimensional irreducible G -representations are indexed by $\lambda \in \mathfrak{X}(T)^+$. Denoting the associated representation by V_λ , there is a class of B -submodules of V_λ , first introduced by Demazure [12], that are indexed by $w \in W$. If v_λ is a nonzero highest weight vector, then the *Demazure module* V_λ^w is the minimal B -submodule of V_λ containing wv_λ .

There is a geometric construction of these Demazure modules. For $\lambda \in \mathfrak{X}(T)^+$, let \mathfrak{L}_λ be the associated line bundle on G/B . For $w \in W$, we write $\mathfrak{L}_\lambda|_{X_w}$ for the restriction of \mathfrak{L}_λ to the Schubert subvariety $X_w \subseteq G/B$. Then the Demazure module V_λ^w is isomorphic to the dual of the space of global sections of $\mathfrak{L}_\lambda|_{X_w}$, that is

$$V_\lambda^w \cong H^0(X_w, \mathfrak{L}_\lambda|_{X_w})^*.$$

This geometric perspective highlights the fact that V_λ^w is not just a B -module, but is in fact also a L_I -module via the action induced on $H^0(X_w, \mathfrak{L}_\lambda|_{X_w})$ by the left multiplication action of L_I on X_w .

As L_I is a reductive group over characteristic zero, any L_I -module decomposes into a direct sum of irreducible L_I -modules. Let $\mathfrak{X}_{L_I}(T)^+$ be the set of dominant integral weights with respect to the choice of maximal torus and Borel subgroup $T \subseteq B_I \subseteq L_I$. For $\mu \in \mathfrak{X}_{L_I}(T)^+$, let $V_{L_I, \mu}$ be the associated irreducible L_I -module. If M is a L_I -module and

$$M = \bigoplus_{\mu \in \mathfrak{X}_{L_I}(T)^+} V_{L_I, \mu}^{\oplus m_{L_I, \mu}}$$

is the decomposition into irreducible L_I -modules, then we say that M is a *multiplicity-free L_I -module* if $m_{L_I, \mu} \in \{0, 1\}$. Similarly, if $\text{char}(M)$ is the formal T -character of M and

$$\text{char}(M) = \sum_{\mu \in \mathfrak{X}_{L_I}(T)^+} m_{L_I, \mu} \text{char}(V_{L_I, \mu}),$$

then we say that $\text{char}(M)$ is *I -multiplicity-free* if $m_{L_I, \mu} \in \{0, 1\}$.

The following argument was given for type A in [18, Theorem 4.13(II)]. We include the general type argument (which is essentially the same) for sake of completeness:

Theorem 5.1. *Let $w \in W$ with $I \subseteq D_L(w)$. Then X_w is L_I -spherical if and only if for all $\lambda \in \mathfrak{X}(T)^+$, the Demazure module V_λ^w is multiplicity-free L_I -module.*

Proof. Let X be a quasi-projective, normal variety with the action of a complex, connected, reductive algebraic group G . Then X is G -spherical if and only if the G -module $H^0(X, \mathfrak{L})$ is a multiplicity free G -module for all G -linearized line bundles \mathfrak{L} [30, Theorem 2.1.2].

All Schubert varieties $X_w \subseteq G/B$ are normal, quasi-projective varieties [23]. Further, as L_I is reductive and we are in characteristic zero, V_λ^w is a multiplicity-free L_I -module if and only if its dual space $(V_\lambda^w)^* = H^0(X_w, \mathfrak{L}_\lambda|_{X_w})$ is a multiplicity-free L_I -module [20, §31.6]. The above combines to imply our desired result once we show that the L_I -linearized line bundles on X_w are precisely of the form $\mathfrak{L}_\lambda|_{X_w}$ for $\lambda \in \mathfrak{X}(T)^+$.

The line bundles, with non-trivial spaces of global sections, on G/B are precisely \mathfrak{L}_λ , for $\lambda \in \mathfrak{X}(T)^+$; these line bundles are all G -linearized [7, §1.4]. Every line bundle on X_w is the restriction of a line bundle on G/B [7, Proposition 2.2.8]. We are done since the restriction $\mathfrak{L}_\lambda|_{X_w}$ of the G -linearized line bundle \mathfrak{L}_λ , for $\lambda \in \mathfrak{X}(T)^+$, is L_I -linearized. \square

Corollary 5.2. *Let $w \in W$ be I -spherical for $I \subseteq D_L(w)$. For all $\lambda \in \mathfrak{X}(T)^+$, the Demazure module V_λ^w is a multiplicity-free L_I -module.*

Proof. By Theorem 1.3, if w is I -spherical then X_w is L_I -spherical. Therefore, by Theorem 5.1, V_λ^w is a multiplicity-free L_I -module for $\lambda \in \mathfrak{X}(T)^+$. \square

Corollary 5.3. *Let $w \in W$ be I -spherical for $I \subseteq D_L(w)$. For all $\lambda \in \mathfrak{X}(T)^+$, the Demazure character $\text{char}(V_\lambda^w)$ is I -multiplicity-free.*

These two corollaries appear non-trivial from a combinatorial perspective, even for a *specific choice* of dominant weight λ with fixed $w \in W$. The Demazure character can be recursively computed using Demazure operators. There is also a combinatorial rule for the character in terms of crystal bases (in instantiations such as the *Littlemann path model* or the *alcove walk model*); see, e.g., the textbook [9]. However, an argument based on these methods eludes in general type, although we have an argument in type A [15].

Acknowledgments

RH was partially supported by an AMS-Simons Travel Grant. AY is partially supported by a Simons Collaboration Grant #582242 and an NSF RTG in Combinatorics DMS 1937241.

References

- [1] R.S. Avdeev, A.V. Petukhov, Spherical actions on flag varieties (in Russian), *Mat. Sb.* 205 (9) (2014) 3–48; translation in *Sb. Math.* 205 (9–10) (2014) 1223–1263.
- [2] R.S. Avdeev, A.V. Petukhov, Branching rules related to spherical actions on flag varieties, *Algebr. Represent. Theory* 23 (3) (2020) 541–581.
- [3] I.N. Bernstein, I.M. Gel’fand, S.I. Gel’fand, Differential operators on the base affine space and a study of \mathfrak{g} -modules. Lie groups and their representations, in: *Proc. Summer School, Bolyai János Math. Soc.*, Budapest, 1971, pp. 21–64.

- [4] A. Björner, F. Brenti, *Combinatorics of Coxeter Groups*, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005, xiv+363 pp.
- [5] N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 4-6*. Translated from the 1968 French original by Andrew Pressley Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, xii+300 pp.
- [6] A. Borel, *Linear Algebraic Groups*, second edition, Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991, xii+288 pp.
- [7] M. Brion, Lectures on the geometry of flag varieties, in: *Topics in Cohomological Studies of Algebraic Varieties*, in: Trends Math., Birkhauser, Basel, 2005, pp. 33–85.
- [8] M. Brion, Introduction to actions of algebraic groups, in: *Notes of the Course “Actions Hamiltoniennes: Invariants et Classification”*, CIRM, Luminy, 2009, available on-line at https://www-fourier.ujf-grenoble.fr/~mbrion/notes_luminy.pdf.
- [9] D. Bump, A. Schilling, *Crystal Bases. Representations and Combinatorics*, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017, xii+279 pp.
- [10] M. Can, P. Saha, Applications of homogeneous fiber bundles to the Schubert varieties, *Geom. Dedic.* 217 (6) (2023) 103, 24 pp.
- [11] C. DeConcini, V. Lakshmibai, Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties, *Am. J. Math.* 103 (1981) 835–850.
- [12] M. Demazure, Désingularisation des variétés de Schubert généralisées, *Ann. Sci. Éc. Norm. Supér.* (4) 7 (1974) 53–88.
- [13] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, *J. Am. Math. Soc.* 15 (2) (2002) 497–529.
- [14] W. Fulton, J. Harris, *Representation theory. A first course*, in: *Readings in Mathematics*, in: Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, xvi+551 pp., arXiv: 2007.09238.
- [15] Y. Gao, R. Hodges, A. Yong, Classification of Levi-spherical Schubert varieties, *Sel. Math. (N.S.)* 29 (4) (2023), 40 pp.
- [16] Y. Gao, R. Hodges, A. Yong, Classifying Levi-spherical Schubert varieties, *Sémin. Lothar. Comb.* 86B (2022) 29, 12 pp.
- [17] R. Hodges, V. Lakshmibai, Levi subgroup actions on Schubert varieties, induced decompositions of their coordinate rings, and sphericity consequences, *Algebr. Represent. Theory* 21 (6) (2018) 1219–1249.
- [18] R. Hodges, A. Yong, Coxeter combinatorics and spherical Schubert geometry, *J. Lie Theory* 32 (2) (2022) 447–474.
- [19] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, in: *The Schur Lectures, 1992*, Tel Aviv, in: Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182.
- [20] J.E. Humphreys, *Linear Algebraic Groups*, Graduate Texts in Mathematics, vol. 21, Springer-Verlag, New York-Heidelberg, 1975.
- [21] J.E. Humphreys, *Reflection Groups and Coxeter Groups*, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
- [22] J.C. Jantzen, *Representations of Algebraic Groups*, second edition, Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003, xiv+576 pp.
- [23] A. Joseph, On the Demazure character formula, *Ann. Sci. Éc. Norm. Supér.* (4) 18 (3) (1985) 389–419.
- [24] P. Karuppuchamy, On Schubert varieties, *Commun. Algebra* 41 (4) (2013) 1365–1368.
- [25] V. Lakshmibai, K.N. Raghavan, Standard monomial theory. Invariant theoretic approach, in: *Encyclopaedia of Mathematical Sciences*, vol. 137, in: *Invariant Theory and Algebraic Transformation Groups*, vol. 8, Springer-Verlag, Berlin, 2008.
- [26] P. Littelmann, On spherical double cones, *J. Algebra* 166 (1) (1994) 142–157.
- [27] G. Lusztig, Canonical bases arising from quantized enveloping algebras. II. Common trends in mathematics and quantum field theories (Kyoto, 1990), in: *Progr. Theoret. Phys. Suppl.*, vol. 102, 1990, pp. 175–201, 1991.
- [28] P. Magyar, J. Weyman, A. Zelevinsky, Multiple flag varieties of finite type, *Adv. Math.* 141 (1) (1999) 97–118.
- [29] P. Magyar, J. Weyman, A. Zelevinsky, Symplectic multiple flag varieties of finite type, *J. Algebra* 230 (1) (2000) 245–265.
- [30] N. Perrin, On the geometry of spherical varieties, *Transform. Groups* 19 (1) (2014) 171–223.
- [31] S. Ramanan, A. Ramanathan, Projective normality of flag varieties and Schubert varieties, *Invent. Math.* 79 (2) (1985) 217–224.
- [32] J.R. Stembridge, Multiplicity-free products of Schur functions, *Ann. Comb.* 5 (2) (2001) 113–121.

- [33] J.R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, *Represent. Theory* 7 (2003) 404–439.
- [34] E.B. Vinberg, B.N. Kimel'fel'd, Homogeneous domains on flag manifolds and spherical subgroups of semisimple Lie groups (in Russian), *Funkc. Anal. Prilozh.* 12 (3) (1978) 12–19, 96.