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Abstract
In a STOC 1976 paper, Schaefer proved that it is PSPACE-complete to determine the
winner of the so-called Maker-Breaker game on a given set system, even when every
set has size at most 11. Since then, there has been no improvement on this result. We
prove that the game remains PSPACE-complete even when every set has size 6.

Keywords Complexity · Game · Maker-Breaker · NL-hard · PSPACE-complete ·
Reduction

Mathematics Subject Classification 68Q17

1 Introduction

The Maker-Breaker game is a perfect-information game played on a set system—
a collection of subsets of some finite universe. The two players, called Maker and
Breaker, alternate turns. In each turn, the current player claims a previously-unclaimed
element of the universe as his own. Maker wins if he claims every element in at least
one subset. Breaker wins if he claims at least one element in every subset. There are
no draws, and for every set system, one of the players has a strategy that guarantees
that he wins. The popular game of Hex can be viewed as a Maker-Breaker game.

Maker-Breaker games were introduced in the influential paper [9], which provided
a sufficient condition for Breaker to win (and is often considered the forerunner to the
method of conditional probabilities). There is a very substantial literature on deter-
mining which player has a winning strategy, for various kinds of set systems (and for
many generalizations and variants of Maker-Breaker games). We refer to [14] for a
survey. Some cornerstones of this literature are:
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• When the universe is the set of edges of an undirected graph with distinguished
nodes s and t , and the subsets are s-t paths (this special case is called the “Shannon
switching game”), Lehman [16] characterized which player can win, in terms of
combinatorial properties of the graph.

• When the universe is the set of edges of a sufficiently large complete undirected
graph, and the subsets are Hamiltonian cycles, Chvátal and Erdős [5] proved that
Maker can win.

Given the effort that has gone into determining the winner for various set systems,
it is natural to consider the possibility of automating this process. In other words, let us
view this as a computational problem and investigate how efficiently it can be solved.

What is the computational complexity of determiningwhich player has awinning
strategy in the Maker-Breaker game on a given set system?

In a seminal paper, Schaefer [21, 22] proved that the problem is PSPACE-complete,
even when the set system haswidth 11, whichmeans each subset in the system has size
at most 11. (A simplified proof of PSPACE-completeness for unbounded width was
given in [4]). Reductions from this theorem have been used for many other PSPACE-
completeness results [1, 3, 4, 6–8, 10–13, 17, 18, 20, 23, 24, 26, 27].

SinceSchaefer’s PSPACE-completeness result first appeared in 1976, there has been
no improvement on the width 11. We make the first progress in 44 years: Determining
thewinner of theMaker-Breaker game remainsPSPACE-complete even for set systems
ofwidth 6.Aswe note later, this also implies PSPACE-completeness ofMaker-Breaker
for set systems that are 6-uniform, meaning that every subset has size exactly 6.

1.1 CNF Games

In this section, we introduce “CNF games,” a broader sense of games that includes
Maker-Breaker as a special case.

• In theordered game, the input consists of a conjunctive normal form (CNF) formula
ϕ and an ordered list of variables {x2n, x2n−1, . . . , x2, x1} that contains all variables
of ϕ. Player 1 is called T because his goal is to make ϕ true, and player 2 is called
F because his goal is to make ϕ false. In the first round, T assigns a bit value for
x2n , then F assigns a bit value for x2n−1. In the next round, T assigns x2n−2, then F
assigns x2n−3, and so on for n rounds. Thewinner depends onwhetherϕ is satisfied
by the resulting assignment. In other words, which player has a winning strategy
is determined by whether the following quantified boolean formula is true:

(∃x2n)(∀x2n−1) · · · (∃x2)(∀x1) : ϕ(x1, . . . , x2n).

The problem w-TQBF is to determine which player has a winning strategy, under
the restriction that ϕ has width w (every clause has at most w literals). It is known
that 2-TQBF is NL-complete [2] and 3-TQBF is PSPACE-complete [25].

• In the unordered game, the input consists of a CNF ϕ, a set X of variables that
contains all variables of ϕ (and possibly more), and an indication of which player
(T or F) gets the first move. Again, T and F alternate turns assigning bit values to
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variables, and the winner depends on whether ϕ is satisfied by the resulting assign-
ment. But now, each turn consists of picking which remaining variable to assign,
as well as which bit to assign it. The unordered game more closely resembles real-
world games in which the same moves are available to both players. The problem
Gw is to determine which player has a winning strategy, under the restriction that
ϕ has width w. The paper [20] originated the Gw notation and showed that G2 is
in L and G5 is PSPACE-complete.

• The unordered positive game is just the unordered game under the restriction that
ϕ must be a positive (a.k.a. monotone) CNF—it only has unnegated literals. In
this game, it would never be advantageous for T to assign 0 to a variable, or for
F to assign 1 to a variable. Thus we can assume each move consists of T picking
a remaining variable and assigning it 1, or F picking a remaining variable and
assigning it 0. If we view each clause of ϕ as a subset of X (the set of variables),
then the unordered positive game is equivalent to the Maker-Breaker game on the
set system corresponding to (ϕ, X), where F is Maker (he wants to assign every
variable in at least one clause) and T is Breaker (he wants to assign at least one
variable in every clause). The problem G+

w is the restriction of Gw to positive
w-CNFs, i.e., determining whether Maker or Breaker has a winning strategy on a
given set system of width w. Thus, Schaefer’s theorem [21, 22] can be stated as:
G+
11 is PSPACE-complete.

Previously, the authors conjectured that G+
3 , and perhaps even G3, might actually

be tractable. These problems have been shown to be tractable—indeed, in Ł—under
various restrictions on the 3-CNF [15, 19]. The unordered CNF game seems qualita-
tively very different from its ordered counterpart. Width 6 might not be optimal for
PSPACE-completeness of Maker-Breaker (though it appears to be a barrier for our
proof technique), but it is unclear what the optimal width ought to be.

In this paper, we prove the following three results:

Theorem 1 G+
6 is PSPACE-complete.

Theorem 2 G+
5 is NL-hard.

Theorem 3 G4 is NL-hard.

In Table 1 we summarize the state-of-the-art for the ordered, unordered, and
unordered positive CNF games.

Each game has four different patterns for “who has the first move” and “who has
the last move”. For a, b ∈ {T,F} we use the subscript a · · · b to indicate that player a
goes first and b goes last. For example, G+

6,T···F is G+
6 restricted to instances where T

has the first move and F has the last move (which necessitates |X | being even). With
no such subscript, an instance of G+

6 must specify which player goes first (and then
the parity of |X | determines who goes last). We prove that G+

6 is PSPACE-complete
for each of the four possible patterns, and similarly for G+

5 being NL-hard, but we are
only able to show NL-hardness of G4 for the patterns T · · · F and F · · · F.

Our proof of Theorem 1 follows a similar high-level outline as the proof that G+
11

is PSPACE-complete from [21, 22], using a reduction from 3-TQBF. The key is to
trade size for width—we develop a gadget for simulating a round of the ordered game,
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Table 1 Results

w → 2 3 4 5 6

w-TQBF NL-complete PSPACE-complete

[2] [25]

Gw L NL-hard PSPACE-complete

Under restrictions [Theorem 3] [20]

L [19]

G+
w [20] L Unknown NL-hard PSPACE-complete

Under restrictions [Theorem 2] [Theorem 1]

[15]

using more variables and clauses but lower width than the gadget from [21, 22]. Our
correctness analysis also uses a new perspective on the case where T is supposed to
win (which is much trickier than the case where F is supposed to win, since T must
satisfy every clause whereas F only needs to falsify one clause). To frame T’s winning
strategy in the event that F “misbehaves,” we make use of ideas from the recent paper
[19].

The proof of Theorem 1 also yields Theorem 2. Theorem 3 holds by an elementary
but new reduction from 2-SAT.

2 Proof of Theorem 1 (and Theorem 2)

We prove Theorem 1 in Sect. 2.1. In Sect. 2.2 we provide a streamlined proof of a
special case of a lemma from [19], which is needed for the proof of Theorem 1. Then
we prove a series of corollaries in Sect. 2.3, which cover all the patterns for both
Theorems 1 and 2.

2.1 Proof of Theorem 1

We show 3-TQBF ≤ G+
6,T···F. Suppose an instance of 3-TQBF is given by

(∃x2n)(∀x2n−1) · · · (∃x2)(∀x1) : F1 ∧ F2 ∧ · · · ∧ Fm,

where each Fk is a clause with width ≤ 3. We construct an instance of G+
6,T···F as

(ϕ+, X) where ϕ+ is a positive 6-CNF and X is the set of variables in it, such that T
has a winning strategy in the 3-TQBF game iff T has a winning strategy in the G+

6,T···F
game on (ϕ+, X).

A 3-TQBF round (∃xi )(∀xi−1), where i ∈ {2, 4, 6, . . . , 2n}, will correspond to 16
variables in X and 14 clauses in ϕ+. Four of the 16 variables are {xi , xi , xi−1, xi−1}.
Here, xi is the name of an unnegated variable, distinct from the variable xi . The
variables xi and xi do not necessarily get assigned opposite values. Similarly for xi−1
and xi−1. The other 12 variables associated with a 3-TQBF round (∃xi )(∀xi−1) are
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{u6i , u6i−1, . . . , u6i−11}. (This variable naming scheme is borrowed from [21, 22]).
In the G+

6,T···F game, we define “legitimate” gameplay corresponding to a 3-TQBF
round (∃xi )(∀xi−1) as follows:

1. T plays one of xi , xi
2. F plays the remaining variable in the pair xi , xi
3. T plays u6i
4. F plays u6i−1
5. T plays u6i−2
6. F plays u6i−3
7. T plays u6i−4
8. F plays one of xi−1, xi−1
9. T plays the remaining variable in the pair xi−1, xi−1

10. F plays u6i−5
11. T plays u6i−6
12. F plays u6i−7
13. T plays u6i−8
14. F plays u6i−9
15. T plays u6i−10
16. F plays u6i−11

In the G+
6,T···F game, T always assigns 1 and F always assigns 0 to variables. In

a legitimate gameplay, T choosing xi or xi to assign 1 is like T choosing to assign
xi = 1 or xi = 0 (respectively) in the 3-TQBF game. Similarly, F choosing xi−1 or
xi−1 to assign 0 is like F choosing to assign xi−1 = 0 or xi−1 = 1 (respectively) in
the 3-TQBF game.

We say the gameplay for the entire G+
6,T···F game is legitimate when it con-

sists of legitimate gameplay for the (∃x2n)(∀x2n−1) round, followed by legitimate
gameplay for the (∃x2n−2)(∀x2n−3) round, followed by legitimate gameplay for the
(∃x2n−4)(∀x2n−5) round, and so on. Legitimate gameplay mimics the 3-TQBF game-
play in a natural way. We will design the clauses so that any player who plays
illegitimately either outright loses, or at least gains no advantage by deviating from
legitimate gameplay.

The 14 clauses associated with the 3-TQBF round (∃xi )(∀xi−1) are:

Ai = xi ∨ xi ∨ u6i+1 ∨ u6i+3 ∨ u6i+5

C6i = u6i ∨ u6i+1 ∨ u6i+3 ∨ u6i+5 ∨ (xi ∧ xi )

C6i−2 = u6i−2 ∨ u6i−1 ∨ u6i+1 ∨ u6i+3 ∨ (xi ∧ xi )

C6i−4 = u6i−4 ∨ u6i−3 ∨ u6i−1 ∨ u6i+1 ∨ (xi ∧ xi )

Bi = xi−1 ∨ xi−1 ∨ u6i−3 ∨ u6i−1

C6i−6 = u6i−6 ∨ u6i−5 ∨ u6i−3 ∨ u6i−1 ∨ (xi−1 ∧ xi−1)

C6i−8 = u6i−8 ∨ u6i−7 ∨ u6i−5 ∨ u6i−3 ∨ (xi−1 ∧ xi−1)

C6i−10 = u6i−10 ∨ u6i−9 ∨ u6i−7 ∨ u6i−5 ∨ (xi−1 ∧ xi−1).
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As we note later, each C j is not really a clause, since it contains a conjunction, but
it is equivalent to a pair of clauses. Thus the six C j ’s correspond to 12 clauses, but
we often refer to C j as “a clause” anyway. Note that each C j contains one even-index
u variable and the three previous odd-index u variables. For any clause that appears
to contain some u j variable where j > 12n, that non-existent variable is actually not
present in the clause. Intuitively, the variables xi and xi in Ai , and xi−1 and xi−1 in Bi ,
and u j in C j (which we wrote first in the clauses) enable F to threaten T with defeat
if T plays illegitimately, and the other variables in the clauses enable T to threaten F
with defeat if F plays illegitimately.

For each clause Fk in the 3-TQBF game we introduce a clause

Dk = F ′
k ∨ u1 ∨ u3 ∨ u5,

where F ′
k is the clause which results from replacing each negated variable ¬xi by the

unnegated variable xi throughout the clause Fk . For example, if Fk = (x1∨¬x2∨¬x3)
then F ′

k = (x1 ∨ x2 ∨ x3), where x2, x2, x3, x3 are separate variables.
In summary, the formal construction is as follows:

X = {x1, x1, x2, x2, . . . , x2n, x2n} ∪ {u1, u2, . . . , u12n}
=

⋃

i=2,4,6,...,2n

{xi , xi , xi−1, xi−1, u6i , u6i−1, . . . , u6i−11}

ϕ+ =
∧

i=2,4,6,...,2n

(Ai ∧ Bi ) ∧
∧

j=2,4,6,...,12n

(C j ) ∧
∧

k=1,2,3,...,m

(Dk),

where Ai = xi ∨ xi ∨ u6i+1 ∨ u6i+3 ∨ u6i+5, Bi
= xi−1 ∨ xi−1 ∨ u6i−3 ∨ u6i−1,C j

= u j ∨ u j+1 ∨ u j+3 ∨ u j+5 ∨ (x� j/6� ∧ x� j/6�), Dk

= F ′
k ∨ u1 ∨ u3 ∨ u5.

Any occurrence of a non-existent variable u j (where j > 12n) is omitted from the
clauses. For example, A2n is simply the clause x2n ∨ x2n . Now:

C j = (u j ∨ u j+1 ∨ u j+3 ∨ u j+5 ∨ x� j/6�) ∧ (u j ∨ u j+1 ∨ u j+3 ∨ u j+5 ∨ x� j/6�).

So C j contains two clauses with width ≤ 5, and Ai , Bi , and Dk are individual
clauses with widths≤ 5,≤ 4, and≤ 6 respectively. Therefore, ϕ+ is a positive 6-CNF
with 16n variables and 14n + m clauses. Though C j contains two clauses we often
treat C j as a clause in the proof. The construction is now complete. Furthermore,
(ϕ+, X) can be constructed in logarithmic space.

Now we claim T has a winning strategy in the 3-TQBF game iff T has a winning
strategy in the G+

6,T···F game (ϕ+, X).
First we prove in Lemma 1 that the claim holds if the gameplay is restricted to

be legitimate. Then we prove that the claim still holds even if the gameplay is not
legitimate. In Lemma 2 we show if T plays illegitimately then either the game will be
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restored to a legitimate situation with no advantage to T, or F will win immediately.
In Lemma 3 we show if F plays illegitimately then either the game will be restored to
a legitimate situation with no advantage to F, or a chain reaction will be started that
enables T to win eventually.

Lemma 1 T has a winning strategy in the 3-TQBF game iff T has a winning strategy
in the G+

6,T···F game (ϕ+, X) when gameplay is restricted to be legitimate.

Proof A legitimate gameplay satisfies all Ai , Bi ,C j since Ai is satisfied by one of xi
or xi , Bi is satisfied by one of xi−1 or xi−1, and C j is satisfied by u j where j is even
because they have been played by T. Since F plays u1, u3, u5 we know that Dk gets
satisfied iff F ′

k gets satisfied. Furthermore, F ′
k gets satisfied iff Fk gets satisfied by the

assignment to the xi variables (ignoring the xi variables), because of the definition of
F ′
k and the fact that xi and xi get opposite values. In summary, a legitimate gameplay

satisfies ϕ+ iff F1 ∧ F2 ∧ · · · ∧ Fm gets satisfied by the assignment to the xi variables.
Suppose F has a winning strategy in the 3-TQBF game. We describe F’s winning

strategy in (ϕ+, X). F can use the same strategy to pick one from xi−1, xi−1 where
F picking xi−1 or xi−1 is equivalent to assigning xi−1 = 0 or xi−1 = 1 respectively
in the 3-TQBF game. F wins since this strategy makes the assignment to all the xi
variables match F’s strategy in the 3-TQBF game, which ensures F1 ∧ · · · ∧ Fm is
unsatisfied and hence ϕ+ is unsatisfied.

Suppose T has a winning strategy in the 3-TQBF game. We describe T’s winning
strategy in (ϕ+, X). T can use the same strategy to pick one from xi , xi where T
picking xi or xi is equivalent to assigning xi = 1 or xi = 0 in the 3-TQBF game
respectively. T wins since this strategy makes the assignment to all the xi variables
match T’s strategy in the 3-TQBF game, which ensures F1 ∧ · · · ∧ Fm is satisfied and
hence ϕ+ is satisfied. 
�
Lemma 2 IfFhas awinning strategy in the3-TQBFgame thenFhas awinning strategy
in the G+

6,T···F game (ϕ+, X) even if the gameplay does not progress legitimately.

Proof Suppose F has a winning strategy in the 3-TQBF game. In the game (ϕ+, X),
F can follow his strategy from Lemma 1 until T plays illegitimately on move p (p is
odd and 1 ≤ p ≤ 16) at round (∃xi )(∀xi−1). We consider all the different cases of p:

• p = 1: F already played u6i+1, u6i+3, u6i+5 (or these variables do not exist if
i = 2n) due to legitimate gameplay before this move. T was supposed to play xi
or xi but T did not do so. There are two possibilities:

– If T also did not play u6i , then F plays u6i . Then whatever T plays, F plays
one of xi , xi . F wins since C6i is unsatisfied.

– If T played u6i , then F plays one of xi or xi (it does not matter which one). Now
it is T’s move. If T plays the other from xi , xi then the game comes back to a
legitimate situation at move 4, where F has no disadvantage since T effectively
let F make the choice of xi or xi for him. If T does not play the other from xi ,
xi then F plays it and wins since Ai is unsatisfied.

• p = 9: F already played u6i−3, u6i−1 and one of xi−1, xi−1 due to legitimate
gameplay before this move. T was supposed to play the other one from xi−1, xi−1
but T did not do so. F plays it and wins since Bi is unsatisfied.
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• Other p: T was supposed to play u j where j is even, but T did not do so. F already
played u j+1, u j+3, u j+5 and one of x� j/6�, x� j/6� due to legitimate gameplay
before this move. Then F plays u j and wins since C j is unsatisfied.


�
Lemma 3 If T has a winning strategy in the 3-TQBF game then T has a winning strat-
egy in the G+

6,T···F game (ϕ+, X) even if the gameplay does not progress legitimately.

Definition 1 We define an order on all the clauses: Ai , C6i , C6i−2, C6i−4, Bi , C6i−6,
C6i−8,C6i−10 for i = 2n then the same for i = 2n−2, and so on. Finally all Dk are at
the end ordered by k increasing. To represent an interval of clauses from this order, we
use analogous mathematical notations “(", “)", “[", “]". For example, [A2n,Ct )means
all the clauses from A2n (inclusive) to Ct (exclusive). Let Vt be all the variables that
occur at least once in (Ct ,C2] along with {u1, u3, u5}. For example, V2 = {u1, u3, u5}
and V4 = {u1, u2, u3, u5, u7, x1, x1}.
Lemma 4 If [A2n,Ct ] are already satisfied where t ≤ 12n − 4 and F has already
played at most one variable in Vt , then T has a strategy to satisfy (Ct , Dm] even if it
is F’s turn.

Before proving Lemma 4, we use it to prove Lemma 3.

Proof of of Lemma 3 Suppose T has a winning strategy in the 3-TQBF game. In the
game (ϕ+, X), T can follow his strategy from Lemma 1 until F plays illegitimately on
move p (p is even and 1 ≤ p ≤ 16) at round (∃xi )(∀xi−1). The outline of the argument
is: The legitimate gameplay so far will have satisfied an interval of clauses, from A2n
through some clause associated with round (∃xi )(∀xi−1). After the illegitimate move
by F, there might be another opportunity for F to restore the gameplay to a legitimate
situation with no disadvantage to T. If that opportunity does not exist, or if F fails to
get the gameplay “back on track,” then T will have a move that satisfies the next few
clauses. Then for some t (t stands for “threshold”), [A2n,Ct ] will be satisfied, and it
will be F’s turn and T will satisfy the rest of the clauses (and hence win) by Lemma 4.
The illegitimate move by F could have happened in Vt or somewhere else, and none
of the other prior moves happened in Vt .

We consider all the different cases of p:

• p = 2: [A2n,C6i ) are already satisfied due to legitimate gameplay before this
move. F was supposed to play the other one from xi , xi but F did not do so. Then T
plays that and that satisfies [C6i,C6i−4]. Now it is F’s turn and T wins by Lemma
4 with t = 6i − 4.

• p = 8: [A2n,Bi ) are already satisfied due to legitimate gameplay before this move.
F was supposed to play one from xi−1, xi−1 but F did not do so. There are two
possibilities:

– If F played u6i−5, then T plays one of xi−1 or xi−1 (it does not matter which
one). Now it is F’s move. If F plays the other from xi−1, xi−1 then the game
comes back to a legitimate situation at move 11, where T has no disadvantage
since F effectively let T make the choice of xi−1 or xi−1 for him. If F does not
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play the other from xi−1, xi−1 then T plays it and that satisfies [Bi ,C6i−10],
so now it is F’s turn and T wins by Lemma 4 with t = 6i − 10.

– If F did not play u6i−5, then T plays u6i−5 and that satisfies [C6i−6,C6i−10].
Let us pretend, for a moment, that one of xi−1 or xi−1 has already been played
by T and the other has already been played by F (though in reality, neither
has been played yet). Then Bi and hence all of [A2n,C6i−10] are satisfied, and
F’s illegitimate move was the only variable that may have been played so far
among V6i−10, and it is F’s turn, so T would win by Lemma 4with t = 6i−10.
In reality, T can use that strategy from Lemma 4, and whenever F plays one of
xi−1 or xi−1, T responds by playing the other, then resumes the strategy from
Lemma 4. (Or, if F never plays xi−1 or xi−1, then T will play one of them after
concluding his strategy from Lemma 4, and F will have to play the other as
the final move). Then Bi gets satisfied along with (C6i−10, Dm], so T wins.

• p = 16: [A2n,C6i−10] are already satisfied due to legitimate gameplay before this
move. F was supposed to play u6i−11 but F did not do so. Here i > 2 since if i = 2
then u6i−11 = u1, which will be the only leftover variable to play and F must
play it. So we only consider i > 2. Then T plays u6i−11 (which is u6(i−2)+1) and
that satisfies [Ai−2,C6(i−2)−4]. Now it is F’s turn and T wins by Lemma 4 with
t = 6(i − 2) − 4.

• Other p: F was supposed to play u j+1 (2nd variable in C j and j is even) but F did
not do so. [A2n,C j ) are already satisfied due to legitimate gameplay before this
move. Then T plays u j+1. There are two possibilities of j :

– j ≤ 4: T’s move u j+1 satisfies [C j,Dm] since all Dk are satisfied by u j+1
(which is either u3 or u5). Therefore T wins.

– j > 4: T’s move u j+1 satisfies [C j,C j−4]. Now it is F’s turn and T wins by
Lemma 4 with t = j − 4. 
�

To prove Lemma 4, we need Lemma 5, which concerns “tree-like” positive 3-
CNFs. Lemma 5 follows from [19], but for completeness we provide a streamlined,
self-contained proof in Sect. 2.2.

Definition 2 A positive 3-CNF is a tree if each of the following holds:

(1) Each clause has width exactly 3, so the formula can be viewed as a 3-uniform
hypergraph where variables are nodes and clauses are hyperedges.

(2) Each clause has at least one “spare variable” that occurs in no other clauses.
(3) Any two clauses share at most one variable.
(4) If we delete a spare variable from every clause, the resulting graph (2-uniform

hypergraph) would be a tree (i.e., connected and no cycles).

When we say F can use pass moves, this means F has the option of forgoing any turn,
thus forcing T to play multiple variables in a row.

Lemma 5 For every tree, T has a winning strategy even if F gets to play the first two
moves and F can use pass moves.
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Fig. 1 Hypergraph for ψ

Proof of Lemma 4 Shrink the clauses (Ct , Dm] by removing some variables from them
as follows:

A′
i = xi ∨ xi ∨ u6i+3

B ′
i = xi−1 ∨ xi−1 ∨ u6i−3

C ′
j = u j ∨ u j+3 ∨ u j+5 (previously two clauses, now only one)

D′ = u1 ∨ u3 ∨ u5 (all D′
k are the same, we call it just D′).

All these clauses form a positive 3-CNF ψ . The hypergraph for ψ has been illus-
trated in Fig. 1.We argue thatψ is a tree.We show it satisfies each of the four properties
of a tree as described in Definition 2.

• Tree property (1) holds since each of A′
i , B

′
i , C

′
j , D

′ has exactly 3 variables. The
variables u6i+3 in A′

i , and u j+3 and u j+5 in C ′
j , are guaranteed to exist since

t ≤ 12n − 4.
• Tree property (2) holds since xi , xi−1, u j , u1 only occur in A′

i , B
′
i , C

′
j , D

′ respec-
tively.

• Tree property (3) holds since:

– C ′
j and A′

i share only u6i+3 if j = 6i or j = 6i − 2.
– C ′

j and B ′
i share only u6i−3 if j = 6i − 6 or j = 6i − 8.

– C ′
j and C

′
j−2 share only u j+3.

– C ′
2 and D′ share only u5.

– Other pairs do not share a variable.

• Tree property (4) holds since deleting xi , xi−1, u j , u1 (which are spare variables)
from A′

i , B
′
i ,C

′
j , D

′ respectively creates a 2-uniform hypergraph as shown in Fig. 2
which is clearly a tree.

Therefore ψ is a tree.

By Lemma 5, T has a winning strategy on the tree ψ even if F has the first two
moves (and subsequently T and F play alternately) and F can use pass moves. Now we
claim that T has a strategy to satisfy (Ct , Dm] in ϕ+ assuming F has already played
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u17 u15 u13 u11 u9 u7 u5 u3...ut+1ut+3

x2 x1

Fig. 2 Hypergraph after deleting a spare variable from each clause in ψ

at most one variable in Vt and it is F’s turn (and F cannot use pass moves). Because
every variable in ψ is also in Vt , we can say F has already played at most one variable
of ψ . Because it is F’s turn in ϕ+, that’s like allowing F to have the second move in
ψ as well. After that, T’s strategy for ϕ+ is the same as T’s winning strategy for ψ ,
except that whenever F plays a variable of ϕ+ that’s not in ψ , T interprets it as a pass
move by F and continues with his strategy for ψ . Since this strategy ensures that ψ

gets satisfied, it also ensures that (Ct , Dm] and hence all of ϕ+ gets satisfied. 
�

2.2 Trees

In order to proveLemma5,we needLemmas 6 and 7. First we outline some definitions.

Definition 3 We henceforth refer to a tree as a single tree. A married tree is a formula
consisting of two disjoint single trees (“spouses”) and a width-2 clause with one
endpoint in each spouse (and every width-3 clause has a spare variable even after the
inclusion of the width-2 clause). The endpoints of the width-2 clause in a married tree
are considered roots of the spouses. A win-forest is a formula where each connected
component is either a single tree or a married tree.

After any move by T or F, a formula changes to a residual formula where the
variable that got played is removed, and if T played then any clause containing the
variable disappears (since it is satisfied), and if F played then any clause containing
the variable shrinks (since a false literal might as well not be there).

Lemma 6 Any move by F on a single tree results in a win-forest.

Lemma 7 T can ensure that a win-forest remains a win-forest after an F-T round even
if F can use pass moves.

Before proving Lemmas 6 and 7, we use them to prove Lemma 5.

Proof of Lemma 5 The treeψ is a single tree. By Lemma 6, F’s first move on ψ results
in a win-forest. Then we prove T can win a G+

3,F··· game on that win-forest even if F
can use pass moves. We prove this by induction on the number of variables.

Base case The formula is a win-forest with one or two variables. In case of one
variable the only possibility is an isolated variable with no clauses. T has already won
in this case. In case of two variables there exists either two isolated variables where T
has already won or a width-2 clause which T can satisfy in one move.

Induction step The formula is a win-forest with at least three variables. Whatever F
plays, T has a response to ensure the residual formula is again a win-forest by Lemma
7. By the induction hypothesis, T can win the rest of the game. 
�
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Before After F’s move After T’s move

x1

x1

Case 1:

Case 2:

Fig. 3 F’s move and T’s move on x1 and its effect on formulas

Any move by T or F can occur in two different ways as illustrated in Fig. 3. Specif-
ically, Case 1 is a move on a non-spare variable, and Case 2 is a move on a spare
variable.

Proof of of Lemma 6 The formula is a single tree. If F’s move is a pass move then that
results in a win-forest with only one single tree. If F’s move is an actual move then it
creates some married trees in which one spouse is just a single variable (Case 1 with
F) or only one married tree (Case 2 with F). Then that results in a win-forest with only
married trees. 
�
Proof The argument will show that whatever F plays, whether a pass move or an actual
move in a single tree or married tree, T has a response such that each component of the
residual formula is again either a single tree or a married tree; therefore the residual
formula is again a win-forest.

Suppose F played a pass move. T can play any remaining variable in the win-
forest. If that variable is an isolated variable then it just removes the isolated variable.
Otherwise it satisfies some clauses in a component by Case 1 or Case 2 with T.
Consequently the component is broken down into some single trees and possibly one
married tree (if the component was a married tree). This preserves the win-forest
property.

Suppose F played in a single tree. Then by Lemma 6 the residual formula is a
win-forest. Then T can pretend F just played a pass move on this win-forest, and T can
respond as explained in the previous paragraph. This preserves thewin-forest property.

Suppose F played in a married tree. F’s move happened in one of the two single
trees that got married. T can play the root of the other spouse (where F has not played)
and satisfy the width-2 clause. This means the two single trees get separated by T’s
move and it also breaks T’s single tree at the root by Case 1 with T. Furthermore,
F’s move in his single tree also preserves the win-forest property by Lemma 6. This
preserves the win-forest property. 
�

2.3 Corollaries

In this section, we investigate corollaries for G+
6 in Sect. 2.3.1, G6 in Sect. 2.3.2, G+

5
in Sect. 2.3.3, and G5 in Sect. 2.3.4.
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2.3.1 G+
6

Our proof of Theorem 1 in Sect. 2.1 showed that G+
6,T···F is PSPACE-complete. Now

we show that G+
6,F···F, G

+
6,T···T, and G+

6,F···T are also PSPACE-complete.

Corollary 1 G+
6,F···F is PSPACE-complete.

Proof The reduction is 3-TQBF ≤ G+
6,F···F. The idea is similar to 3-TQBF ≤ G+

6,T···F
from the proof of Theorem 1 in Sect. 2.1. We introduce one more variable z to X and
add z to the first four clauses of ϕ+: A2n , C12n , C12n−2, and C12n−4, increasing their
widths by one, from 2, 2, 3, 4 to 3, 3, 4, 5 respectively. So ϕ+ is a 6-CNF.

Now the claim is that T has a winning strategy in the 3-TQBF game iff T has a
winning strategy in the G+

6,F···F game (ϕ+, X).
Suppose F has a winning strategy in the 3-TQBF game. Then F can play z as the

first move. Then F wins by the same argument as in Sect. 2.1.
Suppose T has a winning strategy in the 3-TQBF game. If F plays z as the first

move then T wins by the same argument as in Sect. 2.1. If F does not play z as the
first move then T plays z and satisfies A2n , C12n , C12n−2, and C12n−4. Then T wins
by Lemma 4 with t = 12n − 4. 
�
Corollary 2 G+

6,T···T is PSPACE-complete.

Proof The reduction is G+
6,T···F ≤ G+

6,T···T. Suppose an instance of G
+
6,T···F is (ϕ+, X ).

We simply introduce a dummy variable z that does not appear in ϕ+ and use Y =
X ∪ {z}. We claim that T has a winning strategy in the G+

6,T···F game (ϕ+, X) iff T

has a winning strategy in the G+
6,T···T game (ϕ+,Y ). We repeat an argument from [20]

that shows this.
Suppose T has a winning strategy on (ϕ+, X). We show T’s winning strategy on

(ϕ+,Y ). T can start by the same strategy as in (ϕ+, X) and continue as long as F does
not play z. If F never plays z, then T plays z at the end and wins as in (ϕ+, X). If F
plays z then T can respond by playing any remaining variable xi = 1, then T resumes
his strategy from (ϕ+, X) until that strategy tells him to play xi . At this time, T again
picks any other remaining variable and assigns it 1. Then T again resumes his strategy
from (ϕ+, X). The game goes on like this in phases. At the end, T has played all the
variables he would have played in the (ϕ+, X) game and possibly one more. Since ϕ+
is positive, it must still be satisfied when one of the variables is 1 instead of 0.

Suppose F has awinning strategy on (ϕ+, X). Then F’swinning strategy on (ϕ+,Y )

is analogous to T’s strategy in the previous paragraph. 
�
Corollary 3 G+

6,F···T is PSPACE-complete.

Proof G+
6,F···F is PSPACE-complete by Corollary 1. The reduction is G+

6,F···F ≤
G+
6,F···T. The technique is identical to Corollary 2. 
�

Therefore we found PSPACE-completeness of all patterns of G+
6 games.

Corollary 4 G+
6,T···F,G

+
6,F···F,G

+
6,T···T,G+

6,F···T remain PSPACE-complete even when
every clause has exactly 6 variables.
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Proof For any pattern a · · · b where a, b ∈ {T,F}, we reduce from G+
6,a···b to the

restricted version where every clause has exactly 6 variables. We argue that any clause
C with width < 6 can be resized to a set of width-6 clauses without changing the
outcome.We introduce two variables x, x ′ and clauseC is written as (C∨x)∧(C∨x ′),
thus increasingC’s width by 1.Whichever player has a winning strategy in the original
formula, they can follow the same strategy in themodified formula until the other player
plays x or x ′ and then respond by playing the other. (Or, if the other player never plays
x or x ′, then it does not matter which one the winning player plays as the 2nd-to-last
move in the game). So it is possible to increase any clause’s width without changing
the outcome. We can repeatedly do this process until all clauses have width exactly 6.
This increases the size of the formula by at most a constant factor. 
�

2.3.2 G6

We already know that G5,T···F and G5,F···F are PSPACE-complete [20]. But any com-
pleteness result for G5,T···T and G5,F···T is unknown. Not only that, but also the
complexities of G6,T···T and G6,F···T were unknown. Due to Corollary 2 and Corollary
3 we now know that G6,T···T and G6,F···T are also PSPACE-complete.

2.3.3 G+
5

Now we show that G+
5,T···F, G

+
5,F···F, G

+
5,T···T, and G+

5,F···T are all NL-hard. Each of
these results implies Theorem 2.

Corollary 5 G+
5,T···F is NL-hard.

Proof It is well-known that 2-SAT is NL-complete, and trivially 2-SAT ≤ 2-TQBF.
The reduction is 2-TQBF ≤ G+

5,T···F. The technique is identical to 3-TQBF ≤ G+
6,T···F

in Theorem 1 where the widths of Ai , Bi , C j , Dk were 5, 4, 5, 6 respectively. Since
each Fk is now awidth-2 clause, Dk becomes a width-5 clause. Therefore ϕ+ becomes
a 5-CNF. 
�
Corollary 6 G+

5,F···F is NL-hard.

Proof The reduction is 2-TQBF ≤ G+
5,F···F. The technique is identical to Corollary 1.


�
Corollary 7 G+

5,T···T is NL-hard.

Proof G+
5,T···F is NL-hard by Corollary 5. The reduction is G+

5,T···F ≤ G+
5,T···T. The

technique is identical to Corollary 2. 
�
Corollary 8 G+

5,F···T is NL-hard.

Proof G+
5,F···F is NL-hard by Corollary 6. The reduction is G+

5,F···F ≤ G+
5,F···T. The

technique is identical to Corollary 2. 
�
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Thereforewe foundNL-hardness of all patterns ofG+
5 games. But any completeness

result for any pattern still remains open.

Corollary 9 G+
5,T···F,G

+
5,F···F,G

+
5,T···T,G+

5,F···T remainNL-hard evenwhen every clause
has exactly 5 variables.

Proof The technique is identical to Corollary 4. 
�

2.3.4 G5

We already know that G5,T···F and G5,F···F are PSPACE-complete [20]. But nothing
was known for G5,T···T and G5,F···T. Due to Corollaries 7 and 8 we now know that
G5,T···T and G5,F···T are also NL-hard. But any completeness result for G5,T···T and
G5,F···T still remains open.

3 Proof of Theorem 3

In this section, we show 2-SAT≤G4,T···F and 2-SAT≤G4,F···F, each of which implies
Theorem 3.

Lemma 8 G4,T···F is NL-hard.

Proof 2-SAT is awell-knownNL-complete problem.We show 2-SAT≤G4,T···F under
a logarithmic space reduction. Suppose an instance of 2-SAT is (ϕ, X) where ϕ is a
2-CNF and X is the set of boolean variables that occur in ϕ. We construct an instance
of G4,T···F as (ψ, X ∪Y )whereψ is a 4-CNF and X ∪Y is the set of boolean variables
that occur in ψ . The reduction will show that ϕ has a satisfying assignment iff T has
a winning strategy in the G4,T···F game (ψ, X ∪ Y ). The construction is as follows:

Suppose X = {x1, x2, . . . , xn} and let Y = {y1, y2, . . . , yn}. To construct ψ , take
ϕ and replace each occurrence of xi with (xi ∨ yi ) and replace each occurrence of ¬xi
with (¬xi ∨ ¬yi ).

Suppose ϕ does not have a satisfying assignment. We show a winning strategy for
F in (ψ, X ∪ Y ). The strategy is whenever T plays in a fresh pair xi , yi then F can
immediately play the other variable from the pair to make xi = yi . The strategy works
since making xi = yi for all i makes ψ equivalent to ϕ where T gets to assign all
variables. Since ϕ does not have a satisfying assignment, F wins.

Suppose ϕ has a satisfying assignment and fix one such assignment. We show a
winning strategy for T in (ψ, X ∪Y ). T starts by picking a fresh pair xi , yi and assigns
xi according to xi ’s value in ϕ’s satisfying assignment. If F immediately replies with
yi then T picks another fresh pair and so on. If F does not play yi but in some fresh
pair x j , y j then T immediately plays the other variable from the pair x j , y j according
to x j ’s value in ϕ’s satisfying assignment. T keeps chasing F like this until F plays yi .
After F eventually plays yi , T continues by playing xk in any other fresh pair xk, yk
and chasing F until F plays yk . The strategy works since T is able to assign a variable
from each pair xi , yi according to the satisfying assignment in ϕ. Therefore T wins
since ψ gets satisfied. 
�
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Table 2 G+
w results

w → 2 3 4 5 6

T · · · F L L Unknown NL-hard PSPACE-complete

[20] Under restrictions [Corollary 5] [Corollary 1]

F · · ·F [15] NL-hard PSPACE-complete

[Corollary 6] [Corollary 1]

T · · ·T NL-hard PSPACE-complete

[Corollary 7] [Corollary 2]

F · · ·T NL-hard PSPACE-complete

[Corollary 8] [Corollary 3]

Lemma 9 G4,F···F is NL-hard.

Proof We show 2-SAT≤ G4,F···F. The argument is almost identical to Lemma 8 except
some minor changes that need to be explicitly addressed. We introduce a dummy
variable d to have X ∪ Y ∪ {d} and no changes to ψ in Lemma 8’s construction. The
idea is to make F play that d to ultimately get G4,T···F then we will be done with the
rest. We claim ϕ has a satisfying assignment iff T has a winning strategy in the G4,F···F
game (ψ, X ∪ Y ∪ {d}).

Suppose ϕ does not have a satisfying assignment. We argue that F has a winning
strategy. F can start by playing d. Then we are left with a G4,T···F game where F wins
by the same argument as in Lemma 8.

Suppose ϕ has a satisfying assignment and fix one such assignment. We argue that
T has a winning strategy. If F plays d as the first move then the rest of the strategy
is identical to Lemma 8 and T wins. If F does not play d at the beginning but plays
in a fresh pair xi , yi then T can immediately respond by playing the other variable
and assign it according to xi ’s value in ϕ’s satisfying assignment. T can chase F like
this until F plays d. This way T can play exactly one variable from each pair until d
is played. After d is played by F, the game remains as G4,T···F where some rounds
already happened as if d never existed at all. The same argument works and T wins. 
�

The reductions in the proofs of Lemmas 8 and 9 produce 4-CNFswhere every clause
has exactly 4 literals, so G4,T···F and G4,F···F remain NL-hard under this restriction. It
remains open to show that G4,T···T, G4,F···T, and G+

4 are NL-hard.

4 Summary

In Table 2 we summarize the status of the complexity of G+
w for all widths w and all

patterns. We conjecture that G+
3 may be tractable, but the only known general upper

bound is PSP ACE . For G+
5 , it would be interesting to improve the NL-hardness to

¶-hardness. For G+
4 , any nontrivial result would be interesting (such as NL-hardness,

or improving the PSPACE upper bound even under restrictions on the formula).
In Table 3 we summarize the status of the complexity of Gw for all widths w and

all patterns. We conjecture that even G3 might be tractable, but again the only known
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Table 3 Gw results

w → 2 3 4 5 6

T · · · F L L NL-hard PSPACE-complete

[20] Under restrictions [Lemma 8] [20]

F · · ·F [19] NL-hard

[Lemma 9]

T · · ·T Unknown NL-hard PSPACE-complete

[Corollary 7] [Corollary 2]

F · · ·T NL-hard PSPACE-complete

[Corollary 8] [Corollary 3]

general upper bound is PSP ACE . For G4,T···F, G4,F···F, G5,T···T, and G5,F···T, it would
be interesting to improve the NL-hardness to ¶-hardness. For G4,T···T and G4,F···T, any
nontrivial result would be interesting.

It would also be interesting to see if Theorem 1 can be used to improve any param-
eters in some of the many PSPACE-completeness results that have been shown by
reduction from Schaefer’s theorem for width 11.
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