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Abstract 15 

 Engineered plasmids have been workhorses of recombinant DNA technology for 16 

nearly half a century. Plasmids are used to clone DNA sequences encoding new 17 

genetic parts and to reprogram cells by combining these parts in new ways. Historically, 18 

many genetic parts on plasmids were copied and reused without routinely checking their 19 

DNA sequences. With the widespread use of high-throughput DNA sequencing 20 

technologies, we now know that plasmids often contain variants of common genetic 21 

parts that differ slightly from their canonical sequences. Because the exact provenance 22 

of a genetic part on a particular plasmid is usually unknown, it is difficult to determine 23 

whether these differences arose due to mutations during plasmid construction and 24 

propagation or due to intentional editing by researchers. In either case, it is important to 25 

understand how the sequence changes alter the properties of the genetic part. We 26 

analyzed the sequences of over 50,000 engineered plasmids using depositor metadata 27 

and a metric inspired by the natural language processing field. We detected 217 28 

uncatalogued genetic part variants that were especially widespread or were likely the 29 

result of convergent evolution or engineering. Several of these uncatalogued variants 30 

are known mutants of plasmid origins of replication or antibiotic resistance genes that 31 

are missing from current annotation databases. However, most are uncharacterized, 32 

and 3/5 of the plasmids we analyzed contained at least one of the uncatalogued 33 

variants. Our results include a list of genetic parts to prioritize for refining engineered 34 

plasmid annotation pipelines, highlight widespread variants of parts that warrant further 35 

investigation to see whether they have altered characteristics, and suggest cases where 36 



unintentional evolution of plasmid parts may be affecting the reliability and 37 

reproducibility of science.  38 

Author Summary 39 

 Plasmids are used in molecular biology and biotechnology for a wide variety of 40 

tasks such as cloning DNA, expressing recombinant proteins, and creating vaccines. 41 

One challenge in working with plasmids is that there has been a long, and often lost 42 

history of pieces of plasmids being copied and remixed by researchers to create new 43 

plasmids. Current databases used for annotating key genetic parts in plasmids are 44 

incomplete, especially with respect to cataloguing closely related versions of parts that 45 

can have very different characteristics. Some genetic part variants have arisen due to 46 

purposeful editing while others are the result of unplanned mutations and evolution. 47 

When a researcher finds differences between a database sequence and a genetic part 48 

in their newly constructed plasmid, it is often unclear how and when it arose and 49 

whether it will affect their experiments. We identified 217 genetic part variants that are 50 

either widespread or have likely arisen independently more than once on plasmids due 51 

to convergent evolution or engineering. We propose that these variants should be 52 

prioritized for inclusion in curated databases of engineered DNA sequences and for 53 

functional characterization to improve the reliability and reproducibility of science. 54 

Introduction 55 

 Engineered plasmids are ubiquitous tools in the biological sciences. They are 56 

used for a wide variety of tasks, ranging from routine cloning of recombinant DNA and 57 

protein overexpression to reprogramming cells with new enzymes, sensors, and genetic 58 



circuits [1–3]. Engineering plasmids by assembling DNA from different natural sources 59 

began in 1973 with the construction of plasmid pSC101 [4]. Chemically synthesizing 60 

DNA sequences and introducing them into plasmids has now been commonplace for 61 

decades [5]. Many plasmids have been passed from researcher to researcher, and their 62 

genetic parts have been copied and remixed, practices facilitated by plasmid 63 

repositories [6–8]. The net result is that the genetic components on any plasmid used in 64 

a laboratory today often have long, circuitous, and usually incompletely known histories. 65 

It has only been standard practice to check the sequences of certain pieces of plasmids, 66 

such as by Sanger sequencing a gene of interest inserted by a researcher into a vector 67 

backbone, to validate that they are present exactly as designed. Large portions of these 68 

plasmids, including origins of replication and antibiotic resistance genes that are critical 69 

for plasmid maintenance, are typically assumed to be immutable or to have only 70 

sustained mutations with no effect on their performance. 71 

 Recently, DNA sequencing has become much more affordable and high-72 

throughput [9,10]. Computational pipelines have been developed for assembling 73 

accurate and complete plasmid sequences [11–13], and researchers now have 74 

complete information about pieces of plasmids that were rarely sequenced in the past. 75 

These full plasmid sequences reveal that there are often discrepancies, usually of one 76 

to a few nucleotides, between the actual parts on a plasmid and their expected, 77 

canonical sequences. Plasmid DNA sequences need to be annotated with information 78 

about the genetic parts they contain so that their contents can be checked. Annotation 79 

programs, such as PlasMapper [14], and commercial software, like SnapGene, tolerate 80 

some variation in the matches they report to the consensus sequence for a genetic part 81 



in a database. However, they do not alert a user when they encounter these imperfect 82 

matches, which may obscure changes in the sequence of a part that have functional 83 

consequences. We recently developed a plasmid annotation tool, pLannotate [15], that 84 

reports the nucleotide identity of imperfect matches so users can evaluate parts that are 85 

not in agreement with the reference sequences. 86 

 When a researcher encounters a change from the consensus sequence for a 87 

critical genetic part, they are confronted with questions and choices. Should they use 88 

the plasmid “as is” or spend time trying to correct the change? Does the change matter 89 

for the function of the genetic part? Was the change an edit that was introduced by a 90 

prior researcher for some forgotten purpose or was it due to a random mutation?  91 

 Unfortunately, there is no comprehensive central repository of genetic part 92 

sequences that a researcher can consult to answer these questions. Databases like 93 

iGEM’s Registry of Standard Biological Parts [16], the Joint BioEnergy Institute's 94 

Inventory of Composable Elements (JBEI ICE) [17], and SynBioHub [18] contain many 95 

plasmid and genetic part sequences. However, they are not fully curated and are known 96 

to also contain spurious and incorrect information [19]. GenoLIB [20] and the related 97 

SnapGene database are computationally and manually compiled databases of a 98 

fundamental set of 293 common plasmid parts. They include multiple, curated entries 99 

for major families of related parts (e.g., different aminoglycoside resistance genes), but 100 

do not attempt to capture the functional implications of more subtle sequence variation. 101 

Only specialized databases reach this level of precision (e.g., FPbase for fluorescent 102 

proteins) [21]. These resources do not exist for most categories of critical genetic parts. 103 



 How do new variants of genetic parts found on engineered plasmids originate? 104 

Often these changes are due to researchers finding ways to improve or modify part 105 

performance. For example, the lacIq promoter has a single base change that increases 106 

its transcription initiation rate by 10-fold relative to the wild-type lacI promoter found in 107 

the E. coli genome [22]. Hundreds of fluorescent proteins have been engineered by 108 

introducing changes into natural sequences to alter their spectra, stability, maturation 109 

rates, and other properties for imaging applications [21]. CRISPR interference 110 

(CRISPRi) uses a catalytically dead Cas9 (dCas9) for the purposes of knocking down 111 

gene expression [23]. This variant has two mutations that inactivate the nuclease 112 

domain of Cas9, and these mutations have been engineered independently by different 113 

groups in Cas9 proteins encoded by different plasmid lineages [24,25]. Other changes 114 

may have purposes that are more difficult to ascertain, such as when researchers 115 

introduce silent changes in protein-coding sequences to add or avoid restriction enzyme 116 

cut sites to make parts compatible with certain DNA assembly methods. 117 

 Further complicating the picture, genetic part variants can also arise due to 118 

evolution. Mutations occur when DNA sequences are copied and assembled into new 119 

plasmids in vitro. When a single-cell transformant of a plasmid is picked, any mutations 120 

it harbors become fixed in all of that plasmid’s progeny. There are further opportunities 121 

for mutations to arise due to in vivo errors in DNA replication and repair as plasmids are 122 

propagated in bacterial cells. If the mutated plasmid functions as expected by a 123 

researcher, and they don’t detect or reject a mutation when validating the plasmid 124 

sequence, it will be retained. In some cases, selection will even favor mutated plasmids. 125 

Engineered plasmids can impose a significant fitness burden on the host cell if they 126 



divert resources needed for cellular replication or produce toxic products [26–29]. In 127 

these cases, there is a strong selection pressure favoring cells with plasmids mutated in 128 

ways that alleviate this burden by reducing or eliminating the designed function [30–33]. 129 

Researchers may also impose other types of selection on part/plasmid function, by 130 

picking the most fluorescent or largest colonies after a transformation, for example.   131 

Precisely annotating the presence and properties of common genetic part 132 

variants—whether they result from undocumented engineering or unintentional 133 

evolution—is key to improving reliability and reproducibility in the biological sciences.  134 

However, there are many of these variants, and determining which ones to prioritize for 135 

time-consuming manual curation and experimental characterization is a challenge. 136 

Here, we develop methods for computationally identifying widespread genetic part 137 

variants and variants that recurrently arose from convergent engineering or evolution 138 

given a large set of plasmid sequences. We use these approaches to create a list of 139 

217 currently uncatalogued genetic part variants that should be prioritized for further 140 

characterization and inclusion in annotation databases.  141 

Results 142 

Variants of canonical genetic part sequences are common in 143 

engineered plasmids 144 

 We used pLannotate [15] to annotate 983,436 genetic parts in 51,384 145 

engineered plasmids in the Addgene repository [6,7] that have been fully sequenced. 146 

We found 171,828 examples of parts that did not match their canonical sequences 147 

present in the databases used for annotation. These part variants can be broadly 148 



classified into 14 different categories (Fig 1). As expected, we observed more variants 149 

for more common types of parts and for types of parts that generally have longer 150 

sequences. The most common non-canonical plasmid parts are protein-coding 151 

sequences, with 73,884 total variants observed, which are comprised of 10,406 distinct 152 

variant sequences (Fig 1A). The part type that had the next greatest number of variants 153 

was origins of replication (46,677 observations of 607 distinct variant sequences), and 154 

the third most common variant type was promoters (24,319 observations of 905 distinct 155 

variant sequences).  156 

 157 

Fig 1. Many non-canonical genetic parts are found on plasmids. (A) Overall 158 

representation in Addgene plasmids of genetic part variants with sequences that differ 159 

slightly from canonical features present in annotation databases. Within each part type, 160 

the total number of genetic parts (green squares), total number of genetic parts that are 161 

variants (i.e., differ from the canonical sequence) (orange circles), and number of 162 

distinct genetic part variant sequences (i.e., counting each unique sequence that differs 163 

from the canonical sequence one time) (blue triangles) are plotted. Part types are sorted 164 

in descending order by the number of total variants in each category. (B) Distributions of 165 



percent identity between distinct genetic part variants in each category and their 166 

canonical sequences. Boxes represent lower and upper quartiles (the interquartile 167 

range). Vertical lines within each box are medians. The whiskers correspond to 1.5 168 

times the interquartile range. Points are outliers outside this range. 169 

 170 

 Variants of protein coding sequences and origins of replication are relatively 171 

close in sequence to their database counterparts. Variants of smaller parts, such as 172 

promoters or protein binding sites, exhibit higher relative levels of sequence divergence 173 

(Fig 1B). Some of the variants we found are known but not differentiated in current 174 

databases used for plasmid annotation. For example, pLannotate and SnapGene 175 

currently have a single database entry for the ColE1 plasmid origin of replication, which 176 

is the pBR322 variant, the sequence found in a natural plasmid. However, most 177 

plasmids contain the engineered pUC19 variant of this origin, which includes a single 178 

point mutation that increases plasmid copy number by a factor of about 10-fold [34,35]. 179 

Some widespread genetic part variants are found on 180 

plasmids created by many different labs  181 

 The sheer number of plasmid part variants is a challenge for improving plasmid 182 

annotation. Our goal is to determine which variants should be catalogued and prioritized 183 

as candidates for further investigation, better documentation, and inclusion in annotation 184 

databases. The naïve approach would be to catalog all previously undocumented 185 

variants, but this is not practical. Engineered plasmids experience severe population 186 

bottlenecks when they are constructed and propagated in the laboratory. When 187 

plasmids are transformed into a population of cells, typically only a single plasmid 188 



enters a successful transformant. It is also standard practice to re-streak cells and 189 

isolate a colony derived from a single cell when obtaining a new plasmid from another 190 

researcher or from a repository. Therefore, many part variants may be a result of recent 191 

genetic drift (fixation of mutations due to chance) caused by these extreme population 192 

bottlenecks. Cataloging these “random” variants is not likely to be particularly 193 

informative, especially if they are found in just one or a few plasmids.  194 

One might, therefore, propose documenting part variants with the most overall 195 

observations. However, this strategy still encounters the same issue. Most variants are 196 

found on sets of plasmids deposited by just one or two labs (Fig 2A), and some of these 197 

variants have become prevalent due to chance (Fig 2B). These cases typically occur 198 

when a single lab deposits a collection of hundreds of related plasmids that all share the 199 

same unique variant of a genetic part. For example, one lab deposited 597 highly 200 

similar plasmids, which includes their general lab plasmids as well as a subset used for 201 

expressing human SH3 domains [36]. These plasmids all share a single base change in 202 

the ColE1 origin of replication. This mutation was almost certainly present in the 203 

backbone of an ancestral plasmid they inherited, and its propagation does not seem to 204 

be intentional. Even though this variant is the most common origin of replication variant 205 

measured in terms of the gross number of observations (besides the canonical pUC19 206 

variant), we would assign it a relatively low priority for characterization since it appears 207 

to be a one-off mutation that was unintentionally cloned into one set of related plasmids. 208 



 209 

Fig 2. Most genetic part variants are found in plasmids from one or two labs, but 210 

some are more widespread. (A) Total number of distinct variant sequences found in 211 

plasmids from one or two depositing labs (1-2) versus found in plasmids from three or 212 

more depositing labs (≥3). (B) All genetic part variants plotted by how many times they 213 

were observed versus the number of labs that deposited a plasmid with that variant. 214 

The blue horizontal line at 20 labs is the minimum threshold we used for selecting 215 

variants that were widespread. The orange vertical line at 1205 variant observations is 216 

the cutoff above which we did not perform the authorship analysis to find cases of 217 

convergent evolution or engineering.  218 

 219 

While deciding which variants to prioritize based on their raw frequency may not be 220 

particularly useful, we believe that cataloging variants found in plasmids deposited by 221 

many independent labs does have value. In this case, these variants may also have 222 

arisen due to chance in a single progenitor plasmid, but this event likely occurred years 223 

or decades in the past, so the potential impact has spread such that it could be affecting 224 



many more researchers and experiments. Therefore, we flagged all 75 genetic part 225 

variants found in plasmids from least 20 labs (Fig 2B, above the blue horizontal line) for 226 

inclusion in our set of high-priority variants of interest. 227 

Recurrent engineering or evolution of unannotated genetic 228 

part variants can be predicted using a design similarity score 229 

 Variants that are from a few or a middling number of labs are harder to classify. If 230 

a variant appears in unrelated plasmids, it could be an engineered variant that is 231 

missing from current annotation databases or an evolved variant that arose more than 232 

once in unrelated plasmid lineages. Whether designed or evolved, these recurrent 233 

mutations are especially likely to affect the function of a part, so it is a high priority to 234 

document these cases even if they are in fewer total plasmids. To identify likely 235 

examples of convergent engineering and evolution, we analyzed plasmids as authored 236 

works. In the natural language processing and information retrieval fields, inverse 237 

document frequency (IDF) [37,38] is a metric employed to predict shared authorship 238 

[39–41]. IDF scores the rarity of a word or phrase by counting the observations within a 239 

document and compares that to its relative frequency in an entire corpus of documents. 240 

We created an IDF-inspired metric for use with biological sequences, calculating a 241 

quantity that we term the design similarity (DS) score and using it to group plasmids.  242 

The procedure we developed to analyze sets of plasmids containing the same 243 

part variant (shared unique word) for signs of shared authorship is shown in Fig 3. We 244 

began by identifying all other contiguous sequence segments shared by these plasmids 245 

(shared phrases between documents) and tabulating the frequencies of each of these 246 

segments in the entire database of all plasmids (how rare the phrases are). We 247 



calculated a DS score for each pair of plasmids from these frequencies. Then, we 248 

grouped plasmids by constructing a network graph from an adjacency matrix of these 249 

DS scores. This step used a score cutoff determined by examining the distribution of DS 250 

scores between random plasmids from different labs (Fig 4, top). Finally, we divided the 251 

resulting network graph into connected clusters that represent groups of plasmids that 252 

are unlikely to share the part variant due to common descent or copying of the part. 253 

 254 

Fig 3. Method for identifying recurrent genetic part variants that likely arose from 255 

convergent evolution or engineering. All plasmids containing the same genetic part 256 

variant are analyzed as a set. Segments shared by each pair of these plasmids are 257 

identified and queried against the full plasmid database. The results are used to 258 

calculate a design similarity (DS) score between the two plasmids. DS scores for all 259 

comparisons are used to construct a network graph of plasmid relatedness. Each 260 

separate cluster in the final graph is predicted to represent a set of plasmids in which 261 

the variant arose independently.  262 

 263 



264 

Fig 4. Design similarity scores reliably identify plasmids that are likely to be 265 

related while percent identity does not. The distributions of DS scores and percent 266 

identities for pairwise comparisons of plasmids that share undocumented part variants 267 

are plotted. Every plasmid containing a given genetic part variant that was observed 268 

1205 or fewer total times was compared to every other plasmid with that part variant for 269 

a total of 7,508,114 comparisons. High pairwise percent identity is not compelling 270 

evidence that plasmids are related when they share a commonly used backbone, as 271 

illustrated by the plasmid pair shown to the left. The DS score of these two plasmids is 272 

low in this instance. Low pairwise percent identity also does not necessarily indicate that 273 

plasmids are unrelated, as illustrated by the plasmid pair shown to the right. In this 274 

case, a high DS score highlights small, but unique sequences present in both plasmids, 275 

which is evidence of shared authorship. Asterisks indicate the location of the shared 276 

mutation in the associated genetic part variant that differentiates it from the canonical 277 



sequence in the annotation database. The distribution of DS scores between 100,000 278 

randomly selected pairs of plasmids from different labs is shown above the plot. The 279 

grey line indicates the 95th percentile of the distribution, which was used as the score 280 

cutoff for shared plasmid authorship.  281 

 282 

If multiple distinct authorship clusters are predicted for a variant, it likely had 283 

more than one independent origin due to recurrent engineering or evolution. In this 284 

case, it should be a priority to document the variant and further characterize whether its 285 

function differs from that of the canonical sequence. Because the DS scoring algorithm 286 

involves making pairwise comparisons of all plasmids containing a given genetic part 287 

variant, it was only computationally feasible for us to apply it to variants with 1205 or 288 

fewer observations (Fig. 2B, left of orange vertical line), which included all variants 289 

found on plasmids deposited by fewer than 20 labs that we had not already flagged as 290 

being of interest simply because they were widespread. As expected, plasmids sharing 291 

a variant that were deposited by the same lab are almost always found within a single 292 

cluster at the end of this procedure. This tracks with the intuition that a depositing lab 293 

likely recycles their plasmid backbones and pieces of those plasmids for various 294 

purposes. In total, 149 of the variants tested using the DS clustering procedure were 295 

predicted to occur in two or more author groups. This total includes 7 of the 64 variants 296 

tested in this way that were found in plasmids deposited by 20 or more labs.  297 

Using the DS score as a metric has advantages over using a percent identity-298 

cutoff to determine if instances of the same genetic part variant on two plasmids are 299 

related (Fig 4). Any two plasmids often share extensive stretches of DNA, but this may 300 



not actually indicate anything about how related the plasmids are to each other. For 301 

example, the ColE1 origin of replication is used in nearly 95% of the plasmids in our 302 

dataset, and 62% of plasmids contain β-lactamase as an antibiotic resistance marker. 303 

Since these features are widely used, their co-occurrence is not convincing evidence 304 

that a pair of plasmids is related, even if they constitute a majority of the shared 305 

sequence identity between them (Fig. 4, left). The DS metric weights features based on 306 

their overall rarity rather than their length or context, so that even a small part or cloning 307 

scar can be a strong signal of shared authorship (Fig. 4, right). 308 

Final list of widespread and recurrent genetic part variants 309 

includes known but uncatalogued mutants 310 

 We combined the widespread and recurrent part variants we identified into a final 311 

list of 217 currently uncatalogued genetic part variants (S1 Table). This list includes 312 

diverse genetic parts with a wide range of functions that are used for engineering all 313 

kinds of organisms (Fig 5). For parts designed to function in bacteria, most of the newly 314 

identified variants of interest were plasmid origins of replication or antibiotic resistance 315 

markers. For eukaryotic parts, promoter variants were most common. Many fluorescent 316 

proteins, which function in both types of organisms, were also present in this list of 317 

uncatalogued variants not found in current annotation databases. 318 



 319 

Fig 5. Uncatalogued genetic part variants to prioritize for characterization and 320 

inclusion in annotation databases. (A) The final 217 variants of interest categorized 321 

by part type and by the kind of organism in which the part is typically used. Bars are 322 

shaded according to the method by which each variant was judged to be a priority for 323 

characterization and annotation: either it occurred in plasmids from ≥20 depositing labs 324 

(widespread, orange) or it was in plasmids from fewer labs but there was evidence that 325 

it was engineered or evolved multiple times from the authorship analysis (convergent, 326 

blue). (B) Names of the canonical parts to which the 217 variants are most closely 327 

related. Parts are categorized and sorted by function. 328 

 329 



To validate our inclusion criteria, we looked for cases of known variants that were 330 

uncatalogued in the initial annotation databases but were identified by our analysis. The 331 

top two variants with 38,693 and 25,995 total observations are the pUC19 variant of the 332 

ColE1 origin of replication and TEM-116 β-lactamase antibiotic resistance marker, 333 

respectively (Fig 5B). These are both engineered variants that differ from their parent 334 

sequences, pBR322 and TEM-1, by one or two bases, respectively [35,42]. These 335 

variants were included in our list because they occurred in ≥20 labs. We also identified 336 

one other canonical variant, TEM-171, which was both a frequent and recurrent variant. 337 

TEM-171 has one of the two mutations that TEM-116 has relative to TEM-1 [42]. 338 

 As an example of how these predictions can aid in directing efforts to refine 339 

annotations of engineered DNA, one fluorescent protein variant in our list had a clear 340 

signal of a recurrent origin due to convergent engineering. Seventeen plasmids with the 341 

variant that were deposited by five different labs were from four authorship clusters. 342 

This variant is a derivative of enhanced GFP (eGFP) originally described in 1996 by 343 

Cormack et al. [43] with additional A164V and G176S amino acid substitutions. This 344 

derivative of eGFP is not currently listed in FPbase, and none of the five publications 345 

associated with the plasmids containing this derivative mention its provenance or the 346 

mutations it harbors [44–48], so their effects on its function are unknown. 347 

Discussion 348 

 It is becoming standard practice for researchers to fully sequence plasmids and 349 

other engineered DNA constructs they use in their experiments [11,49]. These 350 

sequences need to be validated by precisely annotating the genetic parts they contain 351 

and recognizing unexpected sequence variation in these parts in order to ensure the 352 



reliability and reproducibility of science. In the work reported here, we created a list of 353 

217 currently uncatalogued variants of common genetic parts that can be added to 354 

databases used by annotation pipelines. These variants are a priority because they are 355 

either already widespread in plasmids being exchanged by researchers or they appear 356 

to have originated multiple times due to convergent engineering or evolution.  357 

 Many of the variants in our final list are in high-copy ColE1-family origins of 358 

replication or in antibiotic resistance cassettes that are commonly paired with these 359 

origins in E. coli vectors used for cloning and replicating DNA. These are by far the most 360 

common genetic parts in Addgene plasmids because pUC vectors are used to 361 

manufacture high-quality DNA for many applications, ranging from in vitro transcription 362 

of RNA for biochemical studies to transfection into mammalian cells. Sequence variation 363 

in these backbone components might affect cloning success or DNA yields, if a 364 

mutation alters plasmid copy number, for example. But, these differences would be 365 

unlikely to affect the results of downstream experiments after DNA is isolated from 366 

bacterial cells. On the other hand, variants in other origins of replication that we 367 

identified, such as the medium-copy p15A origin that is commonly used in plasmids 368 

encoding synthetic biology devices meant to function in E. coli and the broad-host-range 369 

pBBR1 origin that is used for engineering diverse bacteria, are more likely to affect 370 

research outcomes. Overall, this logic argues for prioritizing characterization of part 371 

variants that are important in the ultimate context in which the DNA will be used, which 372 

includes many variants in our final list related to eukaryotic gene expression. 373 

 To detect recurrent variants that likely arose multiple times, we developed an 374 

approach for grouping plasmids based on signals of shared authorship. Previously, 375 



authorship of plasmid sequences has been analyzed from a biosecurity standpoint, with 376 

the aim of attributing an unknown plasmid to a specific lab [50,51]. All of these prior 377 

studies analyzed the Addgene plasmid corpus. The first used deep learning to train a 378 

convolutional neural network to predict the lab of origin of a plasmid from its DNA 379 

sequence [52]. It correctly identified the source lab 48% of the time and the source lab 380 

appeared in the top 10 predicted labs 70% of the time. A comparable method, 381 

deteRNNt, used recurrent neural networks trained on plasmid sequences and 382 

associated phenotype data to identify DNA motifs indicative of different genetic 383 

designers [53]. It demonstrated an improvement in accuracy to 70% correct attribution 384 

to one lab among 1,300 in the dataset. An alternative approach, PlasmidHawk [54], 385 

opted to not use deep learning, citing the higher accuracy and higher interpretability of 386 

sequence alignment-based techniques compared to machine learning approaches. 387 

Their approach had 76% accuracy in identifying the lab that deposited an unknown 388 

plasmid and could precisely single out the signature sub-sequences responsible for a 389 

prediction. Notably, this study used an approach similar to our own where they down-390 

weighted observations of sequence segments that are frequent in the overall dataset, 391 

though their metrics differ from our IDF-inspired design similarity score.  392 

We had to infer shared authorship of plasmids to predict when a variant had 393 

arisen multiple times because the cloning history of most plasmids is not fully known. 394 

Ideally, one would be able to track the provenance of plasmids and their parts using the 395 

scientific literature and/or metadata in plasmid repositories to understand which 396 

changes to the sequence of a genetic part were intentional and when and how many 397 

times they were introduced or arose due to mutations. QUEEN is a recent framework 398 



which proposes to record traceable linages of engineered plasmids by having 399 

researchers meticulously document their construction process and store this information 400 

as metadata in GenBank flat files [55]. Addgene is now encouraging researchers to use 401 

QUEEN when submitting new constructs. If this or a similar metadata format for tracking 402 

how engineered DNA sequences have been copied, remixed, and modified is widely 403 

adopted, it will be very useful for tracking the engineering and evolution of plasmids in 404 

the future. Many scientists who performed foundational research creating key plasmid 405 

backbones and genetic parts in the early days of recombinant DNA technology are 406 

retired or will be soon. It would be extremely valuable if the community could also 407 

capture or reconstruct their knowledge of earlier plasmid construction efforts. 408 

pLannotate and other plasmid annotation pipelines use BLAST to find matches to 409 

genetic part sequences in a database. This simple approach has some potential 410 

shortcomings with respect to variant detection and prediction. One is that BLAST 411 

matches may not detect instances of a part or properly delineate their extent when there 412 

are mutations at or near its ends. For example, if a bacterial promoter variant has a 413 

mismatch in the −35 box at the end of the canonical promoter core sequence and this is 414 

also where the part sequence in a database ends, the BLAST hit may only match the 415 

downstream part of the promoter. This could result in reporting an incomplete match 416 

that is not recognized as a variant or potentially no match at all. Compounding this 417 

problem is the issue that some types of genetic parts and important functional variants 418 

of these parts can be defined on multiple, overlapping scales. For a bacterial promoter, 419 

the database sequence could be just the core element containing the −10  and −35 420 

boxes, or it could be an extended element that includes upstream sequences such as 421 



UP-elements [56] or adjacent cis-regulatory elements. Computational matching 422 

methods that force extending alignments to the boundaries of part sequences and 423 

expert curation of how a core part and elaborated variants of that part are related could 424 

help annotation programs deal with these difficult cases. 425 

 Ideally, we would be able to provide annotation programs with detailed 426 

information to accompany the sequences of the 217 high-priority variants we identified, 427 

including their provenance and functional characteristics. It may be possible to trace 428 

more of our variants of interest to existing publications in which a researcher engineered 429 

mutations on purpose. However, this will require analyzing hundreds or thousands of 430 

publications. Since some variants are bound to be the result of de novo mutations in the 431 

laboratory, these searches will sometimes come up empty. In these cases, one needs 432 

to test whether and how the performance of the part variant differs from the canonical 433 

sequence and associate that information with the database sequence. Such efforts will 434 

take years of expert curation and laboratory experiments by a community of scientists. 435 

A framework is needed to centrally collect and organize this information and encourage 436 

community participation. FBbase is an outstanding example of continuous and expert 437 

curation of a specific type of engineered part [21]. This type of resource needs to be 438 

extended to more types of genetic parts. Integrating work on documenting part variants 439 

using a micropublication [57,58] or wiki model [59] could be ways to recognize the 440 

contributions of curators and researchers to this kind of resource, hopefully including 441 

those with first-hand knowledge of the histories of important genetic parts. In the end, a 442 

combination of computational and community-based curation efforts will likely be the 443 

most effective path forward for improving plasmid annotation. 444 



Conclusions 445 

 As fully sequencing engineered plasmids becomes commonplace, researchers 446 

are encountering an overwhelming number of uncatalogued variants of canonical 447 

genetic parts and being forced to reckon with whether these differences are important or 448 

not. We developed a procedure for predicting variants that are likely to have arisen due 449 

to convergent evolution or engineering. We combined these predictions with genetic 450 

part variants that are found in plasmids from many labs, under the premise that both 451 

widespread and recurrent variants are more likely to affect the function of a genetic part 452 

and the reproducibility of research than random one-off changes. Genetic part variants 453 

in our final list of 217 predictions warrant further investigation and should be integrated 454 

into tools that annotate engineered DNA. This work is a promising step towards 455 

automating better plasmid annotation, but there is still a need for integrating this 456 

information with expert curation to create comprehensive databases of genetic parts. 457 

Materials and Methods 458 

Identification of genetic part variants in engineered plasmids 459 

 We downloaded 51,359 complete plasmid sequences from Addgene, a non-profit 460 

plasmid repository based in Cambridge, Massachusetts, on August 9th, 2021. Plasmid 461 

sequences were annotated using pLannotate v1.2.0, which identifies matches to the 462 

Swissprot [60] (release 2021_03), Snapgene (2021-07-23), FPbase [21] (2020-09-02), 463 

and Rfam [61] (release 14.5) databases. We extracted all annotated features from every 464 

plasmid, keeping matches that pLannotate identified as covering ≥ 95% of the length of 465 

the feature in the database. Matches that were 100% identical at either the nucleotide or 466 



amino acid level to annotation database entries were removed. Protein-coding 467 

sequence features with 3′ or 5′ deletions were also removed. The remaining non-468 

consensus features were considered genetic part variants and further analyzed. 469 

Grouping genetic part variants on related plasmids 470 

 The design similarity (DS) score is calculated based on a formula that is similar 471 

to that for the Inverse Document Frequency (IDF) of the most common segment shared 472 

by two plasmids, except extra terms are added when there are multiple segments 473 

shared by the two plasmids. For each genetic part variant found in plasmids from two or 474 

more depositing labs, we first performed a pairwise BLASTN search (BLAST 2.10.1+) 475 

[62] between all plasmids that contained that variant to identify shared plasmid 476 

segments. Each of these segments was then queried against the entire database using 477 

BLASTN to find the number of plasmids that contained the segment. The following 478 

BLASTN parameters were used in both cases: mismatch penalty −8, match reward 2, 479 

gap open penalty 4, gap extend penalty 6, and word size 28. These parameters were 480 

chosen to maximize the reporting of matches consisting of contiguous segments with 481 

few point mutations. A segment match was defined as having ≥98% identity, an E-value 482 

≤ 10–5, and a length difference of at most 10 bp. The DS score was then calculated 483 

using the following equation: 484 

Design	Similarity	 = 	log1
𝑝
𝑥!
+
∑ 𝑝

𝑥"
#
"$%

𝑛 7 485 

Where, 𝑥 is a vector of length 𝑛 containing the number of plasmids matching 486 

each segment query, sorted from the smallest to the largest value. 𝑝 is the number of 487 



reference plasmids in the database. The right term of the equation is an extra score 488 

heuristic that is applied when there is more than one matching segment. 489 

We also cataloged all variants that were found in plasmids from ≥ 20 depositing 490 

labs, irrespective of DS. It was not computationally feasible to calculate pairwise DS 491 

scores for variants with > 1,205 observations, but all 11 of these variants were 492 

catalogued because they were found on plasmids originating in ≥ 20 labs. 493 

Determining a threshold for plasmid relatedness 494 

 To determine a DS score threshold that indicates two examples of a genetic part 495 

variant on different plasmids likely shared an ancestor, we examined the distribution of 496 

DS scores for 100,000 random plasmid pairs. We picked only plasmid pairs that did not 497 

share a common depositing lab to increase the likelihood that we did not include pairs 498 

that did share a construction history in this set. We picked a DS cutoff for plasmid 499 

relatedness that gave a 5% false-positive rate on this dataset as the metric for calling 500 

two plasmids as related. 501 

 After calculating the pairwise DS scores for each group of plasmids that shared 502 

the same genetic part variant, we binarized the results based on the DS score cutoff 503 

threshold. The binary adjacency matrices were then analyzed as a network, and we 504 

counted the number of unlinked subgraphs within each plasmid network to estimate the 505 

number of times the variant had independently appeared. 506 
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