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Abstract—In machine learning applications, the data are often
high-dimensional and intricately related. It is often of interest
to find the underlying structure and the causal relationships
among the data and represent the findings with directed graphs.
In this paper, we study multivariate time series, where each
series is associated with a node of a graph, and where the
objective is estimating the topology of a sparse graph that reflects
how the nodes of the graph affect each other, if at all. We
propose a novel fully Bayesian method with a sparse prior on the
hyperparameters. The proposed method allows for nonlinear and
multiple lag relationships among the time series. The method is
based on Gaussian processes, and it treats the entries of the graph
adjacency matrix as hyperparameters. The method employs a
modified automatic relevance determination (ARD) kernel and
allows for learning the mapping function from selected past data
to current data as edges of a graph. We show that the resulting
adjacency matrix provides the intrinsic structure of the graph
and answers questions related to causality. Numerical tests show
that the proposed method has comparable or better performance
than state-of-the-art methods.

Index Terms—Topology inference, Gaussian processes, causal-
ity, ARD kernel, Bayes, Hamiltonian Monte Carlo

I. INTRODUCTION

N many science and engineering problems, it is essential to

determine the underlying structure of observed data/signals
as structures provide valuable insights about the system where
the data originate. Given the significance of the problem, it is
not surprising that learning underlying structures/topology of
multidimensional data has been well studied in many fields,
including biology [1], social sciences [2], and finance [3].
For example, in biology, searching the functional connectivity
within different brain areas; in social science, analyzing re-
lationships between individuals on social platforms and even
entire societies; and in finance, studying the interdependence
of financial entities [4] have been of great interest.

There are several approaches to the problem of finding
the topology of a graph. One common class of methods is
to estimate the Laplacian or adjacency matrix of the graph
under the assumption that the data are generated according to
a Gaussian Markov Random Field [5], [6]. However, these
methods produce undirected graphs because the estimated
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adjacency matrices are symmetric, which in turn limits the
applicability of the methods. To overcome this hindrance,
there has been significant research on estimating directed
graphs. A prominent approach among them is based on vector
autoregression (VAR) models [7]. For instance, in [8] and [9],
VAR models were used to quantify Granger causality of fMRI
data and to recover gene regulatory networks, respectively.
Further, kernel-based VAR models were proposed to identify
non-linear topologies [10], [11].

Another category of methods for inference of directed
graph topology is based on structural equation models (SEMs)
[12], [13]. They were initially proposed for causality learning
[14], [15]. SEMs are used to infer simultaneous relationships
while taking exogenous variables into account. This overcomes
common problems associated with the existence of exogenous
nodes or variables in topology inference and causality learning.
In [7], it was proposed to combine VAR and SEM models,
ending with SVAR models. These models consider both si-
multaneous and lagged dependencies of time series. In [16]
and [17], an SVAR model was used for inference of dynamic,
and non-linear, directed graphs, respectively. In addition to
the aforementioned approaches, from the perspective of graph
signal processing, the adjacency matrix can be viewed as
a graph filter [18]-[20]. The adjacency matrix can also be
considered to be related to Granger causality [21], motivating
the interpretation of a network of structural data dependencies
as an evidence of causal relationships.

In [22] we proposed a method based on Gaussian processes
(GPs) to reveal the structure and causality of a graph by
assuming that the function that generates data on each node is
drawn from a Gaussian process rather than being deterministic.
While this method performed well under various conditions,
it is still susceptible to overfitting [23], particularly for large
networks with numerous parameters and resulting in the esti-
mation of a dense graph topology. To address this issue, we
propose a novel fully Bayesian method to infer the topology
of directed graphs from time-series data observed at the
nodes. We assume nonlinear functional relationships among
the signals that evolve on the nodes of the graph, where the
functions, too, need to be estimated. Specifically, we suggest
employing fully Bayesian inference of Gaussian processes
with sparse priors as a tool for learning the unknown structural
mappings. We recall that the GPs are data-efficient, flexible,
and can cooperate with information from the priors. In this
paper, the arguments of the functions are not only past local
data but also past data from other nodes. The GPs are based on
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a predefined kernel, where the hyperparameters of the kernel
encode the relevance of each argument and, thus, allow for
automatic relevance determination. We introduce a modified
version of the automatic relevance determination (ARD) kernel
to set priors on the hyperparameters. Our method enables
simultaneous learning of the strength of influence from all the
selected previous data, which means that the method is not
dependent on the knowledge of specific time delays. In ad-
dition, the proposed method produces marginalized posteriors
of the hyperparameters.

The thought behind the ARD kernel has been widely used in
machine learning since it was formulated in the framework of
neural networks [24]. For example, [25] and [26] employed
ARD kernels for feature selections in support vector ma-
chines (SVMs). Additionally, [27] proposed a method to infer
causality between two-time series using the hyperparameter
of Gaussian processes with an ARD kernel. Moreover, the
idea of making inferences based on hyperparameters has
been successfully applied in many ways. For instance, [28]
introduced an online method for detecting change points,
and [29] developed a time-varying hyperparameter model to
estimate time-varying functions.

The main contribution of this paper is the introduction of a
novel fully Bayesian Gaussian process (fBGP)-based method
for inferring a sparse graph topology from time series data
observed at the nodes. The proposed method does not make
any assumptions regarding the functional relationship between
the signals of the nodes, except that the functions are suffi-
ciently smooth. The method also allows for the presence of
multiple time lag dependencies. Further, the method provides
the posterior of the hyperparameters of the model, enabling
the evaluation of their uncertainty and providing additional
insights into the graph topology. The proposed method can
also be used to make hard decisions if edges between nodes
exist or not and thereby produce a binary graph topology.

The rest of the paper is organized as follows: In Section II,
we give a brief overview of graphs, GPs, the ARD kernel, and
the Hamiltonian Monte Carlo method. Then in Sections III and
IV, we describe the proposed model and solution, respectively.
In Section V, we present in detail our algorithm. In Section VI,
we show numerical results on different cases, and in the last
section, we provide concluding remarks and outline directions
for future work.

II. PRELIMINARIES
A. Graph and Graph Signal

Consider a graph denoted by G(V,E, W), where V is a
set of N nodes, £ is a set of edges, and W is the graph’s
adjacency matrix whose elements provide information about
the relationships between the nodes on the graph. This matrix
can be symmetric or asymmetric and, thus, implying if the
graph is undirected or directed, respectively. The (n,m)th
entry of W is denoted by wy,, € [0,+00), and its value
represents the strength of coupling of the nth and mth nodes.
For an undirected graph, we have wy,,, = Wpm,, and if its
value is non-zero, there is an edge between node m and node
n. Similarly, for a directed graph, if w,,, is non-zero, there

TABLE I
LIST OF SOME SYMBOLS AND NOTATIONS

discrete time indices

— number of observed data samples

node indices

size of the graph

— adiscrete delay time index

—  maximum delay lag

x; € RNAX1 —  an input vector at time ¢

X € RIT-A)xNA a matrix with rows composed of the input
vectors

yt = Y1:N¢t — a vector of graph signals on graph G at time ¢
Yn = Yl ALLT — a vector of graph signals at node n

Y € RVXT —  a matrix that collects all the graph signals
WA —  weighted adjacency matrix for delay A

wg\’j - (4,7)th element of W*

AN —  binary adjacency matrix for delay A

aiA,j - (i,j)th element of A*
—  function at node n

n

GP (-,-) — a Gaussian process (GP)

m(-) — mean function of a GP

K(-) - kernel function of a GP

l —  length-scale of a kernel function
o2 — amplitude of a kernel function

o2 —  noise variance

a,b,a, B —  hyper-hyperparameters of the priors

is an edge pointing from node m to node n, and the value
of wy,,, represents the strength of how much node m affects
node n. With a binary adjacency matrix A, an entry a,,, = 1
indicates the presence of an edge pointing from node m to
node n.

On a given graph, its signals are defined as follows. Con-

sider an unordered set of data S = {sg,, ..., Sk, }» Which are
associated with G. We assume that to each node in G we
attach data from S, si,, where k;, [ = 1,..., N are indices of

the nodes. We can then order the data according to the node
indices, and this yields the N-tuple s = {s1,...8p, ..., Sn }. We
can think of s as a graph signal over G [30]. The nth element
sp, in s is indexed by the node n of G.

B. Gaussian Processes

Gaussian processes are a class of stochastic processes,
which are used in machine learning for modeling functions
[23]. More specifically, let {x;,y:}, t = 1,2,...,T, be T
input-output values, with x,/ being a row vector and y; being
ascalar, y = [y1 y2...yr] ", y = f(X), with £ € RT*!, and
X € RT*N being a matrix whose rows represent the inputs
to the function f, that is,’

x| f(x1)

X2
X = S y=£(X) = : . (D

X:I f(xr)
The idea behind GPs is to assume that the function’s samples

are jointly drawn from a Gaussian distribution instead of being
deterministic. Mathematically, we have

f ~ GP (m(X),Ko(X)), 2

—
~
—~
%

no

n this section, the matrix X is of size T x N. In the rest of the paper,
itis (T'— A) x N, as suggested in Table L.
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where m(X) is the mean function, Kg(X) is the covariance

(kernel) function of the process, and 6 is a vector of hyper-
parameters of the GP, i.e.,
m(X) = E[f(X)],

ko(xi,x;) = E[(f(x:) — m(x:))(f(x;) — m(x;))].  (3)

In practice, without loss of generality, we let the mean function

to be 0, and by definition, the kernel must be positive definite
[23].

C. Automatic Relevance Determination Kernel

A commonly used kernel for GPs is the squared exponential
(SE) kernel with the following form:

e YT (s — xs
ke(Xi,X]‘) _ 0_2 exp (_ (Xl X]) (XZ X])) , (4)

212

where & = {02 1}, 02 is one hyperparameter of the GP
that represents the amplitude of the kernel, and [ is another
hyperparameter, also called a characteristic length—scale. The
symbol [ reflects the relationship between the distance one
moves in the input space and how the function value changes
in the output space [23]. Informally, if [ is very small, the
output is very sensitive to the change of the input, but if [ is
very large, small changes in the input do not affect the output
much.

The ARD kernel is an extension of the SE kernel with the
following form:

N (Tim — Tjan)?
kg™l (xi,%;) = o exp (— m; W) , )

where x,,; is the mth entry of x;. Different from the SE
kernel, for each component of the input vector, the ARD
kernel assigns a different length—scale, [,,,. If we think the
input x is a vector of features, we can use the length—scale
to decide which features to discard from the input (the ones
with small contributions or no contributions) and which not.
In the sequel, we exploit the ARD kernel to infer (causal)
relationships among the observed data.

D. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a powerful algorithm
of the MCMC family that uses Hamiltonian dynamics for
drawing samples from a target distribution that are more differ-
ent than current samples while maintaining small probability
of rejecting these samples. Unlike other MCMC methods,
HMC is not plagued by issues like random walk behavior and
sensitivity to correlated parameters [31].

In HMC, we define the target variable by 2z, and we
introduce an auxiliary variable r. We refer to z as the state
of a modeled dynamical system (or its location) and to r as
its momentum variable. We are interested in the dynamics
of z under continuous time t. From physics we have the
relationship

_dz

== 6)

r

Further, we can express the probability distribution of z by

p(2) < exp (—E(2)), ()

where E(z) is the potential energy of the dynamical system
when it is in state z. For the momentum we have

dr dE(z)
- = 8
dt dz ®
The total energy of the system is
H(z,r) = E(z) + V(r), 9

where V(r) is the kinetic energy of the dynamical system,
which we express by

1
Vi(r)= 572, (10)
and H is the Hamiltonian function.
Then, using (6), (8), (9), and (10), we can write
dz OH 0V
I = 11
dt  Or or’ (i
dr 0H oV 0OF
= =, 12
dt 0z 0z 0z (12)
The joint distribution of z and 7 can be expressed by
7(z,r) x exp(—H(z,7)). (13)

During the evolution of the dynamical system, the value of H
remains constant. Due to Liouville’s theorem, the Hamiltonian
system also preserves its volume in phase space (meaning that
the region of the space of (z,7) changes its shape but not its
volume). The constancy of I and the preservation of volume
in phase space suggest that the Hamiltonian dynamics induces
the invariance of 7v(z, 7). The invariance of H notwithstanding,
the variable z and r vary. When we integrate the Hamiltonian
dynamics over a finite time interval, we can make large
changes to z systematically and still have high probability of
acceptance.

In practice, the integration of the Hamiltonian equations
when implemented straightforwardly introduces numerical er-
rors. One method that allows for Liuoville’s theorem to hold
exactly is known as leapfrog discretization and it is based
on alternative updates of the target and auxiliary variables.
The updating of the discrete-time approximations of 2 and 7
according to this scheme is given by

R . At OV
Ti4At/2 =Tt — 7@\2“

Zerat = Zt + Atfe a2, (14)

. . At oV

Tt+At = T4 At/2 — 75&#&7
where At is the step size. For a detailed tutorial on HMC
sampling, interested readers could refer to [32].

III. MODEL DESCRIPTION

Assume Y € RV*T collects the graph signals on a graph
G with N nodes over the entire timeline from ¢t =1 to 7. A
column vector y;% of Y is composed of measurements at time

2Note that y; is a column vector identical to the ¢th column of Y and y,
is a column vector whose elements are identical to the elements of the nth
row of Y.
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Node index

(a)

Fig. 1.

Description of the model. (a) Illustration of the network, where the arrows’ directions suggest directions of influence. Different colors represent

different time lags. (b) Illustration of the dimension of the adjacency matrix A/W, where each layer represents the adjacency matrix for a specific lag. (c)

lustration of the decomposed network.

Yt

Fig. 2. Data description. The green rectangular represents the graph signal
Y, the column vector refers to the graph signals at time ¢ over the graph, and
the row vector refers to the graph signals on node n but time changes.

t, and y, ; is a graph signal of node n at ¢. Further, assume
that y,, + is a function of the previous data on all (or some of)
the nodes of G. Specifically, we consider the data model
Ynt = fn(xt) + Un,t, (15)
where f,, : X; — Y, is an unknown function, x, € RVAX1
is a vector that contains the signals from all the nodes from
time instant £ — A to ¢t — 1, and where A is a positive integer
representing the largest time lag of a sample from the graph
that can affect a current sample of signal on the graph. Figure
la displays the considered model.
For the signal of the nth node, we have
Yn :fn(X)+Vna (16)
[’Un’/\+1, - ,’Un,T}T S R(T_A)Xl, X €
is a collection of inputs x; from ¢t = A + 1 to
t =T, and y, € RT=Mx1 is the graph signal of node n
fromt=A+1tot="1T, given as

where v, =
R(T—A)XNA

Yn = [Ynatt- - Un1] (17)

The function f,
process, i.e.,

: X — y, is modeled as a Gaussian

£, ~GP(0,K,), (18)

where K,, € RT=AxT=A g the kernel function and has the
following form:

n n
ki1 ko

K 20'2 : n .
n n . ki,j . ?

kir_a
19)

n n n
kT—A,l kT—A,Q kT—A,T—A

where o2 is a scalar hyperparameter, while the entries K}

of the kernel matrix, which models the cross-covariance of
the ith and jth lags for the nth node signal depend on the
past graph signals at all the other nodes and on some length-
scale hyperparameters, as we will explain in detail in the
following section. By formulating the model by (16), we
basically partition the entire graph into IV star subgraphs, each
one associated to a single GP, that has to be estimated by
observing the (common) input and the node-specific output y,,.
This approach simplifies the inference problem by breaking it
down into smaller more manageable subproblems. Throughout
the rest of this paper, we focus on node n, and all derivations
are based on this node for simplicity. Fig. 1b provides a
visualization of the proposed model.

IV. PROPOSED SOLUTION
A. Modified Automatic Relevance Determinant Kernel

We propose to model the entry k;'; in (19) by

n __
kij =

A A N2 (xi,()\fl)Ner - xj,()\fl)N+m)2
exXp | — Z Z (wnm) 2 ’
A=1m=1
(20)

where the w;),,, € [0,400) are the length-scale hyperparame-
ters.> With (20), as anticipated by (16), we model the inputs
of a specific node n by the past A values of the graph signals
coming from all the graph nodes, including n itself. To infer
the topology of the directed graph, we propose to use the set

of hyperparameters w,, € RAV*1 where
T_q,1 1 1 2 2 A
W, =W Wyg oo Wy Wiy oo Wy .. W] (21)

3Note that from here on we work with w;\,,, rather than £ as defined in

(4), where w%m = 1/£nm. The reason is explained further in the text.
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Indeed, w;),, can indicate which set of nodes m = 1,..., N
contributes to the evolution of the nth signal and which do
not, thus revealing which edges exist in the graph. Specifically,
small values of w),, suggest that a slight change in the history
of node m will statistically cause a small change to node n for
a specific delay index ), while large values of w, indicate

nm
the opposite.

Equation (20) is a modified version of the ARD kernel,
which allows for reasonable sparse priors on the length-
scale hyperparameters, making it more convenient to use. In
the original ARD kernel, the lack of an edge requires the
length scale to be infinite. However, the modified ARD kernel
models the length-scale hyperparameters for non-edge entries
as zeros. Plenty of distributions have sharp spikes at zero (high
probability at zero), and they can be used as priors to enforce
sparsity in the estimated graph topology.

To conceptualize the model further, we can think of each
delay as a different layer of a weighted adjacency matrix
organized as a tensor, as shown in Fig. lc.

B. Fully Bayesian GPs with Sparse Constraints

In practice, a common method to train a GP model and
obtain the optimal set of hyperparameters is to maximize the
marginal likelihood in equation (25), rather than the marginal
hyperparameter posterior in (26), both presented below. This is
because the marginal likelihood is analytically tractable when
the additive observation noise is Gaussian, as is commonly
assumed in GP regression [23] [33]. This approach is called
type II maximum likelihood (ML-II) estimation. Although the
performance of ML-II has been shown to be good enough
in many cases [27], there are still some problems to be
considered. First, the non-convexity of the marginal likelihood
surface with multiple modes can easily lead to overfitting of
the model, particularly when dealing with many hyperparam-
eters. Second, the results might converge to a local optimal
near the starting point, making the ML-II method susceptible
to the choice of initial points of the gradient-based optimizer
[23] [33].

We address these issues by proposing an fBGP method. We
refer to it as a fully Bayesian method because we estimate
all the unknowns of the GP model under the Bayesian infer-
ence paradigm via HMC. Thus, by exploiting the posterior
distribution, which combines the likelihood and prior, our
model can provide uncertainty estimates and is more robust
to overfitting. However, the posterior distribution over the
hyperparameters is highly intractable, and consequently we
rely on a Markov Chain Monte Carlo (MCMC) method for
sampling. The proposed approach can estimate a sparse graph
topology and is robust to different thresholds for deciding a
true edge.

1) The FBGP Framework: Given the data model described
by (16), the main distributions of the fBGP’s framework are

given by
Wy~ p(Wp)
priors over the hyperparameters: o2~ p(o?) ,
op  ~ p(o})
(22)
a prior over the function: £,|X, w,,02 ~ N(0,K,),
(23)

a data likelihood: Yalfn, 02 ~ N(£,, 021). (24)

Based on the generative model (22)-(24), the marginal like-
lihood of the hyperparameters, marginalized over the function
f,,, can be written as

p(yn|X, Wy, 02, 02)

= /p(Yn|fn,X>Wn,027Ug)p(fn|X,WmUi,Ug)dfn- (25)

By Bayes’ rule, the marginal posterior of the hyperparameters
is obtained by the marginal likelihood and the priors over the
hyperparameters according to

p(Wn, 072;’ 0-12)|X7 Yn)
p(}’n\X7 Wn, 0721’ Og)p(wn)p(ai)p(ag)
Z
2 2 2 2
X p(Yn‘Xv Wi, Ops O'U)p(Wn)p(O'n)p(O'U),

(26)

where Z is the normalization constant, given by

z:/MmmM%ﬁmmmwmﬁmwmmmﬁwi
' 27)

It is important to note that w, € RMA is a very high-
dimensional when considering a large graph or multiple delays
scenario.

2) Selection of priors: Let us bear in mind that the values
of the entries of the adjacency matrix represent the weights
of the corresponding edges. Therefore, to enforce sparsity of
the learned graph topology, it is reasonable to choose priors
that assign high probabilities to the elements of the adjacency
matrix that are close to zero.

Consider the sparse prior given in [34], written as:

p@MmGZ%)

where 6 is a vector of parameters that need to be estimated
and where 6,, is the mth entry of 6, and the parameter v > 0
is considered to control the sparsity level. When the parameter
~ is equal to zero, we count the number of non-zero 6,, (i.e.,
we rely on the {y-norm). Let w,, be the argument instead of ;
then in our problem v = 0 corresponds to counting the number
of existing edges. However, we cannot have stable sampling
from the posterior when v = 0 because optimization problems
involving fp-norms are often infeasible [35]. So to ensure the
stability of the algorithm, we let v = 1. Then the prior is given
as

(28)

(29)
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The probability density function in (29) has a spike at zero,
indicating that the probability is high when the input is close
to zero, which is exactly what is desired by the sparsity
requirement.

We have several choices for the priors of the scalar hyper-

parameter a and the noise variance o , such as
p(o?) x C, (30)
1

p(02) o pot 31

1 B

2 J— [
p(07) o (o) eXp( 02>, (32)

2 _ b 2

p(o?) o exp (—(U o ) ) (33)

where 02 € [0, +00) may represent either o2 or 2. Equation
(30) is a uniform distribution with C' as a constant, (31) is a
non-informative prior often used for modeling noise variance,
(32) is the inverse Gamma probability density function with
parameters o > 0 and 8 > 0, and the last equation is the
truncated Gaussian distribution, with ¢ € R and b > 0. The
performance of the method is usually not sensitive to the
parameters of the adopted prior.

Still, one needs to be careful when choosing the priors
because they can affect the performance of the sampling [36].
From the experiments we have done, the constant prior and
the non-informative prior work well under a mild condition,
say, low dimension and few data points. However, the half-
normal prior and inverse gamma prior are stable under various
sampling procedures, even in the 20-dimensional data set case,
we used to test our algorithm, as described in the following.

V. TOPOLOGY INFERENCE ALGORITHM

Given the fBGP framework and the posterior of the marginal
hyperparameters, we employ the HMC sampler to implement
the sampling from the marginal likelihood. As the HMC
exploits the gradient of the target distribution, it is necessary to
derive the equation of the target distribution, i.e., the marginal
hyperparameter posterior in (26), and its partial derivative with
respect to each hyperparameter.

We start by considering the logarithm of the marginal
likelihood, which for additive Gaussian noise v,, ~ N(0, o21)
is given by

log p(yn|X, Wy, 07, 3)
1
= —inK Yn— 35 log K| -
where K = K,, + 021
By combining the marginal likelihood with the priors, we
can express the log-marginal posterior distribution as,

—A
log 27, (34)

‘CMpzlogp(Wna m U‘Yn; )

= f%yTK Yo — 710g|K| _T-A log 27
- Z Zwﬁm +1og(p(02)) + log(p(a7)) — log(Z). (39)
m=1 =1

To avoid the positive constraint, we worked with the loga-
rithms of the hyperparameters. We represent them by adding
tilde over their symbols. The partial derivative of the log-
marginal posterior, with respect to each logarithm of the
hyperparameters, is expressed by

OLwp 1 T _1, 0K Ologp(wy,)
o, 2" ((‘m K %) T ean,
(36)
OLwe _ 1 T_g-1) 9K Ologp(ay)
. = S ((aa K )85n + 95, (37
aﬁMp _ 1 T 1 6K 610gp(0'3)
05 2t1r ((aa K )(“)Ev + o5, (38)

where o = K~ 'y,,, and

[8?5[5 L = — exp(26,)d{ k] exp(2T,,,). (36
7] eI (37)
[gﬂ = 2exp(20.), (38a)

where d:’lj = (Ymitr—1 — ym7j+/\_1)2.

We organize the partial gradient as a vector, i.e., dCyp =
[(ifi“’ ; Qe %QMP}. Based on the marginal posterior and
the gradlent we apply an HMC sampler. When the sam-
pling is completed we use the obtained sample set o =
(w5515 | to construct the marginal dis-

n,0n 0y ooy ginal posterior dis
tributions of the unknowns. From this posterior we can obtain
desired estimates of the unknowns. For example, the minimum

mean square estimate (MMSE) of U?L is obtained by

(39)

18
G2 = 3 SZ:lexp(a( )

The approximate marginal posterior of the hyperparameters of
the length scales are given by

q ( nm|X yn - —exp( i (S))) (40)

I\Mm

where d(-) is the Dirac delta function.

To find an effective binary topology, i.e., the nonweighted
adjacency matrix, we set a threshold € based on the following
criterion:

0, ifw), <e

ay, = . (41)
1, otherwise

We provide the steps of our procedure in Algorithm 1.
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Algorithm 1 fBGP Topology Inference Algorithm

1: Input: Y, A, ¢, S

2: for n =1,... N (in parallel) do

3:  Initialize: y,, = Yat1.70, X =Y1.7_7,:

VT/%O) =1, E%O) = 51(}0) = log(var(yn,))

fors=1,...5 do

Calculate Lyp via Eq. (35)

Calculate dLyp via Egs. (36), (37) and (38)

Sample ) given Lyp and dLyp
end for N
Estimate the unknown parameters from ® (as per (39))
0:  Find the weighted adjacency matrix by [W],, . = w,
11: end for
12: Determine the binary adjacency matrix A via (41)
3: return W, A

R e AN

—

—_—

In the section on numerical results, we modified the code
from the gpml toolbox [37] to implement the fBGP model. We
also implemented the HMC sampler using the Statistics and
Machine Learning Toolbox in MATLAB [38]. The complexity
of the algorithm depends on the complexity of inverting the
kernel matrix and the size of the network. With N nodes and
T data points, it is O(NT?).

VI. NUMERICAL RESULTS

We evaluate the performance of the proposed method on
three non-linear dynamic systems previously studied in our
work [22]. The results of our previous study showed that the
GP-based method outperformed the kernel-based method and
LASSO, demonstrating the feasibility of detecting multi-lag
causality. In this section, we show results of the proposed
fBGP method and compare them with results obtained by
the GP-based method (with deterministic parameters) on data
generated by the same model as in [22]. We reiterate that
both methods do not make any specific functional assumptions
except that the functions are relatively smooth.

In the first experiment, we considered a small dynamical
system [39], [40], while in the second one we worked with a
larger Lorenz 96 model [41]. Finally, with the third experiment
we demonstrate the applicability of the proposed method for
estimating causality (connectivity) over multiple delays.

A. A Discretized Lorenz Attractor

We considered a three-node network associated with a
discretized version of the Lorenz attractor [42], [43], described
by

Y1,t+1
Y2,t+1
Y3,t+1
Y1, 10(y2,t - yl,t) V1t
=1 Y2 | +0.01 | y14(28—=wy3¢) —v1,e | + | vor |,
Ys,t Y1,tY2,t — %yS,t V3.t
(42)

which is clearly characterized by a single (one-lag) memory
(causality). The process of learning this topology has also
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Fig. 3. Discretized Lorenz attractor. An example of a histogram of the samples
obtained from the log-marginal posterior with noise variance o2 = 0.5. The
subplots are arranged according to the index of the 3 X 3 adjacency matrix.
For each subplot, the abscissa represents the logarithm of the samples’ value,
and the ordinate represents the count in each bin.
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Fig. 4. Discretized Lorenz attractor. An example of Markov Chain samples
where 2000 of them are generated with the HMC sampler with a noise

variance 02 = 0.5. The subplots are arranged according to the index of

the adjacency matrix. For each subplot, the abscissa represents the index of
the samples, the ordinate represents the value of the samples, and the red lines
are the MMSE estimates.

been addressed in [39] using a kernel-based algorithm that was
specifically designed to handle the nonlinear generative model
of the data. Our previous work had already demonstrated,
under the same condition as in [39] (i.e., with vy ¢, V2, V3
set to zero, and initial conditions y;1,0 = ¥2,0 = y3,0 = 0.01),
that the GP-based method in [22] (with A = 1, N = 3)
outperforms the kernel-based method in terms of recovering
the graph structure, using only 7" = 90 samples in comparison
to the 250 samples required by [39].

Note that, we tested the proposed method on a noisy
version of the Lorenz attractor to ensure that our approach
is robust to observation noise. We compared the performance
of the fBGP method with the GP-based method from [22] to
demonstrate that the fBGP method can effectively enforce the
network’s sparsity by proper priors on the GPs length-scale
parameters and by sampling from the marginal posteriors of
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Fig. 5. One example of the elements of the inferred weighted adjacency
matrix by the fBGP and the GP-based methods with noise variance o2 = 0.5.
The upper small figure is the zoomed-in part of the lower figure. The circle
marks represent values inferred by the fBGP method, with red indicating the
non-edge entry and with blue indicating the edge entries. The triangle marks
show the results estimated via the GP-based method, with yellow depicting
the non-edge entry and with purple, the edge entries.
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Fig. 6. Discretized Lorenz attractor. The F-score computed by averaging
50 independent runs is shown in the figure. The lines provide the F-scores
obtained by four different thresholds by the fBGP method (in solid blue) and
the GP-based method (in dash red). The logarithm of the threshold ranges
from —7 to —4 with a step size of 1. Additionally, the lines show the F-score
for different noise variances U% of 0.25, 0.5, and 1, with the logarithmic
threshold set to —4. The plot is shown for different time series lengths from
80 in steps of 10 samples to 160 samples.

the hyperparameters. Further, the simulation results show that
the proposed method is not too sensitive to the selection of
the thresholds in (41) that are used for determining causality
in the network.

To generate synthetic data, we set o2 equal to 0.25, 0.5,

and 1 and used the same initial value as in the previous work.
The priors for o2 and o2 were chosen as the half-normal

distribution in (33) with ¢ = 0 and b = 1. We note that, for
benchmarking performance, the weighted adjacency matrix W
provides more informative results than the binary connectivity
matrix A. Therefore, we plot the estimated marginal posterior
of the weights w and the associated Markov chain in Figs. 3
and 4, respectively, employing 7" = 160 samples.

In Fig. 5, we give an intuitive comparison of the fBGP
method with the GP-based method from [22], with different
lengths of the time series (starting with a series that is 7' =
80 samples long and increasing their sizes to 160 samples in
increments of 10 samples). For the proposed method, the red
circle marks the only entry that quantifies as a missing edge,
while the blue circle marks depict the entries of the adjacency
matrix that correspond to existing edges. For the GP-based
method, the purple triangle marks represent edges, and the
yellow represent the only non-edge. The results show that the
entries associated with edges estimated by the two approaches
are very similar. However, there is a considerable gap between
the value of the non-edge entry learned by the two methods,
with the proposed method compressing the non-edge value to
zero and thereby demonstrating its ability to model sparsity
effectively.

When studying the binary adjacency matrix, we first deter-
mined the effective graph via (41). To provide a quantified
comparison, we assessed performance by the F-score, which
is expressed by

TP

F-score = I )
TP + 5 (FN + FP)

(43)

where TP stands for the number of true positives, FP for the
false positives, and FN for the false negatives. Figure 6 shows
the F-score for the two approaches, with the log-threshold
log,o(€) increasing from —7 to —4. The results show that,
different from the GP-based method, the threshold value does
not significantly affect the estimated topology of the new
fBGP method, thus, demonstrating its robustness to threshold
selection for edge detection.

B. Lorenz 96
The Lorenz 96 model is defined as

dyn

a (Yn+1 — Yn—-2)Yn-1 —Yn + F, n=1,2,... N.

(44)

Lorenz originally proposed the system to investigate funda-
mental issues in forecasting spatially extended chaotic systems
such as the atmosphere [41]. We use this system to illustrate
the proposed method’s ability to recover the topology of a
high-dimensional graph. Specifically, we generated a directed
graph with N = 20 nodes using (44). We obtained the
synthetic signals of this graph through Runge-Kutta numerical
integration with a step size of 0.1, initializing all the nodes
with yo = F'1 = 81 and then adding a value of 0.01 to the
initial value of node 1, with an observation noise 03 =0.5.In
this case, one lag refers to one sample rather than one second,
and we consider a one-delay system, i.e., A = 1. The priors of
o2 and o2 are given by (32) and (33) with @ =0 and b = 1,
and o = 3 and § = 0.5, respectively.
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Fig. 8. Lorenz 96. Comparison of ROC curves for the fBGP method with
HMC sampling and the GP-based method with ML-II.

We compared the performance of three methods, namely
the fBGP method, the GP-based method, and LASSO [44]
by measuring their F-score defined by (43). The F-score was
computed by averaging 50 independent trials, where each trial
was independently run for different values of measurement
ratios (T/N). The results, presented in Fig. 7, show that the
fBGP method outperformed the other two approaches for two
different thresholds. For LASSO, the regularization parameter
was chosen to be the one with the best performance. We did
not display the results based on other thresholds because those
thresholds almost denied or accepted all the edges.

The F-score in this test shows some stronger dependence on
the threshold e. Actually, to complete the edge-detection per-
formance of the proposed test, we plot the receiver operating
characteristic (ROC) for € € [0, +00), as shown in Fig. 8. The
symbol Pp is the correct detection probability of an existing
edge, and Pr,4 is the false alarm probability (for existence

Ground Truth

fBGPs

= =

Fig. 9. Lorenz 96. A heatmap is presented with a measurement ratio of 8.
The first row displays the weighted topology heatmap of the ground truth
(left) and the fBGP method (right). The second row showcases the weighted
topology heatmap of the GP-based method (left) and the LASSO approach
(right). The darker shades of blue indicate stronger edges, and the color scale
ranges from O to 1.

of an edge). Each point in the figure represents one pair of
(Pra, Pp), associated to a specific threshold e. The area under
the curve (AUC) is a criterion for detection performance with a
higher value indicating better performance. The AUCs suggest
that the fBGP method improves the detection performance
with respect to the GP-based approach.

To provide an intuitive sense of the edge detection perfor-
mance, Fig. 9 represents the heatmap of the ground truth and
the simulation results of the fBGP, GP-based, and LASSO
methods, respectively. The results show that the fBGP method
can detect most of the actual edges with fewer errors than the
other two methods.

C. Multi-lag system

In the third experiment, we designed a small network to
evaluate the detection capabilities of the proposed approach
in a multiple-delay problem. Each node in the small graph
interacted with a different delay time. The data model is shown
in Fig. 10, which graphically represents the dynamical system
described by the following set of equations:

Yi,t Zyit_g + Ya,t—3 + V1,

Yo,p =sin(ya,—3) + 1+ vay,

Y3,6 =Ya,t—2Y2,6—2 t Yat—2Y1,t—2 + Y3,t—2Y1,t—2 — 3+ U3¢,

Yat =sin(y3 4—1)/y3,6—1 + Va. (45)
The initial values of y;, y2, y3, and y4 were independently

drawn from a Gaussian distribution with zero mean and

variance of 0.52, i.e., y1,0,¥2,0,¥3,0,Ya,0 ~ N(0,0.5%). The

noise was drawn from a Gaussian distribution with zero mean
and a standard deviation of 02 = 0.25 and 02 = 0.5,
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Fig. 10. Data model description: the arrow directions reflect the direction
of causation. The different colors represent different delays, A = 3 (blue),
A =2 (red), and A = 1 (green).

1 -

09 *,ﬁ — L= :
o fBGPs, 02 = 0.25, € = 10 ' =sh=fBGPs, 02 = 0.5, e = 10"
0.8r fBGPs, 02 = 0.25, € = 107 =@=fBGPs, 02 = 0.5, ¢ = 1073|
fBGPs, 02 = 0.25, € = 10° =@=fBGPs, 02 = 0.5, e = 10~°
07l ~h=GPs, 02 = 0.25, e = 107! == GPs, 02 = 0.5, ¢ = 10~ |
° ’ ~®=-GPs, 02=0.25, e =10"° —4=GPs, 02 =0.5,¢=10"°
g5 =0-GPs, 00 =025, e =107 =@=GPs, 0} =05, e =10" [
% 0.6} /_*-_ ..... =" N
€ e
05F * ’_—”* _"* ----- _*
—_— - ——
ATt S ————
0.4 *-_-—:_*-___.—-.-' -—_—‘_ _____ - |
.-"'-__* ..... = -
== """ o Oe—e—- —O———- -
0.3+ e Jm————" —- " =ik : _____ —E
E::::__ﬂ: ..... - —_g - -
0.2 L1 ‘ ‘ ‘ ‘ ‘
48 64 80 96 112 128

Number of samples

Fig. 11. Multiple delays. The F-score computed by averaging 50 independent
runs. The lines provide the F-scores obtained by three different thresholds by
the fBGP method (in solid blue) and the GPs method (in dash red). The
logarithm of the threshold ranges from —1 to —5 with a step size of 2. The
plot presents different lengths of time series, ranging from 48 to 128 samples,
in steps of 12.

respectively. The priors were the same as the example in the
previous subsection.

For the proposed method and the GP-based method, Fig. 11
shows the F-score against the length of the time series. The re-
sults were computed by averaging 50 independent trials. They
clearly show that the fBGP method can identify the multiple
delays better than the GP-based method under different thresh-
olds. Figure 12 displays the ROC curve for the two approaches.
Even though when the false alarm Pr 4 is larger than 0.2, the
detection probability Pp of the GPs method is greater than the
fBGP method, based on the AUC criterion, the fBGP method
significantly improves the detection performance.

It is important to note that certain parameters of the HMC
sampler must be selected to implement the method including
the update size and number of leapfrog steps. Throughout the
experiments shown in this work, we consistently set the step
size to 0.05 and the number of leapfrog steps to 50. Further,
we note that these parameters have a direct impact on the
sampling performance. This is often addressed by employing
the well-known No U-Turn Sampler [45], which is an extended
version of the HMC sampler that controls the number of
steps automatically. This method offers a potential solution
to alleviate the need of setting these parameters manually.
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Fig. 12. Multiple delays. Comparison of ROC curves of the fBGP and GP-
based methods.

VII. CONCLUSION

In this paper, we proposed a fully Bayesian Gaussian
process-based method for estimating the topology of a graph
from observed signals on the graph. The proposed method
models the entry of the weighted adjacency matrix as the
coefficient of the modified ARD kernel. Our model assump-
tions are mild, and we do not specify the functional forms
of the relationships among the graph signals, allowing our
method to detect causation among the signals on the graph.
We showed that the performance of the proposed method
is very good under different conditions, including non-linear
dynamics, large systems, and even scenarios with multiple de-
lays. Our proposed method uses priors of the hyperparameters
that promote sparsity and samples from the marginal posterior
using the HMC sampler. The experimental results suggest that
that method avoids overfitting.

Future directions of work include the following:

1) Extension of the proposed method to dynamic networks

where the topology of the network varies with time.
One promising direction involves developing algorithms
that leverage nonstationary Gaussian processes to handle
dynamic networks with time-varying topology.

2) Investigation of the scalability of the method. Note that
when the system delays A and the network size N
increase, the number of parameters that need to be
estimated is N2A. If N and A are large, this becomes
problematic. The ongoing work focuses on employing
feature-based Gaussian processes that reduce the dimen-
sionality issues.

3) Automatic threshold selection. Since the proposed
method provides the marginal posterior of the param-
eters, one possibility will be exploiting a binary hypoth-
esis test to determine the presence or absence of the
edges automatically.
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