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The first measurement of the cross section for incoherent photonuclear production of J/y vector mesons
as a function of the Mandelstam |¢| variable is presented. The measurement was carried out with the

ALICE detector at midrapidity,

y| < 0.8, using ultraperipheral collisions of Pb nuclei at a center-of-mass

energy per nucleon pair of |/syy = 5.02 TeV. This rapidity interval corresponds to a Bjorken-x range

(0.3-1.4) x 1073, Cross sections are given in five [f| intervals in the range 0.04 < |¢t| < 1 GeV? and
compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon
density in the colliding hadron predict a |7| dependence of the cross section much steeper than in data. The
inclusion of such fluctuations in the same models provides a better description of the data.
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The fundamental structure of protons, neutrons, and
nuclei is described in terms of quarks and gluons by
quantum chromodynamics (QCD). A new phenomenon
called gluon saturation—a dynamic equilibrium between
the production and annihilation of gluons—is predicted by
QCD [1]. While the high-energy limit of QCD has been
found to be dominated by the gluon contribution in proton
targets [2], experimental work is yet needed to determine
the onset of gluon saturation [3]. Besides protons at high
energy, saturation is expected for large nuclei at even lower
energies [4], thus the study of the structure of heavy ions is
an attractive area of exploration within the current collider
experiments. The search for the onset of saturation has
motivated the construction of dedicated QCD facilities such
as the future Electron—Ion Collider [5].

Photons are ideal probes to study the interior of nuclei.
In this context, the diffractive photoproduction of a vector
meson, like the J/y, is of particular interest because of its
sensitivity to both the average and the variance of spatial
distribution of the gluon field inside nuclei [6]. In this
process, a quasireal photon emitted by one of the highly
Lorentz-contracted nuclei interacts via the exchange of at
least two gluons with the other nucleus, producing the
vector meson [7].

This process can be divided in two contributions:
coherent and incoherent production. The former refers to
photon interactions with the color field of the whole
nucleus, and the latter to photon interactions with only
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one nucleon inside the nucleus. The incoherent production
can be further divided in the interaction with a full nucleon or
the interaction with subnucleon sized structures inside the
nucleon; the latter is known as the dissociative contribution.
The square of the momentum transferred during the inter-
action, the Mandelstam variable 7|, is related through a
Fourier transform to the distribution of nuclear matter in the
impact-parameter plane. This implies that collisions with a
large scattering object, such as the whole nucleus, occur
at small |¢z|, which for the case of Pb ions means
|f| £0.01 GeV?. In the same way, collisions with a small
object, like a nucleon, lead to larger |#| values of the order of
0.1 GeV?2. If there are collisions with even smaller objects at
a subnucleon scale, they would have even larger |z|. In the
Good-Walker approach [8], the coherent process is related to
the average spatial distribution of gluons in the transverse
plane, and the incoherent case is related to its variance [9].
The applicability of this approach to LHC data may have
some caveats as discussed in [10]. A recent study using this
approach [11] demonstrated the importance of including
fluctuations of spatial distributions of gluons to describe the
|#| dependence of the dissociative cross section off protons
measured at HERA [12]. Further work in this direction [13]
revealed that the energy dependence of the dissociative
process provides another signature for saturation. When the
gluon saturation regime is reached, all gluon configurations
in the proton appear similar, thus the cross section, which is
proportional to the variance of the gluon field, decreases as
the energy increases. Note that larger values of |z7| are
expected to be more sensitive to fluctuations, thus it is
important to study the energy dependence at different values
of |#|, where a decrease of the cross section with increasing
energy would be a signature of saturation.

Although the dissociative production of J/y off protons
has been measured at HERA [12], until now this process
has not been measured using heavy-ion targets. Most of the
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experimental effort has been put on coherent vector meson
photoproduction. At high energies, this has been carried out
using photon-induced processes in ultraperipheral heavy-
ion collisions (UPCs) at the Large Hadron Collider (LHC)
[6,14,15]. The diffractive photoproduction of a J/y vector
meson at the LHC has a very clean experimental signal with
a sizable cross section. The coherent photoproduction of a
J /w off the Pb nuclei has been measured at the LHC at two
different center-of-mass energies per nucleon pair, /sy =
2.76 TeV and 5.02 TeV, by the ALICE [16-18], CMS [19],
and LHCb [20] Collaborations. Together, these measure-
ments cover a range in J/y rapidity of |y| < 4.5. More
recently, the ALICE Collaboration performed the first
measurement of the |¢z| dependence of the coherent J/y
photoproduction cross section [21], and the STAR
Collaboration studied the structure of the deuteron through
the |¢| dependence of J/y diffractive photoproduction in
deuteron-gold collisions [22]. The ALICE Collaboration
also presented a measurement of the cross section for
incoherent J/y production at midrapidity [16].

In recent years, great theoretical interest has been
given to incoherent J/y photoproduction [23-26], and
in particular to its [z| dependence [27-29]. Theoretical
approaches that describe correctly the coherent production
process differ widely in their predictions for incoherent
production, which is particularly sensitive to spatial fluc-
tuations of subnucleon degrees of freedom. Note that a
better assessment of such quantum fluctuations would
significantly improve the determination of the initial stage
of nuclear collisions at high energies [30].

In this Letter, the first measurement of the |¢| dependence
of the incoherent photonuclear production of a J/y vector
meson is presented. The measurement was carried out in
the rapidity range |y| < 0.8 using UPCs of Pb nuclei at
V/Snn = 5.02 TeV. Cross sections are presented in five |7
intervals in the range 0.04 < |¢| < 1 GeV?. The measure-
ment is compared to the predictions of the models dis-
cussed later on, finding that the contribution of fluctuations
at a subnucleon scale is important to describe the data.

This analysis is based on the dataset collected during the
2018 Pb-Pb data-taking period. It utilizes the same trigger
and follows the same analysis strategy as in Ref. [21]. The
luminosity of the analyzed sample is (232 4 7) pb~!. The
measured J/y mesons have a rapidity |y| < 0.8, corre-
sponding to Bjorken-x values within (0.3 — 1.4) x 1073,
and transverse momentum 0.2 < pr < 1 GeV/c. Owing to
the small virtuality of the quasi-real photons, in the
kinematic region studied here |f| = p3. According to the
STARIlight Monte Carlo [31], the difference between
the mean |¢z| and p? in each interval is less than 0.4%.
As pr is conjugate to impact parameter, which in UPC is
large, interference effects are important only at pr below
10 MeV/c and are negligible for the pp range of this
measurement [32].

The J/y was reconstructed using its decay into a g™~
pair. The signature of these events is then two tracks in an
otherwise empty detector. The only other particles that may
be present in such an event are the products from the
dissociation of the interacting nucleus; these particles
would appear near beam rapidities. The muons were
measured with the central barrel detectors of ALICE
[33,34]: the ALICE Inner Tracking System (ITS) [35]
and the Time Projection Chamber (TPC) [36], both of them
covering the full azimuthal angle and surrounded by a large
solenoid magnet producing a magnetic field of 0.5 T. Any
other activity in the event was vetoed by the VO [37] and the
AD [38], which are scintillator based detectors consisting
of two arms each, located at both sides of the nominal
interaction point along the beam axis. They cover the
pseudorapidity ranges 2.8 < < 5.1 and -3.7 <n < —1.7
(V0),and 4.8 <y < 6.3 and —7.0 < < —4.9 (AD). Each
arm of VO and AD has a time resolution smaller than 1 ns.

The tracks were required to have opposite electric
charges and to leave signals in both the ITS and the
TPC. Their pseudorapidity was constrained to || < 0.8 in
order to have a large reconstruction efficiency. The muons
were identified by requiring an ionization energy loss,
measured in the TPC, compatible with the muon hypoth-
esis. For the momentum range of the muons in this analysis
(0.5 to 3 GeV/c) this criterion rejects completely the
contribution from the electron decay channel. The two
tracks were required to form a common interaction vertex
with a coordinate along the nominal beam line |z,y| <
10 cm to have uniform acceptance.

The J/y yield, N,,,, was extracted by fitting the muon-
pair invariant-mass (m,,) distribution with two contribu-
tions: a double sided Crystal Ball distribution [39] to
represent the signal and an exponential to describe the
background. An unbinned extended likelihood fit was
performed in each one of the five |¢| intervals. The left
panel of Fig. 1 shows the fit to the total sample. The
extracted J/y yield is 512 +26 (stat). This yield is
dominated by the contribution of incoherent processes,
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FIG. 1. Left: Invariant mass distribution of muon pairs (full
symbols) and fit to a model (solid blue line, see text). Right:
transverse momentum distribution of muon pairs with 3.0 <
my, < 3.2 GeV/ c? (full symbols) and fit to a model (solid blue

line) along with the different contributions to the fit (other lines,
see text).
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TABLE L.

Measured cross sections, shown in the last column, and the numerical values used to compute them according to Eq. (1).

The uncertainties on N, and (Acc x €)yc are statistical; those on f¢ and fp, are each correlated systematic; those on the cross sections
are (in this order) statistical, uncorrelated systematic, and correlated systematic.

1| (GeV?) Ny fc (%) fp (%) (Ace x €)yc (%) (do,pyp/d]t]) (ub/GeV?)
(0.040,0.080) 128 +£ 12 9.44+0.8 81.9+11.7 3.39+0.03 21.8+2.1+03+2.1
(0.080,0.152) 127 + 12 0.024 + 0.002 36.0 4.9 3.03 £0.02 19.1+1.94+03+1.5
(0.152,0.258) 85+ 10 0 93+1.0 2.49 +£0.02 13.1+1.64+044+0.9
(0.258,0.477) 86+ 11 0 49+04 2.04 +£0.02 81+1.1+£0.1+£06
(0.477,1.000) 86 £ 11 0 2.7+£02 1.57 £0.02 46+0.6+0.1+03

but it still has a remaining background that has to be
subtracted. The amount of background is obtained by
analyzing the transverse momentum distribution.

The J/w yield originates from three contributions:
coherent and incoherent production, as well as feed-down
from y/ diffractive photoproduction. The background to the
yield from incoherent production, Nij"/cw, was subtracted in
each |7 range using the ratio of the number of J/y from
coherent (feed-down) to incoherent production fc (fp)
such that N7 = N, /(1 + fc + fp)-

The fc and fp ratios were determined from a binned
extended likelihood fit to the transverse-momentum dis-
tribution of the J/y yield in the range 3.0 <m,, <
3.2 GeV/c?. The J/y yields were obtained by performing
in each bin a fit to the invariant mass distribution, using the
model described above. The fit to the transverse-momen-
tum distribution is shown in the right panel of Fig. 1. The
data were fitted to the sum of five templates. Four of them,
describing the contributions of coherent and incoherent
production of both J/yw and y/, are obtained with the
STARlight Monte Carlo. The charmonium states are
assumed to be transversely polarized as expected for
photoproduction processes [40]. The shape of the trans-
verse momentum distribution is given by the target form
factor which in turn is obtained by the Fourier transform
of the target profile in the impact-parameter space. This
presents the physics modeling implemented in STARIlight.
It is known that STARIight does not describe correctly the
shape of coherent J/w production in the range py <
0.11 GeV/c [21], when using the default value of the
parameters for the nuclear form factor. At the same time,
the data can be described using a different value that was
|

do yPb 1

found by reweighting the STARIight templates. The tem-
plate corresponding to coherent J/y production is the only
one affected by such a procedure. Moreover, whereas the
effect of the reweighting is important for pr < 0.2 GeV/c,
which is outside the kinematic region of the measurement
presented here and contains about 99% of the coherent
cross section, it corresponds to no more than a 2%
modification of the final incoherent J/y cross section in
the lowest |¢| range. Note that the STARlight implementa-
tion of the incoherent process does not include the
dissociative contribution. For this reason a fifth template
was added, which uses the H1 parametrization of disso-
ciative production off protons [12]. In this parametrization,
the values corresponding to the H1 high-energy sample
were used. Although the parameters were obtained for free
protons, they describe well the shape of the distribution, as
shown in Fig. 1. The measured ratio R of the coherent v to
J/w cross sections [18] fixes the normalization of the y’
templates; here the acceptance and efficiency of each decay
channel is taken into account. This leaves the normaliza-
tions of the templates describing coherent, incoherent, and
dissociative J/y photoproduction as free parameters. The
value of R was assumed to be the same for the ratio of
incoherent cross sections, which has not yet been measured
in heavy-ion collisions, but was measured at HERA by the
HI [41] and ZEUS [42] Collaborations in electron-proton
collisions and found in agreement with the value of R
measured by ALICE [18] for coherent J/y production in
Pb-Pb collisions. The y? per degree of freedom of the fit is
1.13. The values for fc and fp are listed in Table 1.

The photonuclear cross section in each |¢| interval was
computed as

Ninc

o (1)

dlf|  2n,pp (Acc x €)X BR(J/y = putu™) x L x Ay x Alr|’

where n,p, =84.9+ 1.7 is the photon flux at y =0,
obtained in the semiclassical formalism following the pre-
scription detailed in Ref. [43]; the branching ratio
BR(J/y — putu~) = (5.961 £ 0.033)% is from Ref. [44];

|
the luminosity £ = (232 +7) pub~! was determined using
reference triggers with cross sections measured in van der
Meer scans [45]; and (Acc x 8);7"/ is the acceptance times
efficiency. This last term is the product of three contributions.
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TABLE II. Summary of the identified systematic uncertainties
to the cross section. The numbers in parentheses denote a range of
values in the different |7| intervals. Except for the first two
uncertainties, all others are correlated in |7].

Source Uncertainty (%)
Signal extraction (1.0,2.9)
Selection on |z, | (0.0,2.9)
fc 0.0,0.4)
fo 0.2,6.5)
Integrated luminosity 29
Veto inefficiency due to pileup 3.0
Veto inefficiency due to dissociation 3.8
ITS-TPC tracking 2.8
Trigger efficiency 1.3
Branching ratio 0.6
Photon flux 2.0

The first one takes into account the response of the detector
to the muon tracks; this contribution was obtained from
generated STARIight events which were passed through a
simulation of the ALICE detector using GEANT 3.21 [46]
and the full analysis chain. As shown in column (Acc X &)y
of Table I, the correction depends on |¢| due to the trigger,
which requires tracks that are back-to-back in azimuth [21].
The second term contributing to (Acc x s)i}’/cw accounts for
veto inefficiencies due to pileup of other collisions leaving a
signal in AD or VO and amounts to 0.940 =+ 0.028. The third
term corrects the yield for events lost because the dissociation
of the nucleus produces particles leaving a signal in the
AD detectors; it amounts to 0.637 & 0.024. These last two
factors are |f| independent, with the quoted uncertainty
originating from the size of the control data samples used
to determine them.

The following systematic uncertainties were studied and
their effect on the cross section is summarized in Table II.
To study the stability of the background model, the lower
and upper limits to the invariant-mass fits to extract the
signal were varied in the range of 2-2.5 and 4-5 GeV/c?,
respectively. The values of the tail parameters of the Crystal
Ball distribution were also modified; the central values and
the variations were obtained by fitting STARIlight simulated
events. The total effect on the cross section varies in the
different |¢| ranges between 1% and 2.9%. The detector
does not have a uniform acceptance for tracks from
collisions happening far from the nominal interaction point;
to study the quality of the detector description for these
extreme cases the selection |z, | < 10 cm was extended to
|zyix| < 15 cm, resulting in uncertainties at the level of up
to 2.9%. There are three contributions to the uncertainties
on the fc and fp factors: the uncertainties from the fit
(driven by statistical fluctuations), the uncertainty from the
reweighting procedure, and the effect of varying the value
of R within the experimental uncertainties. The uncertainty
on fc is driven by the uncertainty from the fit to the py

distribution and leads to uncertainties in the measured cross
section up to 0.4%. The uncertainty on fp is driven by the
uncertainty on the measured value of R and produces an
effect from 0.2% to 6.5%. The uncertainty on the lumi-
nosity has two contributions which were added in quad-
rature: from the measurement of the reference cross
sections in van der Meer scans (2.5% [45]) and from the
determination of the live-time of the trigger used in this
analysis (1.5%). The correction for pileup utilizes an
independent sample to obtain the dependence of pileup
on the average rate of inelastic scattering; this dependence
is linear and the corresponding uncertainty comes from a fit
to these data. The effect on the cross section is 3%. The
probability of dissociation products leaving a signal in AD
was studied with an independent control sample as a
function of the amount of activity around beam rapidity.
The propagation of the statistical uncertainty of the
correction factors when applied to this sample produces
a 3.8% effect. The uncertainty of 2% per track on the
matching of ITS and TPC track segments was estimated
from the difference between matching efficiencies in data
and MC simulations. Contributions from both tracks were
added in quadrature, giving a total of 2.8%. The trigger
efficiency uncertainty was determined using control data
samples and amounts to 1.3%. The uncertainty on the
branching ratio was taken from Ref. [44]. The uncertainty
on the photon flux was estimated by varying the nuclear
radius parameter of the Woods-Saxon distribution in Pb,
used in the Glauber model, according to neutron-skin
measurements [47] and amounts to 2% [21]. All uncer-
tainties except for the signal extraction and the selection on
|z | are correlated in |z].

The cross sections for the incoherent photoproduction of
J/w vector mesons in ultraperipheral Pb-Pb collisions at
VSN = 5.02 TeV as a function of [¢| measured at mid-
rapidity, |y| < 0.8, are listed in Table I and depicted
in Fig. 2.

The measurements are compared to the work of three
groups. Each of them provides two predictions: one
including only the elastic interaction with single nucleons,
and another where a dissociativelike component is con-
tained. The models are framed in the Good-Walker picture,
which naturally considers all possible configurations of the
hadron participating in the interaction. The model by
Mintysaari and Schenke (MS) [27] includes saturation
through the IPSat model [48] and offers two predictions. In
one, subnucleon fluctuations are not considered (MS-p),
whereas in the other the proton is composed of three hot
spots whose positions in the impact-parameter plane
change event-by-event and fluctuations in the saturation
scale are introduced (MS-hs). A similar model, labeled
MSS in Fig. 2, was recently published [49], the main
difference in respect of the MS model is that instead of
using the IPsat model, it solves the JIMWLK equation (see
Refs. [50,51]) to incorporate saturation effects. This model
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FIG. 2. Cross section for the incoherent photoproduction of
J/w vector mesons in ultraperipheral Pb-Pb collisions at
V/Snn = 5.02 TeV measured at midrapidity. The uncorrelated
uncertainty (statistical and systematic added in quadrature) is
indicated with the vertical bar, while the correlated uncertainty
by the gray band. The width of each |f| range is given by the
horizontal bars. The lines show the predictions of the different
models described in the text. The bottom panel presents the
ratio of the integral of the predicted to that of the measured
cross section in each |z7| range. The relative uncertainties on the
ratios calculated from GSZ are 45%.

also offers two predictions: with (MSS-fl) and without
nucleon substructure fluctuations (MSS). The model by
Guzey, Strikman, and Zhalov (GSZ) [29] expresses the
incoherent cross section as the sum of an elastic and a
dissociative part (GSZ-el + diss), both parameterized from
HERA data, multiplied by a common factor representing
shadowing—the fact that the gluon distribution in nuclei is
not just the sum of gluon distributions in constituent
nucleons, see, e.g., Ref. [52]—computed within the lead-
ing-twist approximation [53]. The inclusion of the dis-
sociative component is interpreted by the authors within a
Good-Walker approach as due to quantum fluctuations of
the target. When the dissociative part is excluded (GSZ-el),
the differential cross section is suppressed in the region of
larger |¢|. The uncertainty bands reflect the uncertainties on
the parameters of the leading-twist approximation.

When comparing the data with the model predictions, as
shown in Fig. 2, two aspects should be considered: the
normalization, mainly linked to the scaling from proton to
nuclear targets, and the |¢| dependence, driven by the size of
the scattering object. None of the models describe both
aspects of data. With regards to the normalization, it is
worth noting that the same models must also describe the
coherent cross section [18], hence a global scaling factor,
such as what would be obtained by using a different

prescription for the wave function [54], would not neces-
sarily improve the agreement of the model with both the
coherent and incoherent cross sections. As for the |t
dependence of the cross section, the predictions of the
three theory groups substantially improve after the inclu-
sion of subnucleon fluctuations, which modify the |7
dependence by making it less steep. It is interesting to
compare the MS-p and MSS predictions. The latter shows a
flattening of the spectra at larger |z|. It originates from color
charge fluctuations which change the incoherent cross
section to a power-law-like behavior in this region [49].
This observation reinforces the importance of quantum
fluctuations at large |z|.

The cross section integrated over the interval 0.04 <
|t| < 1 GeV?, measured in the rapidity region |y| < 0.8, is
oypp = (7.82+0.39 £ 0.57) pb, where the listed uncer-
tainties are statistical and systematic, respectively. The
corresponding cross sections, in pb, for the models are
7.4,11.8,6.6,9.8,2.3 £ 1.0, and 4.1 £ 1.8 for MS-p, MS-
hs, MSS, MSS-fl, GSZ-el, and GSZ-el + diss, respectively.

In summary, the first measurement of the incoherent
photonuclear production of J/y is presented in this Letter.
The measurement was carried out at midrapidity, in a range
corresponding to Bjorken-x within (0.3 — 1.4) x 1073, in
Pb-Pb UPCs at /sy = 5.02 TeV. Cross sections for five
ranges in |¢| within 0.04 < |¢| < 1 GeV? are reported. None
of the models describes both the absolute normalization
and the |¢| dependence observed in the data. However, a
reasonably good description of the measured |¢|-slope is
achieved when the predicted dependence is softened by the
inclusion of scattering structures at a subnucleon scale.
These results confirm the importance of subnucleon fluc-
tuations to describe the measured incoherent J /y process at
high energies, representing the first experimental step to
use the quantum fluctuations of the gluon field to search for
saturation effects in heavy nuclei. In addition, this meas-
urement, when confronted to models, demonstrates that
the contribution of the dissociative component to the total
incoherent cross section depends on |7. Thus, future
analyses shall study the incoherent production of J/y as
a function of rapidity and |¢| [55]. Finally, this analysis,
together with recent measurements [17,19], indicate that
new or improved theoretical models are needed to describe
simultaneously the energy and |¢| dependence of both the
coherent and the incoherent processes of J/y photopro-
duction, to gain a better understanding of saturation effects
at a more fundamental level.
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