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1. Introduction
1.1. History and motivation

In his essay [19] on representation theory and invariant theory, R. Howe discusses the
significance of multiplicity-free actions as an organizing principle for the subject. Clas-
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sical invariant theory focuses on actions of a reductive group G on symmetric algebras,
which is to say, coordinate rings of vector spaces. Now one also considers G-actions on
varieties X and their coordinate rings C[X]. Such an action is multiplicity-free if C[X]
decomposes, as a G-module, into irreducible G-modules each with multiplicity one. An
important example is when X is the base affine space of a complex, semisimple algebraic
group G [3]; in this case the coordinate ring is a multiplicity-free direct sum of the ir-
reducible representations of G. Lustzig’s theory of dual canonical bases [27] provides a
basis for it. In the early 2000s, understanding this basis was a motivation for S. Fomin
and A. Zelevinsky’s theory of Cluster algebras [13].

The notion of multiplicity-free actions is closely connected to that of spherical vari-
eties. Let G be a connected, complex, reductive algebraic group; we say that a variety
X is a G-variety if X is equipped with an action of GG that is a morphism of varieties.
A spherical variety is a normal G-variety where a Borel subgroup of G has an open,
and therefore dense, orbit. An normal, affine G-variety X is spherical if and only if
C[X] decomposes into irreducible G-modules each with multiplicity one [34]. If X is
instead a normal, projective G-variety then one can still recover one direction of this
implication. That is, if the induced G-action on the homogeneous coordinate ring of X
is multiplicity-free, then X is G-spherical [17, Proposition 4.0.1].

Spherical varieties possess numerous nice properties. For instance, projective spherical
varieties are Mori Dream Spaces. Moreover, Luna-Vust theory describes all the birational
models of a spherical variety in terms of colored fans; these fans generalize the notion of
fans used to classify toric varieties (which are themselves spherical varieties). N. Perrin’s
excellent survey covers additional background on spherical varieties [30].

It is an open problem to classify all spherical actions on products of flag varieties.
This is solved in the case of Levi subgroups; we point to the work of P. Littelmann
[26], P. Magyar—J. Weyman—A. Zelevinsky [28,29], J. Stembridge [32,33], R. Avdeev—
A. Petukhov [1,2]. Connecting back to the representation-theoretic perspective of [19],
in [32,33], J. Stembridge relates this classification problem to the multiplicity-freeness
of restrictions of Weyl modules [14, Lecture 6]. Indeed, the homogeneous coordinate
ring of a single flag variety is a multiplicity-free sum of spaces of global sections on the
variety with respect to line bundles associated to each dominant integral weight. By the
Borel-Weil-Bott theorem, these spaces are isomorphic to the irreducible representations
of G. This is the central object of interest in Standard Monomial Theory [25] and is
closely related to the coordinate ring of base affine space mentioned above. As remarked
above a product of flag varieties is G-spherical if its homogeneous coordinate ring is
multiplicity-free as an G-module.

This paper solves a related problem. We classify all Levi-spherical Schubert varieties
in a single flag variety; that is, Schubert varieties that are spherical for the action of a
Levi subgroup. Here, the relevant ring is the homogeneous coordinate ring of a Schubert
variety and the attendant representation theory is that of Demazure modules [12], which
are Borel subgroup representations. Critically for this paper, they are also Levi subgroup
representations. Multiplicity-freeness in this setting refers to the decomposition of these
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modules into irreducible Levi subgroup representations. This study was initiated in [18]
and the authors solved the problem for the GL,, case in [15]. In [16] we conjectured
an answer for all finite rank Lie types; this paper proves that conjecture. During the
completion of this article, we learned that M. Can-P. Saha [10] independently proved the
conjecture.

1.2. Background

Throughout, let G be a complex, connected, reductive algebraic group and let B < G
be a choice of Borel subgroup along with a maximal torus 7' contained in B. The Weyl
group is W := Ng(T)/T, where Ng(T) is the normalizer of T in G. The orbits of the
homogeneous space G/B under the action of B by left translations are the Schubert cells
Xo,w € W. Their Zariski closures

Xuw ::X_fj}

are the Schubert varieties. It is relevant below that these varieties are normal [11,31].
A parabolic subgroup of G is a closed subgroup B C P C G such that G/P is a
projective variety. Each such P admits a Levi decomposition

P =L« R,(P)

where L is a reductive subgroup called a Levi subgroup of P and R, (P) is the unipotent
radical. One parabolic subgroup is P, := stabg(X,). Any of the parabolic subgroups
BCQCP, act on X,,.

Let Lg be a Levi subgroup of (. A variety X is H-spherical for the action of a
complex reductive algebraic group H if it is normal and contains an open, and therefore
dense, orbit of a Borel subgroup of H. Our reference for spherical varieties is [30]; toric
varieties are examples of spherical varieties.

Definition 1.1 (/18, Definition 1.8]). Let B C Q C P, be a parabolic subgroup of G.
Xw C G/B is Lg-spherical if has a dense, open orbit of a Borel subgroup of Ly under
left-translations.

1.3. The main result

We give a root-system uniform combinatorial criterion to decide if X,, is Lg-spherical.
Let ® := ®(g,T) be the root system of weights for the adjoint action of 7" on the Lie
algebra g of G. It has a decomposition ® = & U &~ into positive and negative roots.
Let A C ®* be the base of simple roots. The parabolic subgroups Q = P; D B are in
bijection with subsets I of A;let Ly := Lg. The set of left descents of w is

Dr(w) = {8 € A ((sgw) < L(w)},
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where £(w) = dim X, is the Cozeter length of w. Under the bijection, P, = Pp, (), and
B C Q C Py, = Pp, ) satisfy Q = Py for some I C Dr(w).

For I C A, a parabolic subgroup W; C W is the subgroup generated by S; := {ss :
B € It. A standard Coxeter element ¢ € W7 is any product of the elements of Sy listed in
some order. Let wg(I) be the longest element of W;. The following definition was given
in type A in [15, Definition 1.1] and in general type in [16, Section 4]:

Definition 1.2. Let w € W and I C Dy, (w) be fixed. Then w is I-spherical if wo(I)w is a
standard Coxeter element for W; where J C A.

We first note that if I C Dy (w), then the left inversion set Z(w), defined in Section 3,
contains all the positive roots in the root subsystem generated by I, and thus w = wo(I)d
is a length-additive expression for some d € W, by Proposition 3.1.3 in [4].

Theorem 1.3. Fiz w € W and I C Dp(w). X, is Ly-spherical if and only if w is I-
spherical.

Theorem 1.3 resolves the main conjecture of the authors’ earlier work [16, Con-
jecture 4.1] and completes the main goal set forth in [18]. In [15], Theorem 1.3 was
established in the case G = GL,, using essentially algebraic combinatorial methods con-
cerning Demazure characters (or in their type A embodiment, the key polynomials). In
contrast, the geometric arguments of this paper are quite different, significantly shorter,
but require more background of the reader in algebraic groups. Theorem 1.3 is a gen-
eralization of work of P. Karuppuchamy [24] that characterizes Schubert varieties that
are toric, which in our setup means spherical for the action of Ly = T. Using work of
R. S. Avdeev-A. V. Petukhov [1], Theorem 1.3 may also be seen as a generalization of
some results of P. Magyar—J. Weyman-A. Zelevinsky [28] and J. Stembridge [32,33] on
spherical actions on G/B; see [18, Theorem 2.4]. Previously, there was not even a finite
algorithm to decide L;-sphericality of X, in general.

1.4. Organization

Examples of the main result are given in Section 2. Sections 3 and 4 prove Theorem 1.3.
Section 5 offers an application of our main result to the study of Demazure modules [12].

2. Examples of Theorem 1.3

We begin with a few examples illustrating Theorem 1.3.

2

Example 2.1 (Eg ¢f. [18, Example 1.3]). The Eg Dynkin diagram is m . One

associates the simple roots §; (1 <14 < 8) with this labeling and writes s; := sg,. Suppose
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W = 52535452535455545253515455565756585756 € w.
Then Dr,(w) = {B2, B3, B4, B5, B7, Bs }- Let I = Dy (w). Here
wo(I) = 535254535254555453528455 - S7sss7 and  wo(I)w = s156578s.

Since w = wq(I)c where ¢ = s186578g is a standard Coxeter element, Theorem 1.3 asserts
that X, is Lr-spherical in the complete flag variety for FEs.

Example 2.2 (Fy cf. [18, Example 1.5]). The Fy diagram is . First suppose

W = 54535452535452535251525354 (I = DL(w) = {ﬁZ, ﬂ?nﬁzl})-

Then wo(I) = $28352535483528384 and wo(I)w = $1528384 is standard Coxeter. Hence
X, is Ly-spherical. On the other hand if

w' = $25154535281838284835251 (I = Dr(w') = {B2, Ba}),

then wo(I) = s284 and wo(I)w = $1835251535284835251 is not standard Coxeter and X,
is not Lj-spherical.

3

Example 2.3 (D4). The D, diagram is 1»—2< . Let
4

W = S$3828384825182 (I = Dr(w) = {P2, B3}).

Thus wo(I) = s28352 and wo(l)w = s4525182 is not standard Coxeter. Hence X, is not
Lj-spherical. The interested reader can check w is I-spherical in the (different) sense of
[18, Definition 1.2]. Therefore, this w provides a counterexample to [18, Conjecture 1.9]
in type Dy. This counterexample was also (implicitly) verified in [16] using a different
method, namely Demazure character computations, the topic of Section 5.

3. An equivariant isomorphism

The primary goal of this section is to construct a torus equivariant isomorphism from
a specified affine subspace of the open cell of a Schubert variety to the open cell of a
distinguished Schubert subvariety. In what follows, we assume standard facts from the
theory of algebraic groups. References we draw upon are [20,6,25].

Let w € W. Let n,, be a coset representative of w in Ng(T'). By definition of Ng(T')
being the normalizer of T' in G, t + n,tn,' defines an automorphism ~,, : T — T.

Lemma 3.1. The automorphism 7, does not depend on our choice of coset representative

Ty -
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Proof. Suppose that m,, is another coset representative of w. Then m,, = n,s for some

1 1

:nwtss_ln_ :nwtnu_jl. O

s € T. Hence my,tmy' = n,sts~ing »

In light of Lemma 3.1, henceforth for w € W we will also let w denote a coset
representative of w in Ng(7T). Let X be a T-variety with action denoted by -. For each
w € W we define an action +, on X by ¢+, =y, (t) -z forallz € X and t € T.

Lemma 3.2. For all w € W, the T-variety X has an open, dense T-orbit for the action -
if and only if it has an open, dense T-orbit for the action +,. Indeed, the set of T-orbits
in X for these two actions is identical.

Proof. Let O be a T-orbit in X for the - action. Let =,y € O and ¢t € T be such that
t-x =1y. As v, is an automorphism, there exists a t' € T' such that ~,,(¢') = ¢t. Then

ez =y{) z=t-z=y.

Thus O is contained in the T-orbit O’ of x for the action -,,. The reverse containment is
true by definition of +,. The lemma follows. O

For the remainder, we fix - to be the restriction to T of the action of G on G/B by
left multiplication. The left inversion set of w € W is

IZ(w) =0T Nw(® ) ={acd |w ' (a) e d}.
Recall two standard facts regarding left inversion sets [21, Chapter 1]. For w € W,
Z(w)] = l(w) = dim¢ X, (1)
and
I(wo(I)) = *(I), (2)

where ®(I) = ®([;,T) is the root system for the adjoint action of T on I; = Lie(Ly).
We say that an algebraic group H is directly spanned by its closed subgroups
H,, ..., H,, in the given order, if the product morphism

Hy x---xH, - H

is bijective. For w € W, define U,, := U NwU " w™!, where U consists of the unipotent
elements of B and similarly, U~ is the unipotent part of B~ := wgBwg. This is a
subgroup of U that is closed and normalized by T'. Hence, by [6, §14.4], U,, is directly
spanned, in any order, by the root subgroups Uy, o € ®*, contained in U,,. Since by [22,
Part 11, 1.4(5)],
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anw_l = Uw(a); (3)

these are the U, such that o € ®T Nw(®~) = Z(w). Thus

Uo= [[ Ua: (4)

a€Z(w)

where the products U, may be taken in any order.
Lemma 3.3. For a coset wB € G/B, we have

X; :=BwB=U,wB= [] UswB. (5)
a€Z(w)

Moreover, X2 is isomorphic to the affine space A*) (as varieties).

Proof. It is a well-known fact that U, is isomorphic to X, (as varieties) under the map
u— uwB, u € Uy, [6, §14.12]. The final equality in (5) is (4). By [6, Remark in §14.4],
U, is isomorphic, as a variety, to A‘ ). O

We say that w = wv € W is length additive if {(uv) = £(u) + ¢(v). Under this
hypothesis, by [5, Ch. VI, §1, Cor. 2 of Prop. 17] one has

Z(uwv) = Z(u) Uu(Z(v)).
Therefore, in particular, if we assume wo(I)d € W is length additive, then
T(wo(1)d) = T(wo(D)) Uwo(1)(Z(d)), (6)
Define
Vi = wo(IUgwo(I) ™" = wo(I)Ugwo(I).
Lemma 3.4. V; is a closed subgroup of Uy, (r)qa that is normalized by T'.

Proof. Since Uy is a closed subgroup normalized by T, so is V. Indeed, V; is a subgroup
of Uy (1)a since

Vag= ’U}()(I) H Ua'lUU(I) = H Uy, < Uwo(l)dv (7)
a€Z(d) acwo(I)(Z(d))

where the first equality is (4), the second is (3), and the subgroup claim is (4) and (6). O
Lemma 3.5. U, (1)q is directly spanned by U1y and Vy:

Uwo(1yd = Uwe(n)Va = VaUuwy (1) - (8)
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Proof. This follows from (4), (6), and (7) combined. O
Define
O := Vywo(I)dB C G/B.
Lemma 3.6. O is T-stable for the action -.
Proof. The claim follows since

Vawo(I)dB = (tVagt ™ )two(I)dB C Vywe(I)dB,

where the final step follows from the fact that V; is normalized by T and that wo(I)dB
is a T-fixed point in G/B. O

The following is the main point of this section:
Proposition 3.7. If wo(I)d € W is length additive then
Xoo(1ya = Uwo(nya wo(1)dB.

Hence O C X;O(I)d. Moreover, O with the T-action -« is T-equivariantly isomorphic to
Xg with the T-action «(r)-

Proof. By (5), X;O(I)d = Uy (r)d wo(I)dB. Combining this with Lemma 3.4, one con-
cludes that O C X;O(I)d. Define a map

¢:0 — X3
aB — wo(I)aB.

Now,
$(0) = wo(I)Vywo(I)dB = UgdB = X,

where the second equality is by the definition of Vj;, and the final equality is Lemma 3.3.
Thus ¢ is well-defined and surjective.

As ¢ is simply left multiplication by wq(I) it is injective. Further, by Lemma 3.3 X3
is isomorphic as a variety to A and thus is smooth, and in particular normal. Hence,
by Zariski’s main lemma, ¢ is an isomorphism of varieties.

To see that ¢ is T-equivariant for the specified actions, let ¢ € T and aB € O. Then

P(t-aB) = wo(I)taB = wo(I)two(I)wo(I)aB = Vo) (t) - ¢(aB) =t -y (1) ¢(aB). O
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4. Proof of the main result

We need a lemma examining the Lj-action on O. This lemma is then used in con-
junction with Proposition 3.7 to prove our main result.

Let By, = Ly N B and let Uy, be the unipotent radical of Byr,,. Then By, is a Borel
subgroup in Ly [6, §14.17] with Ur, = Br, NU and By, = T x Ug,. Since Ly is the
subgroup of G generated by T and {U, | o € ®(I)} [25, §3.2.2], it is straightforward to
show that

U, = ] Ua

acd+(I)
where the product is taken in any order [6, §14.4].

Lemma 4.1. Let w = wo(I)d € W be length additive. Let v € X7y, \ O and y,z € O.

(i) uy ¢ O for all u € Ur,, with u # e.
(ii) tx ¢ O forallt € T.
(iii) There exists b € By, such that by = z if and only if there exists t € T such that
ty = z.

Proof. (i) We have

Ur, = H Ua = Uy,
acd+(I)

where the final equality is (4). Thus u € Uy (1)

Since y € O, we have that y = vwg(I)dB for some v € V4. By Lemma 3.5, uv €
Uwo(nya \ Va for u # e. Thus uvwo(I)dB € X7, 7, \ O by Lemma 3.3.
(ii) This follows immediately from the fact that O is T-stable.
(iii) The Borel By, = Tx Uy, and thus for all b € By, we may express b = tu for unique
teT,ueUr,. Ifu+e, thenuy ¢ O by (i) and so by = tuy ¢ O by (ii). Hence, if by = z,
then v = e and b =t € T'. The converse direction is immediate since T'C By,,. O

We now have the necessary ingredients to complete the proof of our main result.
Proof of Theorem 1.3: (<) Let w be I-spherical. Then w = wy(I)c is length additive and
¢ is a standard Coxeter element. Our goal is to exhibit a z €O such that dim(By, -x)=
dim XfUO (e

The Schubert variety X, is a toric variety [24]; it contains an open, dense T-orbit O
for the T-action -. Since X is an open, dense subset of X., O N X? is open and dense
in X?; since X7 is T-stable we have that O N X is a T-orbit in X7 for the T-action -.

Lemma 3.2 implies that O N X7 is an open, dense T-orbit for the T-action -, (r)-
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By Proposition 3.7, there is a T-equivariant isomorphism ¢ : O — X, 2. Let
0 =9¢"1(0ONX);

this is an open, dense T-orbit in O for the T-action -. Let z € ©. By Lemma 4.1(iii), the
isotropy subgroup (B, ). is equal to the isotropy subgroup T,. By [8, Proposition 1.11],
for any variety X equipped with the action of an algebraic group H, the orbit H - x,
x € X, is a subvariety of X of dimension dim H — dim H,,

dim(H - z) = dim H — dim H,. (9)
The above combine to imply that
dim(Byr,), =dimT, =dim7T — dim(7T - ) = dim7T — dim © = dim T — ¢(c¢).  (10)
We conclude, applying (9) and (10), that

dim(By, - z) = dim By, — dim(By, ),
= l(wo(I)) + dim T — (dim T — £(c))
= L(wo(I)) + £(c)
= L(wo(I)c),

and thus there exists an dense By, -orbit in X, (1).. Indeed, this dense orbit must also
be open in its closure by [6, Proposition 1.8]. Hence, X, (1) is Ls-spherical.

(=) Suppose w is not I-spherical. Then w = wy(I)d where d is not a standard Cox-
eter element. Moreover, by the hypothesis that I C Dy, (w), this factorization is length
additive.

The Schubert variety X is not a toric variety for the - action of T' [24]. If XJ contained
an open, dense T-orbit, then X4 would be a toric variety for -. Thus X is not a toric
variety for -. In general, a normal G-variety is spherical if and only if it has finitely many
B-orbits (see [30, Theorem 2.1.2]). If G = T then B = T and hence there are infinitely
many T-orbits in X for T-action -; and for the T-action -, (1) by Lemma 3.2.

By Proposition 3.7, O is T-equivariantly isomorphic as an affine variety to X 3. Thus,
there are infinitely many T-orbits in O for T-action -. Let O; and Oy be two such
orbits, and x1 € O1,x9 € Oy. The fact that xy and x2 reside in different orbits implies
that there does not exist a ¢ € T such that tx; = 3. Thus Lemma 4.1(iii) implies
B, 1N By, »x2 = 0. As these were an arbitrary pair among the infinite T-orbits, there
must be infinitely many By, orbits in X;O(I)d and hence in X,,,(1)q- We conclude that
Xuwo(n)a is not Ly-spherical by the same result [30, Theorem 2.1.2] mentioned above. O
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5. Application to Demazure modules

As an application of these results we give a sufficient condition for a Demazure module
to be a multiplicity-free L;-module; equivalently, a sufficient condition for a Demazure
character to be multiplicity-free with respect to the basis of irreducible Lj-characters.

Let X(T') denote the lattice of weights of T'; our fixed Borel subgroup B determines
a subset of dominant integral weights X(T')™ C X(T'). The finite-dimensional irreducible
G-representations are indexed by A € X(T)*. Denoting the associated representation by
Vi, there is a class of B-submodules of Vj, first introduced by Demazure [12], that are
indexed by w € W. If vy is a nonzero highest weight vector, then the Demazure module
V3" is the minimal B-submodule of V) containing wvy.

There is a geometric construction of these Demazure modules. For A € X(T)*, let £,
be the associated line bundle on G/B. For w € W, we write £,|x,, for the restriction of
£ to the Schubert subvariety X, C G/B. Then the Demazure module V" is isomorphic
to the dual of the space of global sections of £,|x,,, that is

V' 2 HO (X, £1x, )"

This geometric perspective highlights the fact that Vy" is not just a B-module, but is in
fact also a Lj-module via the action induced on H%(X,,, £,]x,,) by the left multiplication
action of Ly on X,,.

As Ly is a reductive group over characteristic zero, any Lj-module decomposes into
a direct sum of irreducible L;-modules. Let X1, (T)" be the set of dominant integral
weights with respect to the choice of maximal torus and Borel subgroup T'C B; C Lj.
For p € X1, (T)*, let Vi, ., be the associated irreducible L;-module. If M is a L-module
and

M= @ v

Ly,
nEXL ) (T)+

is the decomposition into irreducible L;-modules, then we say that M is a multiplicity-
free Li-module it my,, , € {0,1}. Similarly, if char(M) is the formal T-character of M
and

char(M) = Z mL],uChar(VLbN)?
peEXL, (T)*

then we say that char(M) is I-multiplicity-free it my, , € {0,1}.
The following argument was given for type A in [18, Theorem 4.13(II)]. We include
the general type argument (which is essentially the same) for sake of completeness:

Theorem 5.1. Let w € W with I C Dy (w). Then X,, is Li-spherical if and only if for
all \ € X(T)™", the Demazure module V" is multiplicity-free Lr-module.
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Proof. Let X be a quasi-projective, normal variety with the action of a complex, con-
nected, reductive algebraic group G. Then X is G-spherical if and only if the G-module
H°(X, £) is a multiplicity free G-module for all G-linearized line bundles £ [30, Theorem
2.1.2].

All Schubert varieties X,, C G/B are normal, quasi-projective varieties [23]. Further,
as Ly is reductive and we are in characteristic zero, V" is a multiplicity-free L;-module if
and only if its dual space (V{*)* = H°(X,,, £1|x,,) is a multiplicity-free L;-module [20,
§31.6]. The above combines to imply our desired result once we show that the L;-
linearized line bundles on X, are precisely of the form £,|x, for A € X(T)".

The line bundles, with non-trivial spaces of global sections, on G/B are precisely £,
for X € X(T)™; these line bundles are all G-linearized [7, §1.4]. Every line bundle on X,
is the restriction of a line bundle on G/B [7, Proposition 2.2.8]. We are done since the
restriction £, |x,, of the G-linearized line bundle £y, for A € X(T')*, is L;-linearized. O

Corollary 5.2. Let w € W be I-spherical for I C Dy (w). For all X € X(T)T, the De-
mazure module V' is a multiplicity-free Lr-module.

Proof. By Theorem 1.3, if w is I-spherical then X, is L-spherical. Therefore, by The-
orem 5.1, V¥ is a multiplicity-free L;-module for A € X(T)". O

Corollary 5.3. Let w € W be I-spherical for I C Dy (w). For all X € X(T)", the De-
mazure character char(Vy) is I-multiplicity-free.

These two corollaries appear non-trivial from a combinatorial perspective, even for a
specific choice of dominant weight A with fixed w € W. The Demazure character can
be recursively computed using Demazure operators. There is also a combinatorial rule
for the character in terms of crystal bases (in instantiations such as the Littelmann path
model or the alcove walk model); see, e.g., the textbook [9]. However, an argument based
on these methods eludes in general type, although we have an argument in type A [15].
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