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Abstract
We prove new results of Mattila–Sjölin type, giving lower bounds on Hausdorff dimensions
of thin sets E ⊂ R

d ensuring that various k-point configuration sets, generated by elements of
E , have nonempty interior. The dimensional thresholds in our previouswork (Greenleaf et al.,
Mathematika 68(1):163–190, 2022) were dictated by associating to a configuration function
a family of generalized Radon transforms, and then optimizing L2-Sobolev estimates for
them over all nontrivial bipartite partitions of the k points. In the current work, we extend this
by allowing the optimization to be done locally over the configuration’s incidence relation, or
even microlocally over the conormal bundle of the incidence relation. We use this approach
to prove Mattila–Sjölin type results for (i) areas of subtriangles determined by quadrilaterals
and pentagons in a set E ⊂ R

2; (ii) pairs of ratios of distances of 4-tuples in R
d ; and (iii)

similarity classes of triangles in R
d , as well as to (iv) give a short proof of Palsson and

Romero Acosta’s result on congruence classes of triangles in R
d .
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1 Introduction

This is the third in a series of papers using Fourier integral operator techniques to obtain
Mattila–Sjölin type results, by which we mean results showing that certain types of configu-
ration sets have nonempty interior when the underlying sets have sufficiently high Hausdorff
dimension. In [9, 10], we showed how to obtain such results for a wide range of configura-
tions, using estimates for generalized Radon transforms, based on analysis of them as linear
or multilinear Fourier integral operators. The current paper extends these methods and gives
several applications.

A classical result of Steinhaus [32] states that if E ⊂ R
d , d ≥ 1, has positive Lebesgue

measure, then the difference set E − E ⊂ R
d contains a neighborhood of the origin. E − E

can be identified with the set of two-point configurations, x − y, of points of E modulo
the translation group. In the context of the Falconer distance set problem, a theorem of
Mattila and Sjölin [24] states that if E ⊂ R

d , d ≥ 2, is compact, then the distance set of E ,
�(E) =: { |x − y| : x, y ∈ E} ⊂ R, contains an open interval, i.e., has nonempty interior,
if the Hausdorff dimension dimH(E) > d+1

2 . This provided a strengthening of Falconer’s
original result [5], from�(E)merely having positive Lebesgue measure to having nonempty
interior, for the same range of dimH(E). This was generalized to distance sets with respect
to norms on R

d having positive curvature unit spheres in Iosevich, Mourgoglou and Taylor
[17].

Mattila–Sjölin type results, establishing nonempty interior for sets of configurations in a
set E only satisfying a lower bound on dimH(E), or results that can be interpreted as such,
have been obtained by various authors. These include [1, 3, 8, 17, 19] and, more recently,
[21, 26, 29]; see also [4] for a finite field analogue, as well as [26, 27, 31] for analogues in
which Hausdorff dimension is replaced by an alternative notion of size, mainly Newhouse
thickness.

More general Mattila–Sjölin style theorems were studied by the current authors, for 2-
point configurations in [9] and k-point configurations in [10]. In those, as in the present work,
the configurations considered are �-configurations, as defined by Grafakos, Palsson and
the first two authors [7], which can be vector-valued, nontranslation-invariant and possibly
asymmetric, i.e., among points in sets E1, . . . , Ek lying in different spaces, e.g., points
and circles in R

2. The approach taken was to study the L2-Sobolev mapping properties of
an associated family of generalized Radon transforms, linear in [9] or multilinear in [10].
The main step in showing that the set ��(E1, . . . , Ek) has nonempty interior is analysis
of the configuration measure ν(t ) (defined below); we show that this measure is absolutely
continuous and that its density with respect to Lebesguemeasure, dt , is a continuous function
of the configuration parameter t ∈ R

p (or other space). This was done in [10] by representing
ν(t ) as the pairing of the tensor product of Frostman measures μi on some of the Ei with
the value of a generalized Radon transform, Rt , acting on the tensor product of Frostman
measures on the complementary collection ofμ j -s. Each such partition of the k variables into
two groups gives a threshold for

∑k
j=1 dimH(E j ) ensuring Int (��(E1, . . . , Ek)) �= ∅; the

threshold can potentially be lowered by optimizing over all such partitions. We refer to that
approach as partition optimization; for a precise statement, see Theorem 2.4 below, which is
[10, Thm. 5.2]. (See [6] for a subsequent application of partition optimization.)

The purpose of the current paper is to show that extensions of that approach, performing
the partition optimization locally or even microlocally, allow one to obtain such nonempty
interior results for an even wider range of k-point configurations, which fail to satisfy the
hypotheses of Theorem 2.4. We do this by considering open covers of the k-fold incidence
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relation defining the configuration of interest, ormore generally allowingmicrolocal covers of
the conormal bundle of the incidence relation by open, conic sets. (Thismicrolocal refinement
of the local method is not possible for incidence relations of codimension one, since above
each point of the incidence relation is just a line, and an open conic cover of the conormal
bundle is equivalent to an open cover of the incidence relation.) On each of these sets,
Theorem 2.4 is applicable, but with the Hausdorff dimensional threshold possibly optimized
by different partitions of the k variables as one ranges over the elements of the cover. Taking
themaximum of the thresholds needed, either locally near each point of the incidence relation
or microlocally near each point of its conormal bundle, and then optimizing over all covers,
yields a threshold which is always less than or equal to that provided by Theorem 2.4; see
Theorems 2.5 and 2.6 for the statements of the local and microlocal versions. See Sect. 2 for
the background material from [10] and the precise statements and the proofs of the theorems.

We now state some results which can be obtained using this new approach, restricting the
discussion to various three-, four- and five-point configurations in R

d .
Areas of triangles generated by vertices of quadrilaterals and pentagons in R

2: In [10,
Thm. 1.1] we showed that if E ⊂ R

2 with dimH(E) > 5/3, then the set of areas of tri-
angles with vertices in E has nonempty interior in R. For n-tuples of vertices in E , with
n ≥ 4, one can also consider vector-valued configurations consisting of the areas of some
of the triangles they generate. In [10] we established that the collection of ordered pairs
of areas of two of the triangles generated by a quadrilateral xyzw with vertices in E , say
(|xyz|, |xzw|), has nonempty interior in R

2 if dimH(E) > 7/4. Note that there are limits
on how far such results can be pushed: since |xyw| + |yzw| = |xyz| + |xzw|, the con-
figuration set of all four of these areas would lie in a hyperplane in R

4 and thus would
have empty interior. However, using microlocal partition optimization, we are able to obtain
(i) a threshold improving upon that in [10, Thm. 1.6]; (ii) a result for triples of areas of
triangles generated by a quadrilateral; and (iii) a result for triples of the areas of a fan of
triangles generated by a pentagon.

Theorem 1.1 If E ⊂ R
2 is compact, then

(i) if dimH(E) > 3/2, then Int
{
(|xyz|, |xzw|) ∈ R

2 : x, y, z, w ∈ E
} �= ∅;

(ii) if dimH(E) > 7/4, then Int
{
(|xyz|, |xzw|, |xyw|) ∈ R

3 : x, y, z, w ∈ E
} �= ∅; and

(iii) if dimH(E) > 9/5, then Int
{
(|xyz|, |xzw|, |xwu|) ∈ R

3 : x, y, z, w, u ∈ E
} �= ∅.

For the proof of Theorem 1.1, see Sect. 3. Also see A. McDonald [25] for related results
of Falconer type (i.e., positive Lebesgue measure), formulated in terms of areas of parallel-
ograms generated by pairs of points in E rather than areas of triangles generated by triples.

Pairs of ratios of distances:Another result that can be obtained using microlocal partition
optimization concerns ratios of distances of 4-tuples in a set.

Theorem 1.2 If E ⊂ R
d , d ≥ 2, is compact and dimH(E) > (3d + 1)/4, then

Int

{( |x − y|
|z − w| ,

|x − w|
|z − y|

)

∈ R
2 : x, y, z, w ∈ E, z �= w, z �= y

}

�= ∅.

In contrast, a modification of this configuration, (4.5), has nonempty interior for a larger
range of dimensions and has a more elementary proof. A discussion of these and other results
concerning configuration sets defined by ratios of distances, can be found in Sect. 4.

Congruences classes of triangles in R
d , d ≥ 4: One motivation for developing the

microlocal extension of the original partition optimization technique was from trying to
understand how a recent result of Palsson and Romero-Acosta [29] related to the FIO frame-
work of [10]. They proved the following:
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Theorem 1.3 [29]. If E ⊂ R
d , d ≥ 4, is compact with dimH(E) > (2d + 3)/3, then the set

of congruence classes of triangles with vertices in E,

{ ( |x − y|, |x − z|, |y − z| ) : x, y, z ∈ E } , (1.1)

has nonempty interior in R
3.

In Sect. 5, we present a much shorter proof of this. Both the original partition optimization
method from [10] (Thm. 2.4 below) and the local version (Thm. 2.5 below) fail to prove
Thm. 1.3, However, it can be proved using, Thm. 2.6. because the optimal partition of the
three variables varies with the normal direction to the (codimension 3) incidence relation,
even above a single point. However, it can be proved using microlocal partition optimization,
Thm. 2.6.

Similarity classes of triangles inR
d , d ≥ 3.We conclude with a result that has similarities

to both Thm. 1.2 and Thm. 1.3. Using Thm. 2.5, in Sect. 6 we prove

Theorem 1.4 If E ⊂ R
d , d ≥ 3, is compact and dimH(E) > (2d + 2)/3, then the set of

similarity classes of triangles with vertices in E,
{[ |x − y| : |x − z| : |y − z| ] ∈ RP

2 s.t. x, y, z ∈ E are distinct
}

(1.2)

has nonempty interior in RP
2.

(Here, [ A : B : C ] are standard projective coordinates on RP
2.)

Before proving the theorems, in Sect. 2 we recall the framework of �-configurations and
the method of partition optimization from [9, 10].

2 k-point8-configuration sets

In order to state microlocal partition optimization, and for the sake of readability, we recall
from [9, 10] the framework for studying the �-configuration sets of [7] via FIO methods and
the original (global) version of partition optimization. Suppose that Xi , 1 ≤ i ≤ k, and T ,
are smooth manifolds of dimensions di and p, resp. We sometimes denote X1 × · · · × Xk

by X , and set dtot := dim(X) = ∑k
i=1 di .

Definition 2.1 Let � ∈ C∞(X , T ). Suppose that Ei ⊂ Xi , 1 ≤ i ≤ k, are compact sets.
Then the k-configuration set of the Ei defined by � is

�� (E1, E2, . . . , Ek) :=
{
�
(
x1, . . . , xk

)
: xi ∈ Ei , 1 ≤ i ≤ k

}
⊂ T . (2.1)

If E = E1 = · · · = Ek = E , then we just write ��(E).

We want to find conditions on the dimH(Ei ) ensuring that �� (E1, E2, . . . , Ek) has
nonempty interior. To this end, now suppose that � : X → T is a submersion, so that for
each t ∈ T , Zt := �−1(t ) is a smooth, codimension p submanifold of X , and these vary
smoothly with t . For each t , the measure

λt := δ
(
�
(
x1, . . . , xk

)
− t

)
(2.2)

is a smooth density on Zt ; i.e., a smooth multiple of surface measure. In local coordinates
t = (t1, . . . , tp) on T , λt can be represented as an oscillatory integral of the form

λt =
∫

Rp
ei
∑p

l=1

(
�l (x1,..., xk )−tl

)
τl a(t )1(τ ) dτ, (2.3)
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where the a(·) belongs to a partition of unity on T , and 1(τ ) comes from the Fourier transform
of the delta distribution inR

p . Thus,λt is a Fourier integral distribution on X ; inHörmander’s
notation [12, 15, 16],

λt ∈ I (2p−dtot)/4(X; N∗Zt ),

where N∗Zt ⊂ T ∗X\0 is the conormal bundle of Zt and the value of the order follows from
the amplitude having order zero and the numbers of phase variables and spatial variables
being p and dtot, resp., so that the order is m := 0 + p/2 − dtot/4.

We separate the variables x1, . . . , xk into groups on the left and right, associating to � a
collection of families of generalized Radon transforms indexed by the nontrivial partitions of
{1, . . . , k}, with each family then depending on the parameter t ∈ T . Write such a partition
as σ = (σL | σR), with |σL |, |σR | > 0, |σL |+|σR | = k, and letPk denote the set of all 2k −2
such partitions.We use i and j to refer to elements of σL and σR , resp. Define dσ

L = ∑
i∈σL

di

and dσ
R = ∑

j∈σR
d j , so that dσ

L + dσ
R = dtot.

For each σ ∈ Pk , σL = {
i1, . . . , i|σL |

}
and σR = {

j1, . . . , j|σR |
}
, where without loss of

generality we may assume that i1 < · · · < i|σL | and j1 < · · · < j|σR |. With a slight abuse of
notation we still denote the coordinate-partitioned version of x as x ,

x = (xL ; xR) :=
(
xi1 , . . . , xi|σL | ; x j1 , . . . , x j|σR |

)
.

Write the corresponding reordered Cartesian product as

XL × XR :=
(
Xi1 × · · · × Xi|σL |

)
×
(
X j1 × · · · × X j|σR |

)
;

again by abuse of notation, we sometimes still refer to this as X . The dimensions of the
two factors are dim(XL) = dσ

L and dim(XR) = dσ
R , resp. The choice of σ also defines a

coordinate-partitioned version of each Zt ,

Zσ
t := {(xL ; xR) : �(x) = t } ⊂ XL × XR, (2.4)

with spatial projections to the left and right, πXL : Zσ
t → XL and πXR : Zσ

t → XR . The
integral geometric double fibration condition for Zσ

t is the requirement that

(DF)σ πL : Zσ
t → XL and πR : Zσ

t → XR are submersions. (2.5)

(See [12–14].) Note that, for a given σ , a necessary (but not sufficient) condition for (DF)σ
to hold is p ≤ dσ

L ∧ dσ
R := min

(
dσ
L , dσ

R

)
.

If (DF)σ holds, then the generalized Radon transform Rσ
t , defined weakly by

Rσ
t f (xL) =

∫

{xR : �(xL ,xR)=t }
f (xR),

where the integral is with respect to the surface measure induced by λt on the codimension
p submanifold {xR : �(xL , xR) = t } = {

xR : (xL , xR) ∈ Zσ
t

} ⊂ XR , which extends from
mapping D (XR) → E (XL) to

Rσ
t : E ′(XR) → D′(XL ).

Here, E, D are the standard spaces of C∞ functions and those of compact support, resp., and
E ′, D′ their dual spaces of distributions. Furthermore,

Cσ
t := (

N∗Zσ
t
)′ = {

(xL , ξL ; xR, ξR) : (xL , xR) ∈ Zσ
t , (ξL ,−ξR) ⊥ T Zσ

t
}

(2.6)

is contained in (T ∗XL\0)×(T ∗XR\0). Thus,Rσ
t is an FIO,Rσ

t ∈ Im
(
XL , XR;Cσ

t

)
, where

the order m is determined as in (2) by m = 0 + p/2 − dtot/4 [15, 16]. Given the possible

123



   66 Page 6 of 20 A. Greenleaf et al.

difference in the dimensions of XL and XR , due to the clean intersection calculus it is useful
to express m as

m = mσ
eff − 1

4

∣
∣dσ

L − dσ
R

∣
∣ ,

where the effective order of Rσ
t is defined to be

mσ
eff := (

2p − dtot +
∣
∣dσ

L − dσ
R

∣
∣
)
/4 = (

p − (
dσ
L ∧ dσ

R

))
/2. (2.7)

By standard estimates for FIO [15, 16], if Cσ
t is a nondegenerate canonical relation, i.e., the

cotangent space projections πL : Cσ
t → T ∗XL and πR : Cσ

t → T ∗XR have differentials of
maximal rank, then

Rσ
t : L2

r (XR) → L2
r−meff

σ (XL) .

More generally, if πL (and thus πR) drops rank by ≤ q , then there is a loss of ≤ q/2
derivatives:

Rσ
t : L2

r (XR) → L2
r−meff

σ − q
2

(XL) . (2.8)

It is natural to express the estimates for possibly degenerate FIO in terms of possible losses
relative to the optimal estimates. Initially, our basic assumptions is that there is at least one σ

such that (i) the double fibration condition (2.5) is satisfied, and (ii) there is a known βσ ≥ 0
such that, for all r ∈ R,

Rσ
t : L2

r (XR) → L2
r−mσ

eff−βσ (XL) , (2.9)

uniformly for t ∈ T , or at least for t in some compact set containing any configurations that
arise from the Ei of interest.

Remark 2.2 A folk theorem in microlocal analysis is that the estimates for nondegenerate
FIO or even those covered by the corank q scenario of (2.8), which are all that we use in
the concrete applications in this paper, are stable under small perturbations of the amplitudes
and phase functions in CN norm for N sufficiently large. This is due to the finite number
of integrations by parts that are required in the various proofs for FIO and the underlying
oscillatory integral operators; see, e.g., [11, Lem. 2.3]. Thus, once one has a single value
t = t 0 of the configuration parameter for which the generalized Radon transform Rσ

t is
nondegenerate or corank q , one is ensured that there is a neighborhood of t 0 for which this
is true and for which (2.8) holds uniformly in t . See the comment at the end of Sect. 3.1.

Now suppose that, for 1 ≤ i ≤ k, Ei ⊂ Xi are compact sets. Our goal is to find conditions
on the dimH(Ei ) ensuring that �� (E1, E2, . . . , Ek) has nonempty interior in T . For each
i , fix an si < dimH(Ei ) and a Frostman measure μi on Ei of finite si -energy; translating
energy into L2-based Sobolev space norms, μi ∈ L2

(si−di )/2
(Xi ). (See [22, 23] for further

background.) Define measures

μL := μi1 × · · · × μi|σL | on XL and μR := μ j1 × · · · × μ j|σR | on XR,

and recall the following result from [10]:

Proposition 2.3 For 1 ≤ j ≤ k, let X j be a C∞ manifold of dimension d j , and suppose that
u j ∈ L2

r j , comp

(
X j
)
, 1 ≤ j ≤ k, with each r j ≤ 0. Then the tensor product u1 ⊗ · · · ⊗ uk

belongs to L2
r , comp

(
X1 × · · · × Xk

)
, for r = ∑k

j=1 r j .
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From this it follows that μL ∈ L2
rL (XL) and μR ∈ L2

rR (XR), where rL =
1
2

∑|σL |
l=1

(
sil − dil

)
and rR = 1

2

∑|σR |
l=1

(
s jl − d jl

)
, resp.

As in [10, Eqn. 2.6], for any σ ∈ Pk , the configuration measure can be expressed as

ν(t ) = 〈Rσ
t (μR) , μL

〉
, (2.10)

which representation is justified ex post facto for si in the admissible range. (See [10, §3.4] for
the argument.) Our basic assumption, that the boundedness (2.9) holds for the σ in question,
then implies that Rσ

t (μR) ∈ L2
rR−mσ

eff−βσ (XL). Since μL ∈ L2
rL (XL), the pairing in (2.10)

is bounded, and yields a continuous function of t (by continuity of the integral), if

rR − mσ
eff − βσ + rL ≥ 0. (2.11)

Noting that

rL + rR = 1

2

[(
k∑

i=1

si

)

− dtot
]

,

and using (2.7), we see that (2.11) holds iff

k∑

i=1

si ≥ dtot + 2
(
mσ

eff + βσ
) = dtot + p − min(dL , dR) + 2βσ

= max(dL , dR) + p + 2βσ .

Optimizing over all nontrivial partitions σ ∈ Pk leads to:

Theorem 2.4 Partition Optimization. [10, Thm. 5.2]

(i) With the notation and assumptions as above, define

s� = min
σ

[
max(dL , dR) + p + 2βσ

]
, (2.12)

where the min is taken over those σ ∈ Pk for which both the double fibration condition
(2.5) holds and the uniform boundedness of the generalized Radon transforms Rσ

t with
some loss of ≤ βσ derivatives (2.9) hold. Then, if Ei ⊂ Xi , 1 ≤ i ≤ k, are compact sets
with

∑k
i=1 dimH(Ei ) > s�, it follows that Int (�� (E1, E2, . . . , Ek)) �= ∅.

(ii) In particular, if X1 = · · · = Xk =: X0, with dim(X0) = d, and E ⊂ X0 is compact,
then Int (�� (E)) �= ∅ if

dimH(E) >
1

k

(
min

σ
max(dL , dR) + p

)
, (2.13)

where the minimum is taken over all σ ∈ Pk such that (2.5) holds and the canonical
relation Cσ

t is nondegenerate.

The threshold for
∑k

i=1 dimH(Ei ) in (2.12) can be thought of as the minimum over all
nontrivial partitions σ of the thresholds determined by themaximummicrolocal loss (relative
to the nondegenerate estimate) over all the points of Ct

σ . On general principle, one can
(possibly) lower a minimum of the maxima by replacing it with the maximum of the minima,
and in this setting it is not hard to do this in practice. The goal of this paper is to show that
weakening the assumptions in the original partition optimization, by working either locally
on Zt or more generally microlocally on N∗Zt , can allow one to lower the needed threshold
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on dimH(E), or even to obtain a positive result when an application of the original version
of partition optimization, Thm. 2.4, would be vacuous.

In particular, in the context of Thm. 2.4 (ii) it is not necessary that any of the canonical
relations Ct

σ be nondegenerate. Rather, working locally on Zt , it is sufficient that, for every
x ∈ Zt there is some neighborhood U of x in Zt and some σ ∈ Pk such that Ct

σ is
nondegenerate over U . Even more generally, working microlocally, it suffices that for every
point (x, ξ) ∈ N∗Zt , there exists someσ ∈ Pk and a conic neighborhoodU of (x, ξ) in N∗Zt
such that Ct

σ is nondegenerate on U (or rather the image Uσ of U under the σ -separation
of the variables to the left and right). Since a partition of unity subordinate to an open cover
of Zt is a special, ξ -independent case of a microlocal partition of unity subordinate to a
microlocal cover of N∗Zt , the local version of the new approach is a special case of the
microlocal one. However, for clarity we state them separately:

Theorem 2.5 Local Partition Optimization. Suppose that there is a β ≥ 0 such that, for
every point x ∈ Zt there exists a neighborhood U and a partition σ ∈ Pk for which the
generalized Radon transformRσ

t , localized to U, satisfies both (2.5) and (2.9) with a loss of
at most β derivatives, uniformly in t .

Then, for E ⊂ R
d compact, if

dimH(E) >
1

k
(max(dL , dR) + p + 2β ) , (2.14)

then Int (�� (E)) �= ∅.
Theorem 2.6 Microlocal Partition Optimization. Suppose there exists a β ≥ 0 such that,
for every (x, ξ) ∈ N∗Zt there exist a conic neighborhood U and partition σ ∈ Pk for which
the generalized Radon transformRσ

t , microlocalized to U , satisfies both (2.5) and (2.9) with
a loss of at most β derivatives, uniformly in t . Then, for E ⊂ R

d compact, Int (�� (E)) �= ∅
if

dimH(E) >
1

k
(max(dL , dR) + p + 2β ) . (2.15)

Since spatial partitions of unity are special cases of microlocal ones, the local theoremwill
follow immediately from the microlocal one, which in turn is proven by a straightforward
refinement of the proof in [10]. We start by forming a standard pseudodifferential partition of
unity,

∑
Ql(x, D) = I , on X subordinate to the open cover {Ul} of N∗Zt , supplemented by a

U0 disjoint from N∗Zt which completes the Ul to be a cover of T ∗X \ 0. Each Ql ∈ �0
cl(X),

and together their principal symbols, ql(x, ξ), form a partition of unity on T ∗X \ 0. (For
Thm. 2.5, the ql are independent of ξ .) One can assume that this sum has at most 1 + |Pk |
terms. We let σ l denote a partition such thatRσ

t satisfies (2.9) with a loss of ≤ β derivatives
on the conic support of Ql . The surface measure λt from (2.2) on Zt then decomposes as

λt =
∑

l

Qlλt ,

leading to a similar decomposition of the generalized Radon transforms. Hence, the identity
(2.10) for the configuration measure can be replaced by

ν(t ) =
∑

l

〈
Rσ l

t (μR) , μL

〉
. (2.16)

By the analysis above, if dimH(E) is greater than the threshold in (2.15), each of the terms
in (2.16) are continuous in t , finishing the proof.
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Remark 2.7 We recall, for the proof of Thms. 1.2 below, that β can be taken to be r/2 if the
projection πL from each Ul drops rank by at most r (see [15, 16]).

Remark 2.8 The conormal bundle of Zt is

N∗Zt = {(
x, D�(�x)∗(τ )

) : x ∈ Zt , τ ∈ R
p \ 0} .

However, for the calculations needed to verify the microlocal condition in Thm. 2.6 in each
particular application, it is convenient to reorganize N∗Zt by grouping each pair (xi , ξ i ) ∈
T ∗Xi together, and we define

Ñ∗Zt =
{(

x1, ξ1; x2, ξ2; . . . ; xk, ξ k
)

: (x1, . . . , xk; ξ1, . . . , ξ k) ∈ N∗Zt

}
,

and let πi denote the natural projection onto the i-th factor, T ∗Xi .

3 Areas of triangles

We now turn to results that require a microlocal approach, starting with the proofs of the var-
ious parts of Thm. 1.1 concerning areas of triangles generated by quadruples and quintuples
of points in a planar set.

3.1 Pairs of areas of triangle in quadrilaterals

For part (i), let � : (R2)4 → R
2 be

�(x, y, z, w) = (
det[y − x, z − x], det[z − x, w − x])

=
(
(y − x) · (z − x)⊥, (z − x) · (w − x)⊥

)
, (3.1)

where ⊥ denotes rotation by +π/2, which is of course antisymmetric. All of the entries in
D� are ⊥ of simpler expressions, and so in place of D� we work with

D�⊥ :=
[
y − z z − x w − y 0
z − w 0 vw − x x − z

]

,

and we denote the modified conormal bundle computed with D�⊥ by Ñ∗Zt
⊥
.

If dimH(E) > 5/3, and μ is a Frostman measure for s > 5/3, then since the set of
degenerate triangles, {(x, y, z) ∈ R

6 : det[y − x, z − x] = 0}, is an algebraic hypersurface,
its Hausdorff dimension equals 5. Hence, W1 := {(x, y, z, w) : det[y − x, z − x] = 0} has
⊗4μ–measure 0 inR

8, andwithout loss of generalitywe can assume that 4-tupleswe consider
lie inR

8\W1; see [10, Sec. 4.1] for related reasoning. Thus, without loss of generality, we can
assume that for each t = (t1, t2) ∈ R

2, Zt = �−1(t ) can be parametrized by x, y, w ∈ R
2,

with z = x + z̃(x, y, w, t ) ∈ R
2 then being the unique solution of

(x − y)⊥ · (z − x) = t1, (w − x)⊥ · (z − x) = t2.

One can check that |Dz̃/Dy| �= 0 and |Dz̃/Dw| �= 0.
Using the above one computes

Ñ∗Zt
⊥ =

{(
x, τ1(y − x − z̃) + τ2(x − w − z̃); y, τ1 z̃; x + z̃, τ1(w − y) + τ2(w − x);
w,−τ2 z̃

) : x, y, z ∈ R
2, τ ∈ R

2 \ 0
}
. (3.2)
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From this we see that D(x, ξ)/D(x, τ ) is always nonsingular.
If τ1 �= 0, then D(y, η)/D(y, w) is nonsingular, since |Dz̃/Dw| �= 0. Thus, ordering the

variables x, y, z, w, in order 1, 2, 3, 4, partitioning them by σ = (12|34) yields Ct
σ which

is a local canonical graph on U1 = {τ1 �= 0}.
On the other hand, if τ2 �= 0 then D(w, ω)/D(w, y) is nonsingular, since |Dz̃/Dy| �= 0,

so that using σ = (14|23) gives Ct
σ which is a local canonical graph on U2 = {τ2 �= 0}.

Together, U1 and U2 cover Ñ∗Zt
⊥
, and dL = dR = 4 for both partitions. Picking any

particular t 0 ∈ ��(E) for which the above analysis applies, it also holds for t close to
t 0, and the estimates for resulting nondegenerate generalized Radon transforms Rσ

t are
locally uniform in t ; cf. Remark 2.2. Thus, Thm. 2.6 applies with β = 0. It follows that if
dimH(E) > 1

4 (4 + 2 + 0) = 3/2, then ��(E) has nonempty interior in R
2.

3.2 Triples of areas of triangles in quadrilaterals

To prove Thm. 1.1(ii) we modify the considerations of the previous section as follows. Let
� : (R2)4 → R

3 be

�(x, y, z, w) = (
det[y − x, z − x], det[z − x, w − x], det[y − x, w − x])

=
(
(y − x) · (z − x)⊥, (z − x) · (w − x)⊥, (w − x) · (y − x)⊥

)
. (3.3)

As before, in place of D� we work with

D�⊥ :=
⎡

⎣
y − z z − x x − y 0
z − w 0 w − x x − z
w − y x − w 0 y − x

⎤

⎦ ,

and denote the modified conormal bundle computed with D�⊥ by Ñ∗Zt
⊥
.

For t = (t1, t2, t3) ∈ R
3, Zt = �−1(t ) is determined by

(y − x)⊥ · (z − x) = −t1, (w − x)⊥ · (z − x) = t2, (y − x)⊥ · (w − x) = t3.

Solving the last equation first, we can solve for w with one degree of freedom:

w = x + t3
(y − x)⊥

|y − x | + s(y − x) =: x + w̃(x, y, s; t3), s ∈ R,

so thatw− x = w̃. Then, as in the previous section, without loss of generality we can assume
that det[y− x, z− x] �= 0 and so one can solve uniquely for z, incorporating the dependence
of w on s:

z = x + z̃(x, y, s; t ) �⇒ z − x = z̃.

Note that ∂sw̃ = y − x and, as in the previous section, |Dz̃/Dy| �= 0,
We can parametrize the conormal bundle as

Ñ∗Zt
⊥ =

{(
x, τ1(y − x − z̃) + τ2(z̃ − w̃) + τ3(w̃ − y);
y, τ1 z̃ − τ3w̃; x + z̃, τ1(x − y) + τ2w̃;
x + w̃,−τ2 z̃ + τ3(y − x)

) : x, y ∈ R
2, s ∈ R, τ ∈ R

3 \ 0
}
. (3.4)

Note that the differential of (x, ξ) with respect to x and any two of the three τ j is nonsin-
gular. (Here we can assume that y− x, z−w and w − y are in general position, i.e., any two
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are linearly independent, which excludes a variety W2 ⊂ R
8 of dimension 5.) This leaves

y, s and the remaining τ j variable to use for another one of the three remaining projections.
Since ∂sw̃ = y − x , one sees that D(y, η)/D(y, s, τ1) is nonsingular if τ3 �= 0, while

D(y, η)/D(y, s, τ3) is nonsingular if τ1 �= 0. Hence, Ct
(12|34) is a local canonical graph on

U1 = {τ1 �= 0 or τ3 �= 0}.
Combining ∂sw̃ = y − x with |Dz̃/Dy| �= 0, one sees that D(z, ζ )/D(y, s, τ1) is non-

singular if τ2 �= 0, so that Ct
(13|24) is a local canonical graph on U2 = {τ2 �= 0}.

Since U1, U2 form an open cover of Ñ∗Zt
⊥
, and dL = dR = 4, β = 0 for all of those

partitions, we can apply Thm. 2.6, obtaining that if dimH(E) > 1
4 (4 + 3 + 0) = 7/4, then

��(E) has nonempty interior in R
3.

3.3 Triples of areas of triangles in pentagons

For the proof of Thm. 1.1 (iii) we modify the setup for parts (i) and (ii) as follows. Define
� : (R2)5 → R

3, recording the areas of the three adjacent triangles pinned at x , by

�(x, y, z, w, u) = (
det[y − x, z − x], det[z − x, w − x], det[w − x, u − x])

=
(
(y − x) · (z − x)⊥, (z − x) · (w − x)⊥, (w − x) · (u − x)⊥

)
.

(3.5)

As before, in place of D� we work with

D�⊥ :=
⎡

⎣
y − z z − x x − y 0 0
z − w 0 w − x x − z 0
w − u 0 0 u − x x − w

⎤

⎦ ,

and denote the modified conormal bundle computed with D�⊥ by Ñ∗Zt
⊥
:

Ñ∗Zt
⊥ =

{(
x, τ1(y − z) + τ2(z − w) + τ3(w − u); y, τ1(z − x);
z, τ1(x − y) + τ2(w − x); w, τ2(x − z) + τ3(u − x);
u, τ3(x − w)

) : (x, y, z, w, u) ∈ Zt , τ ∈ R
3 \ 0

}
. (3.6)

The linear coordinates τ1, τ2, τ3 on the fibers are intrinsically defined (given that � has
been fixed), independent of what coordinates we pick on the 7-dimensional base Zt . We

claim that on the open conic sets U j = {τ j �= 0} ⊂ Ñ∗Zt
⊥
, j = 1, 2, 3, which form

a microlocal cover, the partitions σ = (14|235), (13|245), (13|245), resp., give canonical
relations Ct

σ which are nondegenerate. (Note that the partitions used on U2 and U3 are the
same, but we have to treat U2 and U3 separately.) Thus, Thm. 2.6 implies that ��(E) has
nonempty interior for for E ⊂ R

2 with dimH(E) > 1
5 (max(4, 6) + 3 + 0) = 9

5 , proving
Thm. 1.1(iii).

To prove the claim above, we use two different coordinate parametrizations of Zt ; the
first is useful for establishing the claim on U1 and U2, and the second for U3. For the first, we
parametrize Zt by x, y, w ∈ R

2 and s ∈ R by
(i) solving the 2 × 2 system for z,

(y − x)⊥ · (z − x) = −t1, (w − x)⊥ · (z − x) = t2,

obtaining, for (x, y, w) in general position (in the complement of a hypersurface), a unique
solution z = x + z̃(x, y, w, t ); and
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(ii) for w �= x , solving (w − x)⊥ · (u − x) = −t3 for u with one degree of freedom,

u − x = −t3
(w − x)⊥

|w − x | + s · (w − x) =: ũ(x, w, s; t3), s ∈ R.

Note that ∣
∣
∣
∣
D(y − x − z̃)

Dy

∣
∣
∣
∣ �= 0,

∣
∣
∣
∣
D(w − x − z̃)

Dw

∣
∣
∣
∣ �= 0; (3.7)

the first follows since the differential maps (y − x) · ∂y → (y − x) · ∂y and (y − x)⊥ · ∂y →
cy,w,t (y − x)⊥ · ∂y + . . . , and the second is similar. We also have ∂s ũ = w − x �= 0.

Adapting (3.6) to this parametrization of Zt , the conormal bundle of Zt is parametrized

Ñ∗Zt
⊥ =

{(
x, τ1(y − x − z̃) + τ2(x − w + z̃) + τ3(w − x + ũ); y, τ1 z̃;
x + z̃, τ1(x − y) + τ2(w − x); w,−τ2 z̃ + τ3ũ; x + ũ, τ3(x − w)

)

: x, y, w ∈ R
2, s ∈ R, τ ∈ R

3 \ 0
}
. (3.8)

On {τ1 �= 0}, we can use the τ1 term in the expression for ξ in (3.8) together with (3.7) to
obtain |D(x, ξ)/D(x, y)| �= 0, while D(w, ω)/D(w, τ2, τ3)| �= 0 since z̃, ũ are generically
linearly independent. Hence, π1 × π4 : Ct

(14|235) → T ∗
R
4 is a submersion.

On {τ2 �= 0}, |D(x, ξ)/D(x, y)| �= 0 using (3.7) with the τ2 term in the expression for ξ

in (3.8), while |D(z, ζ )/D(y, τ1, τ2)| �= 0 from (3.7) and the generic linear independence of
x − y, w − x . Hence, π1 × π3 : Ct

(13|245) → T ∗
R
4 is a submersion.

To deal with U3 = {τ3 �= 0}, we change the parametrization to x, z, u ∈ R
2 and s′ ∈ R

by
(i) solving the 2 × 2 system for w,

(z − x)⊥ · (w − x) = −t2, (u − x)⊥ · (w − x) = t3,

obtaining, for (x, z, w) in general position a unique solution w = x + w̃(x, z, u; t ), with
|D(u − x − w̃)/Du| �= 0; and

(ii) for z �= x , solving (z − x)⊥ · (y − x) = t1 for y with one degree of freedom,

y − x = t1
(z − x)⊥

|z − x | + s′ · (z − x) =: ỹ(x, z, s′; t ), s′ ∈ R.

With respect to these coordinates, the analogue of (3.8) is

Ñ∗Zt
⊥ =

{(
x, τ1(x − z + ỹ) + τ2(z − x − w̃) + τ3(x − u + w̃); x + ỹ, τ1(z − x);
z,−τ1 ỹ + τ2w̃; x + w̃, τ2(x − z) + τ3(u − x); u,−τ3w̃

)

: x, z, u ∈ R
2, s′ ∈ R, τ ∈ R

3 \ 0
}
. (3.9)

Arguing as above, one sees that, using the τ3 term in ξ , for τ3 �= 0 we have
|D(x, ξ)/D(x, u)| �= 0, and |D(z, ζ )/D(z, τ1, τ2)| �= 0, which shows that π1 × π3 is a
submersion. Hence, Ct

(13|245) is nondegenerate on U3, and this finishes the proof of Thm.
1.1(iii).
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4 Pairs of ratios of distances

We now discuss and prove Thm. 1.2: if E ⊂ R
d with dimH(E) > (3d + 1)/4, then

Int

{( |x − y|
|z − w| ,

|x − w|
|z − y|

)

∈ R
2 : x, y, z, w ∈ E, z �= w, z �= y

}

�= ∅. (4.1)

See the left 4-tuple in Fig. 1 below.
To put this in context, we discuss sets of ratios of distances more generally, recalling

related previous results and then proving some variations. It follows immediately from the
result of Mattila and Sjölin [24] that if E ⊂ R

d , dimH(E) > (d + 1)/2, then

Int

{ |x − y|
|z − w| : x, y, z, w ∈ E, z �= w

}

�= ∅, (4.2)

since both the numerators and denominators range over sets containing an interval.
Later, under the higher dimensional threshold dimH(E) > (d + 2)/2, Peres and Schlag

[30, p. 248] proved a stronger, pinned version of [24]: there exists an x ∈ E such that the
pinned distance set,

�x (E) := { |x − z| : z ∈ E }
contains an interval, i.e., has nonempty interior. Using such a pin point x , and then fixing any
y ∈ E, y �= x , it follows immediately that for dimH(E) > (d + 2)/2,

(∃ x ∈ E) (∀ y ∈ E, y �= x) Int

{ |x − z|
|x − y| : z ∈ E

}

�= ∅. (4.3)

By weakening the statement in (4.3), one can lower the threshold:

Theorem 4.1 If E ⊂ R
d , d ≥ 2, is compact and dimH(E) > (d + 1)/2, then

(∃ x ∈ E) s.t. Int

{ |x − z|
|x − y| : y, z ∈ E, y �= x

}

�= ∅. (4.4)

Remark 4.2 This improves upon our result [10, Thm. 1.4], which established (4.4) for
dimH(E) > (2d + 1)/3 using the original partition optimization.

Remark 4.3 The elementary proof we give, combining known results, follows closely an
argument in a recent preprint of Borges, Iosevich and Ou [2, Sec. 2].

To prove Theorem 4.1, first recall another result of Peres and Schlag [30, Cor. 8.4] (see
also [18, 20]): if dimH(E) > (d + 1)/2, there exists x ∈ E such that the pinned distance
set has positive Lebesgue measure, |�x (E)|1 > 0. Apply this twice for one such pin point,
x , with variables z and y, resp., in the definition of �x (E). For each of these, apply log (a
bi-Lipschitz map on compact subsets of R+) to obtain

|{ log |x − z| : z ∈ E, z �= x }|1 > 0, |{ log |x − y| : y ∈ E, y �= x }|1 > 0.

Now invoking the classical theorem of Steinhaus [32] on difference sets, one has that

Int { log |x − z| − log |x − y| : y, z ∈ E, y �= x, z �= x } �= ∅.

Applying the exponential map (a diffeomorphism R → R+) preserves nonempty interior,
yielding (4.4) and finishing the proof of Theorem 4.1.
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x

y

z

w

x

y

z

w

Fig. 1 Two pairs of ratios of distances of points in a 4-tuple. Figure on left corresponds to (4.1) from Thm.
1.2, with ratio of the lower left and upper right side lengths forming the first coordinate of �(x, y, z, w) and
the ratio of the upper left and lower right side lengths being the second coordinate. Figure on right illustrates
(4.5) for the same 4 points, with the two coordinates of �(x, y, z, w) being the ratios of the lengths of the
solid segments to the dotted one

The results above are motivation to study similar ones for other configuration sets con-
structed from ratios of distances. For example, one such is the following: If E ⊂ R

d , d ≥ 2,
is compact with dimH(E) > (d + 1)/2, then

(∃ x ∈ E) (∀ y ∈ E, y �= x) Int

{( |x − z|
|x − y| ,

|x − w|
|x − y|

)

∈ R
2 : z, w ∈ E

}

�= ∅. (4.5)

(See the right 4-tuple in Fig. 1 below.) However, this follows immediately from (4.3) since,
with x and y fixed, the set in (4.5) equals the Cartesian product of the set in (4.3) with itself
and hence has nonempty interior.

However, the set that is the subject of Thm. 1.2, i.e., the one in (4.1), does not seem to
be amenable to such an approach, and we prove it using microlocal partition optimization,
Thm. 2.6,with k = 4, p = 2, which results in requiring the higher dimensional threshold,
dimH(E) > (3d + 1)/4.

To start the proof, the configuration function � : (Rd
)4 → R

2+,

�(x, y, z, w) :=
( |x − y|

|z − w| ,
|x − w|
|z − y|

)

, (4.6)

defines, for each t = (t1, t2) ∈ (R+)2, an incidence relation Zt = �−1(t ). Defining
F = (F1, F2), with

F1 = |x − y| − t1|z − w|, F2 = |x − w| − t2|z − y|,
so that Zt = F−1(0), a calculation shows that Zt can be parametrized by

Zt =
{
(x, y, z, w) = (x, x − t1rω

1, z, z − rω2) ∈ R
4d

: x, z ∈ R
d , x �= z, r > 0,

(
ω1, ω2) ∈ Sx,z,r

}
, (4.7)

where

Sx,z,r = {
(ω1, ω2) ∈ S

d−1 × S
d−1

: 2(z − x) · (t1t
2
2 2ω

1 − ω2) = (1 − t2)
2|x − z|2 + (1 − t21 t

2
2 )r2

}
.

One further calculates

DF =
[

x−y
|x−y| − x−y

|x−y| −t1
z−w
|z−w| t1

z−w
|z−w|

x−w
|x−w| t2

z−y
|z−y| −t2

z−y
|z−y| − x−w

|x−w|

]
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=
[

ω1 −ω1 −t1ω2 t1ω2

x−z+rω2

|x−z+rω2| t2
z−x+t1rω1

|z−x+t1rω1| −t2
z−x+t1rω1

|z−x+t1rω1| − x−z+rω2

|x−z+rω2|

]

,

where the second representation is DF evaluated at points of Zt in terms of the parametriza-
tion (4.7). As in Remark 2.8, we let

Ñ∗Zt = {(
x, τ t Dx F; y, τ t Dy F; z, τ t Dz F; w, τ t DwF

) : (x, y, z, w) ∈ Zt , τ ∈ R
2 \ 0 }

be the conormal bundle of the incidence relation, with the (x, ξ), (y, η), (z, ζ ), (w, ν) vari-
ables separated.

Denote the projections from Ñ∗Zt onto its four T ∗
R
d factors by πx , πy, πz, πw , respec-

tively, each of which is a function of x, z, r , ω, τ with values in T ∗
R
d . Corresponding to the

choice of partition σ = (13 | 24), by the above one has

(πx × πz)(x, z, r , ω, τ ) =
(
x, τ1ω

1 + τ2
x − z + rω2

|x − z + rω2| ; z, −τ2t1ω
2 − τ2t2

z − x + t1rω
1

|z − x + t1rω1|
)
.

From this one can calculate that, for τ1 �= 0 and x − z + t1rω1 �= 0,

Rank
D(x, ξ, z, ζ )

D(x, z, ω1, τ )
= 3d + 1,

and similarly, for τ2 �= 0 and x − z + rω2 �= 0,

Rank
D(x, ξ, z, ζ )

D(x, z, ω2, τ )
= 3d + 1.

Note that W := {x − z + t1rω1 = 0} ∪ {x − z + rω2 = 0} is a variety of dimension
3d . Since our dimensional threshold will be dimH(E) > (3d + 1)/4, and thus dimH(E ×
E × E × E) > 3d + 1 > 3d , this exceptional set is irrelevant for the analysis. See, e.g.,
[10, Sec. 4] for several instances of this type of reasoning. Thus, if over Zt ∩ (R4d \ W

)

we let U j = {τ j �= 0} ⊂ Ñ∗Zt , j = 1, 2, then {U1, U2} forms an open cover of Cσ
t on

which D(πx × πz) drops rank by ≤ d − 1. Hence, by the FIO estimates (cf. Remark 2.7),
the associated Rσ

t loses at most βσ = (d − 1)/2 derivatives. Applying Theorem 2.6 with
codimension p = 2 and loss β = (d − 1)/2 then yields that ��(E), the set in (4.1), has
nonempty interior if dimH(E) > 1

4 (2d + 2+ (d − 1)) = (3d + 1)/4, finishing the proof of
Thm. 1.2.

5 Congruence classes of triangles in R
d

We now show how the result of Palsson and Romero-Acosta [29] follows easily from the

microlocal approach taken here. Let � : (Rd
)3 → R

3,

�(x, y, z) = ( |x − y|, |x − z|, |y − z| ) ,

so that ��(E) is the set of vectors of side lengths of triangles generated by the points in
E and thus, modulo permutations, the set of congruence classes of triangles in E . Letting
x̂ = x/|x |, one computes

D� =
⎡

⎣
x̂ − y −x̂ − y 0
x̂ − z 0 −x̂ − z
0 ŷ − z −ŷ − z

⎤

⎦ .
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Furthermore, for t = (t1, t2, t3) ∈ R
3+, we can parametrize Zt as follows: We first take

x ∈ R
d to be arbitrary, and then y = x − t1ω, with ω ∈ S

d−1 arbitrary. If one writes

z = x − t2ω̃ for some ω̃ ∈ S
d−1, then one computes that |y − z| = t3 iff ω̃ · ω = t3−(t21+t22 )

2t1t2
.

For t in the complement of a lower dimensional variety,

St ,ω :=
{

ω̃ ∈ S
d−1 : ω̃ · ω = t3 − (t21 + t22 )

2t1t2

}

is a smooth (d − 2)-surface in S
d−1 (possibly empty), and

Zt =
{
(x, x − t1ω, x − t2ω̃) : x ∈ R

d , ω ∈ S
d−1, ω̃ ∈ St ,ω

}
.

Applying D�∗ to τ ∈ R
3 at these points, we obtain

Ñ∗Zt =
{(
x, τ1ω + τ2ω̃; x − t1ω, − (τ1 − (t1/t3)τ3) ω + (t2/t3)τ3ω̃;

x − t2ω̃, (t1/t3)τ3ω − (τ2 + (t2/t3)τ3) ω̃
)

: x ∈ R
d , ω ∈ S

d−1, ω̃ ∈ St ,ω, τ ∈ R
3 \ 0

}
. (5.1)

Let iω : TωS
d−1 ↪→ TωR

d and ĩω̃ : Tω̃St ,ω ↪→ Tω̃R
d be the inclusions of the tangent

spaces, and note that for generic t ,

span
{
TωS

d−1, ω
}

= TωR
d and span

{
Tω̃St ,ω, ω, ω̃

} = Tω̃R
d . (5.2)

Denoting the projections into the (x, ξ), (y, η) and (z, ζ ) variables by π j , j = 1, 2, 3, resp.,
we calculate their Jacobians with respect to (x, ω, ω̃, τ1, τ2, τ3); to avoid clutter, we indicate
unneeded terms by ∗:

Dπ1 =
[
Id 0 0 0 0 0
0 τ1iω τ2 ĩω̃ ω ω̃ 0

]

,

Dπ2 =
[
Id ∗ ∗ ∗ ∗ ∗
0 − (τ1 − (t1/t3)τ3) iω (t2/t3)τ3 ĩω̃ − ω 0 (1/t3)(t2ω̃ + t1ω)

]

,

and

Dπ3 =
[
Id ∗ ∗ ∗ ∗ ∗
0 (t1/t3)τ3iω − (τ2 + (t2/t3)τ3) ĩω̃ 0 −ω̃ (1/t3)(t1ω − t2/ω̃)

]

.

Examining the column spaces of these and using (5.2), one sees that Dπ1 is surjective except
on the line

L1 := {τ1 = τ2 = 0};
Dπ2 is surjective except on

L2 := {τ1 + (t1/t3)τ3 = τ3 = 0} = {τ1 = τ3 = 0};
and Dπ3 is surjective except on

L3 := {τ3 = τ2 + (t2/t3)τ3 = 0} = {τ2 = τ3 = 0}.
Furthermore, for each j , the image π j (L j ) lies in the 0-section of T ∗

R
d , which causes

problems with the standard theory of FIO. Since this holds for every partition, the original
partition optimization of Thm. 2.4 is inapplicable. Furthermore, since the lines of degeneracy
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exist above all points of Zt , the merely local version, Thm. 2.5, also does not suffice, so that
one needs the full strength of the microlocal version.

Setting U j = {τ ∈ R
3 \ L j } ⊂ Ñ∗Zt , it follows that {U1,U2,U3} is a conic open cover of

Ñ∗Zt on which the partitions σ = (1|23), (2|13), (3|12), resp., result in canonical relations
Ct

σ ⊂ (
T ∗

R
d\0) × (

T ∗
R
2d\0) which are nondegenerate, so that Thm. 2.6 applies with

k = 3, p = 3,max(dL , dR) = 2d and β = 0. Hence, for E ⊂ R
d with

dimH(E) >
1

3
(2d + 3 + 0) = (2d + 3)/3,

��(E) has nonempty interior in R
3, reproving the main result of [29].

As a final comment, we remark that in their recent preprint [28], Palsson and Romero-
Acosta have extended the results of [29] to (k−1)-simplices inR

d , k ≥ 4, for some thresholds
depending on d and k. Calculations along the lines of those used above indicate that some
of the conditions required to apply Thm. 2.6 for these higher values of k appear to fail. It
would be interesting to see whether further microlocal analysis of the problem can be used
to obtain results for these higher dimensional simplices.

6 Similarity classes of triangles in R
d

Weconcludewith the proof ofThm. 1.4. This is a variation on the result of the previous section,
with congruence of triangles replaced by similarity and the resulting threshold lowered by
1/3; however, it can also be viewed as concerning ratios of distances, in the spirit of Sect. 4.
Just as (1.1) encodes the congruence classes of triangleswith vertices in E (up to permutations
of x, y, z, which do not affect the nonempty interior statement), (1.2) encodes the similarity
classes of triangles with vertices in E . To make this more explicit, recall that the projective
plane RP

2 is covered by three coordinate charts,

Vα := { [ A : B : C ] s.t. A, B,C ∈ R, α �= 0
}
, α = A, B or C .

In particular, VA = { [1 : u : v ] s.t. (u, v) ∈ R
2
}
, and to prove Thm. 1.4 it suffices to show

that the configuration function

�(x, y, z) :=
( |x − z|

|x − y| ,
|y − z|
|x − y|

)

satisfies Int (��(E)) �= ∅ for dimH(E) > (2d + 2)/3.
For t = (t1, t2) ∈ R

2+, we parametrize Zt as follows: For x ∈ R
d , write y = x + rω with

r > 0, ω ∈ S
d−1, so that |x − y| = r . In order for (x, y, z) ∈ Zt , z must be of the form

z = x + t1r ω̃ for some ω̃ ∈ S
d−1, ensuring that |x − z| = t1r ; the further constraint that

|y − z| = t2|x − y| then becomes

ω · ω̃ = (2t1)
−1 (1 + t21 − t22

) =: a(t ).

Thus ω̃ = a(t )ω + b(t )ω′ for some ω′ ∈ S
d−1 ∩ ω⊥, where b(t ) := (

1 − a2(t )
) 1
2 ; without

loss of generality we restrict ourselves to t such that |a(t )| < 1. We can thus parametrize
the incidence relation as

Zt = { (
x, x + rω, x + t1a(t )rω + t1b(t )rω′) : x ∈ R

d , ω ∈ S
d−1, ω′ ∈ S

d−1 ∩ ω⊥, r > 0
}
.

(6.1)
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Writing � = (�1, �2), one has

Ñ∗Zt =
{(
x, τ1dx�1 + τ2dx�2; x + rω, τ1dy�1 + τ2dy�2;

x + t1a(t )rω + t1b(t )rω′, τ1dz�1 + τ2dz�2
)

: x ∈ R
d , ω ∈ S

d−1, ω′ ∈ S
d−1 ∩ ω⊥, r > 0, τ ∈ R

2 \ 0
}
.

We show that the projection π1 : Ñ∗Zt → T ∗
R
d onto the first factor is a submersion,

so that Thm. 2.4 applies with σ = (1 | 23) and no loss (β = 0), yielding the threshold
dimH(E) > (1/3)(max(d, 2d) + 2 + 0) = (2d + 2)/3, as claimed. Strictly speaking we
are not using Thm. 2.6, but will in fact verify the nondegeneracy of π1 separately on two
open conic sets, {τ1 �= 0} and {(t1 − a(t ))τ1 − t2τ2 �= 0}, so that the microlocal approach is
implicitly being used.

Now, one computes

dx�1 = |x − y|−1|x − z|−1(x − z) − |x − y|−3|x − z|(x − y) ,

dx�2 = −|x − y|−3|y − z|(x − y).

Evaluating these at a point of Zt in terms of the variables in (6.1) using

x − y = −rω, x − z = −t1a(t )rω − t1r
(
a(t )ω + b(t )ω′) ,

|x − y| = r , |x − z| = t1r , |y − z| = t2r ,

we find that

dx (�1, �2)
∣
∣
Zt

= (
r−1 ((t1 − a(t )) ω − b(t )ω′) , −t2r

−1ω
)
.

Thus,

(x, ξ) = π1(x, ω, ω′, r , τ ) = (
x, τ1r

−1 ((t1 − a(t )) ω − b(t )ω′)− τ2t2r
−1ω

)
.

Since the spatial component of π1 is the identity in x , to show that the canonical relation
C (1|23)
t is nondegenerate, we need to show that rank Dξ/D(ω, ω′, r , τ ) = d everywhere. We

have

Dξ/Dω = r−1((t1 − a(t ))τ1 − t2τ2)iω, Dξ/Dτ2 = −t2r
−1ω,

where iω : TωS
d−1 ↪→ TωR

d is the inclusion of the tangent space of the sphere at ω. Thus,
Dξ/D(ω, τ2) is surjective on the set of τ such that (t1 − a(t ))τ1 − t2τ2 �= 0.

On the other hand,

Dξ/Dω′ = −r−1τ1b(t ) jω′ , Dξ/Dτ1 = r−1 ((t1 − a(t )) ω − b(t )ω′) ,
and Dξ/Dτ2 = −t2r

−1ω,

where jω′ : Tω′
(
S
d−1 ∩ ω⊥) ↪→ Tω′Rd is the inclusion of the (d − 2)-dimensional tangent

space. As long as τ1 �= 0, this space and the two vectors that follow it span R
d (note that

b(t ) �= 0) and hence Dξ/D(ω′, τ1, τ2) is surjective. Since U1 = {τ1 �= 0} and U2 =
{(t1 − a(t ))τ1 − t2τ2 �= 0} form an open cover of Ñ∗Zt , we are done.

As in the comment at the end of the previous section concerning congruences, it would
be interesting to investigate whether the microlocal approach can be applied to obtain results
for similarities of (k − 1)-simplices in R

d .

Data availability There is no data associated with this research.
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