
1 
 

Bridging Molecular-Scale Interfacial Science with 1 

Continuum-Scale Models 2 

 3 
Anastasia G. Ilgen*1, Eric Borguet2, Franz M. Geiger3, Julianne M. Gibbs4, Vicki H. 4 

Grassian5, Young-Shin Jun6, Nadine Kabengi7, James D. Kubicki8 5 

1. Geochemistry Department, Sandia National Laboratories, USA 6 
2. Department of Chemistry, Temple University, USA 7 
3. Department of Chemistry, Northwestern University, USA 8 
4. Department of Chemistry, University of Alberta, Canada  9 
5. Department of Chemistry & Biochemistry, University of California, San Diego, USA 10 
6. Department of Energy, Environmental & Chemical Engineering, Washington University 11 
in St. Louis, USA 12 

7. Department of Geosciences, Georgia State University, USA 13 
8. Department of Earth, Environmental & Resource Sciences, The University of Texas at El 14 
Paso, USA 15 

 16 

Corresponding author: agilgen@sandia.gov  17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 



2 
 

Abstract: Solid–water interfaces are crucial for clean water, conventional and renewable energy, 32 

and effective nuclear waste management. However, reflecting the complexity of reactive interfaces 33 

in continuum-scale models is a challenge, leading to oversimplified representations that often fail 34 

to predict real-world behavior. This is because these models use fixed parameters derived by 35 

averaging across a wide physicochemical range observed at the molecular scale. Recent studies 36 

have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction 37 

mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge 38 

and predictive continuum-scale models, we propose to represent surface properties with 39 

probability distributions rather than with discrete constant values derived by averaging across a 40 

heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially 41 

rising computational power. By incorporating our molecular-scale understanding of solid–water 42 

interfaces into continuum-scale models we can pave the way for next generation critical 43 

technologies and novel environmental solutions.  44 
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1.   Introduction 45 

Solid–water interfaces play critical roles in engineered systems1-3 and natural environments.4 46 

Communication among scientists and engineers working at molecular, microscopic, field, and 47 

global scales should be augmented via integrated collaborations that seek to add chemical insights 48 

into large-scale problems where current assumptions and approximations lead to large 49 

uncertainties in predictive models.5 We lay out a perspective about how to establish such a 50 

collaboration that infuses molecular details into larger scale models, including often-used surface 51 

complexation (SCM) and reactive transport models (RTM).  We propose the development of a 52 

new approach for incorporating the vast database of molecular knowledge into continuum-scale 53 

models by shifting the model parameterization paradigm. We suggest a conceptual shift in how 54 

surface properties are represented from the current state of using discrete values to probability 55 

distributions, allowing to reflect real heterogeneities of surfaces. Surface site acidities, charge 56 

densities, solvation energies, reaction rates, and solubility constants should be described as 57 

probability curves to reflect the interfacial complexity. 58 

Scientists who develop detailed molecular descriptions of solid–water interfaces face a four-59 

fold challenge: (1) interfacial chemistry evolves in complex ways as it is dynamically coupled to 60 

the compositions of both the solid and the aqueous phases yet is distinct from either; (2) the number 61 

of atoms present at the surface is dwarfed by the number of atoms that compose the bulk phases, 62 

thus complicating the deconvolution of surface analytical signals from those of the bulk; (3) real-63 

world interfaces are inherently heterogeneous down to the micro-, nano-, and molecular-scales, 64 

making it difficult to build  continuum-scale predictive models that capture this complexity and 65 

reconcile distinct surface structures with observed net reactivities; and (4) environmental processes 66 

span femtosecond to millennia timescales, not always accessible for experimental, analytical, and 67 
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computational inquiries. Despite these challenges, previously obscure details of surface reactions 68 

are becoming increasingly understood. However, the current numerical tools available for 69 

translating interfacial processes into continuum-scale models that describe mm- to km-scale 70 

systems are lacking mathematical frameworks for incorporating the wealth of molecular details 71 

that have been discovered in the last few decades.  72 

Because of these limitations, scientists who construct SCMs and RTMs often use “average” 73 

values to describe the structures and reactivities of solid–water interfaces to reflect relevant 74 

molecular information. SCMs are developed to specifically describe ion adsorption behaviors at 75 

solid–water interfaces to match either adsorption isotherms or pH-dependent adsorption data (i.e., 76 

adsorption edges). The basic schematic for three types of commonly used SCMs is shown in 77 

Figure 1 (reproduced from Ref 6). These SCMs are based on various continuum-scale models of 78 

interfacial structure such as: (1) the constant capacitance model (CCM), (2) the diffuse layer model 79 

(DLM), and (3) the triple layer model (TLM). Each of these SCMs assumes that the total free 80 

energy of ion adsorption is a sum of chemical adsorption energy (ΔGchem) and Coulomb static 81 

energy (ΔGcoul), where ΔGcoul is directly proportional to the surface potential (ψ) and the charge of 82 

the adsorbing ion.6 In the sections below we illustrate that neither ΔGchem nor ΔGcoul can be 83 

considered constants in any given interfacial system because of the variability of surface structures 84 

that define local surface charge or the reactivity of isolated surface groups, which should lead to 85 

variability in the surface potential across the same surface caused by intrinsic surface 86 

heterogeneity. Therefore, to reflect the true complexity, ΔGchem and ΔGcoul would be best 87 

represented by a distribution of values, rather than a fixed value. 88 
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 89 

Figure 1. Surface complexation modeling based on (a) Constant capacitance model (CCM); (b) 90 
Diffuse layer model (DLM); and (c) Triple layer model (TLM). A 0-plane in these models limits the solid’s 91 
surface, a β-plane terminates the plane where counter-ions are tightly bound at charged surfaces (Stern 92 
layer) and a d-plane cuts through the center of the diffuse layer near surfaces. C, including C1 and C2, denote 93 
individual layer capacitance values; ψ is the surface potential corresponding to one of the planes, and σ, 94 
including σβ and σd, is charge of the corresponding layers, where σ0 is charge of the 0-plane (surface charge, 95 
or surface charge density); ε is the dielectric constant or permittivity of the media. Figure adapted with 96 
permission from Ref.6 97 

 98 

To illustrate the sensitivity of a common SCM to input parameters, we calculated the Gouy-99 

Chapman Stern (GCS) potential as a function of Stern layer thickness, d, which varies due to spatial 100 

heterogeneity of a surface (Figure 2). A two-fold change in d would result in a factor of two 101 

difference in the potential drop across the Stern layer as DFStern = s/C, where s is the surface 102 

charge density and C is the capacitance equal to ere0/d (εr and ε0 are the permittivity of the solution 103 
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and of the vacuum, respectively). The resulting change in the electric field in the Stern layer (-104 

dF/dz) would then vary accordingly. Opening the expression for the Stern layer potential drop to 105 

allow for spatial variations in all three parameters (s, er, and d) will result in variations of the 106 

potential across the electric double layer (EDL). It is reasonable to expect that each of these 107 

parameters varies by up to a factor of two (for the surface charge density and Stern layer thickness) 108 

and by ten (for the relative permittivity). A sensitivity analysis of the ionic strength dependent 109 

Gouy-Chapman Stern potential in terms of physically feasible variations in charge density and 110 

Stern layer relative permittivity shows that variations of serval hundred mV occur, owing, for 111 

instance, to doubling the charge density and halving the Stern layer permittivity (Figure 2). In 112 

contrast, doubling both parameters results in only minor potential differences (Figure 2). We 113 

conclude that expected spatiotemporal variations in the surface charge density and the Stern layer 114 

relative permittivity will result in spatiotemporal variations in the surface potential, and the 115 

associated electric field, in the range up to several hundred mV. This simple example is directly 116 

applicable to other important parameters in mean field or surface complexation models, including 117 

the Stern layer thickness, as alluded to above, and further justifies the proposed probabilistic 118 

approach to continuum-scale modeling. 119 

  120 
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 121 
Figure 2. Calculated variability in the ionic strength dependent Gouy-Chapman Stern (GCS) potential 122 

due to variations in charge density and Stern layer relative permittivity commonly observed across surfaces. 123 
The resulting Gouy-Chapman Stern potential variations reach several hundred mV when doubling the 124 
charge density and halving the Stern layer permittivity. In contrast, doubling both parameters results in only 125 
minor potential differences. 126 

 127 

Furthermore, conventional SCMs describe surface properties and reactivities with a single 128 

surface acidity constant and surface complexation constant for a given surface and adsorbate (the 129 

more advanced SCMs may go as far as to incorporate two- or three-site models with distinct acidity 130 

and/or complexation constants). However, new experiments consistently show that nominally 131 

similar surface sites (e.g., Si-OH, see Bañuelos et al.)7 have vastly different reactivities, which are 132 

defined by multiple factors: surface structure, hydrogen bonding in adjacent solution, the surface 133 

neighbor species, and aqueous composition. Because continuum-scale simulations rely on 134 

empirically fit coefficients to approximate parameter values, they often do not capture 135 

experimentally measured outcomes. As we will show below, the mismatch in predicted vs. 136 

experimentally determined parameters can span orders of magnitude.  137 
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The other types of continuum-scale reactive models, which are often utilized in important 138 

applications such as nuclear waste storage, are reactive transport models (RTMs) that couple 139 

transport equations with chemical reactions, including equilibrium constants and kinetic rate laws. 140 

Similar to SCMs, equilibrium constants for reactions that are used in RTMs do not fully reflect the 141 

reality of a solid–water interface, where isolated surface sites can have dramatically different 142 

reactivities. Furthermore, to model the dissolution of solid phases in RTMs average rates or rate 143 

constants are selected,8,9 whereas experimental evidence indicates that the effective dissolution rate 144 

consists of contributions from specific surface sites, where the rates are vastly different.10 Because 145 

surface structure is dynamic, rates may also vary with time,11 with reaction Gibbs free energy,12 146 

and with flow rate.13 Accordingly, reaction rates may vary several-fold for the same crystalline 147 

solid, depending on the molecular, crystallographic, and topographic details of their surfaces that 148 

change dynamically in time. Therefore, reaction rates are best described by distributions of 149 

possible/probable values and not by a singular discrete number.  150 

This Perspective argues that, in place of ensemble averaged constants as input parameters, 151 

probability distributions are needed to formalize chemical phenomena at interfaces to reflect their 152 

heterogeneous nature in SCMs, RTMs, and other continuum-scale models. Current state-of-the-art 153 

modeling approaches apply homogeneous chemistry concepts to heterogeneous systems, limiting 154 

their applicability and predictive power. A probabilistic approach that captures the stochastic 155 

nature of surface sites offers a path forward to bridge detailed molecular-scale information with 156 

the continuum-scale models of complex systems. We will show that using probability distributions 157 

is appropriate for representing the “surface landscape”, (i.e., the stoichiometry of surface sites, 158 

surface charge distributions, and surface topologies), as well as equilibrium constant values and 159 

reaction rates. This approach provides a new paradigm that we hypothesize will create a more 160 
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robust predictive power in continuum-scale models by capturing the wealth of molecular-scale 161 

information that is increasingly available for interfacial systems. Using molecular-scale 162 

information in continuum-scale simulations will advance our capability to model environmental 163 

fate and transport, soil system evolution, and to elevate the design and optimization of 164 

electrochemical and catalytic processes, desalination membranes, and carbon- and ion-selective 165 

capture materials. Achieving this probabilistic approach requires not just advancements in the 166 

capabilities of SCMs and RTMs, but also the continued efforts of experimentalists and 167 

computational chemists to elucidate molecular details and reactivities of solid−water interfaces. 168 

2.   Molecular details matter 169 

In this section we will illustrate that a surface is not one reactant but instead a combination of 170 

different reactants that are distinct, interdependent, and changing.  Recent scientific advances have 171 

led to molecular descriptions of interfaces of specific solid–water systems that challenge 172 

traditional mean-field models of charged surfaces (see Bañuelos et al. for comprehensive review).7 173 

These studies highlight that molecular details matter as surfaces are heterogeneous at the 174 

molecular-scale and cannot be conceptualized as a single “reactant” in interfacial chemistry 175 

descriptions. The selected advances illustrated here have been facilitated by new capabilities in 176 

scanning probe, synchrotron-based X-ray, and nonlinear optical techniques that reveal the different 177 

detailed aspects of the interface under in situ conditions in real-time. Furthermore, computational 178 

simulations using density functional theory (DFT) and ab initio and classical molecular dynamics 179 

(MD) have been critical in uncovering reaction mechanisms at solid–water interfaces, helping to 180 

interpret experimental observables and distinguish the reactivities of different surface sites. These 181 

studies have shown that surface sites can have stark differences in their reactivities, such as acidity 182 

and surface complexation reactions. Importantly, the surface site reactivity also depends on the 183 
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local environment, i.e., the reactivity of the same surface site differs depending on the structure 184 

and identity of its immediate neighbors. 185 

In the last decade, nonlinear optical methods have greatly enhanced our ability to garner 186 

molecular information on buried interfaces, i.e., those surfaces under aqueous solutions.  Phase-187 

sensitive measurements have yielded complex spectra generated at solid–water interfaces 188 

resolving the orientation of the molecules that contribute to the measured response.14,15 Moreover, 189 

theoretical frameworks used to interpret these measurements now separate the contributions from 190 

different regions of the interfacial solution layers and assign them to molecules immediately at the 191 

buried surface and those at a distance that are still structurally distinct from molecules in the bulk 192 

aqueous phase (the diffuse layer).15,16 These methods and related approaches have uncovered the 193 

details of hydrogen-bonding networks of water immediately adjacent to a surface (in the Stern 194 

layer) and how they are perturbed by changes in pH17 and the addition of aqueous ions.18 Phase-195 

sensitive measurements have allowed also for the total potential to be quantified directly at the 196 

surface.19 This new capability is important, because the surface potential (ψ) is one of those 197 

approximated quantities that must be incorporated into SCMs (Figure 1). This quantity is often 198 

calculated from mean-field models and rarely had been measured experimentally. Now, the surface 199 

potential, which differs from the more commonly measured zeta potential, can be ascertained 200 

optically, and at arbitrary ionic strength, using heterodyned second harmonic generation (SHG)19 201 

as well as synchrotron-based X-ray photoelectron spectroscopy (XPS) albeit under more limited 202 

conditions.20 This ability to measure the total surface potential provides an important experimental 203 

benchmark for the widely-used mean-field models for calculating surface potentials and applying 204 

the electrokinetic methods used to quantify interfacial potentials. Ultimately, our ability to assess 205 

the electrostatics at the surface without having to invoke classic mean-field models, which often 206 
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rely on semi-empirical parameters and primitive ion models that were put forth based on less 207 

sensitive techniques decades ago, will be critical to develop the next generation of surface models 208 

and extend them into SCMs and RTMs. 209 

Advanced techniques for measuring ψ at oxide surfaces still provide an average value for a 210 

given interface. However, we know that charged sites on oxide surfaces are localized resulting 211 

from protonation and deprotonation of surface hydroxyls. Whether charges are localized or 212 

delocalized significantly impacts both the ion distribution and the net water orientation in the 213 

interfacial region according to simulations of charged solid–water interfaces.21 Specifically, charge 214 

localization results in ion accumulation at an interface and local re-orientation of water molecules 215 

at interfaces compared with the delocalized charged aqueous interface. Furthermore, recent work 216 

using Stark spectroscopy indicates that the local fields can vary significantly across the solid–water 217 

interface and that interfacial molecules “sample” this heterogeneous, dynamic environment.22  218 

The interfacial charge structure can be changed drastically by high salinity. Lee et al.23 219 

observed the salinity-dependent electric double layer (EDL) structure evolution in RbI or RbCl 220 

with negatively charged mica surfaces using element-specific resonant anomalous X-ray 221 

reflectivity. They found that cations and anions formed alternating discrete layers, causing 222 

nonclassical charge overscreening (also referred to as charge reversal) at high salinity. At the silica 223 

surface, the impact of overscreening induced by divalent ions with increasing pH on both the water 224 

structure and ion speciation within the EDL was also recently observed by Rashwan et al. using 225 

vibrational SFG (vSFG) and streaming current measurements.24  226 

Experimental methods capable of mapping out the local structure with molecular-scale 227 

resolution are transformative tools for characterizing the chemistry of solid–water interfaces.7 228 

Scanning probe measurements over nearly atomically flat surfaces, such as mica,25 paired with 229 
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finite-element analysis26 have yielded topographic information on the molecular-scale of both the 230 

interfacial potential and water structure. Such methods have been extended to mapping of organic 231 

molecules deposited on metal surfaces.27 Charge profiling three-dimensional (3D) atomic force 232 

microscopy has revealed charge layering of ionic liquids on electrodes at Ångstrom depth 233 

resolution.28 3D fast-force mapping can also estimate the position of individual water molecules 234 

in the Stern layer although this emerging method is complicated by data convolution concerns 235 

related to tip-specific effects.29 Other imaging methods such as transmission electron microscopy 236 

(TEM), including scanning (STEM), high-resolution (HRTEM) and liquid cell (in situ TEM), in 237 

combination with electron energy loss spectroscopy can directly quantify surface structures in dry, 238 

humid, or aqueous conditions. Because these measurements are spatially resolved and have near-239 

molecular-scale resolution, they can map out the variety of reactive surface sites on oxide surfaces 240 

allowing the abundance of a certain type of surface site to be linked to observable macroscopic 241 

reactivities. A well-studied example of this phenomenon is the uptake and release of O2 by ceria 242 

(CeO2) nanoparticles that are widely used in catalysis and other applications. Combined TEM and 243 

modeling studies for CeO2 have shown that the energetics of O2 uptake/release is controlled by (1) 244 

specific facets (crystallographic orientation), (2) oxygen site vacancies produced during Ce3+/Ce4+ 245 

redox reaction, and (3) surface hydration (Figure 3, from Sayle et al.30,  and Seal et al.2).  Because 246 

surface defects often produce high energy reactive sites, the emerging research field of defect 247 

engineering for nanomaterials is critically tied to these new high-resolution measurements.   248 
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Figure 3. Surface structures of ceria (CeO2) nanoparticles. (a) Full atom level model of CeO2 249 
nanoparticle; (b) Schematic of CeO2 nanoparticle showing crystallographic surfaces; (c) Enlarged view of 250 
the CeO2 (111) surface showing the presence of surface steps and corners; (d) Perfect (111) surface of 251 
CeO2 crystal; (e) Nanostructured (110) surface; (f ) Perfect (110) surface; (g) Nanostructured (100) 252 
surface; (h) perfect (100) surface. Ce = white, O = red; (i) Visualization of catalytic activity of a CeO2 253 
nanoparticle surface, where oxygen atoms are colored by their lability—the energetic cost of their 254 
removal from the surface. Red-white-blue gradient scale, where red corresponds to labile oxygen 255 
(energetically easy to extract) and blue corresponds to oxygen ions that are difficult to extract. The yellow 256 
spheres are Ce3+ species; (j) Scanning tunneling microscopy image of CeO2 surface; (k) corresponding 257 
structural model. Adapted with permission from Seal et al.2 258 

 259 

Inevitably, the observed heterogeneities of the surface structures discussed above lead to  260 

variability in surface properties, such as interfacial potentials, acidities of surface groups (pKa 261 

values),31-33 dissolution rates,10 surface speciation, ion jamming with observed hysteresis in surface 262 

acid-base chemistry,33,34 and heterogeneous nucleation patterns across a single surface.35,36 Further 263 

complicating the situation is the recognition that the surfaces of some materials, e.g., SiO2, can 264 

have localized hydrophilic and hydrophobic regions36-38 that have been proposed to produce 265 

different surface acidity constants39 in concert with changes in hydrogen bonding effects on the 266 

distribution of silanol site acidities.40  267 
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Capturing the acidity of surface groups is of specific interest to SCM and RTM development 268 

because site charge influences surface reactivity and may vary greatly on the same surface.41-43 A 269 

recent significant and surprising finding by Wagner et al.41  who combined non-contact AFM 270 

measurements and DFT modeling indicates that surface hydroxyl groups at an In2O3 (111) surface 271 

have pKa values varying several orders of magnitude, based on the H-bond strength measurements 272 

at individual surface sites (Figure 4). Multiple distinct pKa values have also been observed for 273 

silica in both theory and experiment under aqueous conditions.31,39,40 Therefore, the relative 274 

abundance of different sites varies significantly, which we propose should be represented as a 275 

probability curve in continuum models. 276 

Figure 4. Probing individual hydroxyls on In2O3 surface with an Atomic Force Microscopy tip. (a) 277 
Experimental short-range force–distance curves for the OH groups; (b) Calculated short-range force–278 
distance curves for the OH groups. Adapted with permission from Wagner et al.41 279 

 280 
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Although imaging surface structures, localized surface potentials, local pKa values, and 281 

particle–particle interactions are paramount to understanding these systems, it is equally crucial to 282 

capture time-dependent fluctuations referred to as surface dynamics. Most environmental 283 

interfaces are intrinsically dynamic and sensitive to changes in pH and the presence of ions as they 284 

consist of amphoteric sites that become charged and interact, either in a specific or non-specific 285 

manner.  Generally, models consider that a given solid will exhibit a trend in affinity towards ions 286 

based on its composition. Yet, recent experimental work for the planar44,45 and nanopore silica–287 

water interfaces46 reveals that such trends in ion affinity can be significantly altered as the pH is 288 

changed. One hypothesis that can qualitatively explain a change in relative ion affinity is that the 289 

ions can interact with at least two distinct sites on the silica surface, one charged and one neutral, 290 

and as the relative ratio of charged to neutral sites increases with pH so does the affinity for ions 291 

in solution.45 Current work aims to investigate whether revising SCMs to include two-site binding 292 

of cations can capture such pH-dependent trends in ion affinities. Furthermore, changes in pH, ion 293 

concentrations, and solid chemistries might reveal that a probabilistic approach capturing 294 

distributions of affinities, rather than two affinity constants, can better predict such behavior. 295 

Real-world solid–water interfaces must also contend with dynamic chemical and geometric 296 

complexities: the composition of the aqueous phase at the solid–water interface is multi-297 

component where competitive adsorption plays an important role in Stern and diffuse layer 298 

structures.47 Continuum-scale models must capture the dynamics and coupled behavior between 299 

adsorbates, water, and surface site structures. Furthermore, nanoconfinement of surfaces often 300 

leads to anomalous chemistry where interfacial reactivity is dictated by the spatial dimension of 301 

the reactive solid–water interface.42,48,49  In particular, in nanopores, the polarization force between 302 

ions and the solid surface at an interface determines ion propensity toward nanoconfined spaces.49  303 
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Capturing interfacial reactivity is further complicated by the fact that the speciation of 304 

adsorbed ions, and likely of surface sites,50 can vary with ionic strength and surface coverage. For 305 

instance, several classic linear and nonlinear optical measurements as well as atomistic simulations 306 

have shown that surfaces functionalized with carboxylic acids remain neutral (uncharged) even at 307 

highly basic pH values.51-53 The underlying mechanism is one in which Coulomb repulsion within 308 

the surface plane is largely reduced when the carboxylate groups pick up a proton from the aqueous 309 

solution to form carboxylic acid dimers, similar to those found in glacial acidic acid (an insulating 310 

liquid). A similar phenomenon might be occurring for bare oxides such as silica where a bimodal 311 

distribution of acidities has been observed for silanol sites above the point-of-zero-charge.31-33 312 

Likewise, Sr2+ as well as some lanthanide cations (nominally 3+ in solution) exist as singly-313 

charged species when they are absorbed to certain surfaces.54,55 In this case, the underlying 314 

mechanism likely involves replacing a water molecule from the ion’s hydration sphere with a 315 

counter-ion, such as chloride or surface deprotonation to create an OH- group.56,57 Sr2+ then absorbs 316 

as the [SrCl]+ ion pair, which is subject to reduced lateral Coulomb repulsion. SCMs should take 317 

this effect into account, but currently do not. This is a problem of exponential sensitivity, as the 318 

Boltzmann term governing the surface coverage is raised to the power of the charge of the adsorbed 319 

ion. If this charge changes from 3 to 2 or from 2 to 1, the exponential sensitivity indicates a much 320 

different surface coverage relative to what is expected from bulk thermodynamics. We note that 321 

such ion-pairing effects are routinely observed in brine solutions (NaCl > 1 M),58 but they occur 322 

at surfaces when electrolyte concentrations are orders of magnitude smaller compared to brines, 323 

for example at the fused silica/water interface Sr2+–Cl- ion pairing occurs once NaCl concentration 324 

reaches only 10 mM. The surface-promoted ion-pairing processes need to be incorporated into 325 
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new descriptions of Stern layer for ion speciation. When RTMs solve for chemical speciation, they 326 

do not incorporate surface-promoted shifts in speciation as described here.  327 

The presence of salts (electrolytes) can influence solid–water interactions, including surface 328 

complexation, dissolution, and precipitation reactions. Since the work of Dove59 and coworkers 329 

on silica dissolution, researchers have attempted to further unravel the details of salt effects on 330 

solid–water interfaces. For example, Icenhower and Dove60 found that dissolution rates can 331 

increase by over 20 times in 0.05 M NaCl solution compared to de-ionized water. Notably, the 332 

same experiments show that the activation energy (74.5 ± 1.4 kJ mol-1) in the range of 25 to 250°C 333 

does not change within experimental error with this increase in rate constant. This suggests that 334 

the Arrhenius pre-exponential factor (A) related to the activation entropy of the reaction is 335 

changing rather than the activation enthalpy. Kubicki et al.61 hypothesized, based on DFT-MD 336 

simulations, that the dissolution entropy is made more favorable when salts are present at the 337 

interface due to changing H-bonding that favors intra-surface H-bonds and thus H+-transfer and 338 

hydrolysis of Si–O–Si linkages leading to dissolution. This observation of H-bonding changes is 339 

consistent with vSFG experiments by Rehl et al.,18 revealing the decrease in ordered water in the 340 

Stern layer at the silica surface upon salt addition. Likewise, Dewan et al.62 showed that salt 341 

impacts structured interfacial water most significantly near neutral pH where the effect of salt on 342 

accelerating silica dissociation is greatest.21,62 Other simulations and time-resolved vSFG (TR-343 

vSFG) spectroscopy have found similar behavior with addition of salts.76,77 344 

In addition to dissolution, the salt concentrations and types can affect the nucleation of metal 345 

(hydr)oxides and their subsequent growth and Ostwald ripening. For example, Li and Jun 346 

examined the effect of salinity on CaCO3 nucleation on quartz using grazing incidence small angle 347 

X-ray scattering.63 When salinity increased from 0.15 to 0.85 M NaCl, effective interfacial 348 
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energies dropped from 47.1 mJ/m2 to 36.4 mJ/m2, thus decreasing the thermodynamic penalty of 349 

nucleation. However, the kinetic factor for nucleation (J0)—related to ion diffusion and nuclei 350 

surface properties—reduced ~13 times. Lower J0 values resulted from slower CaCO3 monomers 351 

impingement rate caused by decreased electrostatic attraction at high salinity, which is also 352 

consistent with charge overscreening at high salinity. Based on these thermodynamic and kinetic 353 

contributions to the CaCO3 nucleation, the net nucleation rates could increase an order of 354 

magnitude at higher salinities. Furthermore, as shown in Figure 5, the nucleation and growth of 355 

iron (hydr)oxide nanoparticles are also controlled by many aqueous solution variables, such as the 356 

salinity,64 types of salt ions, co-existing oxyanions,65 and natural organic matter.66 Even with this 357 

known complexity, RTMs typically consider solid nucleation process to be instantaneous or start 358 

as soon as solution reaches the saturation index for a given phase, and do not count the nucleation 359 

step as a discrete part of the process. This oversimplification of nucleation processes can result in 360 

discrepancies between experimental findings and RTM results.67  361 
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Figure 5. In situ measurements of heterogeneous nucleation on quartz substrates in a solution 362 
containing 10-4 M Fe(NO3)3 at pH 3.6 ± 0.2 by grazing incidence small angle X-ray scattering (GISAXS), 363 
showing in-plane (qxy) 1D scattering. The shaded boxes indicate the particle size evolution with reaction 364 
time. Adapted with permission from Jun et al. (2016)36 (a) With 1 mM NaNO3 ionic strength (IS), 365 
nucleation is dominant. (b) With 100 mM NaNO3 IS, particles grew from ~2–5.5 nm, with the formation 366 
of secondary ~1 nm particles. Detailed discussion about images (a) and (b) is available in Ref. 64 (c) With 367 
10 mM NaNO3, both nucleation and growth were observed. (d) With 10 mM NaCl, although the particle 368 
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size is comparable to the nitrate system, the total particle volume does not increase, indicating Ostwald 369 
ripening. Detailed discussion about images (c) and (d) can be found in Ref.68 (e) In the presence of natural 370 
organic matter (NOM), particles aggregate, as indicated by power law scattering at low q. (f) In the presence 371 
of both arsenate and NOM, large particles are also observed. Further discussion about images (e) and (f) is 372 
available in Ref.65. (g-h) The influence of substrate chemistry is evaluated by coating the surface with 373 
hydrophobic polyaspartate. More information about images (g) and (h) can be found in Ref.66  374 

 375 
As shown above, the chemical complexity of even simple oxide–water interfaces is daunting 376 

from a molecular perspective. These surfaces become even more complicated in the presence of 377 

organic and microbial communities. Grassian and co-workers have shown that dissolved organic 378 

matter can coat oxide surfaces at low and circumneutral pH. 69-73 Moreover, surface adsorption 379 

from complex aqueous phase systems containing biomolecules, humic and fulvic substances show 380 

that larger complex macromolecules adsorb onto mineral surfaces in a manner that depends on 381 

solution pH and ionic strength. Similarly, biological components such as proteins adhere to oxide 382 

surfaces to form an “eco-corona”74 and the protein-oxide surface interactions depend on pH, the 383 

nature of the surface and neighboring oxyanions.69-71 Environmental DNA (eDNA) can attach to 384 

oxide particle surfaces but little is known about these interactions and how they impact the 385 

underlying surface structure and reactivity as well as the stability of adsorbed eDNA.75  386 

These cumulative findings further support two notions: (1) interfacial water structure is a key 387 

player in interfacial reactivity and (2) salt ions are not spectator species at solid–water interfaces. 388 

We have shown how surfaces are heterogeneous on all scales of interest, and how interactions with 389 

complex molecular species that are typically present in the environment make these systems hard 390 

to study. Additionally, in low humidity environments, such as Earth’s atmosphere, the surface 391 

heterogeneity of single particles can control water adsorption on surfaces as a function of relative 392 

humidity.7,78 Specifically, edge and defect sites adsorb water preferentially from the gas phase as 393 

a function of increasing relative humidity prior to the adsorption of water on planar surfaces. The 394 

spatially resolved studies, including infrared nanospectroscopy,78 show how surfaces are 395 
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heterogeneous and water does not uniformly coat the surface, meaning that only select surface 396 

sites can participate in reactions.  397 

A challenge, as well as an opportunity, moving forward is to utilize the state-of-the-art tools 398 

to examine more realistic, chemically/structurally heterogeneous surfaces in complex 399 

environments that contain ions, dissolved organic matter and biological components to understand 400 

main molecular controls on surface reactivities. We can then test the hypothesis proposed here that 401 

describing main reactivity parameters with probability curves leads to more accurate continuum-402 

scale models. Le Traon et al.79 highlights that reaction kinetics in porous systems deviates from 403 

the batch experiments by orders of magnitude, demanding that experiments and simulations more 404 

realistically capture larger scale effects. This possibility raises several thought-provoking 405 

questions such as: Do aqueous and solid phase complexities produce a heterogeneous surface with 406 

different domains? Are the surfaces “patchy” with some hydrophilic and hydrophobic domains, 407 

and some regions enriched with adsorbed species (or covered with organic matter)? Can these 408 

complex surfaces be described by probabilistic models to capture all types of reactive surface sites 409 

for all surface domains?  These are difficult yet important questions to resolve to understand the 410 

full chemical complexity of solid–water interfaces in the environment. 411 

In the following Section 3 we will discuss examples where interfacial processes were 412 

successfully incorporated into continuum-scale models, as well as those cases where such models 413 

cannot be constructed without a complete re-working of the mathematical and statistical 414 

approaches on which they are built.  415 

 416 

3.   Rectifying the Molecular View with Ensemble Models 417 
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In this section we will show how mean-field models work in some instances but not in others. 418 

To take the heterogeneity of reactive sites during adsorption into account, a commonly used 419 

equilibrium adsorption model at a solid–water interface is the Freundlich isotherm, which 420 

theoretically accounts for heterogeneous surface sites. Yet only one affinity constant describing 421 

bonding strength is derived from adsorption data and this averages the enthalpy of adsorption ΔHads 422 

for all sites. If the range of ΔHads is narrow, using one constant value would not be a major issue; 423 

however, inverse adsorption chromatography,80 and operando flow microcalorimetry have 424 

demonstrated that the range of ΔHads values for the same sorbent–sorbate (surface–ion) pair can 425 

be up to 200 kJ mol-1! Thus, one can infer that the variation in ΔHads is not a simple matter of 426 

adsorption reactions at the same type of sites, which is less favorable with increasing sorbate 427 

coverage (Figure 6). Instead, the ΔHads variation reflects different types of surface sites with 428 

distinct bonding mechanisms, consistent with the notions of local spatial heterogeneity and 429 

stochastic distribution of surface reactivities discussed earlier. Many adsorption isotherm studies 430 

report better fits to the data at the mid-range of solution concentrations and are less accurate at the 431 

low- and high-concentration tails,81 which is indicative that the values at the higher and lower tails 432 

of the probability curve are ignored. Because surface defects likely have the most negative ΔHads 433 

values and lowest surface site densities (representing tail ends of the site probability curve), they 434 

have not been modeled accurately. Considering that in many real-world scenarios, the sorbates are 435 

present at trace levels, the applicability of models based on ideal surfaces at higher aqueous 436 

concentrations that are typically studied in a laboratory setting becomes questionable. There are 437 

also critical needs for thermodynamic data and computational chemistry models that can address 438 

the lower concentrations and reactions at surface defects82 and in nanopores46,49 to obtain 439 

predictable thermodynamics and kinetics under realistic environmental conditions. 440 
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 441 

Figure 6. Differential molar enthalpies (δHads) measured by operando flow microcalorimetry for the 442 
sorption of chromate on ferrihydrite, showing that the values become less negative (less favorable) with 443 
increasing surface loading. Adapted with permission from Kabengi et al. 83 444 
 445 

One promising example is the determination of Fe-oxy(hydr)oxide reactive sites that has been 446 

translated into a SCM capable of unifying adsorption equilibrium constants for the important 447 

contaminant chromate.84  Bompoti et al.84 utilized the MUSE algorithm and found that in SCMs it 448 

was easiest to keep the reactive site densities fixed for each solid and vary the solid concentration 449 

and capacitance until the model agreed with experimental data. High resolution data, for example 450 

using STEM HAADF helps determine the crystal face contributions for different surface sites, and 451 

the respective site densities characteristic for each surface that can be incorporated in SCMs.85  452 

When considering larger scales in RTMs, the dynamic evolution of solid–water interfaces can 453 

significantly alter the fate and transport of ions, which is not fully captured in current models. 454 

Adsorption of chemical species and temporal evolution of solid phases due to dissolution-455 

precipitation processes changes reactive site densities and types. Until recently, RTM could not 456 

include solid nucleation due to the lack of experimental information about nucleation. Instead, it 457 

captures precipitation as a group term by assuming that nucleation is instantaneous, and only 458 



24 
 

includes the solid’s growth rate. RTMs also do not capture pore-size effects on solubility and 459 

nucleation kinetics. Recent advances have been made to incorporate experimentally obtained 460 

kinetic and thermodynamic information (e.g., nucleation rates, activation energies, and interfacial 461 

energies)63,86,87 of calcium carbonate nucleation into an RTM code CrunchTope. The incorporation 462 

of nanoscale interfacial reactions into the RTM improved the model accuracy of both the evolution 463 

of the Ca(OH)2-depleted zone and the surface dissolution zone at supercritical CO2–brine–cement 464 

interfaces (Figure 7).67 Experimentally-obtained nucleation thermodynamic and kinetic 465 

information are important in scaling up nanoscale observations of chemical reactions to larger 466 

scale predictions. Similarly, this improved RTM framework can be utilized to predict managed 467 

aquifer recharge (MAR) where reclaimed water is used to replenish underground reservoirs. The 468 

reclaimed water for MAR is rich in dissolved oxygen, which can alter the dissolution of minerals 469 

with toxic components such as arsenic-bearing iron sulfides and lead to subsequent iron 470 

(hydr)oxide nucleation and toxic species adsorption onto the newly formed iron (hydr)oxides.88-91 471 

Understanding the nucleation and dynamic interfacial chemical processes and incorporating them 472 

into RTMs will significantly improve the predictions of pollutant mobility, benefiting safer aquifer 473 

management to address water shortage problems.  474 

  475 
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 476 

Figure 7. Incorporation of nanoscale interfacial reaction into a reactive transport model. (a). Illustration of 477 
direction of CO2 attack into the cement matrix. The cement samples were reacted in a CO2-saturated brine 478 
(0.5 M NaCl) with a solid-to-liquid volumetric ratio of 1/16. The solution was equilibrated at 95oC under 479 
100 ± 5 bar of CO2. A total alteration thickness of 1220 ± 90 μm was observed, including a 960 μm CH 480 
(Ca(OH)2, portlandite)-depleted zone, a 100 μm carbonated layer, and a 170 μm surface region. Interfaces 481 
between zones are drawn to scale. (b, c). Modeling results with and without sufficient consideration of 482 
nanoscale mechanisms in comparison with experimental data. (b) Results with no consideration of 483 
nanoscale mechanisms. (c) Results with consideration of incomplete filling of pore space at nanoscale, 484 
nucleation kinetics, an enhanced solubility in confined pores. By incorporating nanoscale evolution of 485 
interfacial chemistry into RTM can generate a better match with experimental observations. Adapted with 486 
permission from American Chemical Society from Ref.67 487 

 488 

4.   The Way Forward: Towards Predicting and Controlling Interfacial 489 

Behavior 490 

A logical next step for improving the accuracy of continuum-scale models is to increase the 491 

number of discrete parameters used in these models (e.g., use two pKa values instead of one). Such 492 

approaches have already been explored and do indeed show increased accuracy.92 However, 493 

should the splitting of single variables into sets of discrete values (multiple-parameter approach) 494 

be the way forward? We argue that it should not be, and a paradigm shift is urgently needed. The 495 

fundamental question remains—can we keep applying homogeneous chemistry concepts to 496 

heterogeneous systems? The probabilistic nature of chemical phenomena in homogeneous systems 497 

has been addressed by statistical mechanics—e.g., the Boltzmann distribution describes the 498 

physical nature of molecules in populations having different states, the likelihood of which 499 
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changes based on the conditions imposed on these populations. Because gaseous or aqueous 500 

systems are well-mixed, the Boltzmann distribution is usually Gaussian. When we consider solid 501 

surfaces involved in interfacial reactions, a “well-mixed” state is fundamentally impossible for any 502 

realistic solid surface. Current molecular models and spatially resolved measurements can capture 503 

surface heterogeneity and characterize the localized reactive domains on surfaces at molecular-, 504 

nano-, and other scales discussed in Section 2 of this Perspective. The problem is that the 505 

continuum-scale models, such as SCM and RTMs, are not designed to incorporate spatially 506 

differing reactivities of surfaces. We propose that probability distributions of surface descriptors 507 

instead of average constant values should be used to formalize interfacial properties in continuum-508 

scale models. Therefore, using probabilities to describe surface properties is a more promising 509 

approach in comparison to the stepwise increase in the number of variable values used in multi-510 

parameter sets. Including probability distributions for the variables of interest could result in 511 

efficient continuum-scale models because localized effects will be incorporated within non-512 

localized parameterization schemes. Hence, this approach has the potential to address surface 513 

heterogeneity at different scales. If successful, this new paradigm will lead to scale-independent, 514 

universal models that would allow for the prediction of interfacial reactivities in complex chemical 515 

systems for the first time, a dream come true for scientists and engineers in many research fields.  516 

To begin, we need to develop new mathematical frameworks and computational approaches 517 

to describe chemical parameters and properties as probability distributions, instead of ensemble 518 

average values, to reflect real-world complexity and to generate scaled-up SCMs and RTMs. We 519 

propose that accounting for chemical and structural complexity in such new generation SCM and 520 

RTM codes requires re-writing them using a fundamentally new approach. As shown in our 521 

examples above, reaction rates, equilibrium constants, and surface acidity constants vary across a 522 
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surface and correlate to distinct structural characteristics (e.g., oxygen vacancies, crystallographic 523 

orientation, local structure of amorphous phases, sorbates, and “spectator” ions). We anticipate 524 

that normal, bell-shape curves could sufficiently capture the relevant parameter space in some 525 

cases where stochastic processes dominate, while in other cases where surface reactivity is a sum 526 

of non-random phenomena, they will be best described by more complex types of probability 527 

curves. We advocate for applied mathematicians and statisticians to become more involved in 528 

interfacial chemistry research to develop rigorous descriptions of interfacial processes for specific 529 

use in RTM and SCM codes. The inspiration for such models can be drawn from molecular-scale 530 

probabilistic algorithms, including Metropolis Monte Carlo (statistical sampling of energetic 531 

states)93 and Kinetic Monte Carlo (sampling of reaction rates).94 These models are currently 532 

limited to molecular-scales. From the experimental side, approaches that can quantify the 533 

spatiotemporal variation of heterogeneous rates, adsorption free energies, as well as interfacial 534 

capacitance, relative permittivity in the Stern layer, and distribution of electric fields are needed 535 

to inform these models.  536 

In the geoscience community, Lüttge and co-authors proposed using stochastic models to 537 

capture mineral dissolution processes.95-98 This conceptual approach was motivated by high-538 

resolution in situ measurements on carbonate and silicate surfaces in aqueous solutions. These 539 

measurements clearly indicate site-dependency and time-dependency of the dissolution rates, 540 

where the probability distributions evolve in time (Figure 8). For calcite surfaces in Figure 8, we 541 

see that the initial surface topography has a measurable impact on the mean rate values (peaks in 542 

the distribution curves) and on the width of the distributions. In fact, a dissolution rate is more 543 

accurately represented by a term “rate spectra,” given the variability and gradual changes across a  544 
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given crystalline surface.10  Importantly, Lüttge et al. developed an initial framework for treating 545 

dissolution phenomena using a probabilistic approach with the dissolution probability defined as:98 546 

𝑃! = ∏ 𝑃"!
"#$  (1) 547 

Here, 𝑃! is the dissolution probability for a molecule with i bonds to the surface written as the 548 

product of hydrolysis probabilities over all bonds. Furthermore the logarithm of probability for an 549 

individual surface unit to be dissolved is proportional to the sum of activation energies for bond 550 

hydrolysis 𝛥𝐸!":98 551 

𝑙𝑛𝑃! = −
∑ &'!"
!
"#!

()
  (2) 552 

where	k is the Boltzmann constant, and T is temperature. We must note that the variability in the 553 

measured dissolution rates shown in Figure 8 is 2 to 3-fold, because these measurements were 554 

conducted on the same crystallographic surface. For numerous solids, the difference in dissolution 555 

rates for different crystallographic terminations may reach orders of magnitude. Therefore, for 556 

realistic solids the probability weighted approach is crucial, because averaging and ignoring this 557 

variability may result in model predictions that are “off” by orders of magnitude. 558 

Guren et al.99 illustrate how to derive a set of dissolution rate probabilities from Kinetic 559 

Monte Carlo simulations and then how to use them as input into the macroscopic stochastic model. 560 

The result of this rigorous procedure is an accurate representation of mineral dissolution that takes 561 

place at different surfaces and surface sites of the same material. Regarding RTM, an approach for 562 

parameterizing heterogeneity in surface reactivity has been recently demonstrated using 563 

nanotopographic images to generate a distribution of surface slope factors that act as a correction 564 

factor for the RTM-calculated rates. This approach led to much better agreement between the 565 

simulated dissolution rate maps and rate spectra than the standard RTM.100,101 While these 566 
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examples are extremely promising and represent an advance in the field of reaction modeling, the 567 

results are still limited to simple systems. A major break-through is needed for translating chemical 568 

knowledge from molecular-scale into continuum-scale models.  569 

In this Perspective we propose that an approach that captures probability distributions must 570 

be applied in SCMs and RTMs to encompass all relevant constants and surface properties, 571 

including dissolution rates and nucleation and growth rates, when considering chemistry of solid–572 

water interfaces (Figure 9). 573 

 574 

 575 
Figure 8. Probability distributions of calcite dissolution rates measured in laboratory dissolution 576 
experiments. (a) Dissolution rate spectra for “striated” surface; and (b) Dissolution rate spectra for “hill-577 
and-valley” surface. Adapted with permission from Trindade Pedrosa et al.97 578 

 579 

 580 

 581 
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Developing new methods for incorporating probability distributions into SCM and RTM 582 

codes for the numerous reactive surfaces present in the environment will be possible by utilizing 583 

new computational approaches. A longstanding grand challenge in computational science has been 584 

the seamless transfer of information across scales from molecular to field-scales.102 In practice, 585 

this ideal has not been achieved because funding for multi-scale modeling efforts have not been 586 

the norm and computational limits have not allowed significant overlap in spatiotemporal scales 587 

among the various approaches. The latter obstacle can be overcome with the advent of exascale 588 

computing and the development of codes that incorporate machine learning (ML)-based 589 

interatomic potentials or ML-IAPs.103 Connecting atomistic and pore scale simulations through 590 

advanced computational power can be achieved by systematic development of interatomic 591 

 
 
Figure 9. Schematic representation of various surface structures on a single crystal 
surface that have reactivities best represented by a distribution of equilibrium constants 
(K) and rection rate constants (k). These dynamic surface reactions include solvation, 
surface complexation, and attachment-detachment processes due to dissolution or 
precipitation. Chemistry of solid-water interfaces is crucial for understanding 
environmental fate and transport, and for applications such as water treatment, 
conventional and unconventional energy, and agriculture (all of which are represented 
with symbols in the upper portion of the figure). 
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potentials via machine-learning. Exascale computing makes simulations of 107 atoms over 592 

durations of microseconds possible, and the ML techniques allow for the development of accurate, 593 

reactive IAPs based on experimental data and quantum results. Thus, it would be possible to 594 

perform atomistic simulations that overlap with the mesoscale and can more realistically represent 595 

solid–water interfaces. Exascale computers will allow for accurate atomistic simulations of 596 

reactions and flow on scales that overlap the micron-scale elemental volumes of lattice Boltzmann 597 

simulations.104 Coarse-grained mesoscale simulations (i.e., mesoscale) allow for larger and longer 598 

spatiotemporal scales that overlap finite element and continuum methods. This “bottom-up” 599 

approach can provide parameters that are useful in larger scale models such as SCM (e.g., Fitts et 600 

al.105). Additionally, ML can be used to identify feature importance, value clustering, and detecting 601 

anomalous values,106 all of which can aid in the statistical descriptions of interfacial reactivities. 602 

Smaller scale simulations can be used to test assumptions and approximations made for larger 603 

scale simulations while simultaneously providing chemical mechanism information that could be 604 

incorporated into SCMs or RTMs. By incorporating probability distributions and integrating 605 

across scales with experiments and simulations, it will become possible to derive new modeling 606 

paradigms that are consistent with field observations and incorporate molecular-level information. 607 

This approach will enable bridging of laboratory experiments with modeling efforts to predict 608 

chemical transformation in complex industrial systems and natural environments, including 609 

critical settings such as nuclear waste sites. Similar approaches can be used for predicting catalyst 610 

performance and to design fit-for-purpose materials for energy and the environment. With 611 

exponentially rising computational power, the advancement in machine learning and artificial 612 

intelligence tools and the increasing spatiotemporal resolution of laboratory measurements, this 613 
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perspective provides a conceptual framework that could enable sustainable solutions to global 614 

problems including clean water, renewable energy, and climate change. 615 
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