History-Independent Concurrent Objects

Hagit Attiya
Technion
Haifa, Israel
hagit@cs.technion.ac.il

Rotem Oshman
Tel-Aviv University
Tel-Aviv, Israel
roshman@tau.ac.il

ABSTRACT

A data structure is called history independent if its internal memory
representation does not reveal the history of operations applied to
it, only its current state. In this paper we study history indepen-
dence for concurrent data structures, and establish foundational
possibility and impossibility results. We show that a large class
of concurrent objects cannot be implemented from smaller base
objects in a manner that is both wait-free and history independent;
but if we settle for either lock-freedom instead of wait-freedom or
for a weak notion of history independence, then at least one object
in the class, multi-valued single-reader single-writer registers, can
be implemented from smaller base objects, binary registers.

On the other hand, using large base objects, we give a strong
possibility result in the form of a universal construction: an object
with s possible states can be implemented in a wait-free, history-
independent manner from compare-and-swap base objects that
each have O(s + 2™) possible memory states, where n is the number
of processes in the system.

CCS CONCEPTS

« Theory of computation — Distributed computing models;
Data structures design and analysis; Concurrent algorithms;
+ Computing methodologies — Concurrent algorithms.

KEYWORDS

state-quiescent history independence, multi-valued register, queue,
universal implementation

ACM Reference Format:

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman,
and Noa Schiller. 2024. History-Independent Concurrent Objects. In ACM
Symposium on Principles of Distributed Computing (PODC °24), June 17-21,
2024, Nantes, France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3662158.3662814

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC °24, June 17-21, 2024, Nantes, France

© 2024 ACM.

ACM ISBN 979-8-4007-0668-4/24/06

https://doi.org/10.1145/3662158.3662814

Michael A. Bender

Stony Brook University

Stony Brook, NY, USA
bender@cs.stonybrook.edu

Martin Farach-Colton
New York University
New York, NY, USA

martin@farach-colton.com

Noa Schiller
Tel-Aviv University
Tel-Aviv, Israel
noaschiller@mail.tau.ac.il

1 INTRODUCTION

A data structure is said to be history independent (HI) if its internal
representation reveals only the current state of the data structure,
and does not depend on the specific history of operations that
led to the current state. For example, in a history-independent
implementation of a set, the internal memory representation may
(and must, for correctness) reveal the elements that are currently
in the set, but it must not reveal elements that were previously
inserted and then removed.

The notion of history independence was introduced by Miccian-
cio [32], who showed how to build a search tree with a history-
independent structure. Naor and Teague [35] formalized two now-
classical notions of history independence: a data structure is weakly
history independent (WHI) if it leaks no information to an observer
who sees the memory representation once, and it is strongly history
independent (SHI) if it leaks no information even to an observer
who sees the memory representation at multiple points in the exe-
cution. These notions differ significantly: for example, a set where
each item inserted is stored at a freshly-chosen random location in
memory may be weakly HI but not strongly HI, because if an item
is inserted, removed, and then inserted again, it may be placed in
different locations each time it is inserted; an observer who sees
the memory after each of the two insertions would know that the
item was removed and re-inserted.

History independence has been extensively studied in sequential
data structures (see below), and the foundational algorithmic work
on history independence has found its way into secure storage
systems and voting machines. However, history independence has
been studied only peripherally in concurrent data structures. This
paper initiates a thorough study of history-independent concur-
rent data structures, and establishes fundamental possibility and
impossibility results.

Defining history independence for concurrent objects is non-
trivial, because the sequential definition of history independence
allows the observer to examine the memory only in-between
operations—that is, in quiescent states—while a concurrent im-
plementation might never be in a quiescent state. One of our main
questions is whether it should be permissible for the observer to
open the “black box” of a single operation and inspect the memory
when the system is not quiescent, and what are the implications of
this choice in terms of what can be implemented concurrently in a
history independent manner. We focus on a concurrent notion of
strong history independence for deterministic data structures, and
characterize the boundaries of what can be achieved.

https://orcid.org/0000-0002-8017-6457
https://orcid.org/0000-0001-7639-530X
https://orcid.org/0000-0003-3616-7788
https://orcid.org/0009-0007-5065-5557
https://orcid.org/0009-0007-0285-6194
https://doi.org/10.1145/3662158.3662814
https://doi.org/10.1145/3662158.3662814
https://doi.org/10.1145/3662158.3662814

PODC ’24, June 17-21, 2024, Nantes, France

We begin by asking whether a concurrent object A can be imple-
mented out of “smaller” base objects of type B in a manner that is
history independent; here, “smaller” means that B has fewer states
than A. Our motivating example is the famous implementation of
a multi-valued single-writer single-reader wait-free register from
Boolean registers [45]. We observe that this implementation is not
history independent even in the weakest sense (see Section 4), and
in fact, there is a good reason for this: we prove that for a fairly
general class of objects, which includes read/write registers, there
is no wait-free history independent implementation out of smaller
base objects, regardless of the type of the smaller objects. This result
holds even if the observer can only inspect the memory when there
are no state-changing operations pending, but read operations may
be ongoing. If the observer can inspect the memory at any point
(including while state-changing operations are ongoing), then even
a lock-free implementation is impossible. On the other hand, for
multi-valued single-writer single-reader registers, there is a wait-
free history independent implementation from binary registers, if
we restrict the observer’s inspections to points where the system is
completely quiescent. While our results are stated for deterministic
algorithms, our impossibility result also applies to randomized im-
plementations of reversible objects, which are objects where every
state can be reached from every other state (see Section 7).

Since it is impossible to implement some objects out of smaller
objects in a wait-free, history independent manner (except possibly
in the weakest, quiescent sense), we turn to concurrent implementa-
tions where the base object B is large enough to store the full state
of the abstract object A that we want to implement. For this regime
we give a strong possibility result, in the form of a universal imple-
mentation from compare-and-swap (CAS) objects: we show that any
object A can be implemented in a wait-free, history independent
manner from sufficiently-large CAS objects. Our implementation
reveals nothing about past states of the object or operations that
completed prior to the invocation of any currently-pending opera-
tions; and when no state-changing operation is pending, the state
of the memory reflects only the current abstract state of the object.
Our implementation uses an extended version of an LL/SC object,
inspired by [30, 31], which we implement from atomic CAS.

Additional Related Work. Hartline et al. [24, 25] showed that a
data structure with a strongly-connected state graph is strongly
history independent (SHI) if and only if each of its state has a unique
canonical representation (see Proposition 1). We rely on a similar
characterization for both possibility and impossibility results.

There is a large body of literature characterizing which data
structures can be made history independent without an asymp-
totic slow down. These results include fast HI constructions for
cuckoo hash tables [34], linear-probing hash tables [15, 23], other
hash tables [15, 35], trees [1, 32], memory allocators [23, 35],
write-once memories [33], priority queues [16], union-find data
structures [35], external-memory dictionaries [12, 20-22], file
systems [8, 10, 11, 39], cache-oblivious dictionaries [12], order-
maintenance data structures [15], packed-memory arrays/list-
labeling data structures [12, 13], and geometric data structures [44].
Given the strong connection between history independence and
unique representability [24, 25], some earlier data structures can
be made history independent, including hashing variants [2, 17],

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and Noa Schiller

skip lists [37], treaps [5], and other less well-known deterministic
data structures with canonical representations [3, 4, 38, 42, 43].

The algorithmic work on history independence has found its way
into systems. There are now voting machines [14], file systems [8,
9, 11], databases [10, 36, 40], and other storage systems [18] that
support history independence as an essential feature.

To the best of our knowledge, the only prior work to consider
history independence in concurrent implementations is by Shun
and Blelloch [41]. They implement a concurrent hash table, based
on a sequential SHI hash table [15, 35], in which only operations of
the same type can be executed concurrently. The implementation
of [41] guarantees that if there are no ongoing insert or delete
operations, each state of the hash table has a unique canonical
representation in memory. This work does not provide a formal
definition of history independence for concurrent implementations,
and does not support concurrent operations of different types.

Our universal implementation draws inspiration from prior uni-
versal implementations, using CAS [26], hardware LL/SC [28], and
consensus objects [27]. These implementations are not history inde-
pendent: the implementation in [27] explicitly keeps tracks of all the
operations that have ever been invoked, while the implementations
in [26, 28] store information that depends on the sequence of ap-
plied operations. Moreover, they use dynamic memory, and allocate
new memory every time the state of the object is modified, which
risks revealing information about the history of operations. While
there is work on sequential history-independent memory allocation
(e.g., [35]), to our knowledge, no concurrent history-independent
memory allocator is known.

Fatourou and Kallimanis [19] give a universal implementation
from hardware LL/SC, where the full state of the object, along
with additional information, is stored in a single memory cell. Our
history-independent universal implementation bears some simi-
larity to [19], but their implementation stores information about
completed operations, such as their responses, and is therefore not
history independent. Clearing this type of information from mem-
ory so as not to reveal completed operations is non-trivial, and we
address this in our implementation.

2 PRELIMINARIES

Abstract Objects. An abstract object is defined by a set of states
and a set of operations, each of which may change the state of the
object and return a response. Formally, an abstract object O is a
tuple (Q, qo, O, R, A), where Q is the object’s set of states, go € Q
is a designated initial state, O is the object’s set of operations, R is
the object’s set of responses and A : Q X O — Q X R is the function
specifying the object behavior, known as the sequential specification
of the object. We assume that the abstract object is deterministic,
i.e., the function A is deterministic. We also assume that all states
in Q are reachable from the initial state qo.

A sequential implementation specifies how each operation should
be concretely implemented in memory. The object’s state is rep-
resented in memory using some memory representation, and the
implementation specifies how each operation should modify this
memory representation when it is applied. In general, a single state
q € Q may have multiple possible memory representations associ-
ated with it; for example, if we implement a set (i.e., a dictionary)

History-Independent Concurrent Objects

using a balanced search tree, then the abstract state of the object
consists of the contents of the set, but the layout in memory may
also depend on the order of insertions, etc.

Sequential History Independence. A history-independent imple-
mentation is one where the memory representation of the object
reveals only its current abstract state, not the sequence of operations
that have led to that state. Where deterministic implementations
are concerned, both versions of history independence—weak and
strong history independence—coincide, since in the absence of ran-
domness it does not matter whether the adversary examines the
memory at one point or or at multiple points in the execution.
Because we consider only deterministic implementations in this
paper, we do not distinguish between weak and strong history
independence, and refer to them simply as history independence
(HI). (The formal definitions of sequential weak and strong history
independence are omitted here; see [35].)

One way to achieve history independence is to ensure that when-
ever the object is the same abstract state, the memory represen-
tation is the same. Implementations that have this property are
called canonical: every abstract state g € Q corresponds to exactly
one memory representation, can(q), which we call its canonical
memory representation, and every sequence of operations that leads
the object to state ¢ must leave the memory in state can(q). As we
said above, for deterministic implementations, weak and strong
history independence coincide. Both require the implementation to
be canonical: [Consider whether we should still be talking about
WHI/SHI at this point, rather than just HI.]

Proposition 1. For deterministic sequential implementations, WHI
and SHI are equivalent to requiring that a unique canonical memory
representation is determined for each state at initialization.

The following example illustrates the concept of history inde-
pendence and of canonical implementations. Consider an imple-
mentation of an insert-only set S C [n]| where the elements of the
set are stored in an array of length n, which is initially empty. One
possible implementation of an Insert(x) operation is to simply scan
the array and store x in the first empty cell, but this implementation
is not history independent, because the order of elements in the
array reveals the order in which they were inserted. To address this,
we could store the elements in the array in sorted order. This imple-
mentation would indeed be history independent, and the canonical
representation can(S) of a given set S would be an array where
the elements of S appear in sorted order, with empty cells padding
the array up to length n. (A similar idea forms the basis for a HI
linear-probing hash table in [35].)

The Asynchronous Shared-Memory Model. We assume the stan-
dard model in which n processes, p1, . . ., pn, communicate through
shared base objects. When implementing an abstract object O, it is
called the high-level object. An implementation of an abstract object
O, specifies a program for each process and for each operation in
O. Upon receiving an invocation of an operation o € O, process p;
takes steps according to this program. Each step by process p; con-
sists of some local computation and a single primitive operation on
a base object. After each step, the process may change its local state,
and eventually it may return a response to the high-level operation.

PODC ’24, June 17-21, 2024, Nantes, France

A configuration C specifies the local state of every process and
the state of every base object. The initial configuration of the system
is denoted by Cp, and we assume that it is unique. An execution « is
an alternating sequence of configurations and steps, starting from
the initial configuration Cy. An execution can be finite or infinite.
Given two executions a1, a2, where @ ends at configuration C and
az begins at configuration C, we denote by a1z the concatenation
of the two executions, and we say that ajay extends execution «;.

The memory representation of a configuration C, denoted
mem(C), is a vector specifying the state of each base object; this
does not include local private redundant, get rid of either local or
private variables held by each process, only the shared memory.
Formally, if there are m base objects with state spaces Q1,...,Qm
respectively, then mem(C) is a vector in Q1 X ... X Qp, and we
denote by mem(C) [i] the state of the i-th base object. For a finite
execution «, let mem(a) denote the memory representation in the
last configuration in execution a.

In this paper we frequently make use of two types of base objects:
the first is a simple read/write register, and the second is a compare-
and-swap (CAS) object. A CAS object X supports the operation
CAS(X, old, new), which checks if the current value of the object
is old, and if so, replaces it by new and returns true; otherwise, the
operation leaves the value unchanged, and returns false. We assume
that the CAS object supports standard read and write operations.
For both read/write registers and CAS objects, the state of the
object is simply the value stored in it. Note that both registers
and CAS objects can also serve as high-level objects. [I would get
rid of this sentence, it seems obvious. If we keep it, we should
refer specifically to the places in the paper where we think of
registers/CAS as high-level objects, and we can say, e.g., “Although
we use registers and CAS objects are as base objects, we are also
interested in implementing them out of other base objects, such as
smaller registers and CAS objects; see Section whatever”.]

An execution « induces a history H(«), consisting only of the
invocations and responses of high-level operations. An invocation
matches a response if they both belong to the same operation. An
operation completes in H if H includes both the invocation and
response of the operation; if H includes the invocation of an opera-
tion, but no matching response, then the operation is pending. If a
ends with a configuration C, and there is no pending operation in
a, then C is quiescent.

A history H is sequential if every invocation is immediately
followed by a matching response. For a sequential history H, let
state(H) € Q be the state of the high-level object reached by start-
ing from the initial configuration and applying the sequence of
operations invoked (and immediately completed) in H.

Linearizability. A completion of history H is a history H’ whose
prefix is H, and whose suffix includes zero or more responses of
pending operations in H. Let comp(H) be the set of all completions
of H. A sequential history H’ is a linearization of an execution
«a that arises from an implementation of an abstract object O if:
(1) H’ is a permutation of a history in comp(H(«)), (2) H' matches
the sequential specification of O, and (3) H’ respects the real-time
order of non-overlapping operations in H(«). [Real-time order and
non-overlapping are not defined, but that’s probably fine.] [Use
inparaenum if acm format allows, if not check what it does allow.]

PODC ’24, June 17-21, 2024, Nantes, France

An execution « is linearizable [29] if it has a linearization, and
an implementation of an abstract object is linearizable if all of
its executions are linearizable. A linearization function h maps an
execution « to a sequential history h(«) that is a linearization of a.

Progress Conditions. An implementation is lock-free if there is a
pending operation, then some operation returns in a finite number
of steps. An implementation is wait-free if there is a pending opera-
tion by process p;, then this operation returns in a finite number
of steps by process p;. [Preceding paragraph is grammatically in-
correct. It is also informal since it doesn’t use the terminology of
executions, histories, etc. but that’s probably fine.]

3 HISTORY INDEPENDENCE FOR
CONCURRENT OBJECTS

As we noted in Section 1, when defining history independence for
concurrent objects, we must grapple with the fact that a concurrent
system might never be in a quiescent state. In Section 5.2 we prove
that if we allow the internal memory to be observed at any point
in the execution, then there is a strong impossibility result ruling
out even lock-free implementations of a wide class of objects. This
motivates us to consider weaker but more feasible definitions, where
the observer may only examine the internal memory at certain
points in the execution.

The following definition provides a general framework for defin-
ing a notion of history independence that is parameterized by the
points where the observer is allowed to access the internal memory;
these points are specified through a set of finite executions, and the
observer may access the memory representation only at the end of
each such finite execution. Informally, the definition requires that
at any two points where the observer is allowed to examine the
internal memory, if the object is in the same state, then the memory
representation must be the same; we use a linearization function
to determine what the “state” of the object is at a given point.

Definition 2. Consider an implementation of an abstract object and
let E be a set of finite executions that arise from the implementation.
The implementation is HI with respect to E if there is a linearization
function h such that for any pair of executions a, &’ € E such that
state(h(a)) = state(h(a’)) we have mem(a) = mem(a’).

[Need to improve the way this definition is written. As is, it
appears to define “HI with respect to E” twice. The first time is w.r.t.
a given linearization function, but that’s not the way it’s written, it
just says “the implementation is HI” without referring to h. Possible
solution: only one definition, “An implementation is HI with respect
to E if there exists a linearization function h such that [condition].”]

To prove that an implementation satisfies Definition 2, it suffices
to find a linearization function h and a canonical representation
can(-), and prove that for every finite execution « € E that ends
with the object in state g € Q (according to h), the memory is in
the canonical memory representation can(q).

The strongest form of history independence that one might ask
for is one that allows the observer to examine the memory at any
point in the execution:

Definition 3. An implementation of an abstract object is perfect HI
if the implementation is HI with respect to the set containing all finite
executions of the implementation.

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and Noa Schiller

Perfect HI imposes a very strong requirement on the implemen-
tation: intuitively, any two adjacent high-level states must have
adjacent canonical memory representations. Formally, we say that
the distance between two memory representations memj, memy is
d if there are exactly d indices i € [m] where mem; [i] # memg][i]
(recall that m is the number of base objects used in the implementa-
tion). The following proposition, proved in the full version of this
paper [7], holds for obstruction-freedom, a progress guarantee even
weaker than lock-freedom and wait-freedom, where operations are
only required to complete if the process executing them runs by
itself for sufficiently long.

Proposition 4. In any obstruction-free perfect HI implementation of
an abstract object with state space Q, for any q1 # q2 € Q such that
q2 is reachable from q1 in a single operation, the distance between
can(q1) and can(qz) is at most 1.

Proposition 8 in Section 5.2 shows that a large class of objects
do not admit an implementation that meets the requirement above,
and therefore, do not have an obstruction-free implementation that
is perfect HI. This motivates us to consider weaker definitions,
where the observer may only observe the memory at points that
are “somewhat quiescent”.

We say that an operation o € O is state-changing if there exist
states g # ¢’ such that o causes the object to transition from state
g to q’. An operation is read-only! if it is not state-changing. A
configuration C is state-quiescent if there are no pending state-
changing operations in C. Note that a quiescent configuration is
also state-quiescent.

Definition 5. An implementation of an abstract object is state-
quiescent HI if the implementation is HI with respect to all finite
executions ending with a state-quiescent configuration.

The final definition is the weakest one that we consider, and it
allows the observer to examine the memory only when the config-
uration is fully quiescent:

Definition 6. An implementation of an abstract object is quiescent
HI if the implementation is HI with respect to all finite executions
ending with a quiescent configuration.

Figure 1 illustrates the three definitions of history independence
using the example of a read/write register; we highlight several
different points where an observer is or is not allowed to examine
the memory according to each definition.

Clearly, if an implementation of an abstract object [Now we’re
referring to a specific linearization function. This is not necessarily
consistent with the definition, which as I commented before doesn’t
treat h clearly.] is HI with respect to an execution set E, then it is
also HI with respect to any execution set E’ C E. Thus, perfect HI
implies state-quiescent HI, which in turn implies quiescent HI.

4 MOTIVATING EXAMPLE: MULTI-VALUED
REGISTER FROM BINARY REGISTERS

To better understand the notion of history independence and the

challenges in achieving it, consider Vidyasankar’s wait-free imple-

mentation of a single-writer single-reader (SWSR) K-valued register

!Read-only and state-changing operations are sometimes referred to in the literature
as trivial and nontrivial operations, respectively.

History-Independent Concurrent Objects

PODC ’24, June 17-21, 2024, Nantes, France

®

WRITE 2
|

O] ®

v |

| WRITE 1 |

r I } }

I I

Perfect HI: v o]
State-quiescent HI: vl o]
Quiescent HI: vl X

READ

®

!

|
| |
|
a
a

T
|
t
|
v}
b
X jvd]

Figure 1: Illustration of the three HI definitions. Perfect HI allows the observer to examine the memory at any point; state-quiescent HI
allows inspection only when there is no state-changing operation pending (points 1, 2 and 4); quiescent HI allows inspection only when the

configuration is quiescent (points 1 and 4).

(for K > 3) from binary registers [45] (The original algorithm is for
multiple readers, but we assume a single reader here.) The value
of the register is represented by a binary array A of size K, and
intuitively, the register’s value at any given moment is the smallest
index i € [K] such that A[i] = 1.2 In a READ operation, the reader
p scans up to find the smallest index i € [K] such that A[i] =1, and
then scans down from i and returns the smallest index j < i such
that when A[j] was read, its value was 1. (If the reader executes
solo, we will have i = j, but if there is a concurrent WRITE, we may
have j < i.) In a WRITE(v) operation, the writer w writes 1 to A[v],
then clears the array below index v by writing 0 to all indices i < v,
starting from index v — 1 and proceeding down to index 1.

Since a WRITE(v) operation does not clear values larger than v,
the state of the array A leaks information about past values written
to the register: e.g., if K = 3 and there is a WRITE(2) operation
followed by WRITE(1), we will have A = [1, 1,0], whereas if we
have only a WRITE(1), the state will be A = [1,0,0]. This will
happen even in sequential executions, so this implementation is
not history independent even in the minimal sense: it does not
satisfy the sequential definition of history independence, even if
we consider only sequential executions.

One might hope that this can be fixed by having a WRITE(v)
operation clear the entire array A, except for A[v] = 1, but this
would break the wait-freedom of the implementation: if the writer
zeroes out all positions in the array except one, we can construct
executions where due to overlapping writes, the reader never finds
an array position i where A[i] = 1, and thus it cannot return a value.
In fact, the impossibility result that we prove in the next section
(Theorem 11) rules out any wait-free implementation of K-valued
registers from binary registers that is history-independent, even if
we examine the memory only when no WRITE operation is pending
(i.e., wait-free state-quiescent HI implementations).

Nevertheless, if we are willing to settle for lock-freedom instead
of wait-freedom, then the approach of clearing out the array after
a WRITE can be made to work. We can modify Vidyasankar’s algo-
rithm by having a WRITE(v) operation first clear values down from
v —1to 1 (as in the original implementation), and then clear values
up from v + 1 to K (which it would not do in the original implemen-
tation). As a result, when there is no WRITE operation pending, the
register has a unique representation: if its value is v, then the array
A is 0 everywhere except at v, where we have A[v] = 1. Since the
reader does not write to memory, this implies that the algorithm
2This is true in the sense that a READ operation that does not overlap with a WrrTE

will return the smallest index i € [K] such that A[i] = 1; for a READ that does overlap
with a WRITE, the picture is much more complicated [45].

is state-quiescent HI. The READ operation is nearly identical to
Vidyasankar’s algorithm, except that, as we said above, if a READ
operation overlaps with multiple WRITEs, it may not find a 1 in the
array, requiring it to repeat its scan of the array until it finds a value
to return. While the WRITE operation remains wait-free, the READ
operation is only lock-free, as it is only guaranteed to terminate if
it eventually runs by itself. The code of the modified algorithm and
its proof appear in [7].

There is another way to relax our requirements and circumvent
the impossibility result: we could settle for quiescent history inde-
pendence, where the observer is not allowed to inspect the memory
representation except when the system is fully quiescent. To do this,
we have the reader announce its presence to the writer whenever it
begins a read operation, by writing to a special register. The writer,
if it sees that the reader might not find a value to return, helps it
by writing a value that the reader is allowed to return, in an area
of shared memory dedicated to this purpose. We must carefully
manage the footprints left in memory by both the reader and the
writer, to ensure that when all operations complete the memory
is left in canonical representation, but at the same time, that the
reader is never left hanging without a value that it may return. The
details of the wait-free quiescent HI SWSR multi-valued register
from binary registers appear in [7].

In the full version of this paper [7] we also prove that it is es-
sential for the reader to write to shared memory, otherwise it is
impossible to obtain even a quiescent HI wait-free implementation.
[Only the proposition itself is in the body of the paper, no proof. I
suggest just removing the proposition and saying that in the full
version we prove]

5 HIIMPLEMENTATIONS FROM SMALLER
BASE OBJECTS

In this section, we show that for a large class of objects, a reason-
ably strong notion of history independence— state-quiescent history
independence (Definition 5)—cannot be achieved from smaller base
objects, if we require wait-freedom.

5.1 The class C;

Informally, our impossibility result applies to all objects with the
following properties:
e The object has a “non-trivial” read operation, which is able
to distinguish between t different subsets of the object’s
possible states; and

PODC ’24, June 17-21, 2024, Nantes, France

e The object can be “moved freely” from any state to any other
state, in a single operation.

In fact, the impossibility result applies to other objects, including
a queue, which do not fall into this class because they cannot be
moved from any possible state to any other possible state in a single
operation; for example, if a queue currently has two elements, we
cannot reach the state where it is empty in one operation. For
simplicity, we present here the proof for the simpler, more restricted
class described above, and we discuss a generalization for a queue
in the full version of this paper [7].
The class C; is formally defined as follows:

Definition 7 (The class C;). An object O is in the class C; fort > 2 if
its state space Q can be partitioned into t nonempty subsets X1, . .., Xz,
such that

o The object has some operation 0,4, which does not change the
state of the object, such that for any two states q; € Xi,q; € X;
where i # j, the response to 0,44 from state q; differs from
the response t0 0,4 from state q;.

e For any two states ¢ # q' € Q there is some operation
0chg(q.q') that causes the object to transition from state q
to state q’.

An object in the class C; has at least ¢t different states, and any
pair of states are mutually reachable from each other by a single
operation. Thus, the memory representations that arise from an
implementation of an object in Cy, t > 3, from base objects with
fewer than ¢ states cannot all be at distance 1 from each other. By
Proposition 4 we obtain:

Proposition 8. There is no obstruction-free perfect HI implemen-
tation of an object in Cy, t > 3, from base objects with fewer than t
states.

Examples of objects in the class C;. A t-valued read/write register
is in the class Cy: it has ¢ different states, each representing the value
the register holds, and the READ operation distinguishes between
them; the WRITE operation can move us from any state (i.e., any
value) to any other state in a single operation. We have already seen
in Section 4 that multi-valued registers can be implemented from
binary registers, if we weaken either the progress or the history
independence requirements. Our results for SWSR multi-valued
registers are summarized in Table 1.

Another example of an object in the class C; is a t-valued CAS
object that supports a read operation: the state is again the current
value of the CAS, and the read operation distinguishes between all
t possible values; as for the o.p4 operation, we can move from any
state g to any state ¢’ by invoking CAS(X, q,¢).

To illustrate the importance of the state-connectivity require-
ment in the definition of the class C;, we argue that a max regis-
ter [6], returning the maximum value ever written in it, is not in
the class. The state space of a max register is not well-connected:
as soon as we visit state m, the object can never go back to a state
smaller than m. A simple modification to Vidyasankar’s algorithm,
where the writer only writes to A if the new value is bigger than
all the values it has written in the past, results in a wait-free state-
quiescent HI max register from binary registers.

Another object that is not in the class C; is a set over t elements,
with insert, remove and lookup operations. Even though the set

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and Noa Schiller

has 2 possible abstract states, its operations return only two re-
sponses, “success” or “failure”; thus, we cannot distinguish via a
single operation between all 27 states, or even between ¢ states (the
number of elements that could be in the set). There is a simple wait-
free perfect HI implementation of a set over the domain {1,...,t},
using ¢ binary registers: we simply represent the set as an array S
of length ¢, with S[i] = 1 if and only if element i is in the set, with
the obvious implementation of insert, delete and lookup.

5.2 Impossibility of Wait-Free, State-Quiescent
HI Implementations for the Class C;

Let O € C; be a high-level object with state space Q. Consider
a wait-free state-quiescent HI implementation of O using m > 1
base objects objy, . . ., obj,,. For each base object obj;, let Q; be the
state space of obj;; we assume that |Q;| < t — 1. This is the only
assumption we make about the base objects, and our impossibility
result applies to arbitrary read-modify-write? base objects as well as
to simple read-write base registers. Let h be a linearization function
for the implementation.

We consider executions with two processes: One is a “reader”
process r, which executes a single 0,..,4 operation, and the other is
a “changer” process ¢, which repeatedly invokes o, operations.

For the purpose of the impossibility result, we assume, that
the local state of a process p; contains the complete history of
pi’s invocations and responses. Our goal is to show that we can
construct an execution where r does not return from its single 0,44
operation, violating wait-freedom.

The executions that we construct have the following form:

Ago,...qr = Ochg(q0, 91):T1,0chg(q1, 42): T2, - - -, Ochg(qh—1, Gk)s T
where 0cpg(gi, gi+1) is an operation executed by the changer pro-
cess during which the reader process takes no steps, and r; is a
single step by the reader process. The reader executes a single 0,.,44
operation that is invoked immediately after the first o.p4 operation
completes, and we will argue that the reader never returns.

In any linearization of ag,. q.» the operations
0chg(90,q1), - - -, 0chg(qr-1,9x) must be linearized in order,
as they do not overlap. Furthermore, the o,.,4 operation carried
out by the reader is not state-changing. Thus, the linearization
of ag,,...q. ends with the object in state g, and we abuse the
terminology by saying that the execution “ends at state q;.”.

We say that execution ag,,..q, a@voids a subset X C Q if
{q1,...,qx} N X = 0. (Note that we may have gy € X and still
say that ag,, . g, avoids X; this is fine for our purposes, because the
reader only starts running after the first ocp4 operation completes.)

Lemma 9. There exists a partition of the possible return values R for
the 0p¢qq into subsets Ry,. .., Ry,* such that if an execution Aqo,...qx
avoids X; C Q, then the 0,.4q4 operation cannot return any value
from R; at any point in agq, . q -

Proor. Foreach 1 < i < t, let R; be the set of values p such that
for some state q € Xj, the 0,..44 operation returns p when executed
from state g. By the definition of the class C;, the sets Ry, ..., Ry
3Some examples of read-modify-write objects are CAS, test-and-set and swap objects.

“We assume there are no unused values in R, that is, for any r € R, there is some state
q € Q such that when 0,¢44 is executed from state g, it returns r.

History-Independent Concurrent Objects

PODC ’24, June 17-21, 2024, Nantes, France

l Perfect HI (Def. 3) [State-quiescent HI (Def. 5) [Quiescent HI (Def. 6) [Progress]

Impossible (Prop. 8)

Impossible (Cor. ??)

Possible (see [7]) Wait-free

Impossible (Prop. 8)

Possible (see [7])

Possible (see [7]) Lock-free

Table 1: Summary of results for implementing a SWSR multi-valued register from binary registers

are disjoint, and since the sets Xj, ..., X; partition the state space
Q, the sets Ry, ..., R; partition the set of responses R.

Fix an execution ag,, g, that avoids Xj, and recall that in any
linearization, the operations o¢p4(qo, q1), - - - 0chg (qk—1, Gk) must
be linearized in-order, as they are non-overlapping operations by
the same process. The operation 0,,,4 cannot be linearized before
the first operation o.4(qo, g1), because it is invoked after this oper-
ation completes. Thus, 0,44 either does not return in ag, . g, or
it is linearized after some operation o.p,(qj, gj+1) where j > 0.In
the latter case, let £ # i be the index such that gj4+1 € X;; we know
that £ # i as ag,,... g, avoids X;. The value returned by the 0,44 is
in the set Ry, which is disjoint from R;. Therefore in ag,,...q, the
0read Operation either does not return, or returns a value that is
not in R;. m|

Using the fact that each base object has at most ¢t — 1 possible
states, we can construct ¢ arbitrarily long executions that the reader
cannot distinguish from one another, such that each subset X; is
avoided by one of the t executions. Two execution prefixes a7 and
ay are indistinguishable to the reader, denoted a; L ay, if the reader
is in the same state in the final configurations of a; and a5.

The construction is inductive, with each step extending the exe-
cutions by one operation and a single step of the reader:

Lemma 10. Fix k > 0, and suppose we are given t executions of

the form a; = a i q fori =1,...,t, such that oy L...X ay,
00+

q
and each a; avoids X;. Then we can extend each «; into an execution

al=ai i thatalso avoids X;, such that 0{1 L.z ay.
i T %l

ProOF. Leta; = «a q fori =1,...,t be executions satisfying

Qpens k
the conditions of the lemma, and let us construct extensions (xlf =

o i for each i = 1,...,t. By assumption, the reader is in

Ty Tio T
the same local state at the end of all executions «; for 1 < i < t,and
so its next step is the same in all of them. Our goal is to choose a

next state q;'ﬁl foreachi=1,...,t, and extend each a; = Agi qi
02+

into o] = Ugi . .qlql, by appending an operation Ochg(CI;;’ q;ﬁl),
followed by a single step of the reader. We must do so in a way
that continues to avoid X;, and maintains indistinguishability to
the reader.

Since the implementation of O is state-quiescent HI and since
each execution ; ends in a state-quiescent configuration, if a; ends
in state g, then the memory must be in its canonical representation,
can(q) (as defined in Section 2).

Let obj, be the base object accessed by the reader in its next step
in all t executions. Because obj, has only t—1 possible memory states
and there are t subsets Xi, ..., X, there must exist two distinct
subsets X;, X (j # j’) and two states ¢ € Xj,¢' € Xj» such
that can(q)[¢] = can(q’)[£]. For every 1 < i < t, there is a state
qlic+1 € {q,q'} such that qjﬁl ¢ X;:if i ¢ {j, '} then we choose

between g and ¢’ arbitrarily, and if i = j or i = j’ then we choose
Qpyq = 9 OF Gy, = g, respectively.

C—aa i Py

We extend each «; = aqg,u.,q}(into a] = Ugi qidl,,

ing a complete Ochg(Q;c: q;<+1) operation, followed by a single step

by append-

of the reader. The resulting execution] still avoids X;, as we had
{qi, .. q}(} N X; = 0, and the new state also satisfies qli<+1 ¢ X;.
Moreover, when the reader takes its step, it observes the same state
for the base object obj, that it accesses in all executions, as all of
them end in either state g or state ¢’, and can(q)[¢] = can(q’)[£].
Therefore, the reader cannot distinguish the new executions from
one another. O

By repeatedly applying Lemma 10, we can construct arbitrar-
ily long executions, with the reader taking more and more steps
(since in an execution ag,, .. g, the reader takes k steps) but never
returning. This is because for each return value there is an exe-
cution avoiding it, and by Lemma 9 and since all the executions
are indistinguishable to the reader, no value can be returned. This
contradicts the wait-freedom of the implementation, to yield (the
proof appears in [7]):

THEOREM 11. For any object O in the class Cy, t > 2, there is no
wait-free implementation that is state-quiescent HI using base objects
with fewer than t states.

6 A HI UNIVERSAL IMPLEMENTATION

In the previous sections, we considered history-independent imple-
mentations of objects from base objects that are too small to store
the state of the abstract object in its entirety, and showed that cer-
tain tradeoffs are unavoidable in this setting: for many objects, one
must sacrifice either wait-freedom or state-quiescent history inde-
pendence. We now turn to study large base objects, which can store
the entire state of the abstract object, together with auxiliary infor-
mation; we show that in this regime, a wait-free implementation
that is state-quiescent HI is possible. Our implementation actually
satisfies a somewhat stronger property than state-quiescent HI:
at any point in the execution, the observer cannot gain informa-
tion about operations that completed before a pending operation
started, except for the state of the object when the earliest pending
operation began.

When the full state of the object can be stored in a single memory
cell, there is a simple lock-free universal implementation, using
load-link/store-conditional (LLSC).> The current state of the object
is stored in a single cell, an operation reads the current value of this
cell, using LL, and then tries to write the new value of the object
(after applying its changes) in this cell, using SC.
5In hardware, load-linked reads a memory cell, while store-conditional changes this

memory cell, provided that it was not written since the process’ most recent load-
linked.

PODC ’24, June 17-21, 2024, Nantes, France

This implementation is clearly perfect HI. However, it is not wait-
free since an operation may repeatedly fail, since other operations
may modify the memory cell in between its LL and its SC. The
standard way to make the universal implementation wait-free relies
on helping [19, 27]: When starting, an operation announces its type
and arguments in shared memory. Operations check whether other
processes have pending operations and help them to complete,
obtaining the necessary information from their announcement;
after helping an operation to complete, they store a response to be
returned later. This breaches history independence, revealing the
type and arguments of prior and pending operations, as well as the
responses of some completed operations.

Our wait-free, history-independent universal implementation
follows a similar approach, but ensures that announcements and
responses are cleared before operations complete, to guarantee that
forbidden information are not left in shared memory. Care is take
to erase information only after it is no longer needed.

To use the more standard and commonly-available atomic CAS,
we implement an abstraction of a context-aware variant of LLSC [31],
which explicitly manages the set of processes that have load-linked
this cell as context. This again breaches history independence, as
the context reveals information about prior accesses. To erase this
information, the implementation clears the context of a memory
cell using an additional release operation, added to the interface
of context-aware releasable LLSC (R-LLSC). This yields a wait-free
state-quiescent HI universal implementation from atomic CAS.

The next section presents the universal implementation using
linearizable R-LLSC objects. We then give a lock-free R-LLSC per-
fect HI implementation from atomic CAS (Section 6.2), and obtain
a wait-free state-quiescent HI universal implementation from atomic
CAS, in Section 6.3.

6.1 Universal HI Implementation from
Linearizable Releasable LLSC

A context-aware load-link/store-conditional (LLSC) object over a
domain V is defined as follows: the state of an LLSC object O is
the pair (O.val, O.context), where O.val € V is the value of the
object, and O.context is a set of processes. The initial state is (v, 0),
where vy € V is a designated initial value. Process p; can perform
the following operations:

LL(O): adds p; to O.context and returns O.val.

VL(O): returns true if p; € O.context and false otherwise.

SC(O, new): if p; € O.context, sets O.val = new and O.context =
0, and returns true; otherwise, it returns false.

Loap(0): returns O.val without changing O.context.

STORE (O, new): sets O.val = new and O.context = () and returns
true.

A VL, SC or STORE is successful if it returns true; note that STORE is
always successful. LoAD and STORE operations are added to simplify
the code and proof.

The universal implementation appears in Algorithm 1. The right
side of Lines 6, 18 and 25, marked in blue, as well as Lines 22 and 27,
marked in red, are only used to ensure history independence; we
ignore them for now, and explain their usage later. We assume that
the set of possible responses R of the object is disjoint from its set
of operations O, i.e, RNO =0,and L ¢ RUO.

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and Noa Schiller

Algorithm 1 State-quiescent HI universal implementation from R-LLSC:
code for process p;

head, R-LLSC variable initialized to (qo, L), where gy is the initial state
announce[n], R-LLSC variable array all cells initialized to L
local priority;, initialized to i

APPLYREADONLY (0p € O):
1: {(q,_) « Loap(head)
2. _rsp — A(q,op)
3: return rsp

> Read-only operations

Arpry(op € O):

4: STORE(announce(i], op)

5. while LoaDp(announce[i]) ¢ R do
6L: (q,r) < LL(head) || 6R.1: wait until Loap(announce[i]) ¢ R
6R.2: goto Line 24

> In-between operations

> State-changing operations

7: if r = L then

8: help « Loap(announce|priority;])
9: if help € O then apply-op < help; j « priority;
< Try to apply another process operation
10: else
11: if Loap(announce[i]) ¢ O then continue
< > Go to the beginning of the loop
12: apply-op «— op; j — i
< » Try to apply your own operation
13: state,rsp < A(q, apply-op)
14: if SC(head, (state, (rsp, j))) then > End of the first stage
15: priority; « (priority; +1) mod n
16: else
17: (rsp,j)y < r
18L]: a < LL(announcel[j])
< || 18R.1: wait until Loap(announceli]) ¢ R
18R.2: RL(announce[j])
18R.3: goto Line 24
19: if VL(head) = true then
20: if a € O then SC(announce|j]|,rsp)
< > End of the second stage
21: SC(head,(q, L)) > End of the third stage
22: if a = 1 then RL(announce[j])
23: continue > Go to the beginning of the loop

24: response < LoAD(announce[i])
25L: (q,r) < LL(head) | 25R.1:wait until Loap(head) # (_, (_ i))
25R.2: goto Line 27

26: if r = (_, i) then SC(head, (q, L))

< > Clear response from head before returning
27: else RL(head)
28: STORE(announce[i], L)
29: return response

> Clear response from announce|i]

An array announce[1..n] stores information about pending oper-
ations, while head holds the current state of the object, along with
some auxiliary information, like the response to the most recently
applied operation o, and the identifier of the process that invoked
o. In-between operations, the value of head is (g, L), where q is the
current state of the object.

History-Independent Concurrent Objects

A process invoking a read-only operation calls APPLYREADONLY,
which simply reads the object’s state from head and returns a re-
sponse according to the sequential specification of the object. This
does not change the memory representation of the implementation.

A process p; invoking a state-changing operation calls AppLY.
First, p; announces the operation by writing its description to
announcel[i], and then, p; repeatedly tries to apply operations (ei-
ther its own operation or operations announced by other processes)
until it identifies that its own operation has been applied. The choice
of which operation to apply (Lines 8-12) is determined by a local
variable priority;, which is not part of the memory representation.
If there is a pending operation by process pj, j = priority;, then p;
applies p;’s operation; otherwise, it applies it own operation. Each
time p; successfully changes the state of the object, it increments
priority; (modulo n). This ensures that all pending operations will
eventually help the same process.

Applying an operation o, with A(g, 0) = (¢’,), consists of three
stages, each of which can be performed by any process (not just
the process that invoked o, and not necessarily the same process
for all three stages).

In the first stage, head is changed from (g, L) to {(¢’, {r, j)), where
pj is the process that invoked operation o. The stage starts when
some process p; reads (g, L) from head with LL(head) (Line 6L),
and decides which operation to try to apply, say o by process p;.
To do so, p; performs SC(head, {(¢’, {r, j))) (Line 14). If the SC is
successful, the value of head did not change between the LL and
the SC of p;. This ensures that the chosen operation, read from
announce| j] in Line 8 or Line 11 after the LL(head), is not applied
more than once.

In the second stage, the response r is written into announce| j],
overwriting o itself, to notify the invoking process p; that its op-
eration was performed, and what value p; should return. A pro-
cess p; that writes the response to announce| j] has read (¢’, (r, j))
from head with LL(head) (Line 6L) and then performs a successful
VL(head) in Line 19. If p; performs a successful SC(announce|j], r)
in Line 20, then it previously performed a LL(announce|j]) in
Line 18L, i.e., between LL(head) and VL(head). This guarantees
that the value of head does not change between LL(head) and
SC(announcelj],r).

The third and final stage changes head from (¢, (r, j}) to (¢’, L).
This erases the response r and the process index j, ensuring that
forbidden information about the history is not revealed. The in-
voking process p; does not return until its response is cleared
from head (Lines 25L and 26). This ensures that a successful
SC(announce(j],r) (Line 20) writes the right response to the
applied operation, since it can only occur before the response
value is cleared from head. If a process performs a successful
SC(head, {q’, L)) (Line 21), then the previous LL(head) (Line 6L)
guarantees that the replaced value of head was indeed of the form
(¢',r"), where r’ # L.

Finally, before returning, p; also clears announcel[j] (Line 28).

Achieving history independence. Algorithm 1, without the lines
shown in red, is not state-quiescent HI, and in fact it is not even
quiescent HI: although we delete past responses from the head and
clear announce(i] before returning, their context fields may reveal
information about the history even when no operation is pending.

PODC ’24, June 17-21, 2024, Nantes, France

For example, suppose process p; invokes an operation o and writes
itto announceli], and begins the main loop where it tries to perform
operations. Before p; can even perform LL(head) in Line 6L, faster
processes carry out operation o and all other pending operations,
and return. When p; does reach Line 6L and calls LL(head), it sees
that the system is in-between operations (head = (g, L)), and it
finds no other processes requiring help. It thus returns straightaway,
leaving its link in the context field of head. This might seem in-
nocuous, but it could, for example, reveal that a counter supporting
fetch-and-increment and fetch-and-decrement operations, whose
current value is zero, was non-zero in the past, because the observer
can see that some state-changing operation was performed on it.

To address this problem, we add a release (RL) operation to the
LLSC object. RL removes a process from the context, and we use
it to ensure that the context component of each LLSC object in
the implementation is empty in a state-quiescent configuration.
Formally, a releasable LLSC (R-LLSC) adds the following operation,
performed by process p;:

RL(O): removes p; from O.context and returns true.

RL operations are added in Lines 22 and 27 of Algorithm 1, both
marked in red. We show below a lock-free implementation of an
R-LLSC object from atomic CAS. The implementation is not wait-
free, as RL operations may interfere with other ongoing operations
(including LL). To handle R-LLSC operations that may block and
obtain a wait-free universal HI implementation, we add the code
marked in blue, in Lines 6, 18 and 25. These lines interleave steps
in which process p; checks whether some other process p; has
already accomplished what p; was trying to do (e.g., p;j applied p;’s
operation for it). The notation || indicates the interleaving of steps
between the code appearing to its left and to its right, with some
unspecified but finite number of steps taken on each side before
the process switches and starts taking steps of the other side.

In Line 18R.2, a RL ensures that if p;’s operation is performed
by another process while p; itself is trying to help a third process
pj, then the LL(announce[j]) in Line 18L leaves no trace. We must
do this because we do not know whether the LL(announce|j]) on
the left side has already “taken effect” or not at the point where the
wait until command on the right-hand side is done.

The proof partitions the execution into segments, with each
successful state-change (that is, each successful SC(head, (g, {r, i))))
beginning a new segment. We linearize exactly one state-changing
operation at the beginning of each such segment, and interleave the
linearization points of the read-only operations according to the
segment in which they read the head. The full linerizability proof,
along with additional properties of Algorithm 1, appears in [7].

THEOREM 12. Algorithm 1 is a linearizable universal implementa-
tion from linearizable R-LLSC objects.

6.2 Lock-Free Perfect-HI R-LLSC Object from
Atomic CAS

The implementation of an R-LLSC object using a single atomic
CAS object is based on [30], and its code appears in Algorithm 2.
The state of the R-LLSC object O is stored in the CAS object in the
format x = (v,c1,...,cn) € V{0, 1}, where v = Q.val is its value,
and each bit ¢; indicates whether or not p; € O.context. Denote
x.val = v and x.context[i] = ¢;. The implementation is perfect HI,

PODC ’24, June 17-21, 2024, Nantes, France

Algorithm 2 Lock-free perfect HI R-LLSC from CAS: code for process p;
X: CAS variable initialized to (2, 0,...,0)

LL(O): RL(O):
1: cur « READ(X) 16: cur < READ(X)
2: new « cur 17: new « cur
3: new.context[i] « 1 18: new.context[i] « 0
4: while !CAS(X, cur, new) do 19: while cur.context[i] =1 do
5 cur «— READ(X) 20: if CAS(X, cur, new) then
6: new « cur 21: return true
7 new.context[i] « 1 22: cur «— ReaD(X)
8: return cur.val 23: new < cur

24: new.context[i] « 0

SC(0,v): 25: return true
9: cur <« READ(X)
10: while cur.context[i] =1 do Loap(0):
11: if 26: cur < READ(X)

< CAS(X, cur, (v,0,...,0)) 27: return cur.val

< then return true
12: cur «— Reap(X) STORE(O, v):
13: return false 28: WRITE(X, (2,0,...,0))

29: return true
VL(O):

14: cur <« READ(X)
15: return cur.context|i]

because the mapping from abstract state to memory representation
is unique, and no additional information is stored.

The operations Loap and VL are read-only; to implement them,
we simply read X and return the appropriate response. A STORE
operation writes into the CAS a new value with an empty context,
regardless of the current state of the objects. Finally, the LL, RL
and SC operations are implemented by reading X and then trying
to update it using a CAS operation, but this is not guaranteed to
succeed; hence, these operations are only lock-free, not wait-free.

The proof of the next theorem appears in [7].

THEOREM 13. Algorithm 2 is a lock-free linearizable perfect HI
implementation of a R-LLSC object from atomic CAS.

When considering progress, we cannot rely on the progress of
R-LLSC algorithm as a black box, because the LL, RL and SC op-
erations are not by themselves wait-free. Still, we can rely on the
interactions among the R-LLSC operations to ensure that the way
they are used in Algorithm 1 is wait-free. The SC and STORE oper-
ations “help” RL and SC operations, in the sense that a successful
SC or STORE operation clears the context, causing all pending RL
and SC operations to complete: RL operations return because the
process is indeed no longer in the context, and SC operations return
because they have failed. We have the next lemma, proved in [7]:

Lemma 14. Let op be an RL or SC operation that is pending in
execution a, and suppose that in , a SC or STORE operation is invoked
after op, and returns true before op returns. Then in any extension
of a, op returns within a finite number of steps by the process that
invoked it.

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and Noa Schiller

6.3 Wait-Free State-Quiescent HI Universal
Implementation from Atomic CAS

We now combine Algorithm 1 with an R-LLSC implementation of
Section 6.2, to get a wait-free state-quiescent HI universal imple-
mentation, despite the R-LLSC implementation being only lock-free.

Since LL, RL and SC are lock-free, if a process tries to modify
head, some process will eventually succeed in modifying head. By
Lemma 14, this allows other pending SC and RL operations to
complete. This property does not hold for a LL operation, which
may never return, but this is handled by the invoking algorithm,
which interleaves steps that check if the operation was performed
by a different process, as explained above. The helping mechanism
ensures that every pending operation is eventually applied. Thus,
the wait conditions in Lines 6L, 18L and 25L are eventually false,
releasing operations that might be stuck in an LL operation.

Finally, we discuss history independence. At a state-quiescent
configuration, the states of the R-LLSC objects are uniquely defined,
according to the state reached by the sequence of operations applied
during the execution. Note that the state includes both the val
and context part of the object. Since the R-LLSC implementation is
perfect HI, by a simple composition, this state translates to a unique
memory representation. The implementation of the R-LLSC objects
provides the strongest form of history independence, and for our
need, a weaker state-quiescent HI implementation also suffices. The
next theorem, proved in [7], concludes this section by putting all
the pieces together.

THEOREM 15. Any abstract object has a wait-free state-quiescent
HI implementation from CAS base objects that can store O(s + 2")
values.

7 DISCUSSION

This paper introduces the notion of history independence for con-
current data structures, explores various ways to define it, and
derives possibility and impossibility results. We gave two main al-
gorithmic results: a wait-free multi-valued register, and a universal
implementation of arbitrary objects. Interestingly, both implemen-
tations follow a similar recipe: starting with a history-independent
lock-free implementation, helping is introduced to achieve wait-
freedom. However, helping tends to leak information about the
history of the object, so we introduce mechanisms to clear it.

Our results open up a range of research avenues, exploring
history-independent object implementations and other notions of
history independence. Randomization is of particular importance, as
it is a tool frequently used to achieve both algorithmic efficiency and
history independence. When randomization is introduced, the dis-
tinction between weak and strong history independence becomes
meaningful. We note that randomization will not help circumvent
the impossibility result from Section 5.2, if we require strong his-
tory independence: by a result of [24, 25], in any strongly history-
independent implementation of a reversible object®, the canonical
memory representation needs to be fixed up-front, and our im-
possibility proof then goes through. However, this does not rule
out weakly history-independent implementations. We remark that

®For example, a register is reversible, while an increment-only counter is not.

History-Independent Concurrent Objects

even coming up with a meaningful definition for history indepen-
dence in randomized concurrent implementations is non-trivial,
because randomization can affect the number of steps an operation
takes, making it challenging to define a probability distribution
over the memory states at the points where the observer is allowed
to observe the memory.

ACKNOWLEDGMENTS

Hagit Attiya is partially supported by the Israel Science Foundation
(grant number 22/1425). Rotem Oshman is funded by NSF-BSF
Grant No. 2022699. Michael Bender and Martin Farach-Colton are
funded by NSF Grants CCF-2106999, CCF-2118620, CNS-1938180,
CCF-2118832, CCF-2106827, CNS-1938709, CCF-2247577.

REFERENCES

(1]

1
=

=
A=A

[11]

[12

[13

[14]

[15]

[16]

(17]

[18]

[19]

Umut A Acar, Guy E Blelloch, Robert Harper, Jorge L Vittes, and Shan Leung Mav-
erick Woo. 2004. Dynamizing static algorithms, with applications to dynamic
trees and history independence. In Proc. of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 531-540.

Ole Amble and Donald Ervin Knuth. 1974. Ordered hash tables. Comput. 7. 17, 2
(1974), 135-142.

Arne Andersson and Thomas Ottmann. 1991. Faster uniquely represented dictio-
naries. In Proc. of the 32nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 642-649.

Arne Andersson and Thomas Ottmann. 1995. New tight bounds on uniquely
represented dictionaries. SIAM J. Comput. 24, 5 (1995), 1091-1103.

Cecilia R Aragon and Raimund G Seidel. 1989. Randomized search trees. In Proc.
of the 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
540-545.

James Aspnes, Hagit Attiya, and Keren Censor. 2009. Max registers, counters,
and monotone circuits. In Proceedings of the 28th ACM symposium on Principles
of distributed computing. 36-45.

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and
Noa Schiller. 2024. History-Independent Concurrent Objects. Technical Report
2403.14445. arXiv. https://doi.org/10.48550/arXiv.2403.14445 Full version of this
paper.

Sumeet Bajaj, Anrin Chakraborti, and Radu Sion. 2015. The Foundations of
History Independence. arXiv preprint arXiv:1501.06508 (2015).

Sumeet Bajaj, Anrin Chakraborti, and Radu Sion. 2016. Practical Foundations
of History Independence. IEEE Trans. Inf. Forensics Secur. 11, 2 (2016), 303-312.
https://doi.org/10.1109/TIFS.2015.2491309

Sumit Bajaj and Radu Sion. 2013. Ficklebase: Looking into the future to erase
the past. In Proc. of the 29th IEEE International Conference on Data Engineering
(ICDE). 86-97.

Sumeet Bajaj and Radu Sion. 2013. HIFS: History independence for file systems.
In Proc. of the ACM SIGSAC Conference on Computer & Communications Security
(CCS). 1285-1296.

Michael A. Bender, Jon Berry, Rob Johnson, Thomas M. Kroeger, Samuel Mc-
Cauley, Cynthia A. Phillips, Bertrand Simon, Shikha Singh, and David Zage. 2016.
Anti-Persistence on Persistent Storage: History-Independent Sparse Tables and
Dictionaries. In Proc. 35th ACM Symposium on Principles of Database Systems
(PODS). 289-302.

Michael A. Bender, Alex Conway, Martin Farach-Colton, Hanna Komlos, William
Kuszmaul, and Nicole Wein. 2022. Online List Labeling: Breaking the log2 n
Barrier. In Proc. 63rd IEEE Annual Symposium on Foundations of Computer Science
(FOCS).

John Bethencourt, Dan Boneh, and Brent Waters. 2007. Cryptographic methods
for storing ballots on a voting machine. In Proc. of the 14th Network and Distributed
System Security Symposium (NDSS).

Guy E Blelloch and Daniel Golovin. 2007. Strongly history-independent hashing
with applications. In Proc. of the 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). 272-282.

Niv Buchbinder and Erez Petrank. 2003. Lower and Upper Bounds on Obtaining
History Independence. In Advances in Cryptology. 445-462.

Pedro Celis, Per-Ake Larson, and J. Ian Munro. 1985. Robin Hood Hashing
(Preliminary Report). In 26th Annual Symposium on Foundations of Computer
Science (FOCS’85). Portland, Oregon, USA, 281-288. https://doi.org/10.1109/SFCS.
1985.48

Bo Chen and Radu Sion. 2015. HiFlash: A History Independent Flash Device.
CoRR abs/1511.05180 (2015). arXiv:1511.05180 http://arxiv.org/abs/1511.05180
Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A highly-efficient wait-
free universal construction. In Proceedings of the Twenty-Third Annual ACM

[20

[21

[22

&
&

[24

[25]

[26

&
=

[28

[29

[30

[31

(32

[33

[34

[36

[37

[38

[39

S
=

[41

[42]

PODC ’24, June 17-21, 2024, Nantes, France

Symposium on Parallelism in Algorithms and Architectures (San Jose, California,
USA) (SPAA ’11). Association for Computing Machinery, New York, NY, USA,
325-334. https://doi.org/10.1145/1989493.1989549

Daniel Golovin. 2008. Uniquely Represented Data Structures with Applications to
Privacy. Ph.D. Dissertation. Carnegie Mellon University, Pittsburgh, PA, 2008.
Daniel Golovin. 2009. B-treaps: A uniquely represented alternative to B-Trees. In
Proc. of the 36th Annual International Colloquium on Automata, Languages, and
Programming (ICALP). Springer Berlin Heidelberg, 487-499.

Daniel Golovin. 2010. The B-skip-list: A simpler uniquely represented alternative
to B-trees. arXiv preprint arXiv:1005.0662 (2010).

Michael T. Goodrich, Evgenios M. Kornaropoulos, Michael Mitzenmacher, and
Roberto Tamassia. 2017. Auditable Data Structures. In Proc. IEEE European
Symposium on Security and Privacy (EuroS&P). 285-300. https://doi.org/10.1109/
EuroSP.2017.46

Jason D. Hartline, Edwin S. Hong, Alexander E. Mohr, William R. Pentney, and
Emily Rocke. 2002. Characterizing History Independent Data Structures. In
Proceedings of the Algorithms and Computation, 13th International Symposium
(ISAAC). 229-240. https://doi.org/10.1007/3-540-36136-7_21

Jason D Hartline, Edwin S Hong, Alexander E Mohr, William R Pentney, and
Emily C Rocke. 2005. Characterizing history independent data structures. Algo-
rithmica 42, 1 (2005), 57-74.

M. Herlihy. 1990. A Methodology for Implementing Highly Concurrent Data
Structures. SIGPLAN Not. 25, 3 (feb 1990), 197-206. https://doi.org/10.1145/
99164.99185

Maurice Herlihy. 1991. Wait-Free Synchronization. ACM Transactions on Pro-
gramming Languages and Systems 13, 1 (jan 1991), 124-149. https://doi.org/10.
1145/114005.102808

Maurice Herlihy. 1993. A methodology for implementing highly concurrent data
objects. ACM Transactions on Programming Languages and Systems 15, 5 (nov
1993), 745-770. https://doi.org/10.1145/161468.161469

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Programming Languages
and Systems 12, 3 (jul 1990), 463-492. https://doi.org/10.1145/78969.78972
Amos Israeli and Lihu Rappoport. 1994. Disjoint-Access-Parallel Implementations
of Strong Shared Memory Primitives. In Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Distributed Computing (Los Angeles, California,
USA) (PODC ’94). Association for Computing Machinery, New York, NY, USA,
151-160. https://doi.org/10.1145/197917.198079

Prasad Jayanti, Siddhartha Jayanti, and Sucharita Jayanti. 2023. Durable Al-
gorithms for Writable LL/SC and CAS with Dynamic Joining. In 37th Inter-
national Symposium on Distributed Computing (DISC 2023) (Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 281), Rotem Oshman (Ed.). Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany, 25:1-25:20.
https://doi.org/10.4230/LIPIcs. DISC.2023.25

Daniele Micciancio. 1997. Oblivious data structures: applications to cryptography.
In Proc. of the 29th Annual ACM Symposium on Theory of Computing (STOC).
456-464.

Tal Moran, Moni Naor, and Gil Segev. 2007. Deterministic history-independent
strategies for storing information on write-once memories. In Proc. 34th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP).

Moni Naor, Gil Segev, and Udi Wieder. 2008. History-independent cuckoo hash-
ing. In Proc. of the 35th International Colloguium on Automata, Languages and
Programming (ICALP). Springer, 631-642.

Moni Naor and Vanessa Teague. 2001. Anti-persistence: history independent data
structures. In Proc. of the 33rd Annual ACM Symposium on Theory of Computing
(STOC). 492-501.

Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2016. Arx: A Strongly
Encrypted Database System. IACR Cryptol. ePrint Arch. (2016), 591. http://eprint.
iacr.org/2016/591

William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.
Commun. ACM 33, 6 (1990), 668-676.

William Pugh and Tim Teitelbaum. 1989. Incremental computation via function
caching. In Proc. of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). 315-328.

Daniel S Roche, Adam] Aviv, and Seung Geol Choi. 2015. Oblivious Secure
Deletion with Bounded History Independence. arXiv preprint arXiv:1505.07391
(2015).

Daniel S. Roche, Adam J. Aviv, and Seung Geol Choi. 2016. A Practical Oblivious
Map Data Structure with Secure Deletion and History Independence. In IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, 178-197. https:
//doi.org/10.1109/SP.2016.19

Julian Shun and Guy E. Blelloch. 2014. Phase-Concurrent Hash Tables for Deter-
minism. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures (Prague, Czech Republic) (SPAA ’14). Association for Computing
Machinery, New York, NY, USA, 96-107. https://doi.org/10.1145/2612669.2612687
Lawrence Snyder. 1977. On uniquely represented data structures. In Proc. of
the 18th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
142-146.

https://doi.org/10.48550/arXiv.2403.14445
https://doi.org/10.1109/TIFS.2015.2491309
https://doi.org/10.1109/SFCS.1985.48
https://doi.org/10.1109/SFCS.1985.48
https://arxiv.org/abs/1511.05180
http://arxiv.org/abs/1511.05180
https://doi.org/10.1145/1989493.1989549
https://doi.org/10.1109/EuroSP.2017.46
https://doi.org/10.1109/EuroSP.2017.46
https://doi.org/10.1007/3-540-36136-7_21
https://doi.org/10.1145/99164.99185
https://doi.org/10.1145/99164.99185
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/114005.102808
https://doi.org/10.1145/161468.161469
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/197917.198079
https://doi.org/10.4230/LIPIcs.DISC.2023.25
http://eprint.iacr.org/2016/591
http://eprint.iacr.org/2016/591
https://doi.org/10.1109/SP.2016.19
https://doi.org/10.1109/SP.2016.19
https://doi.org/10.1145/2612669.2612687

PODC ’24, June 17-21, 2024, Nantes, France

[43] Rajamani Sundar and Robert Endre Tarjan. 1990. Unique binary search tree
representations and equality-testing of sets and sequences. In Proc. of the 22nd
Annual ACM Symposium on Theory of Computing (STOC). 18-25.

[44] Theodoros Tzouramanis. 2012. History-independence: a fresh look at the case
of R-trees. In Proc. 27th Annual ACM Symposium on Applied Computing (SAC).

Hagit Attiya, Michael A. Bender, Martin Farach-Colton, Rotem Oshman, and Noa Schiller

7-12.
[45] K. Vidyasankar. 1988. Converting Lamport’s regular register to atomic register.
Inform. Process. Lett. 28, 6 (1988), 287-290.

	Abstract
	1 Introduction
	2 Preliminaries
	3 History Independence for Concurrent Objects
	4 Motivating Example: Multi-Valued Register from Binary Registers
	5 HI Implementations from Smaller Base Objects
	5.1 The class Ct
	5.2 Impossibility of Wait-Free, State-Quiescent HI Implementations for the Class Ct

	6 A HI Universal Implementation
	6.1 Universal HI Implementation from Linearizable Releasable LLSC
	6.2 Lock-Free Perfect-HI R-LLSC Object from Atomic CAS
	6.3 Wait-Free State-Quiescent HI Universal Implementation from Atomic CAS

	7 Discussion
	Acknowledgments
	References

