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Abstract

A Schubert variety in the complete flag manifold GLn/B is Levi-spherical if the

action of a Borel subgroup in a Levi subgroup of a standard parabolic has an open

dense orbit. We give a combinatorial classification of these Schubert varieties. This

establishes a conjecture of the latter two authors, and a new formulation in terms

of standard Coxeter elements. Our proof uses and contributes to the theory of key

polynomials (type A Demazure module characters).

Mathematics Subject Classification 14M27 · 05E10 · 05E14

1 Introduction

The question of which Schubert varieties in GLn/B are singular was first combina-

torially characterized by J. Wolper [34] after a geometric characterization by K. Ryan

[29]. V. Lakshmibai–B. Sandhya [22] gave an alternative combinatorial characteriza-

tion in terms of permutation pattern avoidance. These results are at the foundation of

subsequent work on the singular structure of Schubert varieties; see the book [7], the

surveys [1, 35], and the references therein. In this paper we also classify a different

“global” geometric property of Schubert varieties, namely, sphericality with respect
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to a Levi subgroup of GLn . However, in contrast, sphericality is not a singularity

property.

The study of spherical varieties has garnered significant interest; see, e.g., N. Per-

rin’s survey [28]. For example, the notion of being a spherical variety subsumes that

of toric varieties, and moreover, Luna-Vust theory gives a description of all birational

models of a spherical variety via colored fans (generalizing the concept of fans in

toric geometry). Spherical varieties have many nice features. For example, projective

spherical varieties are Mori dream spaces.

It is an unsolved problem to classify all spherical actions on products of flag vari-

eties. For the case of Levi subgroups this is solved; see work of P. Littelmann [24],

P. Magyar-J. Weyman-A. Zelevinsky [25, 26], J. Stembridge [31, 32], R. Avdeev–A.

Petukov [5, 6]. The results of this paper are complementary (in type A) to these earlier

results.

This is a sequel to [18] which gave a geometrically motivated, conjectural, com-

binatorial classification of Schubert varieties that are spherical for the action of a

Levi subgroup. While the paper examined the situation in general type, of particular

focus was the GLn/B case. It is in this situation that one finds direct connections to

well-studied elements of algebraic combinatorics. Algebraic combinatorics has at its

core the theory of symmetric polynomials and Schur polynomials. Modern aspects

of the field concern themselves with asymmetric polynomial families such as the key

polynomials both in their role as characters of Demazure modules but also for their

combinatorial features. The aforementioned Levi-sphericality conjecture motivates

the consideration of key polynomials for their split-symmetry and suggests the study

of when they are multiplicity-free in the split-Schur basis. A strategy was suggested for

proving the conjecture from these considerations. This paper completes this strategy.

The main new idea of this paper is a simpler formulation of the conjecture in terms

of standard Coxeter elements. While the original conjecture of [18] was founded on a

geometric heuristic, our new formulation is compatible with the Demazure operators

used to define the key polynomials. Therefore, it is this new version that we actually

prove. Separately, we establish the equivalence of the two conjectures in type A, thus

proving the original version as well.

In proving our main result, we observe that the set of weights appearing as expo-

nents in a key polynomial associated to a standard Coxeter element decompose into

posets isomorphic to intervals in the Bruhat order of a Young subgroup. Extensive

computations suggest that this remains true of Demazure characters in general type

and we hope to explore this surprising poset structure in future work.

Since the results of this work were first announced, there have been a number of

follow-up works. Assuming Theorem 1.3, C. Gaetz [14] proves a pattern avoidance

criterion for maximally spherical Schubert varieties, thus proving a conjecture from

[18]. Now, in ibid., the conjecture was stated in general type. However, in [16] we

gave a counterexample to that general conjecture for SO8/B. On the other hand, [16,

Conjecture 4.1] presents, with supporting evidence, a different conjecture to replace

it—indeed one that generalizes our new formulation (Theorem 1.3) below. This con-

jecture has since been simultaneously and independently proved by M. Can–P. Saha

[9] and by the authors [17]. The arguments of those papers are shorter but depend

on background in algebraic groups. By comparison, the methods here are essentially
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completely combinatorial, and we believe contribute to the theory of key polynomials.

Moreover, this paper provides proofs of both combinatorial classifications in the GLn

case.

1.1 Main result

Let Flags(Cn) be the variety of complete flags 〈0〉 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Cn ,

where Fi is a subspace of dimension i . The group GLn of invertible n × n matrices

over C acts transitively on Flags(Cn) by change of basis. The standard flag is defined

by Fi = span(�e1, �e2, . . . , �ei ) where �ei is the i-th standard basis vector. The stabilizer

of this flag is B ⊂ GLn , the Borel subgroup of upper triangular invertible matrices.

Hence Flags(Cn) ∼= GLn/B. B acts on GLn/B with finitely many orbits; these are the

Schubert cells X◦
w = BwB/B ∼= C�(w) indexed by w ∈ Sn (viewed as a permutation

matrix). Their closures Xw := X◦
w are the Schubert varieties; these are of interest in

algebraic geometry and representation theory. A standard reference is [13].

For I ⊆ J (w), let L I ⊆ GLn be the Levi subgroup of invertible block diagonal

matrices

L I
∼= GLd1−d0 × GLd2−d1 × · · · × GLdk−dk−1

× GLdk+1−dk
.

As explained in, e.g., [18, Section 1.2], L I acts on Xw.

Definition 1.1 Xw is L I -spherical if Xw has an open dense orbit of a Borel subgroup

of L I . If in addition, I = J (w), Xw is maximally spherical.

Our main result is a classification of L I -spherical Schubert varieties using com-

binatorics. Let G = GLn . Its Weyl group W ∼= Sn consists of permutations of

[n] := {1, 2, . . . , n}. Thus W is generated, as a Coxeter group, by the simple trans-

positions S = {si = (i i + 1) : 1 ≤ i ≤ n − 1}. The set of left descents

is

J (w) = { j ∈ [n − 1] : w−1( j) > w−1( j + 1)}.

In other words, j ∈ J (w) if j + 1 appears to the left of j in w’s one-line notation.

Let �(w) denote the Coxeter length of w. For w ∈ Sn ,

�(w) = #{1 ≤ i < j ≤ n : w(i) > w( j)}

counts inversions of w.

A parabolic subgroup WI of W is the subgroup generated by a subset I ⊂ S. A

standard Coxeter element c ∈ WI is any product of the elements of I listed in some

order. Let w0(I ) be the longest element of WI .

Definition 1.2 Let w ∈ W and fix I ⊆ J (w). Then w is I -spherical if w0(I )w is a

standard Coxeter element for some parabolic subgroup WI ′ of W .

The following is our main theorem:
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Theorem 1.3 (cf. [18, Conjecture 3.2]) Let w ∈ Sn and I ⊆ J (w). Xw ⊆ GLn/B is

L I -spherical if and only if w is I -spherical.

In [18] another combinatorial definition (Definition 7.1) for I -sphericality is used.

However, Definition 1.2 is the cornerstone of our argument, and its significance can

be traced to Lemma 3.1. We show in Sect. 7 that Definition 1.2 and Definition 7.1 are

equivalent in type A, and therefore Theorem 1.3 gives the first (and currently, only)

proof of [18, Conjecture 3.2]. In light of our upcoming paper [17], Definition 1.2 is the

correct general type definition, with clear connections to boolean permutations [33].

1.2 Strategy of the proof

Using Theorem 4.13 of [18], our main result, Theorem 1.3 is reduced to Theorem 3.8,

a character-theoretic statement. We prove the two directions “⇒” and “⇐” of Theo-

rem 3.8 separately. The “⇒” direction requires a careful analysis on the terms involved

in »w¼, which can be compactly organized using a poset structure Pc¼,γ , introduced in

Sect. 4, whose main feature is the “Diamond property” (Theorem 4.4). This “Diamond

property”, proved in Sect. 5, is the crucial technical lemma that helps to establish the

“⇒” direction of Theorem 3.8. Sections 2 and 3 contain basic background and setup

for the discussion of Pc¼,γ and the “Diamond property”: Sect. 2 introduces some

notation and terminology about symmetric groups, Bruhat order, and a certain poset

SI ,γ that we define; Sect. 3 recalls notions about key polynomials, split-symmetry, and

multiplicity-freeness from [18] connecting Coxeter combinatorics to the geometry.

The “⇐” direction is then proved in Sect. 6 via explicit construction.

Finally, in Sect. 7 we prove Theorem 7.2; in the process, we establish a root-system

uniform result (Proposition 7.8) that shows Definition 1.2 and Definition 7.3 from [18]

(a generalization of Definition 7.1) are, in some sense, “close” in general type.

2 Bruhat order of Young subgroups and the posetSI,�

The main objective of this section is the introduction of the poset SI ,γ , which we show

is isomorphic to a Young subgroup of Sn . Our eventual goal will be to study certain

subposets of SI ,γ that play a role in the analysis of the terms of the key polynomial

»w¼.

The symmetric group Sn has the poset structure of (strong) Bruhat order <Bruhat.

It is convenient for us to use the “upside down” version. That is, the covering relations

are u <Bruhat usi j where �(u) − 1 = �(usi j ) and si j = (i j) is a transposition. Hence,

under this choice of convention, the longest permutation w0 = n n − 1 . . . 3 2 1 is

the unique minimum, and the identity permutation is the unique maximum.

A sequence of non-negative integers α = (α1, α2, . . . , αn) is a weak composition.

Let Compn be the set of all such compositions. Let Part be the set of partitions with

at most t nonzero parts. A split-partition is

(¼1, . . . , ¼k) ∈ ParD := Pard1−d0 × · · · × Pardk+1−dk
.
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Fix γ ∈ ParD , where D = [n − 1] − I (as in Sect. 1), which we will identify (in

the obvious way) with an element of Compn .

Definition 2.1 i, j ∈ [n] are in the same block (with respect to D = [n] − I ) if there

exists t ∈ [0, k] such that dt + 1 ≤ i, j ≤ dt+1.

Let δt = (t, t − 1, . . . , 3, 2, 1). Given γ , pick � := �γ ∈ Zn
≥0 to be any fixed but

arbitrary strictly decreasing vector such that:

• In the i-th block (of size di − di−1), the components of � are of the form

( fi , fi , . . . , fi ) + δdi −di−1
where fi is some positive integer depending on i .

• γ + � is a vector with distinct components.

Let Ŝn be permutations on the (distinct) entries of γ + �. Clearly there is an isomor-

phism of Bruhat orders between that of Sn and Ŝn that sends w0 to � + γ . We will

therefore mildly abuse notation and use <Bruhat for either order, as the context will be

clear. Let

	 : (Sn,<Bruhat) ³ (Ŝn,<Bruhat)

be this poset isomorphism.

Now, let

S̃I ,γ = Ŝd1−d0 × Ŝd2−d1 × · · · × Ŝdk+1−dk

be the Young subgroup of Ŝn , where Ŝdi+1−di
is the permutation group on the labels

of � + γ in the i-th block. Thus, strong Bruhat order <Bruhat on Ŝn restricts to S̃I ,γ .

Definition 2.2 Given β̃ ∈ S̃I ,γ (thought of as a vector in Zn
≥0), let

�(w) = β̃ − �.

Let SI ,γ := Im � ⊂ Compn . For x, y ∈ SI ,γ define x <Bruhat y if �−1(x) <Bruhat

�−1(y).

Proposition 2.3 (SI ,γ ,<Bruhat) ∼= (S̃I ,γ ,<Bruhat) ∼= (Sd1−d0 × · · · × Sdk+1−dk
,

<Bruhat).

Proof � is injective and hence a bijection onto its image. It is a poset map by con-

struction. This proves the first isomorphism. The second isomorphism is induced from

	.

Definition 2.4 If β =(β1, . . . , βn)∈Compn and i < j ∈ [n −1], define ti j :Compn ³
Compn by

ti j (. . . , βi , . . . , β j , . . .) = (. . . , β j − ( j − i), . . . , βi + ( j − i), . . .). (1)

Also let ti := ti i+1.
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Fig. 1 Example of the poset S̃I ,γ (left) and SI ,γ (right)

The next lemma asserts that the role of ti j ’s in SI ,γ is the same as that of the

si j = (i j) in Sn . In particular, the ti ’s are analogous to the simple transpositions.

Lemma 2.5 For i < j in the same block, this diagram commutes:

S̃I ,γ
�

−³ SI ,γ

si j ´ ´ ti j

S̃I ,γ
�

−³ SI ,γ .

(2)

Proof Let β̃ ∈ S̃I ,γ . By definition of �, there is some number f such that �k = f −k

for i ≤ k ≤ j . We have

ti j�β̃ = ti j (. . . , β̃i − f + i, . . . , β̃k − f + k, . . . , β̃ j − f + j, . . .)

= (. . . , β̃ j − f + j − ( j − i), . . . , β̃k − f +k, . . . , β̃i − f + i + ( j − i), . . .)

= (. . . , β̃ j − f + i, . . . , β̃k − f + k, . . . , β̃i − f + j, . . .)

= �(. . . , β̃ j , . . . , β̃k, . . . , β̃i , . . .) = �si j β̃

as desired.

Example 2.6 Let n = 3, I = {1, 2} with a single block, γ = 443 and � = 321.

Figure 1shows the poset S̃I ,γ and SI ,γ with the actions of si j ’s and ti j ’s respectively.

Remark 2.7 Having formally defined (SI ,γ ,<Bruhat) above, in the remainder of the

paper, one can think of this poset as generated from γ via the action of ti j ’s, including

just the ti ’s.

Definition 2.8 For β ∈ SI ,γ , let θ(β) be the rank of β, i.e., there exists a saturated

chain

β = β(θ) �Bruhat β(θ−1) �Bruhat · · · �Bruhat β(0) = γ

of length θ = θ(β) from β to the minimum γ in SI ,γ . Also define the sign of β to be

sgn(β) := (−1)θ(β).
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These facts follow immediately from the usual Bruhat orders and the isomorphism

�.

Lemma 2.9 For β ∈ SI ,γ and i, j in the same block,

(i) βi > β j − ( j − i) if and only if β <Bruhat ti jβ; in particular, βi − i �= β j − j for

i �= j ;

(ii) sgn(ti jβ) = −sgn(β).

3 Polynomials and sphericality

Below we define key polynomials and highlight a number of their important properties.

We recall the relationship between key polynomials, split-symmetry, and multiplicity-

freeness that was established in [18]. This allows Theorem 1.3 to be restated as

Theorem 3.8; the proof of Theorem 3.8 will then occupy the remainder of this work.

3.1 Key polynomials

Let Pol := Z[x1, x2, . . . , xn] be the polynomial ring in the indeterminates

x1, x2, . . . , xn . For α = (α1, α2, . . . , αn) ∈ Compn , the key polynomial »α is

defined as follows. If α is weakly decreasing, then »α :=
∏

i x
αi

i . Otherwise, suppose

αi > αi+1. Let

πi : Pol ³ Pol, f �³
xi f (. . . , xi , xi+1, . . .) − xi+1 f (. . . , xi+1, xi , . . .)

xi − xi+1
,

and

»α = πi (»α̂) where α̂ := (α1, . . . , αi+1, αi , . . .).

We need facts about the operators πi ; our reference is [23]. The operators πi satisfy

the relations

πiπ j = π jπi (for |i − j | > 1)

πiπi+1πi = πi+1πiπi+1

π2
i = πi .

Recall that the Demazure product on Sn is defined by

w ∗ si =

{
wsi if �(wsi ) = �(w) + 1

0 otherwise.
.

This product is associative. Then R = (si1 , · · · , si�) is a Hecke word of w if w =
si1 ∗ si2 ∗ · · · ∗ si� .
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For any w ∈ Sn one unambiguously defines

πw := πi1πi2 · · · πi� ,

where R = (si1 , . . . , si�) is any Hecke word of w.

Now suppose ¼ = (¼1 ≥ ¼2 ≥ . . . ≥ ¼n) is a partition, and w ∈ Sn . Define

»w¼ := »¼
w−1(1)

,...,¼
w−1(n)

.

With this choice of convention, we have

»w¼ = πw»¼. (3)

Lemma 3.1 Suppose w = w0(I )c where c is a standard Coxeter element and moreover

�(w) = �(w0(I )) + �(c). Then »w¼ = πw0(I )»c¼.

Proof By two applications of (3), and the definition of πw

»w¼ = »w0(I )c¼ = πw0(I )c(»¼) = πw0(I )πc(»¼) = πw0(I )»c¼.

For any α ∈ Compn , let

aα1+n−1,α2+n−2,...,αn := det(x
¼i +n−i
j )1≤i, j≤n .

In particular,

�n := an−1,n−2,...,0 =
∏

1≤ j<k≤n

(x j − xk)

is the Vandermonde determinant. Define a generalized Schur polynomial sα by

sα(x1, . . . , xn) := aα1+n−1,α2+n−2,...,αn /an−1,n−2,...,1,0. (4)

This is well-known, and clear from (4) and the row-swap property of determinants:

Lemma 3.2 sti α(x1, . . . , xn) = −sα(x1, . . . , xn). Thus, if αi+1 = αi + 1 then

sα(x1, . . . , xn) = 0.

A result we need is a characterization of the monomials xβ that appear (with nonzero

coefficient) in »α . Graphically represent the weak composition α as a skyline D(α)

of boxes where column i (from the left) is a tower of αi boxes. For example, if

α = (3, 0, 4, 1, 0, 2) then the associated skyline is
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Define Tab(α) to be fillings of D(α) with N := {1, 2, 3, . . .} such that:

• no label appears twice in a row (row distinct); and

• the labels in column i are at most i (flagged).

The weight of T ∈ Tab(α) is the vector wt(T ) = (c1, c2, . . .) where ci = #{i ∈ T }.
The following result is implicit in [2–4] and explicit in [11].

Theorem 3.3 [xβ ]»α �= 0 if and only if there exists T ∈ Tab(α) with content β.

Proof We explicate the argument alluded to in [2–4]; we refer to these papers for

definitions. This argument differs from the one in [11]. In [4], it is shown that a lattice

point β appears in the Schubitope associated to D(α) (rotated 90-degrees clockwise)

if and only if there exists T ∈ Tab(α) with content β. In [12], it is proved that these

lattice points correspond exactly to the monomials of »α .

A consequence of Theorem 3.3 that we will use is

Corollary 3.4 Let α, β ∈ Compn and assume [xβ ]»α > 0. Suppose i < j and β j −
βi = t ∈ Z>0. For 1 ≤ s ≤ t , let β ′ := (. . . , βi + s, . . . , β j − s, . . .). Then

[xβ ′
]»α > 0.

Proof By Theorem 3.3 there exists T ∈ Tab(α) of content β. By definition, there are

β j distinct rows where T has a label j , and there are βi distinct rows where T has a

label i . Since β j −βi = t , there exist s rows where T contains a j but not an i . Define

T ′ by replacing j by i in those s rows. Since i < j , we conclude T ′ ∈ Tab(β ′) and

hence (by Theorem 3.3), [β ′]»α > 0, as claimed.

Given α, define the set of Kohnert diagrams Koh(α) iteratively. To start D(α) ∈
Koh(α). If D ∈ Koh(α), consider the top-most box in any column. Let D′ be the result

of moving that box left, in the same row, to the rightmost location that is not occupied

(if it exists); this operation is a Kohnert move. Now include D′ ∈ Koh(α), as well.

We emphasize that Koh(α) is a finite set (rather than multiset), hence if a diagram D

is obtained by two different sequences of Kohnert moves starting from D(α), then D

only counts once in Koh(α).

Given D ∈ Koh(α), let

Kohwt(D) =

n∏

i=1

x#boxes of D in column i
i .

Theorem 3.5 (Kohnert’s rule [21]) »α =
∑

D∈Koh(α) Kohwt(D).

Define dominance order on α, β ∈ Compn such that |α| :=
∑n

i=1 αi =∑n
i=1 βi := |β| by α ≤dom β if for every 1 ≤ t ≤ n we have

∑t
i=1 αi ≤

∑t
i=1 βi .

Corollary 3.6 Let α, β ∈ Compn with [xβ ]»α > 0. Then β ≥dom α.
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3.2 Split-symmetry

We recall some notions from [18, Section 4]. Suppose

d0 := 0 < d1 < d2 < . . . < dk < dk+1 := n

and D = {d1, . . . , dk}. Let �D be the subring of Pol consisting of the polynomials that

are separately symmetric in X i := {xdi−1+1, . . . , xdi
} for 1 ≤ i ≤ k + 1. If f ∈ �D ,

f is D-split-symmetric.

The ring �D has a basis of D-Schur polynomials

s¼1,...,¼k := s¼1(X1)s¼2(X2) · · · s¼k (Xk),

where

(¼1, . . . , ¼k) ∈ ParD := Pard1−d0 × · · · × Pardk+1−dk
,

and Part is the set of partitions with at most t nonzero-parts. See [18, Definition 4.3,

Corollary 4.4]. Thus, for any f ∈ �D there is a unique expression

f =
∑

(¼1,...,¼k )∈ParD

c¼1,...,¼k s¼1,...,¼k .

If c¼1,...,¼k ∈ {0, 1} for all (¼1, . . . , ¼k) ∈ ParD , f is called D-multiplicity-free.

This fact allows us to study Levi-sphericality using key polynomials:

Theorem 3.7 ([18, Theorem 4.13]) Let ¼ ∈ Parn , and w ∈ Sn . Suppose I ⊆ J (w)

and D = [n − 1] − I . Xw is L I -spherical if and only if »w¼ is D-multiplicity-free for

all ¼ ∈ Parn .

In view of Theorem 3.7, the following is equivalent to Theorem 1.3.

Theorem 3.8 Let D = [n−1]− I . w is I -spherical if and only if »w¼ is D-multiplicity-

free for all ¼ ∈ Parn .

Our goal is therefore to prove Theorem 3.8. To do this, we will use the lemma

below.

Lemma 3.9 Let β ∈ Compn . Then

πw0(I )(x
β1

1 · · · xβn
n ) ∈ {0, sgn(β)sα1,...,αk },

where (α1, . . . , αk) ∈ ParD .

Proof First, consider the special case that w0(I ) = w0. By [23, Proposition 1.5.1],

πw0( f ) =
1

�n

xρ
∑

w∈Sn

(−1)�(w)w( f ).
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Hence by (4), πw0(xβ) = sβ . Rearrange β to be weakly decreasing by application

of the operators t1, t2, . . . and swapping two adjacent entries where the left entry is

strictly smaller than the other one. This can always be achieved unless during this

process one arrives at a composition » where »i+1 = »i + 1. In that case, Lemma 3.2

asserts sβ = 0. Otherwise we arrive at α ∈ Parn and Lemma 3.2 combined with

Definition 2.8 shows sβ = sgn(β)sα .

In the general case, w0(I ) is by definition the long element of the Young sub-

group Sd1−d0 × · · · × Sdk+1−dk
of Sn . Hence w0(I ) = w

(1)
0 w

(2)
0 . . . , w

(k+1)
0 where

w
(i)
0 is the long element of Sdi −di−1

= the parabolic subgroup of Sn generated by

sdi−1+1, sdi−1+2, . . . , sdi −1. Hence, it follows that

πw0(I ) = π
w

(1)
0

π
w

(2)
0

· · ·π
w

(k+1)
0

. (5)

and the factors commute. Thus, the general case follows from (5) and the special case.

4 The subposetPu�,� ofSI,� and the proof of Theorem 3.8 (⇒)

In this section we introduce a subposet Pc¼,γ of SI ,γ . This poset is shown, in Sect. 5, to

satisfy the “Diamond property” (Theorem 4.4). Assuming this property, we conclude

this section with a proof of the “⇒” direction of Theorem 3.8. The central observation

is that Pc¼,γ is poset isomorphic to an interval in the Bruhat order of a Young subgroup.

This permits us to reduce “⇒” to basics about the Möbius function of Bruhat order

[10].

Lemma 4.1 SI ,γ (as a set) contains all β ∈ Compn such that πw0(I )x
β = ±sγ .

Proof Suppose β ∈ Compn satisfies πw0(I )x
β = ±sγ ( �= 0). As in the proof of

Lemma 3.9 by successive applying the operators t1, t2, . . . (i ∈ I ) to β, we either

arrive at some γ ′ ∈ ParD or a » ∈ Compn with »i+1 = »i + 1 where i, i + 1 are

in the same block. In the latter case we conclude, by (the proof of) Lemma 3.9 that

πw0(I )x
β = 0, a contradiction. Otherwise we find ±sγ = sγ ′ , which can only happen

if γ = γ ′. Thus, we have found a sequence of ti ’s connecting β to γ . The result then

follows from Lemma 2.5 and the definition of SI ,γ .

We need a subposet of SI ,γ attached to the following datum:

• w = w0(I )u ∈ Sn where I ⊂ J (w) and �(w) = �(w0(I )) + �(u).

• α = u¼ for some ¼ ∈ Parn .

• γ ∈ ParD where D = [n] − I = {d1 < d2 < · · · < dk}.

Definition 4.2 Pα,γ is the subposet of SI ,γ induced by those β ∈ SI ,γ such that

[xβ ]»α �= 0.

The following lemma is straightforward from Lemma 3.9, the definition of Pα,γ

and Lemma 4.1.
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Lemma 4.3 With notations as above, the coefficient of sγ in »w¼ expanded in the basis

of D-Schur polynomials, denoted [sγ ]»w¼, equals
∑

β∈Pα,γ
sgn(β)[xβ ]»α .

The next result holds for u = c, a standard Coxeter element for a parabolic subgroup.

Theorem 4.4 (Diamond property) Let β ∈ Pc¼,γ . Let i < j in the same block and

p < q in the same block with (i, j) �= (p, q). If both ti jβ and tpqβ are in Pc¼,γ and

cover β, then there exists β ′ ∈ Pc¼,γ such that ti jβ, tpqβ < β ′.

We defer the proof of Theorem 4.4 until Sect. 5. We complete this section by using

Theorem 4.4 to prove the “⇒” direction of Theorem 1.3.

The following result is immediate from the Diamond Property (Theorem 4.4) and

Newman’s diamond lemma [27].

Lemma 4.5 Pc¼,γ has a unique maximum.

Lemma 4.6 Suppose β ∈ Pα,γ , βi < β j − ( j − i) for some i < j in the same block.

Then ti jβ ∈ Pα,γ .

Proof By Lemma 4.1 SI ,γ consists of all β such that πw0(I )x
β = ±sγ . Let β ′ := ti jβ.

Thus, β ′
i = β j − ( j − i), β ′

j = βi + ( j − i), and β ′
k = βk if k �= i, j . The hypothesis

that βi < β j − ( j − i) means βi < β ′
i and β ′

j < β j and β ′
j − β ′

i = ( j − i) ∈ Z>0.

Hence by Corollary 3.4, [xβ ′
]»α > 0. Therefore, it follows that β ′ = ti jβ ∈ Pα,γ , as

desired.

Lemma 4.7 Let S := Sd1−d0 × · · · × Sdk+1−dk
be a Young subgroup of Sn . Suppose

[u, v] ⊂ S is an interval. Then

∑

u≤w≤v

(−1)�(uw) =

{
1 if u = v

0 otherwise
(6)

Proof For a (locally) finite poset P let μP : P × P ³ R be its Möbius function.

This is defined recursively by μP (x, x) = 1 and μP (x, z) = −
∑

x≤P z<P y μP (x, z).

When P = S = Sn , the lemma holds since (−1)�(uw) is the Möbius function for Sn

under Bruhat order [10].

For the general case, recall [30, Proposition 3.8.2], which states that if P and Q be

locally finite posets, and P × Q is their direct product, if (s, t) ≤ (s′, t ′) in P × Q

then the Möbius functions of P × Q, P , and Q are related by

μP×Q((s, t), (s′, t ′)) = μP (s, s′)μQ(t, t ′). (7)

Elements of S are uniquely factorizable as w = p(1) p(2) · · · p(k+1) where

p(i) is an element of the parabolic subgroup Sdi −di−1
of Sn generated by

sdi−1+1, sdi−1+2, . . . , sdi −1. Similarly, let u = q(1)q(2) · · · q(k+1) be the factorization

of u ∈ S, and u ≤Bruhat w. By iterating application of (7) k many times,
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μS(u, w) =

k+1∏

i=1

μSdi −di−1
(q(i), p(i)) = (−1)

∑k+1
i=1 �(q(i) p(i)) = (−1)�(wu),

and the result follows.

Proposition 4.8 (Pc¼,γ ,<Bruhat) is isomorphic (as posets) to an interval in (Sd1−d0 ×
· · · × Sdk+1−dk

,<Bruhat).

Assuming the proof of Theorem 4.4 (given in the next section), we are ready to

present:

Proof of Proposition 4.8 and Theorem 3.8 (⇒): Let

� : (SI ,γ ,<Bruhat) ³ (Sd1−d0 × · · · × Sdk+1−dk
,<Bruhat)

denote the isomorphism of posets from Proposition 2.3.

Let βmax be the unique maximum of Pc¼,γ ⊆ SI ,γ , guaranteed to exist by

Lemma 4.5. The unique minimum is γ . It follows from Lemma 4.6 that

�(Pc¼,γ ) = [�(γ ), �(βmax)] ⊆ (Sd1−d0 × · · · × Sdk+1−dk
,<Bruhat).

This is the assertion of Proposition 4.8.

If sgn(β) is the sign associated to β, then this maps to (−1)�(wβ ), which agrees

with the Möbius function on S. Now apply (6) to conclude sγ appears in the D-split

expansion of »w¼ = πw0(I )»c¼ (the equality is Lemma 3.1) with coefficient zero or

one, completing the proof of Theorem 3.8.

Example 4.9 Let w = 765432918 and ¼ = 987654321. Hence J (w) =
{1, 2, 3, 4, 5, 6, 8}; let I = {2, 3, 4, 5, 6} ⊆ J (w). Thus w0(I ) = 176543289

and we can factor w = w0(I )c where c is the standard Coxeter element c =
234567918 = s8s1s2s3s4s5s6s7. Now, c−1 = 812345697 and w−1 = 865432197.

Therefore α = c¼ = 298765413, whereas w¼ = 245678913.

Since D = [9]− I = {1, 7, 8, 9}, we have that »w¼ = »245678913 ∈ �D is separately

symmetric in the sets of indeterminates {x1}, {x2, x3, x4, x5, x6, x7}, {x8}, {x9}.
Since c is a standard Coxeter element, by [18, Theorem 4.13(II)], we have that »c¼

is [n − 1]-multiplicity-free. Consider the term x928765422 appearing in »c¼. Now

πw0(I )(x928765422) = s9,287654,2,2 = −s9,737654,2,2 = s9,764654,2,2 = −s9,765554,2,2,

where we have underlined the swaps.

The list of monomials xβ of »c¼ such that πw0(I )(xβ) = ±s9,765554,2,2, together

with the signs they contribute are:

[9, 7, 6, 5, 5, 5, 4, 2, 2] 1, [9, 7, 4, 7, 5, 5, 4, 2, 2] − 1, [9, 7, 6, 4, 6, 5, 4, 2, 2] − 1,

[9, 5, 8, 4, 6, 5, 4, 2, 2] 1, [9, 7, 3, 7, 6, 5, 4, 2, 2] 1, [9, 5, 8, 5, 5, 5, 4, 2, 2] − 1,

[9, 2, 8, 7, 6, 5, 4, 2, 2] − 1, [9, 3, 8, 7, 5, 5, 4, 2, 2] 1.
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Fig. 2 The poset Pc¼,γ for c = 234567918, ¼ = 987654321, γ = 976555422, I = {2, 3, 4, 5, 6} with

some edges labeled

These elements form a poset Pc¼,γ=9,765554,2,2 shown in Fig. 2 isomorphic to an

interval [id, s2s3s4] in Bruhat order, consistent with Proposition 4.8.

Indeed the coefficients sum to zero, in agreement with the above discussion about

the Möbius function.

5 Proof of the diamond property (Theorem 4.4)

The initial goal in this section is the proof of Proposition 5.9. This proposition provides

a set of linear inequalities on a weak composition β ∈ Pc¼,γ that characterize when

ti, jβ remains in the poset. This proposition, along with several technical lemmas, is

then used to prove the diamond property of the poset Pc¼,γ (Theorem 4.4).

Throughout this section we fix a decomposition w = w0(I )c where c is a standard

Coxeter element of some parabolic such that �(w) = �(w0(I )) + �(c), and ¼ ∈ Parn .

Lemma 5.1 Let w = w0(I )u ∈ Sn with �(w) = �(w0(I )) + �(u). If i ∈ I , then

(u¼)i ≥ (u¼)i+1.

Proof The length additivity of w0(I ) and u implies J (u)∩ J (w0(I )) = J (u)∩ I = ∅.

Thus u−1(i) < u−1(i + 1), and since ¼ is a partition, (u¼)i = ¼u−1(i) ≥ ¼u−1(i+1) =
(u¼)i+1.

We will use the following notion from [18]:

Definition 5.2 (Composition patterns) Let Comp :=
⋃∞

n=1 Compn . For α =
(α1, . . . , α�), β = (β1, . . . , βk) ∈ Comp, α contains the composition pattern β if

there exist integers j1 < j2 < · · · < jk that satisfy:

• (α j1 , . . . , α jk ) is order isomorphic to β (α js ≤ α jt if and only if βs ≤ βt ),

• |α js − α jt | ≥ |βs − βt |.

If α does not contain β, then α avoids β.
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Lemma 5.3 c¼ avoids 012, 1032, 0011, 0021, 1022.

Proof Since c is a standard Coxeter element in a parabolic subgroup, Xc ⊆ GLn/B is

a toric variety [20]. Hence, by [18, Theorem 4.13(II)], »c¼ is [n − 1]-multiplicity-free

for all ¼ ∈ Parn . In [19], it is shown that »α is [n − 1]-multiplicity free if and only if

α avoids 012, 1032, 0022, 0021, 1022. Thus, since »c¼ is [n − 1]-multiplicity-free, c¼

avoids 012, 1032, 0022, 0021, 1022.

To seek a contradiction, suppose that c¼ contains the pattern 0011. Let j1 < j2 <

j3 < j4 be the integers such that (c¼) j1 , (c¼) j2 , (c¼) j3 , (c¼) j4 contains the composi-

tion pattern 0011. Let ¼̃ ∈ Parn be obtained from ¼ by replacing all part lengths equal

to (c¼) j3 by (c¼) j3 + 1. Then c¼̃ contains the pattern 0022. We conclude, via [19],

that »c¼̃ is not [n − 1]-multiplicity-free. By [18, Theorem 4.13(II)], this implies Xc is

not a toric variety, a contradiction. Thus c¼ must also avoid the pattern 0011.

5.1 The leftmin, rightmax, and center functions

The linear inequalties of Proposition 5.9 will be stated in terms of three functions

defined with respect to the fixed weak composition c¼. We now introduce and prove

some basic properties of these functions.

Definition 5.4 Let leftminα(i) = min{α j : j ≤ i} and rightmaxα(i) = max{α j :
j ≥ i}.

Lemma 5.5 Let 1 ≤ i, j ≤ n and F ∈ Tab(c¼). Then

(i) (wt(F))k ≥ leftminc¼(i) for 1 ≤ k ≤ i .

(ii) (wt(F))k ≤ rightmaxc¼( j) for j ≤ k ≤ n.

(iii) If i < j are in the same block and leftminc¼(i) = (c¼)i and rightmaxc¼( j) =
(c¼) j , then (wt(F))i = (c¼)i and (wt(F)) j = (c¼) j .

Proof (i): By Definition 5.4, for 1 ≤ k ≤ i , (c¼)k ≥ leftminc¼(i). By induction,

and the definition of flagged fillings, F(k, r) = k for 1 ≤ k ≤ i and 1 ≤ r ≤
leftminc¼(i). Thus (wt(F))k ≥ leftminc¼(i) for 1 ≤ k ≤ i .

(ii): Once again we apply Definition 5.4, concluding rightmaxc¼(k) ≤ rightmaxc¼( j)

for j ≤ k ≤ n. By the definition of flagged fillings a value k can only appear

once in a fixed row, and only in columns greater than or equal to k. Hence,

(wt(F))k ≤ rightmaxc¼(k) ≤ rightmaxc¼( j).

(iii): If i, j are in the same block, then Lemma 5.1, applied inductively, implies

(c¼)k ≥ (c¼) j for i ≤ k ≤ j . This, combined with leftminc¼(i) = (c¼)i , implies

that leftminc¼( j) = (c¼) j . Applying (i) and (ii) to j yields (wt(F)) j ≥ (c¼) j

and (wt(F)) j ≤ (c¼) j . Hence (wt(F)) j = (c¼) j .

Additionally, (c¼)k ≥ (c¼) j for i ≤ k ≤ j combined with rightmaxc¼( j) = (c¼) j

gives rightmaxc¼(i) = (c¼)i . Applying (i) and (ii) to i again yields the desired equality.

Lemma 5.6 Let i ≤ j with (c¼)k ≥ (c¼)k+1 for i ≤ k < j . Let m be the maximum

value such that i ≤ m ≤ j and (c¼)m ≥ leftminc¼(i). Then

| {(d, r) ∈ D(c¼) : d ≤ m} | = m for 1 ≤ r ≤ leftminc¼(i).
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This implies that for all F ∈ Tab(c¼),

F(d, r) = d for 1 ≤ r ≤ leftminc¼(i) and 1 ≤ d ≤ m.

Proof This first claim follows from the definition of leftminc¼(i). The latter then

follows from inductively applying the flagged and row distinct properties of F .

Definition 5.7 If i < j with (c¼)k ≥ (c¼)k+1 for i ≤ k < j , leftminc¼(i) < (c¼)i ,

and rightmaxc¼( j) > (c¼) j , then we say the pair (i, j) is interwoven. For such an

(i, j), define

centerc¼(i, j) = max{k : i ≤ k ≤ j and (c¼)k ≥ rightmaxc¼( j)}.

Notice centerc¼(i, j) �= −∞ since (c¼)i ≥ rightmaxc¼( j) (otherwise, we have

leftminc¼(i) < (c¼)i < rightmaxc¼( j) which says c¼ contains a 012-pattern,

contradicting Lemma 5.3).

Lemma 5.8 Let i < j with (c¼)k ≥ (c¼)k+1 for i ≤ k < j . Then

(i) If leftminc¼(i) = (c¼)i and rightmaxc¼( j) > (c¼) j , then

| {(d, r) ∈ D(c¼) : d > i} | ≤ 1 for r > (c¼)i ,

(ii) If leftminc¼(i) < (c¼)i and rightmaxc¼( j) = (c¼) j , then

| {(d, r) ∈ D(c¼) : d ≤ j} | ≥ j − 1 for leftminc¼(i) < r ≤ (c¼) j ,

(iii) If leftminc¼(i) < (c¼)i and rightmaxc¼( j) > (c¼) j , then

| {(d, r) ∈ D(c¼) : d ≥ centerc¼(i, j)} | = 1 for leftminc¼(i) < r ≤ rightmaxc¼( j),

and

| {(d, r) ∈ D(c¼) : d ≤ centerc¼(i, j)} | = centerc¼(i, j) − 1 for leftminc¼(i)

< r ≤ rightmaxc¼( j).

Proof (i): Let r > (c¼)i . If j < d1 < d2, then c¼ contains the pattern

((c¼)i , (c¼) j , (c¼)d1 , (c¼)d2 ). Suppose that (d1, r), (d2, r) ∈ D(c¼). This

implies (c¼)d1 , (c¼)d2 ≥ (c¼)i . This, combined with (c¼)i ≥ (c¼) j , implies

((c¼)i , (c¼) j , (c¼)d1 , (c¼)d2) contains 012, 1032, 0021, 0011, or 1022. This

contradicts Lemma 5.3. Thus

| {(d, r) ∈ D(c¼) : d > j} | ≤ 1 for r > (c¼)i .

Further, since r > (c¼)i ≥ (c¼)k for i ≤ k ≤ j ,

| {(d, r) ∈ D(c¼) : d > i} | ≤ 1 for r > (c¼)i .
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(ii): Let leftminc¼(i) < r ≤ (c¼) j . If d1 < d2 < i , then c¼ contains the pat-

tern ((c¼)d1 , (c¼)d2 , (c¼)i , (c¼) j ). Suppose that (d1, r), (d2, r) /∈ D(c¼). This

implies (c¼)d1 , (c¼)d2 ≤ (c¼) j . This, combined with (c¼)i ≥ (c¼) j , implies

((c¼)d1 , (c¼)d2 , (c¼)i , (c¼) j ) contains 012, 1032, 0021, 0011, or 1022. This

contradicts Lemma 5.3. Thus

| {(d, r) ∈ D(c¼) : d ≤ i} | ≥ i − 1 for leftminc¼(i) < r ≤ (c¼) j .

Further, since r ≤ (c¼) j ≤ (c¼)k for i ≤ k ≤ j ,

| {(d, r) ∈ D(c¼) : d ≤ j} | ≥ j − 1 for leftminc¼(i) < r ≤ (c¼) j .

(iii): Let x be an integer such that x < i and (c¼)x = leftminc¼(i), and y be an integer

such that y > j and (c¼)y = rightmaxc¼( j).

Our claim holds vacuously if (c¼)x ≥ (c¼)y . Hence, for the rest of the proof we

assume (c¼)x < (c¼)y . Now c¼ contains the pattern ((c¼)x , (c¼)i , (c¼) j , (c¼)y) and

by Lemma 5.3 this pattern avoids 012. This, combined with (c¼) j < (c¼)y , implies

(c¼)x ≥ (c¼) j . (8)

It further implies, when combined with (c¼)x < (c¼)i , that

(c¼)i ≥ (c¼)y . (9)

Let (c¼)x < r ≤ (c¼)y . Let centerc¼(i, j) < d1 < d2. Suppose, to obtain a

contradiction, that (d1, r), (d2, r) ∈ D(c¼). Then

(c¼)d1 , (c¼)d2 > (c¼)x . (10)

If d1 ≤ j , then the definition of centerc¼(i, j) implies (c¼)d1 < (c¼)y . This

implies c¼ contains the pattern ((c¼)x , (c¼)d1 , (c¼)y) which is a 012 pattern. This

contradicts Lemma 5.3. Otherwise, if j < d1 < d2, then c¼ contains the pattern

((c¼)x , (c¼) j , (c¼)d1 , (c¼)d2). By (8) and (10), this pattern contains 012, 1032, 0021,

0011, or 1022. This contradicts Lemma 5.3. Thus

| {(d, r) ∈ D(c¼) : d ≥ centerc¼(i, j)} | = 1 for leftminc¼(i) < r ≤ rightmaxc¼( j).

(11)

Let (c¼)x < r ≤ (c¼)y . Let d1 < d2 < centerc¼(i, j). Suppose, to obtain a

contradiction, that (d1, r), (d2, r) /∈ D(c¼). Thus

(c¼)d1 , (c¼)d2 < (c¼)y . (12)

If d2 ≥ i , then (c¼)d2 ≥ (c¼) j and the definition of centerc¼(i, j) implies

(c¼)d2 ≥ (c¼)y . This contradicts (12). Otherwise, if d1 < d2 < i , then

c¼ contains ((c¼)d1 , (c¼)d2 , (c¼)i , (c¼)y). By (9) and (12), this pattern contains
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012, 1032, 0021, 0011, or 1022. This contradicts Lemma 5.3. We conclude

| {(d, r) ∈ D(c¼) : d ≤ centerc¼(i, j)} | ≥ centerc¼(i, j) − 1. Since (c¼)x < r , we

can strengthen this inequality to

|{(d, r)∈ D(c¼) :d ≤centerc¼(i, j)}|=centerc¼(i, j)−1 for leftminc¼(i)<r

≤ rightmaxc¼( j).

5.2 The linear inequalities governing poset containment

We are now able to state and prove Proposition 5.9. This subsection concludes with

the proof of two technical lemmas that will be needed in the proof of Theorem 4.4.

Proposition 5.9 Let β ∈ Pc¼,γ , i < j in the same block, and βi > β j − ( j − i). Then

ti, jβ ∈ Pc¼,γ if and only if

(1) leftminc¼(i) ≤ β j − ( j − i);

(2) rightmaxc¼( j) ≥ βi + ( j − i); and

(3) if (i, j) is interwoven, then

β1 + · · · + βi−1 + (β j − ( j − i)) + βi+1 + · · · + βcenterc¼(i, j)

≥ (c¼)1 + · · · + (c¼)centerc¼(i, j).

Proof (⇒) We prove the contrapositive. That is, we assume that leftminc¼(i) > β j −
( j − i), rightmaxc¼( j) < βi + ( j − i), or (i, j) is interwoven with β1 + · · ·+βi−1 +
(β j −( j − i))+βi+1 +· · ·+βcenterc¼(i, j) < (c¼)1 +· · · (c¼)centerc¼(i, j). Let τ = ti, jβ

and suppose, to seek a contradiction, that F ∈ Tab(c¼) with τ = wt(F).

Case leftminc¼(i) > β j − ( j − i): By the case hypothesis, leftminc¼(i) > τi =
(wt(F))i . This contradicts Lemma 5.5(i).

Case rightmaxc¼(i) < β j + ( j − i): By the case hypothesis, rightmaxc¼(i) < τ j =
(wt(F)) j . This contradicts Lemma 5.5(ii).

Case (i, j) is interwoven with β1 + · · · + βi−1 + (β j − ( j − i)) + βi+1 + · · · +
βcenterc¼(i, j) < (c¼)1+· · ·+(c¼)centerc¼(i, j): The case hypothesis implies that c¼ �dom

τ . This contradicts Corollary 3.6.

(⇐) Since [xβ ]»c¼ �= 0, we know there exists an F ∈ Tab(c¼) with wt(F) = β.

There are four cases to consider.

Case leftminc¼(i) = (c¼)i and rightmaxc¼( j) = (c¼) j : By Lemma 5.5(iii), βi =
(c¼)i and β j = (c¼) j . Thus

(c¼)i = leftminc¼(i) ≤ β j − ( j − i) = (c¼) j − ( j − i), (13)
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where the first equality is the case hypothesis, the inequality is the proposition hypoth-

esis. Thus j > i implies that (c¼)i < (c¼) j . This is a contradiction of Lemma 5.1,

and hence this case cannot occur.

Case leftminc¼(i) = (c¼)i and rightmaxc¼( j) > (c¼) j : By Lemma 5.6, F(d, r) = d

for all 1 ≤ d ≤ i and r ≤ (c¼)i . Hence, there is an i in every row r ≤ (c¼)i of F , and

βi ≥ (c¼)i . (14)

The flagged property of F , combined with Lemma 5.8(i), implies that i and j can

not both be in row r > (c¼)i of F . By the definition of F and (14), there are exactly

βi − (c¼)i ≥ 0 such rows containing only i , but not j . By the case and proposition

hypotheses,

βi − (c¼)i = βi − leftminc¼(i) ≥ βi − (β j − ( j − i)) > 0.

Setting v := βi − (β j − ( j − i)) we can choose v rows r1, . . . , rv > (c¼)i in F that

contain i and not j .

The filling G is obtained from F by changing the i in rows r1, . . . , rv to a j . By

construction, G is row distinct. For i ≤ k ≤ j , the boxes (k, r1), . . . (k, rv) /∈ D(c¼)

since r1, . . . , rv > (c¼)i ≥ (c¼)k . Hence the flagged property of F implies that the i

in these rows of F must appear in a column strictly greater than j . Thus the j in these

rows of G appears in a column greater than j , and G is flagged.

Let τ = wt(G). Then τi = βi − v = βi − (βi − (β j − ( j − i))) = β j − ( j − i)

and τ j = β j + v = β j + (βi − (β j − ( j − i))) = βi + ( j − i). Otherwise, τk = βk

for r �= i, j . Thus τ = ti, jβ. We conclude that ti, jβ is an exponent vector of »c¼.

Case leftminc¼(i) < (c¼)i and rightmaxc¼( j) = (c¼) j : The row distinct and flagged

properties of F , combined with Lemma 5.6 and Lemma 5.8(ii), imply that at least one

of i or j are in row r of F for 1 ≤ r ≤ (c¼) j . By the case and proposition hypotheses,

β j < βi + ( j − i) ≤ rightmaxc¼( j) = (c¼) j .

Hence, there are at least (c¼) j − β j rows r , with 1 ≤ r ≤ (c¼) j , of F that contain

i but not j . Setting v := βi + ( j − i) − β j ≤ (c¼) j − β j , we choose v rows in F ,

r1, . . . , rv ≤ (c¼) j , that contain i but not j . By Lemma 5.8(ii) and the flagged property

of F , for each e ∈ {r1, . . . , rv} there is exactly one de ≤ j such that (de, e) /∈ D(c¼).

It follows, by the definition of e and the flagged property of F , that the content of row

e in the first j columns of F is equal to {1, . . . , j − 1}. We use this fact to define the

filling G.

The filling G is obtained from F via the following rule. Let 1 ≤ e ≤ ¼1. Then

(i) e /∈ {r1, . . . , rv}: The e-th row of G equals the e-th row of F .

(ii) e ∈ {r1, . . . , rv}: The e-th row of G is defined by filling each of the values in

[ j] \ {i} in the minimal column possible. Explicitly, G(d, e) = d for d < de,

G(d, e) = d − 1 for de < d ≤ i , G(d, e) = d for i < r < j . Then, set

G( j, e) = j , and for any column greater than j the entries in row e of F and G

coincide.

Clearly G is row distinct; for e ∈ {r1, . . . , rv}, the content of row e of G is equal to

the content of row e of F with the unique i replaced by j . It is equally easy to verify
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that each of (i)–(ii) leaves the respective column in G satisfying the flagged constraint.

Let τ = wt(G). Then τi = βi − v = βi − (βi + ( j − i) − β j ) = β j − ( j − i) and

τ j = β j + v = β j + (βi + ( j − i) − β j ) = βi + ( j − i). Otherwise, τk = βk for

k �= i, j . Thus τ = ti, jβ. We conclude that ti, jβ is an exponent vector of »c¼.

Case leftminc¼(i) < (c¼)i and rightmaxc¼( j) > (c¼) j : Let x be an integer such

that x < i and (c¼)x = leftminc¼(i), and y be an integer such that y > j and

(c¼)y = rightmaxc¼( j). Suppose, for sake of contradiction, that (c¼)x ≥ (c¼)y .

Then, by Lemma 5.5(i), βi ≥ (c¼)x ≥ (c¼)y = rightmaxc¼( j). Thus, βi + ( j − i) >

rightmaxc¼( j), which contradicts the hypothesis (2). Thus,

(c¼)x < (c¼)y . (15)

Corollary 3.6 implies β1 +· · ·+βcenterc¼(i, j) ≥ (c¼)1 +· · ·+ (c¼)centerc¼(i, j). Now

|
{
(d, r) ∈ D(c¼) : d > centerc¼(i, j), 1 ≤ r ≤ (c¼)y , and F(d, r) ≤ centerc¼(i, j)

}
|

= β1 + · · · + βcenterc¼(i, j) − ((c¼)1 + · · · + (c¼)centerc¼(i, j)).

(16)

Then our hypothesis β1 + · · · + βi−1 + (β j − ( j − i)) + βi+1 + · · · + βcenterc¼(i, j) ≥
(c¼)1 +· · ·+ (c¼)centerc¼(i, j) is equivalent to β1 +· · ·+βcenterc¼(i, j) − ((c¼)1 +· · ·+
(c¼)centerc¼(i, j)) ≥ βi − (β j − ( j − i)). Applying this to (16) yields

|
{
(d, r) ∈ D(c¼) : d > centerc¼(i, j), 1 ≤ r ≤ (c¼)y , and F(d, r) ≤ centerc¼(i, j)

}
|

≥ βi − (β j − ( j − i)).

(17)

We can further refine (17). By the definition of centerc¼(i, j), (15), and Lemma 5.1,

(c¼)d ≥ (c¼)x for all i ≤ d ≤ centerc¼(i, j). By Lemma 5.6, F(d, r) = d for all

d ≤ centerc¼(i, j) and r ≤ (c¼)x . Thus, the row distinct property of F transforms

(17) into

|
{
(d, r) ∈ D(c¼) : d > centerc¼(i, j), (c¼)x < r ≤ (c¼)y , and F(d, r) ≤ centerc¼(i, j)

}
|

≥ βi − (β j − ( j − i)). (18)

By Lemma 5.8(iii), the rows (c¼)x < r ≤ (c¼)y have centerc¼(i, j) boxes in D(c¼).

By (18), we can pick v := βi − (β j − ( j − i)) of these rows, where the centerc¼(i, j)

many boxes of D(c¼) are filled using precisely the labels 1, 2, . . . , centerc¼(i, j). By

Lemma 5.8(iii), for each e ∈ {r1, . . . , rv} there is exactly one de ≤ centerc¼(i, j)

such that (de, e) /∈ D(c¼).

The filling G is obtained from F via the following rule. Let 1 ≤ e ≤ ¼1.

(i) e /∈ {r1, . . . , rv}: The e-th row of G equals the e-th row of F .

(ii) The e-th row of G is defined by filling each of the values in [centerc¼(i, j)−1]\{i}
in the minimal column possible. Explicitly, G(d, e) = d for d < de, G(d, e) =
d −1 for de < d ≤ i , G(d, e) = d for i < d ≤ centerc¼(i, j). Then set the value

of the unique box in a column greater than centerc¼(i, j) to be j .
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Clearly G is row distinct; for e ∈ {r1, . . . , rv}, the content of row e of G is equal to

the content of row e of F with the unique i replaced by j . It is an easy check to verify

that each of (i)-(ii) leaves the respective row in G satisfying the flagged constraint.

Let τ = wt(G). Then τi = βi − v = βi − (βi − (β j − ( j − i))) = β j − ( j − i),

τ j = β j + v = β j + (βi − (β j − ( j − i))) = βi + ( j − i). Otherwise, τk = βk for

k �= i, j . Thus τ = tiβ. We conclude that tiβ is an exponent vector of »c¼.

We now prove two lemmas. The first lemma is one of the primary tools used to

show that certain inequalities from Proposition 5.9 are satisfied. The second lemma

will allow us to simplify one of the cases in the proof of Theorem 4.4.

Lemma 5.10 Let i ∈ [n − 1] and β ∈ Pc¼,γ . Then

max{rightmaxc¼(i + 1) − leftminc¼(i), 0} ≥ β1 + · · · + βi − ((c¼)1 + · · · + (c¼)i ).

Proof Since [xβ ]»c¼ �= 0, there exists an F ∈ Tab(c¼) with wt(F) = β. Now,

| {(d, r) ∈ D(c¼) : d > i and F(d, r) ≤ i} | = β1 + · · · + βi − ((c¼)1 + · · · + (c¼)i ).

(19)

We first prove this lemma for i ∈ [n−1] with (c¼)i ≥ (c¼)i+1. Let r ≤ leftminc¼(i).

Lemma 5.6 implies that F(d1, r) = d1 for d1 ≤ i and r ≤ leftminc¼(i). Since F is

row distinct this implies

| {(d, r) ∈ D(c¼) : d > i and F(d, r) ≤ i} | = 0 for 1 ≤ r ≤ leftminc¼(i). (20)

Suppose leftminc¼(i) ≥ rightmaxc¼(i + 1). Then there exist no (d, r) ∈ D(c¼)

such that d > i and r > leftminc¼(i). This, combined with (19) and (20), implies

β1 + · · · + βi − ((c¼)1 + · · · + (c¼)i ) = 0. Thus our result trivially holds.

For the rest of the proof we assume leftminc¼(i) < rightmaxc¼(i + 1).

Case leftminc¼(i) = (c¼)i and rightmaxc¼(i + 1) = (c¼)i+1: By our assump-

tion (c¼)i ≥ (c¼)i+1 and the case hypothesis, leftminc¼(i) = (c¼)i ≥ (c¼)i+1 =
rightmaxc¼(i + 1). Thus, since we are assuming leftminc¼(i) < rightmaxc¼(i + 1),

this case does not occur.

Case leftminc¼(i) = (c¼)i and rightmaxc¼(i + 1) > (c¼)i+1: We have that

leftminc¼(i) = (c¼)i paired with (20), and combined with Lemma 5.8(i) implies

| {(d, r) ∈ D(c¼) : d > i and F(d, r) ≤ i} | ≤ rightmaxc¼(i + 1) − leftminc¼(i).

Then (19) gives the required inequality.

Case leftminc¼(i) < (c¼)i and rightmaxc¼(i + 1) = (c¼)i+1: Lemma 5.8(ii) says

| {(d, r) ∈ D(c¼) : d ≤ i + 1} | ≥ i for leftminc¼(i) < r ≤ (c¼)i+1,
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which implies

| {(d, r) ∈ D(c¼) : d ≤ i} | ≥ i − 1 for leftminc¼(i) < r ≤ (c¼)i+1. (21)

Since rightmaxc¼(i + 1) = (c¼)i+1, there exist no (d, r) ∈ D(c¼) such that d > i

and r > (c¼)i+1. This, combined with (20), and the row distinct property of F paired

with (21), implies that

| {(d, r) ∈ D(c¼) : d > i and F(d, r) ≤ i} | ≤ rightmaxc¼(i + 1) − leftminc¼(i).

Applying (19) concludes the proof in this case.

Case leftminc¼(i) < (c¼)k and rightmaxc¼(i +1) > (c¼)i+1: There exist no (d, r) ∈
D(c¼) such that d > i and r > rightmaxc¼(i + 1). We apply Lemma 5.8(iii), noting

that centerc¼(i, i + 1) = i , and (20) to imply that

| {(d, r) ∈ D(c¼) : d > i and F(d, r) ≤ i} | ≤ rightmaxc¼(i + 1) − leftminc¼(i).

Once again we conclude after applying (19).

This completes the proof for i such that (c¼)i ≥ (c¼)i+1. Otherwise, i ∈ [n − 1]
with (c¼)i < (c¼)i+1. If i = 1 or i = n − 1 the proof is straightforward. Otherwise,

let x < i < i + 1 < y. Then

(c¼)i+1 ≥ (c¼)y (22)

and (c¼)x ≥ (c¼)i by Lemma 5.3 (012-avoidance). If (c¼)x < (c¼)y , then c¼ contains

the composition pattern 012, 1032, 0021, 0011, or 1022. This contradicts Lemma 5.3.

Thus (c¼)x ≥ (c¼)y for all x < i . This implies leftminc¼(i − 1) ≥ (c¼)y for all

i + 1 < y. We conclude leftminc¼(i − 1) ≥ rightmaxc¼(i + 2). By Lemma 5.6 (the

second displayed equation, where we have applied it to i − 1) and the row distinct

property of F , this implies

| {(d, r) ∈ D(c¼) : d > i , 1 ≤ r

≤ rightmaxc¼(i + 2), and F(d, r) ≤ i − 1
}
| = 0. (23)

Then leftminc¼(i) = (c¼)i by Lemma 5.3 (012-avoidance) and, combined with

Lemma 5.6 applied to i , this implies

| {(d, r) ∈ D(c¼) : d > i , 1 ≤ r ≤ leftminc¼(i), and F(d, r) ≤ i} | = 0. (24)

Now

| {(d, r) ∈ D(c¼) : d > i and F(d, r) ≤ i} |

≤ (c¼)i+1 − leftminc¼(i)

= rightmaxc¼(i + 1) − leftminc¼(i).
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The inequality comes by studying the intervals [1, leftminc¼(i)],
(leftminc¼(i), rightmaxc¼(i + 2)], and (rightmaxc¼(i + 2), (c¼)i+1]. Respectively,

we use (24), and (23) paired with the row distinct property of F , for the first two

intervals. For the third interval, we use the fact that there is at most one column,

namely y = i + 1, such that y > d and (c¼)y > rightmaxc¼(i + 2). The equality

follows from (22).

Lemma 5.11 Let i < p < j < q be in the same block and β ∈ Pc¼,γ . If (i, j) and

(p, q) are interwoven, β <Bruhat ti, jβ, and β <Bruhat tp,qβ, then ti, jβ /∈ Pc¼,γ or

tp,qβ /∈ Pc¼,γ .

Proof If (i, j) and (p, q) are interwoven, then it is straightforward that

centerc¼(i, j) = centerc¼(p, q). Lemma 5.1 and the definition of centerc¼(i, j)

implies

(c¼)k = rightmaxc¼(k) for i ≤ k ≤ centerc¼(p, q),

which in turn implies, via Lemma 5.5(ii), that

βk − (c¼)k ≤ 0 for i ≤ k ≤ centerc¼(p, q). (25)

In a similar fashion, the definition of centerc¼(i, j) and Lemma 5.3 (012-avoidance)

implies (c¼)k = leftminc¼(k) for centerc¼(p, q) < k ≤ q. Hence, Lemma 5.5(i) says

βk − (c¼)k ≥ 0 for centerc¼(p, q) < k ≤ q. (26)

Suppose that ti, jβ, tp,qβ ∈ Pc¼,γ . Let C := β1 + · · · + βcenterc¼(i, j) − ((c¼)1 +
· · · + (c¼)centerc¼(i, j)). Then,

rightmaxc¼(q) − (c¼)q = rightmaxc¼(q + 1) − leftminc¼(q)

≥ C + (βcenterc¼(i, j)+1 + · · · + βq)

− ((c¼)centerc¼(i, j)+1 + · · · (c¼)q)

≥ C + (β j − (c¼) j ) + (βq − (c¼)q),

(27)

where the equality follows from the interweaving assumption combined with

Lemma 5.3 (012-avoidance), the first inequality comes from Lemma 5.10 applied

to β, and the final inequality follows from (26).

Proposition 5.9(3) says

β1 + · · · + βi−1 + (β j − ( j − i)) + βi+1 + · · · + βcenterc¼(i, j)

≥ (c¼)1 + · · · + (c¼)centerc¼(i, j), (28)

β1 + · · · + βp−1 + (βq − (q − p)) + βp+1 + · · · + βcenterc¼(i, j)

≥ (c¼)1 + · · · + (c¼)centerc¼(i, j). (29)
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Let D := (βi+1+· · ·+βcenterc¼(i, j))−((c¼)i+1+· · ·+(c¼)centerc¼(i, j)). Reformulating

(28) yields

0 ≤ (β1 + · · · + βi−1) − ((c¼)1 + · · · + (c¼)i−1) + (β j − ( j − i) − (c¼)i ) + D

≤ (c¼)i − leftminc¼(i) + (β j − ( j − i) − (c¼)i ) + D

= (c¼)i − leftminc¼(i) + ((c¼) j + (β j − (c¼) j ) − ( j − i) − (c¼)i ) + D

= ((c¼) j − leftminc¼(i)) + (β j − (c¼) j ) − ( j − i) + D

≤ (β j − (c¼) j ) − ( j − i) + D,

(30)

where the second inequality is via Lemma 5.10 applied to β (note (c¼)i =
rightmaxc¼(i) here), and the final inequality follows from Lemma 5.3 (012-

avoidance).

Let E := (βp+1 + · · · + βcenterc¼(i, j)) − ((c¼)p+1 + · · · + (c¼)centerc¼(i, j)).

Reformulating (29),

0 ≤ (β1 + · · · + βp−1) − ((c¼)1 + · · · + (c¼)p−1) + (βq − (q − p) − (c¼)p) + E

≤ (β1 + · · · + βi ) − ((c¼)1 + · · · + (c¼)i ) + (βq − (q − p) − (c¼)p) + E

≤ (β1 + · · · + βi ) − ((c¼)1 + · · · + (c¼)i ) + (βq − (q − p) − (c¼)p)

≤ (β1 + · · · + βi ) − ((c¼)1 + · · · + (c¼)i ) + (βq − (q − p) − rightmaxc¼(q))

= (β1+· · ·+βi )−((c¼)1+· · ·+(c¼)i )+((c¼)q +(βq −(c¼)q )−(q − p)−rightmaxc¼(q).

(31)

where the second and third inequality are by (25), the fourth inequality is by Lemma 5.3

(012-avoidance).

Adding (30) and (31) we have

0 ≤ C + (β j − (c¼) j ) + (βq − (c¼)q) − ( j − i)

−(q − p) + ((c¼)q − rightmaxc¼(q)) (32)

which can be reformulated into

rightmaxc¼(q) − (c¼)q ≤ C + (β j − (c¼) j ) + (βq − (c¼)q) − ( j − i) − (q − p)

< C + (β j − (c¼) j ) + (βq − (c¼)q)

(33)

This, combined with (27), gives our desired contradiction. We conclude that ti, jβ /∈
Pc¼,γ or tp,qβ /∈ Pc¼,γ .

5.3 The diamond property

We are now ready for the proof of Theorem 4.4.

Conclusion of the proof of Theorem 4.4: Without loss of generality assume (i, j) <

(p, q) in lexicographic order. Both τ := ti, jβ and φ := tp,qβ cover β, thus

βi > β j − ( j − i) = τi , (34)
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βp > βq − (q − p) = φp. (35)

By Proposition 5.9, we have

βi + ( j − i) ≤ rightmaxc¼( j), (36)

βp + (q − p) ≤ rightmaxc¼(q), (37)

β j − ( j − i) ≥ leftminc¼(i), (38)

βq − (q − p) ≥ leftminc¼(p). (39)

Moreover, for the same reason, if (i, j) is interwoven, then

β1 + · · · + βi−1 + β j − ( j − i) + βi+1 + · · · + βcenterc¼(i, j)

≥ (c¼)1 + · · · + (c¼)centerc¼(i, j). (40)

If (p, q) is interwoven, then

β1 + · · · + βp−1 + βq − (q − p) + βp+1 + · · · + βcenterc¼(p,q)

≥ (c¼)1 + · · · + (c¼)centerc¼(p,q). (41)

We now consider five cases depending on the overlap in the values (i, j) and (p, q).

In what follows, we will make repeated use of Lemma 2.9(i), which characterizes the

covering relation in (Sγ,I ,<Bruhat).

Case 1.1 (i and p in the same block, i = p, j < q): Suppose, for contradiction,

that β j − ( j − i) = βq − (q − p). Then, since i = p, this equality is equivalent to

β j = βq−(q− j). The contradicts Lemma 2.9(i), and henceβ j −( j−i) �= βq−(q−p).

Subcase 1.1.1 β j − ( j − i) > βq − (q − p): By the subcase hypothesis,

ti, jβ <Bruhat tp,q ti, jβ. Then tp,q ti, jβ <Bruhat t j,q tp,q ti, jβ by (34). Combining, we

have ti, jβ <Bruhat t j,q tp,q ti, jβ = tp,qβ. This contradicts the hypothesis that tp,qβ

covers β. Hence this subcase cannot occur.

Subcase 1.1.2 β j − ( j − i) < βq − (q − p): We will show that ti, jφ ∈ Pc¼,γ . By the

subcase hypothesis, the definition of φ, and i = p,

φi = φp = βq − (q − p) > β j − ( j − i) = φ j − ( j − i). (42)

By (35), (36), and i = p we have

φi + ( j − i) = βq − (q − p) + ( j − i) < βp + ( j − i)

= βi + ( j − i) ≤ rightmaxc¼( j). (43)

Since φ j = β j , by (38),

φ j − ( j − i) = β j − ( j − i) ≥ leftminc¼(i). (44)



55 Page 26 of 40 Y. Gao et al.

Finally, φr = βr for r �= p, q. If (i, j) is interwoven, then (40) and i = p combined

with the previous sentence implies

φ1+· · ·+φi−1+φ j −( j − i)+φi+1 + · · · + φcenterc¼(i, j)

= β1 + · · · + βi−1 + β j − ( j − i)

+ βi+1 + · · · + βcenterc¼(i, j)

≥ (c¼)1 + · · · + (c¼)centerc¼(i, j).

(45)

The hypotheses of Proposition 5.9 are satisfied for ti, jφ by (42), (43), (44), and (45).

Hence, ti, jφ ∈ Pc¼,γ .

By (42), φ < ti, jφ. By (35), βi +( j − i) = βp +( j − i) > βq −(q − p)+( j − i) =
βq − (q − j), and hence τ = ti, jβ <Bruhat t j,q ti, jβ = ti, jφ.

Case 1.2 (i and p in the same block, i < p, j = p): In this case,

τp = βi + ( j − i) > β j > βq − (q − p) = τq − (q − p), (46)

φi = βi > β j − ( j − i) > βq − (q − p) − ( j − i) = φ j − ( j − i). (47)

Before breaking into subcases we first prove that φ <Bruhat ti, jφ, tp,qτ , and

τ <Bruhat ti, jφ, tp,qτ . First, φ <Bruhat ti, jφ and τ <Bruhat tp,qτ follow from (47)

and (46). Then, (34) implies

φi = βi > β j − ( j − i) = β j + (q − j) + (q − i) = φq − (q − i),

and hence φ <Bruhat ti,qφ = tp,qτ . Finally, by (35),

τi = β j − ( j − i) > βq − (q − j) − ( j − i) = τq − (q − i),

and thus τ <Bruhat ti,qτ = ti, jφ. Hence, in all the following subcases, it remains to

show that at least one of ti, jφ or tp,qτ are in Pc¼,γ .

Subcase 1.2.1 leftminc¼(i) = (c¼)i and rightmaxc¼( j) = (c¼) j : By Lemma 5.5(iii),

βi = (c¼)i and β j = (c¼) j . Thus

(c¼)i = leftminc¼(i) ≤ β j − ( j − i) = (c¼) j − ( j − i),

where the first equality is the case hypothesis and the inequality is (38). Now j > i

implies that (c¼)i < (c¼) j . This contradicts Lemma 5.1, and hence this case cannot

occur.

Subcase 1.2.2 leftminc¼(i) = (c¼)i and rightmaxc¼( j) > (c¼) j : By Lemma 5.1, the

subcase hypothesis implies

leftminc¼(k) = (c¼)k for i ≤ k ≤ q. (48)
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By Lemma 5.5(i) this implies

βk ≥ (c¼)k for i ≤ k ≤ q. (49)

In this subcase, (38) and (39) become

β j − ( j − i) ≥ (c¼)i = (c¼) j + ((c¼)i − (c¼) j ), (50)

βq − (q − p) ≥ (c¼)p = (c¼)q + ((c¼)p − (c¼)q). (51)

Thus

rightmaxc¼(q) − (c¼)q = rightmaxc¼(q + 1) − leftminc¼(q)

≥ β1 + · · · + βq − ((c¼)1 + · · · + (c¼)q )

=

(
i−1∑

t=1

βt − (c¼)t

)
+ [βi − (c¼)i ] +

⎛
¿

q−1∑

t=i+1,t �=p

βt −(c¼)t

À
⎠

+[βp − (c¼)p] + [βq − (c¼)q ]

≥ [βi − (c¼)i ] + [βp − (c¼)p] + [βq − (c¼)q ]

≥ [βi −(c¼i )]+[( j −i)+((c¼)i −(c¼) j )]+[(q− p)+((c¼)p −(c¼)q )]

= βi + (q − i) − (c¼)q ,

(52)

where the first equality follows from the subcase hypotheses and (48), the first inequal-

ity from Lemma 5.10 with rightmaxc¼(q + 1) − leftminc¼(q) ≥ 0, the second

inequality by Corollary 3.6 and (49), and the third inequality is by (50), (51), and the

final equality by p = j . Rewriting (52), we arrive at rightmaxc¼(q) ≥ βi + (q − i) =
τp + (q − p). Further, by (39), τq − (q − p) = βq − (q − p) ≥ leftminc¼(p).

The hypotheses of Proposition 5.9 are satisfied for tp,qτ by the preceding two sen-

tences, the subcase hypothesis, and (46). Hence, tp,qτ ∈ Pc¼,γ (notice (p, q) cannot

be interwoven since j = p and c¼ is 012-avoiding by Lemma 5.3).

Subcase 1.2.3 leftminc¼(i) < (c¼)i and rightmaxc¼( j) = (c¼) j : By the subcase

hypotheses,

rightmaxc¼(k) = (c¼)k for i ≤ k ≤ j, (53)

and hence by Lemma 5.5(ii)

βk ≤ (c¼)k for i ≤ k ≤ j . (54)

In this subcase, (36) becomes

βi + ( j − i) ≤ (c¼) j = (c¼)i + ((c¼) j − (c¼)i ). (55)

By Corollary 3.6 applied to φ = tp,qβ,

β1+· · ·+βi−1 − ((c¼)1 + · · · + (c¼)i−1)
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≥−((βi + · · · + β j−1 + (βq − (q − p))

−((c¼)i +· · ·+ (c¼) j )). (56)

We conclude

(c¼)i − leftminc¼(i) = rightmaxc¼(i) − leftminc¼(i − 1)

≥ β1 + · · · + βi−1 − ((c¼)1 + · · · + (c¼)i−1)

≥ −((βi + · · · + β j−1 + (βq − (q − p)) − ((c¼)i + · · · + (c¼) j ))

= −

⎛
¿

j−1∑

t=i+1

βt − (c¼)t

À
⎠ − [βi − (c¼)i ] − [βq − (q − p) − (c¼) j ]

≥ −[βi − (c¼)i ] − [βq − (q − p) − (c¼) j ]

≥ −[−( j − i) + ((c¼) j − (c¼)i )] − [(βq − (q − p) − (c¼) j ]

= (q − i) − (βq − (c¼)i );

(57)

the first equality follows by the subcase hypotheses, the first inequality from

Lemma 5.10 with rightmaxc¼(i) − leftminc¼(i − 1) ≥ 0, the second inequality by

(56), the third inequality by (54), the fourth by (55), and the final equality by p = j .

Now (57) is equivalent to

leftminc¼(i) ≤ βq − (q − i) = φ j − ( j − i).

Further, by (36),

φi + ( j − i) = βi + ( j − i) ≥ rightmaxc¼( j).

The hypotheses of Proposition 5.9 are satisfied for ti, j φ by the preceding two sentences,

the subcase hypothesis, and (47). Hence, ti, jφ ∈ Pc¼,γ .

Subcase 1.2.4 leftminc¼(i) < (c¼)i , rightmaxc¼( j) > (c¼) j : In this subcase,

leftminc¼( j) = (c¼) j , since leftminc¼( j) < (c¼) j would imply that c¼ contains 012.

Thus, since (i, j) is interwoven, centerc¼(i, j) < j and the definition of centerc¼(i, j)

and Lemma 5.3 (012-avoidance) implies

leftminc¼(k) = (c¼)k for centerc¼(i, j) < k ≤ q. (58)

Corollary 3.6, applied to β and τ , respectively, implies

(β1 + · · · + βcenterc¼(i, j)) − ((c¼)1 + · · · + (c¼)centerc¼(i, j)) ≥ 0,

and

(β1 + · · · + βi−1 + β j − ( j − i) + βi+1 + · · · + βcenterc¼(i, j))

−((c¼)1 + · · · + (c¼)centerc¼(i, j)) ≥ 0.
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The second inequality yields

(β1 + · · · + βcenterc¼(i, j)) − ((c¼)1 + · · · + (c¼)centerc¼(i, j))

≥ βi − (β j − ( j − i)). (59)

Thus

rightmaxc¼(q) − (c¼)q = rightmaxc¼(q + 1) − leftminc¼(q)

≥ β1 + · · · + βcenterc¼(i, j) − ((c¼)1 + · · · + (c¼)centerc¼(i, j))

+ (βcenterc¼(i, j)+1 − (c¼)centerc¼(i, j)+1) + · · · + (β j−1 − (c¼) j−1)

+ (βq −(q − p)−(c¼) j )+(β j+1−(c¼) j+1)+· · ·+(βq−1−(c¼)q−1)

+ (β j + (q − p) − (c¼)q )

≥ β1 + · · · + βcenterc¼(i, j) − ((c¼)1 + · · · + (c¼)centerc¼(i, j))

+ (β j + (q − p) − (c¼)q )

≥ βi − (β j − ( j − i)) + (β j + (q − p) − (c¼)q )

= βi + (q − i) − (c¼)q ,

(60)

where the first relation follows from the subcase hypotheses, the second relation from

Lemma 5.10 with rightmaxc¼(q + 1) − leftminc¼(q) ≥ 0 applied to τ , the third

from (58), Corollary 3.6, and Lemma 5.5(i), the fourth by (59), and the final by

p = j . Hence, (60) implies rightmaxc¼(q) ≥ βi + (q − i) = τp + (q − p). By (39),

leftminc¼(p) ≤ βq −(q − p) = τq −(q − p). We conclude by Proposition 5.9 applied

to tp,qτ that tp,qτ ∈ Pc¼,γ (notice (p, q) cannot be interwoven since j = p and c¼ is

012-avoiding by Lemma 5.3).

Case 1.3 (i and p in the same block, i < p, j = q): Lemma 2.9(i) implies βi �=
βp − (p − i).

Subcase 1.3.1 βi > βp − (p − i): It is easily checked that tp,qβ <Bruhat

ti,ptp,qβ <Bruhat tp,q ti,ptp,qβ = ti, jβ. Hence ti, jβ is not a cover of β and this

subcase cannot occur.

Subcase 1.3.2 βi < βp − (p − i): By the subcase hypothesis, the definition of τ , and

j = q,

τp = βp > βi + (p − i) = βi + ( j − i) − (q − p)

= τ j − (q − p) = τq − (q − p). (61)

By (34), (39), and j = q we have

τq − (q − p) = τ j − (q − p) = βi + ( j − i) − (q − p) > β j − (q − p)

= βq + (q − p) ≥ leftminc¼(q). (62)

Since τp = βp, by (37),

τp + (q − p) = βp + (q − p) ≤ rightmaxc¼(q). (63)
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Finally, τr = βr for r �= i, j . If (p, q) is interwoven, then (41) and j = q combined

with the previous sentence implies

τ1 + · · · + τp−1 + τq − (q − p) + τp+1 + · · · + τcenterc¼(p,q)

= β1 + · · · + βi−1 + β j − ( j − i) + βi+1 + · · ·

+ βp−1+βi +( j − i) − (q − p)+βp+1+· · ·+βcenterc¼(i, j)

= β1+· · ·+βp−1+β j − (q − p)+βp+1+· · ·+βcenterc¼(i, j)

≥ (c¼)1 + · · · + (c¼)centerc¼(i, j).

(64)

The hypotheses of Proposition 5.9 are satisfied for tpqτ by (61), (62), (63), and (64).

Hence, tp,qτ ∈ Pc¼,γ .

We conclude by (42) that τ <Bruhat tp,qτ . By (34), φi = βi > β j − ( j − i) =
βq −(q − p)−(p−i) = φp −(p−i), and hence φ = tp,qβ <Bruhat ti,ptp,qβ = tp,qτ .

Case 1.4 (i < p < j < q are all disjoint): In this case τ, φ <Bruhat ti, j tp,qβ =
tp,q ti, jβ. By Lemma 5.11, at least one of (i, j) or (p, q) is not interwoven. If (i, j)

is not interwoven then it follows from applying Proposition 5.9 to ti, jβ ∈ Pc¼,γ that

tp,qβ satisfies the hypotheses of Proposition 5.9 yielding ti, j tp,qβ ∈ Pc¼,γ . Similarly,

if (p, q) is not interwoven, Proposition 5.9 implies tp,q ti, jβ ∈ Pc¼,γ .

Case 1.5 (i < j < p < q are all disjoint): Once again τ, φ <Bruhat ti, j tp,qβ =
tp,q ti, jβ. It is easy to check that tp,qβ satisfies the hypotheses of Proposition 5.9

yielding ti, j tp,qβ ∈ Pc¼,γ .

6 Proof of Theorem 3.8 (⇐)

Let us restate the “⇐” direction of Theorem 3.8:

Proposition 6.1 Let w ∈ Sn , I ⊂ J (w) and D = [n − 1] − I where w is not

I -spherical. There exists ¼ ∈ ParD such that »w¼ is not D-multiplicity-free.

Our strategy is to construct such a ¼ explicitly.

Proof Let u = w0(I ) · w. Since w is not I -spherical, by Definition 1.2, u is not

a product of distinct generators. By Proposition 7.9, u contains 321 or 3412. We

divide our analysis into cases based on the patterns contained in u. For μ ∈ Compn

write μ|D = (μ1, . . . , μk) to denote the splitting of μ into blocks of sizes d1 −
d0, . . . , dk+1 − dk = n − dk . Note that μ|D ∈ ParD if it is weakly decreasing in each

block.

Case 1 (u contains the pattern 321): Choose the partition ¼ whose parts are in {2, 1, 0}
so that u¼ contains the values 0, 1, 2 at indices p′ < q < r ′. Choose the pattern 012

so that r ′ − p′ is minimized. Also choose the minimum p ≤ p′ such that u¼ contains

only 0’s at indices p, . . . , p′ and choose the maximum r ≥ r ′ such that u¼ contains

only 2’s at indices r ′, . . . , r . An example of a skyline diagram of u¼ is shown in

Fig. 3.
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Fig. 3 A skyline diagram for u¼ that contains 012

Here, (u¼)p′ = 0, (u¼)q = 1, (u¼)r ′ = 2. In the interval [p′ + 1, q], u¼ can take

on 1’s or 2’s, and all the 2’s are left of the 1’s by minimality of r ′ − p′. Similarly, in

the interval [q, r ′ − 1], u¼ takes on values 1’s followed by 0’s. Thus, in the interval

[p′ + 1, r ′ − 1], say u¼ takes on k2 ≥ 0 many 2’s, then k1 ≥ 1 many 1’s and then

k0 ≥ 0 many 0’s, and (u¼)q = 1.

Since I ⊂ J (w), D = [n − 1] − I , w¼ is weakly increasing in each block so u¼

is weakly decreasing in each block, i.e., (u¼)|D ∈ ParD . The argument that follows

only uses this property of D.

Consider the following composition

γ = (γ 1, . . . , γ k) = (u¼ + �ep − �er )|D.

It is easily checked that if (u¼)i ≥ (u¼)i+1, then γi ≥ γi+1 by our choice of p and r .

Thus each γ i is indeed a partition, meaning that γ ∈ ParD .

Recall the poset Pu¼,γ (Sect. 4) contains all vectors β such that the monomial xβ

appears in the expansion of »u¼ and πw0(I )x
β = ±sγ (see Lemma 4.1). By Lemma 4.6,

Pu¼,γ is an order ideal in SI ,γ . Also each element β can be generated from γ via the

moves ti j .

Claim 6.2 Pu¼,γ has height at most 1. Moreover it has at most k1 − 1 many β such

that θ(β) = 1.

Proof of Claim 6.2 Since all part sizes of u¼ belong in {0, 1, 2}, it is straightforward

from Lemma 2.9(i) that the only ti j ’s that increase the rank of β are

ti : (. . . , 1, 1, . . .) �³ (. . . , 0, 2, . . .)

for i and i + 1 in the same block. The number of nonzero values in the composition

decreases by one when we apply such a move. Let #�=0β be the number of nonzero

values in β. By Kohnert’s rule (Theorem 3.5), #�=0β ≥ #�=0u¼ for [xβ ]»u¼ > 0. At

the same time, #�=0γ = #�=0u¼+ 1, meaning that for all β ∈ Pu¼,γ , β can be obtained

from γ via at most one such move ti .

Next, let β = tiγ ∈ Pu¼,γ . Since β ≥dom u¼, by Corollary 3.6, we necessarily

have p′ < i < r ′ so i is one of r ′ + k2 + 1, . . . , r ′ + k2 + k1 − 1 such that i and i + 1

are in the same block. Thus, there are at most k1 − 1 choices for i .

Claim 6.3 If β ∈ Pu¼,γ and θ(β) = 1 then [xβ ]»u¼ = 1.

Proof of Claim6.3 For each such β = tiγ , there is exactly one corresponding Kohnert

diagram, as we need to move the top box in column r of u¼ to column i + 1, and

the single box in column i of u¼ to column p. An example of such Kohnert diagrams

corresponding to the example in Fig. 3 is shown in Fig. 4.
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Fig. 4 Kohnert diagrams with weight xβ = x
ti j γ where β ∈ Pu¼,γ

Fig. 5 Kohnert diagrams with weight xγ

Claim 6.4 [xγ ]»u¼ = k1 + 1.

Proof of Claim 6.4 The D ∈ Koh(u¼) such that Kohwt(D) = γ are obtained by either

• moving the top box of column r in u¼ moved to column p; or

• moving the unique box in the column z ∈ {p′ + k2 + 1, . . . , p′ + k2 + k1} to

column p followed by moving the top box in column r to column z.

These Kohnert diagrams corresponding to the example shown in Fig. 3 are shown in

Fig. 5.

Hence, by Claims 6.2, 6.3, 6.4, and Lemma 4.3,

[sγ ]»w¼ =
∑

β∈Pu¼,γ

sgn(β)[xβ ]»u¼ ≥ (k1 + 1) − (k1 − 1) = 2

so »w¼ is not D-multiplicity-free.

Case 2 (u avoids the pattern 321 but u contains the pattern 3412): Pick ¼ ∈ Parn
to consist of values in {3, 2, 1, 0} so that u¼ contains the values 1, 0, 3, 2 at indices

p′ < q ′ < r ′ < z′ so that z′ − p′ is minimized. Analogous to Case 1, choose the

minimum p ≤ p′ such that u¼ contains only 1’s in the interval [p, p′] and choose the
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Fig. 6 A skyline diagram for u¼ that contains 1032 and avoids 012 (possibly z = z′)

maximum z ≥ z′ such that u¼ contains only 2’s on [z′, z]. Let q > p be the minimum

index such that (u¼)q = 0 and let r < z be the maximum index such that (u¼)r = 3.

Since u avoids 321, u¼ avoids 012, and together with the minimality of z′ − p′, we see

that (u¼)p′+1, . . . , (u¼)z′−1 can only take on values in {0, 3}. An example of a skyline

diagram of u¼ is shown in Fig. 6.

Similar to Case 1, let

γ = (γ 1, . . . , γ k) = (u¼ + �ep + �eq − �er − �ez)|D ∈ ParD.

Claim 6.5 Pu¼,γ = {γ }.

Proof of Claim 6.5 By Proposition 2.3, Lemma 2.5, and Lemma 4.6, it suffices to show

that there does not exist i, i + 1 in the same block such that β = tiγ ∈ Pu¼,γ . If such

a ti exists, then [xβ ]»u¼ > 0 and so β ≥dom u¼, by Corollary 3.6. Also we must have

p ≤ i < z since γ and u¼ only differ in that interval. Let β≤ j := (β1, . . . , β j ) and

recall that #�=0β is the number of nonzero entries in β. By Kohnert’s rule, Theorem 3.5,

for β ∈ Pu¼,γ , #�=0β≤ j ≥ #�=0(u¼)≤ j for all j . Consider the following cases:

• p = i < q, ti : γ = (. . . , 2, 1, . . .) �³ (. . . , 0, 3, . . .), #�=0β≤i < #�=0(u¼)≤i ;

• p < i < q, ti : γ = (. . . , 1, 1, . . .) �³ (. . . , 0, 2, . . .), #�=0β≤i < #�=0(u¼)≤i ;

• q ≤ i < r , ti : γ = (. . . , 1, 0, . . .) �³ (. . . ,−1, 2, . . .) or (. . . , 3, βi+1, . . .) �³
(. . . , βi+1 − 1, 4, . . .), with impossible part sizes;

• r ≤ i < z, ti : γ = (. . . , 2, 2, . . .) �³ (. . . , 1, 3, . . .) or (. . . , 2, 1, . . .) �³
(. . . , 0, 3, . . .), where the newly generated part of size 3 cannot be obtained by

Kohnert’s rule, Theorem 3.5, since u¼, γ and β only differ on the interval [p, z],
that is β /∈ Pu¼,γ , a contradiction.

As a result, no such ti exists.

Claim 6.6 [xγ ]»u¼ = 2.

Proof of Claim 6.6 The D ∈ Koh(u¼) such that Kohwt(D) = γ are obtained from u¼

by

• moving the top box of column r to column p and moving the top box of column

z to column q; or

• moving the top box of column r to column q and moving the top box of column

z to column p;

as shown in Fig. 7.

Therefore, by Claim 6.5 and Claim 6.6, [s¼]»w¼ = [xγ ]»u¼ = 2, as desired.
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Fig. 7 Kohnert diagrams with weight xγ

7 Equivalence of definitions

Let’s first recall the definition of I -spherical in [18]. Let Red(w) be the set of reduced

expressions w = si1 · · · si�(w)
. Let D := [n − 1] − I = {d1 < d2 < · · · < dk}; d0 :=

0, dk+1 := n.

Definition 7.1 ([18, Definition 3.1]) Let w ∈ Sn and I ⊆ J (w). Then w is I -spherical

if R = si1si2 · · · si�(w)
∈ Red(w) exists such that

(S.1) sdi
appears at most once in R; and

(S.2) #{m : dt−1 < im < dt } <
(

dt −dt−1+1
2

)
for 1 ≤ t ≤ k + 1.

Theorem 7.2 Definitions 1.2 and 7.1 are equivalent.

Theorems 7.2 and 1.3 were used in C. Gaetz’s [14], which proves [18, Conjec-

ture 3.8]. This gives a pattern avoidance criterion for maximally spherical Schubert

varieties [14, Theorem 1.4, Corollary 1.5]. We refer to [18] for further information.

We first derive some results valid for any finite crystallographic root system �. Let

the positive roots be �+, with simple roots � = {α1, . . . , αr }. Let W be its finite

Weyl group with corresponding simple generators S = {s1, s2, . . . , sr }, where we

have fixed a bijection of [r ] := {1, 2, . . . , r} with the nodes of the Dynkin diagram G.

Let Red(w) be the set of the reduced expressions w = si1 · · · sik
, where k = �(w) is

the Coxeter length of w. The left descents of w are

J (w) = { j ∈ [r ] : �(s jw) < �(w)}.

For I ∈ 2[r ], let GI be the induced subdiagram of G. Write

GI =

m⋃

z=1

C
(z) (65)

as its decomposition into connected components. Let w
(z)
0 be the longest element of

the parabolic subgroup WI (z) generated by I (z) = {s j : j ∈ C(z)}. The generalization

of Definition 7.1 to general type was given as follows:
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Definition 7.3 Let w ∈ W and fix I ⊂ J (w). Then w is I -spherical if there exists

R = si1 · · · si�(w)
∈ Red(w) such that

• #{t | it = j} ≤ 1 for all j ∈ [r ] − I , and

• #{t | it ∈ C(z)} ≤ �(w
(z)
0 ) + #vertices(C(z)) for 1 ≤ z ≤ m.

Such an R is called an I -witness.

Definition 1.2 makes sense in the general context as well. However, that notion dif-

fers from Definition 7.3 in type D4 and F4 (this reduces confidence in the general-type

classification conjecture for Levi-spherical Schubert varieties [18, Conjecture 1.9]).

We plan to study this further in future work.1

We now develop some preliminary results.

Lemma 7.4 Let w ∈ W and fix I ⊂ J (w). Let R = si1 · · · si�(w)
and R′ =

s j1 · · · s j�(w)
∈ Red(w) be such that each st , t ∈ [r ] − I , appears at most once in

R, and at most once in R′. Then for each 1 ≤ z ≤ m,

#{t | it ∈ C
(z)} = #{t | jt ∈ C

(z)}.

Proof We may assume without loss of generality that � is irreducible. Furthermore, we

may assume without loss of generality that each si ∈ S is used in any (equivalently, all)

R′′ ∈ Red(w), since otherwise we work individually on the root systems associated

to each irreducible component of � \ {αi }.
We induct on m ≥ 1. In the base case m = 1, then

#{t | it ∈ C
(1)} = �(w) − (r − #I )

is independent of any choice of R′′, so we are done.

For the induction step, consider a fixed C ∈ {C(1), . . . , C(m)}. Fix some t0 ∈ [r ]− I

such that not all of C(1), . . . , C(m) lie in the same connected component of (the Dynkin

diagram of) S \ {t0}. Such t0 can be chosen because m ≥ 2 and the Dynkin diagram

for W is a tree. Let J1, J2, . . . , Jp be the connected components of S \{t0} and assume

C ⊂ J1.

Note that generators in different Ji ’s commute with each other. For the reduced

word R, we can regroup it as wJ1 · · · wJp st0 u J1 · · · u Jp where wJi
, u Ji

∈ WJi
, the

parabolic subgroup generated by Ji . We can rearrange it as

w = (wJ2 · · · wJp )(wJ1st0 u J1)(u J2 · · · u Jp ).

Similarly, for R′ we obtain

w = w′
J1

· · · w′
Jp

st0 u′
J1

· · · u′
Jp

= (w′
J2

· · · w′
Jp

)(w′
J1

st0 u′
J1

)(u′
J2

· · · u′
Jp

).

1 As mentioned in the introduction, in later work [16, Section 4] such a counterexample was indeed verified

using Demazure character computations.
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Since wJ1st0 u J1 does not contain any simple generators associated to K = J2 ∪ · · · ∪
Jp, it is the unique minimal double coset representative of WK wWK . This implies

that wJ1st0 u J1 = w′
J1

st0 u′
J1

, where we obtained the same Weyl group element from

different reduced decompositions.

Now apply the induction hypothesis by replacing S by J1 ∪ {t0}, I by I ∩ J1 ∪ {t0},
w by the minimal length coset representative of WK wWK , R (and R′) by the subword

of R (and R′) that equals wJ1st0 u J1 = w′
J1

st0 u′
J1

, and leaving C unchanged.

For each α ∈ �+, define its support to be

Supp(α) = {αi ∈ � | α − αi is a nonnegative linear combination of �}.

Also, for each positive root α =
∑r

i=1 ciαi , written as a nonnegative linear com-

bination of �, define its height to be ht(α) =
∑r

i=1 ci . The next folklore result is

well-known, but we do not know a precise reference with proof. We include one here:

Lemma 7.5 For each α ∈ �+, Supp(α) is a connected subgraph in the Dynkin

diagram.

Proof We use induction on ht(α). The base case ht(α) = 1, i.e., α ∈ �, is clear.

In the induction step, for each α ∈ �+\�, there exists i ∈ [r ] such that α′ := siα =
α − kαi ∈ �+ for some positive integer k. We know that ht(α′) < ht(α) so Supp(α′)

is connected by induction hypothesis. At the same time, Supp(α) = Supp(α′) ∪ {αi }.
If αi ∈ Supp(α′), then Supp(α) = Supp(α′) is connected. Thus, we assume αi /∈
Supp(α′). Let 〈−,−〉 denote the standard inner product on the ambient vector space

containing our root system. We have

α = siα
′ = α′ −

2〈α′, αi 〉

〈αi , αi 〉
αi �= α′.

As 〈α′, αi 〉 �= 0, there exists some α j ∈ Supp(α′) such that 〈α j , αi 〉 �= 0, meaning that

the node j is connected to the node i in the Dynkin diagram. Therefore, Supp(α) =
Supp(α′) ∪ {αi } is connected.

Lemma 7.6 Suppose that we have an equality of reduced words si1 si2 · · · sik−1
=

si2 si3 · · · sik
. Then #{t | it = j} ≥ 2 for all j on the path (excluding i1 and ik)

between i1 and ik in G.

Proof Let w = si1si2 · · · sik−1
= si2 si3 · · · sik

. As si2 · · · sik
is reduced, αik

is a right

inversion of w, where αik
is the simple root corresponding to sik

, i.e., αik
∈ �+ and

wαik
∈ �−. Let −β = wαik

so β ∈ �+. We have that

β = −si2 · · · sik
αik

= −si2 · · · sik−1
(−αik

) = si2 · · · sik−1
αik

.

This means that si1β = wαik
= −β so β = αi1 .

Note that since si j
· · · sik

is reduced and has αik
as its right descent, we know

si j
· · · sik−1

sik
αik

∈ �−, si j
· · · sik−1

αik
∈ �+.
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Consider the sequence of positive roots

αik
, sik−1

αik
, . . . , si2 · · · sik−1

αik
= αi1 .

By definition, sα(x) = x − 2〈x,α〉
〈α,α〉 α. Hence the symmetric difference

Supp(sit · · · sik−1
αik

) � Supp(sit+1 · · · sik−1
αik

) ⊆ {αit }, for t = k − 1, . . . , 2.

Recall that for each α ∈ �+, its support Supp(α) is connected in the Dynkin diagram

(Lemma 7.5). Fix any j on the path between i1 and ik in the Dynkin diagram. As a

result, there exists some p such that α j ∈ Supp(si p · · · sik−1
αik

). Thus, there must be

some s j among si p , . . . , sik−1
so that a positive multiple of α j can be added from αik

,

and there must be some s j among si2 , . . . , si p−1 so that a positive multiple of α j can

be subtracted to obtain αi1 .

We use this textbook result:

Proposition 7.7 (Deletion property [8, Proposition 1.4.7]) Let w = si1 · · · si� be a

reduced word. Then for a left descent si0 of w, i.e. �(si0w) = �(w) − 1, we have

another reduced word w = si0 si1 · · · ŝi j
· · · si� , where ŝi j

means the deletion of si j
.

The culmination of the above root-system uniform arguments is this next proposi-

tion, which says that Definition 7.3 is, in general, “close” to Definition 1.2.

Proposition 7.8 If w ∈ W is I -spherical (in the sense of Definition 7.3), then there

exists an I -witness R of w of the form R = R′ R′′ where R′ ∈ Red(w0(I )) and

R′′ ∈ Red(w0(I )w).

Proof Let R(0) = si1 · · · si� be an I -witness of w. Pick any R′ = sk1 · · · sk�′
∈

Red(w0(I )). We gradually modify R(0), so that at each step it remains an I -witness,

until it is of the desired form. For each j = �′, . . . , 1, add sk j
to the start of R. By the

deletion property (Proposition 7.7), some si j ′
is deleted resulting in R(1) ∈ Red(w).

By Lemma 7.6, k j and i j ′ must be in the same C(z) since otherwise, some si with i /∈ I

on the path from k j to i j ′ in the Dynkin diagram is used at least twice in R(0), con-

tradicting that R(0) is an I -witness. Thus, in R(1), #{t | it ∈ C(z)} remains unchanged

for each z. Repeating this, k�′ many times, we obtain an I -witness R(k�′ ) = R′ R′′, as

claimed.

Henceforth, we assume that W = Sn . Recall that w ∈ Sn contains the pattern

u ∈ Sk if there exists i1 < i2 < . . . < ik such that w(i1), w(i2), . . . , w(ik) is in

the same relative order as u(1), u(2), . . . , u(k). Furthermore w avoids u if no such

indices exist.

We need the following proposition relating pattern avoidance and standard Coxeter

elements. A more general statement for finite Weyl groups can be found in [15].

Proposition 7.9 ([33]) A permutation w ∈ Sn is a product of distinct generators, i.e.,

a standard Coxeter element in some parabolic subgroup, if and only if w avoids 321

and 3412.
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Fig. 8 An example of a permutation u−1 containing 321 in the proof of Theorem 7.2

Conclusion of the proof of Theorem 7.2: If w ∈ Sn satisfies Definition 1.2 then it

satisfies Definition 7.1 as the length-additive expression w = w0(I )c provides an

I -witness, where c is a product of distinct simple reflections.

Conversely, suppose w ∈ Sn satisfies Definition 7.1. We now show that it satisfies

Definition 1.2. Recall D = [n] − I = {d1 < d2 < · · · < dk}; d0 = 0, dk+1 = n. Let

Ai = {di−1 + 1, . . . , di } for i = 1, . . . , k + 1.

Assume w is I -spherical with some I -witness. By Proposition 7.8 and Definition 7.1,

we can write w = w0(I )u such that there is a reduced word R′′ = si1 · · · si�(u)
of u

such that

• sdi
appears at most once in R′′; and

• #{m | dt−1 < im < dt } <
(

dt −dt−1+1
2

)
−

(
dt −dt−1

2

)
= dt − dt−1 for 1 ≤ t ≤ k + 1.

By Proposition 7.9, it suffices to show that u = w0(I ) · w avoids 321 and 3412,

or equivalently, u−1 avoids 321 and 3412. Since Proposition 7.8 implies �(w) =
�(w0(I )) + �(u), u = w0(I ) · w does not have left descents in I . In other words, u−1

is increasing on the indices Ai for 1 ≤ i ≤ k + 1.

Think about R′′ as successive multiplications of u−1 on the right by simple trans-

positions of R′′ (read right to left) until one reaches id (for example, if u−1 = 2413,

R′′ = s1s3s2 represents 2413 ³ 2143 ³ 2134 ³ 1234). Since sdi
appears

at most once in R′′, we know |{u−1(1), u−1(2), . . . , u−1(di )}\[di ]| ≤ 1. More-

over, if this cardinality is 1, sdi
swaps max{u−1(1), . . . , u−1(di )} at index di with

min{u−1(di + 1), . . . , u−1(n)} at index di + 1.

First suppose u−1 contains 3412 at indices k1 < k2 < k3 < k4. Then any reduced

expression of u−1 contains at least two copies of s j for k2 ≤ j < k3. Since u−1(k2) >

u−1(k3), k2 and k3 lie in different Ai ’s. This means that there exists some k2 ≤ j < k3

with j /∈ I such that s j is used at least twice in R′′, a contradiction.

If u−1 contains 321 at indices k1 < k2 < k3 with ki ∈ Ati , then t1 < t2 < t3. We

concentrate on the block At2 and will show that simple transpositions in At2 are used

at least dt2 − dt2−1 times in R′′. A visualization of u−1 is shown in Fig. 8.
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Recall that sdt2−1 exchanges the maximum value in indices A1 ∪ · · · ∪ At2−1 with

the minimum value in indices At2 ∪ · · · ∪ Ak+1. Since u−1(k2) > u−1(k3), the value

u−1(k2) is not the minimum among u−1(At2 ∪ · · · ∪ Ak+1) and thus cannot arrive left

of index dt2−1 + 1 during this sdt2−1 swap. Similarly, since u−1(k2) < u−1(k1), the

value u−1(k2) cannot go to the right of index dt2 − 1. As a result, the value of u−1(k2)

occurs among u−1(At2) as we are using R′′ to transform u−1 into id.

In order to put u−1(k1), u−1(k2), u−1(k3) into the correct order, both the values

u−1(k1) and u−1(k3) must enter At2 and exchange with u−1(k2). In particular, all

of the simple transpositions s j , j = dt2−1 + 1, . . . , dt2 − 1 must be used in order

to exchange u−1(k1) with u−1(k3). Moreover, certain s j need to be applied twice:

if u−1(k1) switches with u−1(k2) at transposition s j before u−1(k2) switches with

u−1(k3), then s j must be used again; and if u−1(k3) switches with u−1(k2) first at s j ,

then s j must be used again as well to eventually switch u−1(k2) and u−1(k1). Either

way, in this case, the total number of times that s j , j = dt2−1 + 1, . . . , dt2 − 1, is used

is at least dt2 − dt2−1.
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