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ABSTRACT

Voice spoofing attacks pose a significant threat to automated

speaker verification systems. Existing anti-spoofing meth-

ods often simulate specific attack types, such as synthetic or

replay attacks. However, in real-world scenarios, the counter-

measures are unaware of the generation schema of the attack,

necessitating a unified solution. Current unified solutions

struggle to detect spoofing artefacts, especially with recent

spoofing mechanisms. For instance, the spoofing algorithms

inject spectral or temporal anomalies, which are challenging

to identify. To this end, we present a spectra-temporal fusion

leveraging frame-level and utterance-level coefficients. We

introduce a novel local spectral deviation coefficient (SDC)

for frame-level inconsistencies and employ a bi-LSTM-based

network for sequential temporal coefficients (STC), which

capture utterance-level artifacts. Our spectra-temporal fusion

strategy combines these coefficients, and an auto-encoder

generates spectra-temporal deviated coefficients (STDC) to

enhance robustness. Our proposed approach addresses multi-

ple spoofing categories, including synthetic, replay, and par-

tial deepfake attacks. Extensive evaluation on diverse datasets

(ASVspoof2019, ASVspoof2021, VSDC, partial spoofs, and

in-the-wild deepfakes) demonstrated its robustness for a wide

range of voice applications.

Index TermsÐ Voice Spoofing Detection, Spectral Tem-

poral, Audio Deepfake Detection, Unified spoofing detection

1. INTRODUCTION

Voice authentication methods are mainstream solutions for

identity verification systems, but the increasing prevalence

of voice spoofing, including logical, physical, and deepfake

attacks, poses a significant threat to their effectiveness [1].

Existing methods often focus on mitigating individuals or a

subset of these attacks. For example, recent research [2] high-

lights this vulnerability, particularly for partial and full deep-

fakes. While existing systems effectively detect replay and

synthetic speech, they struggle to identify partial deepfakes,

as shown in Table 1. The results show that the countermeasure

demonstrates a substantial drop in performance when evalu-

ated on partially spoofed samples. Even training specifically

Table 1: An architecture from the top 5 performers of the

ASV challenge [2] is evaluated in terms of generalizabil-

ity using ASVspoof2019-LA and Partialspoof2021 datasets.

(Lower is better).

ASV PSF

Train Dev. Eval. Dev. Eval.

EER(%)
ASV 0.21 2.65 9.59 ↑ 15.96 ↑

PSF 4.28 ↑ 5.38 ↑ 3.68 6.19 ↑

min-tDCF
ASV 0.006 0.064 0.185 ↑ 0.300 ↑

PSF 0.115 0.171 0.100 0.164

on partial spoofs did not fully address the performance issue.

In the speech spectral analysis shown in Fig.1, a partial spoof-

ing spectrogram differs from spectrograms of replay or syn-

thetic speeches and showing heterogeneous spectral artifacts.

This may lead to significant performance deterioration of ex-

isting spoofing countermeasures. This challenge persists even

when these systems are trained specifically on dataset of par-

tial spoofs, underscoring the necessity for a solution proficient

in detecting temporal disparities in partial deepfake scenarios.

Previous anti-spoofing techniques aimed at preventing ei-

ther physical or logical attacks [1, 3, 4, 5]. However, re-

cent approaches focus on developing a unified solution based

on utterance-level features capable of detecting both physical

and logical attacks (LA) [6, 7, 8]. Despite this, these unified

solutions tend to exhibit bias towards either detecting logi-

cal or physical attacks (PA), highlighting the necessity for an

impartial unified solution. Additionally, other research has

delved into the detection of partial and fully deepfake attacks

in a unified solution based on segment-level features [6, 9].

However, these methods often fall short in identifying physi-

cal attacks. Therefore, addressing both full and partial deep-

fake attacks requires a comprehensive approach that considers

both segment-level and utterance-level artifacts.

To address these challenges, we propose a spectra-

temporal approach involving the extraction of frame-oriented

spectral deviated coefficients (SDC) and utterance-oriented

sequential temporal coefficients (STC) using a Bidirectional

Long Short-Term Memory (Bi-LSTM) network. The ra-

tionale behind STC and SDC lies in analyzing spectral

inconsistencies within distinct frequency ranges. Replay
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Fig. 1: Spectrogram comparison of bona fide (first-left), fully synthesized (second), partially deep fake (third), and replay

(fourth) speech samples.

attacks, involving the mic-speak-mic process, exhibit pro-

nounced non-linearities and microphonic distortion in lower

frequency bands, constrained by the recording or replaying

microphones. Conversely, synthetic speech generated by AI

algorithms leads to spectral manipulation primarily in higher

frequency ranges due to the absence of a real-speaker vocal

frequency representation. Additionally, STC tackles tempo-

ral inconsistencies in partial spoofing. These components

collectively capture intricate patterns at both the utterance

and frame levels, forming a strong foundation for our unified

approach.

The main contributions of this paper are as follows: 1) We

introduce a spectra-temporal-based unified method for the

detection of different voice spoofing categories. 2) We pro-

posed spectral deviated coefficients for segment-level artifact

extraction and employed a bi-LSTM network to capture se-

quential temporal artifacts within speech signals. Through

rigorous experimentation using diverse datasets, we demon-

strate the effectiveness of the proposed method. To the best

of our knowledge, this is the first ever attempt to tackle four

different types of voice spoofing with a single system.

2. PROPOSED METHOD

The proposed method is divided into three sections, as shown

in Fig. 2. It consists of Spectral Deviated Coefficients

(SDC), Sequential Temporal Coefficients (STC), and Spectra-

Temporal Deviation Coefficients (STDC). These sections col-

lectively form a unified method for the reliable detection of

voice spoofing.

2.1. Spectral Deviated Coefficients (SDC)

We used the raw input speech signal s(t) to extract SDC, con-

sisting of both higher and lower frequencies across various

time frames:

s(t) = h ∗ sin(2πf1t) + l ∗ sin(2πf2t) (1)

where h and l represent the amplitudes of frequencies, and f1
and f2 denote the higher and lower frequencies, respectively.

Next, we use Hamming windows, which minimizes the spec-

tral leakage by tapering frame edges and preventing abrupt

truncation:

w[n] = α− β · cos

(

2πn

N − 1

)

(2)

y[n] = s[t] · w[n] (3)

where s[t] denotes the input signal, w[n] represents the Ham-

ming window with a size of N , and α and β are the window

center and edge coefficients, respectively. The resulting seg-

mented signal, after applying windowing and framing, is de-

noted as y[n]. Next, we transform the obtained y[n] to the fre-

quency spectra using a log-Mel spectrogram and fast Fourier

transform (FFT) with the following parameters (hop length =

512, mels = 128, fft = 2048) as follows:

S[mk] = log

(

1 +

N−1
∑

n=0

|X[n]|2 ·Hm[k, fn]

)

(4)

where S[mk] represents the log-Mel spectrogram at Mel

frequency m and frame k, X[n] stands for the Short-Time

Fourier Transform (STFT) at time n, and Hm[k, fn] repre-

sents the Mel filterbank at frequency fn corresponding to Mel

frequency m. The obtained log-transformed Mel spectrogram

is then subjected to the Local Deviated Pattern (LDP) oper-

ator, which captures the local higher and lower frequency

spectrum as follows:

LDP (Smk(c), Smk(n), µt) =



















1 Smk(n) ≥ Smk(c) + µt,

−1 Smk(n) ≤ Smk(c) − µt,

0 Smk(c) − µt ≤ Smk(n),

0 Smk(n) ≤ Smk(c) + µt

(5)

where LDP (Smk(c), Smk(n), µt) represents the Local De-

viated Pattern at position (c, n) with Smk(c) and Smk(n)

representing the central and neighboring window values, and

µt refers to the central tendency average of the window. We

determine the conditioning threshold by considering both

Smk(c) and µt, rather than relying solely on the central win-

dow value. It enhances the extraction of LDP features by

capturing deviations from the central value, revealing pat-

terns indicative of underlying acoustic traits.

To efficiently handle spatial frequencies, we separately

process the higher and lower frequencies of S[mk]. The LDP

employs triplicate conditions to extract both higher and lower

patterns. These patterns are further categorized into two sets:

local higher spectra (LHS) and local lower spectra (LLS). Be-

fore computing LHS and LLS, we transform negative val-

ues into positive ones, as shown in Eqs. 6 and 7. For LHS,

we convert all ‘-1’ values to ‘0’ while leaving the other val-

ues unchanged, as described in Eq. 6 This results in a set of

positive higher-order patterns in S[mk]. Similarly, LLS pat-

terns are derived by replacing ‘1’ with ‘0’ and ‘-1’ with ‘1’ in
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Fig. 2: Architectural diagram of the proposed solution (left). The right upper subset in blue dotted line represent the extraction

mechanism of frame level Spectral Deviated Coefficients. The right lower subset in green presents the extraction mechanism of

utterance level Sequential Temporal Coefficients.

LDP (Smk(c), Smk(n),mut) as follows:

LHS = LDP (Smk(c), Smk(n), µt) = −1 −→ 0 (6)

LLS =

{

LDP (Smk(c), Smk(n), µt) = 1 −→ 0

LDP (Smk(c), Smk(n), µt) = −1 −→ 1
(7)

The binary bit streams, denoted as LHS and LLS, are con-

verted into decimal values through a bit extraction process.

We begin by extracting bits from the eastern direction and

proceed in a counter-clockwise manner to obtain the decimal

equivalents as shown in the equation below:

HL(int) =

K−1
∑

i=0

HL(Crn)× 2i−1 (8)

where HL denotes the higher and lower coefficients obtained

from Eqs. 6 and 7, Crn represents the right neighbour at each

position, and K is the total number of bits. Next, we extract

deviated tendency patterns from the obtained HL(int) to en-

sure the presence of spectral artifacts in both lower and higher

spectral coefficients. Later, we only extract coefficients that

exist in both higher and lower coefficients and neglect the rest

of the values. We perform this task in a two-step process.

First, we compute the mean vector of both higher and lower

integrals separately as follows:

MV(δ) =
1

n

n
∑

i=1

HL(int) (9)

where MV(δ) refers to the mean vector from higher and lower

integrals HL(int). Next, we compute the central tendency

vector from the obtained mean vectors HT(δ) as follows:

CTV(δ) =
1

n

n
∑

i=1

MV(δ) (10)

where CTV(δ) denotes the central tendency mean value from

the obtained mean vectors in Eq. 9. By calculating the mean

from the mean vectors, we confirm the presence of higher fre-

quencies in both higher and lower integrals, combining them

into a single optimal SDC. We retained values that are higher

than their mean values and added them to derive the optimal

robust spectral features, as demonstrated in Eq. 11.

SDC(coff) = [HL(int) > CTV(δ)] (11)

where SDC(coff) represents the spectral deviated coeffi-

cients. Finally, a discrete Fourier transform (DFT) is applied

to the LDP-transformed SDC(coff) coefficients to obtain

robust 128D spectral features. The upper right side of Fig. 2

shows the extraction of SDC patterns.

2.2. Sequential Temporal Coefficients (STC)

We employed a bidirectional long-short-term memory (Bi-

LSTM) network to extract sequence-based utterance-level

features. Bi-LSTM’s bidirectional processing, unlike tradi-

tional LSTMs, considers both backward and forward context,

enhancing complex temporal relationships. In this work, a

two-layer Bi-LSTM configuration [10] was employed to im-

prove temporal feature extraction, yielding 128-dimensional

temporal features.

2.3. Spectra-Temporal Deviation Coefficients (STDC)

In this section, we focus on converging SDC and STC to cre-

ate the Spectra-Temporal Deviation Coefficients (STDC) fea-
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ture set. Given the distinct natures of SDC and STC, we ad-

dress the range disparity by applying a tailored normalization

technique that ensures both sets of coefficients are within a

compatible range. The normalized coefficients are then pro-

cessed through an autoencoder-decoder network, which dis-

tils the robust representation of spectra-temporal cues. The

reconstruction process of the STDC feature set also aids in

alleviating the challenges posed by sparsity in STC features

before normalization.

3. EXPERIMENTATION AND RESULTS

3.1. Dataset and Implementation Details

We used several challenging datasets (ASVspoof2019, VSDC,

partial spoofs (Utterance-based), ASVspoof2021 and in-

the-wild audio deepfakes (IWA)) to evaluate the proposed

method [10]. We used the training subset of Asvspoof2019

for training, development subset for validation and testing

subset for evaluation of the system. To address the data

imbalance in ASVspoof2019 and partial spoof datasets, we

applied five augmentation techniques as follows: high-pass

filtering, low-pass filtering, compression, time and pitch

shift, and reverberation. For our backend classifiers, we used

a batch size of 32, the Adam optimizer with an initial learn-

ing rate of 1e−4 and a weight decay of 0.001. Models were

trained for 50 epochs using cross-entropy loss.

3.2. Experimental Results

3.2.1. Performance Analysis of the SDC with Different Clas-

sifiers

We have evaluated the performance of the proposed SDC

features with different machine learning (ML) and residual-

based classifiers, and the results are presented in Table 2.

It is observed from the results that SDC features performed

well with both ML and residual classifiers, with the best

performance achieved with Ensemble and SE-ResNext18
classifiers. The lower EERs show the efficiency of the pre-

sented coefficients and their potential standalone use for voice

spoofing attack detection.

3.2.2. Performance Analysis of STDC with Different Voice

Spoofing Datasets

We choose the best-performing back-end classifier (SE-

ResNeXt18) from Table 2 and evaluate the performance

of the proposed system with different datasets. Results are

shown in Table 3, indicating performance improvement when

spectral coefficients converge with temporal coefficients.

Specifically, EER improves from 0.25 to 0.22, 0.60 to 0.52,

3.70 to 3.50, and so on. These results show the significance

of incorporating both spectral and temporal coefficients.

3.2.3. Comparison with Existing SOTA Methods

We evaluate our proposed methods against recent voice

spoofing countermeasures, addressing four distinct attack

types: LA, PA, and fully and partially deepfake. To our

knowledge, this is one of the first comprehensive approach to

Classifiers ASV-19 ASV-21 PSF VSDC IWA

LA PA LA DF

Random Forest 0.49 1.20 4.37 5.11 7.90 2.30 29.9

KNN 0.28 1.00 4.17 5.20 6.11 1.89 25.5

SVM 0.22 0.70 4.90 3.95 5.95 1.02 70.7

Logistics Regression 0.30 0.80 3.95 3.90 6.30 2.15 90.0

Naive Bayes 0.31 0.75 4.98 4.50 6.50 2.40 95.5

Decision Tree 0.45 0.90 5.30 5.50 7.11 3.90 19.0

Ensemble 0.26 0.63 3.79 3.40 6.02 2.01 40.0

ResNet18 0.28 0.60 4.01 3.30 5.95 1.56 45.0

SE-ResNet18 0.29 0.63 3.90 3.40 5.98 1.10 35.3

ResNext18 0.25 0.65 3.98 3.35 6.00 1.50 40.4

SE-ResNext18 0.25 0.60 3.70 34.1 5.98 0.95 32.23

Table 2: Perfor-

mance analysis of

spectral deviated co-

efficients with differ-

ent machine learning

and deep learning

back-end classifiers.

Table 3: Performance analysis of Spectra-Temporal Deviated Co-

efficients against different datasets (Lower is better).
Performance ASV-19 ASV-21 PSF VSDC IWA

LA PA LA DF

EER 0.22 ± 0.1 0.52± 0.23 3.50 ± 1.25 3.20± 1.30 5.90± 1.50 0.80± 0.15 30.0± 2.50

Accuracy (%) 98.5 98.0 95.5 95.0 93.5 98.5 98.5

tackle these four attack categories simultaneously. Moreover,

we compared our solution to specific attack-focused methods,

such as ASVspoof2019 (LA+PA) in Table 4, ASVspoof2021
in Table 5, partial-spoof in Table 6, and IWA in Table 7.

Our method outperforms existing state-of-the-art methods.

Though the performance of the method on specific dataset

(IWA) and some attacks (PSF) is slightly higher, it exhibits

superior generalizability across a wide range of attacks.

Study Method ASV-19

LA PA

[11] CQCC-GMM 9.87 11.04

[11] LFCC-GMM 11.96 13.54

[12] FBCC-GMM 6.16 10.36

[13] SE-Res2Net50 2.86 1.00

[14] LFCC-CNN 9.09 2.01

[15] CQT-DCT-LCNN 1.84 0.54

Ours STDC+SE-ResNeXt18 0.22 0.52

Table 4: Comparison of

proposed method with

existing methods on

ASVspoof2019 dataset

(Lower is better).

Study Method ASV-21

LA DF

[16] wav2vec 2.0 1.19 4.38

[17] LCNN+ResNet+RawNet 1.32 15.64

[18] ECAPA-TDNN (Ensemble) 5.46 20.33

[19] ResNet (Ensemble) 3.21 16.05

[20] W2V2 (fixed)+LCNN+BLSTM 10.97 7.14

[20] W2V2 (finetuned)+LCNN+BLSTM 7.18 5.44

Ours STDC+SE-ResNeXt18 3.50 3.20

Table 5: Comparison of pro-

posed method with existing

methods on ASVSpoof2021

dataset.

Study Method EER

[6] LCNN 6.19

[6] SELCNN 6.33

[6] H-MIL (Ensemble) 5.96

[6] LS-H-MIL 5.89

[9] LCNN + LSTM 8.61

[9] SELCNN(2)+LSTM 7.69

Ours STDC+SE-ResNeXt18 5.90

Table 6: Comparison of

proposed method with exist-

ing models on partial spoof

dataset (Lower is better).

Study Method EER

[7] LCNN+LSTM 33.0

[8] RawGAT 53.00

[8] RawNet2 51.00

[3] ECAPA-TDNN 30.3

[4] H/ASP 27.2

[5] ClovaAI 36.3

Ours STDC+SE-ResNeXt18 30.3

Table 7: Comparison of

proposed method with ex-

isting models on In-the-

Wild Audio deepfake dataset

(Lower is better).

4. CONCLUSION AND FUTURE WORK

We have presented a spectra-temporal approach for the detec-

tion of a wide range of voice spoofing attacks. Our method in-

corporates SDC, STC, and STDC obtained through segment-

level and utterance-level patterns. Our method successfully

addresses various voice spoofing attacks, such as logical,

physical, full, and partial deepfake attacks, within a uni-

fied framework. The effectiveness of our proposed method

has been rigorously evaluated against state-of-the-art unified

classifiers, highlighting its potential to enhance voice spoof-

ing detection across a wide range of voice attack scenarios.
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