

Bridging Molecular-Scale Interfacial Science with Continuum-Scale Models

Anastasia G. Ilgen¹, Eric Borguet², Franz M. Geiger³, Julianne M. Gibbs⁴, Vicki H. Grassian⁵, Young-Shin Jun⁶, Nadine Kabengi⁷, James D. Kubicki⁸

1. Geochemistry Department, Sandia National Laboratories, USA
2. Department of Chemistry, Temple University, USA
3. Department of Chemistry, Northwestern University, USA
4. Department of Chemistry, University of Alberta, Canada
5. Department of Chemistry & Biochemistry, University of California, San Diego, USA
6. Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, USA
7. Department of Geosciences, Georgia State University, USA
8. Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, USA

Corresponding author: agilgen@sandia.gov

32 **Abstract:** Solid–water interfaces are crucial for clean water, conventional and renewable energy,
33 and effective nuclear waste management. However, reflecting the complexity of reactive interfaces
34 in continuum-scale models is a challenge, leading to oversimplified representations that often fail
35 to predict real-world behavior. This is because these models use fixed parameters derived by
36 averaging across a wide physicochemical range observed at the molecular scale. Recent studies
37 have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction
38 mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge
39 and predictive continuum-scale models, we propose to represent surface properties with
40 probability distributions rather than with discrete constant values derived by averaging across a
41 heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially
42 rising computational power. By incorporating our molecular-scale understanding of solid–water
43 interfaces into continuum-scale models we can pave the way for next generation critical
44 technologies and novel environmental solutions.

45 1. Introduction

46 Solid–water interfaces play critical roles in engineered systems^{1–3} and natural environments.⁴

47 Communication among scientists and engineers working at molecular, microscopic, field, and

48 global scales should be augmented *via* integrated collaborations that seek to add chemical insights

49 into large-scale problems where current assumptions and approximations lead to large

50 uncertainties in predictive models.⁵ We lay out a perspective about how to establish such a

51 collaboration that infuses molecular details into larger scale models, including often-used surface

52 complexation (SCM) and reactive transport models (RTM). We propose the development of a

53 new approach for incorporating the vast database of molecular knowledge into continuum-scale

54 models by shifting the model parameterization paradigm. We suggest a conceptual shift in how

55 surface properties are represented from the current state of using discrete values to probability

56 distributions, allowing to reflect real heterogeneities of surfaces. Surface site acidities, charge

57 densities, solvation energies, reaction rates, and solubility constants should be described as

58 probability curves to reflect the interfacial complexity.

59 Scientists who develop detailed molecular descriptions of solid–water interfaces face a four-

60 fold challenge: (1) interfacial chemistry evolves in complex ways as it is dynamically coupled to

61 the compositions of both the solid and the aqueous phases yet is distinct from either; (2) the number

62 of atoms present at the surface is dwarfed by the number of atoms that compose the bulk phases,

63 thus complicating the deconvolution of surface analytical signals from those of the bulk; (3) real-

64 world interfaces are inherently heterogeneous down to the micro-, nano-, and molecular-scales,

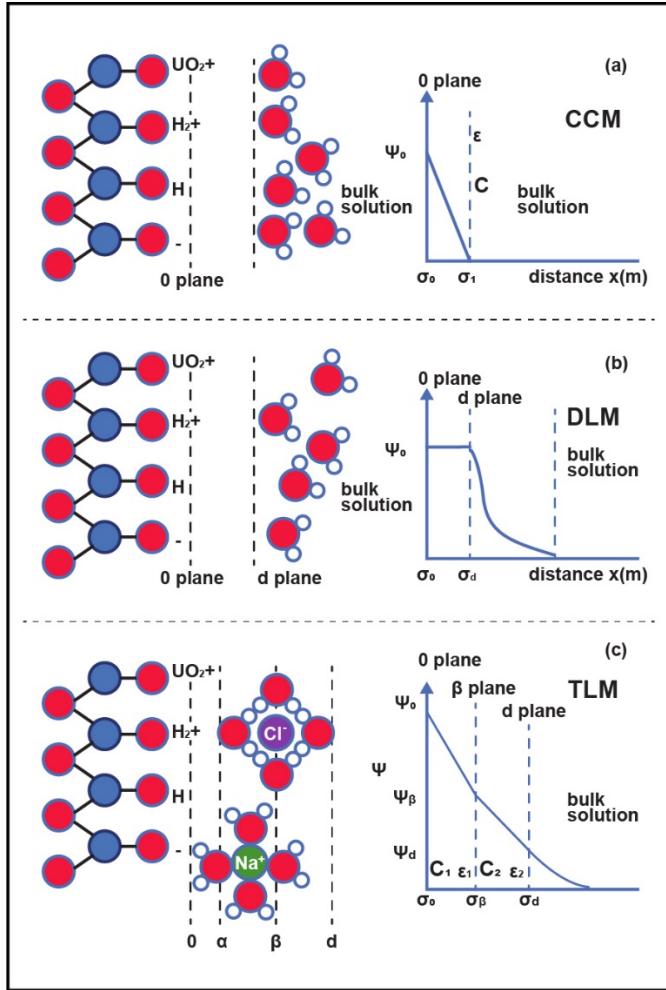
65 making it difficult to build continuum-scale predictive models that capture this complexity and

66 reconcile distinct surface structures with observed net reactivities; and (4) environmental processes

67 span femtosecond to millennia timescales, not always accessible for experimental, analytical, and

68 computational inquiries. Despite these challenges, previously obscure details of surface reactions
69 are becoming increasingly understood. However, the current numerical tools available for
70 translating interfacial processes into continuum-scale models that describe mm- to km-scale
71 systems are lacking mathematical frameworks for incorporating the wealth of molecular details
72 that have been discovered in the last few decades.

73 Because of these limitations, scientists who construct SCMs and RTMs often use “average”
74 values to describe the structures and reactivities of solid–water interfaces to reflect relevant
75 molecular information. SCMs are developed to specifically describe ion adsorption behaviors at
76 solid–water interfaces to match either adsorption isotherms or pH-dependent adsorption data (*i.e.*,
77 adsorption edges). The basic schematic for three types of commonly used SCMs is shown in
78 **Figure 1** (reproduced from Ref ⁶). These SCMs are based on various continuum-scale models of
79 interfacial structure such as: (1) the constant capacitance model (CCM), (2) the diffuse layer model
80 (DLM), and (3) the triple layer model (TLM). Each of these SCMs assumes that the total free
81 energy of ion adsorption is a sum of chemical adsorption energy (ΔG_{chem}) and Coulomb static
82 energy (ΔG_{coul}), where ΔG_{coul} is directly proportional to the surface potential (ψ) and the charge of
83 the adsorbing ion.⁶ In the sections below we illustrate that neither ΔG_{chem} nor ΔG_{coul} can be
84 considered constants in any given interfacial system because of the variability of surface structures
85 that define local surface charge or the reactivity of isolated surface groups, which should lead to
86 variability in the surface potential across the same surface caused by intrinsic surface
87 heterogeneity. Therefore, to reflect the true complexity, ΔG_{chem} and ΔG_{coul} would be best
88 represented by a distribution of values, rather than a fixed value.



89

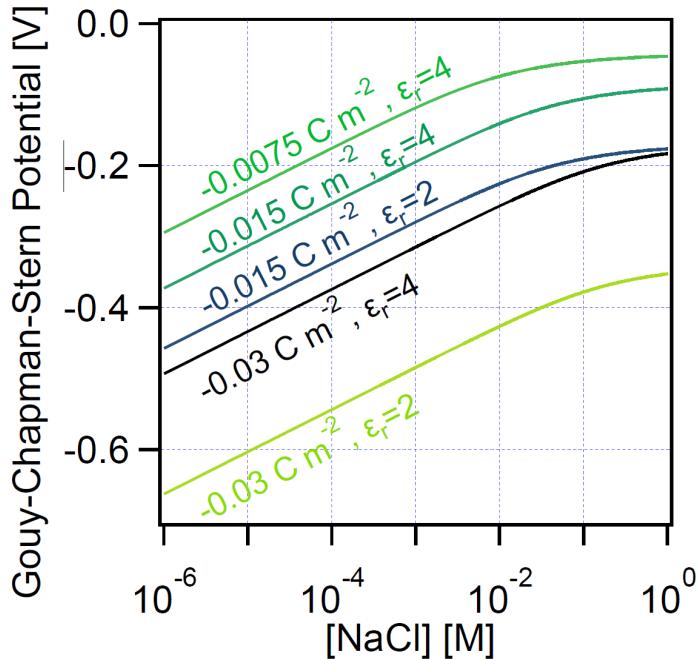
90 **Figure 1.** Surface complexation modeling based on (a) Constant capacitance model (CCM);
91 (b) Diffuse layer model (DLM); and (c) Triple layer model (TLM). A θ -plane in these models limits the solid's
92 surface, a β -plane terminates the plane where counter-ions are tightly bound at charged surfaces (Stern
93 layer) and a d -plane cuts through the center of the diffuse layer near surfaces. C , including C_1 and C_2 , denote
94 individual layer capacitance values; ψ is the surface potential corresponding to one of the planes, and σ ,
95 including σ_β and σ_d , is charge of the corresponding layers, where σ_0 is charge of the θ -plane (surface charge,
96 or surface charge density); ϵ is the dielectric constant or permittivity of the media. Figure adapted with
97 permission from Ref.⁶

98

99 To illustrate the sensitivity of a common SCM to input parameters, we calculated the Gouy-
100 Chapman Stern (GCS) potential as a function of Stern layer thickness, d , which varies due to spatial
101 heterogeneity of a surface (**Figure 2**). A two-fold change in d would result in a factor of two
102 difference in the potential drop across the Stern layer as $\Delta\Phi_{\text{Stern}} = \sigma/C$, where σ is the surface
103 charge density and C is the capacitance equal to $\epsilon_r \epsilon_0 / d$ (ϵ_r and ϵ_0 are the permittivity of the solution

104 and of the vacuum, respectively). The resulting change in the electric field in the Stern layer (-
105 $d\Phi/dz$) would then vary accordingly. Opening the expression for the Stern layer potential drop to
106 allow for spatial variations in all three parameters (σ , ϵ_r , and d) will result in variations of the
107 potential across the electric double layer (EDL). It is reasonable to expect that each of these
108 parameters varies by up to a factor of two (for the surface charge density and Stern layer thickness)
109 and by ten (for the relative permittivity). A sensitivity analysis of the ionic strength dependent
110 Gouy-Chapman Stern potential in terms of physically feasible variations in charge density and
111 Stern layer relative permittivity shows that variations of several hundred mV occur, owing, for
112 instance, to doubling the charge density and halving the Stern layer permittivity (**Figure 2**). In
113 contrast, doubling both parameters results in only minor potential differences (**Figure 2**). We
114 conclude that expected spatiotemporal variations in the surface charge density and the Stern layer
115 relative permittivity will result in spatiotemporal variations in the surface potential, and the
116 associated electric field, in the range up to several hundred mV. This simple example is directly
117 applicable to other important parameters in mean field or surface complexation models, including
118 the Stern layer thickness, as alluded to above, and further justifies the proposed probabilistic
119 approach to continuum-scale modeling.

120



121
122
123
124
125
126
127

Figure 2. Calculated variability in the ionic strength dependent Gouy-Chapman Stern (GCS) potential due to variations in charge density and Stern layer relative permittivity commonly observed across surfaces. The resulting Gouy-Chapman Stern potential variations reach several hundred mV when doubling the charge density and halving the Stern layer permittivity. In contrast, doubling both parameters results in only minor potential differences.

128 Furthermore, conventional SCMs describe surface properties and reactivities with a single
129 surface acidity constant and surface complexation constant for a given surface and adsorbate (the
130 more advanced SCMs may go as far as to incorporate two- or three-site models with distinct acidity
131 and/or complexation constants). However, new experiments consistently show that nominally
132 similar surface sites (*e.g.*, Si-OH, see Bañuelos et al.)⁷ have vastly different reactivities, which are
133 defined by multiple factors: surface structure, hydrogen bonding in adjacent solution, the surface
134 neighbor species, and aqueous composition. Because continuum-scale simulations rely on
135 empirically fit coefficients to approximate parameter values, they often do not capture
136 experimentally measured outcomes. As we will show below, the mismatch in predicted *vs.*
137 experimentally determined parameters can span orders of magnitude.

138 The other types of continuum-scale reactive models, which are often utilized in important
139 applications such as nuclear waste storage, are reactive transport models (RTMs) that couple
140 transport equations with chemical reactions, including equilibrium constants and kinetic rate laws.
141 Similar to SCMs, equilibrium constants for reactions that are used in RTMs do not fully reflect the
142 reality of a solid–water interface, where isolated surface sites can have dramatically different
143 reactivities. Furthermore, to model the dissolution of solid phases in RTMs average rates or rate
144 constants are selected,^{8,9} whereas experimental evidence indicates that the *effective* dissolution rate
145 consists of contributions from specific surface sites, where the rates are vastly different.¹⁰ Because
146 surface structure is dynamic, rates may also vary with time,¹¹ with reaction Gibbs free energy,¹²
147 and with flow rate.¹³ Accordingly, reaction rates may vary several-fold for the same crystalline
148 solid, depending on the molecular, crystallographic, and topographic details of their surfaces that
149 change dynamically in time. Therefore, reaction rates are best described by distributions of
150 possible/probable values and not by a singular discrete number.

151 This Perspective argues that, in place of ensemble averaged constants as input parameters,
152 *probability distributions* are needed to formalize chemical phenomena at interfaces to reflect their
153 heterogeneous nature in SCMs, RTMs, and other continuum-scale models. Current state-of-the-art
154 modeling approaches apply homogeneous chemistry concepts to heterogeneous systems, limiting
155 their applicability and predictive power. A probabilistic approach that captures the stochastic
156 nature of surface sites offers a path forward to bridge detailed molecular-scale information with
157 the continuum-scale models of complex systems. We will show that using probability distributions
158 is appropriate for representing the “surface landscape”, (*i.e.*, the stoichiometry of surface sites,
159 surface charge distributions, and surface topologies), as well as equilibrium constant values and
160 reaction rates. This approach provides a new paradigm that we hypothesize will create a more

161 robust predictive power in continuum-scale models by capturing the wealth of molecular-scale
162 information that is increasingly available for interfacial systems. Using molecular-scale
163 information in continuum-scale simulations will advance our capability to model environmental
164 fate and transport, soil system evolution, and to elevate the design and optimization of
165 electrochemical and catalytic processes, desalination membranes, and carbon- and ion-selective
166 capture materials. Achieving this probabilistic approach requires not just advancements in the
167 capabilities of SCMs and RTMs, but also the continued efforts of experimentalists and
168 computational chemists to elucidate molecular details and reactivities of solid–water interfaces.

169 **2. Molecular details matter**

170 In this section we will illustrate that a surface is not one reactant but instead a combination of
171 different reactants that are distinct, interdependent, and changing. Recent scientific advances have
172 led to molecular descriptions of interfaces of specific solid–water systems that challenge
173 traditional mean-field models of charged surfaces (see Bañuelos et al. for comprehensive review).⁷
174 These studies highlight that molecular details matter as surfaces are heterogeneous at the
175 molecular-scale and cannot be conceptualized as a single “reactant” in interfacial chemistry
176 descriptions. The selected advances illustrated here have been facilitated by new capabilities in
177 scanning probe, synchrotron-based X-ray, and nonlinear optical techniques that reveal the different
178 detailed aspects of the interface under *in situ* conditions in real-time. Furthermore, computational
179 simulations using density functional theory (DFT) and *ab initio* and classical molecular dynamics
180 (MD) have been critical in uncovering reaction mechanisms at solid–water interfaces, helping to
181 interpret experimental observables and distinguish the reactivities of different surface sites. These
182 studies have shown that surface sites can have stark differences in their reactivities, such as acidity
183 and surface complexation reactions. Importantly, the surface site reactivity also depends on the

184 local environment, *i.e.*, the reactivity of the same surface site differs depending on the structure
185 and identity of its immediate neighbors.

186 In the last decade, nonlinear optical methods have greatly enhanced our ability to garner
187 molecular information on buried interfaces, *i.e.*, those surfaces under aqueous solutions. Phase-
188 sensitive measurements have yielded complex spectra generated at solid–water interfaces
189 resolving the orientation of the molecules that contribute to the measured response.^{14,15} Moreover,
190 theoretical frameworks used to interpret these measurements now separate the contributions from
191 different regions of the interfacial solution layers and assign them to molecules immediately at the
192 buried surface and those at a distance that are still structurally distinct from molecules in the bulk
193 aqueous phase (the diffuse layer).^{15,16} These methods and related approaches have uncovered the
194 details of hydrogen-bonding networks of water immediately adjacent to a surface (in the Stern
195 layer) and how they are perturbed by changes in pH¹⁷ and the addition of aqueous ions.¹⁸ Phase-
196 sensitive measurements have allowed also for the total potential to be quantified directly at the
197 surface.¹⁹ This new capability is important, because the surface potential (ψ) is one of those
198 approximated quantities that must be incorporated into SCMs (**Figure 1**). This quantity is often
199 calculated from mean-field models and rarely had been measured experimentally. Now, the surface
200 potential, which differs from the more commonly measured zeta potential, can be ascertained
201 optically, and at arbitrary ionic strength, using heterodyned second harmonic generation (SHG)¹⁹
202 as well as synchrotron-based X-ray photoelectron spectroscopy (XPS) albeit under more limited
203 conditions.²⁰ This ability to measure the total surface potential provides an important experimental
204 benchmark for the widely-used mean-field models for calculating surface potentials and applying
205 the electrokinetic methods used to quantify interfacial potentials. Ultimately, our ability to assess
206 the electrostatics at the surface without having to invoke classic mean-field models, which often

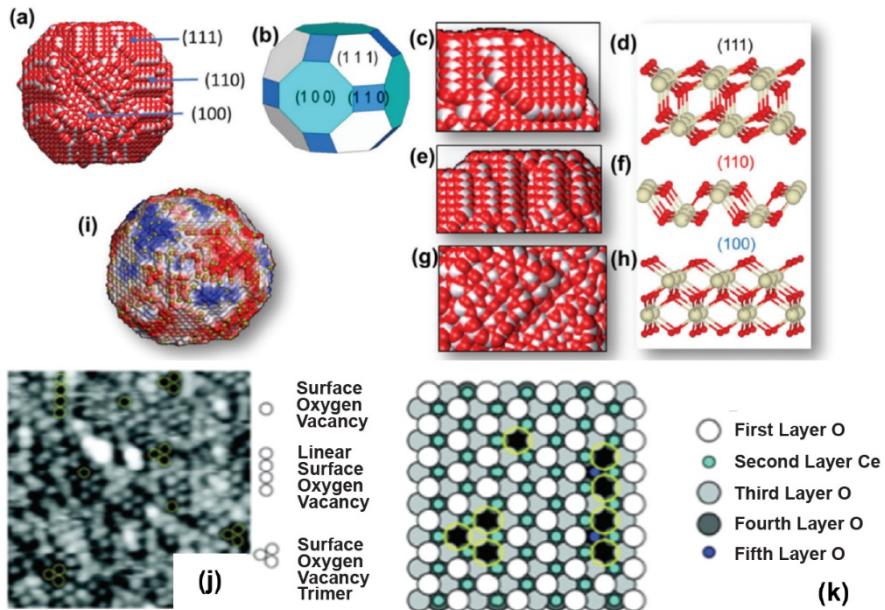
207 rely on semi-empirical parameters and primitive ion models that were put forth based on less
208 sensitive techniques decades ago, will be critical to develop the next generation of surface models
209 and extend them into SCMs and RTMs.

210 Advanced techniques for measuring ψ at oxide surfaces still provide an average value for a
211 given interface. However, we know that charged sites on oxide surfaces are localized resulting
212 from protonation and deprotonation of surface hydroxyls. Whether charges are localized or
213 delocalized significantly impacts both the ion distribution and the net water orientation in the
214 interfacial region according to simulations of charged solid–water interfaces.²¹ Specifically, charge
215 localization results in ion accumulation at an interface and local re-orientation of water molecules
216 at interfaces compared with the delocalized charged aqueous interface. Furthermore, recent work
217 using Stark spectroscopy indicates that the local fields can vary significantly across the solid–water
218 interface and that interfacial molecules “sample” this heterogeneous, dynamic environment.²²

219 The interfacial charge structure can be changed drastically by high salinity. Lee *et al.*²³
220 observed the salinity-dependent electric double layer (EDL) structure evolution in RbI or RbCl
221 with negatively charged mica surfaces using element-specific resonant anomalous X-ray
222 reflectivity. They found that cations and anions formed alternating discrete layers, causing
223 nonclassical charge overscreening (also referred to as charge reversal) at high salinity. At the silica
224 surface, the impact of overscreening induced by divalent ions with increasing pH on both the water
225 structure and ion speciation within the EDL was also recently observed by Rashwan *et al.* using
226 vibrational SFG (vSFG) and streaming current measurements.²⁴

227 Experimental methods capable of mapping out the local structure with molecular-scale
228 resolution are transformative tools for characterizing the chemistry of solid–water interfaces.⁷
229 Scanning probe measurements over nearly atomically flat surfaces, such as mica,²⁵ paired with

230 finite-element analysis²⁶ have yielded topographic information on the molecular-scale of both the
231 interfacial potential and water structure. Such methods have been extended to mapping of organic
232 molecules deposited on metal surfaces.²⁷ Charge profiling three-dimensional (3D) atomic force
233 microscopy has revealed charge layering of ionic liquids on electrodes at Ångstrom depth
234 resolution.²⁸ 3D fast-force mapping can also estimate the position of individual water molecules
235 in the Stern layer although this emerging method is complicated by data convolution concerns
236 related to tip-specific effects.²⁹ Other imaging methods such as transmission electron microscopy
237 (TEM), including scanning (STEM), high-resolution (HRTEM) and liquid cell (*in situ* TEM), in
238 combination with electron energy loss spectroscopy can directly quantify surface structures in dry,
239 humid, or aqueous conditions. Because these measurements are spatially resolved and have near-
240 molecular-scale resolution, they can map out the variety of reactive surface sites on oxide surfaces
241 allowing the abundance of a certain type of surface site to be linked to observable macroscopic
242 reactivities. A well-studied example of this phenomenon is the uptake and release of O₂ by ceria
243 (CeO₂) nanoparticles that are widely used in catalysis and other applications. Combined TEM and
244 modeling studies for CeO₂ have shown that the energetics of O₂ uptake/release is controlled by (1)
245 specific facets (crystallographic orientation), (2) oxygen site vacancies produced during Ce³⁺/Ce⁴⁺
246 redox reaction, and (3) surface hydration (**Figure 3**, from Sayle *et al.*³⁰, and Seal *et al.*²). Because
247 surface defects often produce high energy reactive sites, the emerging research field of defect
248 engineering for nanomaterials is critically tied to these new high-resolution measurements.

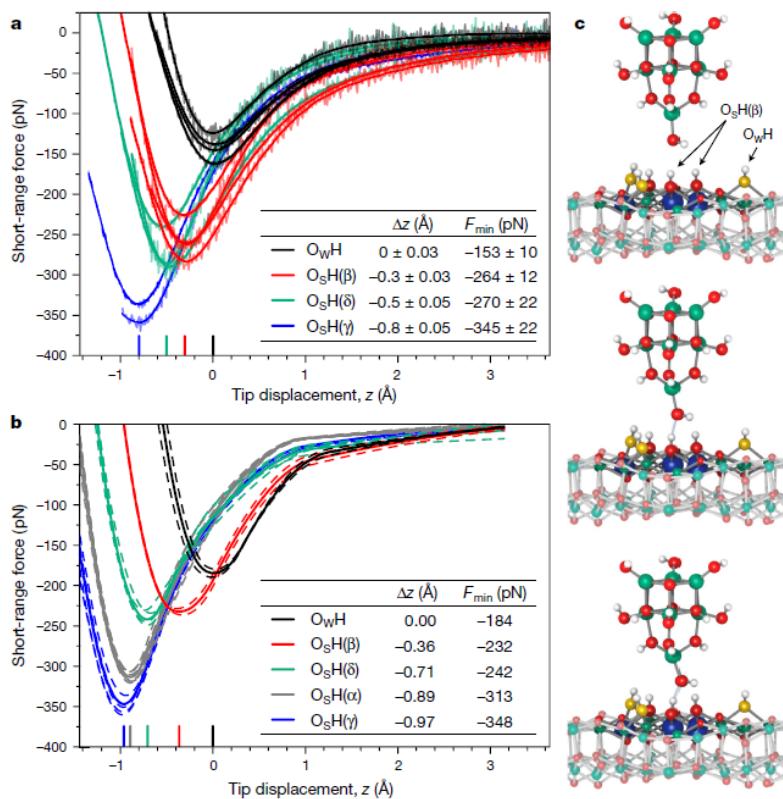


249 **Figure 3.** Surface structures of ceria (CeO_2) nanoparticles. (a) Full atom level model of CeO_2
250 nanoparticle; (b) Schematic of CeO_2 nanoparticle showing crystallographic surfaces; (c) Enlarged view of
251 the CeO_2 (111) surface showing the presence of surface steps and corners; (d) Perfect (111) surface of
252 CeO_2 crystal; (e) Nanostructured (110) surface; (f) Perfect (110) surface; (g) Nanostructured (100)
253 surface; (h) perfect (100) surface. Ce = white, O = red; (i) Visualization of catalytic activity of a CeO_2
254 nanoparticle surface, where oxygen atoms are colored by their lability—the energetic cost of their
255 removal from the surface. Red-white-blue gradient scale, where red corresponds to labile oxygen
256 (energetically easy to extract) and blue corresponds to oxygen ions that are difficult to extract. The yellow
257 spheres are Ce^{3+} species; (j) Scanning tunneling microscopy image of CeO_2 surface; (k) corresponding
258 structural model. Adapted with permission from Seal *et al.*²

259

260 Inevitably, the observed heterogeneities of the surface structures discussed above lead to
261 variability in surface properties, such as interfacial potentials, acidities of surface groups ($\text{p}K_a$
262 values),³¹⁻³³ dissolution rates,¹⁰ surface speciation, ion jamming with observed hysteresis in surface
263 acid-base chemistry,^{33,34} and heterogeneous nucleation patterns across a single surface.^{35,36} Further
264 complicating the situation is the recognition that the surfaces of some materials, *e.g.*, SiO_2 , can
265 have *localized* hydrophilic and hydrophobic regions³⁶⁻³⁸ that have been proposed to produce
266 different surface acidity constants³⁹ in concert with changes in hydrogen bonding effects on the
267 distribution of silanol site acidities.⁴⁰

268 Capturing the acidity of surface groups is of specific interest to SCM and RTM development
 269 because site charge influences surface reactivity and may vary greatly on the same surface.⁴¹⁻⁴³ A
 270 recent significant and surprising finding by Wagner *et al.*⁴¹ who combined non-contact AFM
 271 measurements and DFT modeling indicates that surface hydroxyl groups at an In_2O_3 (111) surface
 272 have $\text{p}K_a$ values varying several orders of magnitude, based on the H-bond strength measurements
 273 at individual surface sites (**Figure 4**). Multiple distinct $\text{p}K_a$ values have also been observed for
 274 silica in both theory and experiment under aqueous conditions.^{31,39,40} Therefore, the relative
 275 abundance of different sites varies significantly, which we propose should be represented as a
 276 probability curve in continuum models.



277 **Figure 4.** Probing individual hydroxyls on In_2O_3 surface with an Atomic Force Microscopy tip. (a)
 278 Experimental short-range force-distance curves for the OH groups; (b) Calculated short-range force–
 279 distance curves for the OH groups. Adapted with permission from Wagner *et al.*⁴¹
 280

281 Although imaging surface structures, localized surface potentials, local pK_a values, and
282 particle–particle interactions are paramount to understanding these systems, it is equally crucial to
283 capture time-dependent fluctuations referred to as surface dynamics. Most environmental
284 interfaces are intrinsically dynamic and sensitive to changes in pH and the presence of ions as they
285 consist of amphoteric sites that become charged and interact, either in a specific or non-specific
286 manner. Generally, models consider that a given solid will exhibit a trend in affinity towards ions
287 based on its composition. Yet, recent experimental work for the planar^{44,45} and nanopore silica–
288 water interfaces⁴⁶ reveals that such trends in ion affinity can be significantly altered as the pH is
289 changed. One hypothesis that can qualitatively explain a change in relative ion affinity is that the
290 ions can interact with at least two distinct sites on the silica surface, one charged and one neutral,
291 and as the relative ratio of charged to neutral sites increases with pH so does the affinity for ions
292 in solution.⁴⁵ Current work aims to investigate whether revising SCMs to include two-site binding
293 of cations can capture such pH-dependent trends in ion affinities. Furthermore, changes in pH, ion
294 concentrations, and solid chemistries might reveal that a probabilistic approach capturing
295 distributions of affinities, rather than two affinity constants, can better predict such behavior.

296 Real-world solid–water interfaces must also contend with dynamic chemical and geometric
297 complexities: the composition of the aqueous phase at the solid–water interface is multi-
298 component where competitive adsorption plays an important role in Stern and diffuse layer
299 structures.⁴⁷ Continuum-scale models must capture the dynamics and coupled behavior between
300 adsorbates, water, and surface site structures. Furthermore, nanoconfinement of surfaces often
301 leads to anomalous chemistry where interfacial reactivity is dictated by the spatial dimension of
302 the reactive solid–water interface.^{42,48,49} In particular, in nanopores, the polarization force between
303 ions and the solid surface at an interface determines ion propensity toward nanoconfined spaces.⁴⁹

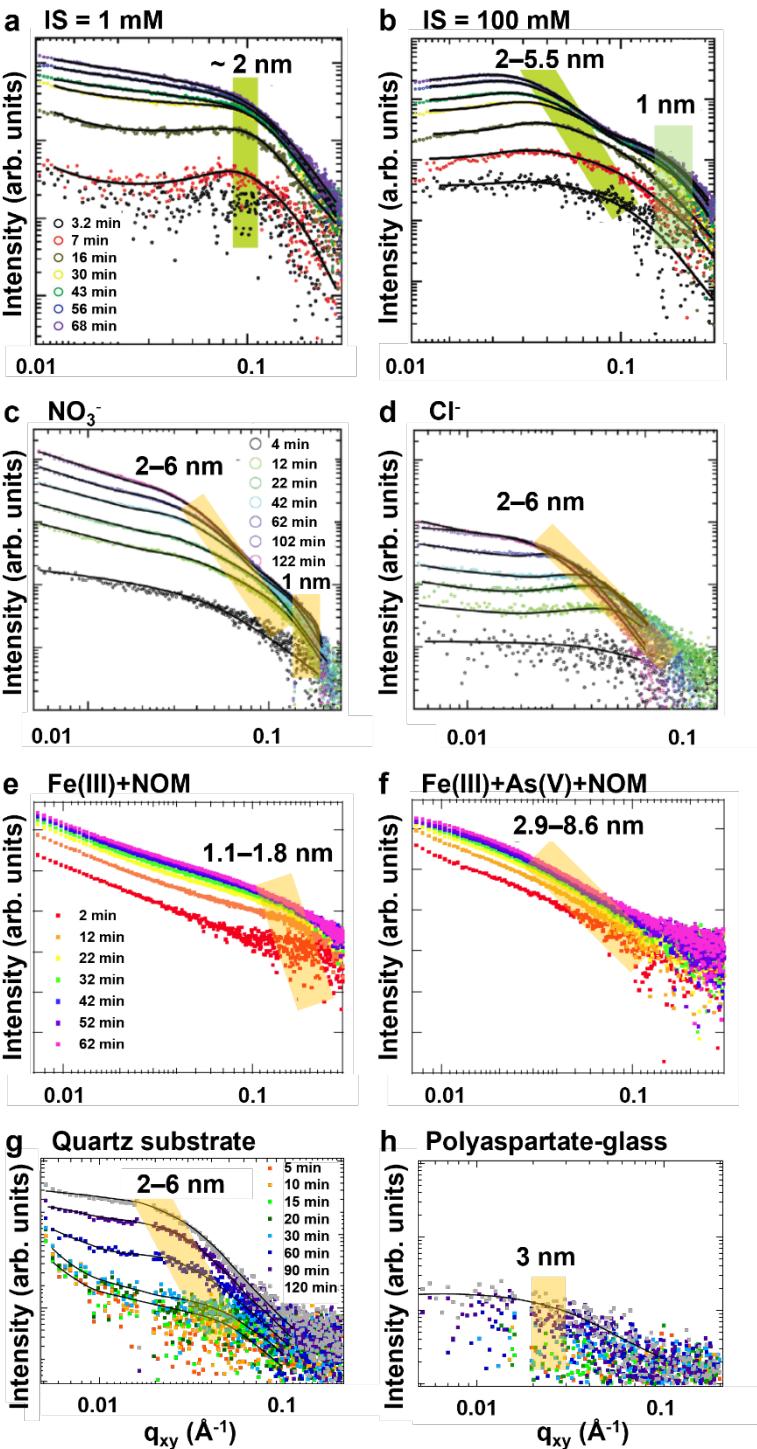
304 Capturing interfacial reactivity is further complicated by the fact that the speciation of
305 adsorbed ions, and likely of surface sites,⁵⁰ can vary with ionic strength and surface coverage. For
306 instance, several classic linear and nonlinear optical measurements as well as atomistic simulations
307 have shown that surfaces functionalized with carboxylic acids remain neutral (uncharged) even at
308 highly basic pH values.⁵¹⁻⁵³ The underlying mechanism is one in which Coulomb repulsion within
309 the surface plane is largely reduced when the carboxylate groups pick up a proton from the aqueous
310 solution to form carboxylic acid dimers, similar to those found in glacial acidic acid (an insulating
311 liquid). A similar phenomenon might be occurring for bare oxides such as silica where a bimodal
312 distribution of acidities has been observed for silanol sites above the point-of-zero-charge.³¹⁻³³
313 Likewise, Sr^{2+} as well as some lanthanide cations (nominally 3+ in solution) exist as singly-
314 charged species when they are absorbed to certain surfaces.^{54,55} In this case, the underlying
315 mechanism likely involves replacing a water molecule from the ion's hydration sphere with a
316 counter-ion, such as chloride or surface deprotonation to create an OH^- group.^{56,57} Sr^{2+} then absorbs
317 as the $[\text{SrCl}]^+$ ion pair, which is subject to reduced lateral Coulomb repulsion. SCMs should take
318 this effect into account, but currently do not. This is a problem of exponential sensitivity, as the
319 Boltzmann term governing the surface coverage is raised to the power of the charge of the adsorbed
320 ion. If this charge changes from 3 to 2 or from 2 to 1, the exponential sensitivity indicates a much
321 different surface coverage relative to what is expected from bulk thermodynamics. We note that
322 such ion-pairing effects are routinely observed in brine solutions ($\text{NaCl} > 1 \text{ M}$),⁵⁸ but they occur
323 at surfaces when electrolyte concentrations are orders of magnitude smaller compared to brines,
324 for example at the fused silica/water interface $\text{Sr}^{2+}-\text{Cl}^-$ ion pairing occurs once NaCl concentration
325 reaches only 10 mM. The surface-promoted ion-pairing processes need to be incorporated into

326 new descriptions of Stern layer for ion speciation. When RTMs solve for chemical speciation, they
327 do not incorporate surface-promoted shifts in speciation as described here.

328 The presence of salts (electrolytes) can influence solid–water interactions, including surface
329 complexation, dissolution, and precipitation reactions. Since the work of Dove⁵⁹ and coworkers
330 on silica dissolution, researchers have attempted to further unravel the details of salt effects on
331 solid–water interfaces. For example, Icenhower and Dove⁶⁰ found that dissolution rates can
332 increase by over 20 times in 0.05 M NaCl solution compared to de-ionized water. Notably, the
333 same experiments show that the activation energy ($74.5 \pm 1.4 \text{ kJ mol}^{-1}$) in the range of 25 to 250°C
334 does not change within experimental error with this increase in rate constant. This suggests that
335 the Arrhenius pre-exponential factor (A) related to the activation entropy of the reaction is
336 changing rather than the activation enthalpy. Kubicki *et al.*⁶¹ hypothesized, based on DFT-MD
337 simulations, that the dissolution entropy is made more favorable when salts are present at the
338 interface due to changing H-bonding that favors intra-surface H-bonds and thus H⁺-transfer and
339 hydrolysis of Si–O–Si linkages leading to dissolution. This observation of H-bonding changes is
340 consistent with vSFG experiments by Rehl *et al.*,¹⁸ revealing the decrease in ordered water in the
341 Stern layer at the silica surface upon salt addition. Likewise, Dewan *et al.*⁶² showed that salt
342 impacts structured interfacial water most significantly near neutral pH where the effect of salt on
343 accelerating silica dissociation is greatest.^{21,62} Other simulations and time-resolved vSFG (TR-
344 vSFG) spectroscopy have found similar behavior with addition of salts.^{76,77}

345 In addition to dissolution, the salt concentrations and types can affect the nucleation of metal
346 (hydr)oxides and their subsequent growth and Ostwald ripening. For example, Li and Jun
347 examined the effect of salinity on CaCO₃ nucleation on quartz using grazing incidence small angle
348 X-ray scattering.⁶³ When salinity increased from 0.15 to 0.85 M NaCl, effective interfacial

349 energies dropped from 47.1 mJ/m² to 36.4 mJ/m², thus decreasing the thermodynamic penalty of
350 nucleation. However, the kinetic factor for nucleation (J_0)—related to ion diffusion and nuclei
351 surface properties—reduced ~13 times. Lower J_0 values resulted from slower CaCO₃ monomers
352 impingement rate caused by decreased electrostatic attraction at high salinity, which is also
353 consistent with charge overscreening at high salinity. Based on these thermodynamic and kinetic
354 contributions to the CaCO₃ nucleation, the net nucleation rates could increase an order of
355 magnitude at higher salinities. Furthermore, as shown in **Figure 5**, the nucleation and growth of
356 iron (hydr)oxide nanoparticles are also controlled by many aqueous solution variables, such as the
357 salinity,⁶⁴ types of salt ions, co-existing oxyanions,⁶⁵ and natural organic matter.⁶⁶ Even with this
358 known complexity, RTMs typically consider solid nucleation process to be instantaneous or start
359 as soon as solution reaches the saturation index for a given phase, and do not count the nucleation
360 step as a discrete part of the process. This oversimplification of nucleation processes can result in
361 discrepancies between experimental findings and RTM results.⁶⁷



362 **Figure 5.** *In situ* measurements of heterogeneous nucleation on quartz substrates in a solution
 363 containing 10^{-4} M $\text{Fe}(\text{NO}_3)_3$ at $\text{pH } 3.6 \pm 0.2$ by grazing incidence small angle X-ray scattering (GISAXS),
 364 showing in-plane (q_{xy}) 1D scattering. The shaded boxes indicate the particle size evolution with reaction
 365 time. Adapted with permission from Jun *et al.* (2016)³⁶ (a) With 1 mM NaNO_3 ionic strength (IS),
 366 nucleation is dominant. (b) With 100 mM NaNO_3 IS, particles grew from ~ 2 – 5.5 nm, with the formation
 367 of secondary ~ 1 nm particles. Detailed discussion about images (a) and (b) is available in Ref. ⁶⁴ (c) With
 368 10 mM NaNO_3 , both nucleation and growth were observed. (d) With 10 mM NaCl , although the particle

369 size is comparable to the nitrate system, the total particle volume does not increase, indicating Ostwald
370 ripening. Detailed discussion about images (c) and (d) can be found in Ref.⁶⁸ (e) In the presence of natural
371 organic matter (NOM), particles aggregate, as indicated by power law scattering at low q . (f) In the presence
372 of both arsenate and NOM, large particles are also observed. Further discussion about images (e) and (f) is
373 available in Ref.⁶⁵. (g-h) The influence of substrate chemistry is evaluated by coating the surface with
374 hydrophobic polyaspartate. More information about images (g) and (h) can be found in Ref.⁶⁶

375

376 As shown above, the chemical complexity of even simple oxide–water interfaces is daunting
377 from a molecular perspective. These surfaces become even more complicated in the presence of
378 organic and microbial communities. Grassian and co-workers have shown that dissolved organic
379 matter can coat oxide surfaces at low and circumneutral pH.^{69–73} Moreover, surface adsorption
380 from complex aqueous phase systems containing biomolecules, humic and fulvic substances show
381 that larger complex macromolecules adsorb onto mineral surfaces in a manner that depends on
382 solution pH and ionic strength. Similarly, biological components such as proteins adhere to oxide
383 surfaces to form an “eco-corona”⁷⁴ and the protein-oxide surface interactions depend on pH, the
384 nature of the surface and neighboring oxyanions.^{69–71} Environmental DNA (eDNA) can attach to
385 oxide particle surfaces but little is known about these interactions and how they impact the
386 underlying surface structure and reactivity as well as the stability of adsorbed eDNA.⁷⁵

387 These cumulative findings further support two notions: (1) interfacial water structure is a key
388 player in interfacial reactivity and (2) salt ions are not spectator species at solid–water interfaces.
389 We have shown how surfaces are heterogeneous on all scales of interest, and how interactions with
390 complex molecular species that are typically present in the environment make these systems hard
391 to study. Additionally, in low humidity environments, such as Earth’s atmosphere, the surface
392 heterogeneity of single particles can control water adsorption on surfaces as a function of relative
393 humidity.^{7,78} Specifically, edge and defect sites adsorb water preferentially from the gas phase as
394 a function of increasing relative humidity prior to the adsorption of water on planar surfaces. The
395 spatially resolved studies, including infrared nanospectroscopy,⁷⁸ show how surfaces are

396 heterogeneous and water does not uniformly coat the surface, meaning that only select surface
397 sites can participate in reactions.

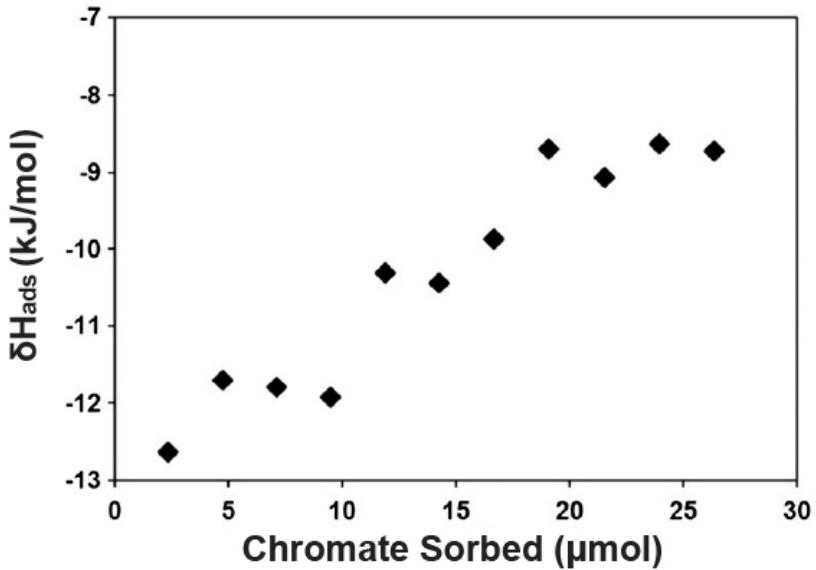
398 A challenge, as well as an opportunity, moving forward is to utilize the state-of-the-art tools
399 to examine more realistic, chemically/structurally heterogeneous surfaces in complex
400 environments that contain ions, dissolved organic matter and biological components to understand
401 main molecular controls on surface reactivities. We can then test the hypothesis proposed here that
402 describing main reactivity parameters with probability curves leads to more accurate continuum-
403 scale models. Le Traon *et al.*⁷⁹ highlights that reaction kinetics in porous systems deviates from
404 the batch experiments by orders of magnitude, demanding that experiments and simulations more
405 realistically capture larger scale effects. This possibility raises several thought-provoking
406 questions such as: *Do aqueous and solid phase complexities produce a heterogeneous surface with*
407 *different domains? Are the surfaces “patchy” with some hydrophilic and hydrophobic domains,*
408 *and some regions enriched with adsorbed species (or covered with organic matter)? Can these*
409 *complex surfaces be described by probabilistic models to capture all types of reactive surface sites*
410 *for all surface domains?* These are difficult yet important questions to resolve to understand the
411 full chemical complexity of solid–water interfaces in the environment.

412 In the following Section 3 we will discuss examples where interfacial processes were
413 successfully incorporated into continuum-scale models, as well as those cases where such models
414 cannot be constructed without a complete re-working of the mathematical and statistical
415 approaches on which they are built.

416

417 3. Rectifying the Molecular View with Ensemble Models

418 In this section we will show how mean-field models work in some instances but not in others.
419 To take the heterogeneity of reactive sites during adsorption into account, a commonly used
420 equilibrium adsorption model at a solid–water interface is the Freundlich isotherm, which
421 theoretically accounts for heterogeneous surface sites. Yet only one affinity constant describing
422 bonding strength is derived from adsorption data and this averages the enthalpy of adsorption ΔH_{ads}
423 for all sites. If the range of ΔH_{ads} is narrow, using one constant value would not be a major issue;
424 however, inverse adsorption chromatography,⁸⁰ and *operando* flow microcalorimetry have
425 demonstrated that the range of ΔH_{ads} values for the same sorbent–sorbate (surface–ion) pair can
426 be up to 200 kJ mol⁻¹! Thus, one can infer that the variation in ΔH_{ads} is not a simple matter of
427 adsorption reactions at the same type of sites, which is less favorable with increasing sorbate
428 coverage (**Figure 6**). Instead, the ΔH_{ads} variation reflects different types of surface sites with
429 distinct bonding mechanisms, consistent with the notions of local spatial heterogeneity and
430 stochastic distribution of surface reactivities discussed earlier. Many adsorption isotherm studies
431 report better fits to the data at the mid-range of solution concentrations and are less accurate at the
432 low- and high-concentration tails,⁸¹ which is indicative that the values at the higher and lower tails
433 of the probability curve are ignored. Because surface defects likely have the most negative ΔH_{ads}
434 values and lowest surface site densities (representing tail ends of the site probability curve), they
435 have not been modeled accurately. Considering that in many real-world scenarios, the sorbates are
436 present at trace levels, the applicability of models based on ideal surfaces at higher aqueous
437 concentrations that are typically studied in a laboratory setting becomes questionable. There are
438 also critical needs for thermodynamic data and computational chemistry models that can address
439 the lower concentrations and reactions at surface defects⁸² and in nanopores^{46,49} to obtain
440 predictable thermodynamics and kinetics under realistic environmental conditions.



441

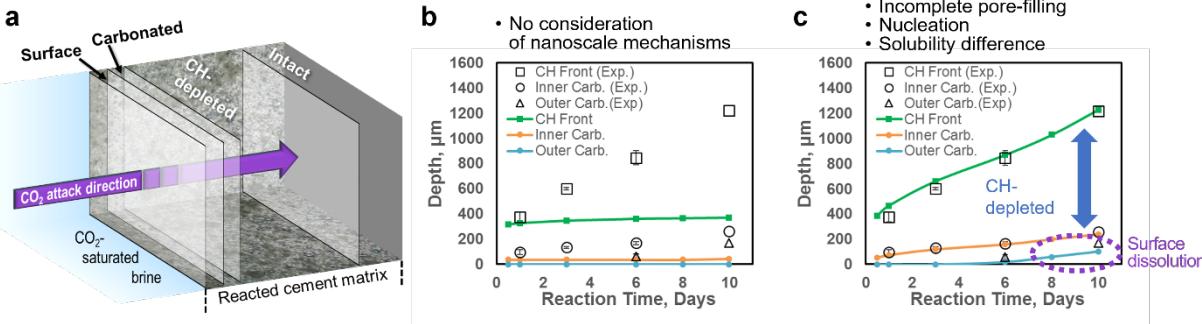
442 **Figure 6.** Differential molar enthalpies (δH_{ads}) measured by *operando* flow microcalorimetry for the
 443 sorption of chromate on ferrihydrite, showing that the values become less negative (less favorable) with
 444 increasing surface loading. Adapted with permission from Kabengi *et al.*⁸³
 445

446 One promising example is the determination of Fe-oxy(hydr)oxide reactive sites that has been
 447 translated into a SCM capable of unifying adsorption equilibrium constants for the important
 448 contaminant chromate.⁸⁴ Bompot *et al.*⁸⁴ utilized the MUSE algorithm and found that in SCMs it
 449 was easiest to keep the reactive site densities fixed for each solid and vary the solid concentration
 450 and capacitance until the model agreed with experimental data. High resolution data, for example
 451 using STEM HAADF helps determine the crystal face contributions for different surface sites, and
 452 the respective site densities characteristic for each surface that can be incorporated in SCMs.⁸⁵

453 When considering larger scales in RTMs, the dynamic evolution of solid–water interfaces can
 454 significantly alter the fate and transport of ions, which is not fully captured in current models.
 455 Adsorption of chemical species and temporal evolution of solid phases due to dissolution–
 456 precipitation processes changes reactive site densities and types. Until recently, RTM could not
 457 include solid nucleation due to the lack of experimental information about nucleation. Instead, it
 458 captures precipitation as a group term by assuming that nucleation is instantaneous, and only

459 includes the solid's growth rate. RTMs also do not capture pore-size effects on solubility and
460 nucleation kinetics. Recent advances have been made to incorporate experimentally obtained
461 kinetic and thermodynamic information (*e.g.*, nucleation rates, activation energies, and interfacial
462 energies)^{63,86,87} of calcium carbonate nucleation into an RTM code CrunchTope. The incorporation
463 of nanoscale interfacial reactions into the RTM improved the model accuracy of both the evolution
464 of the $\text{Ca}(\text{OH})_2$ -depleted zone and the surface dissolution zone at supercritical CO_2 –brine–cement
465 interfaces (**Figure 7**).⁶⁷ Experimentally-obtained nucleation thermodynamic and kinetic
466 information are important in scaling up nanoscale observations of chemical reactions to larger
467 scale predictions. Similarly, this improved RTM framework can be utilized to predict managed
468 aquifer recharge (MAR) where reclaimed water is used to replenish underground reservoirs. The
469 reclaimed water for MAR is rich in dissolved oxygen, which can alter the dissolution of minerals
470 with toxic components such as arsenic-bearing iron sulfides and lead to subsequent iron
471 (hydr)oxide nucleation and toxic species adsorption onto the newly formed iron (hydr)oxides.⁸⁸⁻⁹¹
472 Understanding the nucleation and dynamic interfacial chemical processes and incorporating them
473 into RTMs will significantly improve the predictions of pollutant mobility, benefiting safer aquifer
474 management to address water shortage problems.

475



476

477 **Figure 7.** Incorporation of nanoscale interfacial reaction into a reactive transport model. (a) Illustration of
478 direction of CO₂ attack into the cement matrix. The cement samples were reacted in a CO₂-saturated brine
479 (0.5 M NaCl) with a solid-to-liquid volumetric ratio of 1/16. The solution was equilibrated at 95°C under
480 100 ± 5 bar of CO₂. A total alteration thickness of 1220 ± 90 μm was observed, including a 960 μm CH
481 (Ca(OH)₂, portlandite)-depleted zone, a 100 μm carbonated layer, and a 170 μm surface region. Interfaces
482 between zones are drawn to scale. (b, c) Modeling results with and without sufficient consideration of
483 nanoscale mechanisms in comparison with experimental data. (b) Results with no consideration of
484 nanoscale mechanisms. (c) Results with consideration of incomplete filling of pore space at nanoscale,
485 nucleation kinetics, an enhanced solubility in confined pores. By incorporating nanoscale evolution of
486 interfacial chemistry into RTM can generate a better match with experimental observations. Adapted with
487 permission from American Chemical Society from Ref.⁶⁷

488

489 **4. The Way Forward: Towards Predicting and Controlling Interfacial
490 Behavior**

491 A logical next step for improving the accuracy of continuum-scale models is to increase the
492 number of discrete parameters used in these models (*e.g.*, use two pK_a values instead of one). Such
493 approaches have already been explored and do indeed show increased accuracy.⁹² However,
494 should the splitting of single variables into sets of discrete values (multiple-parameter approach)
495 be the way forward? We argue that it should not be, and a paradigm shift is urgently needed. The
496 fundamental question remains—can we keep applying homogeneous chemistry concepts to
497 heterogeneous systems? The probabilistic nature of chemical phenomena in homogeneous systems
498 has been addressed by statistical mechanics—*e.g.*, the Boltzmann distribution describes the
499 physical nature of molecules in populations having different states, the likelihood of which

500 changes based on the conditions imposed on these populations. Because gaseous or aqueous
501 systems are well-mixed, the Boltzmann distribution is usually Gaussian. When we consider solid
502 surfaces involved in interfacial reactions, a “well-mixed” state is fundamentally impossible for any
503 realistic solid surface. Current molecular models and spatially resolved measurements can capture
504 surface heterogeneity and characterize the localized reactive domains on surfaces at molecular-,
505 nano-, and other scales discussed in **Section 2** of this Perspective. The problem is that the
506 continuum-scale models, such as SCM and RTMs, are not designed to incorporate spatially
507 differing reactivities of surfaces. We propose that probability distributions of surface descriptors
508 instead of average constant values should be used to formalize interfacial properties in continuum-
509 scale models. Therefore, using probabilities to describe surface properties is a more promising
510 approach in comparison to the stepwise increase in the number of variable values used in multi-
511 parameter sets. Including probability distributions for the variables of interest could result in
512 efficient continuum-scale models because localized effects will be incorporated within non-
513 localized parameterization schemes. Hence, this approach has the potential to address surface
514 heterogeneity at different scales. If successful, this new paradigm will lead to scale-independent,
515 universal models that would allow for the prediction of interfacial reactivities in complex chemical
516 systems for the first time, a dream come true for scientists and engineers in many research fields.

517 To begin, we need to develop new mathematical frameworks and computational approaches
518 to describe chemical parameters and properties as probability distributions, instead of ensemble
519 average values, to reflect real-world complexity and to generate scaled-up SCMs and RTMs. We
520 propose that accounting for chemical and structural complexity in such new generation SCM and
521 RTM codes requires re-writing them using a fundamentally new approach. As shown in our
522 examples above, reaction rates, equilibrium constants, and surface acidity constants vary across a

523 surface and correlate to distinct structural characteristics (e.g., oxygen vacancies, crystallographic
524 orientation, local structure of amorphous phases, sorbates, and “spectator” ions). We anticipate
525 that normal, bell-shape curves could sufficiently capture the relevant parameter space in some
526 cases where stochastic processes dominate, while in other cases where surface reactivity is a sum
527 of non-random phenomena, they will be best described by more complex types of probability
528 curves. We advocate for applied mathematicians and statisticians to become more involved in
529 interfacial chemistry research to develop rigorous descriptions of interfacial processes for specific
530 use in RTM and SCM codes. The inspiration for such models can be drawn from molecular-scale
531 probabilistic algorithms, including Metropolis Monte Carlo (statistical sampling of energetic
532 states)⁹³ and Kinetic Monte Carlo (sampling of reaction rates).⁹⁴ These models are currently
533 limited to molecular-scales. From the experimental side, approaches that can quantify the
534 spatiotemporal variation of heterogeneous rates, adsorption free energies, as well as interfacial
535 capacitance, relative permittivity in the Stern layer, and distribution of electric fields are needed
536 to inform these models.

537 In the geoscience community, Lüttge and co-authors proposed using stochastic models to
538 capture mineral dissolution processes.⁹⁵⁻⁹⁸ This conceptual approach was motivated by high-
539 resolution *in situ* measurements on carbonate and silicate surfaces in aqueous solutions. These
540 measurements clearly indicate site-dependency and time-dependency of the dissolution rates,
541 where the probability distributions evolve in time (**Figure 8**). For calcite surfaces in **Figure 8**, we
542 see that the initial surface topography has a measurable impact on the mean rate values (peaks in
543 the distribution curves) and on the width of the distributions. In fact, a dissolution rate is more
544 accurately represented by a term “rate spectra,” given the variability and gradual changes across a

545 given crystalline surface.¹⁰ Importantly, Lütte *et al.* developed an initial framework for treating
546 dissolution phenomena using a probabilistic approach with the dissolution probability defined as:⁹⁸

547

$$P_i = \prod_{j=1}^i P_j \quad (1)$$

548 Here, P_i is the dissolution probability for a molecule with i bonds to the surface written as the
549 product of hydrolysis probabilities over all bonds. Furthermore the logarithm of probability for an
550 individual surface unit to be dissolved is proportional to the sum of activation energies for bond
551 hydrolysis ΔE_{ij} :⁹⁸

552

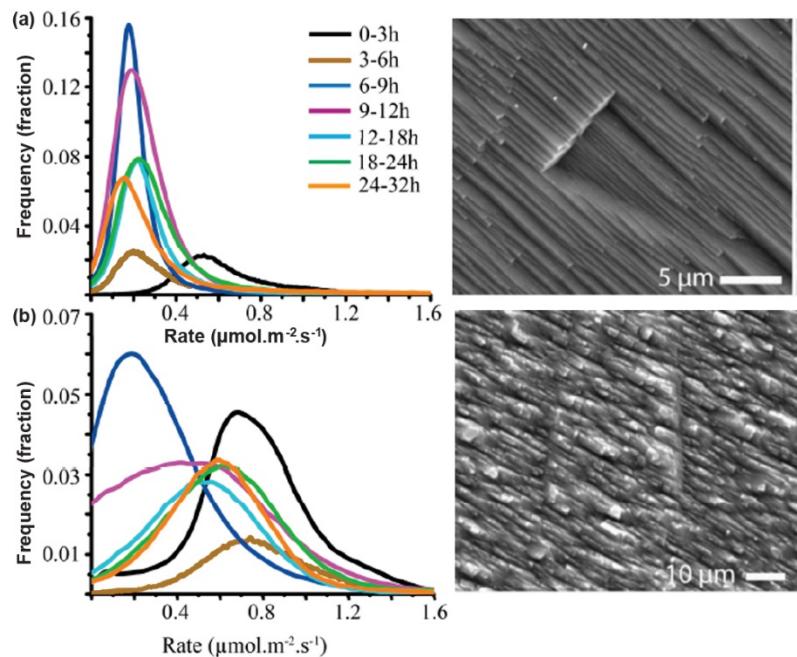
$$\ln P_i = -\frac{\sum_{j=1}^i \Delta E_{ij}}{kT} \quad (2)$$

553 where k is the Boltzmann constant, and T is temperature. We must note that the variability in the
554 measured dissolution rates shown in **Figure 8** is 2 to 3-fold, because these measurements were
555 conducted on the same crystallographic surface. For numerous solids, the difference in dissolution
556 rates for different crystallographic terminations may reach orders of magnitude. Therefore, for
557 realistic solids the probability weighted approach is crucial, because averaging and ignoring this
558 variability may result in model predictions that are “off” by orders of magnitude.

559 Guren *et al.*⁹⁹ illustrate how to derive a set of dissolution rate probabilities from Kinetic
560 Monte Carlo simulations and then how to use them as input into the macroscopic stochastic model.
561 The result of this rigorous procedure is an accurate representation of mineral dissolution that takes
562 place at different surfaces and surface sites of the same material. Regarding RTM, an approach for
563 parameterizing heterogeneity in surface reactivity has been recently demonstrated using
564 nanotopographic images to generate a distribution of surface slope factors that act as a correction
565 factor for the RTM-calculated rates. This approach led to much better agreement between the
566 simulated dissolution rate maps and rate spectra than the standard RTM.^{100,101} While these

567 examples are extremely promising and represent an advance in the field of reaction modeling, the
568 results are still limited to simple systems. A major break-through is needed for translating chemical
569 knowledge from molecular-scale into continuum-scale models.

570 In this Perspective we propose that an approach that captures probability distributions must
571 be applied in SCMs and RTMs to encompass *all relevant constants and surface properties*,
572 including dissolution rates and nucleation and growth rates, when considering chemistry of solid–
573 water interfaces (**Figure 9**).



574

575
576 **Figure 8.** Probability distributions of calcite dissolution rates measured in laboratory dissolution
577 experiments. (a) Dissolution rate spectra for “striated” surface; and (b) Dissolution rate spectra for “hill-
578 and-valley” surface. Adapted with permission from Trindade Pedrosa *et al.*⁹⁷
579

580

581

582 Developing new methods for incorporating probability distributions into SCM and RTM
 583 codes for the numerous reactive surfaces present in the environment will be possible by utilizing
 584 new computational approaches. A longstanding grand challenge in computational science has been
 585 the seamless transfer of information across scales from molecular to field-scales.¹⁰² In practice,
 586 this ideal has not been achieved because funding for multi-scale modeling efforts have not been
 587 the norm and computational limits have not allowed significant overlap in spatiotemporal scales
 588 among the various approaches. The latter obstacle can be overcome with the advent of exascale
 589 computing and the development of codes that incorporate machine learning (ML)-based
 590 interatomic potentials or ML-IAPs.¹⁰³ Connecting atomistic and pore scale simulations through
 591 advanced computational power can be achieved by systematic development of interatomic

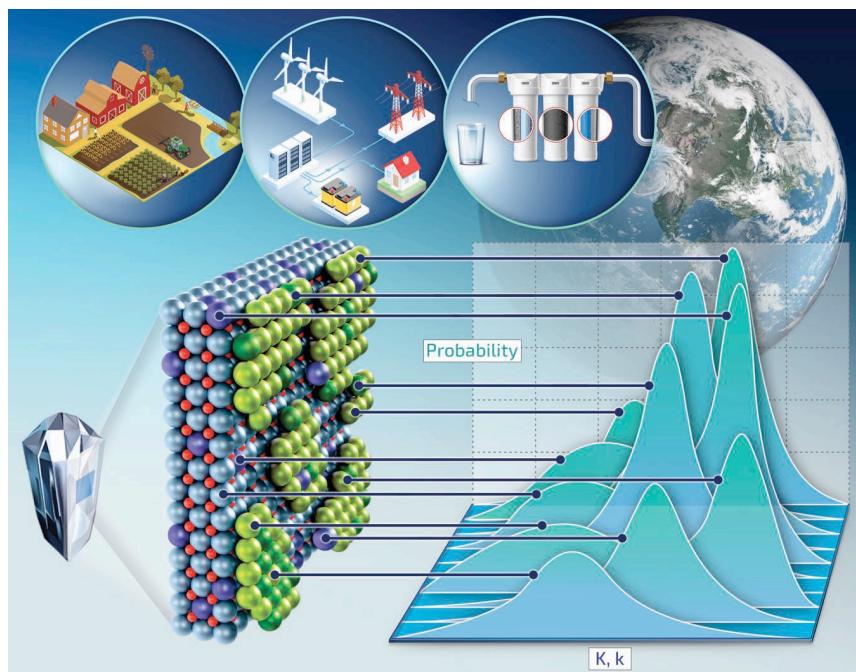


Figure 9. Schematic representation of various surface structures on a single crystal surface that have reactivities best represented by a distribution of equilibrium constants (K) and reaction rate constants (k). These dynamic surface reactions include solvation, surface complexation, and attachment-detachment processes due to dissolution or precipitation. Chemistry of solid-water interfaces is crucial for understanding environmental fate and transport, and for applications such as water treatment, conventional and unconventional energy, and agriculture (all of which are represented with symbols in the upper portion of the figure).

592 potentials *via* machine-learning. Exascale computing makes simulations of 10^7 atoms over
593 durations of microseconds possible, and the ML techniques allow for the development of accurate,
594 reactive IAPs based on experimental data and quantum results. Thus, it would be possible to
595 perform atomistic simulations that overlap with the mesoscale and can more realistically represent
596 solid–water interfaces. Exascale computers will allow for accurate atomistic simulations of
597 reactions and flow on scales that overlap the micron-scale elemental volumes of lattice Boltzmann
598 simulations.¹⁰⁴ Coarse-grained mesoscale simulations (*i.e.*, mesoscale) allow for larger and longer
599 spatiotemporal scales that overlap finite element and continuum methods. This “bottom-up”
600 approach can provide parameters that are useful in larger scale models such as SCM (*e.g.*, Fitts *et*
601 *al.*¹⁰⁵). Additionally, ML can be used to identify feature importance, value clustering, and detecting
602 anomalous values,¹⁰⁶ all of which can aid in the statistical descriptions of interfacial reactivities.
603 Smaller scale simulations can be used to test assumptions and approximations made for larger
604 scale simulations while simultaneously providing chemical mechanism information that could be
605 incorporated into SCMs or RTMs. By incorporating probability distributions and integrating
606 across scales with experiments and simulations, it will become possible to derive new modeling
607 paradigms that are consistent with field observations and incorporate molecular-level information.
608 This approach will enable bridging of laboratory experiments with modeling efforts to predict
609 chemical transformation in complex industrial systems and natural environments, including
610 critical settings such as nuclear waste sites. Similar approaches can be used for predicting catalyst
611 performance and to design fit-for-purpose materials for energy and the environment. With
612 exponentially rising computational power, the advancement in machine learning and artificial
613 intelligence tools and the increasing spatiotemporal resolution of laboratory measurements, this

614 perspective provides a conceptual framework that could enable sustainable solutions to global
615 problems including clean water, renewable energy, and climate change.

616 **Acknowledgements**

617 We thank M. Rubio and D. Thompson at Sandia National Laboratories for help with graphics
618 design and editing. We are grateful to the three reviewers, who provided valuable feedback for the
619 proposed concept. AGI was supported by the U.S. Department of Energy, Office of Science, Office
620 of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Field
621 Work Proposal Number 23-015452. EB gratefully acknowledges the support of the National
622 Science Foundation (CHE 2102557). FMG was supported by the US National Science Foundation
623 (CHE- 2153191) and the Department of Energy (DE-SC0023342). VHG was funded in whole or
624 in part by the Army Research Office/Army Research Laboratory via grant W911NF-23-1-0181 to
625 the University of California, San Diego. Any errors and opinions are not those of the Army
626 Research Office or Department of Defense and are attributable solely to the author(s). YSJ is
627 grateful for the support received from the American Chemical Society's Petroleum Research Fund
628 (62756-ND5) and the U.S. Department of Energy Office of Science (DE-SC0023390). This article
629 has been authored by an employee of National Technology & Engineering Solutions of Sandia,
630 LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The
631 employee owns all right, title and interest in and to the article and is solely responsible for its
632 contents. The United States Government retains and the publisher, by accepting the article for
633 publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
634 irrevocable, world-wide license to publish or reproduce the published form of this article or allow
635 others to do so, for United States Government purposes. The DOE will provide public access to
636 these results of federally sponsored research in accordance with the DOE Public Access Plan

637 <https://www.energy.gov/downloads/doe-public-access-plan>. This paper describes objective
638 technical results and analysis. Any subjective views or opinions that might be expressed in the
639 paper do not necessarily represent the views of the U.S. Department of Energy or the United States
640 Government.

641

642 **Author Contributions**

643 The manuscript was written through contributions of all authors. All authors actively edited
644 all draft versions and the final version of the manuscript. AGI proposed the main concept and led
645 the development of the main argument throughout the manuscript; EUB wrote the sections relevant
646 to SiO₂ surface chemistry and specific ion effects; FMG and JMG performed calculations on the
647 ionic strength impacts on the Gouy-Chapman Stern potential and wrote the sections on vSFG and
648 SHG spectroscopies; VHG wrote the sections on complex interfaces with organic species and
649 actively participated in the development of the manuscript structure; YSJ wrote the discussion on
650 nucleation processes in reactive models; NK wrote the section on the variability of adsorption
651 enthalpies with surface coverages; JDK wrote the sections relevant to molecular simulations, and
652 on the new opportunities enabled by exascale computing.

653

654 **Competing interests**

655 The authors declare no competing interests.

656

657

References

658

659 1 Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-
660 species selectivity of membranes with subnanometre pores. *Nature Nanotechnology* **15**,
661 426-436 (2020).

662 2 Seal, S. *et al.* Engineered defects in cerium oxides: tuning chemical reactivity for
663 biomedical, environmental, & energy applications. *Nanoscale* **12**, 6879-6899 (2020).

664 3 Jun, Y.-S. Catalyst: The roles of chemistry in clean water for all. *Chem* **9**, 1335-1339
665 (2023).

666 4 Gonella, G. *et al.* Water at charged interfaces. *Nature Reviews Chemistry* **5**, 466-485
667 (2021).

668 5 Qin, F. & Beckingham, L. E. The impact of mineral reactive surface area variation on
669 simulated mineral reactions and reaction rates. *Applied Geochemistry* **124**, 104852
670 (2021).

671 6 Sun, Y. & Li, Y. Application of surface complexation modeling on adsorption of uranium
672 at water-solid interface: A review. *Environmental Pollution* **278**, 116861 (2021).

673 7 Bañuelos, J. L. *et al.* Oxide—and Silicate—Water Interfaces and Their Roles in
674 Technology and the Environment. *Chemical Reviews* (2023).

675 8 Xu, T., Zheng, L. & Tian, H. Reactive transport modeling for CO₂ geological
676 sequestration. *Journal of Petroleum Science and Engineering*, 765-777 (2011).

677 9 Li, L. *et al.* Toward catchment hydro-biogeochemical theories. *Wiley Interdisciplinary
678 Reviews: Water* **8**, e1495 (2021).

679 10 Fischer, C., Arvidson, R. S. & Lüttge, A. How predictable are dissolution rates of
680 crystalline material? *Geochimica et Cosmochimica Acta* (2012).

681 11 Reeves, D. & Rothman, D. H. Age dependence of mineral dissolution and precipitation
682 rates. *Global biogeochemical cycles* **27**, 906-919 (2013).

683 12 Zhu, C. *et al.* Testing hypotheses of albite dissolution mechanisms at near-equilibrium
684 using Si isotope tracers. *Geochimica et Cosmochimica Acta* **303**, 15-37 (2021).

685 13 Schaefer, J., Backus, E. H. & Bonn, M. Evidence for auto-catalytic mineral dissolution
686 from surface-specific vibrational spectroscopy. *Nature Communications* **9**, 3316 (2018).

687 14 Myalitsin, A., Urashima, S.-H., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Water
688 structure at the buried silica/aqueous interface studied by heterodyne-detected
689 vibrational sum-frequency generation. *The Journal of Physical Chemistry C* **120**, 9357-
690 9363 (2016).

691 15 Urashima, S.-h., Myalitsin, A., Nihonyanagi, S. & Tahara, T. The topmost water structure
692 at a charged silica/aqueous interface revealed by heterodyne-detected vibrational sum
693 frequency generation spectroscopy. *The Journal of Physical Chemistry Letters* **9**, 4109-
694 4114 (2018).

695 16 Khatib, R. *et al.* Water orientation and hydrogen-bond structure at the fluorite/water
696 interface. *Scientific reports* **6**, 1-10 (2016).

697 17 Rehl, B. *et al.* Water Dipole Populations in the Electrical Double Layer and Their
698 Contributions to the Total Interfacial Potential at Different Surface Charge Densities.
699 (2022).

700 18 Rehl, B. & Gibbs, J. M. Role of ions on the surface-bound water structure at the
701 silica/water interface: Identifying the spectral signature of stability. *The Journal of
702 Physical Chemistry Letters* **12**, 2854-2864 (2021).

703 19 Ma, E. *et al.* A new imaginary term in the second-order nonlinear susceptibility from
704 charged interfaces. *The Journal of Physical Chemistry Letters* **12**, 5649-5659 (2021).

705 20 Brown, M. A. *et al.* Determination of surface potential and electrical double-layer
706 structure at the aqueous electrolyte-nanoparticle interface. *Physical Review X* **6**, 011007
707 (2016).

708 21 Dewan, S. *et al.* Structure of water at charged interfaces: A molecular dynamics study.
709 *Langmuir* **30**, 8056-8065 (2014).

710 22 Piontek, S. M. *et al.* Probing heterogeneous charge distributions at the α -Al₂O₃
711 (0001)/H₂O interface. *Journal of the American Chemical Society* **142**, 12096-12105
712 (2020).

713 23 Lee, S. S., Koishi, A., Bourg, I. C. & Fenter, P. Ion correlations drive charge
714 overscreening and heterogeneous nucleation at solid-aqueous electrolyte interfaces.
715 *Proceedings of the National Academy of Sciences* **118**, e2105154118 (2021).

716 24 Rashwan, M. *et al.* Structure of the Silica/Divalent Electrolyte Interface: Molecular Insight
717 into Charge Inversion with Increasing pH. *The Journal of Physical Chemistry C* **124**,
718 26973-26981 (2020).

719 25 Nakouzi, E. *et al.* Atomic-scale variations of interfacial water structure driven by site-
720 specific chemistry. (2020).

721 26 Yang, Y., Mayer, K. M., Wickremasinghe, N. S. & Hafner, J. H. Probing the lipid
722 membrane dipole potential by atomic force microscopy. *Biophysical journal* **95**, 5193-
723 5199 (2008).

724 27 Hapala, P. *et al.* Mapping the electrostatic force field of single molecules from high-
725 resolution scanning probe images. *Nature communications* **7**, 1-8 (2016).

726 28 Bonagiri, L. K. S. *et al.* Real-space charge density profiling of electrode-electrolyte
727 interfaces with angstrom depth resolution. *ACS nano* **16**, 19594-19604 (2022).

728 29 Nakouzi, E. *et al.* Moving beyond the Solvent-Tip Approximation to Determine Site-
729 Specific Variations of Interfacial Water Structure through 3D Force Microscopy. *The
730 Journal of Physical Chemistry C* **125**, 1282-1291 (2021).

731 <https://doi.org/10.1021/acs.jpcc.0c07901>

732 30 Sayle, T. X. *et al.* Structure-activity map of ceria nanoparticles, nanocubes, and
733 mesoporous architectures. *Chemistry of Materials* **28**, 7287-7295 (2016).

734 31 Ong, S., Zhao, X. & Eisenthal, K. B. Polarization of water molecules at a charged
735 interface: second harmonic studies of the silica/water interface. *Chemical Physics
736 Letters* **191**, 327-335 (1992).

737 32 Azam, M. S., Weeraman, C. N. & Gibbs-Davis, J. M. Specific cation effects on the
738 bimodal acid-base behavior of the silica/water interface. *The journal of physical
739 chemistry letters* **3**, 1269-1274 (2012).

740 33 Darlington, A. M. & Gibbs-Davis, J. M. Bimodal or trimodal? The influence of starting pH
741 on site identity and distribution at the low salt aqueous/silica interface. *The Journal of
742 Physical Chemistry C* **119**, 16560-16567 (2015).

743 34 Gibbs-Davis, J. M., Kruk, J. J., Konek, C. T., Scheidt, K. A. & Geiger, F. M. Jammed
744 acid-base reactions at interfaces. *Journal of the American Chemical Society* **130**,
745 15444-15447 (2008).

746 35 Jun, Y.-S. *et al.* Classical and Nonclassical Nucleation and Growth Mechanisms for
747 Nanoparticle Formation. *Annual Review of Physical Chemistry* **73**, 453-477 (2022).

748 36 Jun, Y. S., Kim, D. & Neil, C. W. Heterogeneous Nucleation and Growth of Nanoparticles
749 at Environmental Interfaces. *Accounts of Chemical Research* **49**, 1681-1690 (2016).

750 37 Isaienko, O. & Borguet, E. Hydrophobicity of hydroxylated amorphous fused silica
751 surfaces. *Langmuir* **29**, 7885-7895 (2013).

752 38 Cyran, J. D. *et al.* Molecular hydrophobicity at a macroscopically hydrophilic surface.
753 *Proceedings of the national academy of sciences* **116**, 1520-1525 (2019).

754 39 Leung, K., Nielsen, I. M. & Criscenti, L. J. Elucidating the bimodal acid–base behavior of
755 the water–silica interface from first principles. *Journal of the American Chemical Society*
756 **131**, 18358–18365 (2009).

757 40 Pfeiffer-Laplaud, M., Costa, D., Tielens, F., Gaigeot, M.-P. & Sulpizi, M. Bimodal acidity
758 at the amorphous silica/water interface. *The Journal of Physical Chemistry C* **119**,
759 27354–27362 (2015).

760 41 Wagner, M., Meyer, B., Setvin, M., Schmid, M. & Diebold, U. Direct assessment of the
761 acidity of individual surface hydroxyls. *Nature* **592**, 722–725 (2021).

762 42 Macias-Romero, C., Nahalka, I., Okur, H. I. & Roke, S. Optical imaging of surface
763 chemistry and dynamics in confinement. *Science* **357**, 784–788 (2017).

764 43 Kwon, K. D., Vadillo-Rodriguez, V., Logan, B. E. & Kubicki, J. D. Interactions of
765 biopolymers with silica surfaces: Force measurements and electronic structure
766 calculation studies. *Geochimica et Cosmochimica Acta* **70**, 3803–3819 (2006).

767 44 DeWalt-Kerian, E. L. *et al.* pH-dependent inversion of Hofmeister trends in the water
768 structure of the electrical double layer. *The journal of physical chemistry letters* **8**, 2855–
769 2861 (2017).

770 45 Schwierz, N., Horinek, D., Sivan, U. & Netz, R. R. Reversed Hofmeister series—The rule
771 rather than the exception. *Current opinion in colloid & interface science* **23**, 10–18
772 (2016).

773 46 Ilgen, A. G., Leung, K., Criscenti, L. J. & Greathouse, J. A. Adsorption at Nanoconfined
774 Solid–Water Interfaces. *Annual Review of Physical Chemistry* (2023).

775 47 Sit, I., Wu, H. & Grassian, V. H. Environmental Aspects of Oxide Nanoparticles: Probing
776 Oxide Nanoparticle Surface Processes Under Different Environmental Conditions.
777 *Annual Review of Analytical Chemistry* **14**, 489–514 (2021).

778 48 Ilgen, A. G. *et al.* Defining silica–water interfacial chemistry under nanoconfinement
779 using lanthanides. *Environmental Science: Nano* **8**, 432–443 (2021).

780 49 Zhu, Y. *et al.* Ionic surface propensity controls pH in nanopores. *Chem* **8**, 1–15 (2022).

781 50 Azam, S., Darlington, A. & Gibbs-Davis, J. M. The influence of concentration on specific
782 ion effects at the silica/water interface. *Journal of Physics: Condensed Matter* **26**,
783 244107 (2014).

784 51 Konek, C. T. *et al.* Interfacial acidities, charge densities, potentials, and energies of
785 carboxylic acid-functionalized silica/water interfaces determined by second harmonic
786 generation. *Journal of the American Chemical Society* **126**, 11754–11755 (2004).

787 52 Gershevitz, O. & Sukenik, C. N. In situ FTIR-ATR analysis and titration of carboxylic
788 acid-terminated SAMs. *Journal of the American Chemical Society* **126**, 482–483 (2004).

789 53 Winter, N., Vieceli, J. & Benjamin, I. Hydrogen-bond structure and dynamics at the
790 interface between water and carboxylic acid-functionalized self-assembled monolayers.
791 *The Journal of Physical Chemistry B* **112**, 227–231 (2008).

792 54 Jordan, D. S., Saslow, S. A. & Geiger, F. M. Exponential sensitivity and speciation of Al
793 (III), Sc (III), Y (III), La (III), and Gd (III) at fused silica/water interfaces. *The Journal of
794 Physical Chemistry A* **115**, 14438–14445 (2011).

795 55 Malin, J. N., Holland, J. G. & Geiger, F. M. Free energy relationships in the electric
796 double layer and alkali earth speciation at the fused silica/water interface. *The Journal of
797 Physical Chemistry C* **113**, 17795–17802 (2009).

798 56 Criscenti, L. J. & Sverjensky, D. A. The role of electrolyte anions (ClO₄⁻, NO₃⁻, and Cl⁻)
799 in divalent metal (M²⁺) adsorption on oxide and hydroxide surfaces in salt solutions.
800 *American Journal of Science* **299**, 828–899 (1999).

801 57 Zhang, Z. *et al.* Structure of hydrated Zn²⁺ at the rutile TiO₂ (110)-aqueous solution
802 interface: Comparison of X-ray standing wave, X-ray absorption spectroscopy, and
803 density functional theory results. *Geochimica et Cosmochimica Acta* **70**, 4039–4056
804 (2006).

805 58 Soderholm, L., Skanthakumar, S. & Wilson, R. E. Structures and energetics of erbium
806 chloride complexes in aqueous solution. *The Journal of Physical Chemistry A* **113**, 6391-
807 6397 (2009).

808 59 Dove, P. M. The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees
809 to 300 degrees C. *American Journal of Science* **294**, 665 (1994).
810 <https://doi.org/10.2475/ajs.294.6.665>

811 60 Icenhower, J. P. & Dove, P. M. The dissolution kinetics of amorphous silica into sodium
812 chloride solutions: effects of temperature and ionic strength. *Geochimica et*
813 *Cosmochimica Acta* **64**, 4193-4203 (2000).

814 61 Kubicki, J. D., Sofo, J. O., Skelton, A. A. & Bandura, A. V. A new hypothesis for the
815 dissolution mechanism of silicates. *The Journal of Physical Chemistry C* **116**, 17479-
816 17491 (2012).

817 62 Dewan, S., Yeganeh, M. S. & Borguet, E. Experimental correlation between interfacial
818 water structure and mineral reactivity. *The Journal of Physical Chemistry Letters* **4**,
819 1977-1982 (2013).

820 63 Li, Q. & Jun, Y.-S. Salinity-Induced Reduction of Interfacial Energies and Kinetic Factors
821 during Calcium Carbonate Nucleation on Quartz. *The Journal of Physical Chemistry C*
822 **123**, 14319-14326 (2019).

823 64 Jun, Y. S., Lee, B. & Waychunas, G. A. In situ observations of nanoparticle early
824 development kinetics at mineral-water interfaces. *Environmental Science and*
825 *Technology* **44**, 8182-8189 (2010).

826 65 Neil, C. W., Lee, B. & Jun, Y. S. Different Arsenate and Phosphate Incorporation Effects
827 on the Nucleation and Growth of Iron(III) (Hydr)oxides on Quartz. *Environmental Science*
828 & *Technology* **48**, 11883-11891 (2014).

829 66 Ray, J. R., Lee, B., Baltrusaitis, J. & Jun, Y. S. Formation of Iron(III) Hydroxides on
830 Polyaspartate- and Alginate-Coated SiO₂: Effects of Substrate Hydrophilicity and
831 Functional Groups at the Surface. *Environ. Sci. Technol.* **46**, 13167-13175 (2012).

832 67 Li, Q., Steefel, C. I. & Jun, Y. S. Incorporating Nanoscale Effects into a Continuum-Scale
833 Reactive Transport Model for CO₂-Deteriorated Cement. *Envir. Sci. & Tech.* **51**, 10861-
834 10871 (2017).

835 68 Hu, Y., Lee, B., Bell, C. & Jun, Y. S. Environmentally abundant anions influence the
836 nucleation, growth, oswald ripening, and aggregation of hydrous Fe(III) oxides.
837 *Langmuir* **28**, 7737-7746 (2012).

838 69 Givens, B. E., Diklich, N. D., Fiegel, J. & Grassian, V. H. Adsorption of bovine serum
839 albumin on silicon dioxide nanoparticles: Impact of pH on nanoparticle–protein
840 interactions. *Biointerphases* **12**, 02D404 (2017).

841 70 Xu, Z. & Grassian, V. H. Bovine Serum Albumin Adsorption on TiO₂ Nanoparticle
842 Surfaces: Effects of pH and Coadsorption of Phosphate on Protein–Surface Interactions
843 and Protein Structure. *The Journal of Physical Chemistry C* **121**, 21763-21771 (2017).

844 71 Ustunol, I. B., Coward, E. K., Quirk, E. & Grassian, V. H. Interaction of beta-lactoglobulin
845 and bovine serum albumin with iron oxide (α -Fe₂O₃) nanoparticles in the presence and
846 absence of pre-adsorbed phosphate. *Environmental Science: Nano* **8**, 2811-2823
847 (2021).

848 72 Kim, D. & Grassian, V. H. Attenuated Total Reflection-Fourier Transform Infrared and
849 Atomic Force Microscopy-Infrared Spectroscopic Investigation of Suwannee River Fulvic
850 Acid and Its Interactions with α -FeOOH. *ACS Earth and Space Chemistry* **6**, 81-89
851 (2021).

852 73 Jayalath, S., Wu, H., Larsen, S. C. & Grassian, V. H. Surface adsorption of Suwannee
853 River humic acid on TiO₂ nanoparticles: a study of pH and particle size. *Langmuir* **34**,
854 3136-3145 (2018).

855 74 Wheeler, K. E. *et al.* Environmental dimensions of the protein corona. *Nature Nanotechnology* **16**, 617-629 (2021).

856 75 Mauvisseau, Q. *et al.* The multiple states of environmental DNA and what is known about their persistence in aquatic environments. *Environmental Science & Technology* **56**, 5322-5333 (2022).

857 76 DelloStritto, M., Piontek, S. M., Klein, M. L. & Borguet, E. Relating interfacial order to sum frequency generation with Ab initio simulations of the aqueous Al₂O₃ (0001) and (1120) interfaces. *The Journal of Physical Chemistry C* **122**, 21284-21294 (2018).

858 77 Tuladhar, A. *et al.* Ions tune interfacial water structure and modulate hydrophobic interactions at silica surfaces. *Journal of the American Chemical Society* **142**, 6991-7000 (2020).

859 78 Yalcin, S. E., Legg, B. A., Yeşilbaş, M., Malvankar, N. S. & Boily, J.-F. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension. *Science advances* **6**, eaaz9708 (2020).

860 79 Le Traon, C., Aquino, T., Bouchez, C., Maher, K. & Le Borgne, T. Effective kinetics driven by dynamic concentration gradients under coupled transport and reaction. *Geochimica et Cosmochimica Acta* **306**, 189-209 (2021).

861 80 Bakaev, V., Bakaeva, T. & Pantano, C. On inverse adsorption chromatography. 2. Determination of isotherms and heats of adsorption as well as energy distributions of adsorption sites. *The Journal of Physical Chemistry C* **111**, 7473-7486 (2007).

862 81 Criscenti, L. J. & Sverjensky, D. A. A single-site model for divalent transition and heavy metal adsorption over a range of metal concentrations. *Journal of colloid and interface science* **253**, 329-352 (2002).

863 82 Kubicki, J. D., Kabengi, N., Chrysochoou, M. & Bompot, N. Density functional theory modeling of chromate adsorption onto ferrihydrite nanoparticles. *Geochemical transactions* **19**, 1-12 (2018).

864 83 Kabengi, N. J., Chrysochoou, M., Bompot, N. & Kubicki, J. D. An integrated flow microcalorimetry, infrared spectroscopy and density functional theory approach to the study of chromate complexation on hematite and ferrihydrite. *Chemical Geology* **464**, 23-33 (2017).

865 84 Bompot, N. M., Chrysochoou, M. & Machesky, M. L. A unified surface complexation modeling approach for chromate adsorption on iron oxides. *Environmental science & technology* **53**, 6352-6361 (2019).

866 85 Livi, K. J., Villalobos, M., Ramasse, Q., Brydson, R. & Salazar-Rivera, H. S. Surface Site Density of Synthetic Goethites and Its Relationship to Atomic Surface Roughness and Crystal Size. *Langmuir* **39**, 556-562 (2022).

867 86 Li, Q. & Jun, Y.-S. The apparent activation energy and pre-exponential kinetic factor for heterogeneous calcium carbonate nucleation on quartz. *Communications Chemistry* **1**, 56 (2018).

868 87 Li, Q., Fernandez-Martinez, A., Lee, B., Waychunas, G. A. & Jun, Y.-S. Interfacial energies for heterogeneous nucleation of calcium carbonate on mica and quartz. *Environmental science & technology* **48**, 5745-5753 (2014).

869 88 Neil, C. W. & Jun, Y. S. Fe³⁺ Addition Promotes Arsenopyrite Dissolution and Iron(III) (Hydr)oxide Formation and Phase Transformation. *Environmental Science & Technology Letters* **3**, 30-35 (2016).

870 89 Neil, C. W., Yang, Y. J., Schupp, D. & Jun, Y. S. Water Chemistry Impacts on Arsenic Mobilization from Arsenopyrite Dissolution and Secondary Mineral Precipitation: Implications for Managed Aquifer Recharge. *Environmental Science & Technology* **48**, 4395-4405 (2014).

904 90 Wu, X., Bowers, B., Kim, D., Lee, B. & Jun, Y.-S. Dissolved Organic Matter Affects
905 Arsenic Mobility and Iron(III) (hydr)oxide Formation: Implications for Managed Aquifer
906 Recharge. *Environmental Science & Technology* **53**, 14357-14367 (2019).

907 91 Wu, X. *et al.* Effects of Phosphate, Silicate, and Bicarbonate on Arsenopyrite Dissolution
908 and Secondary Mineral Precipitation. *ACS Earth and Space Chemistry* **4**, 515-525
909 (2020).

910 92 Lutzenkirchen, J. *Surface complexation modelling*. (Elsevier, 2006).

911 93 Metropolis, N. & Ulam, S. The monte carlo method. *Journal of the American statistical
912 association* **44**, 335-341 (1949).

913 94 Jansen, A. P. J. *An introduction to kinetic Monte Carlo simulations of surface reactions*.
914 Vol. 856 (Springer, 2012).

915 95 Zhang, L. & Lüttge, A. Aluminosilicate dissolution kinetics: a general stochastic model.
916 *The Journal of Physical Chemistry B* **112**, 1736-1742 (2008).

917 96 Kurganskaya, I. & Lüttge, A. Kinetic Monte Carlo simulations of silicate dissolution:
918 model complexity and parametrization. *The Journal of Physical Chemistry C* **117**, 24894-
919 24906 (2013).

920 97 Pedrosa, T., Kurganskaya, I., Fischer, C. & Lüttge, A. A statistical approach for analysis
921 of dissolution rates including surface morphology. *Minerals* **9**, 458 (2019).

922 98 Lüttge, A., Arvidson, R. S., Fischer, C. & Kurganskaya, I. Kinetic concepts for
923 quantitative prediction of fluid-solid interactions. *Chemical Geology* **504**, 216-235 (2019).

924 99 Guren, M. G., Renard, F. & Noiri, C. Dissolution rate variability at carbonate surfaces:
925 4D X-ray micro-tomography and stochastic modeling investigations. *Frontiers in Water* **5**,
926 1185608 (2023).

927 100 Karimzadeh, L. & Fischer, C. Implementing heterogeneous crystal surface reactivity in
928 reactive transport simulations: The example of calcite dissolution. *ACS Earth and Space
929 Chemistry* **5**, 2408-2418 (2021).

930 101 Schabernack, J. & Fischer, C. Improved kinetics for mineral dissolution reactions in
931 pore-scale reactive transport modeling. *Geochimica et Cosmochimica Acta* **334**, 99-118
932 (2022).

933 102 Cygan, R. T. Molecular modeling in mineralogy and geochemistry. *Molecular Modeling
934 Theory: Applications in the Geosciences* **42**, 1-35 (2001).

935 103 Montes de Oca Zapiain, D., Wood, M., Sema, D. & Thompson, A. Optimal Development
936 of Transferable Machine Learning Interatomic Potentials using Active Learning. *Bulletin
937 of the American Physical Society* (2023).

938 104 Akai, T., Blunt, M. J. & Bijeljic, B. Pore-scale numerical simulation of low salinity water
939 flooding using the lattice Boltzmann method. *Journal of colloid and interface science*
940 **566**, 444-453 (2020).

941 105 Fitts, J. P. *et al.* Second-harmonic generation and theoretical studies of protonation at
942 the water/α-TiO₂ (1 1 0) interface. *Chemical Physics Letters* **411**, 399-403 (2005).

943 106 Zhong, S. *et al.* Machine learning: new ideas and tools in environmental science and
944 engineering. *Environmental Science & Technology* **55**, 12741-12754 (2021).

945