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Abstract

In a STOC 1976 paper, Schaefer proved that it is PSPACE-complete to determine the
winner of the so-called Maker-Breaker game on a given set system, even when every
set has size at most 11. Since then, there has been no improvement on this result. We
prove that the game remains PSPACE-complete even when every set has size 6.
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1 Introduction

The Maker-Breaker game is a perfect-information game played on a set system—
a collection of subsets of some finite universe. The two players, called Maker and
Breaker, alternate turns. In each turn, the current player claims a previously-unclaimed
element of the universe as his own. Maker wins if he claims every element in at least
one subset. Breaker wins if he claims at least one element in every subset. There are
no draws, and for every set system, one of the players has a strategy that guarantees
that he wins. The popular game of Hex can be viewed as a Maker-Breaker game.

Maker-Breaker games were introduced in the influential paper [9], which provided
a sufficient condition for Breaker to win (and is often considered the forerunner to the
method of conditional probabilities). There is a very substantial literature on deter-
mining which player has a winning strategy, for various kinds of set systems (and for
many generalizations and variants of Maker-Breaker games). We refer to [14] for a
survey. Some cornerstones of this literature are:
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e When the universe is the set of edges of an undirected graph with distinguished
nodes s and ¢, and the subsets are s-¢ paths (this special case is called the “Shannon
switching game”), Lehman [16] characterized which player can win, in terms of
combinatorial properties of the graph.

e When the universe is the set of edges of a sufficiently large complete undirected
graph, and the subsets are Hamiltonian cycles, Chvatal and Erd6s [5] proved that
Maker can win.

Given the effort that has gone into determining the winner for various set systems,
itis natural to consider the possibility of automating this process. In other words, let us
view this as a computational problem and investigate how efficiently it can be solved.

What is the computational complexity of determining which player has a winning
strategy in the Maker-Breaker game on a given set system?

In a seminal paper, Schaefer [21, 22] proved that the problem is PSPACE-complete,
even when the set system has width 11, which means each subset in the system has size
at most 11. (A simplified proof of PSPACE-completeness for unbounded width was
given in [4]). Reductions from this theorem have been used for many other PSPACE-
completeness results [1, 3, 4, 6-8, 10-13, 17, 18, 20, 23, 24, 26, 27].

Since Schaefer’s PSPACE-completeness result first appeared in 1976, there has been
no improvement on the width 11. We make the first progress in 44 years: Determining
the winner of the Maker-Breaker game remains PSPACE-complete even for set systems
of width 6. As we note later, this also implies PSPACE-completeness of Maker-Breaker
for set systems that are 6-uniform, meaning that every subset has size exactly 6.

1.1 CNF Games

In this section, we introduce “CNF games,” a broader sense of games that includes
Maker-Breaker as a special case.

o Inthe ordered game, the input consists of a conjunctive normal form (CNF) formula
¢ and an ordered list of variables {x»,,, x2,—1, . . . , X2, X1} that contains all variables
of ¢. Player 1 is called T because his goal is to make ¢ true, and player 2 is called
F because his goal is to make ¢ false. In the first round, T assigns a bit value for
X2, then F assigns a bit value for xo,—1. In the next round, T assigns x,—2, then F
assigns x», 3, and so on for n rounds. The winner depends on whether ¢ is satisfied
by the resulting assignment. In other words, which player has a winning strategy
is determined by whether the following quantified boolean formula is true:

(Fx2n) (Vx20-1) - - - @x2) (Vx1) = (X1, ..., X20).

The problem w-TQBF is to determine which player has a winning strategy, under
the restriction that ¢ has width w (every clause has at most w literals). It is known
that 2-TQBF is NL-complete [2] and 3-TQBF is PSPACE-complete [25].

e In the unordered game, the input consists of a CNF ¢, a set X of variables that
contains all variables of ¢ (and possibly more), and an indication of which player
(T or F) gets the first move. Again, T and F alternate turns assigning bit values to
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variables, and the winner depends on whether ¢ is satisfied by the resulting assign-
ment. But now, each turn consists of picking which remaining variable to assign,
as well as which bit to assign it. The unordered game more closely resembles real-
world games in which the same moves are available to both players. The problem
Gy, is to determine which player has a winning strategy, under the restriction that
¢ has width w. The paper [20] originated the G,, notation and showed that G; is
in L and Gs is PSPACE-complete.

e The unordered positive game is just the unordered game under the restriction that
¢ must be a positive (a.k.a. monotone) CNF—it only has unnegated literals. In
this game, it would never be advantageous for T to assign O to a variable, or for
F to assign 1 to a variable. Thus we can assume each move consists of T picking
a remaining variable and assigning it 1, or F picking a remaining variable and
assigning it 0. If we view each clause of ¢ as a subset of X (the set of variables),
then the unordered positive game is equivalent to the Maker-Breaker game on the
set system corresponding to (¢, X), where F is Maker (he wants to assign every
variable in at least one clause) and T is Breaker (he wants to assign at least one
variable in every clause). The problem G is the restriction of Gy, to positive
w-CNFs, i.e., determining whether Maker or Breaker has a winning strategy on a
given set system of width w. Thus, Schaefer’s theorem [21, 22] can be stated as:
G{, is PSPACE-complete.

Previously, the authors conjectured that GI, and perhaps even Gz, might actually
be tractable. These problems have been shown to be tractable—indeed, in £.—under
various restrictions on the 3-CNF [15, 19]. The unordered CNF game seems qualita-
tively very different from its ordered counterpart. Width 6 might not be optimal for
PSPACE-completeness of Maker-Breaker (though it appears to be a barrier for our
proof technique), but it is unclear what the optimal width ought to be.

In this paper, we prove the following three results:

Theorem 1 GgL is PSPACE-complete.
Theorem 2 GI is NL-hard.
Theorem 3 Gy is NL-hard.

In Table 1 we summarize the state-of-the-art for the ordered, unordered, and
unordered positive CNF games.

Each game has four different patterns for “who has the first move” and “who has
the last move”. For a, b € {T, F} we use the subscript a - - - b to indicate that player a
goes first and b goes last. For example, GZT_“F is Gg’ restricted to instances where T
has the first move and F has the last move (which necessitates | X| being even). With
no such subscript, an instance of Ggr must specify which player goes first (and then
the parity of | X| determines who goes last). We prove that Gg‘ is PSPACE-complete
for each of the four possible patterns, and similarly for G;r being NL-hard, but we are
only able to show NL-hardness of G4 for the patterns T---Fand F- - - F.

Our proof of Theorem 1 follows a similar high-level outline as the proof that GTI
is PSPACE-complete from [21, 22], using a reduction from 3-TQBF. The key is to
trade size for width—we develop a gadget for simulating a round of the ordered game,
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Table 1 Results

w — 2 3 4 5 6

w-TQBF  NL-complete PSPACE-complete

(2] [25]
Gy L NL-hard PSPACE-complete
Under restrictions  [Theorem 3]  [20]
L [19]
G;’; [20] L Unknown NL-hard PSPACE-complete
Under restrictions [Theorem 2] [Theorem 1]
[15]

using more variables and clauses but lower width than the gadget from [21, 22]. Our
correctness analysis also uses a new perspective on the case where T is supposed to
win (which is much trickier than the case where F is supposed to win, since T must
satisfy every clause whereas F only needs to falsify one clause). To frame T’s winning
strategy in the event that F “misbehaves,” we make use of ideas from the recent paper
[19].

The proof of Theorem 1 also yields Theorem 2. Theorem 3 holds by an elementary
but new reduction from 2-SAT.

2 Proof of Theorem 1 (and Theorem 2)

We prove Theorem 1 in Sect.2.1. In Sect.2.2 we provide a streamlined proof of a
special case of a lemma from [19], which is needed for the proof of Theorem 1. Then
we prove a series of corollaries in Sect.2.3, which cover all the patterns for both
Theorems 1 and 2.

2.1 Proof of Theorem 1
We show 3-TQBF < Ggf .. F- Suppose an instance of 3-TQBF is given by
(Fx2n) (Vx2n—1) - - @x2)(Vx1) : Fi A F2a Ao+ A Fip,

where each Fj is a clause with width < 3. We construct an instance of Gg" T..F as
(¢T, X) where ¢V is a positive 6-CNF and X is the set of variables in it, such that T
has a winning strategy in the 3-TQBF game iff T has a winning strategy in the GKT_“F
game on (¢T, X).

A 3-TQBF round (3x;)(Vx;_1), where i € {2,4,6, ..., 2n}, will correspond to 16
variables in X and 14 clauses in ¢ ™. Four of the 16 variables are {x;, X;, xi_1, Xi—1}.
Here, X; is the name of an unnegated variable, distinct from the variable x;. The
variables x; and X; do not necessarily get assigned opposite values. Similarly for x; |
and x;_1. The other 12 variables associated with a 3-TQBF round (3x;)(Vx;_1) are
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{uei, uei—1, - - ., usi—11}. (This variable naming scheme is borrowed from [21, 22]).
In the G6+,T-~~F game, we define “legitimate” gameplay corresponding to a 3-TQBF
round (3x;)(Vx;_1) as follows:

1. T plays one of x;, X;
2. F plays the remaining variable in the pair x;, X;
3. T plays ug;
4. Fplays ugi—1
5. T plays ugi—2
6. Fplays uei—3
7. T plays ugi—a
8. Fplays one of x;_1,X;_|
9. T plays the remaining variable in the pair x;_1, X;_1
10. F plays ugi—s
11. T plays uei—¢
12. F plays uei—7
13. T plays uei—3
14. F plays uei—9
15. T plays uei—10
16. F plays ugi—11

In the GngmF game, T always assigns 1 and F always assigns 0 to variables. In
a legitimate gameplay, T choosing x; or X; to assign 1 is like T choosing to assign
x; = 1 or x; = 0 (respectively) in the 3-TQBF game. Similarly, F choosing x;_; or
Xi—1 to assign O is like F choosing to assign x;_; = 0 or x;_; = 1 (respectively) in
the 3-TQBF game.

We say the gameplay for the entire GngmF game is legitimate when it con-
sists of legitimate gameplay for the (3x2,)(Vx2,—1) round, followed by legitimate
gameplay for the (Ix2,-2)(Vx2,—3) round, followed by legitimate gameplay for the
(3x2,—4) (¥Yx2,—5) round, and so on. Legitimate gameplay mimics the 3-TQBF game-
play in a natural way. We will design the clauses so that any player who plays
illegitimately either outright loses, or at least gains no advantage by deviating from
legitimate gameplay.

The 14 clauses associated with the 3-TQBF round (3x;)(Vx;_) are:

Aj = Xi VX; VuUgit1 VU6i+3 V U6i+5
Coi = uei Vugi+1V Usiyz Vugits V (X AX;)
Coi—2 = ugi—2 VvV ugi—1 vV Uugi+1 Vv Usi+3 V (Xj AX;)
Ceoi—4 = Ugi—4 VvV ugi—3Vugi—1V Usi+1 V (Xj ANX;)
Bi = xi—1 VXi_1Vue-3Vuei-1
Coi—6 = Upi—6 V U6i—5 V Uei—3 V Ugi—1 V (Xi—1 AXi-1)
Cei—8 = ugi—g Vv ugi—7 vV Ugi—5 vV ugi—3 V (Xi—1 AXi—1)
Cei—10 = ugi—10 V Uei—9 vV Ugi—7 V Ugi—5 V (Xi—1 AXij—1).
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As we note later, each C; is not really a clause, since it contains a conjunction, but
it is equivalent to a pair of clauses. Thus the six C;’s correspond to 12 clauses, but
we often refer to C; as “a clause” anyway. Note that each C; contains one even-index
u variable and the three previous odd-index u variables. For any clause that appears
to contain some u ; variable where j > 12n, that non-existent variable is actually not
present in the clause. Intuitively, the variables x; and X; in A;, and x;_1 and X;_1 in B;,
and u; in C; (which we wrote first in the clauses) enable F to threaten T with defeat
if T plays illegitimately, and the other variables in the clauses enable T to threaten F
with defeat if F plays illegitimately.

For each clause Fj in the 3-TQBF game we introduce a clause

D, = FIQVM1VM3\/M5,

where F} is the clause which results from replacing each negated variable —x; by the
unnegated variable x; throughout the clause Fj. For example, if Fy = (x1V—x2V—x3)
then F] = (x| V X2 V X3), where x3, X, x3, X3 are separate variables.

In summary, the formal construction is as follows:

X = {x177]5'x27727 ‘-~,x2n,)_52n}u{ulv“2’ ""ulzn}
= U o¥xion %ior e it ugio11)
i=2,4,6,....2n
ot = N\ @nrBon N\ CpHar N\ (Do,
i=2,4,6,....2n j=2,4,6,...,12n k=1,2,3,...m
where A; = x; VX; Vugi+1 V Ugi+3 V Ugi+s, Bi

= Xj—1 VXi—1 Vuei-3 Vi1, Cj
= ujVujrr VujzVujis V(xrje AXrjse1), Dk
= F,VuiVusVus.

Any occurrence of a non-existent variable u; (where j > 12n) is omitted from the
clauses. For example, Ay, is simply the clause x2, V X2,. Now:

Cj = (Mj VUujpr VujszVijgs erj/é])/\(ujVuj_H VUujzVujgs Vf[j/(ﬂ).

So C; contains two clauses with width < 5, and A;, B;, and Dy are individual
clauses with widths < 5, < 4, and < 6 respectively. Therefore, pTisa positive 6-CNF
with 167 variables and 14n + m clauses. Though C; contains two clauses we often
treat C; as a clause in the proof. The construction is now complete. Furthermore,
(¢™, X) can be constructed in logarithmic space.

Now we claim T has a winning strategy in the 3-TQBF game iff T has a winning
strategy in the G;;T”_F game (pT, X).

First we prove in Lemma 1 that the claim holds if the gameplay is restricted to
be legitimate. Then we prove that the claim still holds even if the gameplay is not
legitimate. In Lemma 2 we show if T plays illegitimately then either the game will be
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restored to a legitimate situation with no advantage to T, or F will win immediately.
In Lemma 3 we show if F plays illegitimately then either the game will be restored to
a legitimate situation with no advantage to F, or a chain reaction will be started that
enables T to win eventually.

Lemma 1 T has a winning strategy in the 3-TQBF game iff T has a winning strategy
in the G6+,T~-~F game (¢, X) when gameplay is restricted to be legitimate.

Proof A legitimate gameplay satisfies all A;, B;, C; since A; is satisfied by one of x;
or X;, B; is satisfied by one of x; 1 or X;_1, and C; is satisfied by u; where j is even
because they have been played by T. Since F plays u1, u3, us we know that Dy gets
satisfied iff F gets satisfied. Furthermore, F gets satisfied iff F; gets satisfied by the
assignment to the x; variables (ignoring the x; variables), because of the definition of
F and the fact that x; and X; get opposite values. In summary, a legitimate gameplay
satisfies @7 iff F{ A Fy A--- A F, gets satisfied by the assignment to the x; variables.

Suppose F has a winning strategy in the 3-TQBF game. We describe F’s winning
strategy in (¢, X). F can use the same strategy to pick one from x;_, X;_; where
F picking x;_; or X;_1 is equivalent to assigning x;_; = 0 or x;_; = 1 respectively
in the 3-TQBF game. F wins since this strategy makes the assignment to all the x;
variables match F’s strategy in the 3-TQBF game, which ensures F| A - -+ A Fy, is
unsatisfied and hence ¢ is unsatisfied.

Suppose T has a winning strategy in the 3-TQBF game. We describe T’s winning
strategy in (¢ T, X). T can use the same strategy to pick one from x;, X; where T
picking x; or X; is equivalent to assigning x; = 1 or x; = 0 in the 3-TQBF game
respectively. T wins since this strategy makes the assignment to all the x; variables
match T’s strategy in the 3-TQBF game, which ensures F A - - - A Fy,, is satisfied and
hence ¢ is satisfied. o

Lemma 2 IfF has awinning strategy in the 3-TQBF game then F has a winning strategy
in the Gg"T”_F game (¢T, X) even if the gameplay does not progress legitimately.

Proof Suppose F has a winning strategy in the 3-TQBF game. In the game (¢, X),
F can follow his strategy from Lemma 1 until T plays illegitimately on move p (p is
oddand 1 < p < 16) atround (3x;)(Vx;_1). We consider all the different cases of p:

e p = 1: F already played u¢;+1, uei+3, Usi+5 (or these variables do not exist if
i = 2n) due to legitimate gameplay before this move. T was supposed to play x;
or X; but T did not do so. There are two possibilities:

— If T also did not play ue;, then F plays ug;. Then whatever T plays, F plays
one of x;, x;. F wins since Cg; is unsatisfied.

— If T played ug;, then F plays one of x; or x; (it does not matter which one). Now
itis T’s move. If T plays the other from x;, X; then the game comes back to a
legitimate situation at move 4, where F has no disadvantage since T effectively
let F make the choice of x; or X; for him. If T does not play the other from x;,
x; then F plays it and wins since A; is unsatisfied.

e p = 9: F already played u¢;_3, uei—1 and one of x;_1, x;—1 due to legitimate
gameplay before this move. T was supposed to play the other one from x;_, X;_|
but T did not do so. F plays it and wins since B; is unsatisfied.
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e Other p: T was supposed to play u ; where j is even, but T did not do so. F already
played w11, uj43, uj15 and one of x;j/61, X161 due to legitimate gameplay
before this move. Then F plays u; and wins since C; is unsatisfied.

m}

Lemma 3 If T has a winning strategy in the 3-TQBF game then T has a winning strat-
. =+ + . e
egy in the Gq 1. game (9™, X) even if the gameplay does not progress legitimately.

Definition 1 We define an order on all the clauses: A;, Ce;, Coi_2, Coi—4, Bi, Coi_¢,
Cei—g, Coi—10 for i = 2n then the same for i = 2n — 2, and so on. Finally all Dy are at
the end ordered by k increasing. To represent an interval of clauses from this order, we
use analogous mathematical notations “(", )", “[", “]". For example, [A>,, C;) means
all the clauses from A,, (inclusive) to C; (exclusive). Let V; be all the variables that
occur at least once in (Cy, C2] along with {u 1, u3, us}. For example, V, = {u1, u3, us}
and V4 = {uy, ur, u3, us, u7, x1, x1}.

Lemma4 If [Az,, C;] are already satisfied where t < 12n — 4 and F has already
played at most one variable in V,, then T has a strategy to satisfy (Cy, Dy,] even if it
is F’s turn.

Before proving Lemma 4, we use it to prove Lemma 3.

Proof of of Lemma 3 Suppose T has a winning strategy in the 3-TQBF game. In the
game (¢, X), T can follow his strategy from Lemma 1 until F plays illegitimately on
move p (pisevenand 1 < p < 16) atround (3x;) (Vx;_1). The outline of the argument
is: The legitimate gameplay so far will have satisfied an interval of clauses, from Ay,
through some clause associated with round (3x;)(Vx;_1). After the illegitimate move
by F, there might be another opportunity for F to restore the gameplay to a legitimate
situation with no disadvantage to T. If that opportunity does not exist, or if F fails to
get the gameplay “back on track,” then T will have a move that satisfies the next few
clauses. Then for some ¢ (¢ stands for “threshold”), [A,,, C;] will be satisfied, and it
will be F’s turn and T will satisfy the rest of the clauses (and hence win) by Lemma 4.
The illegitimate move by F could have happened in V; or somewhere else, and none
of the other prior moves happened in V;.
We consider all the different cases of p:

e p = 2: [Ay, Cg;) are already satisfied due to legitimate gameplay before this
move. F was supposed to play the other one from x;, X; but F did not do so. Then T
plays that and that satisfies [Ce; Coi—4]. Now it is F’s turn and T wins by Lemma
4 witht = 6i — 4.

e p = 8:[Ay,, B;) are already satisfied due to legitimate gameplay before this move.
F was supposed to play one from x;_1, x;_1 but F did not do so. There are two
possibilities:

— If F played ug;_s, then T plays one of x;_; or X;_; (it does not matter which
one). Now it is F’s move. If F plays the other from x;_1, x;_; then the game
comes back to a legitimate situation at move 11, where T has no disadvantage
since F effectively let T make the choice of x;_ or X;_1 for him. If F does not
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play the other from x;_1, x;_; then T plays it and that satisfies [B;, Ce¢i—10],
so now it is F’s turn and T wins by Lemma 4 with ¢t = 6i — 10.

— If F did not play ue;—5, then T plays ug;—5 and that satisfies [Cs;—6, Coi—10].
Let us pretend, for a moment, that one of x;_; or X;_1 has already been played
by T and the other has already been played by F (though in reality, neither
has been played yet). Then B; and hence all of [A»,,, C¢;i—10] are satisfied, and
F’s illegitimate move was the only variable that may have been played so far
among Vi;_10, and itis F’s turn, so T would win by Lemma 4 with t = 6i — 10.
In reality, T can use that strategy from Lemma 4, and whenever F plays one of
xi—1 or x;_1, T responds by playing the other, then resumes the strategy from
Lemma 4. (Or, if F never plays x;_; or X;_1, then T will play one of them after
concluding his strategy from Lemma 4, and F will have to play the other as
the final move). Then B; gets satisfied along with (Cg;—10, Dy 1, so T wins.

e p = 16: [A2, Cei—10] are already satisfied due to legitimate gameplay before this
move. F was supposed to play ug; 11 but F did not do so. Here i > 2 since ifi =2
then ug;—11 = uy, which will be the only leftover variable to play and F must
play it. So we only consider i > 2. Then T plays ue;—11 (which is ue;—2)+1) and
that satisfies [A; 2, C¢(i—2)—4]. Now it is F’s turn and T wins by Lemma 4 with
t=06(0—-2)—4.

e Other p: F was supposed to play u ;41 (2nd variable in C; and j is even) but F did
not do so. [Az,,C;) are already satisfied due to legitimate gameplay before this
move. Then T plays u ;. There are two possibilities of j:

- j < 4: T’s move u ;4 satisfies [C; Dy,] since all Dy are satisfied by u ;1
(which is either u3 or us). Therefore T wins.

— j > 4: T’s move u;; satisfies [C; C;_4]. Now it is F’s turn and T wins by
Lemma 4 withr = j — 4. O

To prove Lemma 4, we need Lemma 5, which concerns “tree-like” positive 3-
CNFs. Lemma 5 follows from [19], but for completeness we provide a streamlined,
self-contained proof in Sect.2.2.

Definition 2 A positive 3-CNF is a tree if each of the following holds:

(1) Each clause has width exactly 3, so the formula can be viewed as a 3-uniform
hypergraph where variables are nodes and clauses are hyperedges.

(2) Each clause has at least one “spare variable” that occurs in no other clauses.

(3) Any two clauses share at most one variable.

(4) If we delete a spare variable from every clause, the resulting graph (2-uniform
hypergraph) would be a tree (i.e., connected and no cycles).

When we say F can use pass moves, this means F has the option of forgoing any turn,
thus forcing T to play multiple variables in a row.

Lemma5 For every tree, T has a winning strategy even if F gets to play the first two
moves and F can use pass moves.
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Fig. 1 Hypergraph for ¥

Proof of Lemma 4 Shrink the clauses (C;, D,,] by removing some variables from them
as follows:

; _
A = Xi VX Vugi3
) _
B = xi—1VXi—1Vue-3
C} = ujVuj3Vujs (previously two clauses, now only one)

D' = ui; VusVus (all Dy, are the same, we call it just D).

All these clauses form a positive 3-CNF /. The hypergraph for i/ has been illus-
trated in Fig. 1. We argue that v is a tree. We show it satisfies each of the four properties
of a tree as described in Definition 2.

/

e Tree property (1) holds since each of A}, B!, C }, D’ has exactly 3 variables. The
variables ug;+3 in A;, and u;43 and u ;45 in C}, are guaranteed to exist since
t <12n —4.
e Tree property (2) holds since x;, x;_1, uj, u1 only occur in A;, Bl(, C}, D’ respec-
tively.
e Tree property (3) holds since:
- C} and A} share only ug; 13 if j = 6i or j = 6i — 2.
- C} and B/ share only ue; 3 if j =6i — 6 or j = 6i — 8.
- C} and C}_2 share only u 3.
— C} and D' share only us.
— Other pairs do not share a variable.

o Tree property (4) holds since deleting x;, x; —1, u;, u1 (which are spare variables)
from A’, B/, C ; D' respectively creates a 2-uniform hypergraph as shown in Fig. 2
which is clearly a tree.

Therefore v is a tree.

By Lemma 5, T has a winning strategy on the tree i even if F has the first two
moves (and subsequently T and F play alternately) and F can use pass moves. Now we
claim that T has a strategy to satisfy (C;, D] in ¢ assuming F has already played
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(o) - (e (oo (o)
@) @)

Fig.2 Hypergraph after deleting a spare variable from each clause in v

at most one variable in V; and it is F’s turn (and F cannot use pass moves). Because
every variable in ¥ is also in V;, we can say F has already played at most one variable
of ¥. Because it is F’s turn in ¢, that’s like allowing F to have the second move in
Y as well. After that, T’s strategy for ¢ is the same as T’s winning strategy for v,
except that whenever F plays a variable of ¢ that’s not in ¥, T interprets it as a pass
move by F and continues with his strategy for . Since this strategy ensures that
gets satisfied, it also ensures that (C;, D,,] and hence all of ¢ gets satisfied. O

2.2 Trees

In order to prove Lemma 5, we need Lemmas 6 and 7. First we outline some definitions.

Definition 3 We henceforth refer to a tree as a single tree. A married tree is a formula
consisting of two disjoint single trees (“spouses”) and a width-2 clause with one
endpoint in each spouse (and every width-3 clause has a spare variable even after the
inclusion of the width-2 clause). The endpoints of the width-2 clause in a married tree
are considered roots of the spouses. A win-forest is a formula where each connected
component is either a single tree or a married tree.

After any move by T or F, a formula changes to a residual formula where the
variable that got played is removed, and if T played then any clause containing the
variable disappears (since it is satisfied), and if F played then any clause containing
the variable shrinks (since a false literal might as well not be there).

Lemma 6 Any move by F on a single tree results in a win-forest.

Lemma 7 T can ensure that a win-forest remains a win-forest after an F-T round even
if F can use pass moves.

Before proving Lemmas 6 and 7, we use them to prove Lemma 5.

Proof of Lemma 5 The tree v is a single tree. By Lemma 6, F’s first move on  results
in a win-forest. Then we prove T can win a G;F game on that win-forest even if F
can use pass moves. We prove this by induction on the number of variables.

Base case The formula is a win-forest with one or two variables. In case of one
variable the only possibility is an isolated variable with no clauses. T has already won
in this case. In case of two variables there exists either two isolated variables where T
has already won or a width-2 clause which T can satisfy in one move.

Induction step The formula is a win-forest with at least three variables. Whatever F
plays, T has a response to ensure the residual formula is again a win-forest by Lemma
7. By the induction hypothesis, T can win the rest of the game. O
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Before After F’s move After T’s move

o/

Case 1: ’\% f,f\ N OV

Case 2: (7 Q W /\Q Q/\

Fig.3 F’s move and T’s move on x; and its effect on formulas

Any move by T or F can occur in two different ways as illustrated in Fig. 3. Specif-
ically, Case 1 is a move on a non-spare variable, and Case 2 is a move on a spare
variable.

Proof of of Lemma 6 The formula is a single tree. If F’s move is a pass move then that
results in a win-forest with only one single tree. If F’'s move is an actual move then it
creates some married trees in which one spouse is just a single variable (Case 1 with
F) or only one married tree (Case 2 with F). Then that results in a win-forest with only
married trees. O

Proof The argument will show that whatever F plays, whether a pass move or an actual
move in a single tree or married tree, T has a response such that each component of the
residual formula is again either a single tree or a married tree; therefore the residual
formula is again a win-forest.

Suppose F played a pass move. T can play any remaining variable in the win-
forest. If that variable is an isolated variable then it just removes the isolated variable.
Otherwise it satisfies some clauses in a component by Case 1 or Case 2 with T.
Consequently the component is broken down into some single trees and possibly one
married tree (if the component was a married tree). This preserves the win-forest
property.

Suppose F played in a single tree. Then by Lemma 6 the residual formula is a
win-forest. Then T can pretend F just played a pass move on this win-forest, and T can
respond as explained in the previous paragraph. This preserves the win-forest property.

Suppose F played in a married tree. F’s move happened in one of the two single
trees that got married. T can play the root of the other spouse (where F has not played)
and satisfy the width-2 clause. This means the two single trees get separated by T’s
move and it also breaks T’s single tree at the root by Case 1 with T. Furthermore,
F’s move in his single tree also preserves the win-forest property by Lemma 6. This
preserves the win-forest property. O

2.3 Corollaries

In this section, we investigate corollaries for Gg in Sect.2.3.1, Gg in Sect.2.3.2, G5+
in Sect.2.3.3, and Gs in Sect.2.3.4.
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+
231 G}

Our proof of Theorem 1 in Sect.2.1 showed that G;T_“F is PSPACE-complete. Now
we show that Gg: FooF> GgT-..T’ and GZ,F---T are also PSPACE-complete.

Corollary 1 GZ,FMF is PSPACE-complete.

Proof The reduction is 3-TQBF < G p, . The idea is similar to 3-TQBF < G{ 1.
from the proof of Theorem 1 in Sect.2.1. We introduce one more variable z to X and
add z to the first four clauses of ¢*: A»,, C12,, C121—2, and C12,_4, increasing their
widths by one, from 2, 2, 3, 4 to 3, 3, 4, 5 respectively. So ¢ is a 6-CNF.

Now the claim is that T has a winning strategy in the 3-TQBF game iff T has a
winning strategy in the Gg: F..p game (o™, X).

Suppose F has a winning strategy in the 3-TQBF game. Then F can play z as the
first move. Then F wins by the same argument as in Sect.2.1.

Suppose T has a winning strategy in the 3-TQBF game. If F plays z as the first
move then T wins by the same argument as in Sect.2.1. If F does not play z as the
first move then T plays z and satisfies Az, C12,, C12n—2, and C2,—4. Then T wins
by Lemma 4 with t = 12n — 4. O

Corollary 2 G r...; is PSPACE-complete.

Proof The reduction is G;TMF < Gg,T-.-T‘ Suppose an instance of GZ’T.”F is (o™, X).
We simply introduce a dummy variable z that does not appear in ¢ and use ¥ =
X U {z}. We claim that T has a winning strategy in the G6+,T~~F game (o, X) iff T
has a winning strategy in the G;T.‘.T game (¢, Y). We repeat an argument from [20]
that shows this.

Suppose T has a winning strategy on (¢, X). We show T’s winning strategy on
(¢™, Y). T can start by the same strategy as in (¢, X) and continue as long as F does
not play z. If F never plays z, then T plays z at the end and wins as in (¢, X). If F
plays z then T can respond by playing any remaining variable x; = 1, then T resumes
his strategy from (¢, X) until that strategy tells him to play x;. At this time, T again
picks any other remaining variable and assigns it 1. Then T again resumes his strategy
from (¢, X). The game goes on like this in phases. At the end, T has played all the
variables he would have played in the (¢, X) game and possibly one more. Since ¢
is positive, it must still be satisfied when one of the variables is 1 instead of 0.

Suppose F has a winning strategy on (¢, X). Then F’s winning strategy on (¢, )
is analogous to T’s strategy in the previous paragraph. O

Corollary 3 G{ .1 is PSPACE-complete.

Proof G;FWF is PSPACE-complete by Corollary 1. The reduction is Gg’FMF <

G;{F__,T. The technique is identical to Corollary 2. O

Therefore we found PSPACE-completeness of all patterns of Ggr games.

Corollary 4 GngF, G6+F~~F’ GngmT’ GgFWT remain PSPACE-complete even when
every clause has exactly 6 variables.
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Proof For any pattern a - --b where a, b € {T,F}, we reduce from G;ta,__ , to the
restricted version where every clause has exactly 6 variables. We argue that any clause
C with width < 6 can be resized to a set of width-6 clauses without changing the
outcome. We introduce two variables x, x” and clause C is written as (CVx)A(CVx'),
thus increasing C’s width by 1. Whichever player has a winning strategy in the original
formula, they can follow the same strategy in the modified formula until the other player
plays x or x’ and then respond by playing the other. (Or, if the other player never plays
x or x’, then it does not matter which one the winning player plays as the 2nd-to-last
move in the game). So it is possible to increase any clause’s width without changing
the outcome. We can repeatedly do this process until all clauses have width exactly 6.
This increases the size of the formula by at most a constant factor. O

2.3.2 Gg

We already know that Gs t...r and Gs g...p are PSPACE-complete [20]. But any com-
pleteness result for Gs 1.1 and Gsp..T is unknown. Not only that, but also the
complexities of Gg t...T and Gg f...T were unknown. Due to Corollary 2 and Corollary
3 we now know that Ge 1...1 and Ge p...T are also PSPACE-complete.

+
233 G;

Now we show that G;T_“F, G;"F.__F, G;T”_T, and G;"F.__T are all NL-hard. Each of
these results implies Theorem 2.

Corollary 5 G 1. . is NL-hard.

Proof 1t is well-known that 2-SAT is NL-complete, and trivially 2-SAT < 2-TQBF.
The reduction is 2-TQBF < G;’:T_“F' The technique is identical to 3-TQBF < Gng“_F
in Theorem 1 where the widths of A;, B;, C;, Dy were 5,4, 5, 6 respectively. Since
each F} is now a width-2 clause, Dy becomes a width-5 clause. Therefore ¢+ becomes
a 5-CNFE m]

Corollary 6 GZ . . is NL-hard.

Proof The reduction is 2-TQBF < G;F_"F. The technique is identical to Corollary 1.

O
Corollary 7 G{ . is NL-hard.
Proof G;T_“F is NL-hard by Corollary 5. The reduction is G;T._F < G;F’T,__T. The
technique is identical to Corollary 2. O
Corollary 8 G . 1 is NL-hard.
Proof G{ . is NL-hard by Corollary 6. The reduction is Gi . p < Gip.. The
technique is identical to Corollary 2. O
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Therefore we found NL-hardness of all patterns of G;r games. But any completeness
result for any pattern still remains open.

+ + + + ,
Corollary 9 GS,T-:.F’ G5 k..p G5 1.7+ G5 ...y remain NL-hard even when every clause
has exactly 5 variables.

Proof The technique is identical to Corollary 4. O

234 Gs

We already know that Gs 1..r and Gs g..p are PSPACE-complete [20]. But nothing
was known for Gs 1.7 and Gs p...r. Due to Corollaries 7 and 8 we now know that
Gs 1.7 and Gs g..7 are also NL-hard. But any completeness result for Gs r...7 and
Gs,p...7 still remains open.

3 Proof of Theorem 3

In this section, we show 2-SAT < Gy 1...F and 2-SAT < G4 f...F, each of which implies
Theorem 3.

Lemma 8 Gy r...F is NL-hard.

Proof 2-SAT is a well-known NL-complete problem. We show 2-SAT < Gy T...r under
a logarithmic space reduction. Suppose an instance of 2-SAT is (¢, X) where ¢ is a
2-CNF and X is the set of boolean variables that occur in ¢. We construct an instance
of Gy 1..Fas (¢, X UY) where ¢ is a4-CNF and X UY is the set of boolean variables
that occur in ¥. The reduction will show that ¢ has a satisfying assignment iff T has
a winning strategy in the G4 1..r game (¢, X U Y). The construction is as follows:

Suppose X = {x1,x2,...,x,} andlet Y = {y1, y2, ..., ¥»}. To construct i, take
¢ and replace each occurrence of x; with (x; V y;) and replace each occurrence of —x;
with (—x; vV —y;).

Suppose ¢ does not have a satisfying assignment. We show a winning strategy for
Fin (¥, X UY). The strategy is whenever T plays in a fresh pair x;, y; then F can
immediately play the other variable from the pair to make x; = y;. The strategy works
since making x; = y; for all i makes 1 equivalent to ¢ where T gets to assign all
variables. Since ¢ does not have a satisfying assignment, F wins.

Suppose ¢ has a satisfying assignment and fix one such assignment. We show a
winning strategy for T in (¢, X UY). T starts by picking a fresh pair x;, y; and assigns
x; according to x;’s value in ¢’s satisfying assignment. If F immediately replies with
y; then T picks another fresh pair and so on. If F does not play y; but in some fresh
pair x;, y; then T immediately plays the other variable from the pair x;, y; according
to x;’s value in ¢’s satisfying assignment. T keeps chasing F like this until F plays y;.
After F eventually plays y;, T continues by playing x; in any other fresh pair xz, yx
and chasing F until F plays yi. The strategy works since T is able to assign a variable
from each pair x;, y; according to the satisfying assignment in ¢. Therefore T wins
since 1 gets satisfied. O
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Table2 G results

w —> 2 3 4 5 6
T---F L L Unknown NL-hard PSPACE-complete
[20] Under restrictions [Corollary 5] [Corollary 1]
F---F [15] NL-hard PSPACE-complete
[Corollary 6] [Corollary 1]
T---T NL-hard PSPACE-complete
[Corollary 7] [Corollary 2]
F---T NL-hard PSPACE-complete
[Corollary 8] [Corollary 3]

Lemma9 Gyp..F is NL-hard.

Proof We show 2-SAT < Gy f...r. The argument is almost identical to Lemma 8 except
some minor changes that need to be explicitly addressed. We introduce a dummy
variable d to have X U Y U {d} and no changes to ¥ in Lemma 8’s construction. The
idea is to make F play that d to ultimately get G4 ... then we will be done with the
rest. We claim ¢ has a satisfying assignment iff T has a winning strategy in the G4 r...F
game (¢, X UY U {d}).

Suppose ¢ does not have a satisfying assignment. We argue that F has a winning
strategy. F can start by playing d. Then we are left with a G4 T...F game where F wins
by the same argument as in Lemma 8.

Suppose ¢ has a satisfying assignment and fix one such assignment. We argue that
T has a winning strategy. If F plays d as the first move then the rest of the strategy
is identical to Lemma 8 and T wins. If F does not play d at the beginning but plays
in a fresh pair x;, y; then T can immediately respond by playing the other variable
and assign it according to x;’s value in ¢’s satisfying assignment. T can chase F like
this until F plays d. This way T can play exactly one variable from each pair until d
is played. After d is played by F, the game remains as G4 1. Where some rounds
already happened as if d never existed at all. The same argument works and T wins. O

The reductions in the proofs of Lemmas 8 and 9 produce 4-CNFs where every clause
has exactly 4 literals, so G4, T...r and G4 f...r remain NL-hard under this restriction. It
remains open to show that G4 T...T, G4 F...T, and GI are NL-hard.

4 Summary

In Table 2 we summarize the status of the complexity of Gl for all widths w and all
patterns. We conjecture that G;’ may be tractable, but the only known general upper
bound is PSPACE. For G5+, it would be interesting to improve the NL-hardness to
J-hardness. For GT, any nontrivial result would be interesting (such as NL-hardness,
or improving the PSPACE upper bound even under restrictions on the formula).

In Table 3 we summarize the status of the complexity of G, for all widths w and
all patterns. We conjecture that even Gz might be tractable, but again the only known
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Table3 Gy, results

w —> 2 3 4 5 6
T---F L L NL-hard PSPACE-complete
[20] Under restrictions [Lemma 8] [20]
F---F [19] NL-hard
[Lemma 9]

T---T Unknown NL-hard PSPACE-complete
[Corollary 7] [Corollary 2]

F--.T NL-hard PSPACE-complete
[Corollary 8] [Corollary 3]

general upper bound is PSPACE. For G4 1..F, G4 F..F, G5,T...T, and Gs p..., it would
be interesting to improve the NL-hardness to {-hardness. For G4 t...7 and G4 f...T, any
nontrivial result would be interesting.

It would also be interesting to see if Theorem 1 can be used to improve any param-

eters in some of the many PSPACE-completeness results that have been shown by
reduction from Schaefer’s theorem for width 11.
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