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Recent measurements of charm-baryon production in hadronic collisions have questioned the
universality of charm-quark fragmentation across different collision systems. In this work the fragmenta-
tion of charm quarks into charm baryons is probed, by presenting the first measurement of the longitudinal
jet momentum fraction carried by Λþ

c baryons, zchk , in hadronic collisions. The results are obtained in
proton-proton (pp) collisions at

ffiffiffi
s

p ¼ 13 TeV at the LHC, with Λþ
c baryons and charged (track-based) jets

reconstructed in the transverse momentum intervals of 3 ≤ pΛþ
c

T < 15 GeV=c and 7 ≤ pjet ch
T < 15 GeV=c,

respectively. The zchk distribution is compared to a measurement of D0-tagged charged jets in pp collisions

as well as to PYTHIA 8 simulations. The data hints that the fragmentation of charm quarks into charm
baryons is softer with respect to charm mesons, in the measured kinematic interval, as predicted by
hadronization models which include color correlations beyond leading-color in the string formation.
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Heavy-flavor hadrons are produced in high-energy par-
ticle collisions through the fragmentation of heavy (charm
and beauty) quarks, which typically originate in hard
scattering processes in the early stages of the collisions.
The most common theoretical approach to describe heavy-
flavor production in hadronic collisions is based on the
quantum chromodynamics (QCD) factorization approach
[1], and consists of a convolution of three independent terms;
the parton distribution functions of the incominghadrons, the
cross sections of the partonic scattering producing the heavy
quarks, and the fragmentation functions that parametrize the
evolution of a heavy quark into given species of heavy-flavor
hadrons. As the transition of quarks to hadrons cannot be
described in perturbation theory, the fragmentation functions
cannot be calculated and must be extracted from data.
Fragmentation functions of charm quarks to charm

baryons and mesons have been constrained in eþe−
[2–4] and e−p [5,6] collisions, using a variety of different
observables, such as the hadron momentum as a fraction
of its maximum possible momentum, as dictated by the
center-of-mass energy of the collision. Another method to
probe the fragmentation of quarks to hadrons is to para-
metrize the hadron momentum in relation to the momen-
tum of jets, which are collimated bunches of hadrons

giving experimental access to the properties of the
scattered quark. Recently, the production of charm mes-
ons in jets, probed via the fractional longitudinal momen-
tum of the jet carried by the D meson, was measured in pp
collisions at the Large Hadron Collider (LHC) [7–9] and
appears consistent with Monte Carlo (MC) simulations
tuned on eþe− data. These measurements support the
assumption of fragmentation universality across collision
systems in the charm-meson sector. This assumption
underpins theoretical calculations describing the produc-
tion of heavy-flavor hadrons in hadronic collisions, which
make use of fragmentation functions tuned on eþe− and
e−p data.
Measurements of the production cross sections of

baryons in pp collisions have questioned the hypothesis
of fragmentation universality across collision systems [10].
In the charm sector, which provides a clean probe of
hadronization phenomena due to the large mass of the
charm quark, recent measurements performed by the
ALICE Collaboration [11–19] in pp collisions have
shown that the ratio of the Λþ

c (and other charm baryons)
and D0 production cross sections measured at low pT
(≲12 GeV=c) is significantly larger than the value
expected from MC simulations in which the charm frag-
mentation is tuned on eþe− and e−pmeasurements, such as
PYTHIA 8 [20] with the Monash tune [21] or Herwig 7 [22]. A
recent measurement of the Λþ

c =D0 ratio in pp collisions,
performed by the ALICE Collaboration in intervals of
charged-particle multiplicity, also points to a substantial
increase of the Λþ

c =D0 ratio with increasing multiplicity,
with respect to eþe− collisions, starting at very low
multiplicities [15].
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The study of charm-baryon production in jets can
provide more differential insights into hadronization mech-
anisms in pp collisions, compared to pT-differential cross
sections and yield ratios of heavy-flavor hadrons, allowing
for a more accurate study of the dynamical properties of
baryon production. In this paper, the first measurement of
the longitudinal momentum fraction of the jet carried by
Λþ
c baryons, zchk , is presented. The measurement is per-

formed in pp collisions at
ffiffiffi
s

p ¼ 13 TeV in the interval
0.4 ≤ zchk ≤ 1.0. The zchk distribution, fully corrected to

particle level, is presented for prompt (charm-quark ini-
tiated) Λþ

c -tagged jets with 7 ≤ pjet ch
T < 15 GeV=c and

3 ≤ pΛþ
c

T < 15 GeV=c. The results are then compared to
PYTHIA 8 simulations [20,23], including a version where
mechanisms beyond the leading-color approximation are
considered in string formation processes during hadroni-
zation [21], and to an analogous measurement of the zchk
distribution of D0 mesons, performed by the ALICE
Collaboration [7].

A full description of the ALICE setup and apparatus can
be found in Refs. [24,25]. The main detectors used in this
analysis are the Inner Tracking System (ITS), which is used
for vertex reconstruction and tracking; the Time Projection
Chamber (TPC), which is used for tracking and particle
identification (PID); and the Time-Of-Flight (TOF) detec-
tor, which is used for PID. These detectors cover a
pseudorapidity interval of jηj < 0.9. The analysis was
performed on pp collisions at

ffiffiffi
s

p ¼ 13 TeV, collected
using a minimum-bias (MB) trigger during the years 2016,
2017, and 2018. The trigger condition required coincident
signals in the two scintillator arrays of the V0 detector, with
background events originating from beam-gas interactions
removed offline using timing information from the V0. To
mitigate against pileup effects, events with multiple recon-
structed primary vertices were rejected. To ensure uniform
acceptance, only events with a primary-vertex position
along the beam axis direction of jzvtxj < 10 cm around the
nominal interaction point were accepted. After the selec-
tions described above, the data sample consisted of
1.7 × 109 events, corresponding to an integrated luminosity
of Lint ¼ 29 nb−1 [26].
The Λþ

c candidates and their charge conjugates were
reconstructed via the hadronicΛþ

c → pK0
S → pπþπ− decay

channel with a total branching ratio of ð1.10� 0.06Þ%
[27], in the Λþ

c transverse-momentum interval of 3 ≤
pΛþ

c
T < 15 GeV=c. Only tracks with jηj < 0.8 and pT >

0.4 GeV=c, which fulfilled the track quality selections
described in Ref. [14], were considered for the Λþ

c
reconstruction. The Λþ

c candidates themselves were recon-
structed in the jyΛþ

c j < 0.8 rapidity interval. The
Λþ
c -candidate selection was performed using a multivariate

technique based on the boosted decision tree (BDT)
algorithm provided by the XGBoost package [28].

The features considered in the optimization include the
PID signal for the proton track, the invariant mass of the
K0

S -meson candidate, and topological variables that exploit
the kinematic properties of the displaced K0

S -meson decay
vertex. The training was performed in intervals of Λþ

c -
candidate pT , considering prompt signal candidates from
PYTHIA 8 events with the Monash tune [20,21], transported
through a realistic description of the detector geometry and
material budget using Geant 3 [29]. Background candidates
were extracted from the sidebands of the invariant-mass
distributions in data. The probability thresholds of the BDT
selections were tuned, using MC simulations, to maximise
the statistical significance for the signal. Further details on
the Λþ

c -candidate reconstruction and machine learning
procedure are provided in Ref. [15], where the same
reconstruction and BDT model were employed.
For the events where at least one selected Λþ

c candidate
was identified, a jet-finding procedure was performed,
using the FastJet package [30]. Prior to jet clustering, the
Λþ
c -candidate daughter tracks were replaced by the recon-

structed Λþ
c -candidate four-momentum vector. Charged jet

finding was carried out on charged tracks with jηj < 0.9
and pT > 0.15 GeV=c, using the anti-kT algorithm [31],
with a resolution parameter of R ¼ 0.4. Tracks were
combined using the E-scheme recombination [32], with
the jet transverse momentum limited to the interval of
5 ≤ pjet ch

T < 35 GeV=c. The full jet cone was required to
be within the ALICE central barrel acceptance, limiting the
jet axis to the interval jηjetj < 0.5. Only jets tagged via the
presence of a reconstructed Λþ

c candidate amongst their
constituents were considered for the analysis. For events
where more than one Λþ

c candidate was found, the jet
finding and tagging pass was performed independently for
each candidate, with only the daughters of that particular
candidate replaced by the corresponding Λþ

c four-vector
each time. In mechanisms of hadronization that include
color correlations beyond the leading-color approximation
[21], which have been shown to be relevant in hadronic
collisions at LHC energies [10], hadrons can be formed in
processes that combine quarks from the parton shower with
those from the underlying event [33]. As such, the under-
lying event is not well defined with respect to the measured
hadron distributions. Therefore, no underlying event cor-
rection is implemented in this work.
The fragmentation of charm quarks to Λþ

c baryons is
probed by measuring the fraction of the jet momentum
carried by the Λþ

c along the direction of the jet axis, zchk .
This is calculated for each jet using

zchk ¼ pjet · pΛþ
c

pjet · pjet
; ð1Þ

where pjet and pΛþ
c
are the jet and Λþ

c three-momentum
vectors, respectively.
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The zchk distributions of true Λþ
c -tagged charged jets

were extracted in intervals of Λþ
c pT and pjet ch

T using a
sideband subtraction procedure. To enact this subtraction,
the invariant-mass (minv) distributions of Λþ

c candidates,
obtained for each Λþ

c pT and pjet ch
T interval, were fitted

with a function comprising a Gaussian for the signal and
an exponential for the background. The fit parameters
were then used to define signal (containing the majority of
true signal candidates) and sideband (entirely composed
of background candidates) regions, defined by jminv −
μfitj < 2σfit and 4σfit < jminv − μfitj < 9σfit, respectively,
where μfit and σfit represent the mean and sigma of the

fitted Gaussian distributions. The zchk ðpΛþ
c

T ; pjet ch
T Þ distri-

butions were extracted in the signal and sideband regions,
with the sideband distribution scaled by the ratio of the
background function integrals in the signal and sideband
regions. The sideband distribution was then subtracted
from the signal one, with the resulting distribution scaled
to account for the fact that the 2σfit width of the signal
region only encompasses approximately 95% of the total
signal, to obtain the sideband subtracted zchk yield in each

pΛþ
c

T and pjet ch
T interval.

To account for the reconstruction and selection effi-
ciency of the Λþ

c -tagged jet signal, the sideband subtracted

zchk distributions in each pΛþ
c

T and pjet ch
T interval,

Nðzchk ; pΛþ
c

T ; pjet ch
T Þ, were scaled by the reconstruction

efficiency of prompt Λþ
c -tagged jets, ϵprompt, and summed

over the entire pΛþ
c

T interval to obtain the efficiency-
corrected zchk yield of Λþ

c -tagged jets, Ncorrðzchk ; pjet ch
T Þ,

given by

Ncorrðzchk ; pjet ch
T Þ ¼

X

p
Λþc
T

Nðzchk ; pΛþ
c

T ; pjet ch
T Þ

ϵpromptðpΛþ
c

T Þ
: ð2Þ

The ϵpromptðpΛþ
c

T Þ efficiency is strongly dependent on pΛþ
c

T ,

ranging from about 20% at 3 < pΛþ
c

T < 4 GeV=c to 40%

at 12 < pΛþ
c

T < 24 GeV=c, and was calculated using
PYTHIA 8 simulations with the Monash tune containing
prompt Λþ

c -tagged jets, transported through the detector
using Geant 3. This efficiency does not exhibit a pjet ch

T
dependence.
In order to isolate the Ncorrðzchk ; pjet ch

T Þ distribution of
prompt Λþ

c -tagged jets, a feed-down subtraction was
employed to remove the nonprompt (beauty-quark initi-
ated) contribution. The nonprompt cross section was
obtained from particle level POWHEG [34] + PYTHIA 6

[35] + EvtGen [36] simulations, as a function of pjet ch
T ,

pΛþ
c

T , and zchk , and was scaled according to the integrated
luminosity of the analyzed data sample and the branching

ratio of the Λþ
c → pK0

S → pπþπ− decay channel. The
resulting particle-level yield was multiplied by the ratio
of the nonprompt to prompt Λþ

c -tagged jet reconstruction

and selection efficiency in intervals of pΛþ
c

T and integrated

over the pΛþ
c

T range. The simulated nonprompt results were
then folded to reconstructed level, using a four-dimensional
response matrix generated using nonprompt Λþ

c -tagged jets
in PYTHIA 8 with the Monash tune, transported through a
simulation of the ALICE detector using Geant 3. The
response matrix was constructed as a function of pjet ch

T
and zchk at generator and reconstruction levels. The folded
results were then subtracted from the measured
Ncorrðzchk ; pjet ch

T Þ distribution in data, removing the non-

prompt contribution. The estimated fraction of Λþ
c -tagged

jets coming from b-quark fragmentation is found to be
about 5%, with no significant zchk dependence.
A two-dimensional Bayesian unfolding procedure [37]

was performed to correct for detector effects and obtain
the zchk distribution for prompt Λþ

c -tagged jets at particle
level. A four-dimensional response matrix as a function of
pjet ch
T and zchk , at generator and reconstruction levels, was

populated with prompt Λþ
c -tagged jets, obtained with

PYTHIA 8 simulations with the Monash tune, passed
through a simulation of the ALICE detector using
Geant 3. The measured data and response matrix were
provided in the intervals of 5 ≤ pjet ch

T < 35 GeV=c and
0.4 ≤ zchk ≤ 1.0, with the final unfolded results reported in

the intervals 7 ≤ pjet ch
T < 15 GeV=c and 0.4 ≤ zchk ≤ 1.0.

The extended pjet ch
T range includes two padding intervals

for the unfolding from 5 ≤ pjet ch
T < 7 GeV=c and

15 ≤ pjet ch
T < 35 GeV=c, which allow the unfolding to

account for migrations in and out of the reported 7 ≤
pjet ch
T < 15 GeV=c interval. Corrections accounting for

migrating entries in and out of the response matrix ranges,
as modeled by the same MC simulation, were also
applied. The corrected zchk distribution is normalized to

the total number of Λþ
c -tagged jets in the reported zchk and

pjet ch
T interval.
The systematic uncertainties affecting the measurement

were evaluated, in each zchk interval, by modifying the
strategy adopted at various steps of the analysis procedure
and assessing the impact on the unfolded zchk distribution.
The total systematic uncertainty includes contributions
from multiple sources. The first considered source is the
sideband subtraction procedure, whose contribution (rang-
ing from 3.7% to 7.6% depending on the zchk interval) was
estimated by varying the invariant-mass fit parameters as
well as the invariant-mass intervals of the signal and
sideband regions. The contribution from the BDT selection
of Λþ

c candidates (from 7.3% to 19%) was estimated by
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varying the BDT probability thresholds to induce a 25%
variation in the Λþ

c -tagged jet reconstruction and selection
efficiency. The uncertainty from the jet energy resolution
(from 4.5% to 19%) was estimated by recalculating the
response matrix used for unfolding with a 4% reduced
tracking efficiency. The reduction in the tracking efficiency
was evaluated by varying the track-selection criteria and
propagating the ITS-TPC track-matching efficiency uncer-
tainty. The uncertainty on the feed-down subtraction
(< 2%) was estimated by varying the choice of POWHEG

parameters considered to generate the feed-down cross
section, including the factorization and renormalization
scales, as well as the mass of the beauty quark, which were
varied according to theoretical prescriptions [38]. Finally
the contribution from the unfolding procedure (from 1.1%
to 2.7%) was estimated by altering the choice of prior,
regularization parameter, and ranges of the response matrix.
For each of the aforementioned categories, several varia-
tions were made and the root-mean-square of the resulting
distributions was considered. The exceptions are related to
the contribution associated to the choice of parameters of
the POWHEG calculations, where only the largest deviation
from the central result, in each direction, was considered,
as well as the uncertainty on the jet energy resolution
where the variation with respect to the central result was
taken as the uncertainty. All uncertainties (other than
from the feed-down subtraction) were then symmetrized.
The uncertainties were combined in quadrature to obtain

the total systematic uncertainty on the measurement, which
ranges from 13% to 28%.
The fully corrected zchk distribution of prompt Λþ

c -tagged
charged jets in the intervals of 7 ≤ pjet ch

T < 15 GeV=c and

3 ≤ pΛþ
c

T < 15 GeV=c is presented in the left-hand panel of
Fig. 1 and compared to PYTHIA 8 simulations with two
different tunes. In PYTHIA 8 the Lund string model of
fragmentation is employed, where endpoints are confined
by linear potentials encoded in strings. For the case of
heavy quarks, the Lund fragmentation function is modified
to account for the slower propagation of the massive
endpoints compared to their massless counterparts. The
Monash tune (red-dotted line) [16], in which the charm
fragmentation is tuned on eþe− measurements, predicts a
harder fragmentation than the measurement. An evaluation
of the χ2=ndf between the measured data points and the
model was performed, combining the statistical and sys-
tematic uncertainties on the data in quadrature and assum-
ing the uncertainties are uncorrelated across the zchk
intervals. This exercise determines that there is a 0.4%
probability that the model describes the data. A better
agreement is achieved by PYTHIA 8 with the CR-BLCMode
2 tune, which includes color reconnection mechanisms
beyond the leading-color approximation [23] (green-
dashed line). In this model, the minimization of the string
potential is implemented considering the SU(3) multiplet
structure of QCD in a more realistic way than in the
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FIG. 1. Left: fully corrected normalized zchk distribution of Λþ
c -tagged charged jets (black open circles) measured in the 7 ≤ pjet ch

T <

15 GeV=c and 3 ≤ pΛþ
c

T < 15 GeV=c intervals in pp collisions at
ffiffiffi
s

p ¼ 13 TeV, compared with predictions from different PYTHIA 8
tunes [20,21,23] (red-dotted and green-dashed lines). The ratios of the MC simulations to the data are shown in the bottom panel. Right:
comparison of the measured zchk distribution of Λþ

c -tagged jets and the previously measured zchk distribution of D0-tagged jets [7],

obtained in the same kinematic interval. The ratio of the zchk distribution of Λþ
c -tagged and D0-tagged jets is shown in the bottom panel

for both the data and the different PYTHIA tunes.
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leading-color approximation, allowing for the formation of
“baryonic” configurations where for example two colors
can combine coherently to form an anticolor. The same
χ2=ndf approach results in a 78% probability that the model
describes the data. The simulation with PYTHIA 8 with the
CR-BLC Mode 2 tune also provides a much more accurate
description of the Λþ

c =D0 cross section ratio, previously
measured in pp collisions at the LHC [11–15,39].
In the right-hand panel of Fig. 1, a comparison of the zchk

distribution of Λþ
c -tagged jets and the zchk distribution

previously measured for D0-tagged jets [7] is presented.
The latter is consistent with PYTHIA 8 simulations using
both the Monash and CR-BLC Mode 2 tunes. The ratio of
the two distributions is also presented in the bottom panel.
The uncertainty from the jet-energy resolution was con-
sidered to be correlated between the Λþ

c -tagged jet and D0-
tagged jet measurements and was evaluated directly on the
ratio of the distributions. The remaining uncertainties were
considered uncorrelated when taking the ratio and were
then combined in quadrature with the uncertainty of the jet-
energy resolution. The uncertainties were considered
uncorrelated across the zchk intervals. The same χ2=ndf
exercise described above determines that there is a 12%
probability that the measured ratio is described by a flat
distribution at unity, hinting at a softer fragmentation of
charm quarks into charm baryons than charm mesons. The
ratio is better described by the PYTHIA 8 simulations with
the CR-BLC Mode 2 compared to the ones with the
Monash tune, with the former describing the data with
88% probability compared to a 0.03% probability for the
latter.
In summary the first measurement in hadronic collisions

of the longitudinal momentum fraction of the charged jet
carried by Λþ

c baryons was presented for pp collisions atffiffiffi
s

p ¼ 13 TeV. The result is fully corrected to particle level
and obtained in the jet and Λþ

c transverse momentum inter-

vals of 7 ≤ pjet ch
T < 15 GeV=c and 3 ≤ pΛþ

c
T < 15 GeV=c,

respectively. The measurement presented in this paper hints
that charm quarks have a softer fragmentation into Λþ

c

baryons compared to D0 mesons, in the measured kin-
ematic interval. One possible explanation is that charm-
baryon production is favored in the presence of higher
particle multiplicity originating from both the jet fragmen-
tation and the underlying event, which could be tested with
future measurements of the in-jet multiplicity of Λþ

c -tagged
jets. The fragmentation of charm quarks into Λþ

c baryons in
hadronic collisions exhibits tension with simulations tuned
on eþe− data that employ a leading-color formalism of
hadronization, such as in the Monash tune of PYTHIA 8.
This occurs despite their successful description of the
fragmentation of charm quarks into D0 mesons.
However, the inclusion of mechanisms sensitive to the
surrounding partonic density that feature color reconnec-
tion beyond the leading-color approximation results in a

better agreement with data. This result also partially
explains the pT shape of the prompt Λþ

c =D0 cross section
ratio [11–15,39], which shows a peak at low pT
(≈3 GeV=c) and is also described within uncertainties
by PYTHIA 8 with the CR-BLC Mode 2 tune. The pT trend
of this ratio is driven by the fact that the Λþ

c baryons
produced from the fragmenting charm quark carry a
significantly lower fraction of the charm-quark transverse
momentum than the D0 mesons produced in a similar way.
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