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Abstract

The observation of gravitational waves from multiple compact binary coalescences by the LIGO-Virgo—-KAGRA
detector networks has enabled us to infer the underlying distribution of compact binaries across a wide range of
masses, spins, and redshifts. In light of the new features found in the mass spectrum of binary black holes and the
uncertainty regarding binary formation models, nonparametric population inference has become increasingly
popular. In this work, we develop a data-driven clustering framework that can identify features in the component
mass distribution of compact binaries simultaneously with those in the corresponding redshift distribution, from
gravitational-wave data in the presence of significant measurement uncertainties, while making very few
assumptions about the functional form of these distributions. Our generalized model is capable of inferring
correlations among various population properties, such as the redshift evolution of the shape of the mass
distribution itself, in contrast to most existing nonparametric inference schemes. We test our model on simulated
data and demonstrate the accuracy with which it can reconstruct the underlying distributions of component masses
and redshifts. We also reanalyze public LIGO-Virgo-KAGRA data from events in GWTC-3 using our model and
compare our results with those from some alternative parametric and nonparametric population inference
approaches. Finally, we investigate the potential presence of correlations between mass and redshift in the
population of binary black holes in GWTC-3 (those observed by the LIGO-Virgo-KAGRA detector network in
their first three observing runs), without making any assumptions about the specific nature of these correlations.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675); Black

holes (162); Compact objects (288); High energy astrophysics (739)

1. Introduction

The first direct observation of gravitational waves (GWs)
from the binary black hole (BBH) merger GW 150914 (Abbott
et al. 2016) by the Laser Interferometric Gravitational Wave
Observatory (LIGO; The LIGO Scientific Collaboration et al.
2015) has opened up a new window onto the Universe. Since
then, the LIGO-Virgo-KAGRA (LVK; Acernese et al. 2015;
The LIGO Scientific Collaboration et al. 2015; Akutsu et al.
2021) detector network has observed about 70 BBHs, with a
false alarm rate (FAR) of less than one per year (The LIGO
Scientific Collaboration et al. 2021b). Studying the ensemble of
BBHs comprised by these detections has facilitated several
important investigations, such as the exploration of stellar
evolution and binary formation mechanisms (Abbott et al.
2023), the measurement of cosmological parameters (The
LIGO Scientific Collaboration et al. 2023a), and tests of
General Relativity in the strong-gravity regime (The LIGO
Scientific Collaboration et al. 2021c¢).

In particular, studying the population-level distributions of
compact binary coalescences (CBC) masses, spins, and
redshifts through the third Gravitational-Wave Transient
Catalog (GWTC-3; The LIGO Scientific Collaboration et al.
2021b) has allowed us to empirically probe several models that
describe the astrophysical processes responsible for compact
binary formation. For example, the existence of a steep falloff
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in the BBH mass spectrum beyond 50 M. (Fishbach &
Holz 2017; Edelman et al. 2021; Abbott et al. 2023) is
indicative of the pair-instability process limiting the mass of
stellar cores (Fowler & Hoyle 1964; Barkat et al. 1967; Heger
& Woosley 2002; Heger et al. 2003; Woosley & Heger 2015;
Belczynski et al. 2016; Woosley 2017; Marchant et al. 2019;
Renzo et al. 2020). The mass range near which this truncation
happens has itself been shown to be informative of nuclear
reaction rates in massive stars (Farmer et al. 2020). Similarly,
the observed peak in the BBH mass spectrum near the
30 M.—40 M, range (Abbott et al. 2021, 2023, 2023) has been
thought to result from the pileup due to pulsational pair-
instability supernovae (Woosley 2017; Talbot & Thrane 2018),
with the location of the peak expected to be insensitive to
stellar metallicity and hence redshift (Farmer et al. 2019).
Additional substructure found in the BBH mass spectrum, in
the form of peaks and dips atop a smoothed power law (Tiwari
& Fairhurst 2021; Edelman et al. 2022a; Edelman et al. 2023;
Tiwari 2022), has enabled us to constrain the relative
contributions of different formation channels to the BBH
population of the Universe. On the other hand, studying the
population-level distribution of BBH redshifts through GWTC-
3 has led to the discovery that the BBH merger rate increases
with redshift (Fishbach et al. 2018, 2021; Karathanasis et al.
2023; van Son et al. 2022a, 2022b; Abbott et al. 2023),
shedding light on the metallicity evolution and star formation
history of our Universe. Hence, inferring the population
properties of CBCs using GW measurements of their system
parameters has been highly impactful on our understanding of
several astrophysical processes that take place in the Universe.
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LVK’s fourth observing run (O4) can be expected to triple
the number of observed BBHs by the end of its first half
alone (Abbott et al. 2020a). Hence, analyzing the cumulative
catalog of BBH observations post-O4 can enable us to
precisely constrain several features in the BBH mass spectrum
and redshift distribution. Parametric models that assume a
specific functional form of the population-level distribution
being inferred (Talbot & Thrane 2018; Wysocki et al. 2019;
Abbott et al. 2021, 2023; Edelman et al. 2021; Farah et al.
2022; Tiwari 2022) can thus be used to constrain the
parameters characterizing these functions with unforeseen
precision, given an O4-sized data set, potentially leading to
confident empirical validation of the astrophysical assumptions
behind such models.

However, a parametric model is inherently restricted, in the
sense that it is unable to infer the existence of previously
unmodeled features in the underlying population that are
beyond its assumptions regarding the functional form of the
population distribution. Furthermore, particular features in the
functional form assumed by parametric population models can
often manifest themselves as a posteriori, even when the data
strongly disfavor their existence (Callister et al. 2022; Callister
& Farr 2023a), potentially leading to model-induced false
alarms in the conclusions drawn from parametric population
inference. Hence, given the uncertainties regarding the true
population distribution and the motivation to search for new
physics beyond the assumptions built into existing parametric
models, data-driven population inference with minimal suppo-
sitions regarding the underlying population is highly important
for O4 and beyond.

Several model-independent inference frameworks studied in
the existing literature are able to extract features in the CBC
population distribution from GW data, without assuming
a priori the precise nature and location of these features.
Some examples include population modeling based on
autoregressive processes (Callister & Farr 2023a), splines
(Edelman et al. 2022a; Edelman et al. 2023), Gaussian mixture
models (Tiwari 2021, 2022; Tiwari & Fairhurst 2021), adaptive
kernel density estimation (aKDE; Sadiq et al. 2022), maximum
population likelihood (Payne & Thrane 2023), Dirichlet
processes (Rinaldi & Del Pozzo 2021), and binned Gaussian
processes (GPs; Foreman-Mackey et al. 2014; Mandel et al.
2016; Mohite 2022; Abbott et al. 2023). While these methods
have their individual pros and cons, apart from the aKDE-based
one, they all implement a restrictive inference that does not
allow for generic correlations between the CBC mass and
redshift distributions. While most of the other methods can
infer the redshift evolution of the combined merger rate either
individually or simultaneously with the mass population, they
are all based on the simplifying assumption that the shape of
the mass spectrum itself does not evolve with redshift. This
artifact, when built into a population analysis framework, can
prevent it from exploring several astrophysical phenomena,
which in fact predict correlations between the shape of the
BBH mass spectrum and the distribution of BBH
redshifts (Fishbach et al. 2021; van Son et al. 2022a). On the
other hand, the existing implementation of the aKDE method
has been used to search for mass—redshift correlations only in
the detectable population of CBCs, i.e., without accounting for
selection biases (Sadiq et al. 2022). Hence, the constraints
inferred by Sadiq et al. (2022) cannot be used directly to probe
the aforementioned astrophysical phenomena without first
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converting them into constraints on the astrophysical
population (as opposed to the detectable one) by means of
appropriately constructed selection functions (Farr 2019; Man-
del et al. 2019; Vitale et al. 2020). Hence, previous studies on
the existence of correlations in the astrophysical BBH
population (such as the parameterized approaches of Callister
et al. 2021; Fishbach et al. 2021; Biscoveanu et al. 2022 or the
mixture-model-based approaches of Wang et al. 2022; Abbott
et al. 2023; Godfrey et al. 2023; Li et al. 2023) have mostly
been carried out while making strong assumptions regarding
the functional form of said correlations, rendering the inferred
constraints susceptible to the previously mentioned limitations
of parametric population modeling.

In addition, empirically probing the cosmological evolution
of several astrophysical processes requires correlated popula-
tion inference by means of data-driven frameworks that are free
of the limitations of parametric population modeling. For
example, the evolution of the initial conditions of zero-age
main-sequence stars with cosmic time (Kudritzki & Puls 2000;
Belczynski et al. 2010; Brott et al. 2011; Fryer et al. 2012;
Dominik et al. 2015; Neijssel et al. 2019; Safarzadeh &
Farr 2019; Farrell et al. 2021; Kinugawa et al. 2021; Vink et al.
2021), the preference of dynamical BBH formation environ-
ments toward different BH mass ranges at different
redshifts (El-Badry et al. 2018; Rodriguez & Loeb 2018;
Santoliquido et al. 2020; Romero-Shaw et al. 2021; Weath-
erford et al. 2021), the dependence of delay time between
isolated BBH formation and merger on the corresponding BH
masses (Li et al. 2018; Samsing 2018; Mapelli et al. 2019), and
the variation of the relative contributions of different BBH
formation channels with redshift (Rodriguez & Loeb 2018;
Rodriguez et al. 2019; Santoliquido et al. 2020; Yang et al.
2020; Zevin et al. 2021) all predict a BBH mass spectrum
whose shape correlates strongly with the corresponding redshift
distribution. Many of these predictions are obtained through
numerical simulations, with the predicted population distribu-
tion lacking an obvious well-defined functional form as
required for parametric modeling. Hence, in order to fully
explore the aforementioned astrophysical phenomena that
govern BBH formation and evolution, nonparametric analysis
schemes capable of inferring the correlations between the BBH
mass and redshift populations from GW observations through
04 and beyond are of high importance and significance.

In this work, we develop a model-independent inference
framework based on binned GPs that can infer the population-
level distributions of CBC masses and redshifts from GW
measurements of these quantities for a sample of BBHs. We
allow for correlation between the mass and redshift distribu-
tions, while also appropriately accounting for selection biases.
We demonstrate the accuracy with which our method can
constrain the underlying population by simulating astrophysi-
cally motivated fiducial populations of BBHs and realistic
measurement uncertainties. We also reanalyze public LVK data
for events in GWTC-3 and constrain the BBH mass and
redshift distribution without any prior assumptions on the shape
of these distributions. By particularizing to an uncorrelated
model, we show that our method yields constraints that are
fully consistent with the fiducial underlying population for
simulated sources and those yielded by uncorrelated parametric
models for GWTC-3, even though our results show hints of
new features beyond the standard POWER LAW + PEAK
model (Talbot & Thrane 2018). We then use our generalized
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model to constrain, for the first time, the correlations between
the BBH mass and redshift distributions from GWTC-3 in a
nonparametric manner.

We note that our work is a proof of concept in the sense that
we obtain the first nonparametric constraints on the correlations
between the population-level distributions of BBH masses and
redshifts. Our model thus enables us to probe new physics
beyond the scope of existing nonparametric models, which
either restrict to an uncorrelated mass—redshift inference
(Tiwari 2021, 2022; Tiwari & Fairhurst 2021; Edelman et al.
2022a; Edelman et al. 2023; Callister & Farr 2023a) or attempt
to infer those correlations in the detectable population without
accounting for selection effects (Sadiq et al. 2022). Hence,
straightforward generalizations of our method to simulta-
neously infer the spin population and other astrophysically
significant ensemble properties of CBCs are left as future
explorations. Similarly, studying the full CBC mass spectrum
using our model through the inclusion of low-mass events in
the analyzed data sets is an interesting venture beyond the
scope of this paper and is also left for future work.

This paper is organized as follows. In Section 2, we describe
the construction of our binned population model, the GP prior,
and the hierarchical inference framework used in conjunction
to constrain the CBC population from multiple GW observa-
tions. In Section 3, we summarize the results obtained by
applying our method to real as well as simulated data and
discuss their implications. In Section 4, we conclude by
summarizing the implications of our method in the context of
04 and beyond, while highlighting potential generalizations,
which are left as future projects.

2. Methods

In this section, we develop our data-driven clustering
algorithm within the framework of Bayesian hierarchical
inference to constrain the population-level distributions of
CBC parameters from GW observations. We make very few
underlying assumptions regarding the functional form of the
GW source population. We achieve this by first constructing a
binned GP model over the aforementioned population
distribution.

2.1. Binned Model

In order to cluster across the three-dimensional parameter
space of binary component masses and redshift (m,, m,, z), we
first divide the space into N, bins. We then assume that the
merger rate density per unit comoving volume per log-
component masses per unit source frame time is constant
within a particular bin. Hence the choice of N, determines the
resolution with which our model can distinguish features in the
CBC mass-redshift spectrum. For the ~th bin, the rate density
is thus defined as

_ dN7
dInmd Inm,dVedtg

~

n'

1)

where N7 is the number of events with masses and redshift
lying in the ~th bin, V, is the comoving volume, and f is the
source frame time. If we fix the lower and upper edges of the
~th bin, denoted by (l,]l'l, erZ’ [7) and ('41:{1’ unzz, u.'), respec-

tively, then the differential fraction of events with masses m;,
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m,, and at redshift z can be written in terms of rate densities as

N Gy LA T g, e
dmldmgdz 5 mymy dz 1 +z
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)

where © is the Heaviside step function and T is the total
observation time as measured in the detector frame that relates
to the source frame time elapsed during observation
Tr = Tops/(1 +2). We note that the model in Equation (2) is
general in the sense that it can even infer the existence of
correlations between the mass and redshift distributions, in
contrast to several studies in the existing literature (Edelman
et al. 2023; Callister & Farr 2023a) that only allow the total
merger rate to vary with redshift. Furthermore, binning up a
higher-dimensional parameter space can allow for the straight-
forward generalization of our model to infer the distribution of
other GW parameters, such as spins. However, we note that
while the higher-dimensional models are straightforward to
formulate, their implementation is susceptible to scalability
issues, on which we elaborate further in Section 4.

To summarize, for the binned population model in
Equation (2) or any higher-dimensional generalization thereof,
constraining the rate densities from GW data amounts to
inferring the functional form of the population-level distribu-
tions of CBC parameters up to the resolution limit imposed by
our choice of binning.

2.2. Hierarchical Inference

To constrain the rate densities that characterize our model
from multiple GW observations, we employ the framework of
Bayesian hierarchical inference (Thrane & Talbot 2019). Baye-
sian inference of GW data yields measurements of CBC
parameters for each event in the form of posterior samples that
can be reweighted to the population model of interest. Multiple
observations can be treated as independent realizations of an
inhomogeneous Poisson process and hence combined hier-
archically to yield the likelihood of population-level quantities
given the combined data set (Loredo 2004; Mandel et al. 2019;
Wysocki et al. 2019). In the context of our binned r_I}odel, the
joint likelihood of rate densities 7 given data d from a
collection of N observations takes the following form:

()

pd|ii) = e~Nea® T ( —mdmd—_ NG

i PPE(ml’ my, z)
samples, i

where <'>samples,i denotes an average over posterior samples of (m;,
m?2, z) obtained from the ith observation and Ny, is the number of
CBCs expected to be detectable as a function of the rate densities.
For details regarding the convergence of the Monte Carlo integrals
implemented by the aforementioned average over posterior
samples, see Appendix A. The implicit assumption in
Equation (3) is that every observation in the analyzed set is
astrophysical, which requires the imposition of a stringent
detection threshold when selecting the list of candidate events to
be used in population inference. The existence of this threshold
introduces a Malmquist bias in the inferred population, since
arbitrary draws of (m;, m,, z) from Equation (2) are not equally
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likely to be detectable. Hence, integrating the right-hand side of
Equation (2) over (m;, m,, z) without accounting for selection
effects yields a biased estimate of Ny.

To account for selection biases, we compute Ny by
simulating a large fiducial population of CBC signals and
injecting them into detector noise realizations. The parameters
of the simulated events that pass the detection criteria can be
reweighted to our binned population model in order to yield an
unbiased estimate of Ny, (Farr 2019; Mandel et al. 2019; Vitale
et al. 2020), and thus we write

iz )
- Kd t dmydmydz
Nyt () = —= — ; 4
draw \ Pdraw (my, my, 2)

samples,det

where <'>5amples,det denotes an average over detectable samples
of (my, m,, 7) and pyraw 1 the fiducial population from which
the simulations were generated. The numbers Ky and Kge
denote the total number of simulations generated and the
number of simulated events that pass the detection threshold,
respectively. For details regarding the uncertainties in empiri-
cally estimating Ny, from simulations, ways of marginalizing
over them, and the corresponding accuracy requirements
(Farr 2019), see Appendix B.

The average over samples in Equations (3) and (4) corresp-
onding to each bin is proportional to the rate density of a given
bin, with the constants of proportionality being precomputable
given the relevant samples and a choice of binning. The
likelihood in Equation (3) can then be used to infer the rate
densities, provided a suitable prior has been imposed on them.
For details regarding the calculation of the likelihood and the
aforementioned constants, see Appendix A

2.3. GP Prior

We choose the prior on logarithmic rate densities to be a
stationary GP so as to regularize and smoothen the inferred
population distribution in the case of sparse data sets (Foreman-
Mackey et al. 2014; Mandel et al. 2016). We represent this
prior in the following way:

In7i ~ N, ¥), &)

where 1 and X are the mean and covariance matrix of the GP.
For the covariance matrix, we use an exponential quadratic
function,

¥ (6)

oY)
Yoo, \) = o? exp(—w),
where o controls the amplitude of the covariances,
determines the length scale over which the bins are correlated,
and ¢” is the (logmy, logm,, z) coordinate of the ~th bin
center. The quantities (i, o, \) are treated as hyperparameters
of the model and are inferred simultaneously with the rate

densities.

2.4. Hamiltonian Monte Carlo Sampling

The GP prior and the likelihood together yield the joint
posterior distribution of the rate densities and the hyperpara-
meters, which takes the following form:

p(, i, o, Nd) o p(fi, o, Np(ili, o, Npi), (1)
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where p(ii|ii, o, A) is the GP prior on the rate densities and
p(ti, o, \) are priors on the hyperparameters (chosen to be broad
normal, halfnormal, and lognormal distributions in y, o, and A,
respectively). The constant of proportionality in Equation (7) is
the so-called Bayesian evidence of our binned model in the data
and is independent of the rate densities and hyperparameters. The
stochastic sampling of the posterior density using Monte Carlo
techniques can thus be carried out without computing the
evidence, with the posterior samples of the rate densities being
sufficient for constructing Bayesian credible intervals of the CBC
population distribution.

However, for high-resolution inference, the number of
quantities being sampled simultaneously becomes large, leading
to an increase in computational cost. In the context of our binned
model, the quantities being simultaneously inferred (77, ti, o, \)
span a D =2N,, + two-dimensional space. Algorithms such as
random walk Metropolis or Gibbs sampling, which scale poorly
with the dimensionality of the space being sampled (Neal 1993;
Homan & Gelman 2014), can potentially render high-resolution
population inference computationally prohibitive. For this reason,
we sample the posterior in Equation (7) using Hamiltonian Monte
Carlo (HMC; Neal 2011; Homan & Gelman 2014), which
invokes a computational complexity of O(D’ / “4) per independent
sample and is significantly more tractable than the O(D?)
complexity of random walk Metropolis (Creutz 1988) or Gibbs
sampling (Homan & Gelman 2014).

We perform HMC sampling by means of the No-U-Turn
Sampler (Homan & Gelman 2014) that improves upon standard
HMC by efficiently autotuning the step size, as implemented in
the PyMC software library (Salvatier et al. 2016). Once
obtained, the stochastic samples of # can be used to reconstruct
credible intervals of the differential merger rate density as a
function of (m;, m,, z), which is expected to contain the
underlying population distribution of these CBC parameters
with certain posterior probability.

2.5. Uncorrelated Inference for Small Data Sets

As mentioned before, the generalized population model in
Equation (2) allows for and is able to infer correlations between
the mass and redshift distributions of CBCs. However, the
simultaneous inference of a large number of quantities from
small data sets such as GWTC-3 (or any subpopulation thereof)
can be expected to yield uninformative constraints on the
marginal distributions. Furthermore, constraints yielded by the
fully correlated inference cannot be compared to existing
parametric and nonparametric population studies on GWTC-3,
all of which restrict to population models comprising
uncorrelated mass and redshift distributions. Hence, for
analyzing GWTC-3-sized data sets, it is often preferable to
restrict our generalized inference by prohibiting correlations
between mass and redshift distributions. This is achievable by
slightly redefining the binned population model:

L(ﬁw i) = Zn;ﬁhg& — 10w - z)
dz 1 +z

«

3
X > —00m — 1))O,)) — m)O(my — 1))Ou,), — my),

g mimsz
®)

where nf’n,,f holds the same meaning as the rate density defined
in Equation (1). With this correlation-free factoring of the rate
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densities, the GP prior can also be factored into two
independent GPs:

iy ~ Ny S, ©)
Inii, ~ N(ﬁzv X)), (10)

where both ¥, and X, are exponentially quadratic while being
conditional on the different hyperparameters: (o,, A,) and (o,
An), respectively. This drastically reduces the number of
independent quantities being simultaneously inferred, specifically
from N, = (N, — 1N, = 1) to Ny =N, — D> + N, — 1,
where N,, and N, are the numbers of bin edges along the mass and
redshift axes, respectively. The smaller number of quantities can
be constrained informatively from a GWTC-3-sized data set, with
the results eligible for straightforward comparison to existing
studies that all carry out uncorrelated parametric and nonpara-
metric population modeling. (We note that the m; >m;
convention that is often adapted in the CBC population inference
literature, when implemented in the context of our model, leads to
(N,, — 1)? being replaced by N,(N,, — 1)/2.)

2.6. Choice of Binning

Prior to analyzing GW data with our models, we must
choose the location and width of the bins along each
parameter dimension whose population-level distribution we
intend to infer. To select from various possible binning
choices, one must weigh resolution against computational
cost. A higher number of bins over the same region of
parameter space can potentially lead to the identification of
new features in the underlying population with increased
resolution, while simultaneously increasing the computational
cost of the ensuing analyses. In the context of our framework,
drawing from a GP prior incurs a computational cost that
scales with the total number of bins cubed. For the generalized
correlated inference, since the number of bin edges along each
parameter dimension contributes multiplicatively to the total
number of bins, increasing the number of bins by several
factors can lead to intractability, given the current central
process unit (CPU)-based implementation of our algorithms.
Furthermore, a model with a larger number of bins, when used
to analyze the same data set, will converge to the underlying
distribution for costlier sampler settings, such as a larger
number of samples and walkers, due to an increase in the
number of quantities being simultaneously inferred from
the same data set. A fully scalable implementation of the
described inference framework is part of ongoing develop-
ment. Once achieved, it will enable a systematic study of the
effects of bin choices on the inferred distributions, which is
currently limited by the computational cost of the existing
implementations.

On the other hand, increasing the number of bins beyond the
level of resolution required to identify all existing features in
the underlying population is not expected to further alter the
shape of the inferred distribution significantly. This is because
the GP hyperparameters, such as correlation lengths and
amplitudes, are simultaneously inferred with the rate densities,
from the data themselves. For example, once all the features in
the underlying distribution along a particular parameter
dimension are extracted, doubling the number of bins along
said dimension leaves the inferred posterior of the corresp-
onding length scale unchanged. This is indicative of the GP
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correlating roughly twice as many bins along that dimension.
This results in the consistency of inferred constraints on the
underlying population, among the two sets of binning choices.
We have verified this for the version of binned GP
implemented in Abbott et al. (2023) that infers only the mass
distributions of CBCs and is hence computationally much
cheaper than the three-dimensional models discussed in this
work. We have analyzed simplistic populations of simulated
CBCs using the two-dimensional model for two different sets
of binning choices, one set having twice as many bins as the
other. Both choices of binning yield constraints that are fully
consistent with each other and also with the underlying true
distribution within uncertainties. These results are discussed in
Appendix C.

Given these considerations, we propose the following
method of choosing the number of bins. Initial results can be
obtained with a preliminary binning choice that satisfies several
conditions. For the analyses of GWTC-3 presented in this
work, we have chosen bins such that the number of bins in
every region of parameter space is at least higher than the
number of features in the population that are expected in that
region, given the findings of existing population studies on the
same data set. For example, these expectations can be based on
the number of features built into the functional forms of known
parametric models that were found to best fit the GWTC-3 data
set (Abbott et al. 2023). They can also be based on the findings
of existing nonparametric models that were used to carry out
uncorrelated population inference on the same data
set (Edelman et al. 2023; Callister & Farr 2023a). In our study
of GWTC-3, we have taken into account the findings of both
parametric and nonparametric population studies to choose our
initial set of bins.

Once these initial results are obtained, one can keep on
doubling the number of bins along a particular parameter
dimension and reanalyzing the same data set, until the length-
scale posteriors and the constraints on the rate densities
stabilize. However, in the context of the three-dimensional
models and their current implementation, even the first iteration
of bin refinement can lead to computational intractability. For
our proof-of-concept study, we thus focus on the results
obtained from the initial binning choice to demonstrate the
applicability of our method in producing nonparametric
constraints on the mass—redshift correlations in the astrophy-
sical BBH population, the first of their kind. We also focus on
validating these constraints with simulation studies, while
leaving the higher-resolution iterations by means of a scalable
implementation of our framework as part of an upcoming
study.

3. Results

In this section, we summarize the results obtained upon
analyzing real and simulated GW data with our nonparametric
model. First, we reanalyze GWTC-3 with the uncorrelated
model and compare the resulting constraints with those yielded
by astrophysically motivated parametric models. We then
validate those results for GWTC-3 by running the uncorrelated
model on simulated sources drawn from an uncorrelated
fiducial population. We also reanalyze GWTC-3 with the
generalized (fully correlated) model and infer nonparametric
constraints on the redshift evolution of the shape of the BBH
mass spectrum, for the first time. Finally, we test our
generalized model on two different sets of simulated sources,
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Figure 1. Constraints on the CBC mass spectrum from GWTC-3 BBHs using the uncorrelated model. The constraints yielded by our nonparametric model corroborate
the findings based on parametric population modeling by Abbott et al. (2023), despite making minimal assumptions about the functional form of the underlying
distribution. While there are signs of additional substructure in the primary mass spectrum, for example, near the 15 M, and 55 M, bins, the large error bars on the
rate density make any attempt at distinguishing such features from artifacts of Poisson uncertainty inconclusive.

one comprising an uncorrelated fiducial population of BBHs,
while the other correlated, so as to demonstrate the accuracy of
our method in inferring the existence and nature of these
correlations between the underlying distribution of BBH
masses and redshifts. The code developed to implement these
analyses are publicly available in the Python package gppop.’

3.1. Uncorrelated Inference: GWTC-3

To simultaneously infer the mass spectrum and redshift
distribution of BBHs in a model-independent manner, we
reanalyze public LVK data (Abbott et al. 2023c) comprising all
the BBH events that were observed through GWTC-3 with a FAR
of less than one per year. Following previous works, we exclude
the outlier event GW190814, given the uncertainty regarding its
system of origin, which leaves us with a set of 69 high-confidence
BBH observations (Abbott et al. 2020b, 2021, 2023; Essick et al.
2022). For each of these events, we use (m,;, m,, z) parameter
estimation (PE) samples calculated directly from the publicly
released (m,, m,, d;) samples by LVK to compute Equation (3).
Specifically, following Abbott et al. (2023), we convert luminosity
distance (d;) samples to redshift by assuming a particular
cosmological model, which we choose to be Planckl5 (Ade
et al. 2016). Since we do not infer the population properties of
BBH spins, our inference essentially amounts to fixing the spin
population to the default spin distributions used as PE priors. We
note that previous implementations of the binned GP
model (Abbott et al. 2023) and some semiparametric
models (Edelman et al. 2022a) that focused on exploring features
only in the mass population of CBCs used the same approach to
dealing with spins. To summarize, we use the exact same data set
of PE samples used by Abbott et al. (2023), so as to facilitate an
apples-to-apples comparison (The LIGO Scientific Collaboration
et al. 2021a; The LIGO Scientific Collaboration 2023b). For
further details of the single-event PE analyses, see Abbott et al.

(2023).

As shown in Figure 1, we find that our uncorrelated model
yields constraints on the BBH mass population that are fully
consistent with the parametric inference carried out in Abbott et al.
(2023) using the POWERLAW-+PEAK model, up to measurement
uncertainties. It is able to identify both features in the primary
mass spectrum, in the form of peaks in the merger rate density at
10 M, and 35 M, which are also found by Abbott et al. (2023)

3 https://github.com/AnaryaRay1/gppop.git

using the same data set. We also find hints of additional features
in the form of a dip near 15 M, and a bump near 65 M. The
measurement uncertainty of the inferred population in the bins
corresponding to these new features allows for their interpretation
as artifacts of Poisson noise. However, given the number of events
expected to be observable in O4, the existence of these features
can be verified empirically using our nonparametric analysis,
unlike parametric models such as POWERLAW-+PEAK, which are
limited by their assumptions on the functional form of the mass
population.

In addition to the mass spectrum, we simultaneously infer the
redshift evolution of the BBH merger rate using our uncorrelated
model. As shown in Figure 2, our constraints are fully consistent
with those obtained using a power law in the (1 + z) model by
Abbott et al. (2023) from the same data set, again up to
measurement uncertainties. We are able to recover a merger rate
that increases with redshift without making any strong assumption
regarding the functional form of the evolution. We note that our
constraints rule out an unevolving merger rate with less
confidence than the parametric model of Abbott et al. (2023),
which is to be expected, given the nonparametric nature of our
inference. In contrast to the parametric model, our 90% credible
intervals are consistent with a nearly unevolving redshift
distribution, similar to the findings of other model-independent
explorations, such as those based on splines (Edelman et al. 2023)
and autoregressive processes (Callister & Farr 2023a). On the
other hand, our 68% intervals (dashed lines) are fully inconsistent
with a nonincreasing merger rate. Hence, we are able to
corroborate that the discovery of an increasing merger rate with
redshift is not an artifact of the assumptions built into the
parametric model used in that discovery, since we are able to
recover the same result, albeit with less confidence. We expect our
model to yield more definitive conclusions regarding the redshift
evolution of the merger rate given an O4-sized data set, as evident
from the results obtained from the simulated catalogs in
Section 3.1.1.

3.1.1. Validation of the Uncorrelated Inference

We validate our results obtained from real data using the
uncorrelated model by testing our model on mock data sets
comprised of simulated sources drawn from a known fiducial
population. We choose the underlying distribution of masses to
be a truncated power law for both component masses. For the
redshift evolution of the merger rate, we choose the underlying
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Figure 2. Constraints on the redshift evolution of the BBH merger rate from GWTC-3 using the uncorrelated model. Left: comparison of our 90% (shaded) and 68%
(dashed) credible intervals with the 90% interval obtained from parametric modeling (Abbott et al. 2023). Right: comparison of our 90% credible intervals with those
of other nonparametric studies, such as those based on splines (Edelman et al. 2023, 2022b) and autoregressive processes (Callister & Farr 2023a, 2023b).

distribution to be a power law in (1 + z). The intrinsic rate
densities for the aforementioned fiducial population thus take
the following form:

_R xR+ z)”mf“M. (11

dmldl’l’lz ny — Mpyip

The hyperparameter values characterizing our true population
are listed in Table 1. After drawing the true values of masses and
redshifts for our simulated events from the population using
Equation (11), we generate the corresponding observed values
using realistic estimates of the measurement uncertainties,
following the methodology described in Fishbach et al.
(2018, 2020) and Farah et al. (2023). We use the advanced
LIGO design sensitivity noise curve (Abbott et al. 2020a) to
simulate the signal-to-noise ratio (S/N) of mock events as a
function of masses and redshifts, in the case where all mock
events are assumed to be optimally located and oriented with
respect to the detector. We account for the distribution of source
orientations and sky positions using a multiplicative factor that
encodes information about the antenna response of the detector
corresponding to randomly oriented sources, which has been
shown to follow a well-modeled distribution for a single
detector (Finn & Chernoff 1993). We then interpolate the S/N
over a grid of masses and redshifts to generate the PE samples for
the simulated events that satisfy a given detection threshold, using
the mock PE likelihood described in Farah et al. (2023). We use
the same S/N interpolation and detection threshold to generate a
different set of detectable simulations required for estimating Nye
through Equation (4).

We draw three different realizations of our uncorrelated
mock catalog, each spanning a one month observation period
with a duty cycle of 0.5, and analyze them individually using
the uncorrelated model. With our choice of Rj, a single
realization is found to comprise a mock catalog of 147 events.
The resulting inference, summarized in Figure 3, shows that
our model is able to place constraints on the underlying mass
population as well as the redshift evolution of the merger rate
accurately, up to measurement uncertainty. This validates the
results displayed in Figures 1 and 2 obtained from analyzing
real data, using the uncorrelated model as being representative
of the underlying BBH population as opposed to artifacts of the
binned population model itself.

We note that, unlike the case of GWTC-3, the 90% credible
intervals on the redshift distribution of simulated events
successfully rule out an unevolving merger rate. This is to be

Table 1
True Values for the Hyperparameters Characterizing the Underlying Population
in Equation (11)

Hyperparameter True Value
Ry 100 Gpe yr~!
o 0.75

Ié] 0.0

Mmin 4~5M<£)
Mmax 55M. (o)

K 3.0

expected, given that the simulated catalog has roughly twice as
many events as GWTC-3, thereby enabling our model to
extract much narrower constraints. Hence, we conclude that our
uncorrelated model will be able to confidently constrain the
nature of this redshift evolution of the BBH merger rate from
an O4-sized catalog.

3.2. Correlated Inference: GWTC-3

To search for correlations between the mass and redshift
distributions of BBHs, we reanalyze the GWTC-3 data set as in
Section 3.1, but this time with the generalized population
model in Equation (2). We constrain the population-level
distributions of BBH component masses conditional on
redshift, which we obtain from the merger rate density in the
following way:

1 dR
R (Z) dm1 2

p(milz) = (). 12)

We note that uncorrelated population inference frameworks
(Edelman et al. 2023; Callister & Farr 2023a) that assume

L(z) X Rof (@)p(my, my) will always recover a distribu-
dmydm,

tion p(m; »|z) that is independent of z, regardless of how much
the data favor otherwise. On the other hand, our generalized
model in Equation (2) has no restrictions built into its
underlying assumptions and hence is capable of inferring a
potentially evolving p(m;|z) from the data. We display the
inferred credible intervals on p(m ,|z) at three different redshift
bins in Figure 4.

We find that the shapes of the BBH mass spectra at different
redshifts are fully consistent with each other up to measurement
uncertainty, and hence conclude that there is no evidence of
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Figure 4. Nonparametric constraints on the redshift evolution of the shape of the BBH mass spectrum: the first of their kind. We find that the shapes of the BBH mass
distributions across different redshifts agree with each other up to measurement uncertainty. However, there are regions in the BBH component mass ranges where the
credible intervals of p(m,|z) have finite support for some redshift intervals, but not others. Hence, we conclude that it is premature to rule out an evolving BBH mass

distribution, given current observations.

redshift evolution in GWTC-3. However, there are regions
where the mass spectrum at lower redshifts has support, while
the ones at higher redshifts do not. This is indicative of the fact
that we cannot rule out the existence of mass—redshift
correlations either, given current observations. On the other
hand, given the expectation that the width of the inferred
credible intervals scales inversely with the square root of the
number of observations, it might be possible to confidently
validate or rule out the existence of mass—redshift correlations
with our model from an O4-sized data set.

3.2.1. Validation of the Correlated Inference

We validate our correlated analysis of real data using two
different mock data sets, one comprising an uncorrelated mass—
redshift population of BBHs and the other a correlated one, so as
to demonstrate the accuracy with which our model can infer the
nature and existence of mass—redshift correlations in the under-
lying BBH population. For the first test, we analyze the exact
same realizations of the uncorrelated mock observations described
in Section 3.1.1, only this time using the fully correlated model in
Equation (2). As in the case of real data, we constrain the BBH
mass distribution conditional on redshift, so as to demonstrate the
accuracy with which our generalized model can recover the
underlying densities corresponding to these distributions.

The resulting inference, summarized in Figure 5, demon-
strates that our generalized model recovers the shapes of the
BBH mass distribution at different redshifts as being fully
consistent with the underlying population. In particular, it can
be seen that, for all three realizations, the true mass distribution

has significant support from the inferred constraints at all
redshifts. This validates our model’s ability to recover an
unevolving mass spectrum from the data without assuming
a priori whether or not such evolution may exist. Hence, any
potential evidence for (or against) the existence of mass—
redshift correlations found using our model from future (post-
04) observations of CBCs can be interpreted as being
representative of the underlying CBC population and not as
artifacts of the model itself, since the latter would have
otherwise manifested in this mock data challenge.

For our second test, we generate a different set of simulated
sources that comprise a fiducial population whose mass
distribution evolves in shape with redshift. We choose the
distribution over the masses to be a power law in primary mass
modulated by a Gaussian peak (Talbot & Thrane 2018), with the
fraction of events in the Gaussian component varying with
redshift. The merger rate density corresponding to the aforemen-
tioned underlying population thus takes the following form:

O(m; — my)

1+8 -8
m — "'min

(2) x Ro(1 + 2)"m}

dm1 dI’I12 m

I-a I-a
Mpyax — Mmin

X {’"l(l_a)u — A@) + AQN(m, 1, G, Mg, mmax>},
(13)

where N7p(my, 1, 0, My, Mpe) i a truncated Gaussian
distribution and \(z) is the fraction of events in the Gaussian
component, which is chosen to be a piecewise function of
redshift, as in A(z) = \gO(zp — 2) + MiO(z — zp). Here, Ay, Aj,
and 7, are the additional hyperparameters needed to describe a
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Figure 5. Constraints on the mass population of simulated events conditional on redshifts for the mock data set comprising an uncorrelated fiducial population. We
find that our correlated model is able to recover an unevolving shape for the underlying distributions of component masses up to measurement uncertainty, and hence
conclude that constraints on mass—redshift correlations from the real data displayed in Figure 4 are representative of the true BBH population and not of any artifacts

built into our model’s construction.

POWERLAW-+PEAK mass distribution whose peak fraction
evolves with redshift. The chosen fiducial values of all the
hyperparameters are listed in Table 2.

The generation of the mock posterior samples as well as the
separate set of detectable simulations for estimating Ny i
carried out using the exact same methodology and noise curve
as for the uncorrelated mock data set, which is described in
Section 3.1.1. However, instead of generating different
realizations each spanning a small time window, we simulate
a much longer observation time, yielding a single realization of
507 mock observations. This choice of simulated run time was
made so that the resulting number of mock events above the
detection threshold becomes comparable to the upper bound on
the expected number of observed BBHs post-O4. This in turn
makes our constraints on the mass—redshift correlations
inferred from the described mock data set optimistic forecasts
for the post-O4 analysis of real data.

Upon analyzing the aforementioned mock data set, we find
that our generalized model can correctly recover an underlying
BBH mass spectrum that evolves in shape with redshift. As can
be seen in Figure 6, our generalized model is able to
confidently identify the existence of correlations between the
population-level distributions of BBH masses and redshifts,
given enough observations. Furthermore, the credible intervals
on the BBH mass distribution can be seen to be evolving in
complete agreement with the true redshift evolution of the
underlying curve. Hence, we conclude that given an O4-sized
data set, our nonparametric inference framework can poten-
tially lead to the confident empirical validation of several
astrophysical BBH formation models that make informative
predictions on the existence of mass—redshift correlations.

4. Conclusion and Future Prospects

We have developed a robust and nonparametric hierarchical
inference framework based on binned GPs that can constrain the
population-level distributions of CBC masses and redshifts from
GW data, while allowing for and being able to infer the existence

Table 2
True Values for the Hyperparameters Characterizing the Underlying Population
in Equation (13)

Hyperparameter True Value
Mmax 6OM\
Miin 6.5M,

o 2.5

B 0

1 35M>

g 4M@

Ao 0.001

Al 0.1

20 0.3

Ro 30 Gpe® yr!

of correlations between the shapes of these distributions. We have
demonstrated that our generalized population model has enabled
the first nonparametric investigation of the correlations between
the underlying distributions of BBH masses and redshifts.

To facilitate comparison with previous works, we have
shown that our model can be restricted to one in which the
shape of the mass distribution is independent of the redshift
evolution of the merger rate. Using the restricted model, we
have shown that our method yields measurements of the BBH
mass and redshift distributions that are fully consistent with the
results of parametric modeling, despite being unassuming of
the functional form of these distributions. In addition, using our
generalized correlated model, we have inferred for the first time
a nonparametric constraint on the redshift evolution of the
shape of the BBH mass distribution. We found that even
though the credible intervals of the BBH mass distribution at
different redshifts are broadly consistent with one another, the
large error bars at high redshifts and the very small regions of
tension between such intervals make it premature to rule out
mass—redshift correlations, given current observations.

We have validated the results from the uncorrelated
inference by analyzing a fiducial uncorrelated population of
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Figure 6. Constraints on the mass population of simulated events conditional on redshifts, for the mock data set comprising a correlated fiducial population. We find
that our correlated model is able to accurately recover the true underlying distributions of redshifts and masses up to measurement uncertainty. The existence of the
disjoint gray and orange regions shows our generalized model can clearly distinguish between the different shapes of the BBH mass spectrum at different redshifts.
Hence, we conclude that the results obtained from the real data displayed Figure 4 are representative of the underlying BBH population and not of any artifacts built

into our model’s construction.

simulated BBHs and realistic measurement uncertainty. In
addition, using the same set of simulated sources, we have
shown that the correlated inference is capable of correctly
recovering an uncorrelated population without assuming any-
thing regarding the existence and shape of these correlations.
Last, using a different set of simulated BBHs that comprise a
correlated population, we have demonstrated that our general-
ized model is capable of confidently recovering the correct
redshift evolution of the shape of the underlying mass
distribution given an O4-sized data set.

Even though we restrict our work to a mass and redshift
population inference, using only BBH observations, we note that
such restrictions are straightforward to remove through simple
generalizations of our robust and self-consistent inference frame-
work. For example, the ability to simultaneously infer the
population-level distribution of BBH spins and its underlying
correlations with the corresponding mass and redshift populations
can be incorporated within our framework by simply binning up
the higher-dimensional space of BBH parameters, now spanned
by masses, redshifts, and spins.

However, as mentioned before, repeated draws from the GP
algorithm used in this work would incur a computational cost
that scales with the total number of bins cubed (Nb3). Hence,
adding even a single dimension to the space of the quantities
being binned up can potentially lead to a drastic increase in the
computational cost of the resulting inference, rendering the
current CPU-based implementation intractable. While several
workarounds to this issue—such as parallelized computing
based on Graphics Process Units, sparse (Quifi 2005) and
scalable (Gardner et al. 2018) GPs, etc.—can potentially be
implemented within our framework, the associated develop-
ments are beyond the scope of this paper and are hence left as
upcoming explorations.

On the other hand, including low-mass events from GWTC-
3 in our analysis, thereby fitting across the entire CBC
population, is a far simpler endeavor than, say, including spins,
amounting to little to no increase in computational cost.
However, to facilitate an apples-to-apples comparison between
our uncorrelated mass—redshift inference and the corresponding
analyses implemented in previous works, such as Edelman &
Farr (2023) and Abbott et al. (2023), we have chosen our data
set to be exactly identical to the one used by these studies and
hence excluded from it the aforementioned collection of low-
mass events.

10

Furthermore, the sparsity of such events compared to BBHs,
both in general as well as at most of the higher-redshift bins, is
indicative of the fact that such events would have contributed
rather uninformatively to the search for population-level
correlations between CBC masses and redshifts. While it is
indeed of interest and astrophysical significance to study
exactly how much the inclusion of these events affects our
findings, the corresponding implications and explorations are
beyond the scope of this proof-of-concept study and are hence
left as follow-up investigations.

To summarize, we have developed a data-driven clustering
framework to facilitate robust and self-consistent measurement
of the underlying distributions of CBC masses and redshifts
and their correlations, from GW observations, for the purpose
of exploring new physics beyond the limitations of existing
parametric and nonparametric population inference schemes.
Armed with our model-independent hierarchical inference
algorithm, future studies can hope to empirically probe several
highly significant astrophysical phenomena that take place in
our Universe in a maximally model-independent manner.
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Appendix A
The Posterior

In this appendix, we summarize in detail how the various
quantities required to evaluate the likelihood in Equation (3) are
computed from the GW posterior samples. We also provide an
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expression for the population posterior as an explicit function of
the rate densities and the hyperparameters. For the ith GW
observation being analyzed, single-event parameter estimation
(carried out for generating GW transient catalogs) yields posterior
samples of masses and redshifts (converted from luminosity
distance samples using a cosmological model) that can be used to
compute the posterior weights in each bin (Mohite 2022):
1

w =
d;
Neamples.i (1myj, maj, z;) ~ p(my, ma, z|d;)
' oy dV. 1
6%“(’71””"2/’1!)[1_1'2:;,’ e
X ! (A1)

9’
Ppg (myj, maj, z;)my;mo;

where a(my, m,, 7) is the index of the bin inside which m,, m,,
z lie, ppg(my;, my;, z;) is the fiducial prior used during the single-
event PE, Ngympies,; 1S the number of posterior samples drawn
for the ith observation, and 677 is the Kronecker delta
function. Explicitly, the fiducial PE priors used throughout this
study are uniform in detector frame mass and luminosity
distance squared. We downsample single-event PEs that have a
larger number of samples, so as to ensure that each event has an
exactly identical number of posterior samples prior to weight
computation. These weights can be precomputed for each event
corresponding to every bin for computational efficiency.
Similarly, the set of detectable simulated events generated for
computing Ny can be used to compute the sensitive spacetime
hypervolume corresponding to each bin in the following
way (Mohite 2022):

67»(Y(m]/sm2/s2f)]';)bs

(VT =
K draw

J ~ (det,draw)
dv, 1 N
D) —p(Xldraw)
x — , (A2)
p(myj, maj, zj, Ajldraw)myjmy;

where X are parameters that characterize a GW waveform in
addition to masses and luminosity distance (i.e., the parameters
that are not binned up), p(...|draw) is the fiducial distribution from
which the simulations are drawn, and j ~ (det,draw) signifies
simulated events that pass the detection threshold (Farr 2019). The
sensitive hypervolumes, like the posterior weights, can also be
precomputed for efficiency.

The posterior weights and the hypervolumes can be used to
evaluate the likelihood as a fast-evaluating function of the
merger rate densities:

- =2 n(VTy
pldli) =e H Zw}iiﬂ. (A3)
1 Y
To obtain an expression for the posterior as an explicit function
of the rate densities and the hyperparameters, we must do so for
the GP prior as well. The explicit functional form of the log GP
prior for an exponential quadratic kernel looks like the

following:

- 1
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where |A| is the determinant of the matrix A. In terms of the
likelihood in Equation (A3) and the explicit form of the GP
prior, the log of the posterior in Equation (7) can be written as:

logp(#, fi, o, Al{wa}, (VT))
N < 1
=logp(ji, o0, \) — EIOgIE(U, ]

1 _
—3 Z {(logn.,, — ,uw)(lognﬂ/r — uq,/)EW,A},,(O, N}
v

_ Z nv <VT>’V

+ > log (Z w,. nA) + const. (A6)

1 Y
Note that while {w,} replaces the conditional dependence of
the posterior on d, the conditional dependence on (VT) was
not explicitly mentioned before. However, since (VT) is
computed empirically from a data set of simulated sources,
our likelihood and hence posterior were always in fact
conditional on (VT). The reason for writing it explicitly at
this point of the derivation will become clear in the next
appendix, wherein we discuss the Monte Carlo uncertainties
in (VT). However, prior to investigating the Monte Carlo
uncertainties in the selection function, we first describe the
convergence of the event-specific Monte Carlo integrals in
Equation (Al).

To check for the convergence of event-specific Monte Carlo
integrals, we first compute the variance of the posterior weight
corresponding to each bin:

1

Var[w]] =
samples.i (1my;, Mo, z;) ~ p(mi, ma, z|d;)

2
Vs (myjm),z;) ﬁLf". 1
dz Y 14z

2 2 2
Dpg (Myj, moj, Z)mi;ms;

(AT)

Using these variances, one can construct metrics for testing
the convergence of single-event Monte Carlo integrals, such as
the number of effective samples:

S ()2 Var[w,]

o)

Following Callister & Farr (2023a), to ensure the convergence
of the event-specific Monte Carlo integrals, we demand that
for each draw of # from the hyperposterior, the condition
min;log, Negr,; > 0.6 be satisfied. However, given the size of
the bins chosen for our study and the hyperpriors on the
covariance amplitude, we expect these conditions to hold for
most draws from the hyperposterior. Hence, instead of
penalizing the likelihood upon the violation of said condition,
we verify in post-processing that for all rate density samples
this condition is automatically satisfied. On the other hand, for
future studies that aim to implement inference at a much higher

Nettj = (A8)
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bin resolution, for efficient sampling, we propose that this
condition is imposed during sampling in the form of a steep
penalty on the likelihood, similar to what is done in Callister &
Farr (2023a).

Appendix B
Uncertainties in (VT) Estimation

Empirically estimated (VT)s are subject to Monte Carlo
uncertainties (Farr  2019). According to the central limit
theorem, the sum over the samples in Equation (A2) can be
interpreted as the realization of a Gaussian distribution centered
around the true value of the integral being approximated by the
mentioned sum. Since we only have a finite number of samples,
the Gaussian can be expected to have a finite width as well:

(VI ~ Ny o) (BD)
Large Monte Carlo uncertainties in (VT) in some bins, due to
the sparsity of simulated sources, can lead to inaccurate
estimation of the astrophysical rate densities in said bins. To
get around this problem, it is possible to marginalize our
posterior distribution over the mentioned uncertainties in (VT)
estimation (Farr 2019).

In order to carry out such a marginalization, we first need to
estimate (7, and oyy. Following Farr (2019), we approximate
these two quantities from the single realization of the samples
used to compute the Monte Carlo sum, as in:

TR Sralmpmapz) T
vt~ o K
j N (det’draW) Kdraw

av. 1 3
. & =uTs +Z]p(/\_,ldraW)
9’

p(myj, myj, zj, )\j|draW)mljm2j

(B2)

vT)~ &~ .
j ~ (det,draw) Kiaw
ave 1 B
;|z:z,-—/17(>\jldraw)

2
1+z - (N%T)z

Kdraw

X

p(myj, myj, zj, Ajldraw)myjmy;
(B3)
With these estimates of 4], and oy, it is possible to compute
the posterior distribution of the rate densities and hyperpara-
meters that have been marginalized over the Monte Carlo
uncertainties in the (VT) estimation:
PG, fis o X{wa} {idr)s {00r))
= [p@. 1i. o, X{wa}, {(VT)})

X (H d(VTYp((VT) |13, a”VfT)), (B4)
)

where  p((VT)|u3p, o) is the normal distribution in
Equation (B1). The integral in Equation (B4) can be evaluated
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analytically to obtain

logp(i, i, o, X{wa}, (13} {001}

~ togp(i, 0. %) — 3 log|=(, N

1

5 2 {(ogn, — p)(logn, — 1) S0, )

7Y
-> 3y + %Z(rﬂ(ﬁ”)z + > log (Z W, n”’) + const.
(BS)
It can be seen in Equation (B5) that the marginalized posterior
is not normalizable, due to the 4(n?)? term. This implies that
the expectation values of the hyperparameters ji, o, A with
respect to the marginalized posterior become arbitrarily large.

This is corrected for by imposing an additional constraint on 777
during sampling, which is:

iy ’
e <2 P =
VT

N, < 2N}

det (B6)
This condition is similar to the one derived in Farr (2019) for
parametric population inference. Here, NJ; is the effective
number of independent samples of simulated events in the ~th
bin. Hence, the condition in Equation (B6) is implicative of the
fact that the effective number of simulated events in a bin
required for accurate VT estimation should be higher than the
expected number of detectable events in said bin. It can be
imposed by rejecting samples of n” for which the condition is
not satisfied.

Given the small number of observations analyzed for each study
described in Section 3 and the correspondingly large number of
simulated events used in VT estimation, this condition and the
marginalized posterior in Equation (B5) were not implemented.
On the other hand, it was verified in post-processing that for each
sample of n”7, the condiion NJ, < <NJ; was satisfied
automatically. However, as summarized in this appendix, future
studies that might attempt to use a sparse data set of simulated
events in conjunction with a large number of observations can
straightforwardly implement the condition in Equation (B6) as
well as the marginalized posterior in Equation (BS) to prevent
inaccurate VT and, hence, rate estimation.

On the other hand, Essick & Farr (2022) note that
marginalizing over Monte Carlo uncertainties in the manner
described so far might lead to biases in the inferred population,
which in the case of parametric modeling can only be resolved
in computationally expensive ways. Their argument is based on
the fact that Monte Carlo uncertainties in the selection function
are correlated between different points in the space of the
population hyperparameters. The marginalization procedure
described in Farr (2019), on which ours is based, assumes that
the Monte Carlo uncertainties corresponding to different values
of the population hyperparameters are uncorrelated, which
leads to biases in the inferred distribution as compared to using
the point estimates directly, without marginalization (Essick &
Farr 2022). Hence, Essick & Farr (2022) argue that the
resolution of this bias requires one to either use a much larger
number of samples, as compared to the scenario wherein the
point estimates are used directly, or to account for the
aforementioned correlations by evaluating the point estimates
on a multidimensional grid of population hyperparameters.
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Given that both of these methods are expensive to implement
for parametric models, they recommend the use of point
estimates directly, instead of marginalization.

However, these concerns are not applicable in the context of
our population model, due to the following reason. In our case,
the “population hyperparameters” are the rate densities
themselves. As described before, the mean and variance of
the number of detectable events, as a function of the rate
densities, are just sums of the rate densities raised to sum
power, weighted by precomputable Monte Carlo integrals.
Hence, the first concern raised by Essick & Farr (2022) is not
applicable to our model, since the Monte Carlo sums over
detectable simulations are only computed once and, unlike
parametric models, not for every draw from the hyperposterior,
leading to the net computational cost of our analyses remaining

log p (i, i, o, X{wad, {3}, Uk

=logp(fi, 0, X) — —logIE(o M| - = Z {(logn, — p)(logn —

’Yv'Y
,anw+ 32 S
%'Y

+ > log (Z w rﬂ] + const.

v

unchanged irrespective of how many detectable samples
are used.

Similarly, accounting for correlations while marginalizing over
the Monte Carlo uncertainties in our model can be implemented
without any increase in computational cost. In the context of our
model, correlations in the selection function between two points in
the space of the population hyperparameters translate to
correlations between the (VT) estimates of different bins. Hence,
unlike parametric models, we need not compute Monte Carlo
sums on a multidimensional grid of population hyperparameters
for each draw from the hyperposterior. Instead we need only
compute them once, that too only for all possible bin pairs.

For example, to account for these correlations, we need to
replace Equation (B1) with a multivariate correlated Gaussian:

{(VT)} ~ M{pyr}s Zvr), B7)

where Yy7 is the covariance matrix of the point estimates
among the different bins. Following Essick & Farr (2022), we
can estimate this covariance matrix from the Monte Carlo
samples in the following way:

1 K,
7y _ det
>
Karaw | (Kget — 1)Kdrawj ~ (det,draw)
obs dz |~—le+ p()‘ |draw) K
x | §7-almjmjz) e VT
p(mlj, mzj, Zj, /\jldraw)mlijj Kdraw
dVe
ob% dLl 7=z P P()\ |draw) K '
x | §7-alnij.maj.z)) — ety
y Hyr
p(mlj, nmyj, Zjs /\jldl‘&W)Wl]/l’l’lg/ Kiraw

(B8)

Karaw — Kdet
+ K “z/T“VT
det
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Note that Equation (B8) is precomputable, given samples of
simulated events. Once the covariances are estimated, one can
proceed to carry out the marginalization in Equation (B4) with
the correlated multivariate Gaussian of Equation (B7):

P, fir 0, M{wal, (e} {00r))
= [ p(@. i . X b VT DAV H sty o)

X (H d(VT)‘l’).

As before, the marginalization integral can be carried out
analytically to obtain the following expression of the posterior:

(B9)

10, M)

(B10)

Similar to the case of uncorrelated marginalization, the
posterior in Equation (B10) is not normalizable, unless we
impose the following condition

22 (3 MVT [Zvel™)
~

Wy < (B11)

in the form of a likelihood penalization. Note that Equation (B11)
holds the same meaning as Equation (B6), with the only
difference being that the number of effective samples of simulated
events in each bin is now calculated while accounting for
correlations with other bins. As before, we do not impose this
condition during sampling in the form of a likelihood cut, due to
the small number of observations and the correspondingly large
number of detectable simulations. However, we do verify in post-
processing that this condition is automatically satisfied for all the
rate density samples.

To summarize, marginalization over the Monte Carlo uncer-
tainties is implementable straightforwardly within our framework.
The concerns raised by Essick & Farr (2022) are not applicable to
our binned model, since, correlated or otherwise, the Monte Carlo
sums required to evaluate our marginalized posterior are
precomputable. Hence, unlike parametric models, we can
correctly implement marginalization over the Monte Carlo
uncertainties in the manner recommended by Essick & Farr
(2022) while suffering no increase in computational cost.

Appendix C
Effects of Changing the Choice of Binning

In this appendix, we summarize the results referred to in
Section 2.6 to demonstrate that different bin choices yield
consistent results. Given the scalability of the current
implementation with the dimensionality of the parameter space
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Figure 7. The effects of doubling the number of bins on the inferred length-scale posterior.
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Figure 8. The effects of doubling the number of bins on the inferred population constraints.
and the number of bins along each parameter dimension, we primary mass and mass ratio. The redshift evolution of the
carry out this study in the context of the two-dimensional merger rate is chosen to be uniform, resulting in a redshift
version of our model that was used by Abbott et al. (2023) to population that matches exactly with the assumptions of the
infer nonparametric constraints on the CBC mass spectrum. abovementioned two-dimensional model. The functional form
The three-dimensional models discussed in this work reduce to of the underlying population and the corresponding hyperpara-
the mentioned two-dimensional one upon fixing the redshift meters that characterize said function are specified in
evolution of the CBC population to a function that is uniform Equation (C1) and Table 3, respectively. We generate two
in comoving volume and completely uncorrelated with the realizations of this mock population, each comprising a set of
masses (Mohite 2022; Abbott et al. 2023). 100 BBH events. We simulate the measurement uncertainty in
For this study, we generate a simplistic population of the BBH parameters and detection sensitivity following the
simulated BBHs that is a smoothed, truncated power law in methodology described in Fishbach et al. (2018, 2020) and

14



THE ASTROPHYSICAL JOURNAL, 957:37 (16pp), 2023 November 1

Table 3
True Values for the Hyperparameters Characterizing the Underlying Population
in Equation (C1)

Hyperparameter True Value
« 3.14

By 1.7
Mmin 4.5M ®
Mmax SSMD

Farah et al. (2023), using the exact same procedure and power
spectral densities summarized in Section 3.1.1.

dR
dmldmg

my )
(z)o<m1—“(—2) ) (C1)

m

We analyze the aforementioned realizations of this simulated
BBH population using the two-dimensional binned GP model
corresponding to two different binning choices, with one
containing twice as many bins as the other. The resulting
inference is summarized in Figures 7 and 8.

It can be seen in Figure 7 that upon doubling the number of
bins, the inferred posterior of the GP length scale remains
unchanged, which is implicative of the GP correlating twice as
many bins within the same interval of log-component masses.
This leads to the inferred population constraints displayed in
Figure 8, corresponding to the two different choices of binning,
being fully consistent with each other, as well with the injected
population up to measurement uncertainties. We thus conclude
that increasing the bin resolution beyond what is needed to
identify features in the underlying population leads to
constraints that are consistent with those obtained from a
lower-resolution inference, provided that the latter already
captures all the features in the underlying population.
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