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Abstract: Solid—water interfaces are crucial for clean water, conventional and renewable energy,
and effective nuclear waste management. However, reflecting the complexity of reactive interfaces
in continuum-scale models is a challenge, leading to oversimplified representations that often fail
to predict real-world behavior. This is because these models use fixed parameters derived by
averaging across a wide physicochemical range observed at the molecular scale. Recent studies
have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction
mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge
and predictive continuum-scale models, we propose to represent surface properties with
probability distributions rather than with discrete constant values derived by averaging across a
heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially
rising computational power. By incorporating our molecular-scale understanding of solid—water
interfaces into continuum-scale models we can pave the way for next generation critical

technologies and novel environmental solutions.
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1. Introduction

Solid—water interfaces play critical roles in engineered systems!-* and natural environments.*
Communication among scientists and engineers working at molecular, microscopic, field, and
global scales should be augmented via integrated collaborations that seek to add chemical insights
into large-scale problems where current assumptions and approximations lead to large
uncertainties in predictive models.> We lay out a perspective about how to establish such a
collaboration that infuses molecular details into larger scale models, including often-used surface
complexation (SCM) and reactive transport models (RTM). We propose the development of a
new approach for incorporating the vast database of molecular knowledge into continuum-scale
models by shifting the model parameterization paradigm. We suggest a conceptual shift in how
surface properties are represented from the current state of using discrete values to probability
distributions, allowing to reflect real heterogeneities of surfaces. Surface site acidities, charge
densities, solvation energies, reaction rates, and solubility constants should be described as

probability curves to reflect the interfacial complexity.

Scientists who develop detailed molecular descriptions of solid—water interfaces face a four-
fold challenge: (1) interfacial chemistry evolves in complex ways as it is dynamically coupled to
the compositions of both the solid and the aqueous phases yet is distinct from either; (2) the number
of atoms present at the surface is dwarfed by the number of atoms that compose the bulk phases,
thus complicating the deconvolution of surface analytical signals from those of the bulk; (3) real-
world interfaces are inherently heterogeneous down to the micro-, nano-, and molecular-scales,
making it difficult to build continuum-scale predictive models that capture this complexity and
reconcile distinct surface structures with observed net reactivities; and (4) environmental processes

span femtosecond to millennia timescales, not always accessible for experimental, analytical, and
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computational inquiries. Despite these challenges, previously obscure details of surface reactions
are becoming increasingly understood. However, the current numerical tools available for
translating interfacial processes into continuum-scale models that describe mm- to km-scale
systems are lacking mathematical frameworks for incorporating the wealth of molecular details

that have been discovered in the last few decades.

Because of these limitations, scientists who construct SCMs and RTMs often use “average”
values to describe the structures and reactivities of solid—water interfaces to reflect relevant
molecular information. SCMs are developed to specifically describe ion adsorption behaviors at
solid—water interfaces to match either adsorption isotherms or pH-dependent adsorption data (i.e.,
adsorption edges). The basic schematic for three types of commonly used SCMs is shown in
Figure 1 (reproduced from Ref ¢). These SCMs are based on various continuum-scale models of
interfacial structure such as: (/) the constant capacitance model (CCM), (2) the diffuse layer model
(DLM), and (3) the triple layer model (TLM). Each of these SCMs assumes that the total free
energy of ion adsorption is a sum of chemical adsorption energy (AGcehem) and Coulomb static
energy (AGeoul), Wwhere AGeou is directly proportional to the surface potential () and the charge of
the adsorbing ion.® In the sections below we illustrate that neither AGehem nor AGeou can be
considered constants in any given interfacial system because of the variability of surface structures
that define local surface charge or the reactivity of isolated surface groups, which should lead to
variability in the surface potential across the same surface caused by intrinsic surface
heterogeneity. Therefore, to reflect the true complexity, AGechem and AGeouw would be best

represented by a distribution of values, rather than a fixed value.
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Figure 1. Surface complexation modeling based on (a) Constant capacitance model (CCM); (b)
Diffuse layer model (DLM); and (c) Triple layer model (TLM). A 0-plane in these models limits the solid’s
surface, a f-plane terminates the plane where counter-ions are tightly bound at charged surfaces (Stern
layer) and a d-plane cuts through the center of the diffuse layer near surfaces. C, including C; and C,, denote
individual layer capacitance values; y is the surface potential corresponding to one of the planes, and g,
including oy and oy, is charge of the corresponding layers, where oy is charge of the 0-plane (surface charge,
or surface charge density); € is the dielectric constant or permittivity of the media. Figure adapted with
permission from Ref.®

To illustrate the sensitivity of a common SCM to input parameters, we calculated the Gouy-
Chapman Stern (GCS) potential as a function of Stern layer thickness, d, which varies due to spatial
heterogeneity of a surface (Figure 2). A two-fold change in d would result in a factor of two
difference in the potential drop across the Stern layer as A@swern = o/C, where o is the surface

charge density and C is the capacitance equal to &:€0/d (€ and g are the permittivity of the solution

5
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and of the vacuum, respectively). The resulting change in the electric field in the Stern layer (-
d@sdz) would then vary accordingly. Opening the expression for the Stern layer potential drop to
allow for spatial variations in all three parameters (o, ¢, and d) will result in variations of the
potential across the electric double layer (EDL). It is reasonable to expect that each of these
parameters varies by up to a factor of two (for the surface charge density and Stern layer thickness)
and by ten (for the relative permittivity). A sensitivity analysis of the ionic strength dependent
Gouy-Chapman Stern potential in terms of physically feasible variations in charge density and
Stern layer relative permittivity shows that variations of serval hundred mV occur, owing, for
instance, to doubling the charge density and halving the Stern layer permittivity (Figure 2). In
contrast, doubling both parameters results in only minor potential differences (Figure 2). We
conclude that expected spatiotemporal variations in the surface charge density and the Stern layer
relative permittivity will result in spatiotemporal variations in the surface potential, and the
associated electric field, in the range up to several hundred mV. This simple example is directly
applicable to other important parameters in mean field or surface complexation models, including
the Stern layer thickness, as alluded to above, and further justifies the proposed probabilistic

approach to continuum-scale modeling.
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Figure 2. Calculated variability in the ionic strength dependent Gouy-Chapman Stern (GCS) potential
due to variations in charge density and Stern layer relative permittivity commonly observed across surfaces.
The resulting Gouy-Chapman Stern potential variations reach several hundred mV when doubling the
charge density and halving the Stern layer permittivity. In contrast, doubling both parameters results in only
minor potential differences.
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Furthermore, conventional SCMs describe surface properties and reactivities with a single
surface acidity constant and surface complexation constant for a given surface and adsorbate (the
more advanced SCMs may go as far as to incorporate two- or three-site models with distinct acidity
and/or complexation constants). However, new experiments consistently show that nominally
similar surface sites (e.g., Si-OH, see Bafiuelos et al.)” have vastly different reactivities, which are
defined by multiple factors: surface structure, hydrogen bonding in adjacent solution, the surface
neighbor species, and aqueous composition. Because continuum-scale simulations rely on
empirically fit coefficients to approximate parameter values, they often do not capture
experimentally measured outcomes. As we will show below, the mismatch in predicted vs.

experimentally determined parameters can span orders of magnitude.
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The other types of continuum-scale reactive models, which are often utilized in important
applications such as nuclear waste storage, are reactive transport models (RTMs) that couple
transport equations with chemical reactions, including equilibrium constants and kinetic rate laws.
Similar to SCMs, equilibrium constants for reactions that are used in RTMs do not fully reflect the
reality of a solid—water interface, where isolated surface sites can have dramatically different
reactivities. Furthermore, to model the dissolution of solid phases in RTMs average rates or rate
constants are selected,®” whereas experimental evidence indicates that the effective dissolution rate
consists of contributions from specific surface sites, where the rates are vastly different.!® Because
surface structure is dynamic, rates may also vary with time,!! with reaction Gibbs free energy,'?
and with flow rate.!? Accordingly, reaction rates may vary several-fold for the same crystalline
solid, depending on the molecular, crystallographic, and topographic details of their surfaces that
change dynamically in time. Therefore, reaction rates are best described by distributions of

possible/probable values and not by a singular discrete number.

This Perspective argues that, in place of ensemble averaged constants as input parameters,
probability distributions are needed to formalize chemical phenomena at interfaces to reflect their
heterogeneous nature in SCMs, RTMs, and other continuum-scale models. Current state-of-the-art
modeling approaches apply homogeneous chemistry concepts to heterogeneous systems, limiting
their applicability and predictive power. A probabilistic approach that captures the stochastic
nature of surface sites offers a path forward to bridge detailed molecular-scale information with
the continuum-scale models of complex systems. We will show that using probability distributions
is appropriate for representing the “surface landscape”, (i.e., the stoichiometry of surface sites,
surface charge distributions, and surface topologies), as well as equilibrium constant values and

reaction rates. This approach provides a new paradigm that we hypothesize will create a more
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robust predictive power in continuum-scale models by capturing the wealth of molecular-scale
information that is increasingly available for interfacial systems. Using molecular-scale
information in continuum-scale simulations will advance our capability to model environmental
fate and transport, soil system evolution, and to elevate the design and optimization of
electrochemical and catalytic processes, desalination membranes, and carbon- and ion-selective
capture materials. Achieving this probabilistic approach requires not just advancements in the
capabilities of SCMs and RTMs, but also the continued efforts of experimentalists and

computational chemists to elucidate molecular details and reactivities of solid—water interfaces.

2. Molecular details matter

In this section we will illustrate that a surface is not one reactant but instead a combination of
different reactants that are distinct, interdependent, and changing. Recent scientific advances have
led to molecular descriptions of interfaces of specific solid—water systems that challenge
traditional mean-field models of charged surfaces (see Bafiuelos et al. for comprehensive review).’
These studies highlight that molecular details matter as surfaces are heterogeneous at the
molecular-scale and cannot be conceptualized as a single “reactant” in interfacial chemistry
descriptions. The selected advances illustrated here have been facilitated by new capabilities in
scanning probe, synchrotron-based X-ray, and nonlinear optical techniques that reveal the different
detailed aspects of the interface under in sifu conditions in real-time. Furthermore, computational
simulations using density functional theory (DFT) and ab initio and classical molecular dynamics
(MD) have been critical in uncovering reaction mechanisms at solid—water interfaces, helping to
interpret experimental observables and distinguish the reactivities of different surface sites. These
studies have shown that surface sites can have stark differences in their reactivities, such as acidity
and surface complexation reactions. Importantly, the surface site reactivity also depends on the

9
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local environment, i.e., the reactivity of the same surface site differs depending on the structure

and identity of its immediate neighbors.

In the last decade, nonlinear optical methods have greatly enhanced our ability to garner
molecular information on buried interfaces, i.e., those surfaces under aqueous solutions. Phase-
sensitive measurements have yielded complex spectra generated at solid—water interfaces
resolving the orientation of the molecules that contribute to the measured response.!*!> Moreover,
theoretical frameworks used to interpret these measurements now separate the contributions from
different regions of the interfacial solution layers and assign them to molecules immediately at the
buried surface and those at a distance that are still structurally distinct from molecules in the bulk
aqueous phase (the diffuse layer).!>!¢ These methods and related approaches have uncovered the
details of hydrogen-bonding networks of water immediately adjacent to a surface (in the Stern
layer) and how they are perturbed by changes in pH!” and the addition of aqueous ions.'® Phase-
sensitive measurements have allowed also for the total potential to be quantified directly at the
surface.!” This new capability is important, because the surface potential (y) is one of those
approximated quantities that must be incorporated into SCMs (Figure 1). This quantity is often
calculated from mean-field models and rarely had been measured experimentally. Now, the surface
potential, which differs from the more commonly measured zeta potential, can be ascertained
optically, and at arbitrary ionic strength, using heterodyned second harmonic generation (SHG)"
as well as synchrotron-based X-ray photoelectron spectroscopy (XPS) albeit under more limited
conditions.?® This ability to measure the total surface potential provides an important experimental
benchmark for the widely-used mean-field models for calculating surface potentials and applying
the electrokinetic methods used to quantify interfacial potentials. Ultimately, our ability to assess

the electrostatics at the surface without having to invoke classic mean-field models, which often

10
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rely on semi-empirical parameters and primitive ion models that were put forth based on less
sensitive techniques decades ago, will be critical to develop the next generation of surface models

and extend them into SCMs and RTMs.

Advanced techniques for measuring y at oxide surfaces still provide an average value for a
given interface. However, we know that charged sites on oxide surfaces are localized resulting
from protonation and deprotonation of surface hydroxyls. Whether charges are localized or
delocalized significantly impacts both the ion distribution and the net water orientation in the
interfacial region according to simulations of charged solid—water interfaces.?! Specifically, charge
localization results in ion accumulation at an interface and local re-orientation of water molecules
at interfaces compared with the delocalized charged aqueous interface. Furthermore, recent work
using Stark spectroscopy indicates that the local fields can vary significantly across the solid—water

interface and that interfacial molecules “sample” this heterogeneous, dynamic environment.??

The interfacial charge structure can be changed drastically by high salinity. Lee et al.?
observed the salinity-dependent electric double layer (EDL) structure evolution in RbI or RbCl
with negatively charged mica surfaces using element-specific resonant anomalous X-ray
reflectivity. They found that cations and anions formed alternating discrete layers, causing
nonclassical charge overscreening (also referred to as charge reversal) at high salinity. At the silica
surface, the impact of overscreening induced by divalent ions with increasing pH on both the water
structure and ion speciation within the EDL was also recently observed by Rashwan et al. using
vibrational SFG (vSFG) and streaming current measurements.?*

Experimental methods capable of mapping out the local structure with molecular-scale
resolution are transformative tools for characterizing the chemistry of solid—water interfaces.’

Scanning probe measurements over nearly atomically flat surfaces, such as mica,?® paired with

11
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finite-element analysis?® have yielded topographic information on the molecular-scale of both the
interfacial potential and water structure. Such methods have been extended to mapping of organic
molecules deposited on metal surfaces.?” Charge profiling three-dimensional (3D) atomic force
microscopy has revealed charge layering of ionic liquids on electrodes at Angstrom depth
resolution.?® 3D fast-force mapping can also estimate the position of individual water molecules
in the Stern layer although this emerging method is complicated by data convolution concerns
related to tip-specific effects.?” Other imaging methods such as transmission electron microscopy
(TEM), including scanning (STEM), high-resolution (HRTEM) and liquid cell (in situ TEM), in
combination with electron energy loss spectroscopy can directly quantify surface structures in dry,
humid, or aqueous conditions. Because these measurements are spatially resolved and have near-
molecular-scale resolution, they can map out the variety of reactive surface sites on oxide surfaces
allowing the abundance of a certain type of surface site to be linked to observable macroscopic
reactivities. A well-studied example of this phenomenon is the uptake and release of O» by ceria
(Ce0.) nanoparticles that are widely used in catalysis and other applications. Combined TEM and
modeling studies for CeO: have shown that the energetics of O uptake/release is controlled by (/)
specific facets (crystallographic orientation), (2) oxygen site vacancies produced during Ce**/Ce**
redox reaction, and (3) surface hydration (Figure 3, from Sayle et al.>’, and Seal et al.?). Because
surface defects often produce high energy reactive sites, the emerging research field of defect

engineering for nanomaterials is critically tied to these new high-resolution measurements.
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Figure 3. Surface structures of ceria (CeO-) nanoparticles. (a) Full atom level model of CeO»
nanoparticle; (b) Schematic of CeO, nanoparticle showing crystallographic surfaces; (¢) Enlarged view of
the CeO» (111) surface showing the presence of surface steps and corners; (d) Perfect (111) surface of
CeO; crystal; (e) Nanostructured (110) surface; (f ) Perfect (110) surface; (g) Nanostructured (100)
surface; (h) perfect (100) surface. Ce = white, O = red; (i) Visualization of catalytic activity of a CeO,
nanoparticle surface, where oxygen atoms are colored by their lability—the energetic cost of their
removal from the surface. Red-white-blue gradient scale, where red corresponds to labile oxygen
(energetically easy to extract) and blue corresponds to oxygen ions that are difficult to extract. The yellow
spheres are Ce®" species; (j) Scanning tunneling microscopy image of CeO; surface; (k) corresponding
structural model. Adapted with permission from Seal et al.?

Inevitably, the observed heterogeneities of the surface structures discussed above lead to
variability in surface properties, such as interfacial potentials, acidities of surface groups (pK.
values),3!3? dissolution rates, ! surface speciation, ion jamming with observed hysteresis in surface
acid-base chemistry,**-** and heterogeneous nucleation patterns across a single surface.*-¢ Further
complicating the situation is the recognition that the surfaces of some materials, e.g., SiO», can
have localized hydrophilic and hydrophobic regions®*-*® that have been proposed to produce
different surface acidity constants®® in concert with changes in hydrogen bonding effects on the

distribution of silanol site acidities.*°
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Capturing the acidity of surface groups is of specific interest to SCM and RTM development

because site charge influences surface reactivity and may vary greatly on the same surface.*!"*3 A

recent significant and surprising finding by Wagner et al.*' who combined non-contact AFM

measurements and DFT modeling indicates that surface hydroxyl groups at an In,O3 (111) surface

have pK, values varying several orders of magnitude, based on the H-bond strength measurements

at individual surface sites (Figure 4). Multiple distinct pK, values have also been observed for

silica in both theory and experiment under aqueous conditions.*!3*40 Therefore, the relative

abundance of different sites varies significantly, which we propose should be represented as a

probability curve in continuum models.
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Figure 4. Probing individual hydroxyls on In,Oj3 surface with an Atomic Force Microscopy tip. (a)
Experimental short-range force—distance curves for the OH groups; (b) Calculated short-range force—
distance curves for the OH groups. Adapted with permission from Wagner et al.*!
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Although imaging surface structures, localized surface potentials, local pK, values, and
particle—particle interactions are paramount to understanding these systems, it is equally crucial to
capture time-dependent fluctuations referred to as surface dynamics. Most environmental
interfaces are intrinsically dynamic and sensitive to changes in pH and the presence of ions as they
consist of amphoteric sites that become charged and interact, either in a specific or non-specific
manner. Generally, models consider that a given solid will exhibit a trend in affinity towards ions

based on its composition. Yet, recent experimental work for the planar**+

and nanopore silica—
water interfaces* reveals that such trends in ion affinity can be significantly altered as the pH is
changed. One hypothesis that can qualitatively explain a change in relative ion affinity is that the
ions can interact with at least two distinct sites on the silica surface, one charged and one neutral,
and as the relative ratio of charged to neutral sites increases with pH so does the affinity for ions
in solution.* Current work aims to investigate whether revising SCMs to include two-site binding
of cations can capture such pH-dependent trends in ion affinities. Furthermore, changes in pH, ion

concentrations, and solid chemistries might reveal that a probabilistic approach capturing

distributions of affinities, rather than two affinity constants, can better predict such behavior.

Real-world solid—water interfaces must also contend with dynamic chemical and geometric
complexities: the composition of the aqueous phase at the solid—water interface is multi-
component where competitive adsorption plays an important role in Stern and diffuse layer
structures.*” Continuum-scale models must capture the dynamics and coupled behavior between
adsorbates, water, and surface site structures. Furthermore, nanoconfinement of surfaces often
leads to anomalous chemistry where interfacial reactivity is dictated by the spatial dimension of
the reactive solid—water interface.*>*%* In particular, in nanopores, the polarization force between

ions and the solid surface at an interface determines ion propensity toward nanoconfined spaces.*’
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Capturing interfacial reactivity is further complicated by the fact that the speciation of
adsorbed ions, and likely of surface sites,’® can vary with ionic strength and surface coverage. For
instance, several classic linear and nonlinear optical measurements as well as atomistic simulations
have shown that surfaces functionalized with carboxylic acids remain neutral (uncharged) even at
highly basic pH values.’!->* The underlying mechanism is one in which Coulomb repulsion within
the surface plane is largely reduced when the carboxylate groups pick up a proton from the aqueous
solution to form carboxylic acid dimers, similar to those found in glacial acidic acid (an insulating
liquid). A similar phenomenon might be occurring for bare oxides such as silica where a bimodal
distribution of acidities has been observed for silanol sites above the point-of-zero-charge.’!-3
Likewise, Sr** as well as some lanthanide cations (nominally 3+ in solution) exist as singly-
charged species when they are absorbed to certain surfaces.®> In this case, the underlying
mechanism likely involves replacing a water molecule from the ion’s hydration sphere with a
counter-ion, such as chloride or surface deprotonation to create an OH" group.’®>7 Sr>* then absorbs
as the [SrCl]" ion pair, which is subject to reduced lateral Coulomb repulsion. SCMs should take
this effect into account, but currently do not. This is a problem of exponential sensitivity, as the
Boltzmann term governing the surface coverage is raised to the power of the charge of the adsorbed
ion. If this charge changes from 3 to 2 or from 2 to 1, the exponential sensitivity indicates a much
different surface coverage relative to what is expected from bulk thermodynamics. We note that
such ion-pairing effects are routinely observed in brine solutions (NaCl > 1 M),>® but they occur
at surfaces when electrolyte concentrations are orders of magnitude smaller compared to brines,
for example at the fused silica/water interface Sr**—ClI- ion pairing occurs once NaCl concentration

reaches only 10 mM. The surface-promoted ion-pairing processes need to be incorporated into
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new descriptions of Stern layer for ion speciation. When RTMs solve for chemical speciation, they

do not incorporate surface-promoted shifts in speciation as described here.

The presence of salts (electrolytes) can influence solid—water interactions, including surface
complexation, dissolution, and precipitation reactions. Since the work of Dove® and coworkers
on silica dissolution, researchers have attempted to further unravel the details of salt effects on
solid—water interfaces. For example, Icenhower and Dove®® found that dissolution rates can
increase by over 20 times in 0.05 M NaCl solution compared to de-ionized water. Notably, the
same experiments show that the activation energy (74.5 + 1.4 kJ mol™!) in the range of 25 to 250°C
does not change within experimental error with this increase in rate constant. This suggests that
the Arrhenius pre-exponential factor (A) related to the activation entropy of the reaction is
changing rather than the activation enthalpy. Kubicki et al.%! hypothesized, based on DFT-MD
simulations, that the dissolution entropy is made more favorable when salts are present at the
interface due to changing H-bonding that favors intra-surface H-bonds and thus H*-transfer and
hydrolysis of Si—O-Si linkages leading to dissolution. This observation of H-bonding changes is
consistent with vVSFG experiments by Rehl et al.,'® revealing the decrease in ordered water in the
Stern layer at the silica surface upon salt addition. Likewise, Dewan et al.®? showed that salt
impacts structured interfacial water most significantly near neutral pH where the effect of salt on
accelerating silica dissociation is greatest.?!:%2> Other simulations and time-resolved vSFG (TR-

vSFG) spectroscopy have found similar behavior with addition of salts.”®"’

In addition to dissolution, the salt concentrations and types can affect the nucleation of metal
(hydr)oxides and their subsequent growth and Ostwald ripening. For example, Li and Jun
examined the effect of salinity on CaCOj3 nucleation on quartz using grazing incidence small angle

X-ray scattering.®®> When salinity increased from 0.15 to 0.85 M NaCl, effective interfacial
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energies dropped from 47.1 mJ/m? to 36.4 mJ/m?, thus decreasing the thermodynamic penalty of
nucleation. However, the kinetic factor for nucleation (Jy)—related to ion diffusion and nuclei
surface properties—reduced ~13 times. Lower Jy values resulted from slower CaCO3 monomers
impingement rate caused by decreased electrostatic attraction at high salinity, which is also
consistent with charge overscreening at high salinity. Based on these thermodynamic and kinetic
contributions to the CaCO; nucleation, the net nucleation rates could increase an order of
magnitude at higher salinities. Furthermore, as shown in Figure 5, the nucleation and growth of
iron (hydr)oxide nanoparticles are also controlled by many aqueous solution variables, such as the
salinity,® types of salt ions, co-existing oxyanions,® and natural organic matter.%® Even with this
known complexity, RTMs typically consider solid nucleation process to be instantaneous or start
as soon as solution reaches the saturation index for a given phase, and do not count the nucleation
step as a discrete part of the process. This oversimplification of nucleation processes can result in

discrepancies between experimental findings and RTM results.®’
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Figure 5. In situ measurements of heterogeneous nucleation on quartz substrates in a solution
containing 10 M Fe(NOs); at pH 3.6 £ 0.2 by grazing incidence small angle X-ray scattering (GISAXS),
showing in-plane (gxy) 1D scattering. The shaded boxes indicate the particle size evolution with reaction
time. Adapted with permission from Jun et al. (2016)*° (a) With 1 mM NaNO; ionic strength (IS),
nucleation is dominant. (b) With 100 mM NaNOs IS, particles grew from ~2-5.5 nm, with the formation
of secondary ~1 nm particles. Detailed discussion about images (a) and (b) is available in Ref. ** (c) With
10 mM NaNOs, both nucleation and growth were observed. (d) With 10 mM NaCl, although the particle
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size is comparable to the nitrate system, the total particle volume does not increase, indicating Ostwald
ripening. Detailed discussion about images (c) and (d) can be found in Ref.%® () In the presence of natural
organic matter (NOM), particles aggregate, as indicated by power law scattering at low ¢. (f) In the presence
of both arsenate and NOM, large particles are also observed. Further discussion about images (e) and (f) is
available in Ref.%>. (g-h) The influence of substrate chemistry is evaluated by coating the surface with
hydrophobic polyaspartate. More information about images (g) and (h) can be found in Ref.®

As shown above, the chemical complexity of even simple oxide—water interfaces is daunting
from a molecular perspective. These surfaces become even more complicated in the presence of
organic and microbial communities. Grassian and co-workers have shown that dissolved organic
matter can coat oxide surfaces at low and circumneutral pH. %7 Moreover, surface adsorption
from complex aqueous phase systems containing biomolecules, humic and fulvic substances show
that larger complex macromolecules adsorb onto mineral surfaces in a manner that depends on
solution pH and ionic strength. Similarly, biological components such as proteins adhere to oxide
surfaces to form an “eco-corona””* and the protein-oxide surface interactions depend on pH, the
nature of the surface and neighboring oxyanions.®®’! Environmental DNA (eDNA) can attach to
oxide particle surfaces but little is known about these interactions and how they impact the

underlying surface structure and reactivity as well as the stability of adsorbed eDNA.”

These cumulative findings further support two notions: (/) interfacial water structure is a key
player in interfacial reactivity and (2) salt ions are not spectator species at solid—water interfaces.
We have shown how surfaces are heterogeneous on all scales of interest, and how interactions with
complex molecular species that are typically present in the environment make these systems hard
to study. Additionally, in low humidity environments, such as Earth’s atmosphere, the surface
heterogeneity of single particles can control water adsorption on surfaces as a function of relative
humidity.”-”® Specifically, edge and defect sites adsorb water preferentially from the gas phase as
a function of increasing relative humidity prior to the adsorption of water on planar surfaces. The

spatially resolved studies, including infrared nanospectroscopy,’® show how surfaces are

20



396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

heterogeneous and water does not uniformly coat the surface, meaning that only select surface

sites can participate in reactions.

A challenge, as well as an opportunity, moving forward is to utilize the state-of-the-art tools
to examine more realistic, chemically/structurally heterogeneous surfaces in complex
environments that contain ions, dissolved organic matter and biological components to understand
main molecular controls on surface reactivities. We can then test the hypothesis proposed here that
describing main reactivity parameters with probability curves leads to more accurate continuum-
scale models. Le Traon et al.” highlights that reaction kinetics in porous systems deviates from
the batch experiments by orders of magnitude, demanding that experiments and simulations more
realistically capture larger scale effects. This possibility raises several thought-provoking
questions such as: Do aqueous and solid phase complexities produce a heterogeneous surface with
different domains? Are the surfaces “patchy” with some hydrophilic and hydrophobic domains,
and some regions enriched with adsorbed species (or covered with organic matter)? Can these
complex surfaces be described by probabilistic models to capture all types of reactive surface sites
for all surface domains? These are difficult yet important questions to resolve to understand the

full chemical complexity of solid—water interfaces in the environment.

In the following Section 3 we will discuss examples where interfacial processes were
successfully incorporated into continuum-scale models, as well as those cases where such models
cannot be constructed without a complete re-working of the mathematical and statistical

approaches on which they are built.

3. Rectifying the Molecular View with Ensemble Models
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In this section we will show how mean-field models work in some instances but not in others.
To take the heterogeneity of reactive sites during adsorption into account, a commonly used
equilibrium adsorption model at a solid—water interface is the Freundlich isotherm, which
theoretically accounts for heterogeneous surface sites. Yet only one affinity constant describing
bonding strength is derived from adsorption data and this averages the enthalpy of adsorption 4Huds
for all sites. If the range of 4H.q4s is narrow, using one constant value would not be a major issue;
however, inverse adsorption chromatography,®® and operando flow microcalorimetry have
demonstrated that the range of 4H.qs values for the same sorbent—sorbate (surface—ion) pair can
be up to 200 kJ mol!! Thus, one can infer that the variation in 4H,4s is not a simple matter of
adsorption reactions at the same type of sites, which is less favorable with increasing sorbate
coverage (Figure 6). Instead, the AH.q4s variation reflects different types of surface sites with
distinct bonding mechanisms, consistent with the notions of local spatial heterogeneity and
stochastic distribution of surface reactivities discussed earlier. Many adsorption isotherm studies
report better fits to the data at the mid-range of solution concentrations and are less accurate at the
low- and high-concentration tails,3! which is indicative that the values at the higher and lower tails
of the probability curve are ignored. Because surface defects likely have the most negative AH s
values and lowest surface site densities (representing tail ends of the site probability curve), they
have not been modeled accurately. Considering that in many real-world scenarios, the sorbates are
present at trace levels, the applicability of models based on ideal surfaces at higher aqueous
concentrations that are typically studied in a laboratory setting becomes questionable. There are
also critical needs for thermodynamic data and computational chemistry models that can address
the lower concentrations and reactions at surface defects®? and in nanopores*®* to obtain

predictable thermodynamics and kinetics under realistic environmental conditions.
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Figure 6. Differential molar enthalpies (0Ha.qs) measured by operando flow microcalorimetry for the
sorption of chromate on ferrihydrite, showing that the values become less negative (less favorable) with
increasing surface loading. Adapted with permission from Kabengi et al. ®*

One promising example is the determination of Fe-oxy(hydr)oxide reactive sites that has been
translated into a SCM capable of unifying adsorption equilibrium constants for the important
contaminant chromate.** Bompoti er al.3* utilized the MUSE algorithm and found that in SCMs it
was easiest to keep the reactive site densities fixed for each solid and vary the solid concentration
and capacitance until the model agreed with experimental data. High resolution data, for example
using STEM HAADF helps determine the crystal face contributions for different surface sites, and

the respective site densities characteristic for each surface that can be incorporated in SCMs.

When considering larger scales in RTMs, the dynamic evolution of solid—water interfaces can
significantly alter the fate and transport of ions, which is not fully captured in current models.
Adsorption of chemical species and temporal evolution of solid phases due to dissolution-
precipitation processes changes reactive site densities and types. Until recently, RTM could not
include solid nucleation due to the lack of experimental information about nucleation. Instead, it
captures precipitation as a group term by assuming that nucleation is instantaneous, and only
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includes the solid’s growth rate. RTMs also do not capture pore-size effects on solubility and
nucleation kinetics. Recent advances have been made to incorporate experimentally obtained
kinetic and thermodynamic information (e.g., nucleation rates, activation energies, and interfacial
energies)®3687 of calcium carbonate nucleation into an RTM code CrunchTope. The incorporation
of nanoscale interfacial reactions into the RTM improved the model accuracy of both the evolution
of the Ca(OH),-depleted zone and the surface dissolution zone at supercritical CO>—brine—cement
interfaces (Figure 7).°” Experimentally-obtained nucleation thermodynamic and kinetic
information are important in scaling up nanoscale observations of chemical reactions to larger
scale predictions. Similarly, this improved RTM framework can be utilized to predict managed
aquifer recharge (MAR) where reclaimed water is used to replenish underground reservoirs. The
reclaimed water for MAR is rich in dissolved oxygen, which can alter the dissolution of minerals
with toxic components such as arsenic-bearing iron sulfides and lead to subsequent iron
(hydr)oxide nucleation and toxic species adsorption onto the newly formed iron (hydr)oxides.38!
Understanding the nucleation and dynamic interfacial chemical processes and incorporating them

into RTMs will significantly improve the predictions of pollutant mobility, benefiting safer aquifer

management to address water shortage problems.
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Figure 7. Incorporation of nanoscale interfacial reaction into a reactive transport model. (a). [llustration of
direction of CO; attack into the cement matrix. The cement samples were reacted in a CO,-saturated brine
(0.5 M NaCl) with a solid-to-liquid volumetric ratio of 1/16. The solution was equilibrated at 95°C under
100 £ 5 bar of CO,. A total alteration thickness of 1220 = 90 um was observed, including a 960 um CH
(Ca(OH),, portlandite)-depleted zone, a 100 um carbonated layer, and a 170 um surface region. Interfaces
between zones are drawn to scale. (b, ¢). Modeling results with and without sufficient consideration of
nanoscale mechanisms in comparison with experimental data. (b) Results with no consideration of
nanoscale mechanisms. (c¢) Results with consideration of incomplete filling of pore space at nanoscale,
nucleation kinetics, an enhanced solubility in confined pores. By incorporating nanoscale evolution of
interfacial chemistry into RTM can generate a better match with experimental observations. Adapted with
permission from American Chemical Society from Ref.®’

4. The Way Forward: Towards Predicting and Controlling Interfacial

Behavior

A logical next step for improving the accuracy of continuum-scale models is to increase the
number of discrete parameters used in these models (e.g., use two pK, values instead of one). Such
approaches have already been explored and do indeed show increased accuracy.””> However,
should the splitting of single variables into sets of discrete values (multiple-parameter approach)
be the way forward? We argue that it should not be, and a paradigm shift is urgently needed. The
fundamental question remains—can we keep applying homogeneous chemistry concepts to
heterogeneous systems? The probabilistic nature of chemical phenomena in homogeneous systems
has been addressed by statistical mechanics—e.g., the Boltzmann distribution describes the

physical nature of molecules in populations having different states, the likelihood of which
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changes based on the conditions imposed on these populations. Because gaseous or aqueous
systems are well-mixed, the Boltzmann distribution is usually Gaussian. When we consider solid
surfaces involved in interfacial reactions, a “well-mixed” state is fundamentally impossible for any
realistic solid surface. Current molecular models and spatially resolved measurements can capture
surface heterogeneity and characterize the localized reactive domains on surfaces at molecular-,
nano-, and other scales discussed in Section 2 of this Perspective. The problem is that the
continuum-scale models, such as SCM and RTMs, are not designed to incorporate spatially
differing reactivities of surfaces. We propose that probability distributions of surface descriptors
instead of average constant values should be used to formalize interfacial properties in continuum-
scale models. Therefore, using probabilities to describe surface properties is a more promising
approach in comparison to the stepwise increase in the number of variable values used in multi-
parameter sets. Including probability distributions for the variables of interest could result in
efficient continuum-scale models because localized effects will be incorporated within non-
localized parameterization schemes. Hence, this approach has the potential to address surface
heterogeneity at different scales. If successful, this new paradigm will lead to scale-independent,
universal models that would allow for the prediction of interfacial reactivities in complex chemical

systems for the first time, a dream come true for scientists and engineers in many research fields.

To begin, we need to develop new mathematical frameworks and computational approaches
to describe chemical parameters and properties as probability distributions, instead of ensemble
average values, to reflect real-world complexity and to generate scaled-up SCMs and RTMs. We
propose that accounting for chemical and structural complexity in such new generation SCM and
RTM codes requires re-writing them using a fundamentally new approach. As shown in our

examples above, reaction rates, equilibrium constants, and surface acidity constants vary across a
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surface and correlate to distinct structural characteristics (e.g., oxygen vacancies, crystallographic
orientation, local structure of amorphous phases, sorbates, and “spectator” ions). We anticipate
that normal, bell-shape curves could sufficiently capture the relevant parameter space in some
cases where stochastic processes dominate, while in other cases where surface reactivity is a sum
of non-random phenomena, they will be best described by more complex types of probability
curves. We advocate for applied mathematicians and statisticians to become more involved in
interfacial chemistry research to develop rigorous descriptions of interfacial processes for specific
use in RTM and SCM codes. The inspiration for such models can be drawn from molecular-scale
probabilistic algorithms, including Metropolis Monte Carlo (statistical sampling of energetic
states)”® and Kinetic Monte Carlo (sampling of reaction rates).”* These models are currently
limited to molecular-scales. From the experimental side, approaches that can quantify the
spatiotemporal variation of heterogeneous rates, adsorption free energies, as well as interfacial
capacitance, relative permittivity in the Stern layer, and distribution of electric fields are needed
to inform these models.

In the geoscience community, Liittge and co-authors proposed using stochastic models to

capture mineral dissolution processes.”>8

This conceptual approach was motivated by high-
resolution in situ measurements on carbonate and silicate surfaces in aqueous solutions. These
measurements clearly indicate site-dependency and time-dependency of the dissolution rates,
where the probability distributions evolve in time (Figure 8). For calcite surfaces in Figure 8, we
see that the initial surface topography has a measurable impact on the mean rate values (peaks in

the distribution curves) and on the width of the distributions. In fact, a dissolution rate is more

accurately represented by a term “rate spectra,” given the variability and gradual changes across a
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given crystalline surface.! Importantly, Liittge et al. developed an initial framework for treating

dissolution phenomena using a probabilistic approach with the dissolution probability defined as:*®

Pi=Tl= P (D)

Here, P; is the dissolution probability for a molecule with i bonds to the surface written as the
product of hydrolysis probabilities over all bonds. Furthermore the logarithm of probability for an

individual surface unit to be dissolved is proportional to the sum of activation energies for bond

hydrolysis AE;;:*

i
Yj=iAEj

lnPi = — T

)

where k is the Boltzmann constant, and 7 is temperature. We must note that the variability in the
measured dissolution rates shown in Figure 8 is 2 to 3-fold, because these measurements were
conducted on the same crystallographic surface. For numerous solids, the difference in dissolution
rates for different crystallographic terminations may reach orders of magnitude. Therefore, for
realistic solids the probability weighted approach is crucial, because averaging and ignoring this

variability may result in model predictions that are “off” by orders of magnitude.

Guren et al.”? illustrate how to derive a set of dissolution rate probabilities from Kinetic
Monte Carlo simulations and then how to use them as input into the macroscopic stochastic model.
The result of this rigorous procedure is an accurate representation of mineral dissolution that takes
place at different surfaces and surface sites of the same material. Regarding RTM, an approach for
parameterizing heterogeneity in surface reactivity has been recently demonstrated using
nanotopographic images to generate a distribution of surface slope factors that act as a correction
factor for the RTM-calculated rates. This approach led to much better agreement between the
simulated dissolution rate maps and rate spectra than the standard RTM.!%:191 While these
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567  examples are extremely promising and represent an advance in the field of reaction modeling, the
568  results are still limited to simple systems. A major break-through is needed for translating chemical

569  knowledge from molecular-scale into continuum-scale models.

570 In this Perspective we propose that an approach that captures probability distributions must
571  be applied in SCMs and RTMs to encompass all relevant constants and surface properties,
572  including dissolution rates and nucleation and growth rates, when considering chemistry of solid—

573  water interfaces (Figure 9).
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576  Figure 8. Probability distributions of calcite dissolution rates measured in laboratory dissolution
577  experiments. (a) Dissolution rate spectra for “striated” surface; and (b) Dissolution rate spectra for “hill-
578  and-valley” surface. Adapted with permission from Trindade Pedrosa et al.”’
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Developing new methods for incorporating probability distributions into SCM and RTM
codes for the numerous reactive surfaces present in the environment will be possible by utilizing
new computational approaches. A longstanding grand challenge in computational science has been
the seamless transfer of information across scales from molecular to field-scales.!%? In practice,
this ideal has not been achieved because funding for multi-scale modeling efforts have not been
the norm and computational limits have not allowed significant overlap in spatiotemporal scales
among the various approaches. The latter obstacle can be overcome with the advent of exascale
computing and the development of codes that incorporate machine learning (ML)-based
interatomic potentials or ML-IAPs.!% Connecting atomistic and pore scale simulations through

advanced computational power can be achieved by systematic development of interatomic

Figure 9. Schematic representation of various surface structures on a single crystal
surface that have reactivities best represented by a distribution of equilibrium constants
(K) and rection rate constants (k). These dynamic surface reactions include solvation,
surface complexation, and attachment-detachment processes due to dissolution or
precipitation. Chemistry of solid-water interfaces is crucial for understanding
environmental fate and transport, and for applications such as water treatment,
conventional and unconventional energy, and agriculture (all of which are represented
with symbols in the upper portion of the figure).
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potentials via machine-learning. Exascale computing makes simulations of 107 atoms over
durations of microseconds possible, and the ML techniques allow for the development of accurate,
reactive IAPs based on experimental data and quantum results. Thus, it would be possible to
perform atomistic simulations that overlap with the mesoscale and can more realistically represent
solid—water interfaces. Exascale computers will allow for accurate atomistic simulations of
reactions and flow on scales that overlap the micron-scale elemental volumes of lattice Boltzmann
simulations.!* Coarse-grained mesoscale simulations (i.e., mesoscale) allow for larger and longer
spatiotemporal scales that overlap finite element and continuum methods. This “bottom-up”
approach can provide parameters that are useful in larger scale models such as SCM (e.g., Fitts et
al.'%). Additionally, ML can be used to identify feature importance, value clustering, and detecting

106 a]l of which can aid in the statistical descriptions of interfacial reactivities.

anomalous values,
Smaller scale simulations can be used to test assumptions and approximations made for larger
scale simulations while simultaneously providing chemical mechanism information that could be
incorporated into SCMs or RTMs. By incorporating probability distributions and integrating
across scales with experiments and simulations, it will become possible to derive new modeling
paradigms that are consistent with field observations and incorporate molecular-level information.
This approach will enable bridging of laboratory experiments with modeling efforts to predict
chemical transformation in complex industrial systems and natural environments, including
critical settings such as nuclear waste sites. Similar approaches can be used for predicting catalyst
performance and to design fit-for-purpose materials for energy and the environment. With

exponentially rising computational power, the advancement in machine learning and artificial

intelligence tools and the increasing spatiotemporal resolution of laboratory measurements, this
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perspective provides a conceptual framework that could enable sustainable solutions to global

problems including clean water, renewable energy, and climate change.
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