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Abstract

We extend the notion of proper elements to all finite Coxeter groups. For all infinite
families of finite Coxeter groups we prove that the probability a random element is
proper goes to zero in the limit. This proves a conjecture of the third author and
Alexander Yong regarding the proportion of Schubert varieties that are Levi spherical
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exceptional Coxeter groups.
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1 Introduction

The study of proper elements is motivated by the study of reductive group actions
on Schubert varieties. Let G be a complex, connected reductive group, with a fixed
maximal torus T contained in a fixed Borel subgroup B. The Weyl group of G is
defined to be W = N(T)/T; it is a finite Coxeter group of rank n, where n is the
semisimple rank of G. The flag variety G/B is an object of central importance in
algebraic geometry and representation theory. The B-orbits in G/B are indexed by
w € W, and the Zariski-closure of the B-orbit indexed by w is the Schubert variety
Xp-

The standard Levi subgroups of G are families of reductive subgroups that act on
Schubert varieties in G/B. For each I C [n] := {1, ..., n}, there is an associated
standard parabolic subgroup P; 2 B. Each P; decomposes as a semidirect product

P =L;xUyj,

where L is a reductive group called a standard Levi subgroup and Uy is the unipotent
radical of Py.

The group G acts on G/B by left multiplication. If J(w) C [n] is the left descent
set of w (see Definition 1.2), then stabg(Xy) = Py [1, Lemma 8.2.3]. For any
I € Jw), Ly < P; < Pju) and hence L; is a reductive group that acts on X, by
left multiplication.

A normal variety X is a spherical variety for the action of a reductive group R if
a Borel subgroup of R has an open dense orbit in X. In [11], the third author and
Alexander Yong initiated a study of when a Schubert variety in G/ B is Levi spherical,
that is, when it is a spherical variety under the left multiplication action of a standard
Levi subgroup of G.

In this work we define proper elements of a Coxeter group and show that if X, is
L-spherical, then w is proper. We then analyze the limiting behavior of properness
which yields a proof of [11, Conjecture 3.7] for all infinite families of Weyl groups.

Theorem 1.1 Let G be a simple group with Weyl group W of type A,,, By, Cy,, or D,,.
Let w be sampled uniformly at random from W. Then as n — 00,

Pr[X,, € G/B is L ja)-spherical] — 0.

1.1 Proper elements in finite Coxeter groups

An n xn matrix M is a Coxeter matrix if it is a symmetric matrix with entries in
{1,2,..., 00} such that M;; = 1if and only if i = j. The Coxeter group associated
to M is the group

W = <S1,..-,Sn : (s,-sj)Mifz e for all M;; # oo)
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The matrix M is visualized by the Coxeter diagram G, a graph whose nodes are labeled
by [n], and nodes i and j are connected by an edge labeled by M;; if M;; > 3. By
convention, the label on edges with M;; = 3 is omitted. See Fig. 1 below for examples.

Let S = {s1,...,58,}. The pair (W, S) is called a Coxeter system. If W is a
finite group, then (W, S) is finite; (W, S) is irreducible if G is connected. The finite
Coxeter groups were classified in [7]. The irreducible, finite Coxeter groups consist
of four infinite families A,, B,, Dy, and I>(n) as well as six exceptional groups:
E¢, E7, Eg, F4, H3, and Hy. The Coxeter length, £(w), of w € W is equal to the
minimal number of elements of S required to express w. There is a unique element of
maximal length in W denoted by wo(W).

We index the nodes in the Coxeter diagram §G by [n]. For I C [n], let G; be the
induced subdiagram of G. There is a decomposition of §; into m connected compo-
nents

m

s =Je@, o))

z=1

where each €@ is a Coxeter diagram with associated Coxeter group W' Let W; be
the parabolic subgroup of W generated by Sy := {s; :i € I}. Then G is the Coxeter
diagram of Wy, and

m
Lwo(Wp) = D L(wo(W)). ©)
z=1
Definition 1.2 For an element w € W, the set of left descents is

J(w) = {j € [n]:l(sjw) < £(w)}.

The number of left descents will be denoted by d(w) := |J(w)]|. For a nonnegative
integer x < n define maxwo (W, x):=max {€(wo(Wy)): I S[n] and |I|=x}.
Definition 1.3 An element w € W is proper if £(w) < n + maxwy(W, d(w)).

Example 1.4 Let W be the B3z Coxeter group with w = s3s525351525351 € W. Then
J(w) ={2,3} and d(w) = 2. For I = {2, 3} C [3], W is the B, Coxeter group with
£(wo(Wp)) = 4. This I achieves the maximum possible value for £(wo(W;)) over all
I C [3] with|I| = d(w) = 2. Hence, maxwg(W, d(w)) = 4. We conclude

g(w) =7 g 3+44=n+ maXWO(W’ d(w))v

and so w is proper.

Example 1.5 Let W be the A4 Coxeter group with w = s253545152535152 € W. Then
J(w) = {2,3}, d(w) = 2, and maxwy(W, d(w)) = 3 by Proposition 2.1 below.
Hence,
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32  Page4of26 J.Balogh et al.

L(w) =8 £ 4+3=n+maxwy(W,dw)),

and so w is not proper.
We analyze the limiting behavior of this property.

Theorem 1.6 Let W be a Coxeter group of type A, By, Dy, or I (n). Let w be sampled
uniformly at random from W. Then as n — 00,

Pr[w is proper] — 0.

In Proposition 2.2, it is shown that if X,, € G/B is L;-spherical for I € J(w),
then w is proper. Hence, Theorem 1.6 implies Theorem 1.1.

Section 7 enumerates the proper elements for W an exceptional finite Coxeter group.
In Theorem 6.4, we give a non-trivial lower bound on the number of proper elements
in Coxeter groups of type A,, B,, and D,,.

1.2 Classifying Levi-spherical Schubert varieties

A type-independent classification of Levi-spherical Schubert varieties was conjectured
in [11, Conjecture 1.9] by the third author and Yong. This proposed classification is
further motivated by its connection to the theory of Demazure characters, or key
polynomials, and the study of their “split-symmetry” [11, Section 4.1].

The proposed classification of Levi-spherical Schubert varieties in [11] is in terms
of spherical elements. A reduced expression of w € W is a word s;;. . . Sy, = W.
Denote the set of reduced words of w by Red(w) := Red(w sy (w).

Definition 1.7 (I-spherical elements) Let w € W and fix I € J(w). Then w is I-
spherical if there exists s;, - - - si,,,, € Red(w) such that:

S.1) #{t:i; =j} < 1forall j € [n]—1I,and
(S.2) #{t:i, € CD} < £(wo(WD)) + #vertices (C?V) for 1 < z < m.

Example 1.8 Let W be the E7 Coxeter group. The E7 Coxeter diagram is

Let w = 545253545352555754535254518583 € W. Then J(w) = {2,3,4,5,7}.If I =

J(w) then
2
e = >—< and C? = ..
3 4 5 7
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Here W is the D4 Coxeter group with longest element
wo(WD) = 535254535254555453525455

and £(wo(W)) = 12. On the other hand, W, is the A; Coxeter group with the
longest element wo(W®P) = 57 and £(wo(W?P)) = 1. The reduced word given to
define w satisfies (S.1) since s1 appears once and s¢ appears zero times. This reduced
word also satisfies (S.2) since s, 53, 54, and s5 appear 13 times, which is less than
1244 = 16 and s7 appears 1 time, which is less than 141 = 2. Thus w is I-spherical.

Proposition 2.3 below implies that since w is I-spherical it is also proper. This
is easily verified to be the case. We have £(w) = 15. And this is less than n +
maxwo(W, d(w)) = 7 4+ maxwo(W, 5) = 27, where the final equality follows from
Proposition 2.1 below.

Example 1.9 We also give an example of an element that is not /-spherical. Let W be the
B3 Coxeter group. The Coxeter diagram is T—Ei; . The element w = 535753515253 €

W has J(w) = {3}. Let I = J(w). This w has only two reduced words, 535253515253
and s3s251535253. Each of these reduced words fails (S.1); in both, s, appears 2 times
which is greater than 1. Thus w is not /-spherical.

Conjecture 1.10 ([11]) Let I < J(w). Xy is Lj-spherical if any only if w is I-
spherical.

The third author, joint with Gao and Yong, proved Conjecture 1.10 in type A,
[10]. This was then used by Gaetz in [9] to prove [11, Conjecture 3.8], giving a
pattern avoidance criterion for a Schubert variety to be Levi-spherical in type A,,. The
pattern avoidance criterion, in combination with the Marcus—Tardos theorem, implies
Theorem 1.1 in type A,. It is an open question if a pattern avoidance criterion exists
for a Schubert variety to be Levi-Spherical in types B, Cy,, and D,,.

Theorem 1.11 Let W be a Coxeter group of type A,, By, D,, or Ir(n). Let w be
sampled uniformly at random from W. Then as n — 00,

Pr[w is J(w)-spherical] — 0.

Proposition 2.3 below shows that w € W is I-spherical implies w is proper. Hence
Theorem 1.11 follows from Theorem 1.6.

1.3 Previous results on proper permutations

Proper permutations were first introduced in [4]. We highlight that our definition
differs slightly from the original definition. The original definition of properness was
motivated by the study of Levi-spherical Schubert varieties in GL,,/ B. To study Levi-
spherical Schubert varieties in G/B, for G a simple Lie group, requires a definition
of properness that corresponds to Levi-spherical Schubert varieties in SL, /B (SL,
being a simple Lie group). This introduces a difference of 1 on the right-hand side of

@ Springer



32  Page6of26

J.Balogh et al.

Type Diagram Length of longest element ~ Number of elements
An oo oo (";—1) (’rl + l)!
Bn,Cy oo o o o'e n? 2" n!
Dy oo o« n?—n 2n—lp|
FEg o—o—I—c—o 36 51,840
E7 o—o—I—c—o—o 63 2,903,040
Eg I—.—I—C—.—H 120 696,729,600
Fy ool o 24 1,152
Hs ole e 15 120
Hy ele oo 60 14,400
I>(n) oo n 2n

Fig. 1 The finite Coxeter groups [12]

Definition 1.3 as compared to [4, Definition 1]; this is due to the fact that the Levi
subgroups in SL, have dimension one less than the corresponding Levi subgroups in
GL,,. This updated definition is considerably more natural in the general type setting.

The upper bound achieved for the number of proper permutations in [4] uses Cheby-
shev’s inequality. In this paper, we apply Chernoff bounds to achieve much tighter
bounds, exponentially better than those in [4]. We apply these techniques not only in
type A, but also in types B, and D,,.

We now describe the layout of this paper. In Sect. 2 explicit formulas for
maxwq (W, x) are given for each type. Next, it is shown that for an element w in
a Weyl group W, X, being L-spherical implies that w is proper. And for W a finite
Coxeter group with w € W, w is I-spherical implies that w is proper. Hence Theo-
rem 1.6 implies Theorems 1.1 and 1.11. In Sect. 3 we derive concentration bounds
that will be used to bound the number of proper elements in Coxeter groups of type
A,, B, and D,,. Section4 recalls several well-known combinatorial models for the
Coxeter groups of type A,, B,, and D,. Theorem 1.6 is proved in Sect. 5 by giving
asymptotic bounds on the number of proper elements. In Sect. 6 we give nontrivial
lower bounds for the number of proper elements in Coxeter groups of type A,, B,
and D,,. We conclude with a table, presented in Sect. 7, enumerating the number of
proper elements in each of the exceptional finite Coxeter groups.

2 Preparation
2.1 An analysis of maxwq (W, x)

We begin with a study of maxwg (W, x) in Coxeter groups of each type, in prepa-
ration for probabilistic analysis in later sections.
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Proposition 2.1 Let (W, S) be a finite Coxeter system.

() If W is of type A, then maxwy(W, x) = (’Hz'l).
(i) If W is of type By, or C, then maxwo(W, x) = x2
>iii) If W is of type Dy, then

maxwg (W, x) x*—x x>3,
’x =
’ (1) w<3.
(iv) If W is of type E¢, E7, or Eg, then
120 x =8,
63 x=17,
36 x =6,
20 x =15,
maxwo(W,x):= 1 12 x =4,
6 x =3,
3 x =2,
1 x=1,
0 x=0.
) If W is of type Fy, then
24 x =4,
9 x=3,
maxwo(W,x) =414 x=2,
1 x=1,
0 x=0.
(vi) If W is of type H3 or Hy, then
60 x =4,
15 x =3,
maxwo(W,x):=415 x =2,
x=1,
0 x=0.
(vii) If W is of type I>(n), then
n x=2,
maxwg (W, x) :=
X ox <2
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Proof Figure 1 contains the Coxeter diagrams and the length of the longest element
for each of the finite Coxeter groups in this proof. Let I C [r] with |I| = x.

(i) When W is of type A, then §; decomposes into connected components C o
c@ of type Ag,, ..., Ay, tespectively, withky, ..., k; > 0,z > 1,andk; +- - - +k, =
x. By (2),

Lwo(Wp)) = L(wo(Agy)) + - - - + L(wo(Ax,))

_ (AN, (et

S\ 2 2
kiRt kit k

B 2
kit ket D+t k)

2
(ki ko1 (x4
= ) =", )

This upper bound is realized when z = 1 and k; = x. Thus maxwo(W, x) = (*3").

(i) When W is of type B, or C,, then G; decomposes into connected components of
type Ag,, ..., Ay, and By, withky, ..., k; > 0,z > 0,m > Oandky +-- - +k;+m =
x. Note that when m = 0 (respectively, z = 0) we take this to mean that there is no
connected component of G; of type B; (respectively, of type Ay ) for any natural number
s. Thus, (2) implies

Lwo (W) = L(wo(Ak))) + -+ + €(wo(Ax,)) + £(wo(Bm))

ki 41 k. +1
<1+ )+~-~+<Z;r >+m2

(k1+ -tk +1) 2

+m
1
(1o
3
2

2x +1 x24+x
m* — 2 m+ > =: f1(m).

Then m is an integer value in the closed interval [0, x]. The function f; is convex on
the closed interval [0, x] and hence f1 achieves its maximum at one of the endpoints.
Forx > 0, f1(0) = (XH) < x2 = fi(x). This upper bound is realized when z = 0,
m = x. It follows that maxwq(W, x) = x2.

(iii)) When W is of type D,,, then §; decomposes into connected components of type
Ak ...  Ag, and Dy, with ky, ..., k; > 0,z > 0,m > O withm # 1,2,3, and
ki +---+k; +m = x. Asin (ii), if m = 0 (respectively, z = 0), then we take this to
mean there are no connected components in G; of type Dy (respectively, of type Ay)
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for any natural number s. Now, (2) implies

Ewo(Wp)) = L(wo(Ak,)) + - -+ + €(wo(Ax,)) + £(wo(Dm))

_ ki +1 n " k,+1 +m2_m
o 2 2

<<k1+~-~+kz+1> Ea.
2
(x—m—i—l) )
= +m°-—m
2
3 2x+3 2
e e )

Then m is an integer value in the interval [0, x]. The function f, is convex on the
closed interval [0, x] and hence f> achieves its maximum at one of the endpoints. If
x > 3, then f,(0) = (X'ZH) <xrP—x= Jf2(x). The upper bound is realized when
z=0and m = x for x > 3. Hence maxwg(W, x) = x2 — x for x > 3.

If x < 3, then £»(0) = (x;rl) > x? — x = f>(x). This upper bound is realized
when z = 1, m = 0, and k; = x. Hence maxwqy(W, x) = (X;I) for x < 3.

(iv)—(vii) Each of these cases can be trivially checked via the enumeration of all
induced subdiagrams of a fixed size. O

2.2 Spherical implies proper

We show that sphericality, both in the geometric and Coxeter sense, implies properness.
This allows the proofs of Theorems 1.1, 1.11 to be reduced to Theorem 1.6. The
following is a generalization of [4, Proposition 3.1].

Proposition 2.2 Let G be a rank r simple group with Weyl group W. If X, € G/B is
Ly-spherical for I < J(w), then w is proper.

Proof 1f X,, is L;-spherical, then X,, is L j(,)-spherical [11, Proposition 2.13]. By
definition, X, is L j(y)-spherical implies that there is a Borel subgroup K C L )
with an open dense orbit O in X,,. For x € O, let K, be the isotropy group of x. By
[5, Proposition 1.11], O = K -x is a smooth, closed subvariety of X,, of dimension
dim(K) — dim(K,). Thus

dim(X,,) = dim(0) = dim(K) — dim(K,) < dim(K), 3)

where the first equality follows since O is dense in X,,. All Borel subgroups of a
connected algebraic group are conjugate [3, Section 11.1]. Hence

dim(K) = dim(By () = dim(T) + dim(U ). )

where the final equality follows from [3, Section 11.1]. Finally, we use the fact that
dim(Uj)) equals the number of positive roots in the root system of L j(,), which
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is in turn equal to £(wo(W,(y))) [12, Section 1.7]. Combining this with (3) and (4)
yields

£(w) = dim(X,,)
< dim(T) + dimU ) = r + Lwo(W, () < r + maxwo(W, d(w)).

We conclude that w is proper. O

Proposition 2.3 Let W be a finite Coxeter group with w € W and I € J(w). If w is
1-spherical, then w is proper.

Proof Let D, ..., @ be the connected components of G (), and W@ the parabolic
subgroup of W with Coxeter diagram C@. By [11, Proposition 2.12], if w is I-
spherical, then w is J(w)-spherical. Thus there must be an R € Red(w) satisfying
(S.1) and (S.2). This implies, via (S.1), that at most n — d(w) factors of R must be of
the form s; for j ¢ J(w). Which implies at least £(w) — (n — d(w)) factors of R are
of the form s; for j € J(w). Hence, by (S.2) and (2),

Lw) — (n—dw)) <Y (E(wo(WD)) + #vertices (C)))

m
z=1

=dw)+ Y Lwo(W))

z=1
=d(w) + L(wo(Wjw)))
< d(w) + maxwo(W, d(w)).

It follows that w is proper. O
We are now able to prove both Theorems 1.1 and 1.11, assuming Theorem 1.6.

Proof of Theorem 1.1 If X,, is L jq,)-spherical, then w is proper by Proposition 2.2.
Hence

Pr [Xw C G/Bis Lj(w)-spherical] < Pr[w is proper] (@)

when w is sampled from W uniformly at random. Theorem 1.6 implies that
Pr[w is proper] — 0 as n — oo. Thus our desired result follows by (5) and the
squeeze theorem. O

Proof of Theorem 1.11 This follows by an identical argument after applying Proposi-
tion 2.3. =
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3 Concentration bounds
3.1 Concentration bounds

In this section we compute some concentration bounds that will be useful for bounding
the number of proper elements of a Coxeter group in Sect. 5. Lemmas 3.2 and 3.3 will
be used to bound the number of elements with left descents deviating far from the
average. Lemmas 3.5 and 3.6 will be used to bound the number of elements with
length deviating far from the average. Finally, Lemma 3.7 will be used to bound the
number of elements satisfying a certain inequality involving length and left descents.
See [14, Chapter 3] for some of the terminology and basic properties of conditional
expectations and martingales that are used in this section.

Theorem 3.1 (Chernoff Bound; from [8, Theorem 1.1]) Let X1, .. ., X,, be (mutually)
independently distributed random variables in the range [0, 1], and let X := ), X;.
Then for any A € (0, 1),

Pr[X < (1 — A)E[X]] < e~ 2EX)2

Lemma3.2 Let Xy, ..., X,;, be mutually independently distributed random variables
in the range {0, 1}. Let X := )", X;. Then for any § > 0, we have both

Pr(X —E[X] > om] < e > ™2 and Pr[E[X]— X > dm] < e ™2,
Proof If E[X] = 0, then X = 0, in which case Pr[E[X] — X > dm] = Pr[ém < 0]
=0.Ifém > E[X],thenPr[E[X]—X > dm] < Pr[E[X]—X > E[X]] = Pr[X < 0]
= 0. In the case when §m < E[X],

Pr[E[X] — X > ém] =Pr[X < (1 — dm/Ex) E[X]]

< om_\" EIX] by Th 3.1
< exp Exl) 2 y Theorem 3.

_ (—82m m )
—TP\ T R

_ 52
<o M2

where the last inequality due to the fact that m > E[X]. To show the former bound,
set X; :=1—X; and X' := ) ; X/. Then X — E[X] = E[X'] — X', and a similar
analysis to the one above can be performed on X', O

Lemma 3.3 Let {Iy}qucr be a set of identically distributed random variables in the
range {0, 1}, and let 'y, ..., Ty C T be such that:

@ I'iNlj =g, foralli # j;
(i) Y ; ITil=n—1;
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(iii) [(n —D/k] < ITil < [n/k];
(iv) for eachi € [k], the elements of {14}aer; are mutually independent.

Let §; = I, and S = ) . S;. Then for any § > 0, we have both
]

acl’;
Pr[S — E[S] > 6n] < ke " and Pr[E[S] — S > sn] < ke > ",

Proof By Lemma 3.2 we have

Pr[S; — E[S;] > 8|Ti]1 < >l ©)

for each i € [k]. Thus,
Pr[S — E[S] = én] = Pr[z S; —EL[S;]) > 8ni|

< Pr[U{s,- —E[S;] > an/k}]
i
<Y Pr[S; —E[S;]>én/k] by the union bound
i
<) PrlSi —ELS;] >8Il since [Ty| < Ln/k] <n/k

1
< Ze—azml/z by (6)
i

since

< ke—sz(n—2>/2k
< n=2)/k < [(=D/k| < |T].

Similarly, Pr[E[S] — S >é8n] < ke @D/ since the bound from Lemma 3.2 is
two-tailed. O

Theorem 3.4 (Azuma-Hoeffding Inequality; [8, Theorem 5.8]) Let Xo, X1, ... be
a martingale and let by, by, ... be a sequence of non-negative constants such that
| Xi — Xi—1| < bj foreachi > 1. Then,

2

28,

)
) and Pr[X, <Xo—1t] < exp(—zﬁ )
n

PriX, > Xo+1¢] < exp(
where B, = > 1_, b?.
We use the following elementary lemma; we omit the proof.

Lemma3.5 Let O < xg,...,xn < 1besuchthat xg+ -+ x,, = 1 and x;, = xp—i
fork =0,...,m. Then we have Y ' kx = m/2.

Lemma 3.6 Suppose Qo, Q1, Q», ... is a sequence of random variables such that
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» Qo=0,
(i) Pr{Qi411Qs, ..., Qol =Pr[Qi411 Q1]
(i) Pr[Qsy1 = Q1 +a| Q] =Pr[Qiy1 = Qi1 + (c; —a) [ Q1] foralla =0, ...,

¢, and

(iv) Pr[Qi41=Qr+al Q=0 foralla ¢ {0, ..., ¢},

where cg, c1, C2, ... IS a sequence of non-negative integers. Let y,, = :1;0] cl.z. Then
forall e > 0,

Pr[Qn — E[Qn] > el < e 2" and Pr[E[Qn] — Qp > 6] < e 2 /7.

Proof Firstly,

Z a-Pr[Qiy1 = 0r+al| O]l =c¢/2

a=0

by Lemma 3.5. From this,

E[Qi411Q =0+ a-PrlQiy1=0i+al Q=0 +c)/2

a=0

Thus, by the law of total expectation,

E[Qi+1] = E[E[Q41 | Qi1 = E[Qs] + ¢1/2.

Letting Z; := Q; — E[Q,] with Zy = Qy, then (Z;);> is a martingale.
Also, E[Z,] = 0 for each t, using (i) for r = 0. Since Q; — Q;—1 € {0, ..., c;—1}
and E[Q;] - E[Q/—1] = ¢;-1/2,

1Zi = Zi—1] = [(Q1 — Qr—1) + (E[Qs-1] = E[Q:D)] < ¢1—1/2.

Applying Theorem 3.4 to (Z;); > with the bounded differences b; == ¢;_1/2fort > 1
gives that Pr[Z, > ¢] and Pr[Z,, < — ¢] are both bounded above by 6_262/7’”. By the
definition of Z,,, we have that Pr[Q,, — E[Q,]>¢] = Pr[Z, > ¢] and Pr[E[Q,] —
Onzel=Pr[Z,< —¢]. o

Lemma 3.7 Let {X;}icr be a set of random variables. Let { f;}icr be increasing func-
tions over the non-negative reals. Let (', I'™) be a partition of T. For any set {&;};cr
of non-negative reals and any real number r that satisfy

(i) e <E[X,] foralla e T,
(i) ep = —E[Xp] forallb € T, and
(i) Y yer+ fa(ElXa]l = €a) = D per— fo(E[Xp] +ep) > 1,
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we have

Pr[ Y faX) = Y foXp) < r}

ael't bel'~
< Y PrlE[Xa] = Xa > eal+ ) PriXp — E[Xp] > 5],

acl'+ bel'~

Proof We have

Pr[ D falXa) = 3 Fo(Xp) > r}

ael’'t bel'~
> Pr[( () (Xa > E[X,] - ea}) N ( [ (X» < E[Xs] +8b})}
ael’'t bel'~
= Pr[( () (ElXa] - X < ea}) N ( () (Xp — E[Xs] < sb}ﬂ
ael’'t bel'~
=1- Pr[( U EIx - X, > ea}> U ( U x5 —EXp] > eb})}
ael't bel~
>1— ) PrE[Xa] — Xq > eal = ) Pr[Xp — E[Xp] > 3],
ael't bel'~

The first step uses the fact that { f;};cr is a set of increasing functions; the last step
uses the union bound. Taking the probability complement of this yields our desired
result. O

4 The infinite families

The finite, irreducible Coxeter groups of types A,_1, B,, and D,, have combinatorial
interpretations in terms of permutations. We follow the notation and repeatedly use
results from [2] in this section. The type A,_1 Coxeter group is isomorphic to the
symmetric group S, under the map that sends each s; € S to the simple transposition
(i, i+ 1). Thus the order of A, _1 is n!. For any bijection w on a subset S C Z, let the
number of inversions be

inv(w) :==#{@i, ) :w(i) > w(j), 1 <i < j<n}.

The length of an element of type A,_; is equal to the number of inversions of w
(thinking of w as an element of S,); that is, £ 4 (w) = inv(w).

The type B, Coxeter group is isomorphic to the group of signed permutations, S2,
which is the collection of bijections w on the set [£n] = {—n, ..., —1, 1, ..., n} with
the property that w(—i) = —w(i) for every i € [£n], under the binary operation of

function composition. The order of this group is 2"n!. The length of w € Sf can be
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expressed as
£p(w) = invp(w) := inv(w) + nsp(w) + neg(w)
where

nsp(w) :=#{(i,j):w(i)+w(j) <0,1<i<j gn},
neg(w) =#{i:w@) <0,1 <i < n}

The type D, Coxeter group is isomorphic to the subgroup S? c S8 containing all w
such that neg (w) even. The order of this group is 2 ~'n!. The length of w € SP can
be expressed as

£p(w) = invp(w) == invp(w) — neg(w) = inv(w) + nsp(w).
For any bijection w on a subset S C Z, let
des(w) =#{i:w ') >w G+ 1,1<i<n}.

The number of left descents (Definition 1.2) of an element w in a Coxeter group of
type A,—1, By, and D,, can be computed, respectively, as

(i) da(w) = des(w),
(i) dg(w) = desg(w) := des(w) + 1[0 > w~L(1)],
(iii) dp(w) = desp(w) = des(w) + L[w™ ' (=2) > w~'(1)],

where 1[P] is the Iverson bracket defined as

1[P] = { 1 Pis tn?e,

0 otherwise.
In the analysis that follows, the asymptotic substitution f(n) = O(g(n)) means
f(n) < c-gn) forallm > N where N and ¢ are some absolute positive constants
with respect to n. We write f(n) = Q(g(n)) to mean g(n) = O(f(n)). When either
O(-) or Q2(-) appears as part of an inequality, for all possible asymptotic substitutions
on the left-hand side, there must exist asymptotic substitutions on the right-hand side
such that the inequality holds. The general technique will be to generate a uniformly at
random Coxeter element and bound its Coxeter related statistics with high probability.
The one-line notation of a permutation w € Sy, is the string w(1l) - - - w(n). For an

element w in either SZ or SP, its one-line notation is

(w(=n), ..., w1, w(H1),..., w+n)),
and has indices in [£n].

@ Springer



32 Page 16 0f 26 J.Balogh et al.

5 Limiting behavior for the proportion of proper elements

In [4], it was shown that the proportion of proper permutations is O (n~") and hence
is asymptotically zero. In this section, we show that every group of type A,_1 has
an e~2( proportion of proper elements. We then give similar asymptotic results for
types B, and D,,.

5.1 Type Ap—1

We begin with type A,_; Coxeter groups.

Proposition 5.1 The number of proper elements in the type A,_1 Coxeter group is at
most n!- e~ %,

Proof. For1 <i < j < n,let X(") S, — {0, 1} be the function that maps w € S,
to 1if w™l() > w’l(J) and 0 otherw1se. Then

n n n—1
inv(w) = Z Z Xl.(”f/.)(w_l) and des(w) = Z Xl.(Z)Jrl(w)
i=1 j=i+1 i=l

for w € S,. Further, E w[X(")(w)] = 1/2 via symmetry. Thus E,,[inv(w)] = ( )/2
and E[des(w)] = (n — l)/ 2 by the linearity of expectation. We also have that the
random variables X ("]) and X (7), are independent when {i, j} N {i’, j'} =

LetI' ={(i, j):1<i<] <n}w1thF1 ={G,i+D:1<i<n,i —1(m0d2)}
andI = {({,i+1):1 <i <n,i =0(mod2)}. Notice I'; and I'; are disjoint subsets
of I', and that both {X[ }4er, and { X} }per, are sets of independent random variables.
Further, |T'1| 4+ 2] =n — 1 with [T'1] = [(n — 1)/2] and || = [(n — 1)/2]. Also,

n—1

ZX(n)(w) 4 Zx(n) Z X;Z)Jrl(w) = des(w)

ael’] bely i=1

for w € S,,. Thus Lemma 3.3 with § = ¢/n gives us

2
Pr[des(w) — E[des(w)] > €] < 2exp <—8(4nn—22)> @)
for any ¢ > 0 when w is sampled uniformly at random from S,,.

Next, let g, 1, 72, . . . be a sequence of random permutations, evolving such that
given ;1 € S;_1, we create m; by inserting ¢ at a (uniformly) random index in 7;_1,
such that Pr[n; (i) =t | m;—1] = 1/t foreachi € [¢]. Let Q; := inv (;;). From this, we
see that Pr[Q;11=0;4+a| Q;]=1/(+ 1) fora=0,...,t. Since the distribution
is uniform, it is symmetric about a = /2. Then setting ¢; = ¢, Lemma 3.6 gives

1262
Pr[E[Qn] — Qn > €] < exp (‘W) ®
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for any ¢ > 0.
Notice that inv(w1) and inv (w, 1) are identically distributed when w; and w; are
independently sampled uniformly at random from §,, since

inv(w) = L4(w) = La(w™ ") = inv(w™).

If 7, is the evolved permutation after ¢ insertions, then 7, is completely determined
by 7;. Further, there is only one insertion of ¢ that evolves 77;_1 into 77;. The conclusion,
via induction, is that the probability of seeing 7r; after ¢ insertions is 1/¢!. The above
implies that Q, has an identical distribution to inv(w™1), and hence inv(w), when w
is sampled uniformly at random from S;,. This, combined with (8), implies

. . 1262
PrafBlim ]~ im0 > el < e~ o) o)

for any ¢ > 0.

Finally, take f1 and f; to be functions over the reals with fj(x) = x and f>(x) =
(x 4+ 1)x/2. Also, let r =n — 1, &1 = n?/16, and &, = n/16. Using Lemma 3.7, for
sufficiently large n, with (7) and (9) gives

#{w € S, :wis proper} = |S,|- Pr [w is proper]
w<S,

n

— . PrS [inv(w) <(mn—-1+ (des(u;) + 1)j|

Ty _I’l—2 N _ 3n3
<n!- exp< ﬁ) exp< 64(n—1)(2”_1)>

<nl-e R0, O

Corollary 5.2 The proportion of proper elements in the Coxeter group of type An_1
vanishes as n goes to infinity.

Proof We know the type A,_ Coxeter group has group structure S,,. Also, |S,| = n!.
Thus, the claim follows from Proposition 5.1 since the proportion of proper elements
is

Pr [w is proper] < e~ %™
w<S,

which tends to zero as n goes to infinity. O

5.2 Types B, and D,

Next, we give a bound involving type A,_1 left descents, type B, elements, and type
D,, inversions. We do this to consolidate our bounds in types B, and D,,. Types B,
and D, have asymptotically the same number of elements, so their analysis is similar.
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In providing the following, we upper bound a large set and then later show that this
set is a superset of both the set of type B, and type D,, proper elements.

Proposition 5.3 We have that
#{w € SB :invp(w) < n + (des(w) + 1) } <2l e 2,

Proof This proof is similar to the proof of Proposition 5.1. For 1 < i < j < n, let
(") SB — {0, 1} be the function that maps w € SB to 1ifw= (@) > w=!(j) and O
otherw1se. Similarly, let Yiﬁr}). S,lf — {0, 1} be the function that maps w € Sf to 1if

w_l(—i) > w! (j) and O otherwise.
Then

n n
ivp(w) =Y Y X[ W) + ¥ )

i=1 j=i+1

and
des(w) = Z X", (w),

for w € S& since by [2, p.253, (8.18)]

invp(w) = invg(w) — neg(w)
=inv(w) +#{l <i < j <n:w(=i) > w(j)}

= 1nVD(w_ ).

Fori, j e [n]withi < j,lety; ;: Sf — Sf be the bijective involution that swaps
the values at indices i and j in the one-line notation of w € S, B Then both X; ) (w) =
1= X" j(w)) and ¥ (w) = 1 =¥ (i; j(w)). Hence EX{") = EY,") = 1/2 by
symmetry. Thus, E[anD(w)] = ( ) and E[anD(w)] = — 1)/2 by the hnearlty of

expectation. Further, X; ™) and X (, ), are independent if {i, j} N {i’, j'} =

LetI’ ={@, j):1 <z <j <n§w1thF1 ={G,i+D:1<i<n,i _l(m0d2)}
and I, = {({,i+1):1 < i < n,i = 0 (mod 2)}. Notice I'y and I'; are disjoint
subsets of I', and that both {X7},cr, and {X}}pcr, are sets of independent random
variables. Further, [T'1|+|T2| = n—1with |[I'{| = [(n—1)/2] and |T2| = [(n—1)/2].
Since for w € SE, Yger, X8 W) + Xper, Xy (w) = Y1) X, | (w) = des(w),
applying Lemma 3.3 with § = ¢/n gives us

20,
Pr[des(w) — E[des(w)] > ] < 2exp (—8(;’—22)> (10)
n

for any ¢ > 0 where w is sampled uniformly from Sf .
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Next, let mg, 71, m2, ... be a sequence of random signed permutations, evolving
such that given ;| € StB_l, we create 77; by inserting ¢ at a (uniformly) random index
in 7;_1, such that Pr[m; (i) =t | m;—1] = 1/2¢ for each i € [£¢]. Then —¢ is inserted
at the unique index that makes 7; a signed permutation. Let Q; := invp (7).

If ¢ is placed in a positive index k, then m; (i) < m;(k) and 7;(—i) < m; (k) for all
1 <i <k,and m;(k) > m,(j) and 7;(—k) < m;(j) for all j such that k < j < ¢.
This leads to a total increase of + — k to Q;_1. If instead —¢ is placed at a positive
index k, then m; (i) > m;(k) and 7, (—i) > m;(k) forall 1 <i < k, and 7r; (k) < 7:(j)
and m;(—k) > m;(j) for all j such that k < j < ¢. This leads to a total increase of
2k— 1D+ —k)=t+k—2to Q;—_1.

The two possibilities are equally likely, as are their indices. For ki, k_ € [¢],
t—ky=t+k_—2onlyift —ky =t+k_ —2=1t—1.Thus

1/t ifa=t—1,
Pr[Q; = Qi1 +al Q1] = 1/2t if ae ({0,...,2(t — D}\{r = 1}),

0 otherwise
for each ¢. Thus,
47 ifa=t,
PrQi1 = Qi +al Q=1 s if a€0,...., 200\ {1},
0 otherwise

andsoPr[Q;11=0;+a| Q] =Pr[Qsy1 = O; + 2t —a| Q;]. Then setting ¢; = 2¢,
Lemma 3.6 gives

3 2
PrlE[Qn] — Oy 2 €] < exp(—m> (11)

for any ¢ > 0.

Notice thatinvp (w1) andinvp (w, 1) are identically distributed when w; and w; are
independently sampled uniformly at random from SZ since invp (w™") = invp(w)
for each w € Sf . If 7; is the evolved signed permutation after # insertions, then ;1
is completely determined by m;. Further, there is only one insertion of ¢ that evolves
m;—1 into ;. The conclusion, via induction, is that the probability of seeing m; after
t insertions is 1/(2'¢!). The above implies that O, has an identical distribution to
invp(w™1), and hence invp(w), when w is sampled uniformly at random from Sf.
This, combined with (11), implies that for w sampled uniformly from Sf

2
Pr[E[invp(w)] — invp(w) > €] < exp (—m) (12)

for any ¢ > 0.

Finally, take f; and f> to be functions over the reals with f1(x) = x and f>(x) =
(x + 2. Also, let r = n, &1 = n?/16, and &2 = n/16. Using Lemma 3.7, for
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sufficiently large n, with (10) and (12) gives

#{w e SPinvp(w) < n+ (des(w) + 1)?}
=|SB|. PrB[va(w) < n+ (des(w) + 1)2]
w<=S;

<2t [2exp (=22 +exp( - 3
S S 2P T 556 ) TP T o560 — D2 — 1)

< 2'nle 80, O

Proposition 5.4 The number of proper elements in the Coxeter group of type B, is at
most 2"n! e~

Proof We have that

#{w e SB :w is proper} = # {we SBinvp(w) <n+ (desB(w))z}
< # {w € S ;invp(w) < n + (des(w) + 1)2}
<#{w e SPrinvp(w) < n+ (des(w) + 1)?}
)

where the first step follows by Proposition 2.1 (ii), the second by des(w) + 1 >
desp (w), the third by invp (w) < invg(w), and the last by Proposition 5.3. 0O

Corollary 5.5 The proportion of proper elements in the Coxeter group of type B,
vanishes as n goes to infinity.

Proof Since |Sf | = 2"n!, it follows from Proposition 5.4 that

Pr [wis proper] < e 20",

w<—S

which tends to zero as n goes to infinity. O

Proposition 5.6 The number of proper elements in the Coxeter group of type D,, is at
most 2"n! e,

Proof We have that

#{w € SnD :w is proper} = #{w € SnD dinvp(w) <n+ maXWO(SnD, desD(w)))}
< # {w € S,Il) ;invp(w) < n+ (desD(w))z}
<#{we SPinvp(w) < n + (des(w) + 1)?}
<#{w e SPrinvp(w) < n + (des(w) + 1)?}
< 2Mple= R

where the first step follows by the definition of proper, the second by Proposi-
tion 2.1 (iii), the third by des(w) + 1 > desp(w), the fourth by S € SZ, and the last
by Proposition 5.3. O
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Corollary 5.7 The proportion of proper elements in the Coxeter group of type Dy
vanishes as n goes to infinity.

Proof Since |S,?| = 2", it follows from Proposition 5.6 that

Pr [w is proper] < e 82,

w<Sp

which tends to zero as n goes to infinity. O

5.3 Typel

The type I>(n) Coxeter group is presented with generators S = {s1, s2} which satisty

512 = s% = (s150)" =e.

Proposition 5.8 Let W), be a Coxeter group of type I(n) and let w be drawn from W),
uniformly at random. Then Pr[w is proper] — 0 as n — oo.

Proof We know that W,, has order 2n. Further, for w € W,,,

2 ifw = wo,
dlw)=130 ifw=e,
1 otherwise.

o If w = wyp, then maxwo(W,,, d(w)) = maxwy(W,, 2) = n. Thus, w is proper if
and only if £(w) < 2 + n, which is true for all n since £(wg) = n.

o If w = e, then maxwy(W,,, d(w)) = maxwy(W,, 0) = 0. Thus w is proper if and
only if £(w) < 2, which is true since £(e) = 0.

o If w # e, wyp, then maxwy(W,, d(w)) = maxwy(W,, 1) = 1. Thus, w is proper
if and only if £(w) < 3. There are at most a constant number of w € W, with
length at most 3: w = s1, 52, $152, $251, §15251, and $25152.

Thus the number of proper elements in W,, is constant with respect to n. O

5.4 Proof of Theorem 1.6

Theorem 1.6 now follows immediately from Corollaries 5.2, 5.5, and 5.7 and Propo-
sition 5.8.

6 Lower bounds
6.1 Types A,—1, Bp, and D,
We have given upper bounds on the number of proper elements in each of the infinite

families of finite irreducible Coxeter groups. Next, we give a non-trivial lower bound
on the number of proper elements for families A,_1, B,, and D,,. In order to show
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these lower bounds, we construct a subset of S,, such that all elements of the set are
proper. Further, we can use this subset to create subsets of SZ and SP that contain
only proper elements. This will give us a lower bound on the number of elements in
each of the groups A,_1, By, and D,,.

The next lemma gives mappings that, when applied to each element of a set of
proper elements of S, will result in a set that only contains proper elements of S
and a set that only contains proper elements of S,? .

Lemma6.1 Let ¢p: S, — Sf and pp: S, — S,? be the homomorphisms w +— w’
where w'(i) = w(i) and w'(—i) = —w(i) for each i € [n]. For n large enough and
forall w € Sy, if w is proper then ¢p(w) and ¢p(w) are proper.

Proof We have

Lp(pp(w)) = Lp(pp(w)) = La(w) (13)

since w(i) > 0 for each i € [n], by the definitions of inv, invp, and invp. Further,
(psw) ! = gpw™") and (pp(w))~" = @p(w™") imply that

dp(pp(w)) = dp(pp(w)) = da(w). (14)

Ifw € S, is proper, then £4 (w) < (n—D+(“%*) < n+m 4 (w) by Proposition 2.1.
Thus, since

maxwo(A,—1, da(w)) < min{maxwo (B, dp(¢p(w))), maxwo(Dy, dp(¢p(w)))}

for large enough n, (13), (14), and Proposition 2.1 imply our result. O

Next, we give a construction of a subset of elements of S, that, with the optimized
parameters, are all proper. To construct an element of S, we first imagine we have a
row of n empty cells. We group the cells into a contiguous chunks of g cells. There
might be some r < ¢ cells leftover on the rightmost side of the row. Let us focus on
one chunk and denote this chunk «. We will place the numbers 1, . .., g into chunk «
such that there are many descents. More specifically, we group the numbers 1, ..., g
into s contiguous (when the numbers are arranged in increasing order) runs of size b.
There might be d < b remaining larger numbers. We will focusononerunof 1, ..., g
and call this run 8. We place the elements of run 8 into the empty cells of chunk «
such that when looking at the cells from left to right, the elements of 8 are in reverse
(decreasing) order. We do this for each run § and place the excess elements of 8 in
the remaining empty cells arbitrarily. Then we add « -¢q to each cell entry of chunk
« so that globally we do not have any repeated numbers in the cells. We repeat this
process for all chunks. The remaining empty cells are filled in increasing order with
the remaining elements of [n] that have not been used.

The following is a formalization of the above intuition.
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Construction 6.2 Let g, s € Zx( be such that n = aq + r for some unique a € Z,
0<r<g,andq =sb+dforsomeb € Z,0<d <s.Letng,...,m,—1 € §; with
the property that

n;l(sr+1) > 7 Yt +2) > .- >n;1(sz+s)

foreacht =0,...,b—1land j =0,...,a — 1. Now set w € S, to be such that for
i=aq+p €[n]witha € Zand 8 € [q],

m.(B) if o <a,
B otherwise.

w(i) :aq—f-{

Let P, be the set of these constructed permutations on [n].

We note that the above construction results in proper elements of S, only when
the chunk sizes and runs are optimized correctly. We give some examples of this
construction.

Example 6.3 Some examples in one-line notation are listed below.

1. w =121436587 € P, withn =8,g =4, s =2anda =2,r =0,b =2,
d = 0. In this example, g = 71 = 2143.

2. w =1243165879 € P, withn =9,g =4,s =2anda =2,r =1,b =2,
d = 0. In this example, 79 = 2431 and 7} = 2143.

3. w =453261789 € P, withn =9,g =6,s =4anda=1,r =3,b =1,
d = 2. In this example, o = 453,261.

By way of Construction 6.2, we force the number of descents to be somewhat
large within each chunk (and thus globally), and we force the inversions to occur only
within each chunk which makes the number of inversions somewhat small. In the
following theorem, we show that there always exist chunk and run sizes that result in
P, containing only proper elements of S,,. Further, we give lower bounds for the sizes
of P, and the corresponding constructed sets for SZ and SP.

Theorem 6.4 The number of proper elements of Sy, S,?, and Sf is at least (cn)" for
some absolute constant ¢ > 0.

Proof We will show there exist ¢, s, a, and b from Construction 6.2 such that each
element of P, is proper. We can assume n is sufficiently large, since for smaller 7,
we can increase ¢ such that the statement holds. Let a = 10, s = 5, ¢ = |n/al,
b = |g/s] such that g, b > 0 for sufficiently large n. Fix w € P,. Since inversions
of w only take place within each of the a chunks, we have £4 (w) < a(}) < ag?/2 <
10- (n/10)?/2 = n?/20. Also, in each chunk of w, there are at least s runs of size b
placed in descending order (and not necessarily consecutively); this means d4 (w) >
asb. Thus (") > (daw)?/2 > (ash)?/2 > (50b)%/2 > (n — 60)%/2. This

da (1121)+1)

means that for n sufficiently large, £4(w) < n + ( and hence w is proper.
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Type  Number of proper elements

Es 10690
E7 159368
Eg 4854344
Fy 297
H3 48
Hy 594

Fig. 2 The number of proper elements for the finite families were calculated using the aid of a computer

[6]

Further, we have that | P,,| > ((Sq,'))ai by the constraints of Construction 6.2. Fore > 0
and sufficiently large n,

(@) _ (n/a]h
(shab = (shyn/s

Ln/aJ ln/a]\ a es—l n/s
= ( eln/al—1 ) '<ss+1> (15)
n n—a es—l n/s
> () (Se) e 16
<(a+5).e) (ss+l) e (16)
= (Yu-m)",
where
a+e a/n
Vo= ((a+eg)-e'/s. sy~ y and v, = < ) )
n
Step (15) uses the bound

nn/en—l < n! < nn+l/en—1

from [13, Section 1.2.5, Exercise 24], and step (16) uses the bound |n/a| > n/a—1 >
a"? forn > a-(1 + a/e). Because log v, > —(H“W by elementary calculus, there
is some absolute constant ¢ > 0 such that y,, > c.

This is a non-trivial lower bound for the number of proper elements of S,,. The rest
of the proof follows from Lemma 6.1. O
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7 The exceptional groups
71 Types E6, E7, Es, F4, H3, and H4

The Coxeter groups of types E¢, E7, Eg, Fa, H3, and Hy are finite families. Figure2
lists the number of proper elements for each of these groups. Using a computer we
computed all of their proper elements [6]. The algorithm we used is described below.

(1) Generating the Coxeter group elements by length. Let W = (s1,...,s,) be a
finite Coxeter group and let/ € {0, ..., £(wo(W))}. At step ¢ of the algorithm,
we maintain a set Z;, € W with Zy = {e}. Then Z;y| = {sijw:w € Z;,s; €
[2]\ J(w)}. We terminate at the first 7 such that Z7r; = &. Then for Z =
U;T:o Z;, we collect the elements Y := {w € Z: £(w) =1}.

(2) Storing the Coxeter group elements by length. The elements of Y are written to
a named file (e.g. data/E8/23 . txt, where [ = 23 in this example). Each
line of this file is a reduced word of W with length /, represented by the ordered
indices of the generators. Then we compress the directory for each Coxeter
group name.

(3) Computing the number of proper elements by length. For each Coxeter group,
we (in parallel) extract each of its files and compute the the number of proper
elements. Then we take the sum of these results.

The computation for Eg took the longest: it took approximately three weeks to run
steps (1) and (2). Step (3) took approximately 75 min to run. We used a 3.0GHz 5th
Gen Intel Core 17-5500U processor with 1TB of disk space and 16GB of RAM. Steps
(1) and (3) heavily utilize SageMath and Coxeter3 libraries for most Coxeter
group operations.

Acknowledgements We thank Alex Yong for helpful discussions. We thank the anonymous referees for
their helpful remarks on the organization of this paper.

Author Contributions All authors have contributed equally.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

1. Billey, S., Lakshmibai, V.: Singular Loci of Schubert Varieties. Progress in Mathematics, vol. 182.
Birkhiuser, Boston (2000)

2. Bjorner, A., Brenti, F.: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol. 231.
Springer, New York (2005)

3. Borel, A.: Linear Algebraic Groups. Graduate Texts in Mathematics, vol. 126, 2nd edn. Springer, New
York (1991)

4. Brewster, D., Hodges, R., Yong, A.: Proper Permutations, Schubert Geometry, and Randomness (2020).
arXiv:2012.09749

5. Brion, M.: Introduction to Actions of Algebraic Groups. Notes of the Course “Actions hamil-
toniennes: invariants et classification” (CIRM, Luminy, 2009). https://www-fourier.ujf-grenoble.fr/
mbrion/notes_luminy.pdf

@ Springer


http://arxiv.org/abs/2012.09749
https://www-fourier.ujf-grenoble.fr/mbrion/notes_luminy.pdf
https://www-fourier.ujf-grenoble.fr/mbrion/notes_luminy.pdf

32

Page 26 of 26 J.Balogh et al.

10.

11.

12.

13.
14.

. Brewster, D.: Proper Coxeter Elements for Finite Families, GitHub Repository, GitHub (2021). https://

github.com/iclue-summer-2020/proper-coxeter-elements

. Coxeter, H.S.M.: The complete enumeration of finite groups of the form Ri2 =(R; Rj)kij =117

London Math. Soc. 10(1), 21-25 (1935)

. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms.

Cambridge University Press, Cambridge (2009)

. Gaetz, C.: Spherical Schubert varieties and pattern avoidance. Selecta Math. (N.S) 28(2), Art. No. 44

(2022)

Gao, Y., Hodges, R., Yong, A.: Classification of Levi-spherical Schubert varieties. Selecta Math. (N.S)
29(4), Art. No. 55 (2023)

Hodges, R., Yong, A.: Coxeter combinatorics and spherical Schubert geometry. J. Lie Theory 32(2),
447-474 (2022)

Humphreys, J.: Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics,
vol. 29. Cambridge University Press, Cambridge (1990)

Knuth, D.E.: The Art of Computer Programming, vol. 1, 3rd edn. Addison-Wesley, Reading (1997)
Ross, S.M., Pekoz, E.A.: A Second Course in Probability, 2nd edn. Cambridge University Press,
Cambridge (2023)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer


https://github.com/iclue-summer-2020/proper-coxeter-elements
https://github.com/iclue-summer-2020/proper-coxeter-elements

	Proper elements of Coxeter groups
	Abstract
	1 Introduction
	1.1 Proper elements in finite Coxeter groups
	1.2 Classifying Levi-spherical Schubert varieties
	1.3 Previous results on proper permutations

	2 Preparation
	2.1 An analysis of maxw0(W, x)
	2.2 Spherical implies proper

	3 Concentration bounds
	3.1 Concentration bounds

	4 The infinite families
	5 Limiting behavior for the proportion of proper elements
	5.1 Type An-1
	5.2 Types Bn and Dn
	5.3 Type I
	5.4 Proof of Theorem 1.6

	6 Lower bounds
	6.1 Types An-1, Bn, and Dn

	7 The exceptional groups
	7.1 Types E6, E7, E8, F4, H3, and H4

	Acknowledgements
	References


