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Abstract

Engineered plasmids have been workhorses of recombinant DNA technology for
nearly half a century. Plasmids are used to clone DNA sequences encoding new
genetic parts and to reprogram cells by combining these parts in new ways. Historically,
many genetic parts on plasmids were copied and reused without routinely checking their
DNA sequences. With the widespread use of high-throughput DNA sequencing
technologies, we now know that plasmids often contain variants of common genetic
parts that differ slightly from their canonical sequences. Because the exact provenance
of a genetic part on a particular plasmid is usually unknown, it is difficult to determine
whether these differences arose due to mutations during plasmid construction and
propagation or due to intentional editing by researchers. In either case, it is important to
understand how the sequence changes alter the properties of the genetic part. We
analyzed the sequences of over 50,000 engineered plasmids using depositor metadata
and a metric inspired by the natural language processing field. We detected 217
uncatalogued genetic part variants that were especially widespread or were likely the
result of convergent evolution or engineering. Several of these uncatalogued variants
are known mutants of plasmid origins of replication or antibiotic resistance genes that
are missing from current annotation databases. However, most are uncharacterized,
and 3/5 of the plasmids we analyzed contained at least one of the uncatalogued
variants. Our results include a list of genetic parts to prioritize for refining engineered
plasmid annotation pipelines, highlight widespread variants of parts that warrant further

investigation to see whether they have altered characteristics, and suggest cases where
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unintentional evolution of plasmid parts may be affecting the reliability and

reproducibility of science.

Author Summary

Plasmids are used in molecular biology and biotechnology for a wide variety of
tasks such as cloning DNA, expressing recombinant proteins, and creating vaccines.
One challenge in working with plasmids is that there has been a long, and often lost
history of pieces of plasmids being copied and remixed by researchers to create new
plasmids. Current databases used for annotating key genetic parts in plasmids are
incomplete, especially with respect to cataloguing closely related versions of parts that
can have very different characteristics. Some genetic part variants have arisen due to
purposeful editing while others are the result of unplanned mutations and evolution.
When a researcher finds differences between a database sequence and a genetic part
in their newly constructed plasmid, it is often unclear how and when it arose and
whether it will affect their experiments. We identified 217 genetic part variants that are
either widespread or have likely arisen independently more than once on plasmids due
to convergent evolution or engineering. We propose that these variants should be
prioritized for inclusion in curated databases of engineered DNA sequences and for

functional characterization to improve the reliability and reproducibility of science.

Introduction

Engineered plasmids are ubiquitous tools in the biological sciences. They are
used for a wide variety of tasks, ranging from routine cloning of recombinant DNA and

protein overexpression to reprogramming cells with new enzymes, sensors, and genetic
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circuits [1-3]. Engineering plasmids by assembling DNA from different natural sources
began in 1973 with the construction of plasmid pSC101 [4]. Chemically synthesizing
DNA sequences and introducing them into plasmids has now been commonplace for
decades [5]. Many plasmids have been passed from researcher to researcher, and their
genetic parts have been copied and remixed, practices facilitated by plasmid
repositories [6—8]. The net result is that the genetic components on any plasmid used in
a laboratory today often have long, circuitous, and usually incompletely known histories.
It has only been standard practice to check the sequences of certain pieces of plasmids,
such as by Sanger sequencing a gene of interest inserted by a researcher into a vector
backbone, to validate that they are present exactly as designed. Large portions of these
plasmids, including origins of replication and antibiotic resistance genes that are critical
for plasmid maintenance, are typically assumed to be immutable or to have only
sustained mutations with no effect on their performance.

Recently, DNA sequencing has become much more affordable and high-
throughput [9,10]. Computational pipelines have been developed for assembling
accurate and complete plasmid sequences [11-13], and researchers now have
complete information about pieces of plasmids that were rarely sequenced in the past.
These full plasmid sequences reveal that there are often discrepancies, usually of one
to a few nucleotides, between the actual parts on a plasmid and their expected,
canonical sequences. Plasmid DNA sequences need to be annotated with information
about the genetic parts they contain so that their contents can be checked. Annotation
programs, such as PlasMapper [14], and commercial software, like SnapGene, tolerate

some variation in the matches they report to the consensus sequence for a genetic part
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in a database. However, they do not alert a user when they encounter these imperfect
matches, which may obscure changes in the sequence of a part that have functional
consequences. We recently developed a plasmid annotation tool, pLannotate [15], that
reports the nucleotide identity of imperfect matches so users can evaluate parts that are
not in agreement with the reference sequences.

When a researcher encounters a change from the consensus sequence for a
critical genetic part, they are confronted with questions and choices. Should they use
the plasmid “as is” or spend time trying to correct the change? Does the change matter
for the function of the genetic part? Was the change an edit that was introduced by a
prior researcher for some forgotten purpose or was it due to a random mutation?

Unfortunately, there is no comprehensive central repository of genetic part
sequences that a researcher can consult to answer these questions. Databases like
iIGEM’s Registry of Standard Biological Parts [16], the Joint BioEnergy Institute's
Inventory of Composable Elements (JBEI ICE) [17], and SynBioHub [18] contain many
plasmid and genetic part sequences. However, they are not fully curated and are known
to also contain spurious and incorrect information [19]. GenoLIB [20] and the related
SnapGene database are computationally and manually compiled databases of a
fundamental set of 293 common plasmid parts. They include multiple, curated entries
for major families of related parts (e.g., different aminoglycoside resistance genes), but
do not attempt to capture the functional implications of more subtle sequence variation.
Only specialized databases reach this level of precision (e.g., FPbase for fluorescent

proteins) [21]. These resources do not exist for most categories of critical genetic parts.
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How do new variants of genetic parts found on engineered plasmids originate?
Often these changes are due to researchers finding ways to improve or modify part
performance. For example, the lacl? promoter has a single base change that increases
its transcription initiation rate by 10-fold relative to the wild-type /acl promoter found in
the E. coli genome [22]. Hundreds of fluorescent proteins have been engineered by
introducing changes into natural sequences to alter their spectra, stability, maturation
rates, and other properties for imaging applications [21]. CRISPR interference
(CRISPRI) uses a catalytically dead Cas9 (dCas9) for the purposes of knocking down
gene expression [23]. This variant has two mutations that inactivate the nuclease
domain of Cas9, and these mutations have been engineered independently by different
groups in Cas9 proteins encoded by different plasmid lineages [24,25]. Other changes
may have purposes that are more difficult to ascertain, such as when researchers
introduce silent changes in protein-coding sequences to add or avoid restriction enzyme
cut sites to make parts compatible with certain DNA assembly methods.

Further complicating the picture, genetic part variants can also arise due to
evolution. Mutations occur when DNA sequences are copied and assembled into new
plasmids in vitro. When a single-cell transformant of a plasmid is picked, any mutations
it harbors become fixed in all of that plasmid’s progeny. There are further opportunities
for mutations to arise due to in vivo errors in DNA replication and repair as plasmids are
propagated in bacterial cells. If the mutated plasmid functions as expected by a
researcher, and they don’t detect or reject a mutation when validating the plasmid
sequence, it will be retained. In some cases, selection will even favor mutated plasmids.

Engineered plasmids can impose a significant fitness burden on the host cell if they
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divert resources needed for cellular replication or produce toxic products [26—29]. In
these cases, there is a strong selection pressure favoring cells with plasmids mutated in
ways that alleviate this burden by reducing or eliminating the designed function [30-33].
Researchers may also impose other types of selection on part/plasmid function, by
picking the most fluorescent or largest colonies after a transformation, for example.
Precisely annotating the presence and properties of common genetic part
variants—whether they result from undocumented engineering or unintentional
evolution—is key to improving reliability and reproducibility in the biological sciences.
However, there are many of these variants, and determining which ones to prioritize for
time-consuming manual curation and experimental characterization is a challenge.
Here, we develop methods for computationally identifying widespread genetic part
variants and variants that recurrently arose from convergent engineering or evolution
given a large set of plasmid sequences. We use these approaches to create a list of
217 currently uncatalogued genetic part variants that should be prioritized for further

characterization and inclusion in annotation databases.

Results

Variants of canonical genetic part sequences are common in

engineered plasmids

We used pLannotate [15] to annotate 983,436 genetic parts in 51,384
engineered plasmids in the Addgene repository [6,7] that have been fully sequenced.
We found 171,828 examples of parts that did not match their canonical sequences

present in the databases used for annotation. These part variants can be broadly
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classified into 14 different categories (Fig 1). As expected, we observed more variants
for more common types of parts and for types of parts that generally have longer
sequences. The most common non-canonical plasmid parts are protein-coding
sequences, with 73,884 total variants observed, which are comprised of 10,406 distinct
variant sequences (Fig 1A). The part type that had the next greatest number of variants
was origins of replication (46,677 observations of 607 distinct variant sequences), and
the third most common variant type was promoters (24,319 observations of 905 distinct

variant sequences).

A Protein coding sequence - | M Total parts A ] [TH i Protein coding sequence
Origin of replication - To_ta_l Vanan_ts u +H F Origin of replication
A Distinct variant
Promoter ~ sequences | —_— T F Promoter
Protein binding site A | | — 11— I Protein binding site
Other A [ ] . —_— T T + Other
Q @
g Polyadenylation signal A ] e I + Polyadenylation signal o
@
H Terminator L —— {0 [Terminator 5
o
o
1) Enhancer - A | —{1]  Enhancer g
]

S Intron A | —Th FIntron g
o ]
Internal ribosome entry site A —T] F Internal ribosome entry site
Long terminal repeat - A | | e I 1 ] i Long terminal repeat
Noncoding RNA 1 A | e I ] rNoncoding RNA
Mobile element | A (N  Mobile element
Ribosome binding site A | r Ribosome binding site
T T T T T T T T T T
10 100 10,000 100,000 1,000,000 96 97 98 99 100

Percent identity

Fig 1. Many non-canonical genetic parts are found on plasmids. (A) Overall

representation in Addgene plasmids of genetic part variants with sequences that differ

slightly from canonical features present in annotation databases. Within each part type,

the total number of genetic parts (green squares), total number of genetic parts that are

variants (i.e., differ from the canonical sequence) (orange circles), and number of

distinct genetic part variant sequences (i.e., counting each unique sequence that differs

from the canonical sequence one time) (blue triangles) are plotted. Part types are sorted

in descending order by the number of total variants in each category. (B) Distributions of
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canonical sequences. Boxes represent lower and upper quartiles (the interquartile
range). Vertical lines within each box are medians. The whiskers correspond to 1.5

times the interquartile range. Points are outliers outside this range.

Variants of protein coding sequences and origins of replication are relatively
close in sequence to their database counterparts. Variants of smaller parts, such as
promoters or protein binding sites, exhibit higher relative levels of sequence divergence
(Fig 1B). Some of the variants we found are known but not differentiated in current
databases used for plasmid annotation. For example, pLannotate and SnapGene
currently have a single database entry for the ColE1 plasmid origin of replication, which
is the pBR322 variant, the sequence found in a natural plasmid. However, most
plasmids contain the engineered pUC19 variant of this origin, which includes a single

point mutation that increases plasmid copy number by a factor of about 10-fold [34,35].

Some widespread genetic part variants are found on

plasmids created by many different labs

The sheer number of plasmid part variants is a challenge for improving plasmid
annotation. Our goal is to determine which variants should be catalogued and prioritized
as candidates for further investigation, better documentation, and inclusion in annotation
databases. The naive approach would be to catalog all previously undocumented
variants, but this is not practical. Engineered plasmids experience severe population
bottlenecks when they are constructed and propagated in the laboratory. When

plasmids are transformed into a population of cells, typically only a single plasmid
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enters a successful transformant. It is also standard practice to re-streak cells and
isolate a colony derived from a single cell when obtaining a new plasmid from another
researcher or from a repository. Therefore, many part variants may be a result of recent
genetic drift (fixation of mutations due to chance) caused by these extreme population
bottlenecks. Cataloging these “random” variants is not likely to be particularly
informative, especially if they are found in just one or a few plasmids.

One might, therefore, propose documenting part variants with the most overall
observations. However, this strategy still encounters the same issue. Most variants are
found on sets of plasmids deposited by just one or two labs (Fig 2A), and some of these
variants have become prevalent due to chance (Fig 2B). These cases typically occur
when a single lab deposits a collection of hundreds of related plasmids that all share the
same unique variant of a genetic part. For example, one lab deposited 597 highly
similar plasmids, which includes their general lab plasmids as well as a subset used for
expressing human SH3 domains [36]. These plasmids all share a single base change in
the ColE1 origin of replication. This mutation was almost certainly present in the
backbone of an ancestral plasmid they inherited, and its propagation does not seem to
be intentional. Even though this variant is the most common origin of replication variant
measured in terms of the gross number of observations (besides the canonical pUC19
variant), we would assign it a relatively low priority for characterization since it appears

to be a one-off mutation that was unintentionally cloned into one set of related plasmids.
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210 Fig 2. Most genetic part variants are found in plasmids from one or two labs, but
211 some are more widespread. (A) Total number of distinct variant sequences found in
212  plasmids from one or two depositing labs (1-2) versus found in plasmids from three or
213  more depositing labs (23). (B) All genetic part variants plotted by how many times they
214  were observed versus the number of labs that deposited a plasmid with that variant.
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216 variants that were widespread. The orange vertical line at 1205 variant observations is
217  the cutoff above which we did not perform the authorship analysis to find cases of

218 convergent evolution or engineering.

219

220 While deciding which variants to prioritize based on their raw frequency may not be
221  particularly useful, we believe that cataloging variants found in plasmids deposited by
222 many independent labs does have value. In this case, these variants may also have
223 arisen due to chance in a single progenitor plasmid, but this event likely occurred years

224  or decades in the past, so the potential impact has spread such that it could be affecting
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many more researchers and experiments. Therefore, we flagged all 75 genetic part
variants found in plasmids from least 20 labs (Fig 2B, above the blue horizontal line) for

inclusion in our set of high-priority variants of interest.

Recurrent engineering or evolution of unannotated genetic

part variants can be predicted using a design similarity score

Variants that are from a few or a middling number of labs are harder to classify. If
a variant appears in unrelated plasmids, it could be an engineered variant that is
missing from current annotation databases or an evolved variant that arose more than
once in unrelated plasmid lineages. Whether designed or evolved, these recurrent
mutations are especially likely to affect the function of a part, so it is a high priority to
document these cases even if they are in fewer total plasmids. To identify likely
examples of convergent engineering and evolution, we analyzed plasmids as authored
works. In the natural language processing and information retrieval fields, inverse
document frequency (IDF) [37,38] is a metric employed to predict shared authorship
[39-41]. IDF scores the rarity of a word or phrase by counting the observations within a
document and compares that to its relative frequency in an entire corpus of documents.
We created an IDF-inspired metric for use with biological sequences, calculating a
quantity that we term the design similarity (DS) score and using it to group plasmids.

The procedure we developed to analyze sets of plasmids containing the same
part variant (shared unique word) for signs of shared authorship is shown in Fig 3. We
began by identifying all other contiguous sequence segments shared by these plasmids
(shared phrases between documents) and tabulating the frequencies of each of these

segments in the entire database of all plasmids (how rare the phrases are). We
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calculated a DS score for each pair of plasmids from these frequencies. Then, we
grouped plasmids by constructing a network graph from an adjacency matrix of these
DS scores. This step used a score cutoff determined by examining the distribution of DS
scores between random plasmids from different labs (Fig 4, top). Finally, we divided the
resulting network graph into connected clusters that represent groups of plasmids that

are unlikely to share the part variant due to common descent or copying of the part.

Q Pairwise (‘/ { Calculate plasmid1 plasmid2
BLAST BLAST \j DS score [pBT?: pXR2 2. 3]

Shared Variant —} Shared Segments V4 ] pBT3  pYF1 9.8

All plasmids Construct
Clusters similarity
matrix
o,
] / Analyze
» network Apply
graph thl’eshold
— _

PR

)\

Fig 3. Method for identifying recurrent genetic part variants that likely arose from

convergent evolution or engineering. All plasmids containing the same genetic part
variant are analyzed as a set. Segments shared by each pair of these plasmids are
identified and queried against the full plasmid database. The results are used to
calculate a design similarity (DS) score between the two plasmids. DS scores for all
comparisons are used to construct a network graph of plasmid relatedness. Each
separate cluster in the final graph is predicted to represent a set of plasmids in which

the variant arose independently.
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265 Fig 4. Design similarity scores reliably identify plasmids that are likely to be

266 related while percent identity does not. The distributions of DS scores and percent
267 identities for pairwise comparisons of plasmids that share undocumented part variants
268 are plotted. Every plasmid containing a given genetic part variant that was observed
269 1205 or fewer total times was compared to every other plasmid with that part variant for
270 atotal of 7,508,114 comparisons. High pairwise percent identity is not compelling

271 evidence that plasmids are related when they share a commonly used backbone, as
272 illustrated by the plasmid pair shown to the left. The DS score of these two plasmids is
273 low in this instance. Low pairwise percent identity also does not necessarily indicate that
274  plasmids are unrelated, as illustrated by the plasmid pair shown to the right. In this

275 case, a high DS score highlights small, but unique sequences present in both plasmids,
276  which is evidence of shared authorship. Asterisks indicate the location of the shared

277  mutation in the associated genetic part variant that differentiates it from the canonical
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sequence in the annotation database. The distribution of DS scores between 100,000
randomly selected pairs of plasmids from different labs is shown above the plot. The
grey line indicates the 95" percentile of the distribution, which was used as the score

cutoff for shared plasmid authorship.

If multiple distinct authorship clusters are predicted for a variant, it likely had
more than one independent origin due to recurrent engineering or evolution. In this
case, it should be a priority to document the variant and further characterize whether its
function differs from that of the canonical sequence. Because the DS scoring algorithm
involves making pairwise comparisons of all plasmids containing a given genetic part
variant, it was only computationally feasible for us to apply it to variants with 1205 or
fewer observations (Fig. 2B, left of orange vertical line), which included all variants
found on plasmids deposited by fewer than 20 labs that we had not already flagged as
being of interest simply because they were widespread. As expected, plasmids sharing
a variant that were deposited by the same lab are almost always found within a single
cluster at the end of this procedure. This tracks with the intuition that a depositing lab
likely recycles their plasmid backbones and pieces of those plasmids for various
purposes. In total, 149 of the variants tested using the DS clustering procedure were
predicted to occur in two or more author groups. This total includes 7 of the 64 variants
tested in this way that were found in plasmids deposited by 20 or more labs.

Using the DS score as a metric has advantages over using a percent identity-
cutoff to determine if instances of the same genetic part variant on two plasmids are

related (Fig 4). Any two plasmids often share extensive stretches of DNA, but this may
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not actually indicate anything about how related the plasmids are to each other. For
example, the ColE1 origin of replication is used in nearly 95% of the plasmids in our
dataset, and 62% of plasmids contain B-lactamase as an antibiotic resistance marker.
Since these features are widely used, their co-occurrence is not convincing evidence
that a pair of plasmids is related, even if they constitute a majority of the shared
sequence identity between them (Fig. 4, left). The DS metric weights features based on
their overall rarity rather than their length or context, so that even a small part or cloning

scar can be a strong signal of shared authorship (Fig. 4, right).

Final list of widespread and recurrent genetic part variants

includes known but uncatalogued mutants

We combined the widespread and recurrent part variants we identified into a final
list of 217 currently uncatalogued genetic part variants (S1 Table). This list includes
diverse genetic parts with a wide range of functions that are used for engineering all
kinds of organisms (Fig 5). For parts designed to function in bacteria, most of the newly
identified variants of interest were plasmid origins of replication or antibiotic resistance
markers. For eukaryotic parts, promoter variants were most common. Many fluorescent
proteins, which function in both types of organisms, were also present in this list of

uncatalogued variants not found in current annotation databases.
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it was engineered or evolved multiple times from the authorship analysis (convergent,

blue). (B) Names of the canonical parts to which the 217 variants are most closely
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To validate our inclusion criteria, we looked for cases of known variants that were
uncatalogued in the initial annotation databases but were identified by our analysis. The
top two variants with 38,693 and 25,995 total observations are the pUC19 variant of the
ColE1 origin of replication and TEM-116 B-lactamase antibiotic resistance marker,
respectively (Fig 5B). These are both engineered variants that differ from their parent
sequences, pBR322 and TEM-1, by one or two bases, respectively [35,42]. These
variants were included in our list because they occurred in 220 labs. We also identified
one other canonical variant, TEM-171, which was both a frequent and recurrent variant.
TEM-171 has one of the two mutations that TEM-116 has relative to TEM-1 [42].

As an example of how these predictions can aid in directing efforts to refine
annotations of engineered DNA, one fluorescent protein variant in our list had a clear
signal of a recurrent origin due to convergent engineering. Seventeen plasmids with the
variant that were deposited by five different labs were from four authorship clusters.
This variant is a derivative of enhanced GFP (eGFP) originally described in 1996 by
Cormack et al. [43] with additional A164V and G176S amino acid substitutions. This
derivative of eGFP is not currently listed in FPbase, and none of the five publications
associated with the plasmids containing this derivative mention its provenance or the

mutations it harbors [44—48], so their effects on its function are unknown.

Discussion

It is becoming standard practice for researchers to fully sequence plasmids and
other engineered DNA constructs they use in their experiments [11,49]. These
sequences need to be validated by precisely annotating the genetic parts they contain

and recognizing unexpected sequence variation in these parts in order to ensure the
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reliability and reproducibility of science. In the work reported here, we created a list of
217 currently uncatalogued variants of common genetic parts that can be added to
databases used by annotation pipelines. These variants are a priority because they are
either already widespread in plasmids being exchanged by researchers or they appear
to have originated multiple times due to convergent engineering or evolution.

Many of the variants in our final list are in high-copy ColE1-family origins of
replication or in antibiotic resistance cassettes that are commonly paired with these
origins in E. coli vectors used for cloning and replicating DNA. These are by far the most
common genetic parts in Addgene plasmids because pUC vectors are used to
manufacture high-quality DNA for many applications, ranging from in vitro transcription
of RNA for biochemical studies to transfection into mammalian cells. Sequence variation
in these backbone components might affect cloning success or DNA yields, if a
mutation alters plasmid copy number, for example. But, these differences would be
unlikely to affect the results of downstream experiments after DNA is isolated from
bacterial cells. On the other hand, variants in other origins of replication that we
identified, such as the medium-copy p15A origin that is commonly used in plasmids
encoding synthetic biology devices meant to function in E. coli and the broad-host-range
pBBR1 origin that is used for engineering diverse bacteria, are more likely to affect
research outcomes. Overall, this logic argues for prioritizing characterization of part
variants that are important in the ultimate context in which the DNA will be used, which
includes many variants in our final list related to eukaryotic gene expression.

To detect recurrent variants that likely arose multiple times, we developed an

approach for grouping plasmids based on signals of shared authorship. Previously,
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authorship of plasmid sequences has been analyzed from a biosecurity standpoint, with
the aim of attributing an unknown plasmid to a specific lab [50,51]. All of these prior
studies analyzed the Addgene plasmid corpus. The first used deep learning to train a
convolutional neural network to predict the lab of origin of a plasmid from its DNA
sequence [52]. It correctly identified the source lab 48% of the time and the source lab
appeared in the top 10 predicted labs 70% of the time. A comparable method,
deteRNNt, used recurrent neural networks trained on plasmid sequences and
associated phenotype data to identify DNA motifs indicative of different genetic
designers [53]. It demonstrated an improvement in accuracy to 70% correct attribution
to one lab among 1,300 in the dataset. An alternative approach, PlasmidHawk [54],
opted to not use deep learning, citing the higher accuracy and higher interpretability of
sequence alignment-based techniques compared to machine learning approaches.
Their approach had 76% accuracy in identifying the lab that deposited an unknown
plasmid and could precisely single out the signature sub-sequences responsible for a
prediction. Notably, this study used an approach similar to our own where they down-
weighted observations of sequence segments that are frequent in the overall dataset,
though their metrics differ from our IDF-inspired design similarity score.

We had to infer shared authorship of plasmids to predict when a variant had
arisen multiple times because the cloning history of most plasmids is not fully known.
Ideally, one would be able to track the provenance of plasmids and their parts using the
scientific literature and/or metadata in plasmid repositories to understand which
changes to the sequence of a genetic part were intentional and when and how many

times they were introduced or arose due to mutations. QUEEN is a recent framework
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which proposes to record traceable linages of engineered plasmids by having
researchers meticulously document their construction process and store this information
as metadata in GenBank flat files [55]. Addgene is now encouraging researchers to use
QUEEN when submitting new constructs. If this or a similar metadata format for tracking
how engineered DNA sequences have been copied, remixed, and modified is widely
adopted, it will be very useful for tracking the engineering and evolution of plasmids in
the future. Many scientists who performed foundational research creating key plasmid
backbones and genetic parts in the early days of recombinant DNA technology are
retired or will be soon. It would be extremely valuable if the community could also
capture or reconstruct their knowledge of earlier plasmid construction efforts.

pLannotate and other plasmid annotation pipelines use BLAST to find matches to
genetic part sequences in a database. This simple approach has some potential
shortcomings with respect to variant detection and prediction. One is that BLAST
matches may not detect instances of a part or properly delineate their extent when there
are mutations at or near its ends. For example, if a bacterial promoter variant has a
mismatch in the =35 box at the end of the canonical promoter core sequence and this is
also where the part sequence in a database ends, the BLAST hit may only match the
downstream part of the promoter. This could result in reporting an incomplete match
that is not recognized as a variant or potentially no match at all. Compounding this
problem is the issue that some types of genetic parts and important functional variants
of these parts can be defined on multiple, overlapping scales. For a bacterial promoter,
the database sequence could be just the core element containing the =10 and -35

boxes, or it could be an extended element that includes upstream sequences such as
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UP-elements [56] or adjacent cis-regulatory elements. Computational matching
methods that force extending alignments to the boundaries of part sequences and
expert curation of how a core part and elaborated variants of that part are related could
help annotation programs deal with these difficult cases.

Ideally, we would be able to provide annotation programs with detailed
information to accompany the sequences of the 217 high-priority variants we identified,
including their provenance and functional characteristics. It may be possible to trace
more of our variants of interest to existing publications in which a researcher engineered
mutations on purpose. However, this will require analyzing hundreds or thousands of
publications. Since some variants are bound to be the result of de novo mutations in the
laboratory, these searches will sometimes come up empty. In these cases, one needs
to test whether and how the performance of the part variant differs from the canonical
sequence and associate that information with the database sequence. Such efforts will
take years of expert curation and laboratory experiments by a community of scientists.
A framework is needed to centrally collect and organize this information and encourage
community participation. FBbase is an outstanding example of continuous and expert
curation of a specific type of engineered part [21]. This type of resource needs to be
extended to more types of genetic parts. Integrating work on documenting part variants
using a micropublication [57,58] or wiki model [59] could be ways to recognize the
contributions of curators and researchers to this kind of resource, hopefully including
those with first-hand knowledge of the histories of important genetic parts. In the end, a
combination of computational and community-based curation efforts will likely be the

most effective path forward for improving plasmid annotation.
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Conclusions

As fully sequencing engineered plasmids becomes commonplace, researchers
are encountering an overwhelming number of uncatalogued variants of canonical
genetic parts and being forced to reckon with whether these differences are important or
not. We developed a procedure for predicting variants that are likely to have arisen due
to convergent evolution or engineering. We combined these predictions with genetic
part variants that are found in plasmids from many labs, under the premise that both
widespread and recurrent variants are more likely to affect the function of a genetic part
and the reproducibility of research than random one-off changes. Genetic part variants
in our final list of 217 predictions warrant further investigation and should be integrated
into tools that annotate engineered DNA. This work is a promising step towards
automating better plasmid annotation, but there is still a need for integrating this

information with expert curation to create comprehensive databases of genetic parts.

Materials and Methods

Identification of genetic part variants in engineered plasmids

We downloaded 51,359 complete plasmid sequences from Addgene, a non-profit
plasmid repository based in Cambridge, Massachusetts, on August 9%, 2021. Plasmid
sequences were annotated using pLannotate v1.2.0, which identifies matches to the
Swissprot [60] (release 2021_03), Snapgene (2021-07-23), FPbase [21] (2020-09-02),
and Rfam [61] (release 14.5) databases. We extracted all annotated features from every
plasmid, keeping matches that pLannotate identified as covering = 95% of the length of

the feature in the database. Matches that were 100% identical at either the nucleotide or
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amino acid level to annotation database entries were removed. Protein-coding
sequence features with 3' or &' deletions were also removed. The remaining non-

consensus features were considered genetic part variants and further analyzed.
Grouping genetic part variants on related plasmids

The design similarity (DS) score is calculated based on a formula that is similar
to that for the Inverse Document Frequency (IDF) of the most common segment shared
by two plasmids, except extra terms are added when there are multiple segments
shared by the two plasmids. For each genetic part variant found in plasmids from two or
more depositing labs, we first performed a pairwise BLASTN search (BLAST 2.10.1+)
[62] between all plasmids that contained that variant to identify shared plasmid
segments. Each of these segments was then queried against the entire database using
BLASTN to find the number of plasmids that contained the segment. The following
BLASTN parameters were used in both cases: mismatch penalty -8, match reward 2,
gap open penalty 4, gap extend penalty 6, and word size 28. These parameters were
chosen to maximize the reporting of matches consisting of contiguous segments with
few point mutations. A segment match was defined as having 298% identity, an E-value
<107, and a length difference of at most 10 bp. The DS score was then calculated
using the following equation:

n P

i=2 X;

Design Similarity = log - + TL
1

Where, xis a vector of length n containing the number of plasmids matching

each segment query, sorted from the smallest to the largest value. p is the number of
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reference plasmids in the database. The right term of the equation is an extra score
heuristic that is applied when there is more than one matching segment.

We also cataloged all variants that were found in plasmids from = 20 depositing
labs, irrespective of DS. It was not computationally feasible to calculate pairwise DS
scores for variants with > 1,205 observations, but all 11 of these variants were

catalogued because they were found on plasmids originating in = 20 labs.
Determining a threshold for plasmid relatedness

To determine a DS score threshold that indicates two examples of a genetic part
variant on different plasmids likely shared an ancestor, we examined the distribution of
DS scores for 100,000 random plasmid pairs. We picked only plasmid pairs that did not
share a common depositing lab to increase the likelihood that we did not include pairs
that did share a construction history in this set. We picked a DS cutoff for plasmid
relatedness that gave a 5% false-positive rate on this dataset as the metric for calling
two plasmids as related.

After calculating the pairwise DS scores for each group of plasmids that shared
the same genetic part variant, we binarized the results based on the DS score cutoff
threshold. The binary adjacency matrices were then analyzed as a network, and we
counted the number of unlinked subgraphs within each plasmid network to estimate the

number of times the variant had independently appeared.



507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

Acknowledgments

We thank members of the Barrick lab as well as Claus Wilke and his lab for
helpful discussions and acknowledge the Texas Advanced Computing Center (TACC)
at The University of Texas at Austin for providing high-performance computing

resources.

References

1. ltakura K, Hirose T, Crea R, Riggs AD, Heyneker HL, Bolivar F, et al.
Expression in Escherichia coli of a chemically synthesized gene for the
hormone somatostatin. Science. 1977;198: 1056—1063.
doi:10.1126/science.412251

2. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, et al.
Expression in Escherichia coli of chemically synthesized genes for human
insulin. Proc Natl Acad Sci U S A. 1979;76: 106—-110.
doi:10.1073/pnas.76.1.106

3. Van Gaal EVB, Hennink WE, Crommelin DJA, Mastrobattista E. Plasmid
engineering for controlled and sustained gene expression for nonviral gene
therapy. Pharm Res. 2006;23: 1053—-1074. doi:10.1007/s11095-006-0164-2

4. Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically
functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70: 3240—

3244. doi:10.1073/pnas.70.11.3240



527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

10.

11.

12.

Itakura K, Rossi JJ, Wallace RB. Synthesis and use of synthetic
oligonucleotides. Annu Rev Biochem. 1984;53: 323-356.
doi:10.1146/annurev.bi.53.070184.001543

Herscovitch M, Perkins E, Baltus A, Fan M. Addgene provides an open forum
for plasmid sharing. Nat Biotechnol. 2012;30: 316—317. doi:10.1038/nbt.2177
Kamens J. The Addgene repository: an international nonprofit plasmid and data
resource. Nucleic Acids Res. 2015;43: D1152-D1157. doi:10.1093/nar/gku893
Seiler CY, Park JG, Sharma A, Hunter P, Surapaneni P, Sedillo C, et al.
DNASU plasmid and PSI:Biology-Materials repositories: resources to
accelerate biological research. Nucleic Acids Res. 2014;42: D1253-D1260.
doi:10.1093/nar/gkt1060

Kumar KR, Cowley MJ, Davis RL. Next-generation sequencing and emerging
technologies. Semin Thromb Hemost. 2019;45: 661-673. doi:10.1055/s-0039-
1688446

Marx V. Method of the year: long-read sequencing. Nat Methods. 2023;20: 6—
11. doi:10.1038/s41592-022-01730-w

Gallegos JE, Rogers MF, Cialek CA, Peccoud J. Rapid, robust plasmid
verification by de novo assembly of short sequencing reads. Nucleic Acids Res.
2020;48: e106. doi:10.1093/nar/gkaa727

Emiliani FE, Hsu |, McKenna A. Multiplexed assembly and annotation of
synthetic biology constructs using long-read nanopore sequencing. ACS Synth

Biol. 2022;11: 2238—-2246. doi:10.1021/acssynbio.2c00126



549

550

551

552

553

554

995

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

13.

14.

15.

16.

17.

18.

19.

Brown SD, Dreolini L, Wilson JF, Balasundaram M, Holt RA. Complete
sequence verification of plasmid DNA using the Oxford Nanopore
Technologies’ MinlON device. BMC Bioinformatics. 2023;24: 116.
doi:10.1186/s12859-023-05226-y

Dong X, Stothard P, Forsythe IJ, Wishart DS. PlasMapper: a web server for
drawing and auto-annotating plasmid maps. Nucleic Acids Res. 2004;32:
W660-W664. doi:10.1093/nar/gkh410

McGuffie MJ, Barrick JE. pLannotate: engineered plasmid annotation. Nucleic
Acids Res. 2021;49: W516-W522. doi:10.1093/nar/gkab374

Peccoud J, Blauvelt MF, Cai Y, Cooper KL, Crasta O, DelLalla EC, et al.
Targeted development of registries of biological parts. PloS One. 2008;3:
e2671. doi:10.1371/journal.pone.0002671

Ham TS, Dmytriv Z, Plahar H, Chen J, Hillson NJ, Keasling JD. Design,
implementation and practice of JBEI-ICE: an open source biological part
registry platform and tools. Nucleic Acids Res. 2012;40: e141—-e141.
doi:10.1093/nar/gks531

McLaughlin JA, Myers CJ, Zundel Z, Misirli G, Zhang M, Ofiteru ID, et al.
SynBioHub: a standards-enabled design repository for synthetic biology. ACS
Synth Biol. 2018;7: 682—-688. doi:10.1021/acssynbio.7b00403

Mante J, Roehner N, Keating K, McLaughlin JA, Young E, Beal J, et al.
Curation principles derived from the analysis of the SBOL iGEM data set. ACS

Synth Biol. 2021;10: 2592-2606. doi:10.1021/acssynbio.1c00225



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

20.

21.

22.

23.

24.

25.

26.

Adames NR, Wilson ML, Fang G, Lux MW, Glick BS, Peccoud J. GenoLIB: a
database of biological parts derived from a library of common plasmid features.
Nucleic Acids Res. 2015;43: 4823—-4832. doi:10.1093/nar/gkv272

Lambert TJ. FPbase: a community-editable fluorescent protein database. Nat
Methods. 2019;16: 277. doi:10.1038/s41592-019-0352-8

Calos MP. DNA sequence for a low-level promoter of the /ac repressor gene
and an “up” promoter mutation. Nature. 1978;274: 762—765.
doi:10.1038/274762a0

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al.
Repurposing CRISPR as an RNA-guided platform for sequence-specific control
of gene expression. Cell. 2013;152: 1173-83. doi:10.1016/j.cell.2013.02.022
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA.
Programmable repression and activation of bacterial gene expression using an
engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41: 7429-7437.
doi:10.1093/nar/gkt520

Jinek M, Chylinski K, Fonfara |, Hauer M, Doudna JA, Charpentier E. A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial
immunity. Science. 2012;337: 816—821. doi:10.1126/science.1225829
Sandoval CM, Ayson M, Moss N, Lieu B, Jackson P, Gaucher SP, et al. Use of
pantothenate as a metabolic switch increases the genetic stability of farnesene
producing Saccharomyces cerevisiae. Metab Eng. 2014;25: 215-226.

doi:10.1016/j.ymben.2014.07.006



593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

27.

28.

29.

30.

31.

32.

33.

Ceroni F, Algar R, Stan G-B, Ellis T. Quantifying cellular capacity identifies
gene expression designs with reduced burden. Nat Methods. 2015;12: 415—
418. doi:10.1038/nmeth.3339

Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS. Plasmid-
encoded protein: the principal factor in the “metabolic burden” associated with
recombinant bacteria. Biotechnol Bioeng. 1990;35: 668—-681.
doi:10.1002/bit.260350704

Oliveira PH, Prather KJ, Prazeres DMF, Monteiro GA. Structural instability of
plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol.
2009;27: 503-511. doi:10.1016/j.tibtech.2009.06.004

Sleight SC, Bartley BA, Lieviant JA, Sauro HM. Designing and engineering
evolutionary robust genetic circuits. J Biol Eng. 2010;4: 12. doi:10.1186/1754-
1611-4-12

Rugbjerg P, Myling-Petersen N, Porse A, Sarup-Lytzen K, Sommer MOA.
Diverse genetic error modes constrain large-scale bio-based production. Nat
Commun. 2018;9. doi:10.1038/s41467-018-03232-w

Renda BA, Hammerling MJ, Barrick JE. Engineering reduced evolutionary
potential for synthetic biology. Mol Biosyst. 2014;10: 1668—1678.
doi:10.1039/C3MB70606K

Ellis T. Predicting how evolution will beat us. Microb Biotechnol. 2019;12: 41—

43. doi:10.1111/1751-7915.13327



614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

34.

35.

36.

37.

38.

39.

40.

Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors
and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.
Gene. 1985;33: 103-119. doi:10.1016/0378-1119(85)90120-9

Lin-Chao S, Chen W-T, Wong T-T. High copy number of the pUC plasmid
results from a Rom/Rop-suppressible point mutation in RNA 1l. Mol Microbiol.
1992;6: 3385-3393. doi:10.1111/j.1365-2958.1992.tb02206.x

Teyra J, Huang H, Jain S, Guan X, Dong A, Liu Y, et al. Comprehensive
analysis of the human SH3 domain family reveals a wide variety of non-
canonical specificities. Struct Lond Engl 1993. 2017;25: 1598-1610.e3.
doi:10.1016/j.str.2017.07.017

Sparck Jones K. A statistical interpretation of term specificity and its application
in retrieval. J Doc. 1972;28: 11-21. doi:10.1108/eb026526

Fung BCM, Wang K, Ester M. Hierarchical document clustering using frequent
itemsets. Proceedings of the 2003 SIAM International Conference on Data
Mining (SDM). Society for Industrial and Applied Mathematics; 2003. pp. 59-70.
doi:10.1137/1.9781611972733.6

Cota RG, Gongalves MA, Laender AHF. A heuristic-based hierarchical
clustering method for author name disambiguation in digital libraries. XXII
Simposio Brasileiro de Banco de Dados. 2007. pp. 20-34.

Layton R, McCombie S, Watters P. Authorship attribution of IRC messages
using inverse author frequency. 2012 Third Cybercrime and Trustworthy

Computing Workshop. 2012. pp. 7-13. doi:10.1109/CTC.2012.11



636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

41.

42.

43.

44,

45.

46.

47.

48.

Nizamani S, Memon N. CEAI: CCM-based email authorship identification
model. Egypt Inform J. 2013;14: 239-249. doi:10.1016/j.€ij.2013.10.001
Jacoby GA, Bush K. The curious case of TEM-116. Antimicrob Agents
Chemother. 2016;60: 7000-7000. doi:10.1128/AAC.01777-16

Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green
fluorescent protein (GFP). Gene. 1996;173: 33—38. doi:10.1016/0378-
1119(95)00685-0

Schluter OM, Xu W, Malenka RC. Alternative N-terminal domains of PSD-95
and SAP97 govern activity-dependent regulation of synaptic AMPA receptor
function. Neuron. 2006;51: 99-111. doi:10.1016/j.neuron.2006.05.016

Lin R, Wang R, Yuan J, Feng Q, Zhou Y, Zeng S, et al. Cell-type-specific and
projection-specific brain-wide reconstruction of single neurons. Nat Methods.
2018;15: 1033—-1036. doi:10.1038/s41592-018-0184-y

Santos TE, Schaffran B, Broguiére N, Meyn L, Zenobi-Wong M, Bradke F. Axon
growth of CNS neurons in three dimensions is amoeboid and independent of
adhesions. Cell Rep. 2020;32: 107907. doi:10.1016/j.celrep.2020.107907
Wrobel CN, Mutch CA, Swaminathan S, Taketo MM, Chenn A. Persistent
expression of stabilized beta-catenin delays maturation of radial glial cells into
intermediate progenitors. Dev Biol. 2007;309: 285-297.
doi:10.1016/j.ydbio.2007.07.013

Beier KT, Kim CK, Hoerbelt P, Hung LW, Heifets BD, DeLoach KE, et al.
Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature.

2017;549: 345-350. doi:10.1038/nature23888



659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

49.

50.

51.

52.

53.

54.

55.

56.

Thuronyi BW, DeBenedictis EA, Barrick JE. No assembly required: Time for
stronger, simpler publishing standards for DNA sequences. PLoS Biol. 2023;21:
€3002376. doi:10.1371/journal.pbio.3002376

Lewis G, Jordan JL, Relman DA, Koblentz GD, Leung J, Dafoe A, et al. The
biosecurity benefits of genetic engineering attribution. Nat Commun. 2020;11:
6294. doi:10.1038/s41467-020-19149-2

Crook OM, Warmbrod KL, Lipstein G, Chung C, Bakerlee CW, McKelvey TG, et
al. Analysis of the first genetic engineering attribution challenge. Nat Commun.
2022;13: 7374. doi:10.1038/s41467-022-35032-8

Nielsen AAK, Voigt CA. Deep learning to predict the lab-of-origin of engineered
DNA. Nat Commun. 2018;9. doi:10.1038/s41467-018-05378-z

Alley EC, Turpin M, Liu AB, Kulp-McDowall T, Swett J, Edison R, et al. A
machine learning toolkit for genetic engineering attribution to facilitate
biosecurity. Nat Commun. 2020;11: 6293. doi:10.1038/s41467-020-19612-0
Wang Q, Kille B, Liu TR, Elworth RAL, Treangen TJ. PlasmidHawk improves
lab of origin prediction of engineered plasmids using sequence alignment. Nat
Commun. 2021;12: 1167. doi:10.1038/s41467-021-21180-w

Mori H, Yachie N. A framework to efficiently describe and share reproducible
DNA materials and construction protocols. Nat Commun. 2022;13: 2894.
doi:10.1038/s41467-022-30588-x

Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, et al. A third

recognition element in bacterial promoters: DNA binding by the alpha subunit of



681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

57.

58.

59.

60.

61.

62.

RNA polymerase. Science. 1993;262: 1407-1413.
doi:10.1126/science.8248780

Clark T, Ciccarese PN, Goble CA. Micropublications: a semantic model for
claims, evidence, arguments and annotations in biomedical communications. J
Biomed Semant. 2014;5: 28. doi:10.1186/2041-1480-5-28

Raciti D, Yook K, Harris TW, Schedl| T, Sternberg PW. Micropublication:
incentivizing community curation and placing unpublished data into the public
domain. Database. 2018;2018: bay013. doi:10.1093/database/bay013

Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, et al. Rfam
11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41: D226-D232.
doi:10.1093/nar/gks1005

Bairoch A, Boeckmann B. The SWISS-PROT protein sequence data bank.
Nucleic Acids Res. 1991;19: 2247-2249.

Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K,
Marz M, et al. Rfam 14: expanded coverage of metagenomic, viral and
microRNA families. Nucleic Acids Res. 2021;49: D192-D200.
doi:10.1093/nar/gkaa1047

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment
search tool. J Mol Biol. 1990;215: 403—410. doi:10.1016/s0022-2836(05)80360-

2

Supporting Information

S1 Table. Final list of 217 widespread and/or recurrent genetic part variants.



