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ABSTRACT

Voice spoofing attacks pose a significant threat to automated
speaker verification systems. Existing anti-spoofing meth-
ods often simulate specific attack types, such as synthetic or
replay attacks. However, in real-world scenarios, the counter-
measures are unaware of the generation schema of the attack,
necessitating a unified solution. Current unified solutions
struggle to detect spoofing artefacts, especially with recent
spoofing mechanisms. For instance, the spoofing algorithms
inject spectral or temporal anomalies, which are challenging
to identify. To this end, we present a spectra-temporal fusion
leveraging frame-level and utterance-level coefficients. We
introduce a novel local spectral deviation coefficient (SDC)
for frame-level inconsistencies and employ a bi-LSTM-based
network for sequential temporal coefficients (STC), which
capture utterance-level artifacts. Our spectra-temporal fusion
strategy combines these coefficients, and an auto-encoder
generates spectra-temporal deviated coefficients (STDC) to
enhance robustness. Our proposed approach addresses multi-
ple spoofing categories, including synthetic, replay, and par-
tial deepfake attacks. Extensive evaluation on diverse datasets
(ASVspoof2019, ASVspoof2021, VSDC, partial spoofs, and
in-the-wild deepfakes) demonstrated its robustness for a wide
range of voice applications.

Index Terms— Voice Spoofing Detection, Spectral Tem-
poral, Audio Deepfake Detection, Unified spoofing detection

1. INTRODUCTION

Voice authentication methods are mainstream solutions for
identity verification systems, but the increasing prevalence
of voice spoofing, including logical, physical, and deepfake
attacks, poses a significant threat to their effectiveness [1].
Existing methods often focus on mitigating individuals or a
subset of these attacks. For example, recent research [2] high-
lights this vulnerability, particularly for partial and full deep-
fakes. While existing systems effectively detect replay and
synthetic speech, they struggle to identify partial deepfakes,
as shown in Table 1. The results show that the countermeasure
demonstrates a substantial drop in performance when evalu-
ated on partially spoofed samples. Even training specifically
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Table 1: An architecture from the top 5 performers of the
ASV challenge [2] is evaluated in terms of generalizabil-
ity using ASVspoof2019-LA and Partialspoof2021 datasets.
(Lower is better).

ASV PSF
Train | Dev. Eval. Dev. Eval.
ASV [021 265 | 9597 15967

EER(%)  psp | 4284 5381|368 6191

Dcp ASV [0006 0064 | 01857 03007

PSF | 0.115 0.171 | 0.100 0.164

on partial spoofs did not fully address the performance issue.
In the speech spectral analysis shown in Fig.1, a partial spoof-
ing spectrogram differs from spectrograms of replay or syn-
thetic speeches and showing heterogeneous spectral artifacts.
This may lead to significant performance deterioration of ex-
isting spoofing countermeasures. This challenge persists even
when these systems are trained specifically on dataset of par-
tial spoofs, underscoring the necessity for a solution proficient
in detecting temporal disparities in partial deepfake scenarios.

Previous anti-spoofing techniques aimed at preventing ei-
ther physical or logical attacks [!, 3, 4, 5]. However, re-
cent approaches focus on developing a unified solution based
on utterance-level features capable of detecting both physical
and logical attacks (LA) [6, 7, &]. Despite this, these unified
solutions tend to exhibit bias towards either detecting logi-
cal or physical attacks (PA), highlighting the necessity for an
impartial unified solution. Additionally, other research has
delved into the detection of partial and fully deepfake attacks
in a unified solution based on segment-level features [0, 9].
However, these methods often fall short in identifying physi-
cal attacks. Therefore, addressing both full and partial deep-
fake attacks requires a comprehensive approach that considers
both segment-level and utterance-level artifacts.

To address these challenges, we propose a spectra-
temporal approach involving the extraction of frame-oriented
spectral deviated coefficients (SDC) and utterance-oriented
sequential temporal coefficients (STC) using a Bidirectional
Long Short-Term Memory (Bi-LSTM) network. The ra-
tionale behind STC and SDC lies in analyzing spectral
inconsistencies within distinct frequency ranges. Replay
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(fourth) speech samples.

attacks, involving the mic-speak-mic process, exhibit pro-
nounced non-linearities and microphonic distortion in lower
frequency bands, constrained by the recording or replaying
microphones. Conversely, synthetic speech generated by Al
algorithms leads to spectral manipulation primarily in higher
frequency ranges due to the absence of a real-speaker vocal
frequency representation. Additionally, STC tackles tempo-
ral inconsistencies in partial spoofing. These components
collectively capture intricate patterns at both the utterance
and frame levels, forming a strong foundation for our unified
approach.

The main contributions of this paper are as follows: 1) We
introduce a spectra-temporal-based unified method for the
detection of different voice spoofing categories. 2) We pro-
posed spectral deviated coefficients for segment-level artifact
extraction and employed a bi-LSTM network to capture se-
quential temporal artifacts within speech signals. Through
rigorous experimentation using diverse datasets, we demon-
strate the effectiveness of the proposed method. To the best
of our knowledge, this is the first ever attempt to tackle four
different types of voice spoofing with a single system.

2. PROPOSED METHOD

The proposed method is divided into three sections, as shown
in Fig. 2. It consists of Spectral Deviated Coefficients
(SDC), Sequential Temporal Coefficients (STC), and Spectra-
Temporal Deviation Coefficients (STDC). These sections col-
lectively form a unified method for the reliable detection of
voice spoofing.

2.1. Spectral Deviated Coefficients (SDC)

We used the raw input speech signal s(t) to extract SDC, con-
sisting of both higher and lower frequencies across various
time frames:

s(t) = h* sin(2w f1t) + 1 * sin(27 fat) (1)

where h and [ represent the amplitudes of frequencies, and f;
and f5 denote the higher and lower frequencies, respectively.
Next, we use Hamming windows, which minimizes the spec-
tral leakage by tapering frame edges and preventing abrupt
truncation:

wln] = a — - cos <]57r_n1> 2)
y[n] = st] - w(n] 3

where s[t] denotes the input signal, w[n| represents the Ham-
ming window with a size of IV, and « and [ are the window
center and edge coefficients, respectively. The resulting seg-
mented signal, after applying windowing and framing, is de-
noted as y[n]. Next, we transform the obtained y[n] to the fre-
quency spectra using a log-Mel spectrogram and fast Fourier
transform (FFT) with the following parameters (hop length =
512, mels = 128, fft = 2048) as follows:

S[mk] = log (1 + z_: [ X[n]|? - Hinlk, fn]> “)

n=0

where S[mk] represents the log-Mel spectrogram at Mel
frequency m and frame k, X[n] stands for the Short-Time
Fourier Transform (STFT) at time n, and H,,[k, f,] repre-
sents the Mel filterbank at frequency f;, corresponding to Mel
frequency m. The obtained log-transformed Mel spectrogram
is then subjected to the Local Deviated Pattern (LDP) oper-
ator, which captures the local higher and lower frequency
spectrum as follows:

1 Smk(n) > Smk(c) + e,
-1 Smk(n) < Smk(c) — M,
0 Smk(c) - < Smk(n)a
0 Smk(n) < Smk:(c) +

&)
where LD P(Spp(c)s Smi(n)s 1) tepresents the Local De-
viated Pattern at position (c,n) with Sy and Spi(n)
representing the central and neighboring window values, and
¢ refers to the central tendency average of the window. We
determine the conditioning threshold by considering both
Smk(e) and pu, rather than relying solely on the central win-
dow value. It enhances the extraction of LDP features by
capturing deviations from the central value, revealing pat-
terns indicative of underlying acoustic traits.

To efficiently handle spatial frequencies, we separately
process the higher and lower frequencies of S[mk]. The LDP
employs triplicate conditions to extract both higher and lower
patterns. These patterns are further categorized into two sets:
local higher spectra (LHS) and local lower spectra (LLS). Be-
fore computing LH S and LLS, we transform negative val-
ues into positive ones, as shown in Eqs. 6 and 7. For LH S,
we convert all ‘-1’ values to ‘0’ while leaving the other val-
ues unchanged, as described in Eq. 6 This results in a set of
positive higher-order patterns in S[mk]. Similarly, LLS pat-
terns are derived by replacing ‘1’ with ‘0’ and ‘-1’ with ‘1’ in

LDP(Smk(c)a Smk(n)7 ,ut) -
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Fig. 2: Architectural diagram of the proposed solution (left). The right upper subset in blue dotted line represent the extraction
mechanism of frame level Spectral Deviated Coefficients. The right lower subset in green presents the extraction mechanism of

utterance level Sequential Temporal Coefficients.

LDP(Spk(c), Smk(n), muy) as follows:

LHS = LDP(Smk(C), Smk(n), ,ut) =—-1-0 6)

LDP(Smi(c), Smi(ny, ) =1 — 0
LDP(Spk(c) Smk(n)» t) =

The binary bit streams, denoted as LHS and LLS, are con-
verted into decimal values through a bit extraction process.
We begin by extracting bits from the eastern direction and
proceed in a counter-clockwise manner to obtain the decimal
equivalents as shown in the equation below:

LLS = (7)

-1—=1

K-1

HL (= »_ HL(Cpp) x 27" )
=0

where H L denotes the higher and lower coefficients obtained
from Eqs. 6 and 7, C,.,, represents the right neighbour at each
position, and K is the total number of bits. Next, we extract
deviated tendency patterns from the obtained H L ;) to en-
sure the presence of spectral artifacts in both lower and higher
spectral coefficients. Later, we only extract coefficients that
exist in both higher and lower coefficients and neglect the rest
of the values. We perform this task in a two-step process.
First, we compute the mean vector of both higher and lower
integrals separately as follows:

1 n
MV = - Z H L(int ©)
=1

where M V) refers to the mean vector from higher and lower
integrals H L(;,s). Next, we compute the central tendency

vector from the obtained mean vectors HT|s) as follows:

1 n
CTVis) = - > MV (10)

i=1

where C'T'V(5) denotes the central tendency mean value from
the obtained mean vectors in Eq. 9. By calculating the mean
from the mean vectors, we confirm the presence of higher fre-
quencies in both higher and lower integrals, combining them
into a single optimal SDC. We retained values that are higher
than their mean values and added them to derive the optimal
robust spectral features, as demonstrated in Eq. 11.

(1)

where SDC'.,rs) represents the spectral deviated coeffi-
cients. Finally, a discrete Fourier transform (DFT) is applied
to the LDP-transformed SDC.,ss) coefficients to obtain
robust 128D spectral features. The upper right side of Fig. 2
shows the extraction of SDC patterns.

SDC(COff) = [HL(mt) > CTV((;)]

2.2. Sequential Temporal Coefficients (STC)

We employed a bidirectional long-short-term memory (Bi-
LSTM) network to extract sequence-based utterance-level
features. Bi-LSTM’s bidirectional processing, unlike tradi-
tional LSTMs, considers both backward and forward context,
enhancing complex temporal relationships. In this work, a
two-layer Bi-LSTM configuration [10] was employed to im-
prove temporal feature extraction, yielding 128-dimensional
temporal features.

2.3. Spectra-Temporal Deviation Coefficients (STDC)

In this section, we focus on converging SDC and STC to cre-
ate the Spectra-Temporal Deviation Coefficients (STDC) fea-
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ture set. Given the distinct natures of SDC and STC, we ad-
dress the range disparity by applying a tailored normalization
technique that ensures both sets of coefficients are within a
compatible range. The normalized coefficients are then pro-
cessed through an autoencoder-decoder network, which dis-
tils the robust representation of spectra-temporal cues. The
reconstruction process of the STDC feature set also aids in
alleviating the challenges posed by sparsity in STC features
before normalization.

3. EXPERIMENTATION AND RESULTS

3.1. Dataset and Implementation Details

We used several challenging datasets (ASVspoof2019, VSDC,
partial spoofs (Utterance-based), ASVspoof2021 and in-
the-wild audio deepfakes (IWA)) to evaluate the proposed
method [10]. We used the training subset of Asvspoof2019
for training, development subset for validation and testing
subset for evaluation of the system. To address the data
imbalance in ASVspoof2019 and partial spoof datasets, we
applied five augmentation techniques as follows: high-pass
filtering, low-pass filtering, compression, time and pitch
shift, and reverberation. For our backend classifiers, we used
a batch size of 32, the Adam optimizer with an initial learn-
ing rate of 1e~* and a weight decay of 0.001. Models were
trained for 50 epochs using cross-entropy loss.

3.2. Experimental Results

3.2.1. Performance Analysis of the SDC with Different Clas-
sifiers

We have evaluated the performance of the proposed SDC
features with different machine learning (ML) and residual-
based classifiers, and the results are presented in Table 2.
It is observed from the results that SDC features performed
well with both ML and residual classifiers, with the best
performance achieved with Ensemble and SE-ResNext18
classifiers. The lower EERs show the efficiency of the pre-
sented coefficients and their potential standalone use for voice
spoofing attack detection.

3.2.2. Performance Analysis of STDC with Different Voice
Spoofing Datasets

We choose the best-performing back-end classifier (SE-
ResNeXt18) from Table 2 and evaluate the performance
of the proposed system with different datasets. Results are
shown in Table 3, indicating performance improvement when
spectral coefficients converge with temporal coefficients.
Specifically, EER improves from 0.25 to 0.22, 0.60 to 0.52,
3.70 to 3.50, and so on. These results show the significance
of incorporating both spectral and temporal coefficients.

3.2.3. Comparison with Existing SOTA Methods

We evaluate our proposed methods against recent voice
spoofing countermeasures, addressing four distinct attack
types: LA, PA, and fully and partially deepfake. To our
knowledge, this is one of the first comprehensive approach to

Classifiers ASV-19 ASV-21_[ PSF [ VSDC | IWA .
AT TA T O Table 2: Perfor-
Random Forest 049 [ 120 | 437 [ 5.11 | 790 | 230 | 299 H
KNN 028 | 1.00 | 417 | 520 | 6.11 | 189 | 255 mance analy sis of
SVM 022070 | 490 | 395 |595| 102 | 707 -
Logistics Regression | 0.30 | 0.80 | 3.95 | 3.90 | 6.30 | 2.15 | 90.0 spectral deviated co
Naive Bayes 031 075|498 | 450 | 650 | 240 | 955 i i i -
Decision Tree 045|090 | 530 | 550 | 7.11 | 390 | 190 efficients with differ
Ensemble 026 | 063|379 | 340 | 6.02| 201 | 400 ent machine learning
ResNetl$ 028 | 060 | 401 | 330 | 595 | 156 | 450 X
SE-ResNet18§ 029 | 0.63 | 3.90 | 340 | 598 | 1.10 | 353 and deep 1earn1ng
ResNext18 025 065|398 | 335 600| 150 | 404 R
SE-ResNext!8 025 | 0.60 | 3.70 | 34.1 | 5.98 | 095 | 32.23 back-end classifiers.

Table 3: Performance analysis of Spectra-Temporal Deviated Co-
efficients against different datasets (Lower is better).

Performance ASV-19 ASV-21 PSF VSDC TWA
LA PA LA DF

EER 022£0.1 | 052+ 0.23 | 3.50 = 1.25 | 3.20+ 1.30 | 5.90% 1.50 | 0.80% 0.15 | 30.04 2.50

Accuracy (%) 98.5 98.0 95.5 95.0 93.5 98.5 98.5

tackle these four attack categories simultaneously. Moreover,
we compared our solution to specific attack-focused methods,
such as ASVspoof2019 (LA+PA) in Table 4, ASVspoof2021
in Table 5, partial-spoof in Table 6, and IWA in Table 7.
Our method outperforms existing state-of-the-art methods.
Though the performance of the method on specific dataset
(IWA) and some attacks (PSF) is slightly higher, it exhibits
superior generalizability across a wide range of attacks.

Sl Hethed ASYE Table 4: Comparison of
(1] CQCC-GMM 9.87 | 11.04 .
[ LFCC-GMM 11.96 | 13.54 proposed methOd WIth
[12] FBCC-GMM 6.16 | 10.36 oty
[13] SE-Res2Net50 2.86 1.00 eXIStlng methOdS on
[14] LFCC-CNN 9.09 | 2.01
0 COLDOTLONN | 184 | 054 ASVspoof2019 dataset
Ours | STDC+SE-ResNeXt18 | 0.22 0.52 (Lower iS better).
Study Method BRI Table 5: Comparison of pro-
1161 wav2vec 2.0 119 | 438 : s ot
[ LCNN+ResNet+RawNet 132 | 15.64 posed methOd Wlth EXIStlng
[1%] ECAPA-TDNN (Ensemble) 546 | 20.33
[191 ResNet [Ensenl\‘l:er;‘ ¢ 321 16.05 methOdS on ASVSpOOf2021
201 ‘W2V2 (fixed)+LCNN+BLSTM 1097 | 7.14
201 W2V2 (finetuned)+LCNN+BLSTM | 7.18 544 dataset‘
Ours STDC+SE-ResNeXt18 3.50 | 3.20
[S“]"dy Method FER Table 6: Comparison of
[6] SELCNN 633 proposed method with exist-
[61 H-MIL (Ensemble) | 5.96 . .
] LS-H-MIL Py ing models on partial spoof
1] LCNN + LSTM 8.61 dataset (Lower is better).
9] SELCNN(2)+LSTM 7.69
Ours | STDC+SE-ResNeXt18 | 5.90
‘f‘J“dy I e Table 7: Comparison of
] RawGAT 53.00 proposed method with ex-
[8] RawNet2 51.00 P
Ll ECAPA-TDNN 303 isting models on In-the-
{ } ;/AS:I zz% Wild Audio deepfake dataset
lova. 0.3 .
Ours | STDC+SE-ResNeXt18 | 30.3 (Lower is better).

4. CONCLUSION AND FUTURE WORK

We have presented a spectra-temporal approach for the detec-
tion of a wide range of voice spoofing attacks. Our method in-
corporates SDC, STC, and STDC obtained through segment-
level and utterance-level patterns. Our method successfully
addresses various voice spoofing attacks, such as logical,
physical, full, and partial deepfake attacks, within a uni-
fied framework. The effectiveness of our proposed method
has been rigorously evaluated against state-of-the-art unified
classifiers, highlighting its potential to enhance voice spoof-
ing detection across a wide range of voice attack scenarios.
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