ICASSP 2024 - 2024 1EEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 979-8-3503-4485-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICASSP48485.2024.10447362

PERSONALIZED FEDERATED LEARNING WITH ATTENTION-BASED CLIENT SELECTION

Zihan Chen, Jundong Li, Cong Shen

Department of ECE, University of Virginia, Charlottesville, VA, USA

ABSTRACT

Personalized Federated Learning (PFL) relies on collective data
knowledge to build customized models. However, non-IID data
between clients poses significant challenges, as collaborating with
clients who have diverse data distributions can harm local model
performance, especially with limited training data. To address this
issue, we propose FEDACS, a new PFL algorithm with an Attention-
based Client Selection mechanism. FEDACS integrates an attention
mechanism to enhance collaboration among clients with similar data
distributions and mitigate the data scarcity issue. It prioritizes and
allocates resources based on data similarity. We further establish
the theoretical convergence behavior of FEDACS. Experiments on
CIFAR10 and FMNIST validate FEDACS’s superiority, showcasing
its potential to advance personalized federated learning. By tackling
non-IID data challenges and data scarcity, FEDACS offers promising
advances in personalized federated learning.

Index Terms— Federated Learning; Personalization; Deep
Learning

1. INTRODUCTION

Federated learning is a collaborative learning paradigm that allows
multiple clients to work together while ensuring the preservation of
their privacy [1]. By leveraging the collective knowledge and data
from all participating clients, federated learning aims to achieve bet-
ter learning performance compared with individual client efforts [2].
This collaborative nature has made federated learning increasingly
popular, finding numerous practical applications where data decentral-
ization and privacy are paramount. The privacy-preserving solutions
offered by federated learning have found extensive applications in
domains such as healthcare, smart cities, and finance [3, 4, 5].

However, the effectiveness of the collaborative approach in fed-
erated learning is highly dependent on the data distribution among
the clients. While federated learning performs exceptionally well
when data distribution among clients is independent and identically
distributed (IID), this is not the case in many real-world scenarios
[6]. When the global model, which is collectively trained across
decentralized clients, encounters diverse datasets with varying statis-
tical characteristics, it may face challenges in effectively generalizing
to the unique local data of each client [7, 8]. The performance of
the global model may be suboptimal on specific clients’ data due to
differences in data distributions and patterns. This limitation becomes
more pronounced as the diversity among local data from different
clients continues to increase [9].

To address this issue, personalized federated learning (PFL) tech-
niques have been proposed, which aim to overcome the limitations
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Table 1: Test accuracy of global and personalized models.

Dataset \ CIFAR10dir=0.5 FMNIST dir=0.5
Local 77.29 75.98
DiTTO-P 77.33 78.79
DitTO-G 39.47 76.34
PERAVG-P 73.07 74.07
PERAVG-G 28.90 69.14

of traditional federated learning by incorporating personalized adap-
tation in local clients. Instead of relying solely on a single global
model, PFL allows each client to tailor the model to her specific data
distribution, preferences, and local context [10]. Most existing PFL
methods focus on taking the global model as an initial model for
local training or incorporating the global model into the loss function
[9, 11, 12, 13, 14]. However, recent work by Huang et al. [15] chal-
lenges the assumption that a single global model can adequately fit
all clients in personalized cross-silo federated learning with non-1ID
data. In particular, they argue that the misassumption of a universally
applicable global model remains a fundamental bottleneck [15]. How-
ever, their claims lack substantial theoretical foundations or sufficient
empirical evidence. To shed light on this issue, Mansour et al. [16]
provide theoretical insights into the generalization of the uniform
global model and demonstrate that the discrepancy between local and
global distributions influences the disparity between local and global
models. This study presents an empirical example to further validate
that a single global model cannot adequately fit all clients. Table 1
presents the learning performance of local training models and two
PFL methods [13, 11]. For each dataset, we utilize a Dirichlet dis-
tribution with the parameter of 0.5 to partition it, and subsequently,
we sample 50 data points from the training dataset for the training
process. Specifically, DITTO-P and PERAVG-P represent the results
of personalized models, while DITTO-G and PERAVG-G reflect the
performance of global models generated by the respective algorithms.
It is evident from the table that the global models produced by the PFL
methods struggle to achieve satisfactory generalization across clients
and, in some cases, even perform worse than the locally trained mod-
els. This empirical example highlights the need for novel approaches
beyond the simple fine-tuning of global models and accounts for the
inherent heterogeneity in data distributions among clients.
Motivated by the insights gained from [15] and recognizing the
challenges posed by the scarcity of data in specific areas such as
medical care, in this paper, we propose a PFL algorithm with an
attention-based client selection mechanism (FEDACS) that aims to
overcome the dependency on a single global model and leverage the
model information from other clients to develop a personalized model
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for each client. By employing an attention mechanism, FEDACS
allows clients to receive and process personalized messages tailored
to their specific model parameters, enhancing the effectiveness of
collaboration. Additionally, we provide the convergence of our pro-
posed FEDACS method in general scenarios, ensuring the reliability
and stability of the algorithm. This demonstrates that the proposed
method can effectively converge to optimal solutions for personalized
models in general settings. To evaluate the effectiveness of the pro-
posed methods, we conduct extensive experiments on various datasets
and settings, allowing for a comprehensive performance evaluation.
The results of the experiments demonstrate the superior performance
of the proposed methods compared to those of existing approaches.

2. PERSONALIZED FEDERATED LEARNING

2.1. Formulation

Standard federated learning (FL) aims to train a global model
by aggregating local models contributed by multiple clients with-
out the need for their raw data to be centralized. In FL, there
are n clients communicating with a server to solve the problem:
min,, = > Fi(w) to find a global model w. The function F;
denotes the expected loss over the data distribution of the client
7. One of the first FL algorithms is FEDAVG [2], which uses local
stochastic gradient descent (SGD) updates and builds a global model
from a subset of clients.

However, the performance of the global model tends to degrade
when faced with clients whose data distributions differ significantly
from the global training data distribution. On the other hand, local
models trained on the respective data distributions match the distri-
butions at inference time. Still, their generalization capabilities are
limited due to the data scarcity issue [16]. Personalized federated
learning (PFL) can be viewed as a middle ground between pure local
models and global models, as it combines the generalization proper-
ties of the global model with the distribution matching characteristic
of the local model [11, 13, 12, 9, 14].

In PFL, the goal is to train personalized models w1, w2, ..., Wy,
for individual clients while respecting data privacy and accommodat-
ing user-specific requirements. The problem can be framed as:

"
w, = argmm E Fi(w;)

=1

* *
W1, Wa, ...,

Instead of solving the traditional PFL problem, Huang et al. [15]
argued that the fundamental bottleneck in personalized cross-silo
federated learning with non-IID data is that the misassumption of one
global model can fit all clients. Therefore, they proposed a different
approach by adding a regularized term with £2-norm of model weights
distances among clients and formulate the PFL problem as:

)XY R(|fwi—w;)

min 7 (W) = F(W)+AR(W) = F(W
Q=1
(1
in which W = [wx, ..., wy] is a matrix that contains clients’ local

models as its columns, and ) is a regularization parameter. F (W) =
1 Fi(w;) is known as “client-side personalization” in the context
of PFL. R is a regularization term designed to help clients with

similar data distributions collaboratively train their own models.

2.2. Our proposed method: FEDACS

We propose a novel federated attention-based client selection algo-
rithm (FEDACS) (as illustrated in Algorithm1) to solve the optimiza-
tion problem (1). In this paper, we mainly consider:

n

2
> sigllws —w;l?,

i,7=1

R(W) = @3]

where s;; is the normalized score to measure data distribution sim-
ilarity. It is worth mentioning that the formation of R(W) is easy
to generate into other functions, like R(z) =1 — e=="/7 [15]. The
above formulation implies that locally optimizing the objective func-
tion requires each client to collect the other clients’ model parameters
for computation. However, researchers find that adversaries can infer
data information in the training set based on the model parameters,
and directly gathering model parameters will violate the principles
of federated learning to protect data privacy [17, 18, 19]. To address
this dilemma, we leverage the idea of incremental optimization [20].
Specifically, we iteratively optimize Fx (W) by alternatively opti-
mizing R(W) and F (W) until convergence. Note that FEDACS
handles the refinement of R (W) on the server side. We introduce an
intermediate model u; for each client, and these intermediate models
form the model matrix U = [u1, .., uy] in the same way as W. In
the k-th iteration, we first apply a gradient descent step to update U:

3

where W"~1 is the collection of local models from the last round
and oy is the learning rate. Under the definition (2), the gradient of
R(W)’s i-th column is VR(W); = w; — > sijw;. In this paper,
we use the cosine similarity of the model parameters instead of the
data similarity to avoid the accessibility of the server to local data, i.e.

(ws,wy)
[willllw; [l

As mentioned above, the performance of a local model could
be adversely affected if each client averages information from those
with different data distributions. Thus, in practice, we also introduce
4 to control the degree of collaboration. We adopt a dynamic strategy
to define § for each round. After gathering the parameters from
clients at the k-th round, the server first computes the similarity of
the model s; to generate the similarity matrix S* : (S k) = s,
then 9 is calculated by the p-quantile of all elements in S®. We can
adjust the ratio p to alter the degree of collaboration. Modifying §
can effectively mitigate the aggregation effect from initial training
rounds, where the model parameters fail to represent the underlying
data distribution accurately. After having 5%, we only consider the
model similarity greater than 6* and calculate u* as follows:

UF =Wr ! — a, VR(W* ™),

Sij =

u§:721k>6ksl] - 4
Z Jj=1, 5 >5 k S

Since the similarity of the client model to itself is always one and
larger than 6% Like the attention mechanism in deep learning, clients
with highly similar data distributions receive higher similarity scores,
enabling the server to assign greater weights to their models during
the combination [21]. By differentiating between models based on
relevance and informativeness, the server can selectively give the
most pertinent models to each client rather than treating all models
equally. Furthermore, the server can collect weights from clients and
utilize the attention mechanism to optimize R (W) effectively while
still ensuring data privacy for all the involved clients.
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After optimizing R (W) on the server, FEDACS then optimizes
F (W) on clients” devices by taking U* as initialization of " and
computes w? locally by:

wi = uf — B VFi(ul). 5)

The update of w’ draws inspiration from local fine-tuning in FL that
takes the global model as initialization and updates the local models
with several gradient steps to fit local data distribution. Considering
the scarcity of data, it is more efficient to use «¥ as an initial value
instead of incorporating it into the objective function. This research is
driven by prior studies showing difficulties in achieving high training
accuracy when the data is either limited or unevenly spread out, thus
highlighting the significance of a carefully selected starting point[22].
By iteratively optimizing Fx (W) through alternating between
R(W) and F(W) optimization, FEDACS continues this process
until a predefined maximum number of iterations, K, is reached.

Algorithm 1: The proposed FEDACS method
Data: n clients, pick ratio p , communication round
K

Result: Personalized models w1, wa, ..., wy,

Initialize clients” models w9, w9, ..., w?;

for round k = 1,2, ..., K do

Server randomly picks clients to participate;

Compute model similarity matrix S;

Compute p-quantile of model similarities as
threshold §;

6 | Server updates intermediate models u¥, uk, ..., u

for clients by (4);

7 Each client  updates local model w¥ by (5);

8 end

[ N

k

n

2.3. Relation to FedAMP

We note that the usage of the regularization term in FEDACS bears
a resemblance to FEDAMP([15], a method that also applies atten-
tive message passing to facilitate similar clients to collaborate more.
However, in the update steps, FEDACS differs from FEDAMP. First,
when computing the intermediate model matrix U, FEDAMP com-
bines all client models for each client. Meanwhile, FEDACS only
uses information from clients who share similar data distribution to
further reduce the influence of unrelated clients. Meanwhile, if we
set the threshold § = oo, then the calculation of U is the same as
that in FEDAMP. Second, for each round, FEDAMP updates W*
by W* = argmin,,, F(W) + ﬁHW — U*||?, which means the
W* needs to reach the local optimal. However, it is not easy to be
satisfied when data is insufficient on local devices, and when the
learning rate is small enough, the update function in FEDAMP will
be simplified to W* = U* without using local data information.
Additionally, the Euclidean distance version of FEDAMP incorpo-
rates an /»-term regularization, which adds the Euclidean distance of
the models to the objective function without using weighted scores.
However, this approach provides limited assistance to the server in
effectively assigning similar clients’ models to each client, thereby
underutilizing the potential of the attention mechanism. As discussed

above, the limitation of data may adversely influence the performance
of FEDAMP, while our proposed FEDACS will not suffer from this
issue. The experiment results also demonstrate our conjectures.

2.4. Convergence analysis of FEDACS

In this subsection, we provide the convergence analysis of FEDACS
under suitable conditions without the particular requirement of the
convexity of the objective function. Consistent with the analysis per-
formed in various incremental and stochastic optimization algorithms
[20, 23, 15], we introduce the following assumption and present the
main result of the paper.

Assumption 1. There exists a constant B > 0 such that
max{||Y|| : Y € OF(W")} < Band ||[VR(W")|| < B/X
hold for every k > 0, where OF is the subdifferential of 7 and || - ||
is the Frobenius norm.

Theorem 1. Assuming the validity of Assumption 1 and consider-
ing the continuous differentiability of functions R(W) and F (W),
with gradients that exhibit Lipschitz continuity with a modulus L,
iffr=Pe=-=pxk=1/VKandoy =as = --- = ax =
)\/\/?, then the model matrix sequence WP, ..., W generated by

Algorithm 1 satisfies the following.
(FA(W°) — Fx + 16LB?) L0 (i)
VK K)
(©)

where F = argminy, Fy' . Additionally, if 8 = ay /A and {au}
satisfies >_p° | ax = coand > 50 | o < oo, then

min_ [[VE(WH)|P? < &
0<k<K

lim inf ||[VF\(WF*)|| = 0. ©)
k— o0

Remark. Theorem 1 implies that for any € > 0, FEDACS needs
at most O(e~*) iterations to find an e-approximate stationary point
W of problem (1) such that ||V F(W)]| < e. It also establishes the
global convergence of FEDACS to a stationary point of problem (1)
when F) is smooth and non-convex. We are unable to provide proof
due to page limitations.

3. EXPERIMENTS

3.1. Experimental settings

We evaluate the performance of FEDACS and compare it with the
state-of-the-art PFL algorithms, including DITTO [11], PERAVG
[13], PFEDME [12], APFL [9], and FEDAMP [15]. The first three
methods are local fine-tuning methods, using the global model to
help fine-tune local models. FEDAMP is a method that focuses
on adaptively facilitating pairwise collaborations among clients. To
ensure the completeness of our experiments, we have also included
the results obtained using the standard FL. method FEDAVG [2]. The
performance of all methods is evaluated by the mean test accuracy
across all clients. We perform five experiments for each dataset and
partition configuration, wherein we record the mean and variance
of the test accuracy. All methods are implemented in PyTorch 1.8
running on NVIDIA 3090.

We use two public benchmark data sets, FMNIST (FashionM-
NIST) [24], and CIFAR10 [25]. First, we simulate the non-IID and
data-sufficient settings by employing two classical data split methods
to distribute the data among 100 clients. These methods include: 1) a
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(a) Performance on different tasks with sufficient data.

pathological non-IID data setting, where the dataset is partitioned in a
non-IID manner, assigning two classes of samples to each client; and
2) a practical non-IID data setting, where the dataset is partitioned
in a non-IID manner following a Dirichlet 0.5 distribution [2]. To
simulate scenarios where data insufficiency is encountered during
training for each dataset, we adopt two distinct data settings: 1) a
pathological non-IID data setting that distributes data into 100 clients
following Dirichlet 0.5 distribution, and each user only keeps 50
pieces of data samples for training to simulate the scenario where
clients lack sufficient training data: 2) a practical non-IID data setting
that distributes data into 500 clients following Dirichlet 0.5 distribu-
tion to simulate the scenario of a large number of clients and only
some clients participate in each round.

3.2. Results on the sufficient non-1ID data setting

Figure la presents the mean accuracy and standard deviation per
method and sufficient data setting. The two histograms on the left
display the performance of PFL methods under pathological settings,
while the right-side histograms illustrate the results when the data
is partitioned according to the Dirichlet 0.5 distribution. It can be
observed that FEDACS performs comparably to most PFL methods
but with lower standard deviations. This similarity in performance
may be attributed to the availability of sufficient data, allowing the
global model to possess adequate generalization ability while its local
fine-tuning enables better adaptation to local data distributions. The
abundance of training data simplifies the classification task for each
client, as evidenced by the strong performance of models trained
solely on local datasets. However, non-IID data settings pose chal-
lenges for global federated learning methods [15]. FEDAVG’s perfor-
mance on Cifar10 declines noticeably because it introduces instability
in the gradient-based optimization process. This instability arises
from aggregating personalized models trained on non-IID data from
different clients [26]. APFL achieves the best performance in the
pathological setting by adaptively learning the model and leveraging
the relationship between local and global models, thus increasing the
diversity of local models as learning progresses [9]. On the other
hand, we can observe that PFEDME struggles to achieve good perfor-
mance, as it focuses on solving the bilevel problem by aggregating
data from multiple clients to improve the global model rather than
optimize local performance.

3.3. Results on the insufficient non-IID data setting

Figure 1b presents the mean accuracy, standard deviation per method,
and insufficient data setting. The two histograms on the left depict the
mean accuracy with only 50 data samples per client, whereas those
on the right showcase the results when the data is divided among 500
clients. It is evident that FEDACS outperforms all other methods

= Local
= — FedAvg

Average Acc

FMNIST 50 samples. CIFAR10 50 samples FMNIST 500 clients CIFAR10 500 clients

(b) Performance on different tasks with insufficient data.

with smaller standard deviations in both the FMNIST and CIFAR10
datasets. The three local fine-tuning PFL methods face challenges
across different datasets and settings, highlighting the fundamental
bottleneck in PFL with non-IID data. By relying solely on a mislead-
ing global model, the significance of local data distribution in PFL is
underestimated, and a single global model fails to capture the intricate
pairwise collaboration relationships between clients. It is evident that
PERAVG outperforms PFEDME in all settings. Both methods incor-
porate a “meta-model” during training, but PERAVG utilizes it as an
initialization to optimize a one-step gradient update for its person-
alized model. On the other hand, PFEDME simultaneously pursues
both personalized and global models. As discussed in Section 2.3,
leveraging the meta-model for a single local update step may yield
better results when local devices have limited data. The reason behind
PERAVG’s suboptimal performance in scenarios where each client
possesses only 50 data samples can be attributed to its requirement of
three data batches for a single update step. Consequently, the training
process becomes insufficient due to the limited data available. As
discussed in Section 2.3, FEDAMP fails to leverage the potential of
the attention mechanism, resulting in underutilization. Additionally,
it requires a large amount of local data to achieve local optima in
each round, which is often unrealistic in many federated learning
scenarios.

4. CONCLUSION

In this paper, we proposed FEDACS to address the challenge of data
heterogeneity and improve overall FL. performance. Our approach
leveraged the attention aggregation mechanism, allowing clients to
identify and collaborate with those who can provide valuable in-
formation. This allowed FEDACS to avoid being constrained by a
single global model and instead optimize personalized models based
on each client’s local data distribution. We also analyzed the com-
plexity of FEDACS in achieving first-order optimality. Furthermore,
we conducted a series of numerical experiments to demonstrate the
superiority of FEDACS in various non-IID settings. The results high-
lighted its effectiveness in handling data scarcity compared to other
methods.
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