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Abstract

We extend the notion of proper elements to all finite Coxeter groups. For all infinite

families of finite Coxeter groups we prove that the probability a random element is

proper goes to zero in the limit. This proves a conjecture of the third author and

Alexander Yong regarding the proportion of Schubert varieties that are Levi spherical

for all infinite families of Weyl groups. We also enumerate the proper elements in the

exceptional Coxeter groups.
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1 Introduction

The study of proper elements is motivated by the study of reductive group actions

on Schubert varieties. Let G be a complex, connected reductive group, with a fixed

maximal torus T contained in a fixed Borel subgroup B. The Weyl group of G is

defined to be W = N (T )/T ; it is a finite Coxeter group of rank n, where n is the

semisimple rank of G. The flag variety G/B is an object of central importance in

algebraic geometry and representation theory. The B-orbits in G/B are indexed by

w ∈ W , and the Zariski-closure of the B-orbit indexed by w is the Schubert variety

Xw.

The standard Levi subgroups of G are families of reductive subgroups that act on

Schubert varieties in G/B. For each I ¦ [n] ..= {1, . . . , n}, there is an associated

standard parabolic subgroup PI § B. Each PI decomposes as a semidirect product

PI = L I �UI ,

where L I is a reductive group called a standard Levi subgroup and UI is the unipotent

radical of PI .

The group G acts on G/B by left multiplication. If J (w) ¦ [n] is the left descent

set of w (see Definition 1.2), then stabG(Xw) = PJ (w) [1, Lemma 8.2.3]. For any

I ¦ J (w), L I < PI � PJ (w) and hence L I is a reductive group that acts on Xw by

left multiplication.

A normal variety X is a spherical variety for the action of a reductive group R if

a Borel subgroup of R has an open dense orbit in X . In [11], the third author and

Alexander Yong initiated a study of when a Schubert variety in G/B is Levi spherical;

that is, when it is a spherical variety under the left multiplication action of a standard

Levi subgroup of G.

In this work we define proper elements of a Coxeter group and show that if Xw is

L I -spherical, then w is proper. We then analyze the limiting behavior of properness

which yields a proof of [11, Conjecture 3.7] for all infinite families of Weyl groups.

Theorem 1.1 Let G be a simple group with Weyl group W of type An, Bn, Cn, or Dn .

Let w be sampled uniformly at random from W . Then as n → ∞,

Pr[Xw ¦ G/B is L J (w)-spherical ] −→ 0.

1.1 Proper elements in finite Coxeter groups

An n ×n matrix M is a Coxeter matrix if it is a symmetric matrix with entries in

{1, 2, . . . ,∞} such that Mi j = 1 if and only if i = j . The Coxeter group associated

to M is the group

W =
〈

s1, . . . , sn : (si s j )
Mi j = e for all Mi j �= ∞

〉

.
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The matrix M is visualized by the Coxeter diagram G, a graph whose nodes are labeled

by [n], and nodes i and j are connected by an edge labeled by Mi j if Mi j � 3. By

convention, the label on edges with Mi j = 3 is omitted. See Fig. 1 below for examples.

Let S = {s1, . . . , sn}. The pair (W , S) is called a Coxeter system. If W is a

finite group, then (W , S) is finite; (W , S) is irreducible if G is connected. The finite

Coxeter groups were classified in [7]. The irreducible, finite Coxeter groups consist

of four infinite families An, Bn, Dn , and I2(n) as well as six exceptional groups:

E6, E7, E8, F4, H3, and H4. The Coxeter length, �(w), of w ∈ W is equal to the

minimal number of elements of S required to express w. There is a unique element of

maximal length in W denoted by w0(W ).

We index the nodes in the Coxeter diagram G by [n]. For I ¦ [n], let GI be the

induced subdiagram of G. There is a decomposition of GI into m connected compo-

nents

GI =

m
⋃

z=1

C(z), (1)

where each C(z) is a Coxeter diagram with associated Coxeter group W (z). Let WI be

the parabolic subgroup of W generated by SI
..= {si : i ∈ I }. Then GI is the Coxeter

diagram of WI , and

�(w0(WI )) =

m
∑

z=1

�(w0(W (z))). (2)

Definition 1.2 For an element w ∈ W , the set of left descents is

J (w) ..= { j ∈ [n] : �(s jw) < �(w)}.

The number of left descents will be denoted by d(w) ..= |J (w)|. For a nonnegative

integer x �n define maxw0(W , x) ..=max {�(w0(WI )) : I ¦[n] and |I |= x}.

Definition 1.3 An element w ∈ W is proper if �(w) � n + maxw0(W , d(w)).

Example 1.4 Let W be the B3 Coxeter group with w = s3s2s3s1s2s3s1 ∈ W . Then

J (w) = {2, 3} and d(w) = 2. For I = {2, 3} ¦ [3], WI is the B2 Coxeter group with

�(w0(WI )) = 4. This I achieves the maximum possible value for �(w0(WI )) over all

I ¦ [3] with|I | = d(w) = 2. Hence, maxw0(W , d(w)) = 4. We conclude

�(w) = 7 � 3 + 4 = n + maxw0(W , d(w)),

and so w is proper.

Example 1.5 Let W be the A4 Coxeter group with w = s2s3s4s1s2s3s1s2 ∈ W . Then

J (w) = {2, 3}, d(w) = 2, and maxw0(W , d(w)) = 3 by Proposition 2.1 below.

Hence,
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�(w) = 8 � 4 + 3 = n + maxw0(W , d(w)),

and so w is not proper.

We analyze the limiting behavior of this property.

Theorem 1.6 Let W be a Coxeter group of type An, Bn, Dn , or I2(n). Let w be sampled

uniformly at random from W . Then as n → ∞,

Pr[w is proper] −→ 0.

In Proposition 2.2, it is shown that if Xw ¦ G/B is L I -spherical for I ¦ J (w),

then w is proper. Hence, Theorem 1.6 implies Theorem 1.1.

Section 7 enumerates the proper elements for W an exceptional finite Coxeter group.

In Theorem 6.4, we give a non-trivial lower bound on the number of proper elements

in Coxeter groups of type An, Bn , and Dn .

1.2 Classifying Levi-spherical Schubert varieties

A type-independent classification of Levi-spherical Schubert varieties was conjectured

in [11, Conjecture 1.9] by the third author and Yong. This proposed classification is

further motivated by its connection to the theory of Demazure characters, or key

polynomials, and the study of their “split-symmetry” [11, Section 4.1].

The proposed classification of Levi-spherical Schubert varieties in [11] is in terms

of spherical elements. A reduced expression of w ∈ W is a word si1 . . . si�(w)
= w.

Denote the set of reduced words of w by Red(w) ..= Red(W ,S)(w).

Definition 1.7 (I -spherical elements) Let w ∈ W and fix I ¦ J (w). Then w is I -

spherical if there exists si1 · · · si�(w)
∈ Red(w) such that:

(S.1) # {t : it = j} � 1 for all j ∈ [n] − I , and

(S.2) # {t : it ∈ C(z)} � �(w0(W (z))) + # vertices(C(z)) for 1 � z � m.

Example 1.8 Let W be the E7 Coxeter group. The E7 Coxeter diagram is

1

2

3 4 5 6 7
.

Let w = s4s2s3s4s3s2s5s7s4s3s2s4s1s5s3 ∈ W . Then J (w) = {2, 3, 4, 5, 7}. If I =

J (w) then

C(1) =
3 4

2

5

and C(2) =
7
.
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Here W (1) is the D4 Coxeter group with longest element

w0(W (1)) = s3s2s4s3s2s4s5s4s3s2s4s5

and �(w0(W (1))) = 12. On the other hand, WI (2) is the A1 Coxeter group with the

longest element w0(W (2)) = s7 and �(w0(W (2))) = 1. The reduced word given to

define w satisfies (S.1) since s1 appears once and s6 appears zero times. This reduced

word also satisfies (S.2) since s2, s3, s4, and s5 appear 13 times, which is less than

12+4 = 16 and s7 appears 1 time, which is less than 1+1 = 2. Thus w is I -spherical.

Proposition 2.3 below implies that since w is I -spherical it is also proper. This

is easily verified to be the case. We have �(w) = 15. And this is less than n +

maxw0(W , d(w)) = 7 + maxw0(W , 5) = 27, where the final equality follows from

Proposition 2.1 below.

Example 1.9 We also give an example of an element that is not I -spherical. Let W be the

B3 Coxeter group. The Coxeter diagram is 4

1 2 3
. The element w = s3s2s3s1s2s3 ∈

W has J (w) = {3}. Let I = J (w). This w has only two reduced words, s3s2s3s1s2s3

and s3s2s1s3s2s3. Each of these reduced words fails (S.1); in both, s2 appears 2 times

which is greater than 1. Thus w is not I -spherical.

Conjecture 1.10 ([11]) Let I ¦ J (w). Xw is L I -spherical if any only if w is I -

spherical.

The third author, joint with Gao and Yong, proved Conjecture 1.10 in type An

[10]. This was then used by Gaetz in [9] to prove [11, Conjecture 3.8], giving a

pattern avoidance criterion for a Schubert variety to be Levi-spherical in type An . The

pattern avoidance criterion, in combination with the Marcus–Tardos theorem, implies

Theorem 1.1 in type An . It is an open question if a pattern avoidance criterion exists

for a Schubert variety to be Levi-Spherical in types Bn, Cn , and Dn .

Theorem 1.11 Let W be a Coxeter group of type An, Bn, Dn , or I2(n). Let w be

sampled uniformly at random from W . Then as n → ∞,

Pr[w is J (w)-spherical ] −→ 0.

Proposition 2.3 below shows that w ∈ W is I -spherical implies w is proper. Hence

Theorem 1.11 follows from Theorem 1.6.

1.3 Previous results on proper permutations

Proper permutations were first introduced in [4]. We highlight that our definition

differs slightly from the original definition. The original definition of properness was

motivated by the study of Levi-spherical Schubert varieties in GLn/B. To study Levi-

spherical Schubert varieties in G/B, for G a simple Lie group, requires a definition

of properness that corresponds to Levi-spherical Schubert varieties in SLn/B (SLn

being a simple Lie group). This introduces a difference of 1 on the right-hand side of
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Fig. 1 The finite Coxeter groups [12]

Definition 1.3 as compared to [4, Definition 1]; this is due to the fact that the Levi

subgroups in SLn have dimension one less than the corresponding Levi subgroups in

GLn . This updated definition is considerably more natural in the general type setting.

The upper bound achieved for the number of proper permutations in [4] uses Cheby-

shev’s inequality. In this paper, we apply Chernoff bounds to achieve much tighter

bounds, exponentially better than those in [4]. We apply these techniques not only in

type An , but also in types Bn and Dn .

We now describe the layout of this paper. In Sect. 2 explicit formulas for

maxw0(W , x) are given for each type. Next, it is shown that for an element w in

a Weyl group W , Xw being L I -spherical implies that w is proper. And for W a finite

Coxeter group with w ∈ W , w is I -spherical implies that w is proper. Hence Theo-

rem 1.6 implies Theorems 1.1 and 1.11. In Sect. 3 we derive concentration bounds

that will be used to bound the number of proper elements in Coxeter groups of type

An , Bn , and Dn . Section 4 recalls several well-known combinatorial models for the

Coxeter groups of type An, Bn , and Dn . Theorem 1.6 is proved in Sect. 5 by giving

asymptotic bounds on the number of proper elements. In Sect. 6 we give nontrivial

lower bounds for the number of proper elements in Coxeter groups of type An, Bn ,

and Dn . We conclude with a table, presented in Sect. 7, enumerating the number of

proper elements in each of the exceptional finite Coxeter groups.

2 Preparation

2.1 An analysis of maxw0(W, x)

We begin with a study of maxw0(W , x) in Coxeter groups of each type, in prepa-

ration for probabilistic analysis in later sections.
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Proposition 2.1 Let (W , S) be a finite Coxeter system.

(i) If W is of type An , then maxw0(W , x) =
(

x+1
2

)

.

(ii) If W is of type Bn or Cn , then maxw0(W , x) = x2.

(iii) If W is of type Dn , then

maxw0(W , x) ..=

{

x2 − x x > 3,
(

x+1
2

)

x � 3.

(iv) If W is of type E6, E7, or E8, then

maxw0(W , x) ..=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

120 x = 8,

63 x = 7,

36 x = 6,

20 x = 5,

12 x = 4,

6 x = 3,

3 x = 2,

1 x = 1,

0 x = 0.

(v) If W is of type F4, then

maxw0(W , x) ..=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

24 x = 4,

9 x = 3,

4 x = 2,

1 x = 1,

0 x = 0.

(vi) If W is of type H3 or H4, then

maxw0(W , x) ..=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

60 x = 4,

15 x = 3,

5 x = 2,

1 x = 1,

0 x = 0.

(vii) If W is of type I2(n), then

maxw0(W , x) ..=

{

n x = 2,

x x < 2.
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Proof Figure 1 contains the Coxeter diagrams and the length of the longest element

for each of the finite Coxeter groups in this proof. Let I ⊂ [n] with |I | = x .

(i) When W is of type An , then GI decomposes into connected components C (1), . . .,

C (z) of type Ak1 , . . . , Akz respectively, with k1, . . . , kz > 0, z � 1, and k1+· · ·+kz =

x . By (2),

�(w0(WI )) = �(w0(Ak1)) + · · · + �(w0(Akz ))

=

(

k1 + 1

2

)

+ · · · +

(

kz + 1

2

)

=
k2

1 + · · · + k2
z + k1 + · · · + kz

2

�
(k1 + · · · + kz + 1)(k1 + · · · + kz)

2

=

(

k1 + · · · + kz + 1

2

)

=

(

x + 1

2

)

.

This upper bound is realized when z = 1 and k1 = x . Thus maxw0(W , x) =
(

x+1
2

)

.

(ii) When W is of type Bn or Cn , then GI decomposes into connected components of

type Ak1 , . . . , Akz and Bm , with k1, . . . , kz > 0, z � 0, m � 0 and k1 +· · ·+kz +m =

x . Note that when m = 0 (respectively, z = 0) we take this to mean that there is no

connected component of GI of type Bs (respectively, of type As) for any natural number

s. Thus, (2) implies

�(w0(WI )) = �(w0(Ak1)) + · · · + �(w0(Akz )) + �(w0(Bm))

=

(

k1 + 1

2

)

+ · · · +

(

kz + 1

2

)

+ m2

�

(

k1 + · · · + kz + 1

2

)

+ m2

=

(

x − m + 1

2

)

+ m2

=
3

2
m2 −

2x + 1

2
m +

x2 + x

2
=.. f1(m).

Then m is an integer value in the closed interval [0, x]. The function f1 is convex on

the closed interval [0, x] and hence f1 achieves its maximum at one of the endpoints.

For x � 0, f1(0) =
(

x+1
2

)

� x2 = f1(x). This upper bound is realized when z = 0,

m = x . It follows that maxw0(W , x) = x2.

(iii) When W is of type Dn , then GI decomposes into connected components of type

Ak1 , . . . , Akz and Dm , with k1, . . . , kz > 0, z � 0, m � 0 with m �= 1, 2, 3, and

k1 + · · · + kz + m = x . As in (ii), if m = 0 (respectively, z = 0), then we take this to

mean there are no connected components in GI of type Ds (respectively, of type As)
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for any natural number s. Now, (2) implies

�(w0(WI )) = �(w0(Ak1)) + · · · + �(w0(Akz )) + �(w0(Dm))

=

(

k1 + 1

2

)

+ · · · +

(

kz + 1

2

)

+ m2 − m

�

(

k1 + · · · + kz + 1

2

)

+ m2 − m

=

(

x − m + 1

2

)

+ m2 − m

=
3

2
m2 −

2x + 3

2
m +

x2 + x

2
=.. f2(m).

Then m is an integer value in the interval [0, x]. The function f2 is convex on the

closed interval [0, x] and hence f2 achieves its maximum at one of the endpoints. If

x > 3, then f2(0) =
(

x+1
2

)

� x2 − x = f2(x). The upper bound is realized when

z = 0 and m = x for x > 3. Hence maxw0(W , x) = x2 − x for x > 3.

If x � 3, then f2(0) =
(

x+1
2

)

� x2 − x = f2(x). This upper bound is realized

when z = 1, m = 0, and k1 = x . Hence maxw0(W , x) =
(

x+1
2

)

for x � 3.

(iv)–(vii) Each of these cases can be trivially checked via the enumeration of all

induced subdiagrams of a fixed size.

2.2 Spherical implies proper

We show that sphericality, both in the geometric and Coxeter sense, implies properness.

This allows the proofs of Theorems 1.1, 1.11 to be reduced to Theorem 1.6. The

following is a generalization of [4, Proposition 3.1].

Proposition 2.2 Let G be a rank r simple group with Weyl group W . If Xw ¦ G/B is

L I -spherical for I ¦ J (w), then w is proper.

Proof If Xw is L I -spherical, then Xw is L J (w)-spherical [11, Proposition 2.13]. By

definition, Xw is L J (w)-spherical implies that there is a Borel subgroup K ⊂ L J (w)

with an open dense orbit O in Xw. For x ∈ O, let Kx be the isotropy group of x . By

[5, Proposition 1.11], O = K · x is a smooth, closed subvariety of Xw of dimension

dim(K ) − dim(Kx ). Thus

dim(Xw) = dim(O) = dim(K ) − dim(Kx ) � dim(K ), (3)

where the first equality follows since O is dense in Xw. All Borel subgroups of a

connected algebraic group are conjugate [3, Section 11.1]. Hence

dim(K ) = dim(BJ (w)) = dim(T ) + dim(UJ (w)), (4)

where the final equality follows from [3, Section 11.1]. Finally, we use the fact that

dim(UJ (w)) equals the number of positive roots in the root system of L J (w), which

123
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is in turn equal to �(w0(WJ (w))) [12, Section 1.7]. Combining this with (3) and (4)

yields

�(w) = dim(Xw)

� dim(T ) + dim(UJ (w)) = r + �(w0(WJ (w))) � r + maxw0(W , d(w)).

We conclude that w is proper.

Proposition 2.3 Let W be a finite Coxeter group with w ∈ W and I ¦ J (w). If w is

I -spherical, then w is proper.

Proof LetC(1), . . . ,C(m) be the connected components ofGJ (w), and W (z) the parabolic

subgroup of W with Coxeter diagram C(z). By [11, Proposition 2.12], if w is I -

spherical, then w is J (w)-spherical. Thus there must be an R ∈ Red(w) satisfying

(S.1) and (S.2). This implies, via (S.1), that at most n − d(w) factors of R must be of

the form s j for j /∈ J (w). Which implies at least �(w) − (n − d(w)) factors of R are

of the form s j for j ∈ J (w). Hence, by (S.2) and (2),

�(w) − (n − d(w)) �

m
∑

z=1

(

�(w0(W (z))) + # vertices(C(z))
)

= d(w) +

m
∑

z=1

�(w0(W (z)))

= d(w) + �(w0(WJ (w)))

� d(w) + maxw0(W , d(w)).

It follows that w is proper.

We are now able to prove both Theorems 1.1 and 1.11, assuming Theorem 1.6.

Proof of Theorem 1.1 If Xw is L J (w)-spherical, then w is proper by Proposition 2.2.

Hence

Pr
[

Xw ¦ G/B is L J (w)-spherical
]

� Pr[w is proper] (5)

when w is sampled from W uniformly at random. Theorem 1.6 implies that

Pr[w is proper] → 0 as n → ∞. Thus our desired result follows by (5) and the

squeeze theorem.

Proof of Theorem 1.11 This follows by an identical argument after applying Proposi-

tion 2.3.
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3 Concentration bounds

3.1 Concentration bounds

In this section we compute some concentration bounds that will be useful for bounding

the number of proper elements of a Coxeter group in Sect. 5. Lemmas 3.2 and 3.3 will

be used to bound the number of elements with left descents deviating far from the

average. Lemmas 3.5 and 3.6 will be used to bound the number of elements with

length deviating far from the average. Finally, Lemma 3.7 will be used to bound the

number of elements satisfying a certain inequality involving length and left descents.

See [14, Chapter 3] for some of the terminology and basic properties of conditional

expectations and martingales that are used in this section.

Theorem 3.1 (Chernoff Bound; from [8, Theorem 1.1]) Let X1, . . . , Xn be (mutually)

independently distributed random variables in the range [0, 1], and let X ..=
∑

i X i .

Then for any � ∈ (0, 1),

Pr[X < (1 − �)E[X ]] � e−�2
E[X ]/2.

Lemma 3.2 Let X1, . . . , Xm be mutually independently distributed random variables

in the range {0, 1}. Let X ..=
∑

i X i . Then for any δ > 0, we have both

Pr[X − E[X ] > δm] � e−δ2m/2 and Pr[E[X ] − X > δm] � e−δ2m/2.

Proof If E[X ] = 0, then X = 0, in which case Pr[E[X ] − X > δm] = Pr[δm < 0]

= 0. If δm � E[X ], then Pr[E[X ]−X > δm] � Pr[E[X ]−X > E[X ]] = Pr[X < 0]

= 0. In the case when δm < E[X ],

Pr[E[X ] − X > δm] = Pr[X < (1 − δm/E[X ])E[X ]]

� exp

(

−

(

δm

E[X ]

)2

·
E[X ]

2

)

by Theorem 3.1

= exp

(

− δ2m

2
·

m

E[X ]

)

� e−δ2m/2

where the last inequality due to the fact that m � E[X ]. To show the former bound,

set X ′
i

..= 1 − X i and X ′ ..=
∑

i X ′
i . Then X − E[X ] = E[X ′] − X ′, and a similar

analysis to the one above can be performed on X ′.

Lemma 3.3 Let {Iα}α∈� be a set of identically distributed random variables in the

range {0, 1}, and let �1, . . . , �k ¦ � be such that:

(i) �i ∩ � j = ∅, for all i �= j ;

(ii)
∑

i |�i | = n − 1;
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(iii) �(n − 1)/k� � |�i | � �n/k�;

(iv) for each i ∈ [k], the elements of {Ia}a∈�i
are mutually independent.

Let Si =
∑

a∈�i
Ia and S =

∑

i Si . Then for any δ > 0, we have both

Pr[S − E[S] > δn] � ke
−δ2(n−2)/2k and Pr[E[S] − S > δn] � ke

−δ2(n−2)/2k .

Proof By Lemma 3.2 we have

Pr[Si − E[Si ] > δ|�i |] � e−δ2|�i |/2 (6)

for each i ∈ [k]. Thus,

Pr[S − E[S] � δn] = Pr

[

∑

i

(Si − E[Si ]) � δn

]

� Pr

[

⋃

i

{Si − E[Si ] � δn/k}

]

�
∑

i

Pr[Si − E[Si ] � δn/k] by the union bound

�
∑

i

Pr[Si − E[Si ] � δ|�i |] since |�i | � �n/k� � n/k

�
∑

i

e−δ2|�i |/2 by (6)

� ke
−δ2(n−2)/2k

since

(n−2)/k � �(n−1)/k� � |�i |.

Similarly, Pr[E[S] − S � δn] � ke
−δ2(n−2)/2k since the bound from Lemma 3.2 is

two-tailed.

Theorem 3.4 (Azuma–Hoeffding Inequality; [8, Theorem 5.8]) Let X0, X1, . . . be

a martingale and let b1, b2, . . . be a sequence of non-negative constants such that

|X i − X i−1| � bi for each i � 1. Then,

Pr[Xn > X0 + t] � exp

(

−
t2

2³n

)

and Pr[Xn < X0 − t] � exp

(

−
t2

2³n

)

where ³n =
∑n

i=1 b2
i .

We use the following elementary lemma; we omit the proof.

Lemma 3.5 Let 0 � x0, . . . , xm � 1 be such that x0 + · · · + xm = 1 and xk = xm−k

for k = 0, . . . , m. Then we have
∑m

k=0 kxk = m/2.

Lemma 3.6 Suppose Q0, Q1, Q2, . . . is a sequence of random variables such that
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(i) Q0 = 0,

(ii) Pr[Qt+1 | Qt , . . . , Q0] = Pr[Qt+1 | Qt ],

(iii) Pr[Qt+1 = Qt + a | Qt ] = Pr[Qt+1 = Qt + (ct − a) | Qt ] for all a = 0, . . .,

ct , and

(iv) Pr[Qt+1 = Qt + a | Qt ] = 0 for all a /∈ {0, . . . , ct },

where c0, c1, c2, . . . is a sequence of non-negative integers. Let ´n =
∑n−1

i=0 c2
i . Then

for all ε > 0,

Pr[Qn − E[Qn] � ε] � e−2ε2/´n and Pr[E[Qn] − Qn � ε] � e−2ε2/´n .

Proof Firstly,

ct
∑

a=0

a ·Pr[Qt+1 = Qt + a | Qt ] = ct/2

by Lemma 3.5. From this,

E[Qt+1 | Qt ] = Qt +

ct
∑

a=0

a ·Pr[Qt+1 = Qt + a | Qt ] = Qt + ct/2.

Thus, by the law of total expectation,

E[Qt+1] = E[E[Qt+1 | Qt ]] = E[Qt ] + ct/2.

Letting Z t
..= Qt − E[Qt ] with Z0 = Q0, then (Z t )t�0 is a martingale.

Also, E[Z t ] = 0 for each t , using (i) for t = 0. Since Qt − Qt−1 ∈ {0, . . . , ct−1}

and E[Qt ] − E[Qt−1] = ct−1/2,

|Z t − Z t−1| =
∣

∣(Qt − Qt−1) + (E[Qt−1] − E[Qt ])
∣

∣ � ct−1/2.

Applying Theorem 3.4 to (Z t )t�0 with the bounded differences bt
..= ct−1/2 for t � 1

gives that Pr[Zn � ε] and Pr[Zn � − ε] are both bounded above by e−2ε2/´n . By the

definition of Zn , we have that Pr[Qn − E[Qn] � ε] = Pr[Zn � ε] and Pr[E[Qn] −

Qn � ε] = Pr[Zn � − ε].

Lemma 3.7 Let {X i }i∈� be a set of random variables. Let { fi }i∈� be increasing func-

tions over the non-negative reals. Let (�+, �−) be a partition of �. For any set {εi }i∈�

of non-negative reals and any real number r that satisfy

(i) εa � E[Xa] for all a ∈ �+,

(ii) εb � −E[Xb] for all b ∈ �−, and

(iii)
∑

a∈�+ fa(E[Xa] − εa) −
∑

b∈�− fb(E[Xb] + εb) > r ,
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we have

Pr

[

∑

a∈�+

fa(Xa) −
∑

b∈�−

fb(Xb) � r

]

�
∑

a∈�+

Pr[E[Xa] − Xa � εa] +
∑

b∈�−

Pr[Xb − E[Xb] � εb].

Proof We have

Pr

[

∑

a∈�+

fa(Xa) −
∑

b∈�−

fb(Xb) > r

]

� Pr

[(

⋂

a∈�+

{Xa > E[Xa] − εa}

)

∩

(

⋂

b∈�−

{Xb < E[Xb] + εb}

)]

= Pr

[(

⋂

a∈�+

{E[Xa] − Xa < εa}

)

∩

(

⋂

b∈�−

{Xb − E[Xb] < εb}

)]

= 1 − Pr

[(

⋃

a∈�+

{E[Xa] − Xa � εa}

)

∪

(

⋃

b∈�−

{Xb − E[Xb] � εb}

)]

� 1 −
∑

a∈�+

Pr[E[Xa] − Xa � εa] −
∑

b∈�−

Pr[Xb − E[Xb] � εb].

The first step uses the fact that { fi }i∈� is a set of increasing functions; the last step

uses the union bound. Taking the probability complement of this yields our desired

result.

4 The infinite families

The finite, irreducible Coxeter groups of types An−1, Bn , and Dn have combinatorial

interpretations in terms of permutations. We follow the notation and repeatedly use

results from [2] in this section. The type An−1 Coxeter group is isomorphic to the

symmetric group Sn under the map that sends each si ∈ S to the simple transposition

(i, i + 1). Thus the order of An−1 is n!. For any bijection w on a subset S ⊂ Z, let the

number of inversions be

inv(w) ..= #
{

(i, j) : w(i) > w( j), 1 � i < j � n
}

.

The length of an element of type An−1 is equal to the number of inversions of w

(thinking of w as an element of Sn); that is, �A(w) = inv(w).

The type Bn Coxeter group is isomorphic to the group of signed permutations, SB
n ,

which is the collection of bijections w on the set [±n] = {−n, . . . ,−1, 1, . . . , n} with

the property that w(−i) = −w(i) for every i ∈ [±n], under the binary operation of

function composition. The order of this group is 2nn!. The length of w ∈ SB
n can be
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expressed as

�B(w) = invB(w) ..= inv(w) + nsp(w) + neg(w)

where

nsp(w) ..= #
{

(i, j) : w(i) + w( j) < 0, 1 � i < j � n
}

,

neg(w) ..= # { i : w(i) < 0, 1 � i � n}.

The type Dn Coxeter group is isomorphic to the subgroup SD
n ⊂ SB

n containing all w

such that neg(w) even. The order of this group is 2n−1n!. The length of w ∈ SD
n can

be expressed as

�D(w) = invD(w) ..= invB(w) − neg(w) = inv(w) + nsp(w).

For any bijection w on a subset S ⊂ Z, let

des(w) ..= #
{

i : w−1(i) > w−1(i + 1), 1 � i < n
}

.

The number of left descents (Definition 1.2) of an element w in a Coxeter group of

type An−1, Bn , and Dn can be computed, respectively, as

(i) dA(w) = des(w),

(ii) dB(w) = desB(w) ..= des(w) + 1[0 >w−1(1)],

(iii) dD(w) = desD(w) ..= des(w) + 1[w−1(−2) > w−1(1)],

where 1[P] is the Iverson bracket defined as

1[P] =

{

1 P is true;

0 otherwise.

In the analysis that follows, the asymptotic substitution f (n) = O(g(n)) means

f (n) � c ·g(n) for all n � N where N and c are some absolute positive constants

with respect to n. We write f (n) = 
(g(n)) to mean g(n) = O( f (n)). When either

O( ·) or 
( · ) appears as part of an inequality, for all possible asymptotic substitutions

on the left-hand side, there must exist asymptotic substitutions on the right-hand side

such that the inequality holds. The general technique will be to generate a uniformly at

random Coxeter element and bound its Coxeter related statistics with high probability.

The one-line notation of a permutation w ∈ Sn is the string w(1) · · · w(n). For an

element w in either SB
n or SD

n , its one-line notation is

(w(−n), . . . , w(−1), w(+1), . . . , w(+n)),

and has indices in [±n].
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5 Limiting behavior for the proportion of proper elements

In [4], it was shown that the proportion of proper permutations is O(n−1) and hence

is asymptotically zero. In this section, we show that every group of type An−1 has

an e−
(n) proportion of proper elements. We then give similar asymptotic results for

types Bn and Dn .

5.1 Type An−1

We begin with type An−1 Coxeter groups.

Proposition 5.1 The number of proper elements in the type An−1 Coxeter group is at

most n! ·e−
(n).

Proof. For 1 � i < j � n, let X
(n)
i, j : Sn → {0, 1} be the function that maps w ∈ Sn

to 1 if w−1(i) > w−1( j) and 0 otherwise. Then

inv(w) =

n
∑

i=1

n
∑

j=i+1

X
(n)
i, j (w

−1) and des(w) =

n−1
∑

i=1

X
(n)
i,i+1(w)

for w ∈ Sn . Further, Ew[X
(n)
i, j (w)] = 1/2 via symmetry. Thus Ew[inv(w)] =

(

n
2

)

/2

and Ew[des(w)] = (n − 1)/2 by the linearity of expectation. We also have that the

random variables X
(n)
i, j and X

(n)

i ′, j ′
are independent when {i, j} ∩ {i ′, j ′} = ∅.

Let � = {(i, j) : 1 � i < j � n} with �1 = {(i, i + 1) : 1 � i < n, i ≡ 1 (mod 2)}

and �2 = {(i, i + 1) : 1 � i < n, i ≡ 0 (mod 2)}. Notice �1 and �2 are disjoint subsets

of �, and that both {Xn
a }a∈�1 and {Xn

b }b∈�2 are sets of independent random variables.

Further, |�1| + |�2| = n − 1 with |�1| = �(n − 1)/2� and |�2| = �(n − 1)/2�. Also,

∑

a∈�1

X (n)
a (w) +

∑

b∈�2

X
(n)
b (w) =

n−1
∑

i=1

X
(n)
i,i+1(w) = des(w)

for w ∈ Sn . Thus Lemma 3.3 with δ = ε/n gives us

Pr[des(w) − E[des(w)] � ε] � 2 exp

(

−
ε2(n − 2)

4n2

)

(7)

for any ε > 0 when w is sampled uniformly at random from Sn .

Next, let π0, π1, π2, . . . be a sequence of random permutations, evolving such that

given πt−1 ∈ St−1, we create πt by inserting t at a (uniformly) random index in πt−1,

such that Pr[πt (i) = t | πt−1] = 1/t for each i ∈ [t]. Let Qt
..= inv(πt ). From this, we

see that Pr[Qt+1 = Qt + a | Qt ] = 1/(t + 1) for a = 0, . . . , t . Since the distribution

is uniform, it is symmetric about a = t/2. Then setting ct = t , Lemma 3.6 gives

Pr[E[Qn] − Qn � ε] � exp

(

−
12ε2

n(n − 1)(2n − 1)

)

(8)
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for any ε > 0.

Notice that inv(w1) and inv(w−1
2 ) are identically distributed when w1 and w2 are

independently sampled uniformly at random from Sn since

inv(w) = �A(w) = �A(w−1) = inv(w−1).

If πt is the evolved permutation after t insertions, then πt−1 is completely determined

by πt . Further, there is only one insertion of t that evolves πt−1 into πt . The conclusion,

via induction, is that the probability of seeing πt after t insertions is 1/t !. The above

implies that Qn has an identical distribution to inv(w−1), and hence inv(w), when w

is sampled uniformly at random from Sn . This, combined with (8), implies

Prw[E[inv(w)] − inv(w) � ε] � exp

(

−
12ε2

n(n − 1)(2n − 1)

)

(9)

for any ε > 0.

Finally, take f1 and f2 to be functions over the reals with f1(x) = x and f2(x) =

(x + 1) x/2. Also, let r = n − 1, ε1 = n2/16, and ε2 = n/16. Using Lemma 3.7, for

sufficiently large n, with (7) and (9) gives

# {w ∈ Sn :w is proper} = |Sn| · Pr
w←Sn

[w is proper]

= n! · Pr
w←Sn

[

inv(w) � (n − 1) +

(

des(w) + 1

2

)]

� n! ·

[

2 exp

(

−
n − 2

256

)

+ exp

(

−
3n3

64(n − 1)(2n − 1)

)]

� n! ·e−
(n).

Corollary 5.2 The proportion of proper elements in the Coxeter group of type An−1

vanishes as n goes to infinity.

Proof We know the type An−1 Coxeter group has group structure Sn . Also, |Sn| = n!.

Thus, the claim follows from Proposition 5.1 since the proportion of proper elements

is

Pr
w←Sn

[w is proper] � e−
(n)

which tends to zero as n goes to infinity.

5.2 Types Bn and Dn

Next, we give a bound involving type An−1 left descents, type Bn elements, and type

Dn inversions. We do this to consolidate our bounds in types Bn and Dn . Types Bn

and Dn have asymptotically the same number of elements, so their analysis is similar.
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In providing the following, we upper bound a large set and then later show that this

set is a superset of both the set of type Bn and type Dn proper elements.

Proposition 5.3 We have that

#
{

w ∈ SB
n : invD(w) � n + (des(w) + 1)2

}

� 2nn! ·e−
(n).

Proof This proof is similar to the proof of Proposition 5.1. For 1 � i < j � n, let

X
(n)
i, j : SB

n → {0, 1} be the function that maps w ∈ SB
n to 1 if w−1(i) > w−1( j) and 0

otherwise. Similarly, let Y
(n)
i, j : SB

n → {0, 1} be the function that maps w ∈ SB
n to 1 if

w−1(−i) > w−1( j) and 0 otherwise.

Then

invD(w) =

n
∑

i=1

n
∑

j=i+1

X
(n)
i, j (w) + Y

(n)
i, j (w)

and

des(w) =

n−1
∑

i=1

X
(n)
i,i+1(w),

for w ∈ SB
n since by [2, p. 253, (8.18)]

invD(w) = invB(w) − neg(w)

= inv(w) + # {1 � i < j � n : w(−i) > w( j)}

= invD(w−1).

For i, j ∈ [n] with i < j , let ιi, j : SB
n → SB

n be the bijective involution that swaps

the values at indices i and j in the one-line notation of w ∈ SB
n . Then both X

(n)
i, j (w) =

1 − X
(n)
i, j (ιi, j (w)) and Y

(n)
i, j (w) = 1 − Y

(n)
i, j (ιi, j (w)). Hence EX

(n)
i, j = EY

(n)
i, j = 1/2 by

symmetry. Thus, E[invD(w)] =
(

n
2

)

and E[invD(w)] = (n − 1)/2 by the linearity of

expectation. Further, X
(n)
i, j and X

(n)

i ′, j ′
are independent if {i, j} ∩ {i ′, j ′} = ∅.

Let � = {(i, j) : 1 � i < j � n} with �1 = {(i, i + 1) : 1 � i < n, i ≡ 1 (mod 2)}

and �2 = {(i, i + 1) : 1 � i < n, i ≡ 0 (mod 2)}. Notice �1 and �2 are disjoint

subsets of �, and that both {Xn
a }a∈�1 and {Xn

b }b∈�2 are sets of independent random

variables. Further, |�1|+|�2| = n−1 with |�1| = �(n−1)/2� and |�2| = �(n−1)/2�.

Since for w ∈ SB
n ,

∑

a∈�1
X

(n)
a (w) +

∑

b∈�1
X

(n)
b (w) =

∑n−1
i=1 X

(n)
i,i+1(w) = des(w),

applying Lemma 3.3 with δ = ε/n gives us

Pr[des(w) − E[des(w)] � ε] � 2 exp

(

−
ε2(n − 2)

4n2

)

(10)

for any ε > 0 where w is sampled uniformly from SB
n .
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Next, let π0, π1, π2, . . . be a sequence of random signed permutations, evolving

such that given πt−1 ∈ SB
t−1, we create πt by inserting t at a (uniformly) random index

in πt−1, such that Pr[πt (i) = t | πt−1] = 1/2t for each i ∈ [±t]. Then −t is inserted

at the unique index that makes πt a signed permutation. Let Qt
..= invD(πt ).

If t is placed in a positive index k, then πt (i) < πt (k) and πt (−i) < πt (k) for all

1 � i < k, and πt (k) > πt ( j) and πt (−k) < πt ( j) for all j such that k < j � t .

This leads to a total increase of t − k to Qt−1. If instead −t is placed at a positive

index k, then πt (i) > πt (k) and πt (−i) > πt (k) for all 1 � i < k, and πt (k) < πt ( j)

and πt (−k) > πt ( j) for all j such that k < j � t . This leads to a total increase of

2(k − 1) + (t − k) = t + k − 2 to Qt−1.

The two possibilities are equally likely, as are their indices. For k+, k− ∈ [t],

t − k+ = t + k− − 2 only if t − k+ = t + k− − 2 = t − 1. Thus

Pr[Qt = Qt−1 + a | Qt−1] =

⎧

⎪

«

⎪

¬

1/t if a = t − 1,

1/2t if a ∈ ({0, . . . , 2(t − 1)}\{t − 1}),

0 otherwise

for each t . Thus,

Pr[Qt+1 = Qt + a | Qt ] =

⎧

⎪

«

⎪

¬

1
t+1

if a = t,
1

2(t+1)
if a ∈ ({0, . . . , 2t}\{t}),

0 otherwise

and so Pr[Qt+1 = Qt + a | Qt ] = Pr[Qt+1 = Qt + 2t − a | Qt ]. Then setting ct = 2t ,

Lemma 3.6 gives

Pr[E[Qn] − Qn � ε] � exp

(

−
3ε2

n(n − 1)(2n − 1)

)

(11)

for any ε > 0.

Notice that invD(w1) and invD(w−1
2 ) are identically distributed when w1 and w2 are

independently sampled uniformly at random from SB
n since invD(w−1) = invD(w)

for each w ∈ SB
n . If πt is the evolved signed permutation after t insertions, then πt−1

is completely determined by πt . Further, there is only one insertion of t that evolves

πt−1 into πt . The conclusion, via induction, is that the probability of seeing πt after

t insertions is 1/(2t t !). The above implies that Qn has an identical distribution to

invD(w−1), and hence invD(w), when w is sampled uniformly at random from SB
n .

This, combined with (11), implies that for w sampled uniformly from SB
n

Pr[E[invD(w)] − invD(w) � ε] � exp

(

−
3ε2

n(n − 1)(2n − 1)

)

(12)

for any ε > 0.

Finally, take f1 and f2 to be functions over the reals with f1(x) = x and f2(x) =

(x + 1)2. Also, let r = n, ε1 = n2/16, and ε2 = n/16. Using Lemma 3.7, for
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sufficiently large n, with (10) and (12) gives

#
{

w ∈ SB
n : invD(w) � n + (des(w) + 1)2

}

= |SB
n | · Pr

w←SB
n

[

invD(w) � n + (des(w) + 1)2
]

� 2nn! ·

[

2 exp

(

−
n − 2

256

)

+ exp

(

−
3n3

256(n − 1)(2n − 1)

)]

� 2nn! e−
(n).

Proposition 5.4 The number of proper elements in the Coxeter group of type Bn is at

most 2nn! e−
(n).

Proof We have that

# {w ∈ SB
n : w is proper} = #

{

w ∈ SB
n : invB(w) � n + (desB(w))2

}

� #
{

w ∈ SB
n : invB(w) � n + (des(w) + 1)2

}

� #
{

w ∈ SB
n : invD(w) � n + (des(w) + 1)2

}

� 2nn! e−
(n),

where the first step follows by Proposition 2.1 (ii), the second by des(w) + 1 �

desB(w), the third by invD(w) � invB(w), and the last by Proposition 5.3.

Corollary 5.5 The proportion of proper elements in the Coxeter group of type Bn

vanishes as n goes to infinity.

Proof Since |SB
n | = 2nn!, it follows from Proposition 5.4 that

Pr
w←SB

n

[w is proper] � e−
(n),

which tends to zero as n goes to infinity.

Proposition 5.6 The number of proper elements in the Coxeter group of type Dn is at

most 2nn! e−
(n).

Proof We have that

# {w ∈ SD
n : w is proper} = #

{

w ∈ SD
n : invD(w) � n + maxw0(SD

n , desD(w)))
}

� #
{

w ∈ SD
n : invD(w) � n + (desD(w))2

}

� #
{

w ∈ SD
n : invD(w) � n + (des(w) + 1)2

}

� #
{

w ∈ SB
n : invD(w) � n + (des(w) + 1)2

}

� 2nn! e−
(n),

where the first step follows by the definition of proper, the second by Proposi-

tion 2.1 (iii), the third by des(w) + 1 � desD(w), the fourth by SD
n ⊂ SB

n , and the last

by Proposition 5.3.
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Corollary 5.7 The proportion of proper elements in the Coxeter group of type Dn

vanishes as n goes to infinity.

Proof Since |SD
n | = 2n−1n!, it follows from Proposition 5.6 that

Pr
w←SD

n

[w is proper] � e−
(n),

which tends to zero as n goes to infinity.

5.3 Type I

The type I2(n) Coxeter group is presented with generators S = {s1, s2} which satisfy

s2
1 = s2

2 = (s1s2)
n = e.

Proposition 5.8 Let Wn be a Coxeter group of type I2(n) and let w be drawn from Wn

uniformly at random. Then Pr[w is proper ] → 0 as n → ∞.

Proof We know that Wn has order 2n. Further, for w ∈ Wn ,

d(w) =

⎧

⎪

«

⎪

¬

2 if w = w0,

0 if w = e,

1 otherwise.

• If w = w0, then maxw0(Wn, d(w)) = maxw0(Wn, 2) = n. Thus, w is proper if

and only if �(w) � 2 + n, which is true for all n since �(w0) = n.

• If w = e, then maxw0(Wn, d(w)) = maxw0(Wn, 0) = 0. Thus w is proper if and

only if �(w) � 2, which is true since �(e) = 0.

• If w �= e, w0, then maxw0(Wn, d(w)) = maxw0(Wn, 1) = 1. Thus, w is proper

if and only if �(w) � 3. There are at most a constant number of w ∈ Wn with

length at most 3: w = s1, s2, s1s2, s2s1, s1s2s1, and s2s1s2.

Thus the number of proper elements in Wn is constant with respect to n.

5.4 Proof of Theorem 1.6

Theorem 1.6 now follows immediately from Corollaries 5.2, 5.5, and 5.7 and Propo-

sition 5.8.

6 Lower bounds

6.1 Types An−1, Bn, and Dn

We have given upper bounds on the number of proper elements in each of the infinite

families of finite irreducible Coxeter groups. Next, we give a non-trivial lower bound

on the number of proper elements for families An−1, Bn , and Dn . In order to show
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these lower bounds, we construct a subset of Sn such that all elements of the set are

proper. Further, we can use this subset to create subsets of SB
n and SD

n that contain

only proper elements. This will give us a lower bound on the number of elements in

each of the groups An−1, Bn , and Dn .

The next lemma gives mappings that, when applied to each element of a set of

proper elements of Sn , will result in a set that only contains proper elements of SB
n

and a set that only contains proper elements of SD
n .

Lemma 6.1 Let ϕB : Sn → SB
n and ϕD : Sn → SD

n be the homomorphisms w �→ w′

where w′(i) = w(i) and w′(−i) = −w(i) for each i ∈ [n]. For n large enough and

for all w ∈ Sn , if w is proper then ϕB(w) and ϕD(w) are proper.

Proof We have

�B(ϕB(w)) = �D(ϕD(w)) = �A(w) (13)

since w(i) > 0 for each i ∈ [n], by the definitions of inv, invB , and invD . Further,

(ϕB(w))−1 = ϕB(w−1) and (ϕD(w))−1 = ϕD(w−1) imply that

dB(ϕB(w)) = dD(ϕD(w)) = dA(w). (14)

If w ∈ Sn is proper, then �A(w) � (n−1)+
(

dA(w)+1
2

)

� n+m A(w) by Proposition 2.1.

Thus, since

maxw0(An−1, dA(w)) � min {maxw0(Bn, dB(ϕB(w))),maxw0(Dn, dD(ϕD(w)))}

for large enough n, (13), (14), and Proposition 2.1 imply our result.

Next, we give a construction of a subset of elements of Sn that, with the optimized

parameters, are all proper. To construct an element of Sn , we first imagine we have a

row of n empty cells. We group the cells into a contiguous chunks of q cells. There

might be some r < q cells leftover on the rightmost side of the row. Let us focus on

one chunk and denote this chunk α. We will place the numbers 1, . . . , q into chunk α

such that there are many descents. More specifically, we group the numbers 1, . . . , q

into s contiguous (when the numbers are arranged in increasing order) runs of size b.

There might be d < b remaining larger numbers. We will focus on one run of 1, . . . , q

and call this run ³. We place the elements of run ³ into the empty cells of chunk α

such that when looking at the cells from left to right, the elements of ³ are in reverse

(decreasing) order. We do this for each run ³ and place the excess elements of ³ in

the remaining empty cells arbitrarily. Then we add α ·q to each cell entry of chunk

α so that globally we do not have any repeated numbers in the cells. We repeat this

process for all chunks. The remaining empty cells are filled in increasing order with

the remaining elements of [n] that have not been used.

The following is a formalization of the above intuition.

123



Proper elements of Coxeter groups Page 23 of 26    32 

Construction 6.2 Let q, s ∈ Z�0 be such that n = aq + r for some unique a ∈ Z,

0 � r < q, and q = sb + d for some b ∈ Z, 0 � d < s. Let π0, . . . , πa−1 ∈ Sq with

the property that

π−1
j (st + 1) > π−1

j (st + 2) > · · · > π−1
j (st + s)

for each t = 0, . . . , b − 1 and j = 0, . . . , a − 1. Now set w ∈ Sn to be such that for

i = αq + ³ ∈ [n] with α ∈ Z and ³ ∈ [q],

w(i) = αq +

{

πα(³) if α < a,

³ otherwise.

Let Pn be the set of these constructed permutations on [n].

We note that the above construction results in proper elements of Sn only when

the chunk sizes and runs are optimized correctly. We give some examples of this

construction.

Example 6.3 Some examples in one-line notation are listed below.

1. w = 2143 6587 ∈ Pn with n = 8, q = 4, s = 2 and a = 2, r = 0, b = 2,

d = 0. In this example, π0 = π1 = 2143.

2. w = 2431 6587 9 ∈ Pn with n = 9, q = 4, s = 2 and a = 2, r = 1, b = 2,

d = 0. In this example, π0 = 2431 and π1 = 2143.

3. w = 453261 789 ∈ Pn with n = 9, q = 6, s = 4 and a = 1, r = 3, b = 1,

d = 2. In this example, π0 = 453,261.

By way of Construction 6.2, we force the number of descents to be somewhat

large within each chunk (and thus globally), and we force the inversions to occur only

within each chunk which makes the number of inversions somewhat small. In the

following theorem, we show that there always exist chunk and run sizes that result in

Pn containing only proper elements of Sn . Further, we give lower bounds for the sizes

of Pn and the corresponding constructed sets for SB
n and SD

n .

Theorem 6.4 The number of proper elements of Sn , SD
n , and SB

n is at least (cn)n for

some absolute constant c > 0.

Proof We will show there exist q, s, a, and b from Construction 6.2 such that each

element of Pn is proper. We can assume n is sufficiently large, since for smaller n,

we can increase c such that the statement holds. Let a = 10, s = 5, q = �n/a�,

b = �q/s� such that q, b > 0 for sufficiently large n. Fix w ∈ Pn . Since inversions

of w only take place within each of the a chunks, we have �A(w) � a
(

q
2

)

� aq2/2 �

10 ·(n/10)2/2 = n2/20. Also, in each chunk of w, there are at least s runs of size b

placed in descending order (and not necessarily consecutively); this means dA(w) �

asb. Thus
(

dA(w)+1
2

)

� (dA(w))2/2 � (asb)2/2 � (50b)2/2 � (n − 60)2/2. This

means that for n sufficiently large, �A(w) � n +
(

dA(w)+1
2

)

and hence w is proper.
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Fig. 2 The number of proper elements for the finite families were calculated using the aid of a computer

[6]

Further, we have that |Pn| �
(q!)a

(s!)ab by the constraints of Construction 6.2. For ε > 0

and sufficiently large n,

(q!)a

(s!)ab
�

(�n/a�!)a

(s!)n/s

�

(

�n/a��n/a�

e�n/a�−1

)a

·

(

es−1

ss+1

)n/s

(15)

�

(

n

(a + ε) ·e

)n−a

·

(

es−1

ss+1

)n/s

·e−a (16)

= (´n ·n)n,

where

´n = ((a + ε) ·e1/s ·s1+1/s)−1 · νn and νn =

(

a + ε

n

)a/n

.

Step (15) uses the bound

nn/en−1
� n! � nn+1/en−1

from [13, Section 1.2.5, Exercise 24], and step (16) uses the bound �n/a� � n/a−1 �
n

a+ε
for n � a ·(1 + a/ε). Because log νn � − a

(a+ε) ·e
by elementary calculus, there

is some absolute constant c > 0 such that ´n � c.

This is a non-trivial lower bound for the number of proper elements of Sn . The rest

of the proof follows from Lemma 6.1.
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7 The exceptional groups

7.1 Types E6, E7, E8, F4, H3, and H4

The Coxeter groups of types E6, E7, E8, F4, H3, and H4 are finite families. Figure 2

lists the number of proper elements for each of these groups. Using a computer we

computed all of their proper elements [6]. The algorithm we used is described below.

(1) Generating the Coxeter group elements by length. Let W = 〈s1, . . . , sn〉 be a

finite Coxeter group and let l ∈ {0, . . . , �(w0(W ))}. At step t of the algorithm,

we maintain a set Z t ¦ W with Z0 = {e}. Then Z t+1
..= {siw : w ∈ Z t , si ∈

[n]\ J (w)}. We terminate at the first T such that ZT +1 = ∅. Then for Z ..=
⋃T

t=0 Z t , we collect the elements Y ..= {w ∈ Z : �(w) = l}.

(2) Storing the Coxeter group elements by length. The elements of Y are written to

a named file (e.g. data/E8/23.txt, where l = 23 in this example). Each

line of this file is a reduced word of W with length l, represented by the ordered

indices of the generators. Then we compress the directory for each Coxeter

group name.

(3) Computing the number of proper elements by length. For each Coxeter group,

we (in parallel) extract each of its files and compute the the number of proper

elements. Then we take the sum of these results.

The computation for E8 took the longest: it took approximately three weeks to run

steps (1) and (2). Step (3) took approximately 75 min to run. We used a 3.0GHz 5th

Gen Intel Core i7-5500U processor with 1TB of disk space and 16GB of RAM. Steps

(1) and (3) heavily utilize SageMath and Coxeter3 libraries for most Coxeter

group operations.
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