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Abstract 34 

The presence and character of sedimentary organic matter (SOM) regulates the mobility of 35 

arsenic (As) as labile SOM determines redox reactions and zonation. Near rivers, the hyporheic 36 

zone (HZ) of oxic river water and anoxic regional groundwater may lead to the production (or 37 

dissolution) of iron (Fe)-oxides which are capable of sequestering (and mobilizing) As depending 38 

on dynamic redox conditions. This study characterizes the chemical reactivity of SOM from HZ 39 

sediments along the Meghna River in Bangladesh, and an adjacent As-contaminated shallow (< 40 

50 m) alluvial aquifer. The SOM in both the riverbank and aquifer is primarily composed of 41 

terrestrially-derived humic-like organic matter; however, the distribution of organic functional 42 

groups varies with the type of subsurface sediments. A shallow silt layer (~3 m below ground 43 

level) within the sandy aquifer contains fresher SOM, potentially of microbial origin, with higher 44 

proportions of amides and more labile polysaccharide moieties. On the contrary, SOM in an 45 

underlying clay aquitard (~37 m below ground) contains older, more recalcitrant, terrestrially-46 

derived material with high proportions of aromatic carboxylate functional groups. The labile SOM 47 

from the silt layer supports the microbially mediated reductive dissolution of As-bearing Fe-48 

oxides, preventing the accumulation of As in the HZ. The carboxylate-rich SOM in the clay 49 

aquitard helps maintain groundwater As concentrations by favoring the formation of soluble Fe 50 

and As complexes. These findings suggest that the SOM within the Meghna Riverbank and its 51 

adjacent aquifer contain differing reactive properties that likely influence the geochemical 52 

processes governing As and Fe mobility.  53 
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1 Introduction 54 

Organic matter in sediments, sedimentary organic matter (SOM), is known to play a vital role 55 

in mobilizing arsenic (As) from shallow Holocene aquifers in the Ganga-Meghna-Brahmaputra 56 

(GMB) delta in south Asia (Nickson et al., 2000; McArthur et al., 2004; Mladenov et al., 2010; 57 

Mailloux et al., 2013). Elevated As concentrations in groundwater in the aquifers of the GMB delta 58 

jeopardize the health of millions who rely on the groundwater for drinking purposes (Flanagan et 59 

al., 2012). Indeed, exposure to groundwater As exceeding the World Health Organization (WHO) 60 

maximum contaminant level of 10 µg/L in Bangladesh has been of global concern for decades 61 

leading to many studies which have improved the understanding of the natural processes 62 

promoting high groundwater As in reducing fluvio-deltaic aquifers (Smith et al., 2000; 63 

BGS&DPHE, 2001; Mukherjee & Bhattacharya, 2001; Yu et al., 2003; Flanagan et al., 2012). Yet 64 

reliance on elevated groundwater that is high in As is a continuing struggle for many in the Bengal 65 

basin and the heterogeneous modes of As mobilization leading to contaminated groundwater are 66 

not fully understood. A key reaction that releases As to pore-waters is the microbially mediated 67 

reductive dissolution of As-bearing Iron (Fe)-oxy(hydro)oxide minerals in the presence of labile 68 

organic matter (OM) (Nickson et al., 1998; Nickson et al., 2000; Bhattacharya et al., 2001; 69 

McArthur et al., 2001; Zheng et al., 2004; Hasan et al., 2007; Glodowska et al., 2020; Qiao et al., 70 

2020; Vega et al., 2020). However, in natural settings where a wide range of geochemical 71 

conditions exist in close proximity, various process may contribute to As mobilization 72 

simultaneously (Nicholas et al., 2017). For example, As mobility can be exacerbated by 73 

competition for sorption sites between As and dissolved silica (Smedley & Kinniburgh, 2002; 74 

Waltham & Eick, 2002; Harvey et al., 2005), carbonate (Appelo et al., 2002; Harvey et al., 2002; 75 

Biswas et al., 2011), phosphate (Redman et al., 2002; Simeoni et al., 2003; Bauer & Blodau, 2006; 76 
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Gustafsson, 2006; Wang & Mulligan, 2006; Xue et al., 2019), and OM (Redman et al., 2002; 77 

Simeoni et al., 2003; Bauer & Blodau, 2006; Gustafsson, 2006; Wang & Mulligan, 2006; Xue et 78 

al., 2019). Regardless of the precise mechanism of As mobilization, it is clear that OM plays a 79 

ubiquitous role in regulating groundwater As concentrations in alluvial aquifers and may be key 80 

to predicting the distribution of As (Anawar et al., 2003; Mladenov et al., 2010; Anawar et al., 81 

2013).  82 

Organic matter is known to participate in variety of chemical reactions in the environment. It 83 

has a significant electron donating capacity which helps create reducing conditions when it 84 

undergoes aerobic oxidation (Aeschbacher et al., 2010; Macalady & Walton-Day, 2011; Wallace 85 

et al., 2017; Lv et al., 2018) and alters the surface reactivity of minerals (Qu & Cwiertny, 2013). 86 

As a result, OM participates in the geochemical cycling of both major and trace metals (Li et al., 87 

2013; Mostofa et al., 2013). In fact, over 20% of OM in both terrestrial and oceanic sediments is 88 

associated with and stored in reactive Fe minerals (Wagai & Mayer, 2007; Lalonde et al., 2012). 89 

The composition of OM varies widely among sources in nature, with, various proportions of 90 

microbial products, humic and fulvic acids, and humin. Most OM is generated largely as the result 91 

of biological metabolism (Laspidou & Rittmann, 2002). In general, the majority of OM is 92 

composed of refractory humic substances (i.e. humic acid, fulvic acid and humin) (Piccolo, 1996; 93 

Senesi et al., 2003) and labile OM which consists of sugars, carbohydrates, and protein-like 94 

components (i.e. amino acids) (Coble & Timperman, 1998; Yamashita & Tanoue, 2003; Borisover 95 

et al., 2012). Together, these refractory and labile OM components drive the net heterotrophy in 96 

the environment (McManus et al., 2003). Humic substances typically contain large proportions of 97 

carboxylate functional groups which form strong complexes with metal cations (Fe3+ and Al3+) via 98 

ligand exchange or cationic bridging and have been implicated in adsorption reactions of As on 99 
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the surface of Fe-OM complexes (Deng & Dixon, 2002; Sharma et al., 2010; Liu et al., 2011). 100 

These carboxyl-metal complexes may either stabilize and preserve the OM and Fe in the sediments 101 

(Curti et al., 2021), or if the SOM contains high amounts of carboxylic acids, solubility increases 102 

promoting the mobility of Fe-OM-As complexes (Ni & Pignatello, 2018; Zhang et al., 2021). In 103 

contrast, the labile pool of OM comprised of protein-like compounds and microbial byproducts 104 

which are readily biodegradable, provides accessible electrons as a preferred energy source for 105 

microbial respiration (Haynes, 2005). Due to the heterogeneous composition of OM, the 106 

mechanisms provided by OM to As mobilization, whether from complexation (Sharma et al., 2010; 107 

Liu et al., 2011; Liu et al., 2020b), electron shuttling promoting microbially driven reduction 108 

(Lovley et al., 1996; Scott et al., 1998; Kappler et al., 2004; Sposito, 2011; Kulkarni et al., 2018b; 109 

Yi et al., 2019; Qiao et al., 2020; Wang et al., 2020; Qiao et al., 2021; Li et al., 2022), or 110 

competition for sorption sites (Bauer & Blodau, 2006), depends largely on the chemical makeup 111 

of the source OM. 112 

The reactivity of OM is mostly determined by its original source, yet the relative importance 113 

of the different sources of OM driving As mobilization in the aquifers of Bangladesh remains 114 

uncertain (Mailloux et al., 2013). A few hypotheses have been put forward regarding the source of 115 

OM in the aquifers, including: downward infiltration of dissolved OM from surface water (Harvey 116 

et al., 2006; Neumann et al., 2010), buried silt, peat, or clay lenses (McArthur et al., 2001; 117 

McArthur et al., 2004; Ravenscroft et al., 2005), and from OM dispersed within the aquifer 118 

sediments (Datta et al., 2011; Neumann et al., 2014). Considering that OM drives As mobilization 119 

in the aquifers of Bangladesh, it is imperative to comprehensively understand the nature of the 120 

SOM. Also considering that OM has an affinity for Fe-oxides, areas where abundant FeIII and 121 

reactive SOM co-occur, such as redox interfaces, are likely key locations where As is both trapped 122 



 7 

and mobilized under the influence of SOM. Ultimately, the geochemical cycling of OM, Fe, and 123 

As are integrally related and redox interfaces have been implicated in acting as intermediate 124 

barriers that limit the transportation of both inorganic and organic constituents (Charette & 125 

Sholkovitz, 2002; Datta et al., 2009; Riedel et al., 2013).  126 

The hyporheic zone (HZ) represents a redox transition zone along the river where oxic river 127 

water and reducing groundwater mix to form a biogeochemical hotspot with enhanced chemical 128 

reaction rates relative to the adjacent areas (McClain et al., 2003). Redox conditions throughout 129 

the HZ support a wide array of microbial communities which may effectively metabolize OM from 130 

the river, groundwater, and sediments, which impacts Fe cycling and ultimately regulates the 131 

attenuation of both organic and inorganic contaminants (Fiebig, 1995; Findlay et al., 2003; Fischer 132 

et al., 2005; Nogaro et al., 2013; Shuai et al., 2017a; Zhu et al., 2020; Xia et al., 2023). One such 133 

feature likely present in HZs, termed a natural reactive barrier (NRB) (Bone et al., 2006), removes 134 

As when amorphous Fe-oxides precipitate on mineral surfaces along the surface water-135 

groundwater interface from the interaction between the oxic surface water and reduced Fe-rich 136 

groundwater (Charette & Sholkovitz, 2002; Charette et al., 2005; Bone et al., 2006; Charette & 137 

Sholkovitz, 2006; Jung et al., 2009). Evidence of a seasonal HZ NRB has been observed along the 138 

tidally influenced Meghna River in Bangladesh during the dry season when the reduced 139 

groundwater is drawn towards the river (Datta et al., 2009; Jung et al., 2012; Jung et al., 2015; 140 

Berube et al., 2018; Varner et al., 2022), which then interacts with infiltrating oxic river water to 141 

precipitate amorphous Fe-oxides capable of sequestering large amounts of As (Datta et al., 2009; 142 

Jung et al., 2015; Berube et al., 2018; Huang et al., 2022). Although the response of a NRB to 143 

changing redox conditions has not been examined, Fe-oxides in the HZ may be dissolved under 144 

reducing conditions introduced by either rapid groundwater discharge in the early dry season 145 
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(Datta et al., 2009; Baken et al., 2015; Berube et al., 2018) or from the inundation and seasonal 146 

deposition of Fe-OM rich-sediment during the wet season (Stahl et al., 2016; Wallis et al., 2020). 147 

Nevertheless, the ability of OM to provide energy for microbial reduction of Fe-oxides and form 148 

As and Fe complexes makes the characterization of OM a necessary component in defining the 149 

behavior of As across redox interfaces.  150 

Prior work along the Meghna River indicated that surficial sand layers promote the formation 151 

of a NRB whereas surficial silt layers inhibit the mixing required to generate a Fe-oxide-rich NRB 152 

(Jung et al., 2015). Pedrazas et al. (2021) determined the presence of buried silt layer (~ 3 to 7 m 153 

bgl) at the present site using geophysical measurements. Our recent work at this site along Meghna 154 

River in Bangladesh (Varner et al., 2022) showed that the riverbank sediments contained low 155 

concentrations of As compared to prior work that reported Fe and As enrichment within the 156 

Meghna River HZ (Datta et al., 2009; Jung et al., 2012; Jung et al., 2015; Berube et al., 2018). 157 

Such low As in the HZ sediments at this site may be attributed to the buried silt layer that may 158 

prevent Fe-oxide formation by impeding groundwater mixing or providing OM to the riverbank to 159 

sustain reducing conditions. The water-extractable SOM from the riverbank sand, buried silt layer, 160 

aquifer sand, and underlying clay aquitard showed distinct fluorescence signatures (Varner et al., 161 

2022), suggesting that the buried silt layer may be providing sufficient labile organic matter for 162 

heterotrophic metabolisms. Therefore, we hypothesized that such optically distinct SOM in the 163 

subsurface layers at our site may contain chemical distinct organic functional groups, and its 164 

detailed characterization will help in explaining the role of SOM in mobility of As and Fe within 165 

HZ of the Meghna River.  166 

To our knowledge the relationship between the specific chemical composition of OM within 167 

riverbank sediments and As mobilization has not yet been extensively studied in the Bengal basin. 168 
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In this study, we define the structural characteristics of SOM at selected and previously well-169 

characterized locations from the As contaminated aquifer and the adjacent HZ sediments along the 170 

Meghna River utilizing both UV-Vis and FTIR spectroscopic techniques (Minor et al., 2014). The 171 

specific functional groups comprising the SOM helped to characterize the reactivity of SOM and 172 

its relationship to As mobilization in the aquifer and riverbank HZ sediments.  173 

2 Methods 174 

2.1 Study site 175 

The study site lies along the Meghna River 30 km east of Dhaka, adjacent to the village of 176 

Nayapara (23.7°N, 90.7°E) within the Narayanganj district (Fig. 1). The lithology of shallow 177 

aquifers (<60 m) in the region are typical of fluvio-deltaic depositional environments, consisting 178 

of medium to fine unconsolidated sand with interbedded lenses of silt and clay (Aziz et al., 2008; 179 

Bibi et al., 2008; Weinman et al., 2008). The detailed lithology at this site along the Meghna River 180 

is described in Varner et al. (2022). Briefly, it consists of four units; an underlying clay layer at 181 

~36 m below ground level (bgl) overlain by medium sands which comprises the shallow aquifer 182 

between 36 and 7 bgl. This aquifer is overlain by a silt layer between 7 and 3 m bgl; this silt layer 183 

is overlain by fine sand between 3 and 0 m bgl. 184 

The co-occurrence of high dissolved As and Fe concentrations in the nearby shallow aquifers 185 

of the Meghna River floodplain have been well documented (BGS&DPHE, 2001; van Geen et al., 186 

2003; van Geen et al., 2014).  Along the Meghna River shallow groundwater flows towards the 187 

river for most of the year (Huang et al., 2022), and multiple studies have observed very high solid-188 

phase concentrations of As (>100 mg/kg) and Fe (>30,000 mg/kg) within the HZ sediments (Datta 189 

et al., 2009; Jung et al., 2012; Jung et al., 2015; Berube et al., 2018). This suggests that advected 190 

As and Fe from the shallow aquifer may accumulate in the HZ under the influence of mixing with 191 
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the oxygenated river water. This mixing is in turn driven by tidal and seasonal fluctuations in the 192 

river stage (Shuai et al., 2017b). During the dry season, the river is most strongly gaining. 193 

However, when the riverbank becomes inundated during the wet season, the river is weakly 194 

gaining or slightly losing (Berube et al., 2018). 195 

2.2 Sample collection and analyses 196 

The riverbank and aquifer sediment samples used in this study (n = 8) were collected from the 197 

study site along the Meghna River in January 2020. The aquifer sediment was collected as 198 

sediment cuttings from a borehole installed using the traditional hand flapper method (n = 6) 199 

(Horneman et al., 2004), whereas the riverbank sediment (n = 2) was collected from a depth of 0.6 200 

m bgl using a direct push sediment probe (AMS Inc., USA). Four representative samples from 201 

Figure 1. (A) Map of study site with sampling locations of riverbank sediment (circles) and aquifer sediment 

(squares). The filled symbols represent the sampling locations of the sediment used in this study. (B) Depiction of 

the subsurface lithology at the site derived from an electrical resistivity transect along the riverbank and drill 

cuttings from the aquifer borehole (Pedrazas et al., 2021; Varner et al., 2022). 
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riverbank sand (RBS, 0.6 m), buried silt (SLT, 6 m), aquifer sand (AQS, 23 m), and underlying 202 

clay aquitard (CLY, 37 m) were selected for this study. Analyses of RBS (n = 32, from nine 203 

sediment cores), AQS (n = 13), SLT (n = 3), and CLY (n = 2) samples from three drill cuttings 204 

(Varner et al., 2022) showed that the optical properties of water-extractable SOM were similar 205 

within the sample groups (e.g., RBS, AQS, SLT and CLY) but distinct from each other. We 206 

therefore selected four well-characterized samples from each group (RBS, SLT, AQS and CLY) 207 

for the detailed functional group characterization, whose elemental composition, particle size 208 

distribution, and optical properties of water-extractable organic matter were described in Varner 209 

et al. (2022). All sediment samples used in this study were stored in Mylar Remel® bags with an 210 

O2 absorbent pouch and kept at -7 °C until analysis. 211 

2.3 Sedimentary organic matter (SOM) extraction using NaOH 212 

To extract the SOM from the riverbank and aquifer sediments, 2.5 g of air-dried sediment was 213 

powdered using an agate mortar and pestle and placed in a 50 ml centrifuge tube with 25 ml of 0.1 214 

M NaOH solution (pH = 10.6). The mixture was mechanically shaken for 20 h (table shaker, 60 215 

rpm) at ambient temperature. The supernatant was separated from the solid phase by centrifugation 216 

(12,000 rpm, 20 min). Extractions using a dilute NaOH solution have been widely used to extract 217 

natural SOM (Stevenson, 1994). Further acidification, following the NaOH solution, allows for 218 

the partitioning of humic and fulvic acids (Bai et al., 2020). In this study, the extract solutions were 219 

not acidified in order to retain all humic and non-humic fractions of SOM. Such NaOH extractions 220 

have been shown to release a large percentage of the SOM and include not only humic substances, 221 

but also the low molecular weight acids, protein-like substances, and saccharide derivatives which 222 

comprise between 25-35% of the overall SOM in inorganic soils (Schnitzer, 1983; Ping et al., 223 

2001). Following centrifugation, the supernatant of the NaOH extractant solution was 0.45 µm 224 
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filtered and immediately lyophilized for FTIR measurement to avoid any loss or degradation of 225 

the OM in solution (Lin, 2015; Sandron et al., 2015).  226 

2.4 Spectroscopic characterization of NaOH extractable organic matter 227 

The mid-infrared spectra of the lyophilized NaOH sediment-extracts and a standard humic 228 

acid (HA) material (Sigma Aldrich humic acid, Aldrich Chemical Co., Product No. H16752) were 229 

obtained by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) over 230 

the 4000-650 cm-1 range on a Shimadzu IRSpirit spectrometer (Shimadzu Corporation, Japan). 231 

The spectrometer was fitted with a QATR-S diamond crystal attachment and a germanium-coated 232 

KBr beam splitter. Data were obtained as absorbance [log(1/reflectance)] and 64 scans at a 233 

resolution of 4 cm-1 were averaged to obtain each sample spectrum. Background readings were 234 

collected between samples and subtracted from the subsequent measurements. The collected FTIR 235 

spectra were processed, baseline corrected, and smoothed in Spectragryph (v1.2.16.1).  236 

To further characterize the spectroscopic properties of SOM, simultaneous UV-Vis 237 

measurement of the absorbance between 240 and 450 nm and the fluorescence between 300 and 238 

600 nm was collected on the extract solutions using a benchtop fluorometer (Aqualog, Horiba). 239 

Following the methods described in Kulkarni et al. (2017), the spectroscopic data from the 240 

absorbance and fluorescence wavelengths were used to generate an excitation-emission matrix 241 

(EEM) for each sample. Specific parameters were calculated from the UV-Vis spectroscopic data 242 

to provide further characterization of the source and dynamic processes of the SOM and are 243 

detailed in the supplementary text 2. Furthermore, the assignment of peaks at established 244 

excitation/emission (ex/em) pairs for the peak-picking method is useful for characterizing and 245 

monitoring the organic properties in spectroscopic data (Goldman et al., 2012; Chen & Yu, 2021). 246 

For this study, commonly used ex/em pairs in the fluorescence spectra which reflect the structures 247 
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present in the OM were used, including humic-like (peak A, 260/380 – 460), fulvic-like (peak C, 248 

320 – 260/420 – 460), microbially derived (peak M, 290 – 310/370 – 410), protein-like tryptophan 249 

(peak T, 270/340), and protein-like tyrosine (peak B, 270/305) (Coble et al., 1998; Coble et al., 250 

2014). 251 

The drEEM toolbox (v 0.6.0) (Murphy et al., 2013) was used for parallel factor analysis 252 

(PARAFAC) modeling of a 96 sample dataset of fluorescence spectra comprised of the samples 253 

obtained in this study and a previous dataset which included groundwater, riverbank porewater, 254 

river water, and sediment-water extracts from the same location (Table S1) (Varner et al., 2022). 255 

The EEMs included in the PARAFAC model were corrected to account for scatter, anomalies, and 256 

artifacts during collection of the spectra. Out of an initial 97 samples, only 1 sample was identified 257 

as an outlier with a leverage value nearing 1, indicating a high degree of deviation from the average 258 

distribution, and was removed from the model due to this analytical error. The remaining 96 259 

samples produced a three-component model and was validated by a split-half analysis of 50 models 260 

with three components, which confirmed the reliability of the three-component model through 261 

random initialization techniques.   262 
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3 Results 263 

3.1 Functional group assignments and variations in SOM  264 

The FTIR spectra provided diagnostic information on the functional groups present in the 265 

SOM. The assignment of functional groups was performed by comparing the sample spectra to 266 

previously reported ranges for common functional groups in natural waters and sediments (Table 267 

1), as well as utilizing co-occurring signals in the spectra that are associated with specific 268 

functional groups (i.e., aliphatic CH shows peaks at both ~1450 cm-1 for deformation and ~2920 269 

cm-1 for stretching). The possible effects from alkaline extraction on the SOM were also considered 270 

for the assignment of functional groups in the spectra. A more detailed description of peak 271 

assignments is provided in the supplementary text.  272 

The FTIR spectra of the lyophilized NaOH extracts were compared to a standard humic acid 273 

(HA) (Fig. 2a). The HA displayed prominent peaks at ~3400, 1590, 1390, and between 1100-1030 274 

cm-1, which are typical for Sigma Aldrich HA, and are attributed to O—H stretches, aromatic C⚌C 275 

stretching, symmetric C—O stretching of carboxylic groups, and polysaccharide moieties, 276 

respectively (Guan et al., 2006; Liu et al., 2015). Based upon the peak assignments and known 277 

structure of the functional groups (Table 1) (Li et al., 2015), the aromaticity (a measurement of 278 

molecules that are both cyclic and planar) of the Sigma Aldrich HA was determined to be 56%, 279 

which is consistent with previously reported values (Kobayashi & Sumida, 2015) and is 280 

comparable to that of the 13C nuclear magnetic resonance estimates for the International Humic 281 

Substances Society’s standard HA (Thorn et al., 1989). The aromaticity of the SOM in the samples 282 

ranged between 40-65%. Overall, the FTIR spectra for the NaOH extracts show IR absorptions 283 

that are typical for alkaline soil extracts (Oren & Chefetz, 2012). For comparison of relative peak 284 

sizes, normalized FTIR spectra are shown in Figure S1. 285 
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 286 

Figure 2. FTIR spectra of the lyophilized NaOH sediment extracts and Sigma Aldrich humic acid with stacked spectra 

(A) and a panel showing all sample spectra together for comparison of peak intensities among samples (B). The riverbank 

sand, silt, aquifer sand, and the clay aquitard are denoted by RBS, SLT, AQS, and CLY, respectively. 



 16 

The FTIR spectra of the CLY sample showed notable differences in the location and 287 

intensities of peaks in comparison to the peaks observed in RBS, SLT, and AQS (Fig. 2b). The 288 

absorbance band attributed to various O—H stretching in the CLY spectra was centered at 3360 289 

cm-1 and contained an additional peak at 3230 cm-1, which may indicate a higher occurrence of the 290 

H-bonded O—H stretching of carboxylic acid and increased contributions from the N–H stretch 291 

of amide II, respectively. Furthermore, a broad shoulder between 3100 and 3030 cm-1, which is 292 

Table 1. Functional group assignments for specific bands and peaks observed within the mid-infrared wavelengths. 

Absorption (cm1) FTIR band Assignment Reference 

3700-3300 O—H bonds Unresolved: phenol, alcohol, carbohydrates, 

COOH, Si—O—H in clay minerals, N—H stretch 

1-15 

3100-3030 Aromatic C—H stretch Aromatic stretch of highly substituted rings in HA 

macromolecules 

1, 2, 5, 9, 12, 16 

2970-2820 Aliphatic C—H Stretch Aliphatic C—H stretch of CH2 1-13, 16-20 

1720-1700 C⚌O stretch Protonated carboxylic acid: aliphatic 2-4, 6, 7, 10-15, 18, 

19, 21-25 

1670-1630 C⚌O stretch Aliphatic carbonyl structures including 

proteinaceous amide I, conjugated ketones, and 

quinone-like compounds 

1-7, 9-11, 13-15, 18-

25 

1630-1600 Aromatic C⚌C stretch Aromatic ring stretch. May indicate ternary As-Fe-

OM complexes 

3-8, 10, 15, 19, 20 

1570-1550 Aromatic C⚌C stretch Possible contribution from asymmetric COO- 

stretches 

1-3, 8, 15, 16, 23, 26 

1515-1490 Aromatic C⚌C stretch Possible contribution of amide II and peptide 1, 4, 5, 7-11, 15, 16, 

18-20, 23 

1470-1430 C—H deformation Aliphatic C—H deformation 1, 2, 4, 5-9, 14-19, 

21-23, 26 

1420-1370 Symmetric C—O Stretch Aromatic carboxylate derivatives. Indicative of Na+ 

salts (i.e., sodium benzoate) 

1, 5-7, 11, 15, 17-19, 

21-27 

1185-975 C—O—C and C—O—H 

stretching 

Carbohydrates: aliphatic polysaccharide moieties 2, 4, 5-8, 11, 15, 19, 

20, 26 

900-860 C—H out-of-plane bend C—H bend of aromatic rings 1, 3, 5, 9, 15, 17, 18, 

20, 23 

1. Bellamy (2013)  2. de Melo Benites et al. (2005)  3. Fultz et al. (2014)  4. Fernández-Getino et al. (2010)  5. Senesi et al. (2003)  6. Olk et 

al. (2000)  7. Chefetz et al. (1998)  8. Sánchez-Monedero et al. (2002)  9. Tatzber et al. (2007)  10. MacCarthy and Rice (1985)  11. Lumsdon 

and Fraser (2005)  12. Mecozzi and Pietrantonio (2006)  13. Litvin and Minaev (2013)  14. Reddy et al. (2018)  15. Minor and Stephens 

(2008)  16. Bustin and Guo (1999)  17.Oren and Chefetz (2012)  18. Nuzzo et al. (2020)  19. Guggenberger et al. (1994)  20. Peuravuori and 

Pihlaja (2004)  21. Mayo et al. (2004)  22. Chalmers and Griffiths (2002)  23. Ascough et al. (2011)  24. Stevenson (1994)  25. Hay and 

Myneni (2007)  26. Ilani et al. (2005) 27. Pike et al. (1993)   
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attributed to aromatic C–H stretching, showed higher relative absorbance compared to the other 293 

samples, whereas the aliphatic C–H stretch between 2970 and 2820 cm-1 was less pronounced in 294 

the CLY spectrum compared to the other samples. In the 1800 and 1500 cm-1 range, the CLY 295 

spectrum was similar to the spectra of the other samples, however, CLY contained a dominant 296 

peak at 1395 cm-1. The downward shift of this peak to slightly lower wavenumbers than that of the 297 

other sample spectra (~1440 cm-1) indicates lower absorbance from aliphatic C–H deformation 298 

and drastically higher absorbance from C—O stretching of carboxylic derivatives (i.e., sodium 299 

benzoate) and asymmetric COO- stretching. In comparison to the other samples, CLY shows only 300 

minor absorbance between ~1180 and 1000 cm-1 and a relatively small peak at 880 cm-1 301 

corresponding to C–O–C and C-O-H stretches of polysaccharide moieties and an out-of-plane 302 

bending of aromatic CH, respectively. 303 

3.2 Distribution of functional groups in sedimentary organic matter 304 

The relative contribution of each of the assigned functional groups to the overall sample SOM 305 

were estimated by taking the area under the peak between the wave numbers assigned to each 306 

functional group (Table 2). The major functional groups contributing to the SOM observed in the 307 

samples were aromatic rings (C–H at 3100-3030 and 900-860 cm-1; C=C stretch at 1630-1600, 308 

1570-1550, and 1515-1490 cm-1), aliphatic C–H (2970-2820 and 1470-1430 cm-1), carbonyl 309 

(1670-1630 cm-1), protonated carboxyl groups (1720-1690 cm-1), deprotonated carboxyl groups 310 

attached to an aromatic ring (aromatic carboxylate groups, 1420-1370 cm-1), and carbohydrate 311 

(1180-1000 cm-1) (Fig. 3). Results show that the RBS, SLT, and AQS had similar aromatic to 312 

aliphatic (Ar:Al) ratios (0.66, 0.60, 0.89, respectively), whereas CLY had a much higher Ar:Al 313 

(1.86) (Fig. 3). The primary reason for a markedly high Ar:Al in CLY is the large contribution of 314 

aromatic carboxylate structures (1420-1370 cm-1) in the spectrum (36%), which increased with 315 
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depth from the overlying RBS, SLT, and AQS samples (12%, 13%, and 19%, respectively) (Table 316 

S2).  317 

One effect of alkali extractions is the deprotonation of dissociable carboxylic acid groups, 318 

which diminish the COOH absorbance bands in the FTIR spectra between 1720-1700 cm-1, and 319 

increase absorbance between 1400-1370 cm -1 (Hay & Myneni, 2007; Nuzzo et al., 2020). These 320 

bands are commonly attributed to the carboxyl groups of sodium benzoate, which increase along 321 

with rising pH (Hayes et al., 1989; Guan et al., 2006; Lee & Seo, 2014). A comparison of the peaks 322 

at ~1720 and ~1400 cm-1 suggests that most of the carboxyl groups in the SOM of all samples 323 

were deprotonated. The accumulation of simple compounds such as benzene and carboxylate 324 

derivatives with greater depth infer a higher level of humification, indicating that CLY contains 325 

much higher relative proportions of a more degraded (i.e., humified) pool of SOM (Table S3).  326 

The contributions from aliphatic C– H were found to be higher in RBS (37%) and AQS (37%) 327 

than in the finer grain SLT (32%) and CLY (24%) samples. However, neither grain size nor depth 328 

could solely explain the distribution of functional groups in the SOM as SLT contained a relatively 329 

large amount of carbohydrates (17%) while only trace amounts were present in CLY (<1%). 330 

Relative proportions of carbohydrates in the RBS and AQS were 9% and 5%, respectively. The 331 

proportions of the peaks assigned strictly to aromatic rings were comparable among RBS, SLT, 332 

AQS and CLY (28%, 25%, 28% and 29%, respectively), whereas carbonyl groups were found in 333 

slightly higher proportions in the RBS, SLT, and AQS (9%, 9%, 7%, respectively), than CLY 334 

(6%). 335 
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  336 

Table 2. Area under the peak for the assigned functional groups in the FTIR spectra. The riverbank sand, silt, 

aquifer sand, and the clay aquitard are denoted by RBS, SLT, AQS, and CLY, respectively. 

Sample Aliphatic 

CH 

Carboxyl Carbonyl Aromatic 

Ring 

Aromatic- 

Carboxylate 

Carbohydrate Total 

Area 

Aromatic: 

Aliphatic 

RBS 10.92 1.80 2.62 8.31 3.41 2.55 29.60 0.66 

SLT 15.43 2.25 4.48 11.97 6.41 8.23 48.77 0.60 

AQS 22.31 2.23 4.34 16.95 11.46 2.98 60.28 0.89 

CLY 23.79 2.38 5.28 26.72 33.01 0.59 91.78 1.86 

Aldrich 

HA 

10.34 11.43 3.38 37.07 - 11.29 73.51 1.26 

         

Figure 3. Proportions of functional groups in the sediment samples. Bold font represents groups attributed to 

aromatic structures and Italicized font represents groups attributed to aliphatic structures (Li et al., 2015). Value in 

parenthesis is the Ar:Al for each sample. The riverbank sand, silt, aquifer sand, and the clay aquitard are denoted 

by RBS, SLT, AQS, and CLY, respectively. 
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3.3 Fluorescence characteristics of SOM 337 

The absorbance and fluorescence of the aqueous NaOH extracts provide a more robust 338 

characterization of the SOM properties which may impact geochemical processes in the riverbank 339 

and aquifer (Fig. 4). The SOM in the RBS, SLT, AQS, and CLY is from a terrestrial source (FI = 340 

1.35, 1.32, 1.44, and 1.27, respectively). The age of the SOM is reflected by the freshness index 341 

which shows that the SOM within RBS and SLT (β:α = 0.73 and 0.82, respectively) is more 342 

recently produced relative to the more degraded SOM found in the AQS and CLY (β:α = 0.53 and 343 

0.63, respectively) (Table S3) which concurs with the depositional history. The presence of 344 

aromatic structures, as indicated by the absorbance at 254 nm (abs254), were elevated in the CLY 345 

(11.07) relative to the RBS, SLT, and AQS (1.33, 1.52, and 0.79, respectively).  346 

Four primary peaks were identified in the excitation and emission spectra of the samples for 347 

the peak-picking method (Table S3, Fig. 4), including; peak A (terrestrial humic-like), peak T 348 

(protein-like), peak C (terrestrial fulvic-like), and peak M (microbially produced, humic-like) 349 

(Coble et al., 1998). The peak typically attributed to tyrosine protein-like fluorescence (peak B) 350 

was not present in any of the samples. In general, the fluorescence indices show that the sample 351 

SOM is composed largely of humic and fulvic-like compounds (60-70%) with varying proportions 352 

of protein-like (1-7%) and microbially produced compounds (29-35%). The proportions 353 

represented by each peak were similar among each the samples, ranging between 43-48%, 17-354 

19%, 29-35%, and 1-7% for peaks A, C, M, and T, respectively. However, the highest proportions 355 

of protein-like and microbially produced SOM are observed in the SLT as shown by a lower 356 

humic:protein ratio (humic:protein = 6.1) and higher microbial: terrestrial ratio (peak M/peak C = 357 

2.0) compared to the RBS (9.2 and 1.68), AQS (24.0 and 1.83), and CLY (9.0 and 1.45) (Table 358 

S3). 359 
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The absorbance and fluorescence data complemented the FTIR results and provided further 360 

characterization of the variations in the SOM in the riverbank and aquifer sediments. Variations in 361 

SOM reactivity can be visualized by comparing the humic and fulvic-like signatures (peak A and 362 

C) with the protein-like and microbially produced SOM (peaks T and M) as it relates to the 363 

distribution of functional groups. For example, the sum of peaks T and M were positively 364 

correlated with the proportions of carbohydrate (R2 = 0.91) and carbonyl (R2 = 0.71) in the SOM, 365 

whereas the sum of peaks A and C are positively correlated with aromatic structures (R2 = 0.73). 366 

Furthermore, the Ar:Al obtained from the assignment of the functional groups showed a positive 367 

association with both the humification index (HIX, r = 0.78) and abs254 (r = 0.96), which in turn 368 

were each negatively correlated with the proportions of aliphatic CH (r = -1.00 and -0.90, 369 

respectively) and positively correlated with the proportions of aromatic carboxylate (r = 0.77 and 370 

0.94, respectively) (Fig. S2). Fulvic-like SOM showed positive correlation with aromatic rings 371 

(peak C, r = 0.98) whereas humic-like SOM was more closely associated with the aromatic-372 

carboxyl structures (peak A, r = 0.90). The relative proportions of humic-like SOM were 373 

negatively correlated with those of carbonyl and carbohydrates (r = -0.87, and -0.88, respectively). 374 

Conversely, the proportions of carbonyl and carbohydrate functional groups in the SOM were 375 

positively correlated with β:α (r = 0.72 and 0.80, respectively) and the M:C ratio (r = 0.73 and 376 

0.83, respectively). However, the relative proportions of carbonyl functional groups were more 377 

closely related to microbially produced SOM (peak M, r = 0.57) whereas the proportion of 378 

carbohydrates were associated with the proportions of protein-like SOM (r = 0.68). Whereas these 379 

correlations provide valuable insights between optical properties and functional group 380 

distributions, their statistical significance shall be interpreted with caution because of the limited 381 

number of samples analyzed in this study. Although the potential heterogeneity in the individual 382 
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sample type was not addressed in this study, the functional group distribution among four types of 383 

samples (RBS, SLT, AQS and CLY) is clearly distinguishable.  384 

The PARAFAC model validated three components (Fig. S3) utilizing the 96 sample dataset 385 

comprised of samples from this study (n = 4) and samples from previous work (Varner et al., 2022) 386 

along the Meghna riverbank (92). The samples included in the PARAFAC model from this study 387 

were the NaOH sediment-extracts and differed from the remaining 92 samples, which were all 388 

measured for UV-Vis properties in a water-based medium. Despite showing a similar proportion 389 

of components, the samples from this study contained much higher overall values for the 390 

components, specifically for component 1 (Table S1). Due to the lack of representation of similar 391 

sample types in the 96 sample PARAFAC model, we determined that the model is not the best 392 

representation of the OM characteristics for these samples. However, the components included in 393 

the model remain consistent regardless of sample type, therefore, we have included the model 394 

results in the supplementary information. 395 
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  396 

Figure 4. Excitation emission matrices of the samples. The silt and clay aquitard EEMs displayed 

are 10x diluted. All intensities are reported in Raman Unit (R.U.) 
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4 Discussion 397 

4.1 Properties of SOM in the Aquifer and Riverbank sediments 398 

The complimentary techniques used to characterize the spectroscopic properties of SOM 399 

revealed variations its properties among the riverbank and aquifer sediments. In general, the 400 

relationship between the humification index (HIX) with the proportions of aromatic rings, aliphatic 401 

CH, and aromatic-carboxyl structures suggests that these functional groups are indicative of more 402 

humified SOM. Conversely, younger, and supposedly more reactive SOM typically contains 403 

higher proportions of both carbonyl (Amide I) and carbohydrates which are associated with 404 

protein-like and microbially produced SOM. Interestingly, none of the identified SOM properties 405 

are reliably correlated to sediment grain size. For example, the SLT and CLY, apart from 406 

demonstrating a similar terrestrial source and higher HIX than the sand samples, varied in their 407 

chemical composition. The SOM in the CLY was characterized by more highly degraded aromatic 408 

and carboxyl compounds of humic-acids and contained minimal proportions of labile OM such as 409 

carbohydrate (1%) and carbonyl groups (6%) (Fig. 3). The SOM in the SLT, on the other hand, 410 

showed higher proportions of protein-like and microbially produced SOM and was relatively 411 

enriched in carbohydrates (17%) and carbonyl (9%). Freshly produced substances, such as 412 

carbohydrates, have a large impact on the interactions between SOM and its surroundings since 413 

carbohydrates are highly labile and preferentially utilized for microbial degradation as opposed to 414 

more humified material (Wu et al., 2009; Gustafsson et al., 2014; Shi et al., 2016; Lu et al., 2017). 415 

The properties of SOM in the coarse grained RBS and AQS were similar, although the composition 416 

of the SOM in RBS more closely resembled that of the near surface SLT SOM with slightly higher 417 

proportions of more labile carbonyl and carbohydrates (9% and 9% respectively) relative to AQS 418 

(7% and 5%, respectively). 419 
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Aromatic compounds have been shown to contain highly adsorbing properties (Coward et al., 420 

2018; Groeneveld et al., 2020), yet in this study, the SOM from the samples of various lithologies 421 

contain similar proportions of aromatic rings (25-29%). Further resolution is provided by the 422 

assignment of the peak at ~1400 cm-1 to aromatic carboxylate groups, which form under alkaline 423 

conditions. Evidence for the assignment of this peak to aromatic carboxylate groups and is further 424 

supported by the relationship between the Ar:Al and both the HIX (r = 0.78) and abs254 (r = 0.96), 425 

which indicate the degree of humification and aromaticity, respectively (Fig. S2) (Ohno, 2002; 426 

Weishaar et al., 2003; Zsolnay, 2003). While a similar proportion of aromatic rings were observed 427 

in RBS, SLT, AQS, and CLY (28%, 25%, 28%, 29%, respectively), the RBS, SLT, and AQS 428 

contained higher proportions of aliphatic C–H than CLY (37%, 32%, 37%, 26%, respectively). 429 

Owing to the diverse properties of natural SOM, the predominance of neither aliphatic nor 430 

aromatic compounds in the SOM can be used exclusively to explain the sorption affinity of SOM 431 

(Chefetz & Xing, 2009). Nevertheless, a substantial pool of SOM is comprised of both aromatic 432 

compounds with a high sorption affinity (Weber Jr et al., 1992; Chin et al., 1997; Tremblay et al., 433 

2005; Tang & Weber, 2006), and aliphatic components which serve as a prominent sorption 434 

material for both organic matter (Chefetz et al., 2000; Chefetz, 2003; Lin et al., 2007; Sun et al., 435 

2008) and iron minerals (Adhikari & Yang, 2015). Adhikari and Yang (2015) found that aliphatic 436 

carbon may bind to Fe-oxides and remain adsorbed even if the Fe-oxides become reduced, 437 

allowing for the accumulation of aliphatic carbon in older pools of SOM. The area under the peaks 438 

associated with both aliphatic C–H and aromatic rings increases with the sample depth (RBS < 439 

SLT < AQS < CLY) (Table S1). As humification proceeds over time, the degradation of more 440 

characteristic structures results in the enhancement of refractory signals from simpler aromatic and 441 

aliphatic compounds (Kelleher et al., 2006; Chefetz & Xing, 2009). This finding of increasing 442 
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abundance of humified SOM structures with depth (Fig. 3) is consistent with the accumulation of 443 

humic-like, aromatic SOM in the shallow aquifer sediments of Bangladesh under reducing 444 

conditions (McArthur et al., 2004; Mladenov et al., 2010; Datta et al., 2011).  445 

4.2 Varying influence of SOM on As and Fe mobility 446 

As presented above, a notable finding from the distribution of the functional groups in the 447 

SOM is the observed differences between the fine grain samples SLT and CLY. Whereas previous 448 

studies demonstrate the correlation between the concentrations of SOM, As, and Fe in the reducing 449 

shallow aquifers of Bangladesh (Dowling et al., 2002; Harvey et al., 2002; Anawar et al., 2003; 450 

Stüben et al., 2003), the extent that fine grain layers within the shallow aquifer play in promoting 451 

As mobility remains uncertain. Regardless, it is widely agreed that OM drives the redox reactions 452 

governing the microbially mediated release of As (Bauer & Blodau, 2006; Cui & Jing, 2019), yet 453 

some fractions of SOM may regulate As mobility through differing mechanisms depending on the 454 

specific chemical properties (Anawar et al., 2013). For example, OM may strongly adsorb onto 455 

the surface of positively charged Fe-minerals (Sharma et al., 2010; Mladenov et al., 2015), which 456 

may regulate As mobility by displacing any adsorbed As (Bauer & Blodau, 2009), or forming 457 

ternary As-Fe-OM complexes via cationic bridging (Redman et al., 2002; Liu et al., 2011; Mikutta 458 

& Kretzschmar, 2011; de Oliveira et al., 2015; Liu et al., 2020b; Aftabtalab et al., 2022). Therefore, 459 

the behavior of sedimentary and dissolved As are linked to the interactions between various OM 460 

functional groups and Fe.  461 

Furthermore, the peak at ~1400 cm-1 in the FTIR spectra is also often attributed to ligand 462 

exchange mechanisms associated with carboxylate-Fe bonds (Gu et al., 1994; Fu & Quan, 2006; 463 

Kaiser & Guggenberger, 2007; Oren & Chefetz, 2012; Liu et al., 2020a). Carboxyl groups are 464 

important mediators in the SOM fraction of soils, capable of promoting ion exchange reactions to 465 
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extract metal cations from the sediment and groundwater (Wu et al., 2009; Gustafsson et al., 2014; 466 

Shi et al., 2016; Lu et al., 2017). This tendency allows for carboxylate groups to be highly effective 467 

at sequestering Fe-minerals (Curti et al., 2021; Wen et al., 2022). However, most carboxylic acid 468 

derivatives are water soluble throughout the pH ranges found in natural groundwater (Fox et al., 469 

2017), and have been implicated in the co-occurrence of DOC and Fe in the porewaters of 470 

sediments containing carboxyl-rich SOM (Curti et al., 2021; Liu et al., 2022). In the case of the 471 

Meghna riverbank and aquifer sediments, the proportions of aromatic carboxylate groups in the 472 

SOM show positive correlation to depth and also to the water extractable concentrations of As and 473 

Fe previously measured on the same sediment samples (Varner et al., 2022) (Fig. S4). The 474 

abundance of aromatic carboxylate groups in the CLY sample suggests that the SOM here may 475 

maintain elevated As concentrations in the groundwater by providing an ample source of carboxyl-476 

rich OM to the aquifer that favors the formation of soluble As-Fe-OM complexes. This idea is 477 

consistent with previous findings suggesting that clay layers in the shallow aquifers of Bangladesh 478 

are a prominent source of the DOC that sustains As mobility (Mukherjee et al., 2007a; Mukherjee 479 

et al., 2007b; Guo et al., 2019; Mihajlov et al., 2020).  480 

The SOM in the SLT contains relatively high proportions of polysaccharides (17%), which 481 

have the potential to be utilized as electron donors for heterotrophic microbial respiration under 482 

both aerobic and anoxic conditions (Zhang et al., 2019) and are often indicative of high levels of 483 

microbial activity (Laspidou & Rittmann, 2002; Omoike et al., 2004). In nature, the role of 484 

microbial activity is ubiquitous and polysaccharides present a major labile energy source for 485 

bacteria, so that under reducing conditions, polysaccharides support the heterotrophic metabolisms 486 

driving the microbially mediated reduction of the OM-bearing Fe-oxides (Haider, 2021). 487 

Similarly, the RBS, SLT, and AQS contain higher proportions of carbonyl groups assigned to the 488 
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peak at ~1650 cm-1 (8.9%, 9.2%, 7.2%, respectively) than the CLY (5.8%). This peak is typically 489 

attributed to the C=O stretch of carbonyl bonded to proteinaceous amine (amide I). The SOM in 490 

the SLT contained the highest proportions of carbonyl and also contained the highest β:α values 491 

and proportions of peak T, indicating the presence of freshly produced proteinaceous material (Fig. 492 

3, Table S3). In general, the higher proportions of carbonyl components in the RBS, SLT, and 493 

AQS support the biological activity that may promote the microbial reduction of As-bearing Fe-494 

oxide minerals (McArthur et al., 2001; Glodowska et al., 2020; Qiao et al., 2020).  495 

Overall, the reactivity of SOM as it relates to As and Fe in the sediment can be summarized 496 

by the Ar:Al and the HIX (Fig. S4). The SOM with higher HIX is associated with elevated 497 

sedimentary As and water-extractable As concentrations. In contrast, water-extractable Fe 498 

concentrations are more closely related to the Ar:Al than the HIX (Fig. S4). These findings are 499 

consistent with previous work which showed that humic-like OM is linked to elevated As content 500 

within the groundwaters of the Bengal basin (Vega et al., 2017; Kulkarni et al., 2018a) and that Fe 501 

preferentially co-precipitates with more aromatic OM (Du et al., 2018). Elevated proportions of 502 

carbohydrate and carbonyl along with lower proportions of aliphatic CH and carboxyl groups 503 

indicate a fresher and more labile source of carbon in the near-surface SLT sediment, whereas the 504 

deeper CLY sediment is rich in carboxylic derivatives favoring the formation of soluble OM-Fe-505 

As complexes. Comparing the SOM properties between SLT and CLY suggests that not all fine 506 

grain layers in the shallow aquifers of Bangladesh contribute to As mobilization similarly.  507 

4.3 Potential impacts of SOM on As mobility in hyporheic zone sediments 508 

The extent of As enrichment in the Meghna River HZ has previously been shown to be 509 

influenced by the grain size of the surficial sediments wherein sandy sediments promote the 510 

surface water-groundwater mixing required for the precipitation of As-attenuating Fe-oxides, and 511 
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a surficial silt layer prohibits the mixing and prevents the accumulation of sedimentary As (Jung 512 

et al., 2015). Furthermore, the presence of fine grain sediments along the Red River in Vietnam 513 

have been implicated in the propagation of a high As plume in the adjacent aquifer by contributing 514 

to the persistent reduction of reactive Fe-oxides within the riverbank sediments (Stahl et al., 2016; 515 

Wallis et al., 2020). The influence of a shallow buried silt layers (3-7 m bgl) underlying riverbank 516 

sands have not been studied in relation to the occurrence of As enrichment in HZ sediments, 517 

although we hypothesize that the silt layer may limit surface water-groundwater mixing and also 518 

provide a source of labile SOM to drive reductive processes. This may explain the markedly lower 519 

sedimentary As concentrations in the HZ at this site (7 ± 2 mg/kg) (Varner et al., 2022) compared 520 

to other measurements within the Meghna River HZ which commonly exceeded 500 mg/kg (Datta 521 

et al., 2009; Jung et al., 2015; Berube et al., 2018). Together, the SOM properties of the HZ 522 

sediments (SLT and RBS) indicate young, labile SOM with higher electron donating capacities 523 

than the underlying aquifer sediments. This is shown by the high proportions of both carbohydrates 524 

(16.9%) and carbonyl groups (9.2%) in the SLT samples, which are elevated compared to both the 525 

RBS (8.6% and 8.9%, respectively) and to the underlying AQS (4.9% and 7.2%, respectively). In 526 

this case, the silt layer can serve as a source of labile OM to the overlying HZ which promotes 527 

reducing conditions, preventing the accumulation of Fe-oxides which are capable of attenuating 528 

As in the HZ sediment. 529 

In contrast, the SOM in the CLY contains a more humified and recalcitrant pool of carboxyl- 530 

rich SOM with a tendency to form soluble As and Fe complexes. These soluble complexes may 531 

contribute to elevated dissolved As concentrations in the aquifer should they be mobilized. Sands 532 

comprising the shallow aquifers (<60 m) in the Bengal Basin host the highest concentrations of 533 

dissolved As and Fe (Nickson et al., 1998; Harvey et al., 2002; Huq et al., 2020), which are often 534 
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maintained in solution through complexation with more soluble portions of humic-like DOC 535 

(Sharma et al., 2010; Liu et al., 2011; Wu et al., 2019). Therefore, varying reactivity and nature of 536 

the SOM in the HZ sediments, shallow buried silt, and the underlying aquifer sediments may affect 537 

As mobility through differing mechanisms. The detailed characterization of the SOM at this site 538 

indicates the varying roles that SOM has on regulating As mobility in the HZ. Regardless, the 539 

extent that SOM impacts As mobility within the HZ is largely influenced by the groundwater flow 540 

patterns and thus further research into the temporal and spatial flow patterns along the Meghna 541 

River is warranted.  542 

5 Conclusion 543 

This study characterized the chemical reactivity of SOM from the HZ sediments along the 544 

Meghna River, Bangladesh and an As contaminated aquifer adjacent to the river. The SOM in both 545 

the riverbank and aquifer sands was shown to have a similar terrestrial source containing both 546 

humic-like and fulvic-like signatures. Variations in the chemical composition of the SOM in the 547 

shallow silt and clay aquitard revealed a more recalcitrant and degraded SOM in the underlying 548 

clay aquitard with a high aromatic carboxylate content whereas the aquifer silt at ~3 m bgl 549 

contained fresher, microbially produced SOM with higher proportions of amides and 550 

polysaccharide moieties. The carboxylate-rich clay aquitard may support As mobility by favoring 551 

the formation of soluble Fe and As complexes, while the labile SOM in the aquifer silt may 552 

promote As mobilization by fueling the microbially mediated dissolution of As-bearing Fe-oxides.  553 

Within the HZ, the SOM and groundwater flow controls of the shallow buried silt layer may 554 

act together inhibit the accumulation of sedimentary As. Higher proportions of labile OM in the 555 

aquifer silt and riverbank sands support the microbially-mediated reductive dissolution of As-556 

bearing Fe-oxides under reducing conditions, preventing the accumulation of sedimentary As. 557 
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Should the reactive SOM in the silt layer contribute to the dissolved load of the discharging 558 

groundwater during the dry season, the production of Fe-oxides may be limited by the influx of 559 

reactive DOC. These findings suggest that the variable SOM characteristics along the Meghna 560 

River and its adjacent aquifer contain differing reactive properties that regulate the geochemical 561 

processes governing As and Fe mobility. This study contributes to our understanding of the 562 

contrasting roles that SOM may have on As mobility within both riverine aquifers and the HZ 563 

along the river water-groundwater interface. 564 
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