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4. Distribution of organic functional groups provides insights on mobilization and sequestration
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Abstract

The presence and character of sedimentary organic matter (SOM) regulates the mobility of
arsenic (As) as labile SOM determines redox reactions and zonation. Near rivers, the hyporheic
zone (HZ) of oxic river water and anoxic regional groundwater may lead to the production (or
dissolution) of iron (Fe)-oxides which are capable of sequestering (and mobilizing) As depending
on dynamic redox conditions. This study characterizes the chemical reactivity of SOM from HZ
sediments along the Meghna River in Bangladesh, and an adjacent As-contaminated shallow (<
50 m) alluvial aquifer. The SOM in both the riverbank and aquifer is primarily composed of
terrestrially-derived humic-like organic matter; however, the distribution of organic functional
groups varies with the type of subsurface sediments. A shallow silt layer (~3 m below ground
level) within the sandy aquifer contains fresher SOM, potentially of microbial origin, with higher
proportions of amides and more labile polysaccharide moieties. On the contrary, SOM in an
underlying clay aquitard (~37 m below ground) contains older, more recalcitrant, terrestrially-
derived material with high proportions of aromatic carboxylate functional groups. The labile SOM
from the silt layer supports the microbially mediated reductive dissolution of As-bearing Fe-
oxides, preventing the accumulation of As in the HZ. The carboxylate-rich SOM in the clay
aquitard helps maintain groundwater As concentrations by favoring the formation of soluble Fe
and As complexes. These findings suggest that the SOM within the Meghna Riverbank and its
adjacent aquifer contain differing reactive properties that likely influence the geochemical

processes governing As and Fe mobility.
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1 Introduction

Organic matter in sediments, sedimentary organic matter (SOM), is known to play a vital role
in mobilizing arsenic (As) from shallow Holocene aquifers in the Ganga-Meghna-Brahmaputra
(GMB) delta in south Asia (Nickson et al., 2000; McArthur et al., 2004; Mladenov et al., 2010;
Mailloux et al., 2013). Elevated As concentrations in groundwater in the aquifers of the GMB delta
jeopardize the health of millions who rely on the groundwater for drinking purposes (Flanagan et
al., 2012). Indeed, exposure to groundwater As exceeding the World Health Organization (WHO)
maximum contaminant level of 10 pg/L in Bangladesh has been of global concern for decades
leading to many studies which have improved the understanding of the natural processes
promoting high groundwater As in reducing fluvio-deltaic aquifers (Smith et al., 2000;
BGS&DPHE, 2001; Mukherjee & Bhattacharya, 2001; Yu et al., 2003; Flanagan et al., 2012). Yet
reliance on elevated groundwater that is high in As is a continuing struggle for many in the Bengal
basin and the heterogeneous modes of As mobilization leading to contaminated groundwater are
not fully understood. A key reaction that releases As to pore-waters is the microbially mediated
reductive dissolution of As-bearing Iron (Fe)-oxy(hydro)oxide minerals in the presence of labile
organic matter (OM) (Nickson et al., 1998; Nickson et al., 2000; Bhattacharya et al., 2001;
McArthur et al., 2001; Zheng et al., 2004; Hasan et al., 2007; Glodowska et al., 2020; Qiao et al.,
2020; Vega et al., 2020). However, in natural settings where a wide range of geochemical
conditions exist in close proximity, various process may contribute to As mobilization
simultaneously (Nicholas et al., 2017). For example, As mobility can be exacerbated by
competition for sorption sites between As and dissolved silica (Smedley & Kinniburgh, 2002;
Waltham & Eick, 2002; Harvey et al., 2005), carbonate (Appelo et al., 2002; Harvey et al., 2002;

Biswas et al., 2011), phosphate (Redman et al., 2002; Simeoni et al., 2003; Bauer & Blodau, 2006;
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Gustafsson, 2006; Wang & Mulligan, 2006; Xue et al., 2019), and OM (Redman et al., 2002;
Simeoni et al., 2003; Bauer & Blodau, 2006; Gustafsson, 2006; Wang & Mulligan, 2006; Xue et
al., 2019). Regardless of the precise mechanism of As mobilization, it is clear that OM plays a
ubiquitous role in regulating groundwater As concentrations in alluvial aquifers and may be key
to predicting the distribution of As (Anawar et al., 2003; Mladenov et al., 2010; Anawar et al.,
2013).

Organic matter is known to participate in variety of chemical reactions in the environment. It
has a significant electron donating capacity which helps create reducing conditions when it
undergoes aerobic oxidation (Aeschbacher et al., 2010; Macalady & Walton-Day, 2011; Wallace
et al., 2017; Lv et al., 2018) and alters the surface reactivity of minerals (Qu & Cwiertny, 2013).
As a result, OM participates in the geochemical cycling of both major and trace metals (Li et al.,
2013; Mostofa et al., 2013). In fact, over 20% of OM in both terrestrial and oceanic sediments is
associated with and stored in reactive Fe minerals (Wagai & Mayer, 2007; Lalonde et al., 2012).
The composition of OM varies widely among sources in nature, with, various proportions of
microbial products, humic and fulvic acids, and humin. Most OM is generated largely as the result
of biological metabolism (Laspidou & Rittmann, 2002). In general, the majority of OM is
composed of refractory humic substances (i.e. humic acid, fulvic acid and humin) (Piccolo, 1996;
Senesi et al., 2003) and labile OM which consists of sugars, carbohydrates, and protein-like
components (i.e. amino acids) (Coble & Timperman, 1998; Yamashita & Tanoue, 2003; Borisover
et al., 2012). Together, these refractory and labile OM components drive the net heterotrophy in
the environment (McManus et al., 2003). Humic substances typically contain large proportions of
carboxylate functional groups which form strong complexes with metal cations (Fe*" and AI*") via

ligand exchange or cationic bridging and have been implicated in adsorption reactions of As on
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the surface of Fe-OM complexes (Deng & Dixon, 2002; Sharma et al., 2010; Liu et al., 2011).
These carboxyl-metal complexes may either stabilize and preserve the OM and Fe in the sediments
(Curti et al., 2021), or if the SOM contains high amounts of carboxylic acids, solubility increases
promoting the mobility of Fe-OM-As complexes (Ni & Pignatello, 2018; Zhang et al., 2021). In
contrast, the labile pool of OM comprised of protein-like compounds and microbial byproducts
which are readily biodegradable, provides accessible electrons as a preferred energy source for
microbial respiration (Haynes, 2005). Due to the heterogeneous composition of OM, the
mechanisms provided by OM to As mobilization, whether from complexation (Sharma et al., 2010;
Liu et al., 2011; Liu et al., 2020b), electron shuttling promoting microbially driven reduction
(Lovley et al., 1996; Scott et al., 1998; Kappler et al., 2004; Sposito, 2011; Kulkarni et al., 2018b;
Yi et al., 2019; Qiao et al., 2020; Wang et al., 2020; Qiao et al., 2021; Li et al., 2022), or
competition for sorption sites (Bauer & Blodau, 2006), depends largely on the chemical makeup
of the source OM.

The reactivity of OM is mostly determined by its original source, yet the relative importance
of the different sources of OM driving As mobilization in the aquifers of Bangladesh remains
uncertain (Mailloux et al., 2013). A few hypotheses have been put forward regarding the source of
OM in the aquifers, including: downward infiltration of dissolved OM from surface water (Harvey
et al.,, 2006; Neumann et al., 2010), buried silt, peat, or clay lenses (McArthur et al., 2001;
McArthur et al., 2004; Ravenscroft et al., 2005), and from OM dispersed within the aquifer
sediments (Datta et al., 2011; Neumann et al., 2014). Considering that OM drives As mobilization
in the aquifers of Bangladesh, it is imperative to comprehensively understand the nature of the

i

SOM. Also considering that OM has an affinity for Fe-oxides, areas where abundant Fe'" and

reactive SOM co-occur, such as redox interfaces, are likely key locations where As is both trapped
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and mobilized under the influence of SOM. Ultimately, the geochemical cycling of OM, Fe, and
As are integrally related and redox interfaces have been implicated in acting as intermediate
barriers that limit the transportation of both inorganic and organic constituents (Charette &
Sholkovitz, 2002; Datta et al., 2009; Riedel et al., 2013).

The hyporheic zone (HZ) represents a redox transition zone along the river where oxic river
water and reducing groundwater mix to form a biogeochemical hotspot with enhanced chemical
reaction rates relative to the adjacent areas (McClain et al., 2003). Redox conditions throughout
the HZ support a wide array of microbial communities which may effectively metabolize OM from
the river, groundwater, and sediments, which impacts Fe cycling and ultimately regulates the
attenuation of both organic and inorganic contaminants (Fiebig, 1995; Findlay et al., 2003; Fischer
et al., 2005; Nogaro et al., 2013; Shuai et al., 2017a; Zhu et al., 2020; Xia et al., 2023). One such
feature likely present in HZs, termed a natural reactive barrier (NRB) (Bone et al., 2006), removes
As when amorphous Fe-oxides precipitate on mineral surfaces along the surface water-
groundwater interface from the interaction between the oxic surface water and reduced Fe-rich
groundwater (Charette & Sholkovitz, 2002; Charette et al., 2005; Bone et al., 2006; Charette &
Sholkovitz, 2006; Jung et al., 2009). Evidence of a seasonal HZ NRB has been observed along the
tidally influenced Meghna River in Bangladesh during the dry season when the reduced
groundwater is drawn towards the river (Datta et al., 2009; Jung et al., 2012; Jung et al., 2015;
Berube et al., 2018; Varner et al., 2022), which then interacts with infiltrating oxic river water to
precipitate amorphous Fe-oxides capable of sequestering large amounts of As (Datta et al., 2009;
Jung et al., 2015; Berube et al., 2018; Huang et al., 2022). Although the response of a NRB to
changing redox conditions has not been examined, Fe-oxides in the HZ may be dissolved under

reducing conditions introduced by either rapid groundwater discharge in the early dry season
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(Datta et al., 2009; Baken et al., 2015; Berube et al., 2018) or from the inundation and seasonal
deposition of Fe-OM rich-sediment during the wet season (Stahl et al., 2016; Wallis et al., 2020).
Nevertheless, the ability of OM to provide energy for microbial reduction of Fe-oxides and form
As and Fe complexes makes the characterization of OM a necessary component in defining the
behavior of As across redox interfaces.

Prior work along the Meghna River indicated that surficial sand layers promote the formation
of a NRB whereas surficial silt layers inhibit the mixing required to generate a Fe-oxide-rich NRB
(Jung et al., 2015). Pedrazas et al. (2021) determined the presence of buried silt layer (~ 3 to 7 m
bgl) at the present site using geophysical measurements. Our recent work at this site along Meghna
River in Bangladesh (Varner et al., 2022) showed that the riverbank sediments contained low
concentrations of As compared to prior work that reported Fe and As enrichment within the
Meghna River HZ (Datta et al., 2009; Jung et al., 2012; Jung et al., 2015; Berube et al., 2018).
Such low As in the HZ sediments at this site may be attributed to the buried silt layer that may
prevent Fe-oxide formation by impeding groundwater mixing or providing OM to the riverbank to
sustain reducing conditions. The water-extractable SOM from the riverbank sand, buried silt layer,
aquifer sand, and underlying clay aquitard showed distinct fluorescence signatures (Varner et al.,
2022), suggesting that the buried silt layer may be providing sufficient labile organic matter for
heterotrophic metabolisms. Therefore, we hypothesized that such optically distinct SOM in the
subsurface layers at our site may contain chemical distinct organic functional groups, and its
detailed characterization will help in explaining the role of SOM in mobility of As and Fe within
HZ of the Meghna River.

To our knowledge the relationship between the specific chemical composition of OM within

riverbank sediments and As mobilization has not yet been extensively studied in the Bengal basin.
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In this study, we define the structural characteristics of SOM at selected and previously well-
characterized locations from the As contaminated aquifer and the adjacent HZ sediments along the
Meghna River utilizing both UV-Vis and FTIR spectroscopic techniques (Minor et al., 2014). The
specific functional groups comprising the SOM helped to characterize the reactivity of SOM and

its relationship to As mobilization in the aquifer and riverbank HZ sediments.

2  Methods

2.1  Study site

The study site lies along the Meghna River 30 km east of Dhaka, adjacent to the village of
Nayapara (23.7°N, 90.7°E) within the Narayanganj district (Fig. 1). The lithology of shallow
aquifers (<60 m) in the region are typical of fluvio-deltaic depositional environments, consisting
of medium to fine unconsolidated sand with interbedded lenses of silt and clay (Aziz et al., 2008;
Bibi et al., 2008; Weinman et al., 2008). The detailed lithology at this site along the Meghna River
is described in Varner et al. (2022). Briefly, it consists of four units; an underlying clay layer at
~36 m below ground level (bgl) overlain by medium sands which comprises the shallow aquifer
between 36 and 7 bgl. This aquifer is overlain by a silt layer between 7 and 3 m bgl; this silt layer
is overlain by fine sand between 3 and 0 m bgl.

The co-occurrence of high dissolved As and Fe concentrations in the nearby shallow aquifers
of the Meghna River floodplain have been well documented (BGS&DPHE, 2001; van Geen et al.,
2003; van Geen et al., 2014). Along the Meghna River shallow groundwater flows towards the
river for most of the year (Huang et al., 2022), and multiple studies have observed very high solid-
phase concentrations of As (>100 mg/kg) and Fe (>30,000 mg/kg) within the HZ sediments (Datta
et al., 2009; Jung et al., 2012; Jung et al., 2015; Berube et al., 2018). This suggests that advected

As and Fe from the shallow aquifer may accumulate in the HZ under the influence of mixing with
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Figure 1. (A) Map of study site with sampling locations of riverbank sediment (circles) and aquifer sediment
(squares). The filled symbols represent the sampling locations of the sediment used in this study. (B) Depiction of
the subsurface lithology at the site derived from an electrical resistivity transect along the riverbank and drill
cuttings from the aquifer borehole (Pedrazas et al., 2021; Varner et al., 2022).

the oxygenated river water. This mixing is in turn driven by tidal and seasonal fluctuations in the
river stage (Shuai et al.,, 2017b). During the dry season, the river is most strongly gaining.
However, when the riverbank becomes inundated during the wet season, the river is weakly

gaining or slightly losing (Berube et al., 2018).
2.2 Sample collection and analyses

The riverbank and aquifer sediment samples used in this study (n = 8) were collected from the
study site along the Meghna River in January 2020. The aquifer sediment was collected as
sediment cuttings from a borehole installed using the traditional hand flapper method (n = 6)
(Horneman et al., 2004), whereas the riverbank sediment (n = 2) was collected from a depth of 0.6

m bgl using a direct push sediment probe (AMS Inc., USA). Four representative samples from
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riverbank sand (RBS, 0.6 m), buried silt (SLT, 6 m), aquifer sand (AQS, 23 m), and underlying
clay aquitard (CLY, 37 m) were selected for this study. Analyses of RBS (n = 32, from nine
sediment cores), AQS (n = 13), SLT (n = 3), and CLY (n = 2) samples from three drill cuttings
(Varner et al., 2022) showed that the optical properties of water-extractable SOM were similar
within the sample groups (e.g., RBS, AQS, SLT and CLY) but distinct from each other. We
therefore selected four well-characterized samples from each group (RBS, SLT, AQS and CLY)
for the detailed functional group characterization, whose elemental composition, particle size
distribution, and optical properties of water-extractable organic matter were described in Varner
et al. (2022). All sediment samples used in this study were stored in Mylar Remel® bags with an

O absorbent pouch and kept at -7 °C until analysis.

2.3 Sedimentary organic matter (SOM) extraction using NaOH

To extract the SOM from the riverbank and aquifer sediments, 2.5 g of air-dried sediment was
powdered using an agate mortar and pestle and placed in a 50 ml centrifuge tube with 25 ml of 0.1
M NaOH solution (pH = 10.6). The mixture was mechanically shaken for 20 h (table shaker, 60
rpm) at ambient temperature. The supernatant was separated from the solid phase by centrifugation
(12,000 rpm, 20 min). Extractions using a dilute NaOH solution have been widely used to extract
natural SOM (Stevenson, 1994). Further acidification, following the NaOH solution, allows for
the partitioning of humic and fulvic acids (Bai et al., 2020). In this study, the extract solutions were
not acidified in order to retain all humic and non-humic fractions of SOM. Such NaOH extractions
have been shown to release a large percentage of the SOM and include not only humic substances,
but also the low molecular weight acids, protein-like substances, and saccharide derivatives which
comprise between 25-35% of the overall SOM in inorganic soils (Schnitzer, 1983; Ping et al.,

2001). Following centrifugation, the supernatant of the NaOH extractant solution was 0.45 um
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filtered and immediately lyophilized for FTIR measurement to avoid any loss or degradation of

the OM in solution (Lin, 2015; Sandron et al., 2015).
2.4 Spectroscopic characterization of NaOH extractable organic matter

The mid-infrared spectra of the lyophilized NaOH sediment-extracts and a standard humic
acid (HA) material (Sigma Aldrich humic acid, Aldrich Chemical Co., Product No. H16752) were
obtained by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) over
the 4000-650 cm™' range on a Shimadzu IRSpirit spectrometer (Shimadzu Corporation, Japan).
The spectrometer was fitted with a QATR-S diamond crystal attachment and a germanium-coated
KBr beam splitter. Data were obtained as absorbance [log(1/reflectance)] and 64 scans at a
resolution of 4 cm™! were averaged to obtain each sample spectrum. Background readings were
collected between samples and subtracted from the subsequent measurements. The collected FTIR
spectra were processed, baseline corrected, and smoothed in Spectragryph (v1.2.16.1).

To further characterize the spectroscopic properties of SOM, simultaneous UV-Vis
measurement of the absorbance between 240 and 450 nm and the fluorescence between 300 and
600 nm was collected on the extract solutions using a benchtop fluorometer (Aqualog, Horiba).
Following the methods described in Kulkarni et al. (2017), the spectroscopic data from the
absorbance and fluorescence wavelengths were used to generate an excitation-emission matrix
(EEM) for each sample. Specific parameters were calculated from the UV-Vis spectroscopic data
to provide further characterization of the source and dynamic processes of the SOM and are
detailed in the supplementary text 2. Furthermore, the assignment of peaks at established
excitation/emission (ex/em) pairs for the peak-picking method is useful for characterizing and
monitoring the organic properties in spectroscopic data (Goldman et al., 2012; Chen & Yu, 2021).

For this study, commonly used ex/em pairs in the fluorescence spectra which reflect the structures

12
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present in the OM were used, including humic-like (peak A, 260/380 — 460), fulvic-like (peak C,
320 —260/420 — 460), microbially derived (peak M, 290 — 310/370 — 410), protein-like tryptophan
(peak T, 270/340), and protein-like tyrosine (peak B, 270/305) (Coble et al., 1998; Coble et al.,
2014).

The drEEM toolbox (v 0.6.0) (Murphy et al., 2013) was used for parallel factor analysis
(PARAFAC) modeling of a 96 sample dataset of fluorescence spectra comprised of the samples
obtained in this study and a previous dataset which included groundwater, riverbank porewater,
river water, and sediment-water extracts from the same location (Table S1) (Varner et al., 2022).
The EEMs included in the PARAFAC model were corrected to account for scatter, anomalies, and
artifacts during collection of the spectra. Out of an initial 97 samples, only 1 sample was identified
as an outlier with a leverage value nearing 1, indicating a high degree of deviation from the average
distribution, and was removed from the model due to this analytical error. The remaining 96
samples produced a three-component model and was validated by a split-half analysis of 50 models
with three components, which confirmed the reliability of the three-component model through

random initialization techniques.
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3 Results
3.1 Functional group assignments and variations in SOM

The FTIR spectra provided diagnostic information on the functional groups present in the
SOM. The assignment of functional groups was performed by comparing the sample spectra to
previously reported ranges for common functional groups in natural waters and sediments (Table
1), as well as utilizing co-occurring signals in the spectra that are associated with specific
functional groups (i.e., aliphatic CH shows peaks at both ~1450 cm! for deformation and ~2920
cm’! for stretching). The possible effects from alkaline extraction on the SOM were also considered
for the assignment of functional groups in the spectra. A more detailed description of peak
assignments is provided in the supplementary text.

The FTIR spectra of the lyophilized NaOH extracts were compared to a standard humic acid
(HA) (Fig. 2a). The HA displayed prominent peaks at ~3400, 1590, 1390, and between 1100-1030
cm’!, which are typical for Sigma Aldrich HA, and are attributed to O—H stretches, aromatic C=C
stretching, symmetric C—O stretching of carboxylic groups, and polysaccharide moieties,
respectively (Guan et al., 2006; Liu et al., 2015). Based upon the peak assignments and known
structure of the functional groups (Table 1) (Li et al., 2015), the aromaticity (a measurement of
molecules that are both cyclic and planar) of the Sigma Aldrich HA was determined to be 56%,
which is consistent with previously reported values (Kobayashi & Sumida, 2015) and is
comparable to that of the '3C nuclear magnetic resonance estimates for the International Humic
Substances Society’s standard HA (Thorn et al., 1989). The aromaticity of the SOM in the samples
ranged between 40-65%. Overall, the FTIR spectra for the NaOH extracts show IR absorptions
that are typical for alkaline soil extracts (Oren & Chefetz, 2012). For comparison of relative peak

sizes, normalized FTIR spectra are shown in Figure S1.
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Table 1. Functional group assignments for specific bands and peaks observed within the mid-infrared wavelengths.

Absorption (cm') FTIR band Assignment Reference
3700-3300 O—H bonds Unresolved: phenol, alcohol, carbohydrates, 1-15
COOH, Si—O—H in clay minerals, N—H stretch
3100-3030 Aromatic C—H stretch Aromatic stretch of highly substituted rings in HA 1,2,5,9,12,16
macromolecules
2970-2820 Aliphatic C—H Stretch Aliphatic C—H stretch of CH, 1-13, 16-20
1720-1700 C=0 stretch Protonated carboxylic acid: aliphatic 2-4,6,7,10-15, 18,
19, 21-25
1670-1630 C=0 stretch Aliphatic carbonyl structures including 1-7,9-11, 13-15, 18-
proteinaceous amide I, conjugated ketones, and 25
quinone-like compounds
1630-1600 Aromatic C=C stretch Aromatic ring stretch. May indicate ternary As-Fe- 3-8, 10, 15, 19, 20
OM complexes
1570-1550 Aromatic C=C stretch Possible contribution from asymmetric COO~ 1-3, 8, 15, 16, 23, 26
stretches
1515-1490 Aromatic C=C stretch Possible contribution of amide IT and peptide 1,4,5,7-11, 15, 16,
18-20, 23
1470-1430 C—H deformation Aliphatic C—H deformation 1,2,4,5-9,14-19,
21-23,26
1420-1370 Symmetric C—O Stretch ~ Aromatic carboxylate derivatives. Indicative of Na* 1, 5-7, 11, 15, 17-19,
salts (i.e., sodium benzoate) 21-27
1185-975 C—0—Cand C—O—H Carbohydrates: aliphatic polysaccharide moieties 2, 4, 5-8, 11, 15, 19,
stretching 20, 26
900-860 C—H out-of-plane bend C—H bend of aromatic rings 1,3,5,9,15,17, 18,
20,23

1. Bellamy (2013) 2. de Melo Benites et al. (2005) 3. Fultz et al. (2014) 4. Fernandez-Getino et al. (2010) 5. Senesi et al. (2003) 6. Olk et
al. (2000) 7. Chefetz et al. (1998) 8. Sanchez-Monedero et al. (2002) 9. Tatzber et al. (2007) 10. MacCarthy and Rice (1985) 11. Lumsdon
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The FTIR spectra of the CLY sample showed notable differences in the location and

intensities of peaks in comparison to the peaks observed in RBS, SLT, and AQS (Fig. 2b). The

absorbance band attributed to various O—H stretching in the CLY spectra was centered at 3360

cm’! and contained an additional peak at 3230 cm™', which may indicate a higher occurrence of the

H-bonded O—H stretching of carboxylic acid and increased contributions from the N-H stretch

of amide II, respectively. Furthermore, a broad shoulder between 3100 and 3030 cm!, which is
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attributed to aromatic C—H stretching, showed higher relative absorbance compared to the other
samples, whereas the aliphatic C—H stretch between 2970 and 2820 cm™! was less pronounced in
the CLY spectrum compared to the other samples. In the 1800 and 1500 cm™ range, the CLY
spectrum was similar to the spectra of the other samples, however, CLY contained a dominant
peak at 1395 cm™!. The downward shift of this peak to slightly lower wavenumbers than that of the
other sample spectra (~1440 cm™) indicates lower absorbance from aliphatic C—H deformation
and drastically higher absorbance from C—O stretching of carboxylic derivatives (i.e., sodium
benzoate) and asymmetric COO™ stretching. In comparison to the other samples, CLY shows only
minor absorbance between ~1180 and 1000 cm™ and a relatively small peak at 880 cm
corresponding to C—O—C and C-O-H stretches of polysaccharide moieties and an out-of-plane

bending of aromatic CH, respectively.
3.2 Distribution of functional groups in sedimentary organic matter

The relative contribution of each of the assigned functional groups to the overall sample SOM
were estimated by taking the area under the peak between the wave numbers assigned to each
functional group (Table 2). The major functional groups contributing to the SOM observed in the
samples were aromatic rings (C—H at 3100-3030 and 900-860 cm™'; C=C stretch at 1630-1600,
1570-1550, and 1515-1490 c¢cm™), aliphatic C-H (2970-2820 and 1470-1430 cm'), carbonyl
(1670-1630 cm™), protonated carboxyl groups (1720-1690 cm™), deprotonated carboxyl groups
attached to an aromatic ring (aromatic carboxylate groups, 1420-1370 cm™), and carbohydrate
(1180-1000 ¢cm™) (Fig. 3). Results show that the RBS, SLT, and AQS had similar aromatic to
aliphatic (Ar:Al) ratios (0.66, 0.60, 0.89, respectively), whereas CLY had a much higher Ar:Al
(1.86) (Fig. 3). The primary reason for a markedly high Ar:Al in CLY is the large contribution of

aromatic carboxylate structures (1420-1370 cm™') in the spectrum (36%), which increased with
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depth from the overlying RBS, SLT, and AQS samples (12%, 13%, and 19%, respectively) (Table
S2).

One effect of alkali extractions is the deprotonation of dissociable carboxylic acid groups,
which diminish the COOH absorbance bands in the FTIR spectra between 1720-1700 cm™, and
increase absorbance between 1400-1370 cm ! (Hay & Myneni, 2007; Nuzzo et al., 2020). These
bands are commonly attributed to the carboxyl groups of sodium benzoate, which increase along
with rising pH (Hayes et al., 1989; Guan et al., 2006; Lee & Seo, 2014). A comparison of the peaks
at ~1720 and ~1400 cm™' suggests that most of the carboxyl groups in the SOM of all samples
were deprotonated. The accumulation of simple compounds such as benzene and carboxylate
derivatives with greater depth infer a higher level of humification, indicating that CLY contains
much higher relative proportions of a more degraded (i.e., humified) pool of SOM (Table S3).

The contributions from aliphatic C— H were found to be higher in RBS (37%) and AQS (37%)
than in the finer grain SLT (32%) and CLY (24%) samples. However, neither grain size nor depth
could solely explain the distribution of functional groups in the SOM as SLT contained a relatively
large amount of carbohydrates (17%) while only trace amounts were present in CLY (<1%).
Relative proportions of carbohydrates in the RBS and AQS were 9% and 5%, respectively. The
proportions of the peaks assigned strictly to aromatic rings were comparable among RBS, SLT,
AQS and CLY (28%, 25%, 28% and 29%, respectively), whereas carbonyl groups were found in
slightly higher proportions in the RBS, SLT, and AQS (9%, 9%, 7%, respectively), than CLY

(6%).
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Figure 3. Proportions of functional groups in the sediment samples. Bold font represents groups attributed to
aromatic structures and [talicized font represents groups attributed to aliphatic structures (Li et al., 2015). Value in
parenthesis is the Ar:Al for each sample. The riverbank sand, silt, aquifer sand, and the clay aquitard are denoted
by RBS, SLT, AQS, and CLY, respectively.
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Table 2. Area under the peak for the assigned functional groups in the FTIR spectra. The riverbank sand, silt,
aquifer sand, and the clay aquitard are denoted by RBS, SLT, AQS, and CLY, respectively.

Sample Aliphatic Carboxyl Carbonyl Aromatic Aromatic- Carbohydrate Total Aromatic:

CH Ring Carboxylate Area Aliphatic
RBS 10.92 1.80 2.62 8.31 3.41 2.55 29.60  0.66
SLT 1543 2.25 4.48 11.97 6.41 8.23 48.77  0.60
AQS 22.31 2.23 434 16.95 11.46 2.98 60.28  0.89
CLY 23.79 2.38 5.28 26.72 33.01 0.59 91.78  1.86
Aldrich  10.34 11.43 3.38 37.07 - 11.29 73.51 1.26

HA
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3.3 Fluorescence characteristics of SOM

The absorbance and fluorescence of the aqueous NaOH extracts provide a more robust
characterization of the SOM properties which may impact geochemical processes in the riverbank
and aquifer (Fig. 4). The SOM in the RBS, SLT, AQS, and CLY is from a terrestrial source (FI =
1.35, 1.32, 1.44, and 1.27, respectively). The age of the SOM is reflected by the freshness index
which shows that the SOM within RBS and SLT (B:a = 0.73 and 0.82, respectively) is more
recently produced relative to the more degraded SOM found in the AQS and CLY (B:a=0.53 and
0.63, respectively) (Table S3) which concurs with the depositional history. The presence of
aromatic structures, as indicated by the absorbance at 254 nm (abs254), were elevated in the CLY
(11.07) relative to the RBS, SLT, and AQS (1.33, 1.52, and 0.79, respectively).

Four primary peaks were identified in the excitation and emission spectra of the samples for
the peak-picking method (Table S3, Fig. 4), including; peak A (terrestrial humic-like), peak T
(protein-like), peak C (terrestrial fulvic-like), and peak M (microbially produced, humic-like)
(Coble et al., 1998). The peak typically attributed to tyrosine protein-like fluorescence (peak B)
was not present in any of the samples. In general, the fluorescence indices show that the sample
SOM is composed largely of humic and fulvic-like compounds (60-70%) with varying proportions
of protein-like (1-7%) and microbially produced compounds (29-35%). The proportions
represented by each peak were similar among each the samples, ranging between 43-48%, 17-
19%, 29-35%, and 1-7% for peaks A, C, M, and T, respectively. However, the highest proportions
of protein-like and microbially produced SOM are observed in the SLT as shown by a lower
humic:protein ratio (humic:protein = 6.1) and higher microbial: terrestrial ratio (peak M/peak C =
2.0) compared to the RBS (9.2 and 1.68), AQS (24.0 and 1.83), and CLY (9.0 and 1.45) (Table

S3).
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The absorbance and fluorescence data complemented the FTIR results and provided further
characterization of the variations in the SOM in the riverbank and aquifer sediments. Variations in
SOM reactivity can be visualized by comparing the humic and fulvic-like signatures (peak A and
C) with the protein-like and microbially produced SOM (peaks T and M) as it relates to the
distribution of functional groups. For example, the sum of peaks T and M were positively
correlated with the proportions of carbohydrate (R? = 0.91) and carbonyl (R? = 0.71) in the SOM,
whereas the sum of peaks A and C are positively correlated with aromatic structures (R = 0.73).
Furthermore, the Ar:Al obtained from the assignment of the functional groups showed a positive
association with both the humification index (HIX, r = 0.78) and abs254 (r = 0.96), which in turn
were each negatively correlated with the proportions of aliphatic CH (r = -1.00 and -0.90,
respectively) and positively correlated with the proportions of aromatic carboxylate (r = 0.77 and
0.94, respectively) (Fig. S2). Fulvic-like SOM showed positive correlation with aromatic rings
(peak C, r = 0.98) whereas humic-like SOM was more closely associated with the aromatic-
carboxyl structures (peak A, r = 0.90). The relative proportions of humic-like SOM were
negatively correlated with those of carbonyl and carbohydrates (r =-0.87, and -0.88, respectively).
Conversely, the proportions of carbonyl and carbohydrate functional groups in the SOM were
positively correlated with B:a (r = 0.72 and 0.80, respectively) and the M:C ratio (r = 0.73 and
0.83, respectively). However, the relative proportions of carbonyl functional groups were more
closely related to microbially produced SOM (peak M, r = 0.57) whereas the proportion of
carbohydrates were associated with the proportions of protein-like SOM (r = 0.68). Whereas these
correlations provide valuable insights between optical properties and functional group
distributions, their statistical significance shall be interpreted with caution because of the limited

number of samples analyzed in this study. Although the potential heterogeneity in the individual
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sample type was not addressed in this study, the functional group distribution among four types of
samples (RBS, SLT, AQS and CLY) is clearly distinguishable.

The PARAFAC model validated three components (Fig. S3) utilizing the 96 sample dataset
comprised of samples from this study (n = 4) and samples from previous work (Varner et al., 2022)
along the Meghna riverbank (92). The samples included in the PARAFAC model from this study
were the NaOH sediment-extracts and differed from the remaining 92 samples, which were all
measured for UV-Vis properties in a water-based medium. Despite showing a similar proportion
of components, the samples from this study contained much higher overall values for the
components, specifically for component 1 (Table S1). Due to the lack of representation of similar
sample types in the 96 sample PARAFAC model, we determined that the model is not the best
representation of the OM characteristics for these samples. However, the components included in
the model remain consistent regardless of sample type, therefore, we have included the model

results in the supplementary information.

22



396

Riverbank Sand Silt (10x)

10 10
8 8
6 6
4 4
2 2
0 0

350 350
Ex. (nm) Ex. (nm)

Aquifer Sand Clay Aquitard (10x)

350
Ex. (nm)

Figure 4. Excitation emission matrices of the samples. The silt and clay aquitard EEMs displayed
are 10x diluted. All intensities are reported in Raman Unit (R.U.)
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4  Discussion

4.1 Properties of SOM in the Aquifer and Riverbank sediments

The complimentary techniques used to characterize the spectroscopic properties of SOM
revealed variations its properties among the riverbank and aquifer sediments. In general, the
relationship between the humification index (HIX) with the proportions of aromatic rings, aliphatic
CH, and aromatic-carboxyl structures suggests that these functional groups are indicative of more
humified SOM. Conversely, younger, and supposedly more reactive SOM typically contains
higher proportions of both carbonyl (Amide I) and carbohydrates which are associated with
protein-like and microbially produced SOM. Interestingly, none of the identified SOM properties
are reliably correlated to sediment grain size. For example, the SLT and CLY, apart from
demonstrating a similar terrestrial source and higher HIX than the sand samples, varied in their
chemical composition. The SOM in the CLY was characterized by more highly degraded aromatic
and carboxyl compounds of humic-acids and contained minimal proportions of labile OM such as
carbohydrate (1%) and carbonyl groups (6%) (Fig. 3). The SOM in the SLT, on the other hand,
showed higher proportions of protein-like and microbially produced SOM and was relatively
enriched in carbohydrates (17%) and carbonyl (9%). Freshly produced substances, such as
carbohydrates, have a large impact on the interactions between SOM and its surroundings since
carbohydrates are highly labile and preferentially utilized for microbial degradation as opposed to
more humified material (Wu et al., 2009; Gustafsson et al., 2014; Shi et al., 2016; Lu et al., 2017).
The properties of SOM in the coarse grained RBS and AQS were similar, although the composition
of the SOM in RBS more closely resembled that of the near surface SLT SOM with slightly higher
proportions of more labile carbonyl and carbohydrates (9% and 9% respectively) relative to AQS

(7% and 5%, respectively).
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Aromatic compounds have been shown to contain highly adsorbing properties (Coward et al.,
2018; Groeneveld et al., 2020), yet in this study, the SOM from the samples of various lithologies
contain similar proportions of aromatic rings (25-29%). Further resolution is provided by the
assignment of the peak at ~1400 cm™! to aromatic carboxylate groups, which form under alkaline
conditions. Evidence for the assignment of this peak to aromatic carboxylate groups and is further
supported by the relationship between the Ar:Al and both the HIX (r=0.78) and abs254 (r = 0.96),
which indicate the degree of humification and aromaticity, respectively (Fig. S2) (Ohno, 2002;
Weishaar et al., 2003; Zsolnay, 2003). While a similar proportion of aromatic rings were observed
in RBS, SLT, AQS, and CLY (28%, 25%, 28%, 29%, respectively), the RBS, SLT, and AQS
contained higher proportions of aliphatic C—H than CLY (37%, 32%, 37%, 26%, respectively).
Owing to the diverse properties of natural SOM, the predominance of neither aliphatic nor
aromatic compounds in the SOM can be used exclusively to explain the sorption affinity of SOM
(Chefetz & Xing, 2009). Nevertheless, a substantial pool of SOM is comprised of both aromatic
compounds with a high sorption affinity (Weber Jr et al., 1992; Chin et al., 1997; Tremblay et al.,
2005; Tang & Weber, 2006), and aliphatic components which serve as a prominent sorption
material for both organic matter (Chefetz et al., 2000; Chefetz, 2003; Lin et al., 2007; Sun et al.,
2008) and iron minerals (Adhikari & Yang, 2015). Adhikari and Yang (2015) found that aliphatic
carbon may bind to Fe-oxides and remain adsorbed even if the Fe-oxides become reduced,
allowing for the accumulation of aliphatic carbon in older pools of SOM. The area under the peaks
associated with both aliphatic C—H and aromatic rings increases with the sample depth (RBS <
SLT < AQS < CLY) (Table S1). As humification proceeds over time, the degradation of more
characteristic structures results in the enhancement of refractory signals from simpler aromatic and

aliphatic compounds (Kelleher et al., 2006; Chefetz & Xing, 2009). This finding of increasing
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abundance of humified SOM structures with depth (Fig. 3) is consistent with the accumulation of
humic-like, aromatic SOM in the shallow aquifer sediments of Bangladesh under reducing

conditions (McArthur et al., 2004; Mladenov et al., 2010; Datta et al., 2011).
4.2 Varying influence of SOM on As and Fe mobility

As presented above, a notable finding from the distribution of the functional groups in the
SOM is the observed differences between the fine grain samples SLT and CLY. Whereas previous
studies demonstrate the correlation between the concentrations of SOM, As, and Fe in the reducing
shallow aquifers of Bangladesh (Dowling et al., 2002; Harvey et al., 2002; Anawar et al., 2003;
Stiiben et al., 2003), the extent that fine grain layers within the shallow aquifer play in promoting
As mobility remains uncertain. Regardless, it is widely agreed that OM drives the redox reactions
governing the microbially mediated release of As (Bauer & Blodau, 2006; Cui & Jing, 2019), yet
some fractions of SOM may regulate As mobility through differing mechanisms depending on the
specific chemical properties (Anawar et al., 2013). For example, OM may strongly adsorb onto
the surface of positively charged Fe-minerals (Sharma et al., 2010; Mladenov et al., 2015), which
may regulate As mobility by displacing any adsorbed As (Bauer & Blodau, 2009), or forming
ternary As-Fe-OM complexes via cationic bridging (Redman et al., 2002; Liu et al., 2011; Mikutta
& Kretzschmar, 2011; de Oliveira et al., 2015; Liu et al., 2020b; Aftabtalab et al., 2022). Therefore,
the behavior of sedimentary and dissolved As are linked to the interactions between various OM
functional groups and Fe.

Furthermore, the peak at ~1400 cm™ in the FTIR spectra is also often attributed to ligand
exchange mechanisms associated with carboxylate-Fe bonds (Gu et al., 1994; Fu & Quan, 2006;
Kaiser & Guggenberger, 2007; Oren & Chefetz, 2012; Liu et al., 2020a). Carboxyl groups are

important mediators in the SOM fraction of soils, capable of promoting ion exchange reactions to
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extract metal cations from the sediment and groundwater (Wu et al., 2009; Gustafsson et al., 2014;
Shi etal., 2016; Lu et al., 2017). This tendency allows for carboxylate groups to be highly effective
at sequestering Fe-minerals (Curti et al., 2021; Wen et al., 2022). However, most carboxylic acid
derivatives are water soluble throughout the pH ranges found in natural groundwater (Fox et al.,
2017), and have been implicated in the co-occurrence of DOC and Fe in the porewaters of
sediments containing carboxyl-rich SOM (Curti et al., 2021; Liu et al., 2022). In the case of the
Meghna riverbank and aquifer sediments, the proportions of aromatic carboxylate groups in the
SOM show positive correlation to depth and also to the water extractable concentrations of As and
Fe previously measured on the same sediment samples (Varner et al., 2022) (Fig. S4). The
abundance of aromatic carboxylate groups in the CLY sample suggests that the SOM here may
maintain elevated As concentrations in the groundwater by providing an ample source of carboxyl-
rich OM to the aquifer that favors the formation of soluble As-Fe-OM complexes. This idea is
consistent with previous findings suggesting that clay layers in the shallow aquifers of Bangladesh
are a prominent source of the DOC that sustains As mobility (Mukherjee et al., 2007a; Mukherjee
et al., 2007b; Guo et al., 2019; Mihajlov et al., 2020).

The SOM in the SLT contains relatively high proportions of polysaccharides (17%), which
have the potential to be utilized as electron donors for heterotrophic microbial respiration under
both aerobic and anoxic conditions (Zhang et al., 2019) and are often indicative of high levels of
microbial activity (Laspidou & Rittmann, 2002; Omoike et al., 2004). In nature, the role of
microbial activity is ubiquitous and polysaccharides present a major labile energy source for
bacteria, so that under reducing conditions, polysaccharides support the heterotrophic metabolisms
driving the microbially mediated reduction of the OM-bearing Fe-oxides (Haider, 2021).

Similarly, the RBS, SLT, and AQS contain higher proportions of carbonyl groups assigned to the
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peak at ~1650 cm™! (8.9%, 9.2%, 7.2%, respectively) than the CLY (5.8%). This peak is typically
attributed to the C=O stretch of carbonyl bonded to proteinaceous amine (amide I). The SOM in
the SLT contained the highest proportions of carbonyl and also contained the highest B:o values
and proportions of peak T, indicating the presence of freshly produced proteinaceous material (Fig.
3, Table S3). In general, the higher proportions of carbonyl components in the RBS, SLT, and
AQS support the biological activity that may promote the microbial reduction of As-bearing Fe-
oxide minerals (McArthur et al., 2001; Glodowska et al., 2020; Qiao et al., 2020).

Overall, the reactivity of SOM as it relates to As and Fe in the sediment can be summarized
by the Ar:Al and the HIX (Fig. S4). The SOM with higher HIX is associated with elevated
sedimentary As and water-extractable As concentrations. In contrast, water-extractable Fe
concentrations are more closely related to the Ar:Al than the HIX (Fig. S4). These findings are
consistent with previous work which showed that humic-like OM is linked to elevated As content
within the groundwaters of the Bengal basin (Vega et al., 2017; Kulkarni et al., 2018a) and that Fe
preferentially co-precipitates with more aromatic OM (Du et al., 2018). Elevated proportions of
carbohydrate and carbonyl along with lower proportions of aliphatic CH and carboxyl groups
indicate a fresher and more labile source of carbon in the near-surface SLT sediment, whereas the
deeper CLY sediment is rich in carboxylic derivatives favoring the formation of soluble OM-Fe-
As complexes. Comparing the SOM properties between SLT and CLY suggests that not all fine

grain layers in the shallow aquifers of Bangladesh contribute to As mobilization similarly.
4.3 Potential impacts of SOM on As mobility in hyporheic zone sediments

The extent of As enrichment in the Meghna River HZ has previously been shown to be
influenced by the grain size of the surficial sediments wherein sandy sediments promote the

surface water-groundwater mixing required for the precipitation of As-attenuating Fe-oxides, and
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a surficial silt layer prohibits the mixing and prevents the accumulation of sedimentary As (Jung
et al., 2015). Furthermore, the presence of fine grain sediments along the Red River in Vietnam
have been implicated in the propagation of a high As plume in the adjacent aquifer by contributing
to the persistent reduction of reactive Fe-oxides within the riverbank sediments (Stahl et al., 2016;
Wallis et al., 2020). The influence of a shallow buried silt layers (3-7 m bgl) underlying riverbank
sands have not been studied in relation to the occurrence of As enrichment in HZ sediments,
although we hypothesize that the silt layer may limit surface water-groundwater mixing and also
provide a source of labile SOM to drive reductive processes. This may explain the markedly lower
sedimentary As concentrations in the HZ at this site (7 + 2 mg/kg) (Varner et al., 2022) compared
to other measurements within the Meghna River HZ which commonly exceeded 500 mg/kg (Datta
et al., 2009; Jung et al., 2015; Berube et al., 2018). Together, the SOM properties of the HZ
sediments (SLT and RBS) indicate young, labile SOM with higher electron donating capacities
than the underlying aquifer sediments. This is shown by the high proportions of both carbohydrates
(16.9%) and carbonyl groups (9.2%) in the SLT samples, which are elevated compared to both the
RBS (8.6% and 8.9%, respectively) and to the underlying AQS (4.9% and 7.2%, respectively). In
this case, the silt layer can serve as a source of labile OM to the overlying HZ which promotes
reducing conditions, preventing the accumulation of Fe-oxides which are capable of attenuating
As in the HZ sediment.

In contrast, the SOM in the CLY contains a more humified and recalcitrant pool of carboxyl-
rich SOM with a tendency to form soluble As and Fe complexes. These soluble complexes may
contribute to elevated dissolved As concentrations in the aquifer should they be mobilized. Sands
comprising the shallow aquifers (<60 m) in the Bengal Basin host the highest concentrations of

dissolved As and Fe (Nickson et al., 1998; Harvey et al., 2002; Hugq et al., 2020), which are often

29



535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

maintained in solution through complexation with more soluble portions of humic-like DOC
(Sharma et al., 2010; Liu et al., 2011; Wu et al., 2019). Therefore, varying reactivity and nature of
the SOM in the HZ sediments, shallow buried silt, and the underlying aquifer sediments may affect
As mobility through differing mechanisms. The detailed characterization of the SOM at this site
indicates the varying roles that SOM has on regulating As mobility in the HZ. Regardless, the
extent that SOM impacts As mobility within the HZ is largely influenced by the groundwater flow
patterns and thus further research into the temporal and spatial flow patterns along the Meghna

River is warranted.

5 Conclusion

This study characterized the chemical reactivity of SOM from the HZ sediments along the
Meghna River, Bangladesh and an As contaminated aquifer adjacent to the river. The SOM in both
the riverbank and aquifer sands was shown to have a similar terrestrial source containing both
humic-like and fulvic-like signatures. Variations in the chemical composition of the SOM in the
shallow silt and clay aquitard revealed a more recalcitrant and degraded SOM in the underlying
clay aquitard with a high aromatic carboxylate content whereas the aquifer silt at ~3 m bgl
contained fresher, microbially produced SOM with higher proportions of amides and
polysaccharide moieties. The carboxylate-rich clay aquitard may support As mobility by favoring
the formation of soluble Fe and As complexes, while the labile SOM in the aquifer silt may
promote As mobilization by fueling the microbially mediated dissolution of As-bearing Fe-oxides.

Within the HZ, the SOM and groundwater flow controls of the shallow buried silt layer may
act together inhibit the accumulation of sedimentary As. Higher proportions of labile OM in the
aquifer silt and riverbank sands support the microbially-mediated reductive dissolution of As-

bearing Fe-oxides under reducing conditions, preventing the accumulation of sedimentary As.
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Should the reactive SOM in the silt layer contribute to the dissolved load of the discharging
groundwater during the dry season, the production of Fe-oxides may be limited by the influx of
reactive DOC. These findings suggest that the variable SOM characteristics along the Meghna
River and its adjacent aquifer contain differing reactive properties that regulate the geochemical
processes governing As and Fe mobility. This study contributes to our understanding of the
contrasting roles that SOM may have on As mobility within both riverine aquifers and the HZ

along the river water-groundwater interface.
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