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Abstract

A Schubert variety in the complete flag manifold GL, /B is Levi-spherical if the
action of a Borel subgroup in a Levi subgroup of a standard parabolic has an open
dense orbit. We give a combinatorial classification of these Schubert varieties. This
establishes a conjecture of the latter two authors, and a new formulation in terms
of standard Coxeter elements. Our proof uses and contributes to the theory of key
polynomials (type A Demazure module characters).

Mathematics Subject Classification 14M27 - 0SE10 - 05E14

1 Introduction

The question of which Schubert varieties in GL, /B are singular was first combina-
torially characterized by J. Wolper [34] after a geometric characterization by K. Ryan
[29]. V. Lakshmibai-B. Sandhya [22] gave an alternative combinatorial characteriza-
tion in terms of permutation pattern avoidance. These results are at the foundation of
subsequent work on the singular structure of Schubert varieties; see the book [7], the
surveys [1, 35], and the references therein. In this paper we also classify a different
“global” geometric property of Schubert varieties, namely, sphericality with respect
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to a Levi subgroup of GL,. However, in contrast, sphericality is not a singularity
property.

The study of spherical varieties has garnered significant interest; see, e.g., N. Per-
rin’s survey [28]. For example, the notion of being a spherical variety subsumes that
of toric varieties, and moreover, Luna-Vust theory gives a description of all birational
models of a spherical variety via colored fans (generalizing the concept of fans in
toric geometry). Spherical varieties have many nice features. For example, projective
spherical varieties are Mori dream spaces.

It is an unsolved problem to classify all spherical actions on products of flag vari-
eties. For the case of Levi subgroups this is solved; see work of P. Littelmann [24],
P. Magyar-J. Weyman-A. Zelevinsky [25, 26], J. Stembridge [31, 32], R. Avdeev—-A.
Petukov [5, 6]. The results of this paper are complementary (in type A) to these earlier
results.

This is a sequel to [18] which gave a geometrically motivated, conjectural, com-
binatorial classification of Schubert varieties that are spherical for the action of a
Levi subgroup. While the paper examined the situation in general type, of particular
focus was the GL,/B case. It is in this situation that one finds direct connections to
well-studied elements of algebraic combinatorics. Algebraic combinatorics has at its
core the theory of symmetric polynomials and Schur polynomials. Modern aspects
of the field concern themselves with asymmetric polynomial families such as the key
polynomials both in their role as characters of Demazure modules but also for their
combinatorial features. The aforementioned Levi-sphericality conjecture motivates
the consideration of key polynomials for their split-symmetry and suggests the study
of when they are multiplicity-free in the split-Schur basis. A strategy was suggested for
proving the conjecture from these considerations. This paper completes this strategy.

The main new idea of this paper is a simpler formulation of the conjecture in terms
of standard Coxeter elements. While the original conjecture of [18] was founded on a
geometric heuristic, our new formulation is compatible with the Demazure operators
used to define the key polynomials. Therefore, it is this new version that we actually
prove. Separately, we establish the equivalence of the two conjectures in type A, thus
proving the original version as well.

In proving our main result, we observe that the set of weights appearing as expo-
nents in a key polynomial associated to a standard Coxeter element decompose into
posets isomorphic to intervals in the Bruhat order of a Young subgroup. Extensive
computations suggest that this remains true of Demazure characters in general type
and we hope to explore this surprising poset structure in future work.

Since the results of this work were first announced, there have been a number of
follow-up works. Assuming Theorem 1.3, C. Gaetz [14] proves a pattern avoidance
criterion for maximally spherical Schubert varieties, thus proving a conjecture from
[18]. Now, in ibid., the conjecture was stated in general type. However, in [16] we
gave a counterexample to that general conjecture for S Og/B. On the other hand, [16,
Conjecture 4.1] presents, with supporting evidence, a different conjecture to replace
it—indeed one that generalizes our new formulation (Theorem 1.3) below. This con-
jecture has since been simultaneously and independently proved by M. Can-P. Saha
[9] and by the authors [17]. The arguments of those papers are shorter but depend
on background in algebraic groups. By comparison, the methods here are essentially

) Birkhauser



Classification of Levi-spherical Schubert varieties Page30f40 55

completely combinatorial, and we believe contribute to the theory of key polynomials.
Moreover, this paper provides proofs of both combinatorial classifications in the GL,,
case.

1.1 Main result

Let Flags(C") be the variety of complete flags (0) C F; Cc F» C --- C F,—; ¢ C",
where F; is a subspace of dimension i. The group G L, of invertible n x n matrices
over C acts transitively on Flags(C") by change of basis. The standard flag is defined
by F; = span(éi, €2, ..., €;) where ¢; is the i-th standard basis vector. The stabilizer
of this flag is B C GL,, the Borel subgroup of upper triangular invertible matrices.
Hence Flags(C") = GL,/B. B acts on G L,/ B with finitely many orbits; these are the
Schubert cells X3, = BwB/B = C*™) indexed by w € &, (viewed as a permutation
matrix). Their closures X, := X_;j) are the Schubert varieties; these are of interest in
algebraic geometry and representation theory. A standard reference is [13].

For I € J(w),let Ly € GL, be the Levi subgroup of invertible block diagonal
matrices

Ly =GLgj—dy X GLgy—q; X -+ X GLg—q_y X GLgy,—d-

As explained in, e.g., [18, Section 1.2], L acts on Xy,.

Definition 1.1 X, is L;-spherical if X, has an open dense orbit of a Borel subgroup
of L;. If in addition, I = J(w), X, is maximally spherical.

Our main result is a classification of L;-spherical Schubert varieties using com-
binatorics. Let G = GL,. Its Weyl group W = &,, consists of permutations of
[n] :={1,2,...,n}. Thus W is generated, as a Coxeter group, by the simple trans-
positions S = {s; = (i + 1) : 1 < i < n — 1}. The set of left descents
is

Jwy={jeh—-11:w'()>w G+ D}

In other words, j € J(w) if j + 1 appears to the left of j in w’s one-line notation.
Let £(w) denote the Coxeter length of w. Forw € G,

tw)=#l<i<j=n:w@>w()}

counts inversions of w.

A parabolic subgroup Wi of W is the subgroup generated by a subset I C S. A
standard Coxeter element ¢ € Wy is any product of the elements of [ listed in some
order. Let wo(7) be the longest element of W;.

Definition 1.2 Let w € W and fix I € J(w). Then w is I-spherical if wo(I)w is a
standard Coxeter element for some parabolic subgroup Wy of W.

The following is our main theorem:
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Theorem 1.3 (cf. [18, Conjecture 3.2]) Letw € &, and I € J(w). Xy, € GL,/B is
Ly-spherical if and only if w is I-spherical.

In [18] another combinatorial definition (Definition 7.1) for /-sphericality is used.
However, Definition 1.2 is the cornerstone of our argument, and its significance can
be traced to Lemma 3.1. We show in Sect. 7 that Definition 1.2 and Definition 7.1 are
equivalent in type A, and therefore Theorem 1.3 gives the first (and currently, only)
proof of [18, Conjecture 3.2]. In light of our upcoming paper [17], Definition 1.2 is the
correct general type definition, with clear connections to boolean permutations [33].

1.2 Strategy of the proof

Using Theorem 4.13 of [18], our main result, Theorem 1.3 is reduced to Theorem 3.8,
a character-theoretic statement. We prove the two directions “=" and “<=" of Theo-
rem 3.8 separately. The “=>" direction requires a careful analysis on the terms involved
in Ky, which can be compactly organized using a poset structure P, ,,, introduced in
Sect. 4, whose main feature is the “Diamond property” (Theorem 4.4). This “Diamond
property”, proved in Sect. 5, is the crucial technical lemma that helps to establish the
“=" direction of Theorem 3.8. Sections 2 and 3 contain basic background and setup
for the discussion of P, , and the “Diamond property”: Sect.2 introduces some
notation and terminology about symmetric groups, Bruhat order, and a certain poset
&1,y that we define; Sect. 3 recalls notions about key polynomials, split-symmetry, and
multiplicity-freeness from [18] connecting Coxeter combinatorics to the geometry.
The “«<” direction is then proved in Sect. 6 via explicit construction.

Finally, in Sect. 7 we prove Theorem 7.2; in the process, we establish a root-system
uniform result (Proposition 7.8) that shows Definition 1.2 and Definition 7.3 from [18]
(a generalization of Definition 7.1) are, in some sense, “close” in general type.

2 Bruhat order of Young subgroups and the poset S, ,,

The main objective of this section is the introduction of the poset St ,,, which we show
is isomorphic to a Young subgroup of G,,. Our eventual goal will be to study certain
subposets of S;,, that play a role in the analysis of the terms of the key polynomial
Kw-

The symmetric group G,, has the poset structure of (strong) Bruhat order <pryhat-
It is convenient for us to use the “upside down” version. That is, the covering relations
are ¥ <pruhat U4s;j where £(u) — 1 = £(us;;) and s;; = (i j) is a transposition. Hence,

under this choice of convention, the longest permutation wo =nn —1 ... 32 11is
the unique minimum, and the identity permutation is the unique maximum.
A sequence of non-negative integers @ = («q, a2, ..., &) is a weak composition.

Let Comp,, be the set of all such compositions. Let Par; be the set of partitions with
at most ¢ nonzero parts. A split-partition is

oL a4 e Parp = Parg, g, x -+ x Parg,,, _q,.
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Fix y € Parp, where D = [n — 1] — I (as in Sect. 1), which we will identify (in
the obvious way) with an element of Comp,,.

Definition 2.1 i, j € [n] are in the same block (with respect to D = [n] — I) if there
exists f € [0, k] suchthatd, +1 <i, j < d;+1.

Let§; =(t,t—1,...,3,2,1).Given y, pick A := A, € Z’io to be any fixed but
arbitrary strictly decreasing vector such that: B

e In the i-th block (of size di — d;_1), the components of A are of the form
(fi, fir--.s fi) +84,—q;_, Where f; is some positive integer depending on i.
e y + A is a vector with distinct components.

Let @n be permutations on the (distinct) entries qf y + A. Clearly there is an isomor-
phism of Bruhat orders between that of S,, and &,, that sends wg to A + y. We will
therefore mildly abuse notation and use <pphat for either order, as the context will be
clear. Let

Q: (6,, <Bruhat) —> (éna <Bruhat)

be this poset isomorphism.
Now, let

Sty = 64i-dy X Say—ay X -+ X gy —ay

be the Young subgroup of @n, where @d,. +1—d; 18 the permutation group on the labels
of A + y in the i-th block. Thus, strong Bruhat order <pynat 0n &, restricts to S 1y

Definition 2.2 Given f € S~1,y (thought of as a vector in Z;o), let
d(w)=8—A.
LetS;,, :=Im ® C Comp,.Forx,y € Sy, define x <pruhat ¥ if @~ (x) <Bruhat
o1 (y).

Proposition 2.3 (57, <Brhat) = (S1,y, <Brha) = (Gg—agy X -+ X Ggy—ap>
<Bruhat)-

Proof @ is injective and hence a bijection onto its image. It is a poset map by con-
struction. This proves the first isomorphism. The second isomorphism is induced from

Q. O
Definition 2.4 If =(Bi, ..., B,) €Comp, andi < j € [n — 1], define #;; : Comp,, —
Comp,, by

i Bivo B ) =GB =G —0D,..., i+ —10),...). (1)

Alsolett; :=1t; j41.

) Birkhauser



55 Page6o0of40 Y. Gao et al.
467 146
S1 S2 t1 to
647 476 326 155
S9 S1 to t
674 746 353 425
S1 S2 t1 to
764 443

Fig. 1 Example of the poset 31’)/ (left) and S; ,, (right)

The next lemma asserts that the role of #;’s in Sy ,, is the same as that of the
sij = (i j) in &,. In particular, the #;’s are analogous to the simple transpositions.

Lemma 2.5 Fori < j in the same block, this diagram commutes:

5 @
S],y — S],y

sij 4 I tij (2)
- @

S],y —> 81,),.

Proof Letf € S 1,y - By definition of A, there is some number f suchthat Ay = f—k
fori <k < j. We have

1B =t Bi— f+i o Pe—frk o Bi—f+j ..
= Bi—fHi—G =)o Be— ko Bi— i+ (G —i)..0)
=C.Bj—f+is Be—f+ko. Bi—f+ij ..

=CD(...,,gj,...,ﬁk,...,Bg,...)=(I>Sij,l§

as desired. O

Example2.6 Let n = 3, I = {1, 2} with a single block, y = 443 and A = 321I.
Figure 1shows the poset S; ,, and Sy, with the actions of s;;’s and 7;;’s respectively.

Remark 2.7 Having formally defined (S;,,, <Bruhat) above, in the remainder of the
paper, one can think of this poset as generated from y via the action of #;;’s, including
just the #;’s.

Definition 2.8 For 8 € Sy, let 6(B) be the rank of B, i.e., there exists a saturated
chain

B = :3(9) >Bruhat ,3(07]) >Bruhat * * * >Bruhat ,3(0) =Y

of length 8 = 6(B) from B to the minimum y in Sy ,,. Also define the sign of S to be
sgn(B) := (—1)*®.
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These facts follow immediately from the usual Bruhat orders and the isomorphism
.

Lemma29 For f € S;, andi, j in the same block,

(i) Bi > Bj — (j—1) ifand only if B <Brunhat tij B in particular, B; —i # B — j for
i #J;
(ii) sgn(#;;B) = —sgn(p).

3 Polynomials and sphericality

Below we define key polynomials and highlight a number of their important properties.
We recall the relationship between key polynomials, split-symmetry, and multiplicity-
freeness that was established in [18]. This allows Theorem 1.3 to be restated as
Theorem 3.8; the proof of Theorem 3.8 will then occupy the remainder of this work.

3.1 Key polynomials

Let Pol := Z[x1,x2,...,x,] be the polynomial ring in the indeterminates
X1,X2, ..., Xy. For ¢« = (v1,00,...,00) € Comp,, the key polynomial ko is
defined as follows. If « is weakly decreasing, then k, := []; xf"'. Otherwise, suppose
o > ojy. Let

Xi ey Xiy Xid1y o o) — Xi+1 ey Xig 1y Xiy o v
JT,'ZPO'—)PO', f'_> lf( 1 i+1, ) i+ f( s Ai41s Ay )’
Xi — Xi+1

and
Ko = i (kg) where @ := (a1, ..., Qit1, i, .. .).

We need facts about the operators 7;; our reference is [23]. The operators 7; satisfy
the relations

minj =mjmi(for |i — j| > 1)
TTTi41T = T4 17T T4

2
jTl =T;.

Recall that the Demazure product on &, is defined by

ws; if L(ws;) = L(w) + 1

w k8§ = .
0 otherwise.

This product is associative. Then R = (s;;, -+, s;,) is a Hecke word of w if w =
Siy R Sy ke kS,
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For any w € &, one unambiguously defines
Ty = T TTiy =« ~ Tjy,

where R = (s;;, ..., s;,) is any Hecke word of w.
Now suppose L = (A1 > Ap > ... > A,) is a partition, and w € &,,. Define

Kwir = K}‘w*I (1)""’}”w*l(n) .
With this choice of convention, we have
Kwa = k.. 3)

Lemma 3.1 Suppose w = wo(I)c where c is a standard Coxeter element and moreover
L(w) = L(wo(1)) + £(c). Then kyy = Twy(1)Ker-

Proof By two applications of (3), and the definition of
Kwi = Kwo(Ier = Tug(@ye (K2) = Tuwo(1)Te(K2) = Two(1)Kea-
For any o € Comp,,, let

. Ai+n—i
Aoi4+n—1,004n—2,...,0 += det(le )ISi,an'

In particular,

is the Vandermonde determinant. Define a generalized Schur polynomial s, by

S (X1, ..., Xp) 1= Aoi+n—1,004+n-2,..., an/an—l,n—Z ..... 1,0- “@

This is well-known, and clear from (4) and the row-swap property of determinants:

Lemma3.2 s;4(x1,..., %) = —Sq(x1,...,%5). Thus, if ¢j+1 = o; + 1 then
Se(X1,...,x,) =0.

A result we need is a characterization of the monomials x# that appear (with nonzero
coefficient) in k,. Graphically represent the weak composition « as a skyline D(«)
of boxes where column i (from the left) is a tower of «; boxes. For example, if
a = (3,0,4,1,0,2) then the associated skyline is

s
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Define Tab(«) to be fillings of D(«) with N := {1, 2, 3, ...} such that:

e no label appears twice in a row (row distinct); and
e the labels in column i are at most i (flagged).

The weight of T € Tab(«) is the vector wt(T) = (cy, ¢2,...) where ¢; = #{i € T}.
The following result is implicit in [2—4] and explicit in [11].

Theorem 3.3 [xP1ky # O if and only if there exists T € Tab(a) with content .

Proof We explicate the argument alluded to in [2-4]; we refer to these papers for
definitions. This argument differs from the one in [11]. In [4], it is shown that a lattice
point B appears in the Schubitope associated to D(«) (rotated 90-degrees clockwise)
if and only if there exists T € Tab(«) with content 8. In [12], it is proved that these
lattice points correspond exactly to the monomials of «,. O

A consequence of Theorem 3.3 that we will use is

Corollary 3.4 Let a, B € Comp,, and assume [xPlk, > 0. Suppose i < j and Bj —
Bi =t € Zso. For1 <s <t letp :=(...0+s,....8 —s,...). Then
[xF Tk > 0.

Proof By Theorem 3.3 there exists T € Tab(«) of content 8. By definition, there are
B; distinct rows where T has a label j, and there are B; distinct rows where T has a
label i. Since B; — B; = t, there exist s rows where T contains a j but not an i. Define
T’ by replacing j by i in those s rows. Since i < j, we conclude T’ € Tab(8’) and
hence (by Theorem 3.3), [8']k, > 0, as claimed. O

Given «, define the set of Kohnert diagrams Koh(w) iteratively. To start D(«) €
Koh(a). If D € Koh(a), consider the top-most box in any column. Let D’ be the result
of moving that box left, in the same row, to the rightmost location that is not occupied
(if it exists); this operation is a Kohnert move. Now include D’ € Koh(a), as well.
We emphasize that Koh(«) is a finite set (rather than multiset), hence if a diagram D
is obtained by two different sequences of Kohnert moves starting from D(«), then D
only counts once in Koh(«).

Given D € Koh(w), let

n
Kohwt(D) = 1_[ x;‘#boxes of D in column i

i=1
Theorem 3.5 (Kohnert’s rule [21]) ky = ZDeKoh(a) Kohwt(D).

Define dominance order on «,f € Comp, such that |a| = Y7 o =
Yo' Bi:=IBlby @ <qom Bifforevery 1 <t <nwehave Y i ;o <> i, B

Corollary 3.6 Let o, B € Comp,, with [xP]ky > 0. Then B >gom .
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3.2 Split-symmetry
We recall some notions from [18, Section 4]. Suppose
dy:=0<dy <dr<...<dy <dyy1:=n

and D = {dy, ..., di}. Let I1 p be the subring of Pol consisting of the polynomials that
are separately symmetric in X; 1= {xg,_,41,...,Xg}for1 <i <k+1.If f € Ip,
f is D-split-symmetric.

The ring I1p has a basis of D-Schur polynomials

Ak = S)Ll(Xl)S)"Z(Xz) . 'S}Lk(Xk),

.....

where
1 k .
(A, ..., %) €Parp :=Parg g4y x --- x Parg,_, —q,

and Par; is the set of partitions with at most ¢ nonzero-parts. See [18, Definition 4.3,
Corollary 4.4]. Thus, for any f € I1p there is a unique expression

f = E C)Ll ..... Akskl ..... Ak

L., AkeParp

,,,,, 1 €10, 1} for all (Al, e, Ak) € Parp, f is called D-multiplicity-free.
This fact allows us to study Levi-sphericality using key polynomials:

Theorem 3.7 ([18, Theorem 4.13]) Let A € Par,, and w € &,. Suppose I C J(w)
and D = [n — 1] — 1. Xy, is Lj-spherical if and only if ky,, is D-multiplicity-free for
all & € Par,,.

In view of Theorem 3.7, the following is equivalent to Theorem 1.3.

Theorem 3.8 Let D = [n—1]—1. w is I-spherical if and only if k) is D-multiplicity-
free for all ) € Par,,.

Our goal is therefore to prove Theorem 3.8. To do this, we will use the lemma
below.

Lemma3.9 Let B € Comp,,. Then

yeeey

where (al, e, ak) € Parp.

Proof First, consider the special case that wo(I) = wg. By [23, Proposition 1.5.1],

1
Tug(f) = —x" 3 (=D w(f).

n
weS,
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Hence by (4), my, (xP) = sg. Rearrange B to be weakly decreasing by application
of the operators 1, 2, ... and swapping two adjacent entries where the left entry is
strictly smaller than the other one. This can always be achieved unless during this
process one arrives at a composition x where «;+1 = k; + 1. In that case, Lemma 3.2
asserts sg = 0. Otherwise we arrive at « € Par, and Lemma 3.2 combined with
Definition 2.8 shows sg = sgn(B)sy.

In the general case, wo(/) is by definition the long element of the Young sub-
1, 2 (k+1)

group &y, gy X -+ X Gy, g of &,. Hence wo(l) = wy " wy~ ..., w, where
w(()l) is the long element of &4,_4,_, = the parabolic subgroup of &, generated by
Sd: 141> Sd;_1+2+ - - - » Sd;—1. Hence, it follows that

Two () = 7Tw(()|)7'[w(<)2) - 'ﬂw(()k+l). (®)]

and the factors commute. Thus, the general case follows from (5) and the special case.
O

4 The subposet P, , of S, , and the proof of Theorem 3.8 (=)

In this section we introduce a subposet P;,,,, of Sy ,,. This poset is shown, in Sect. 5, to
satisfy the “Diamond property” (Theorem 4.4). Assuming this property, we conclude
this section with a proof of the “=>" direction of Theorem 3.8. The central observation
is that P, ,, is poset isomorphic to an interval in the Bruhat order of a Young subgroup.
This permits us to reduce “=" to basics about the Mdbius function of Bruhat order
[10].

Lemma4.1 S;,, (as a set) contains all B € Comp,, such that nwo(l)xﬁ = &s5).

Proof Suppose § € Comp,, satisfies nwo(l)xﬁ = =s5,(# 0). As in the proof of
Lemma 3.9 by successive applying the operators t1, 1, ... (i € I) to , we either
arrive at some y’ € Parp or a k € Comp,, with ;4] = k; + | where i,i + 1 are
in the same block. In the latter case we conclude, by (the proof of) Lemma 3.9 that
T wo( I)xﬁ = 0, a contradiction. Otherwise we find £s,, = s,, which can only happen
if y = y’. Thus, we have found a sequence of ¢;’s connecting 8 to y. The result then
follows from Lemma 2.5 and the definition of S; . O

We need a subposet of S; ,, attached to the following datum:

o w=wo(lu € &, where I C J(w) and £(w) = L(wo(I)) + £(u).
e o = u) for some A € Par,.
e yeParpwhere D=[n]—-1=1{d) <dy <--- <dy}.

Definition 4.2 P, , is the subposet of S; , induced by those B € &;, such that
[Py # 0.

The following lemma is straightforward from Lemma 3.9, the definition of Py ,,
and Lemma 4.1.
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Lemma 4.3 With notations as above, the coefficient of sy, in Ky, expanded in the basis
of D-Schur polynomials, denoted [sy k), equals ZﬂePa , sgn(ﬁ)[xﬂ]/ca.

The nextresultholds foru = ¢, astandard Coxeter element for a parabolic subgroup.

Theorem 4.4 (Diamond property) Let § € Pey y. Let i < j in the same block and
P < q in the same block with (i, j) # (p, q). If both t;; B and t,,4 B are in Pcy y and
cover B, then there exists B’ € Pey.y such that t;j B, tpep < B

We defer the proof of Theorem 4.4 until Sect. 5. We complete this section by using
Theorem 4.4 to prove the “=>" direction of Theorem 1.3.

The following result is immediate from the Diamond Property (Theorem 4.4) and
Newman’s diamond lemma [27].

Lemma 4.5 P, , has a uniqgue maximum.

Lemma4.6 Suppose B € Py y, Bi < Bj — (j — i) for some i < j in the same block.
Then t,‘jﬁ € 'Pa,y.

Proof By Lemma 4.1 Sy ,, consists of all 8 such that rrwo(l)xﬂ = +s,.Let B’ :=1;;B.
Thus, B/ = B; — (j — i), ﬂ} = i+ (j —i),and B; = B if k # i, j. The hypothesis
that ; < B; — (j — i) means §; < B/ and ﬂ} < B; and ;8;. — Bl = (j —i) € Zy.
Hence by Corollary 3.4, [xﬁ/]/ca > 0. Therefore, it follows that 8’ = ¢; iB € Py,y,as
desired. O

Lemmad.7 Let G := Gy, gy X - -+ X 8y, —q, be a Young subgroup of &,,. Suppose
[u, v] C G is an interval. Then

Z (_I)Z(uw) — 1 lf‘M = (6)

P 0 otherwise

Proof For a (locally) finite poset P let up : P x P — R be its Mobius function.
This is defined recursively by up(x,x) = 1 and up(x,z) = — sz;az<py up(x,z).
When P = & = &, the lemma holds since (—1)¢®®) is the Mébius function for &,
under Bruhat order [10].

For the general case, recall [30, Proposition 3.8.2], which states that if P and Q be
locally finite posets, and P x Q is their direct product, if (s,7) < (s/,)in P x Q
then the Mobius functions of P x Q, P, and Q are related by

/,LPXQ((S,I),(S/,I/))ZMP(S,S/)/LQ([,[/). (7)

Elements of & are uniquely factorizable as w = pWp®@ ... p*+D where
p® is an element of the parabolic subgroup Sd;—q;_, of &, generated by
Sdi_1415 Sdj_1+25 - - - » Sd;—1. Similarly, let u = q(l)q(z) .. ~q(k+1) be the factorization
of u € G, and u <ppna w. By iterating application of (7) k many times,
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k+1
i i k1 o0 (@) ()
peww) = [re, @0 p?) = DZ= @070 = (1t

i=1
and the result follows. O

Proposition 4.8 (Pcs,y, <Bruhat) is isomorphic (as posets) to an interval in (&g, —q, ¥
- X G4y —dy» <Bruhat)-

Assuming the proof of Theorem 4.4 (given in the next section), we are ready to
present:
Proof of Proposition 4.8 and Theorem 3.8 (=): Let

I : (81, <Bruhat) = (&gj—dy X -+ X &gy —dy» <Bruhat)

denote the isomorphism of posets from Proposition 2.3.
Let Bmax be the unique maximum of P, < S;,, guaranteed to exist by
Lemma 4.5. The unique minimum is y. It follows from Lemma 4.6 that

F(Per,y) =), T'(Bmax)] € (Gay—dy X -+ X G4y, —dy» <Bruhat)-

This is the assertion of Proposition 4.8.

If sgn(B) is the sign associated to S, then this maps to (—1)¢®#), which agrees
with the Mobius function on &. Now apply (6) to conclude s,, appears in the D-split
expansion of k. = 7y, ke (the equality is Lemma 3.1) with coefficient zero or
one, completing the proof of Theorem 3.8. O

Example4.9 Let w = 765432918 and A = 987654321. Hence J(w) =
{1,2,3,4,5,6,8}; let I = {2,3,4,5,6} C J(w). Thus wo(I) = 176543289
and we can factor w = wg(/)c where ¢ is the standard Coxeter element ¢ =
234567918 = sg51525354555657. Now, ¢~! = 812345697 and w~!' = 865432197.
Therefore @« = cA = 298765413, whereas wl = 245678913.

Since D = [9]—-1 = {1, 7, 8, 9}, we have that k. = k245678913 € I1p is separately
symmetric in the sets of indeterminates {x1}, {x2, x3, x4, X5, X6, X7}, {x3}, {x9}.

Since c is a standard Coxeter element, by [18, Theorem 4.13(II)], we have that «;,
is [n — 1]-multiplicity-free. Consider the term x°28763422 appearing in k.;. Now

928765422
”wo(l)(x )= §9,287654,2,2 = —89,737654,2,2 = §9,764654,2,2 = —59,765554,2,2,

where we have underlined the swaps.
The list of monomials x? of k., such that nwO(I)(xﬂ) = £59.765554,2,2, together
with the signs they contribute are:

[9,7,6,5,5,5,4,2,2]1,19,7,4,7,5,5,4,2,2] —1,[9,7,6,4,6,5,4,2,2] — 1,
[9,5,8,4,6,5,4,2,2]11,[9,7,3,7,6,5,4,2,2] 1,[9,5,8,5,5,5,4,2,2] —1,
[9.2,8,7,6,5,4,2,2] —1,09,3,8,7,5,5,4,2,2] 1.

) Birkhauser



55 Page 14 of 40 Y. Gao et al.

9,287654,2,2

9,387554,2,2 9,737654,2,2
tog l3
9,585554,2,2 9,764654,2,2

9,765554,2,2

Fig. 2 The poset Py, for ¢ = 234567918, » = 987654321, y = 976555422, I = (2,3, 4,5, 6} with
some edges labeled

These elements form a poset Pci,—=9,765554,2,2 shown in Fig.2 isomorphic to an
interval [id, s2s354] in Bruhat order, consistent with Proposition 4.8.

Indeed the coefficients sum to zero, in agreement with the above discussion about
the M6bius function. O

5 Proof of the diamond property (Theorem 4.4)

The initial goal in this section is the proof of Proposition 5.9. This proposition provides
a set of linear inequalities on a weak composition 8 € P, that characterize when
t;, j B remains in the poset. This proposition, along with several technical lemmas, is
then used to prove the diamond property of the poset P, (Theorem 4.4).
Throughout this section we fix a decomposition w = wq(I)c where c is a standard
Coxeter element of some parabolic such that £(w) = £(wo(I)) + £(c), and A € Par,.

Lemma5.1 Let w = wo(Hu € S, with L(w) = L(wo(I)) + L(u). If i € I, then
WA)i = (UA)it1-

Proof The length additivity of wq (/) and u implies J (1) N J (wo(1)) = Jw)NI = @.
Thus = (i) < u~'(i + 1), and since A is a partition, (uX); = Ay=1Gy = Ay=1(i41) =
@A)iy1. O

We will use the following notion from [18]:

Definition 5.2 (Composition patterns) Let Comp := [J°2,Comp,. For & =
(a1,...,00), 8 = (B1,..., Bx) € Comp, a contains the composition pattern B if
there exist integers j; < jo < --- < ji that satisfy:

If @ does not contain 8, then « avoids B.
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Lemma 5.3 cX avoids 012, 1032, 0011, 0021, 1022.

Proof Since c is a standard Coxeter element in a parabolic subgroup, X, € GL, /B is
a toric variety [20]. Hence, by [18, Theorem 4.13(II)], «., is [# — 1]-multiplicity-free
for all A € Par,. In [19], it is shown that ky is [n — 1]-multiplicity free if and only if
« avoids 012, 1032, 0022, 0021, 1022. Thus, since k., is [z — 1]-multiplicity-free, cA
avoids 012, 1032, 0022, 0021, 1022.

To seek a contradiction, suppose that c) contains the pattern 0011. Let j; < jo» <
J3 < ja be the integers such that (cA) j;, (cA) j,, (cA) j;, (cA) j, contains the composi-
tion pattern 0011. Let A € Par,, be obtained from A by replacing all part lengths equal
to (cA)j; by (cA)j; + 1. Then c contains the pattern 0022. We conclude, via [19],
that «_; is not [n — 1]-multiplicity-free. By [18, Theorem 4.13(ID)], this implies X, is
not a toric variety, a contradiction. Thus cA must also avoid the pattern 0011. O

5.1 The leftmin, rightmax, and center functions

The linear inequalties of Proposition 5.9 will be stated in terms of three functions
defined with respect to the fixed weak composition cA. We now introduce and prove
some basic properties of these functions.

Definition 5.4 Let leftmin, (i) = min{e; : j < i} and rightmax, (i) = max{a; :
J =i}
Lemma5.5 Let1 <i,j <nand F € Tab(cA). Then
1) (Wt(F))y > leftming, (i) for 1 <k <i.
(il) (Wt(F))x <rightmax,, (j) for j <k <n.
(iii) Ifi < j are in the same block and leftmin, (i) = (cA); and rightmax,, (j) =
(c))j, then (Wt(F)); = (cA); and (Wt(F)); = (cA);.

Proof (i): By Definition 5.4, for 1 < k < i, (cA)r > leftming, (i). By induction,
and the definition of flagged fillings, F(k,r) = kfor 1l <k <iand1 <r <
leftming; (i). Thus (Wt(F)); > leftmin.; (i) for 1 <k <.

(ii): Once again we apply Definition 5.4, concluding rightmax_, (k) < rightmax_, (j)
for j < k < n. By the definition of flagged fillings a value k can only appear
once in a fixed row, and only in columns greater than or equal to k. Hence,
(Wt(F))x < rightmax,, (k) < rightmax,, (j).

(iii): If i, j are in the same block, then Lemma 5.1, applied inductively, implies
(cM)k = (c)jfori <k < j.This,combined with leftmin.; (i) = (c1);,implies
that leftmin.; (j) = (cA);. Applying (i) and (i) to j yields (Wt(F)); > (cA);
and (Wt(F)); < (cA);. Hence (Wt(F)); = (cA);.

Additionally, (cA)x > (cA); fori < k < j combined with rightmax_, (j) = (cA);
gives rightmax_, (i) = (cA);. Applying (i) and (ii) to 7 again yields the desired equality.
O

Lemma5.6 Leti < j with (cM)i > (cA)g+1 fori < k < j. Let m be the maximum
value such thati < m < j and (c)),, > leftming, (i). Then

[{(d,r) € D(c)) :d <m}| =m for1 <r < leftming, (i).
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This implies that for all F € Tab(cA),
F(d,r) =dfor1 <r <leftming (i) and 1 <d < m.

Proof This first claim follows from the definition of leftmin.; (i). The latter then
follows from inductively applying the flagged and row distinct properties of F. O

Definition 5.7 If i < j with (cA)r > (cA)gy1 fori < k < j, leftming (i) < (cA);,

and rightmax_, (j) > (cA);, then we say the pair (i, j) is interwoven. For such an
(@i, j), define

center, (i, j) = max{k : i <k < jand (cA)x > rightmax,, (j)}.

Notice center,, (i, j) # —oo since (cA); > rightmax,, (j) (otherwise, we have

leftming (i) < (ci); < rightmax,, (j) which says cA contains a 012-pattern,
contradicting Lemma 5.3).

Lemma 5.8 Leti < j with (cA)r = (cA)k+1 fori <k < j. Then

(i) Ifleftming, (i) = (cA); and rightmax,, (j) > (ck);, then
[{(d,r) € D(c)) :d > i}| < 1forr > (ch);,
(ii) Ifleftming;, (i) < (cA); and rightmax,, (j) = (cA)j, then
1{(d.r) € D(cA) : d < j}| = j — 1 forleftming, (i) <r < (cA)j,

(i) Ifleftming, (i) < (cA); and rightmax,, (j) > (cA);, then

[{(d,r) € D(cA) : d > centere; (i, j)} | = 1 for leftmin., (i) < r < rightmax_, (j),
and

[{(d,r) € D(c)) : d < center, (i, j)}| = center., (i, j) — 1 for leftmin.; (i)
< r < rightmax,, (j).

Proof (i): Let r > (cA);. If j < di < dp, then cA contains the pattern
((cA)i, (cA)j, (cA)qy, (cA)ay). Suppose that (dy,r),(d2,r) € D(cA). This
implies (cA)g,, (cA)ag, = (cA);. This, combined with (cA); > (cA);, implies
((cM)i, (cA)j, (cX)gy, (cA)ay) contains 012, 1032, 0021, 0011, or 1022. This
contradicts Lemma 5.3. Thus

[ {(d,r) € D(cA) :d > j}| < 1forr > (c));.

Further, since r > (cA); > (cA) fori <k < j,

[{(d,r) € D(cA) :d >i}| <1forr > (c));.
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(ii): Let leftming (i) < r < (cA);. If di < dr < i, then cA contains the pat-
tern ((cA)g,, (cA)d,, (cA)i, (cA);). Suppose that (dy, 7), (d2,7) ¢ D(cA). This
implies (cA)q,, (cA)g, =< (cA);. This, combined with (cA); > (cA);, implies
((eM)ays (€M) gy, (cA)i, (cA);) contains 012, 1032, 0021, 0011, or 1022. This
contradicts Lemma 5.3. Thus

[{(d,r) € D(c)) :d <i}| >i—1forleftmin, (i) <r < (ch);.
Further, since r < (cA); < (cA)g fori <k < j,
[{(d,r) € D(c)) : d < j}| = j — 1forleftming (i) <r < (cA);.
(iii): Let x be an integer such that x < i and (cA)x = leftming; (i), and y be an integer
such that y > j and (cA), = rightmax_; (/).
Our claim holds vacuously if (cA), > (cA),. Hence, for the rest of the proof we

assume (cA)y < (cA)y. Now cA contains the pattern ((cA)y, (cA);, (cA);, (cA)y) and
by Lemma 5.3 this pattern avoids 012. This, combined with (cA); < (cA)y, implies

(cA)x = (cA)j. ®
It further implies, when combined with (cA), < (c});, that
(cA)i = (ch)y. ©

Let (cA)y < r < (c)A)y. Let center., (i, j) < di < d. Suppose, to obtain a
contradiction, that (dy, r), (d2, r) € D(c)). Then

(cM)dy» (€M)ay > (€M) (10)

If di < j, then the definition of center.; (i, j) implies (cA)g, < (cA)y. This
implies cA contains the pattern ((cA)yx, (cA)q,, (cA)y) which is a 012 pattern. This
contradicts Lemma 5.3. Otherwise, if j < d; < d», then c)A contains the pattern
((cM)x, (c))j, (cA)gy, (cA)a,)- By (8) and (10), this pattern contains 012, 1032, 0021,
0011, or 1022. This contradicts Lemma 5.3. Thus

[{(d,r) € D(cA) : d = center, (i, j)}| = 1 for leftmin., (i) < r < rightmax_, ().
(11

Let (cA)y < 7 =< (cA)y. Let di < dp < center,. (i, j). Suppose, to obtain a
contradiction, that (d1, r), (d2, ) ¢ D(c)). Thus

(cM)ay, (cX)g, < (ch)y. (12)
If d» > i, then (cA)g, > (c)A); and the definition of center, (i, j) implies
(cAM)a, = (cA)y. This contradicts (12). Otherwise, if di < d» < i, then

ch contains ((cA)q,, (CA)g,, (cA)i, (cA)y). By (9) and (12), this pattern contains
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012, 1032, 0021, 0011, or 1022. This contradicts Lemma 5.3. We conclude
[{(d,r) € D(c)) : d < center. (i, j)}| > center., (i, j) — 1. Since (cA)y < r, we
can strengthen this inequality to

{(d,r)eD(c)):d <center., (i, j)}| =center., (i, j)—1 for leftmin, (i) <r
<rightmax; (j).

5.2 The linear inequalities governing poset containment

We are now able to state and prove Proposition 5.9. This subsection concludes with
the proof of two technical lemmas that will be needed in the proof of Theorem 4.4.

Proposition 5.9 Let B € Py, p, i < j inthe same block, and B; > Bj — (j —i). Then
ti,jB € Per,y if and only if

(1) leftming, (i) < B; — (j — i),
(2) rightmax, (j) > Bi + (j —i); and
() if (i, j) is interwoven, then

,3] + -+ lgifl + (,3] - (] - l)) + lgi+l +-+ ﬁcentercl(i,j)
> (M) +---+ (C)\)centerd(i,j)-

Proof (=) We prove the contrapositive. That is, we assume that leftmin.; (i) > 8; —
(j —1), rightmax,, (j) < Bi + (j —i),or (i, j) is interwoven with 81 + - - - + Bi—_1 +
Bj =G =)+ Bix1+- -+ Beenters (i, j) < (€A)1+- - (cA)center (i,j)- LetT =1 ;B
and suppose, to seek a contradiction, that F' € Tab(cA) with T = wt(F).

Case leftming, (i) > B;j — (j — i): By the case hypothesis, leftming, (i) > 7; =
(wWt(F));. This contradicts Lemma 5.5(1).

Case rightmax, (i) < B; + (j — i): By the case hypothesis, rightmax,, (i) < t; =
(wt(F)) ;. This contradicts Lemma 5.5(ii).

Case (i, j) is interwoven with By + --- + Bi—1 + (Bj — (j — i) + Bit1 + -+ +
Beenter.;. (i, j) < (CA)1+- - -+(cM)center,; i, j): The case hypothesis implies that cA fdom
7. This contradicts Corollary 3.6.

(<) Since [xPlker # 0, we know there exists an F € Tab(cA) with wt(F) = B.
There are four cases to consider.

Case leftming;, (i) = (c)); and rightmax, (j) = (cA);: By Lemma 5.5(iii), §; =
(cA); and B; = (cA);. Thus

(ch)i = leftming, (i) < Bj — (j — i) = (ch); — (j — 1), 13)
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where the first equality is the case hypothesis, the inequality is the proposition hypoth-
esis. Thus j > i implies that (cA); < (cA);. This is a contradiction of Lemma 5.1,
and hence this case cannot occur.

Case leftmin; (i) = (c)); and rightmax_; (j) > (cA)j: By Lemma 5.6, F(d,r) =d
foralll <d <iandr < (cA);. Hence, there is an i in every row r < (c)); of F, and

Bi = (ch);. (14)

The flagged property of F, combined with Lemma 5.8(i), implies that i and j can
not both be in row r > (cA); of F. By the definition of F and (14), there are exactly
Bi — (cA); = 0 such rows containing only 7, but not j. By the case and proposition
hypotheses,

Bi — (cA); = Bi — leftming, (i) > Bi — (B; — (j —i)) > 0.

Setting v := B; — (B; — (j — 1)) we can choose v rows 1, ..., ry, > (cA); in F that
contain i and not j.

The filling G is obtained from F by changing the i in rows r, ..., r, to a j. By
construction, G is row distinct. For i < k < j, the boxes (k, r1), ... (k,ry) ¢ D(cA)
since ry, ..., r, > (cA); > (cA)r. Hence the flagged property of F implies that the i
in these rows of F must appear in a column strictly greater than j. Thus the j in these
rows of G appears in a column greater than j, and G is flagged.

Lett =wt(G).Thent; =i —v=8—-Bi— B — (G —D)N=Bj —( —10)
and 7; = Bj +v = B + (B — (Bj — (j — 1)) = B + (j — ). Otherwise, 7 = fi
forr #1i, j. Thus T =1 ;. We conclude that #; ;8 is an exponent vector of k.;.

Case leftming;, (i) < (c)); and rightmax,, (j) = (cA)j: The row distinct and flagged
properties of F', combined with Lemma 5.6 and Lemma 5.8(ii), imply that at least one
ofi or j areinrow r of F for 1 <r < (cA);. By the case and proposition hypotheses,
B; < Bi + (j —i) <rightmax (j) = (cA);.

Hence, there are at least (cA); — B rows r, with 1 < r < (cA);, of F that contain

i but not j. Setting v := B; + (j — i) — Bj < (cA); — Bj, we choose v rows in F,

r1,...,ry < (cA);, thatcontaini but not j. By Lemma 5.8(ii) and the flagged property

of F, foreach e € {rq, ..., ry} there is exactly one d, < j such that (d,, ¢) ¢ D(cA).

It follows, by the definition of e and the flagged property of F, that the content of row

e in the first j columns of F is equal to {1, ..., j — 1}. We use this fact to define the

filling G.

The filling G is obtained from F via the following rule. Let 1 < e < Ay. Then

(1) e ¢ {r1,...,ry}: The e-th row of G equals the e-th row of F.

(i) e € {r1,...,ry}: The e-th row of G is defined by filling each of the values in
[/1\ {i} in the minimal column possible. Explicitly, G(d, e) = d for d < d,,
G(d,e) =d—1ford, <d <i,G(d,e) = dfori < r < j.Then, set
G(j, e) = j, and for any column greater than j the entries in row e of F and G
coincide.

Clearly G is row distinct; fore € {ry, ..., r,}, the content of row e of G is equal to
the content of row e of F' with the unique i replaced by j. It is equally easy to verify
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that each of (i)—(ii) leaves the respective column in G satisfying the flagged constraint.
Lett =wt(G). Thent; =B —v=8 —(Bi +(j —i)—Bj) =B; — (j —i) and
i =8j+v=8;+ B+ —i)—Bj) = Bi +(j —1i). Otherwise, 7y = By for
k #i, j. Thus T =1; ;8. We conclude that #; ;B is an exponent vector of k.

Case leftming, (i) < (cA); and rightmax. (j) > (cA);: Let x be an integer such
that x < i and (cA), = leftming, (i), and y be an integer such that y > j and
(cA)y = rightmax; (j). Suppose, for sake of contradiction, that (cA), > (cA),.
Then, by Lemma 5.5(i), 8; > (cA), > (cA)y = rightmax_, (j). Thus, g; + (j —i) >
rightmax_, (j), which contradicts the hypothesis (2). Thus,

(ch)x < (ch)y. (15)

Corollary 3.6 implies 81 +- - - + Beenter; (i, j) = (CA)1+- -+ (CA)centers (i, j)- NOW

[{(d,r) € D(c)) : d > centerg, (i, j), 1 <r < (cA)y,and F(d, r) < centere, (i, j)} |

=B1+ -+ Beenteryy (i, j) — (€A1 + -+ + (cA)center .G, j))-
(16)

Then our hypothesis 1 +---+ Bi—1 +(B; — (j —i)) + Bix1 + -+ + Beenter,, (i, j) =
(cA)1+ -+ -+ (cM)center, (i, j) 18 €quivalent to B1 + - - - + Beenters; (i, j) — ((€A)1+ -+ -+
(C)\)centerd(i,j)) > B — (,3] — (j — ). Applying this to (16) yields

| {(d, r) € D(cA) : d > center, (i, j), 1 <r < (cA)y,and F(d, r) < centerg, (i, j)} |

>Bi—Bj—G—i).
(17)

We can further refine (17). By the definition of center,, (i, j), (15), and Lemma 5.1,
(cM)g = (ch)y forall i < d < center, (i, j). By Lemma 5.6, F(d,r) = d for all
d < center, (i, j) and r < (c)A)y. Thus, the row distinct property of F transforms
(17) into

[{(d,r) € D(c)) : d > centery, (i, j), (cA)x < r < (cA)y,and F(d, r) < centery; (i, j)} |
> B =B =G =) (18)

By Lemma 5.8(iii), the rows (cA); < r < (cA)y have center,; (i, j) boxes in D(c}).
By (18), we can pick v := B; — (8; — (j —i)) of these rows, where the center; (i, j)
many boxes of D(c)) are filled using precisely the labels 1, 2, ..., center., (i, j). By
Lemma 5.8(iii), for each e € {ry, ..., r,} there is exactly one d, < center., (i, j)
such that (d,, ) ¢ D(cA).

The filling G is obtained from F' via the following rule. Let 1 < e < Aj.

(1) e ¢ {r1, ..., ry}: The e-th row of G equals the e-th row of F.

(ii) The e-throw of G is defined by filling each of the values in [center; (i, j)— 1]\ {i}
in the minimal column possible. Explicitly, G(d, e) = d ford < d., G(d, e) =
d—1ford, <d <i,G(d,e) =dfori <d < center. (i, j). Then set the value
of the unique box in a column greater than center., (i, j) to be j.
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Clearly G is row distinct; for e € {ry, ..., ry}, the content of row e of G is equal to
the content of row e of F with the unique i replaced by j. It is an easy check to verify
that each of (i)-(ii) leaves the respective row in G satisfying the flagged constraint.
Lett =wt(G). Thent; =i —v=6—-Bi— B —(G—D) =8 —G—0),
7y =pBj+v=8+ B —(Bj — (j— ) = Bi + (j —i). Otherwise, 7, = f for
k #1i, j. Thus T = t; 8. We conclude that #; 8 is an exponent vector of k.. O

We now prove two lemmas. The first lemma is one of the primary tools used to
show that certain inequalities from Proposition 5.9 are satisfied. The second lemma
will allow us to simplify one of the cases in the proof of Theorem 4.4.

Lemma5.10 Leti € [n — 1] and B € Py, p. Then
max{rightmax., (i + 1) — leftmin ., (i),0} > B1 + -+ Bi — ((cA)1 + -+ - + (ch)i).

Proof Since [x#]x. # 0, there exists an F' € Tab(c)A) with wt(F) = . Now,

[{(d,r) € D(cA) :d >iand F(d,r) <i}|=B1+ -+ B —((cA)1 + -+ (c));).
(19)

We first prove this lemma fori € [n—1] with (cA); > (cA);i4+1.Letr < leftming, (i).
Lemma 5.6 implies that F(d;,r) = d; ford; < i and r < leftming; (i). Since F is
row distinct this implies

1{(d,r) € D(c)) :d > iand F(d,r) <i}| =0for 1 <r < leftming. (). (20)

Suppose leftming, (i) > rightmax,, (i + 1). Then there exist no (d,r) € D(cA)
such that d > i and r > leftmin., (i). This, combined with (19) and (20), implies
B1+ -+ Bi —((cA);1 + -+ (cA);) = 0. Thus our result trivially holds.

For the rest of the proof we assume leftmin., (i) < rightmax_, (i + 1).

Case leftming, (i) = (cA); and rightmax,, (i + 1) = (cA)i+1: By our assump-
tion (cA); > (cA);+1 and the case hypothesis, leftming, (i) = (cA); > (cA)jy1 =
rightmax,, (i + 1). Thus, since we are assuming leftmin., (i) < rightmax,, (i + 1),
this case does not occur.

Case leftming (i) = (cA); and rightmax, (i + 1) > (cA)i+1: We have that
leftming, (i) = (cA); paired with (20), and combined with Lemma 5.8(i) implies

[{(d,r) € D(cA) :d >iand F(d,r) <i}| <rightmax,, (i + 1) — leftmin, (7).

Then (19) gives the required inequality.

Case leftmin,, (i) < (c)); and rightmax,, (i + 1) = (cA);+1: Lemma 5.8(ii) says
[{(d,r) € D(c)) :d <i+ 1}| > i forleftming, (i) <r < (cA)i+1,
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which implies
[{(d,r) € D(cA) : d <i}|>i—1forleftming, (i) <r < (cA)it1. (21)

Since rightmax_, (i + 1) = (cA);+1, there exist no (d,r) € D(c)) such thatd > i
and 7 > (cA);j+1. This, combined with (20), and the row distinct property of F paired
with (21), implies that

[{(d,r) € D(cA) :d >iand F(d,r) <i}| <rightmax,, (i + 1) — leftmin, (7).

Applying (19) concludes the proof in this case.

Case leftming, (i) < (cA)x and rightmax_, (i +1) > (cA);+1: There existno (d, r) €
D(ch) such that d > i and r > rightmax,, (i + 1). We apply Lemma 5.8(iii), noting
that center., (i,7 + 1) = i, and (20) to imply that

|[{(d,r) € D(cA) :d > iand F(d,r) <i}| <rightmax (i + 1) — leftmin,; (i).

Once again we conclude after applying (19).

This completes the proof for i such that (cA); > (cA);i+1. Otherwise, i € [n — 1]
with (cA); < (cA)j+1.If i = 1 ori = n — 1 the proof is straightforward. Otherwise,
letx <i <i+1<y.Then

(cMit1 = (cA)y (22)

and (cA)x > (cA); by Lemma 5.3 (012-avoidance). If (cA); < (cA)y, then cA contains
the composition pattern 012, 1032, 0021, 0011, or 1022. This contradicts Lemma 5.3.
Thus (cA)x > (cA)y for all x < i. This implies leftmin (i — 1) > (cA), for all
i +1 < y. We conclude leftmin,, (i — 1) > rightmax_, (i +2). By Lemma 5.6 (the
second displayed equation, where we have applied it to i — 1) and the row distinct
property of F, this implies

[{(d,r) € D(cA) :d >i,1 <r
< rightmax_, (i +2),and F(d,r) <i—1}|=0. (23)

Then leftming, (i) = (cA); by Lemma 5.3 (012-avoidance) and, combined with
Lemma 5.6 applied to i, this implies

[{(d,r) € D(c)) :d > i,1 <r <leftming, (i),and F(d,r) <i}|=0. (24)

Now

| {(d,r) € D(cA) :d > iand F(d,r) <i}|
< (cA)i41 — leftming, (i)
= rightmax_, (i + 1) — leftmin,, (i).
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The inequality comes by studying the intervals [1, leftming (i)],
(leftming, (i), rightmax,, (i + 2)], and (rightmax_, (i + 2), (cA);+1]. Respectively,
we use (24), and (23) paired with the row distinct property of F, for the first two
intervals. For the third interval, we use the fact that there is at most one column,
namely y = i + 1, such that y > d and (cA), > rightmax, (i + 2). The equality
follows from (22). O

Lemma5.11 Leti < p < j < g be in the same block and B € Py, . If (i, j) and
(p, q) are interwoven, B <Brunat 1, B, and B <Brunhat p.qB, then t; ;B ¢ Py y or
tp,qﬁ ¢ Pck,y-

Proof If (i, j) and (p,q) are interwoven, then it is straightforward that
center., (i, j) = centercy(p,q). Lemma 5.1 and the definition of center.; (i, j)
implies

(cA)k = rightmax,, (k) fori < k < center.,.(p, q),
which in turn implies, via Lemma 5.5(ii), that
Bk — (cA)x <0fori <k < center.,(p, q). (25)

In a similar fashion, the definition of center,, (i, j) and Lemma 5.3 (012-avoidance)
implies (cA); = leftming, (k) for center,, (p, g) < k < g.Hence, Lemma 5.5(i) says

Br — (cA)g = 0 for centersy(p,q) <k <gq. (26)

Suppose that t; B, 1y 4B € Per,y. Let C := Bi + -+ + Beenter,; (i, j) — ((cA)1 +
et (C)\)centerc,\(i,j))- Then,

rightmax,; (q) — (cA), = rightmax, (¢ + 1) — leftmin,; (¢)
>C+ (ﬂcentercx(i,j)Jr] + -+ ,Bq)
- ((C)\)centerck(i,j)+l + - (C)\)q)

> C+(Bj — (ch)j) + (Bg — (ch)q),

27

where the equality follows from the interweaving assumption combined with
Lemma 5.3 (012-avoidance), the first inequality comes from Lemma 5.10 applied
to B, and the final inequality follows from (26).

Proposition 5.9(3) says

Br+-+Bi-1+(Bj—(j—i)+ Bir1 + -+ Beenters (i, ))

> (M1 + -+ + (CA)center; i, ) » (28)
Br+-+Bp-1+ By —(q—p)+ Bp+r1+ -+ Beenter,. (i, j)
> (M1 + -+ (cM)center,s G, ) - (29)
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Let D := (Biy1+- - +Bceentere. i, j)) — ((€A)ir1+- - -+(CA)center,; i, j))- Reformulating
(28) yields
O<@Br+-+Bi—D— UM+ +(N)i—D+B; — (G —i)—(cA);))+ D
< (cn); — leftming, (i) + (B — (j —i) — (cA);)) + D
= (c); — leftming, (i) + ((cA)j + (Bj — (cA)j) — (j —i) — (cA);) + D (30)
= ((ch); — leftming, (i) + (Bj — (M) j) — (j —i) + D
<@Bj—(M;)—-G—-D+D,

where the second inequality is via Lemma 5.10 applied to B8 (note (cA); =
rightmax,, (i) here), and the final inequality follows from Lemma 5.3 (012-
avoidance).

Let E = (Bp+1 + - + Beenter(i.j)) — ((€M)pt1 + -+ + (cA)center, (i, j))-
Reformulating (29),
O<@Br+--+Bp—1) = U1+ -+ (V)p-1)+(Bg — (g —p) = (cM)p) + E
=B+ + ) -1+ + (M) + (Bg — (@ —p) —(ch)p) + E
=B+ +B)— UM+ + (€M) + (Bg — (g — p) — (ch)p) €29}
=B+ +B) — (M) + -+ (eM)i) + (Bg — (¢ — p) —rightmax,; (¢))
= (Br+-+B)— A1+ -+ (c)i)+ (Mg +(Bg —(cM)g) — (g — p)—rightmax,; (¢).

where the second and third inequality are by (25), the fourth inequality is by Lemma 5.3

(012-avoidance).
Adding (30) and (31) we have

0<C+Bj—(cM)j)+ By —(ch)g) —( —1D)
—(q — p) + ((ch)q — rightmax,; (9)) (32)

which can be reformulated into

rightmax; (¢) — (cA)g = C+ (Bj — (ch)j) + (Bg — (ch)g) — (j —i) — (¢ — p)
< CH(Bj —(ch)j) + (Bg — (ch)q)
(33)

This, combined with (27), gives our desired contradiction. We conclude that #; ;8 ¢
Per,y orty 4B & Pea,y- O

5.3 The diamond property
We are now ready for the proof of Theorem 4.4.

Conclusion of the proof of Theorem 4.4: Without loss of generality assume (i, j) <
(p, g) in lexicographic order. Both 7 :=¢; ;8 and ¢ := ¢, , B cover B, thus

Bi>Bj—(—i=mu, (34)
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Bp > By —(q—p)=¢p. (35)

By Proposition 5.9, we have

Bi + (j — i) < rightmax,, (j), (36)
Bp + (g — p) < rightmax, (¢), (37)
Bj — (j — i) > leftmin. (i), (38)
By — (g — p) = leftming; (p). (39

Moreover, for the same reason, if (i, j) is interwoven, then

Br+--+Bi—1+Bj — (G —i)+ Bix1 + -+ Beenterar (i, )
> (M) +---+ (C)M)centerc;\(i,jy (40)

If (p, ¢) is interwoven, then

Br+---+ ﬂpfl + ﬂq —@—-p+ ,3p+1 +-+ ,Bcenterc)\(p,q)
> (M) + -+ (C)»)centerc.k(p,q)- (41)

We now consider five cases depending on the overlap in the values (i, j) and (p, q).
In what follows, we will make repeated use of Lemma 2.9(i), which characterizes the
covering relation in (S, 7, <Bruhat)-

Case 1.1 (i and p in the same block, i = p, j < ¢q): Suppose, for contradiction,
that 8; — (j —i) = B4 — (¢ — p). Then, since i = p, this equality is equivalent to
Bj = B4—(g—j).Thecontradicts Lemma2.9(i), and hence B; —(j—i) # B4 —(q—p).

Subcase 1.1.1 Bj — (j — i) > B4 — (g — p): By the subcase hypothesis,
t,"j,B <Bruhat [p,qti,j,B- Then tp,qti’jﬂ <Bruhat tj,qtp,qti,jﬂ by (34). Combining, we
have ; ;B <Bruhat tj.qlp.qti,jB = tp,qB- This contradicts the hypothesis that ¢, ;8
covers . Hence this subcase cannot occur.

Subcase 1.1.2 Bj — (j —i) < By — (g — p): We will show that #; ;¢ € P.; . By the
subcase hypothesis, the definition of ¢, and i = p,

bpi=¢p=B—(q—p)>Bj—(G—i)=¢;—(—10). (42)
By (35), (36), and i = p we have

i+ (G—D=F—-@—pP+(G—0D<Bp+(—1i)
= Bi + (j — i) < rightmax; (). (43)

Since ¢; = B;, by (38),
¢j— (j—i)=B; — (j —i) > leftmin; (i). (44)
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Finally, ¢, = B, forr # p, q.If (i, j) is interwoven, then (40) andi = p combined
with the previous sentence implies

b1+ +Pi-1+¢;—( — i)+ i1 + - + Peenters; (i)
=p1+- -+ B+ B — (G —i)
+ Bit1 + - -+ + Beentera (i, j)
> (M1 + -+ + (CA)centery i, ) -

(45)

The hypotheses of Proposition 5.9 are satisfied for #; j¢ by (42), (43), (44), and (45).
Hence, t; j¢ € Peay-

By (42),¢ < 1i,j¢.By(35), i+ (j—i) = Bp+(j—i) > Bg—(q—p)+(j—i) =
By — (g — j),and hence T =1; ;B <Buhat Lj ¢ti,j B = ti,jP.

Case 1.2 (i and p in the same block, i < p, j = p): In this case,

T, =B+{G—-1)>Bj>B;—(@q—p)=1—(q—Pp) (46)
pi=Bi>Bi—(G—D>B—@q@—p—G-D=¢;—G—0). @

Before breaking into subcases we first prove that ¢ <prnat #,j®,%p,47, and
T <Bruhat 1i,j®, tp,qT. First, ¢ <Bruhat %, j¢ and T <Brhat p 47 follow from (47)
and (46). Then, (34) implies

$i=Bi>Bi—(—)=Bj+@—j)+(q—i)=¢;—(q—i),
and hence ¢ <uhat ti,q¢ = tp,4T. Finally, by (35),
=B —(G-0D>B—-g—N-0G-D=1—(q—10),

and thus T <punat %i,¢qT = #,j¢. Hence, in all the following subcases, it remains to
show that at least one of t; ;¢ or 7, ;T are in Pey, .

Subcase 1.2.1 leftming, (i) = (cA); and rightmax,, (j) = (cA)j: By Lemma 5.5(iii),
Bi = (cA); and B = (cA);. Thus

(ch); = leftming, (i) < Bj — (j — ) = (cA); — (j — ),

where the first equality is the case hypothesis and the inequality is (38). Now j > i
implies that (cA); < (cA);. This contradicts Lemma 5.1, and hence this case cannot
occur.

Subcase 1.2.2 leftming, (i) = (cA); and rightmax_; (j) > (cA);: By Lemma 5.1, the
subcase hypothesis implies

leftming, (k) = (cA)g fori <k <gq. (48)
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By Lemma 5.5(i) this implies
Bk = (cM)g fori <k <gq. (49)
In this subcase, (38) and (39) become

Bi —(J —1) = (ch)i = (ch)j + ((ch)i = (ch)), (50)
Bg — (g = p) = (ch)p = (ch)g + ((cA) p = (cA)q). 61V

Thus
rightmax,; () — (cA), = rightmax,; (¢ + 1) — leftmin.; (¢)
>Br+-+ B — (M) + -+ (ch)g)

i—1 q—1
= (Z B — <cx),) + 1B — ()il + ( > ﬁ,—(cM,)

t=1 t=i+1,t#p
+Bp — (cM)pl + [Bg — (cA)q]
= [Bi — (cM)il + [Bp — (cA)p] + [Bg — (ch)q]
= [Bi — (cAD]+[( =)+ ()i — (ch) P1+[(g — p)+((ch) p — (cA)g)]

=i + (g — i) — (cA)q,
(52)

where the first equality follows from the subcase hypotheses and (48), the first inequal-
ity from Lemma 5.10 with rightmax., (g + 1) — leftmin. (qg) > 0, the second
inequality by Corollary 3.6 and (49), and the third inequality is by (50), (51), and the
final equality by p = j. Rewriting (52), we arrive at rightmax,, (¢) > B + (¢ —i) =
7, + (¢ — p). Further, by 39), 7, — (¢ — p) = B4 — (@ — p) = leftmin.; (p).
The hypotheses of Proposition 5.9 are satisfied for t, 4T by the preceding two sen-
tences, the subcase hypothesis, and (46). Hence, t, ;T € P,y (notice (p, g) cannot
be interwoven since j = p and cA is 012-avoiding by Lemma 5.3).

Subcase 1.2.3 leftming, (i) < (cA); and rightmax, (j) = (cA);: By the subcase
hypotheses,

rightmax,, (k) = (cA)r fori <k < j, (53)
and hence by Lemma 5.5(ii)
Br < (cA)g fori <k < j. (54)
In this subcase, (36) becomes
Bi +( —i) = (ch)j = (cA)i + ((ch)j — (cA)i). (55)
By Corollary 3.6 applied to ¢ = 1, 48,
Bit--+Bi-1 — (M1 + -+ (cA)i-1)
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>—(Bi+--+Bj-1+ By — (@ —p)
—((cA)i 4+ (ch) ). (56)

We conclude

(cA); — leftming, (i) = rightmax,; (i) — leftmin, (i — 1)
> B+ -+ Bi1 — (€M) + -+ (ch)i—1)
>—((Bi+ -+ Bj—1+Bg—(q@—p)—(ch) +---+(cA)}))

j—1
=- Z Br — (ch) | = [Bi — (cA)il = [Bg — (@ — p) — (cA)j]
t=i+1
= —[Bi = (cM)il = [Bg — (g — p) — (cA)j]
> =[G =D+ Ucr)j — (M)l —[(Bg — (g — p) — (c)) ]
=(g —i)—(Bg — (cM););
(57)

the first equality follows by the subcase hypotheses, the first inequality from
Lemma 5.10 with rightmax_, (i) — leftmin. (i — 1) > 0, the second inequality by
(56), the third inequality by (54), the fourth by (55), and the final equality by p = j.
Now (57) is equivalent to

leftming, (i) < By — (g — i) =¢; — (j —0).
Further, by (36),
¢i + (j — i) = Bi + (j — i) = rightmax,; ().

The hypotheses of Proposition 5.9 are satisfied for t; ;¢ by the preceding two sentences,
the subcase hypothesis, and (47). Hence, #; j¢ € Pca.y.

Subcase 1.2.4 leftming; (i) < (cA);, rightmax,; (j) > (cA);: In this subcase,
leftmin,, (j) = (c});, since leftming; (j) < (cA); would imply that cA contains 012.
Thus, since (i, j) isinterwoven, center., (i, j) < j and the definition of center,, (i, j)
and Lemma 5.3 (012-avoidance) implies
leftming, (k) = (cA)y for center., (i, j) <k <gq. (58)
Corollary 3.6, applied to 8 and t, respectively, implies
Br+---+ ,Bcenterc;\(i,j)) — (M1 +---+ (C)\)centerd(i,j)) >0,

and

(/31 +---+ ,31'71 + ,Bj - (] —i)+ ,31'+1 4+ lgcenterd(i,j))
—((cM)1 + -+ + (cM)center, (i, j)) = 0.
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The second inequality yields

B+ + ﬂcenterd(i,j)) — (M) +---+ (C)L)centerd(i,j))
>Bi—(Bj— (G —10) (59)

Thus
rightmax,; (¢) — (cA)4 = rightmax,, (g + 1) — leftmin., (¢)

> B1+ -+ Beenters (i, j) — ((€A)1 + -+ - + (cA)centerss (i, j))
+ (Beentera (i, j)+1 — (€A)centery (i, j)+1) + -+ + (Bj—1 — (cA) j—1)
+ (Bg—(q — p)—(cA) )+ Bjr1—(cA) j+1)+ -+ (Bg—1—(cA)g-1)
+ (Bj + (g —p)—(ch)q)

> B1+ -+ Beenterg (i, j) — ((€A)1 + -+ + (cA)center.y i, j))
+Bj+ @ —p)—(ch)y)

>B—Bi—G =)+ B+ (@ —p)—(ch)g)

=Bi+ (g — i) —(ch)g,
(60)

where the first relation follows from the subcase hypotheses, the second relation from
Lemma 5.10 with rightmax_, (g + 1) — leftmin.(¢) > 0 applied to 7, the third
from (58), Corollary 3.6, and Lemma 5.5(i), the fourth by (59), and the final by
p = j. Hence, (60) implies rightmax, (¢) > Bi + (¢ —i) = 1) + (¢ — p). By (39),
leftming; (p) < B, — (g — p) = 14 — (q — p). We conclude by Proposition 5.9 applied
tot, 47 thatt, ;T € P, p (notice (p, g) cannot be interwoven since j = p and cA is
012-avoiding by Lemma 5.3).

Case 1.3 (i and p in the same block, i < p, j = g): Lemma 2.9(1) implies B; #
,Bp —(p—10).
Subcase 1.3.1 B > B, — (p — i): It is easily checked that 7, 48 <Bruhat

ti,ptp,gB <Brunat Ipgli,ptpqB = ti jB. Hence t; ;B is not a cover of B and this
subcase cannot occur.

Subcase 1.3.2 B; < B, — (p — i): By the subcase hypothesis, the definition of 7, and
J=4q

p=PFp>P+p—-0=B+U—-i)—(q—p)
=1,—(@—-p =17—-(@—-Dp). 61)
By (34), (39), and j = g we have

ti—@-p=B+G-1—-(@—-—p)>Bi—@—p)
By + (g — p) = leftming; (g). (62)

73— (@ —p)

Since 7, = B, by (37),
7, +(q — p) = Bp + (¢ — p) < rightmax,, (q). (63)
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Finally, t, = B, forr # i, j.If (p, q) is interwoven, then (41) and j = g combined
with the previous sentence implies

T+ +Tp-1+7g—(@G—p)+Tpr1+--- + Tcenterqy (p.q)
=B+ +Bi-1+B;—(G -0+ Biy1+---
+ ,31,,] +Bi+(—i)—(q— P)+/3p+1 +-- '+/3centerck(i,j) (64)
=B+ +Bp-1+Bj — (@ — pP)+Bp+1t+- -+ Beenter (i, ))
> (M) +---+ (C)»)centerd(i,j)-

The hypotheses of Proposition 5.9 are satisfied for 7,47 by (61), (62), (63), and (64).
Hence, 1, 4T € Pery.

We conclude by (42) that T <ruhat p,qT- By G4, ¢ = B > B; — (j —i) =
Bg—(q—p)—(p—i) =¢p—(p—i),andhence ¢ = 1 4 B <Bruhat li,plp.gB = tp4T-

Case 1.4 (i < p < j < q are all disjoint): In this case 7, ¢ <Brnat 4, jtp,qB =
tp.qti,jB. By Lemma 5.11, at least one of (i, j) or (p, g) is not interwoven. If (i, )
is not interwoven then it follows from applying Proposition 5.9 to #; ; 8 € P;. , that
1p.q B satisfies the hypotheses of Proposition 5.9 yielding 1; 1, 48 € Py, . Similarly,
if (p, g) is not interwoven, Proposition 5.9 implies 7, 4t ;B € Pea.,y -

Case 1.5 (i < j < p < q are all disjoint): Once again 7, ¢ <Brhat 4, jlp,gB =
tp.qti,jB. It is easy to check that 7, 4B satisfies the hypotheses of Proposition 5.9
yielding ti)jl‘p,qﬂ € 'Pc)\‘y. O

6 Proof of Theorem 3.8 (<)
Let us restate the “«<=" direction of Theorem 3.8:

Proposition 6.1 Let w € S, I C J(w) and D = [n — 1] — I where w is not
I-spherical. There exists A € Parp such that k), is not D-multiplicity-free.

Our strategy is to construct such a A explicitly.

Proof Let u = wo(I) - w. Since w is not [-spherical, by Definition 1.2, u is not
a product of distinct generators. By Proposition 7.9, u contains 321 or 3412. We
divide our analysis into cases based on the patterns contained in u. For u € Comp,

write u|p = (u', ..., u%) to denote the splitting of w into blocks of sizes di —
do, ..., dr+1 —diy = n —dy. Note that u|p € Parp if it is weakly decreasing in each
block.

Case I (u contains the pattern 321): Choose the partition A whose parts are in {2, 1, 0}
so that uA contains the values 0, 1, 2 at indices p’ < ¢ < r’. Choose the pattern 012
so that 7’ — p’ is minimized. Also choose the minimum p < p’ such that u) contains

only 0’s at indices p, ..., p’ and choose the maximum r > r’ such that uA contains
only 2’s at indices r/, ..., r. An example of a skyline diagram of uA is shown in
Fig. 3.
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Ll [ 1]

p P’ q r r

Fig.3 A skyline diagram for u\ that contains 012

Here, (u), =0, (ur), = 1, (ur),» = 2. In the interval [p" + 1, g], uA can take
on 1’s or 2’s, and all the 2’s are left of the 1’s by minimality of r — p’. Similarly, in
the interval [g, r’ — 1], u) takes on values 1’s followed by 0’s. Thus, in the interval
[p' + 1,7 — 1], say u takes on k; > 0 many 2’s, then k; > 1 many 1’s and then
ko > O many 0’s, and (uA), = 1.

Since I C J(w), D = [n — 1] — I, w is weakly increasing in each block so uX
is weakly decreasing in each block, i.e., (ur)|p € Parp. The argument that follows
only uses this property of D.

Consider the following composition

y=@L. v =wrté, -,

It is easily checked that if (uX); > (uA);+1, then y; > y;41 by our choice of p and r.
Thus each y' is indeed a partition, meaning that y € Parp.

Recall the poset Pyy,y (Sect.4) contains all vectors B such that the monomial xP
appears in the expansion of «,,; and 7y, [)X'B = +£s, (seeLemma4.1). By Lemma 4.6,
Punr,y is an order ideal in Sy ,,. Also each element f can be generated from y via the
moves f;;j.

Claim 6.2 Py , has height at most 1. Moreover it has at most k\ — 1 many B such
that 0(B) = 1.

Proof of Claim 6.2 Since all part sizes of uA belong in {0, 1, 2}, it is straightforward
from Lemma 2.9(i) that the only #;;’s that increase the rank of g are

G L L ) (..,0,2,..)

for i and i 4+ 1 in the same block. The number of nonzero values in the composition
decreases by one when we apply such a move. Let #..08 be the number of nonzero
values in 8. By Kohnert’s rule (Theorem 3.5), #..08 > #ouA for [xBley > 0. At
the same time, #..0y = #.ouA + 1, meaning that for all 8 € P, ,, B can be obtained
from y via at most one such move ¢;.

Next, let B = t;y € Py.,y. Since B >gom uA, by Corollary 3.6, we necessarily
have p’ <i <r’'soiisoneof r’ +ky+1,...,r +ky+k; — 1 such thati and i + 1
are in the same block. Thus, there are at most k; — 1 choices for i. O

Claim 6.3 If B € Py, and 0(B) = 1 then [xPlicys = 1.

Proof of Claim6.3 For each such 8 = t;y, there is exactly one corresponding Kohnert
diagram, as we need to move the top box in column r of uA to column i + 1, and
the single box in column i of A to column p. An example of such Kohnert diagrams
corresponding to the example in Fig. 3 is shown in Fig. 4. O
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L1 lq [

p q r

]
[T []
p q r
(] [] []
7 T g
(] []
p 4q r
]
(] | []
p q r

Fig.5 Kohnert diagrams with weight x”

Claim 6.4 [xV ]k =k + 1.

Proof of Claim 6.4 The D € Koh(ul) such that Kohwt(D) = y are obtained by either

e moving the top box of column r in A moved to column p; or
e moving the unique box in the column z € {p’' +kry + 1,...,p  + ks + k1} to
column p followed by moving the top box in column r to column z.

These Kohnert diagrams corresponding to the example shown in Fig.3 are shown in
Fig.5. O

Hence, by Claims 6.2, 6.3, 6.4, and Lemma 4.3,

[sylewn = Y sgn(BxP Ik = ki + 1) — (ki — 1) =2
ﬂEPuA.V

SO Ky, 1s not D-multiplicity-free.

Case 2 (u avoids the pattern 321 but u contains the pattern 3412): Pick A € Par,
to consist of values in {3, 2, 1, 0} so that u)X contains the values 1, 0, 3, 2 at indices
P < q <r <7 sothat 7z — p’is minimized. Analogous to Case 1, choose the
minimum p < p’ such that uA contains only 1°s in the interval [p, p’] and choose the
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L]

P pq q YTz, z

7

Fig.6 A skyline diagram for u that contains 1032 and avoids 012 (possibly z = z’)

maximum z > z" such that uA contains only 2’s on [7/, z]. Let ¢ > p be the minimum
index such that (#1), = 0 and let r < z be the maximum index such that (1), = 3.
Since u avoids 321, u) avoids 012, and together with the minimality of z’ — p’, we see
that (uA) pry 1, - .., (MA)y 1 can only take on values in {0, 3}. An example of a skyline
diagram of uA is shown in Fig. 6.

Similar to Case 1, let

y=0h. v =wr+é, +é, —é —é)lp € Parp.

Claim6.5 Py, = {y}.

Proof of Claim 6.5 By Proposition 2.3, Lemma 2.5, and Lemma 4.6, it suffices to show
that there does not exist 7, i + 1 in the same block such that 8 = t;y € P, ). If such
at; exists, then [x#]k,; > 0 and so B >dom uA, by Corollary 3.6. Also we must have
p < i < zsince y and uA only differ in that interval. Let f<; := (81, ..., B;) and
recall that #..0 8 is the number of nonzero entries in 8. By Kohnert’s rule, Theorem 3.5,
for B € Pup,y, #20B<j > #20(ud)<; for all j. Consider the following cases:

e p=i<q,ti:y=0..,2,1,..0=> (..,0,3,..), #.0B<i <#Hx0(ur)<i;

ep<i<gqg,ti:y=0C...,L1L..0—(..,0,2,..),#.0B<i <#0(ul)<;;

eg<i<r,ti:y=((..,1,0,..)0~>(C..,—1,2,..0)0r (..., 3, Bi+1,...) >
(..., Bi+1 — 1,4, ...), with impossible part sizes;

er <i<zti:y=00..,22,..0~> (...,0L3 .. )or (....,2,1,...) —
(...,0,3,...), where the newly generated part of size 3 cannot be obtained by
Kohnert’s rule, Theorem 3.5, since u}, y and § only differ on the interval [p, z],
thatis B ¢ Py, , a contradiction.

As a result, no such #; exists. O
Claim 6.6 [xY ]k, = 2.
Proof of Claim 6.6 The D € Koh(u)) such that Kohwt(D) = y are obtained from u\
by
e moving the top box of column r to column p and moving the top box of column
Z to column g; or

e moving the top box of column r to column ¢ and moving the top box of column
Z to column p;

as shown in Fig.7. O

Therefore, by Claim 6.5 and Claim 6.6, [s) k. = [x? ]« = 2, as desired. O
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L H

1 L] | |
P q T Z
| ]
] H
I | |
P q T Z

Fig. 7 Kohnert diagrams with weight x¥

7 Equivalence of definitions

Let’s first recall the definition of /-spherical in [18]. Let Red(w) be the set of reduced
expressions w = sj, - - - Si,(,, - Let D 1= [n — 1N=-I1={d <dy <---<di}; dy:=
0, dy+1 = n.

Definition 7.1 ([18, Definition3.1]) Letw € &, and I < J(w). Then w is I-spherical
if R =sj,8, - Sy € Red(w) exists such that

(S.1) sg4; appears at most once in R; and
(S2) #m 1 di—y <im <dy} < (T ) forl <t <k+1.

Theorem 7.2 Definitions 1.2 and 7.1 are equivalent.

Theorems 7.2 and 1.3 were used in C. Gaetz’s [14], which proves [18, Conjec-
ture 3.8]. This gives a pattern avoidance criterion for maximally spherical Schubert
varieties [14, Theorem 1.4, Corollary 1.5]. We refer to [18] for further information.

We first derive some results valid for any finite crystallographic root system ®. Let
the positive roots be ®*, with simple roots A = {aj, ..., a,}. Let W be its finite
Weyl group with corresponding simple generators S = {s1, 52, ..., s,}, where we
have fixed a bijection of [r] := {1, 2, ..., r} with the nodes of the Dynkin diagram G.
Let Red(w) be the set of the reduced expressions w = s;, - - - s, where k = £(w) is
the Coxeter length of w. The left descents of w are

J(w) ={j €[r]: lsjw) < L(w)}.

For I € 2], let G; be the induced subdiagram of G. Write

m

g =Jc®? (65)

z=1
as its decomposition into connected components. Let w((f) be the longest element of
the parabolic subgroup W, generated by / @ = (s iiJj € C@}. The generalization

of Definition 7.1 to general type was given as follows:
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Definition 7.3 Let w € W and fix I C J(w). Then w is I-spherical if there exists
R = i) -+ siy,, € Red(w) such that

o #{t|i;=j}<1forall j € [r]—1,and
o #{t]i; € CO) < L(w?) + #vertices(C?) for 1 < z < m.

Such an R is called an I-witness.

Definition 1.2 makes sense in the general context as well. However, that notion dif-
fers from Definition 7.3 in type D4 and Fy (this reduces confidence in the general-type
classification conjecture for Levi-spherical Schubert varieties [18, Conjecture 1.9]).
We plan to study this further in future work.!

We now develop some preliminary results.

Llemma7.4 Let w € W and fix I C J(w). Let R = sj; ---5iy,, and R' =
Sji Sjuw € Red(w) be such that each s;, t € [r] — I, appears at most once in
R, and at most once in R'. Then for each 1 < z < m,

#{t i, e COY=#{t|j, e D).

Proof We may assume without loss of generality that ® is irreducible. Furthermore, we
may assume without loss of generality that each s; € S is used in any (equivalently, all)
R” € Red(w), since otherwise we work individually on the root systems associated
to each irreducible component of A \ {«;}.

We induct on m > 1. In the base case m = 1, then

#t i, € CV)Y = t(w) — (r —#I)

is independent of any choice of R”, so we are done.

For the induction step, consider a fixed C € (€W, ...,c™). Fixsomety € [r]—1I
such that not all of CV, ..., C“ lie in the same connected component of (the Dynkin
diagram of) S \ {70}. Such 7y can be chosen because m > 2 and the Dynkin diagram
for Wisatree. Let Ji, Ja, ..., Jp be the connected components of S\ {#o} and assume
CcJ.

Note that generators in different J;’s commute with each other. For the reduced
word R, we can regroup it as wy, S Wy, Sl gy U, where wy,,u; € Wy, the
parabolic subgroup generated by J;. We can rearrange it as

w=(wp, - wy, )Wy Sug) Wy, ---uy,).

Similarly, for R’ we obtain

= / .. / / .. /
W= Wy Wy Syl g

/ / / / / /
(wJ2 . 11)Jp)(w~,1stoujl)(uJ2 . ~qu).

1" As mentioned in the introduction, in later work [ 16, Section 4] such a counterexample was indeed verified
using Demazure character computations.
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Since w, s, u 7, does not contain any simple generators associatedto K = JoU--- U
Jp, it is the unique minimal double coset representative of Wx w Wk . This implies
that wy, s;u ), = w’J1 stou’Jl, where we obtained the same Weyl group element from
different reduced decompositions.

Now apply the induction hypothesis by replacing S by J; U {7}, I by I N J1 U {to},
w by the minimal length coset representative of Wxw W, R (and R’) by the subword
of R (and R’) that equals w, s;u s, = u)’Jl s,ou’Jl, and leaving C unchanged. O

For each a € ®™, define its support to be
Supp(a) = {o; € A | @ — «; is a nonnegative linear combination of A}.

Also, for each positive root o = Z;zl ciw, written as a nonnegative linear com-
bination of A, define its height to be ht(x) = Zle ¢;. The next folklore result is
well-known, but we do not know a precise reference with proof. We include one here:

Lemma 7.5 For each o € ®T, Supp(a) is a connected subgraph in the Dynkin
diagram.

Proof We use induction on ht(c). The base case ht(«) = 1,1i.e., ¢ € A, is clear.

In the induction step, foreacha € ®*\ A, thereexistsi € [r]suchthata’ := s;a =
a — ka; € @ for some positive integer k. We know that ht(a’) < ht(a) so Supp(a’)
is connected by induction hypothesis. At the same time, Supp () = Supp(a’) U {e;}.
If &; € Supp(e’), then Supp(e) = Supp(er’) is connected. Thus, we assume o; ¢
Supp(a’). Let {(—, —) denote the standard inner product on the ambient vector space
containing our root system. We have

2(’, o
o = Sia/ = (x/ — u(x, # O{/.
(o, o)

As (o, o) # 0, there exists some «j € Supp(er’) such that («, @) # 0, meaning that
the node j is connected to the node i in the Dynkin diagram. Therefore, Supp(«) =
Supp(a’) U {o;} is connected. O

Lemma 7.6 Suppose that we have an equality of reduced words s; sy -+ Si_, =
SiySiy -+ Sip. Then #{t | iy = j} = 2 for all j on the path (excluding iy and i)
between iy and iy in G.

Proof Let w = s;,8iy - Siy_; = SinSiz - Sip- AS 8, - -+ 5, is reduced, o, is a right
inversion of w, where e, is the simple root corresponding to s;,, i.e., o, € ®T and
wa;, € 7. Let —B = wa;, so B € ®+. We have that

ﬂ = —Sip S W = —Sip iy (_aik) = Sip " Si_ Uy .

This means that s;) 8 = wa;, = —Bso B = «;,.
Note that since s; iy is reduced and has «;, as its right descent, we know

. . .y S T . +
Sij o Sig_y Sig Qi € o, Si; Sip_ o, € DT

) Birkhauser



Classification of Levi-spherical Schubert varieties Page 37 of 40 55

Consider the sequence of positive roots
s Si 1 Qs v ooy Sip =+ Sip 1 O, = Uy

2(x,a)
(a,a)

By definition, sy (x) =

Supp(si, - - - Sip_ %) A Supp(s, -+ sip_ o) © {e, ), fore =k —1,...,2.

Recall that for each @ € ®7, its support Supp(«) is connected in the Dynkin diagram
(Lemma 7.5). Fix any j on the path between i; and i in the Dynkin diagram. As a
result, there exists some p such that o; € Supp(s; b Si ,¢,). Thus, there must be

some s among s, . .., Si;_; SO that a positive multiple of «; can be added from «;, ,
and there must be some s; among s;,, ..., S; o1 SO that a positive multiple of «; can
be subtracted to obtain «;, . 0

We use this textbook result:

Proposition 7.7 (Deletion property [8, Proposition 1.4.7]) Let w = s;, ---si, be a
reduced word. Then for a left descent s,o of w, ie. E(s,ou)) = L(w) — 1, we have
another reduced word w = s;,S;, - - -s, - Si,, where s;, Si; means the deletion of Sij-

The culmination of the above root-system uniform arguments is this next proposi-
tion, which says that Definition 7.3 is, in general, “close” to Definition 1.2.

Proposition 7.8 If w € W is I-spherical (in the sense of Definition 7.3), then there
exists an I-witness R of w of the form R = R'R” where R’ € Red(wo(I)) and
R” € Red(wo(I)w).

Proof Let R® = siy -+ 8i, be an [-witness of w. Pick any R" = sg, -5, €
Red(wo(1)). We gradually modify RO 5o that at each step it remains an /-witness,
until it is of the desired form. For each j = ¢/,..., 1, add s; ; to the start of R. By the
deletion property (Proposition 7.7), some Siji is deleted resulting in R € Red(w).
By Lemma 7.6, k; and [ j must be in the same C@ since otherwise, some s; withi ¢ [
on the path from k; to i ;s in the Dynkin diagram is used at least twice in RO, con-
tradicting that RO is an I-witness. Thus, in RV, #{r | i, € C¥)} remains unchanged
for each z. Repeating this, k,» many times, we obtain an /-witness R%¢) = R'R”, as
claimed. O

Henceforth, we assume that W = &,,. Recall that w € &,, contains the pattern
u € Gy if there exists i1 < ip < ... < i such that w(iy), w(iz), ..., w(i) is in
the same relative order as u(1), u(2), ..., u(k). Furthermore w avoids u if no such
indices exist.

We need the following proposition relating pattern avoidance and standard Coxeter
elements. A more general statement for finite Weyl groups can be found in [15].

Proposition 7.9 ([33]) A permutation w € G,, is a product of distinct generators, i.e.,
a standard Coxeter element in some parabolic subgroup, if and only if w avoids 321
and 3412.
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block 131 12 t3

ky ky = ks

1 containing 321 in the proof of Theorem 7.2

Fig.8 An example of a permutation u ™~

Conclusion of the proof of Theorem 7.2: If w € &, satisfies Definition 1.2 then it
satisfies Definition 7.1 as the length-additive expression w = wq(/)c provides an
I-witness, where c is a product of distinct simple reflections.

Conversely, suppose w € G, satisfies Definition 7.1. We now show that it satisfies
Definition 1.2. Recall D = [n] — I = {d] <dy < --- < di};dyp =0, dxy1 = n. Let

A ={di_1 +1,...,di}fori=1,... . k+1.

Assume w is I-spherical with some /-witness. By Proposition 7.8 and Definition 7.1,
we can write w = wo(I)u such that there is a reduced word R” = s, - - g of u
such that

e 54, appears at most once in R”; and
o #m|di_y < iy <d) < (T (I =d, —dy_y forl <t <k+1.

By Proposition 7.9, it suffices to show that u = wo(I) - w avoids 321 and 3412,
or equivalently, = avoids 321 and 3412. Since Proposition 7.8 implies £(w) =
Lwo (D)) + £w), u = wo(I) - w does not have left descents in 7. In other words, u~!
is increasing on the indices A; for 1 <i <k + 1.

Think about R” as successive multiplications of #~! on the right by simple trans-
positions of R” (read right to left) until one reaches id (for example, if u~! = 2413,
R"” = 51535, represents 2413 — 2143 — 2134 — 1234). Since s4, appears
at most once in R”, we know |[{u~'(1),u"'),...,u""(d)}\[di]| < 1. More-
over, if this cardinality is 1, sy, swaps max{u—1(1),...,u""(d))} at index d; with
min{u~'(d; + 1), ...,u"'(n)} at index d; + 1.

First suppose u~! contains 3412 at indices k; < k» < k3 < k4. Then any reduced
expression of u~1 contains at least two copies of s forky < j < k3. Since u (k) >
u—1(k3), ky and k3 lie in different A;’s. This means that there exists some k, < Jj<ks
with j ¢ I such that s; is used at least twice in R”, a contradiction.

If u~! contains 321 at indices k| < ky < k3 with k; € Ay, thent; < 1 < 13. We
concentrate on the block A;, and will show that simple transpositions in A;, are used
at least dy, — dy,—1 times in R”. A visualization of u~! is shown in Fig. 8.
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Recall that Sdyy—1 exchanges the maximum value in indices A; U - - U A4, with

the minimum value in indices A;,, U - -- U Aj41. Since ul(ky) > u=1(ks), the value
u~1(ky) is not the minimum among ul (Ap, U---U Ag41) and thus cannot arrive left
of index d;,—1 + 1 during this Sd;,—y SWap. Similarly, since u‘l(kz) < uYky), the
value u~! (k) cannot go to the right of index dy, — 1. As a result, the value of u (k)
occurs among u! (A;,) as we are using R” to transform u~ ! into id.

In order to put u=L(k), u=(kp), u=1(k3) into the correct order, both the values
u (k1) and u~!(k3) must enter Ay, and exchange with u~ (ko). In particular, all
of the simple transpositions s;, j = di,—1 + 1,...,d;, — 1 must be used in order
to exchange u=l (k) with u—1(k3). Moreover, certain s ; need to be applied twice:
if u—l(ky) switches with u~!(k) at transposition s; before u—1(ky) switches with
u—1(k3), then sj must be used again; and if u—L(k3) switches with u~! (k) first at i,
then s; must be used again as well to eventually switch u—1(ky) and u=1(ky). Either
way, in this case, the total number of times that s, j = d,—1+1,...,d, — 1,1s used
is at least dy, — dp,—1. O
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