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ABSTRACT

Recently, there has been growing interest in developing the next-
generation recommender systems (RSs) based on pretrained large
language models (LLMs). However, the semantic gap between natu-
ral language and recommendation tasks is still not well addressed,
leading to multiple issues such as spuriously correlated user/item
descriptors, ineffective language modeling on user/item data, in-
efficient recommendations via auto-regression, etc. In this paper,
we propose CLLM4Rec, the first generative RS that tightly inte-
grates the LLM paradigm and ID paradigm of RSs, aiming to address
the above challenges simultaneously. We first extend the vocab-
ulary of pretrained LLMs with user/item ID tokens to faithfully
model user/item collaborative and content semantics. Accordingly,
a novel soft+hard prompting strategy is proposed to effectively
learn user/item collaborative/content token embeddings via lan-
guage modeling on RS-specific corpora, where each document is
split into a prompt consisting of heterogeneous soft (user/item)
tokens and hard (vocab) tokens and a main text consisting of ho-
mogeneous item tokens or vocab tokens to facilitate stable and
effective language modeling. In addition, a novel mutual regular-
ization strategy is introduced to encourage CLLM4Rec to capture
recommendation-related information from noisy user/item content.
Finally, we propose a novel recommendation-oriented finetuning
strategy for CLLM4Rec, where an item prediction head with multi-
nomial likelihood is added to the pretrained CLLM4Rec backbone to
predict hold-out items based on soft+hard prompts established from
masked user-item interaction history, where recommendations of
multiple items can be generated efficiently without hallucination1.

CCS CONCEPTS

• Information systems → Recommender systems.
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1 INTRODUCTION

With content growing exponentially on the Web, recommender
systems (RS) have become essential components for online service
platforms [1]. Nevertheless, RS has long been dominated by the
ID-based paradigm, where users/items are represented by unique,
continuous ID embeddings denoting their semantic similarity [2].
Exemplar ID-based RSs include matrix factorization-based methods
(such as PMF [3]) and two-tower models [4], where user/item ID
embeddings are either randomly initialized and learned from their
historical interactions (i.e., collaborative filtering [5]), or established
based on user/item features (i.e., content-based methods [6, 7]).

Recently, large language models (LLM) have become a heated
topic for both academia and industry [8]. Large transformer net-
works pretrained on large-scale corpora, such as GPT [9], T5 [10],
and LLaMA [11], have demonstrated emergent ability [12], show-
casing unprecedented understandings of knowledge and patterns
in natural language [8, 13]. Consequently, it is promising to develop
the next generation of RS based on pretrained LLMs [14], fully uti-
lizing their encoded knowledge, logical reasoning ability, and gener-
ative AI power to understand and reason with user/item semantics
and make more accurate recommendations accordingly, especially
when users and items are associated with large amounts of textual
features, such as biographies, descriptions, content, reviews, and
explanations, in modern online service platforms [15, 16].

Several preliminary studies have been conducted to explore the
adaptation of LLMs for RSs [17–20]. Typically, these methods can
be summarized into two steps: (i) First, instead of representing
users/items with continuous ID embeddings, relevant information
necessary for reasoning with user interests and generating recom-
mendations, e.g., interacted items, user/item features, and candidate
items, is converted into a discrete natural language-based prompt.
(ii) Then, the prompt is used to query the LLM, where information
relevant to recommendations is retrieved from the textual output of
the LLM to generate recommendations (see Fig. 1 for an intuitive
example). The above procedure can be performed in a zero-shot
manner [21–24], where the recommendation decisions are obtained
directly from the pretrained LLM (e.g., we input all relevant infor-
mation regarding a user and an item into the chatbox of ChatGPT
and ask if the user will interact with the item), or if the groundtruths
are available, the pretrained LLMs can also be finetuned on both
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interactions and features
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user_1 has bought item_2.

e.g.,

user_1 is a CS student.

item_2 is a computer. 

will user_1 buy a mouse?

Yes!

encoded knowledge

reasoning ability

mouse is a component of PC

maybe she needs a mouse

Figure 1: Prospectives of developing the next generation of

recommender systems based on pretrained LLMs.

interaction and feature data, such that RS-specific knowledge can
be incorporated for more accurate recommendations [18, 25–27].

Although impressive progress has been achieved, fundamen-
tal dichotomies between NLP and recommendation still remain
to be addressed. One main challenge is the gap between natural
language and user/item semantics. Generally, there are two strate-
gies to represent users/items in an LLM-based RS. Pseudo-ID-based
methods use an ID-like word (e.g., "user_𝑖" or "item_ 𝑗") to represent
the 𝑖-th user or 𝑗-th item [18]. However, when tokenized, the ID
word may be broken down into atomic tokens, e.g., "user_4332"
into ["user", "_", "43", "32"], where spurious correlations can be in-
troduced for irrelevant users/items (e.g., "user_4332" with "user_43"
and "user_32"). In contrast, description-based methods use seman-
tically meaningful tokens to index users/items, such as item titles
[17, 22] or a small amount of newly-introduced tokens assigned
to different users/items based on content similarity [28]. However,
description-based methods introduce a strong inductive bias on
user-item semantic similarity, which may not faithfully capture the
true semantics. Introducing true user/item ID tokens, unfortunately,
is generally considered infeasible for LLMs, as directly conducting
language modeling (LM) on sequences with heterogeneous tokens
can be ineffective and unstable, especially when the vocabulary of
most LLMs can be diluted (e.g., ∼ 50k for GPT, and ∼ 30k for T5)
by a large number of randomly initialized user/item embeddings.

Even if user/item ID token embeddings can be effectively learned
via LM, more challenges exist that hinder effective and efficient rec-
ommendations with LLMs. First, since the interaction order usually
does not matter for direct recommendations while human language
naturally has an order, spurious temporal correlation can be intro-
duced for items placed in different positions when transforming
user historical interactions into a textual sentence. In addition, for
content modeling, since pretrained LLMs are not recommendation-
oriented, they can easily capture noise in user/item textual fea-
tures irrelevant to the recommendation purpose. Furthermore, since
LLMs generate the next token in an autoregressive manner, making
multiple recommendations via LLM-based RSs can be inefficient
comparedwith ID-basedmethods. Finally, for both pseudo-ID-based
and description-based indexing methods, item candidates usually
need to be explicitly provided in the prompt to avoid hallucination
[18]. These issues hinder the practical applications of LLM-based
RSs where candidate pools are large and low latency matters.

To address the above challenges, we present CLLM4Rec, the
first generative RS that tightly combines the ID paradigm of RS

with the LLM-based paradigm. We first extend the vocabulary of
pretrained LLMs with user/item ID tokens to faithfully model the
user/item collaborative/content semantics, where the token em-
beddings are learned in two stages. The pretraining stage consists
of mutually regularized collaborative or content LLMs that learn
user/item token embeddings via language modeling on RS-specific
corpora established from user/item interactions and textual features.
Specifically, a novel "soft+hard" prompting strategy is proposed
for effective language modeling on documents with heterogeneous
tokens, where each document is decomposed into a prompt consist-
ing of soft [29] (user/item) and hard (vocab) tokens and a main text
consisting of homogeneous item tokens (for collaborative model-
ing) or vocab tokens (for content modeling), respectively. Through
this strategy, the prediction heads for the two LLMs can focus ex-
clusively on collaborative and content information, such that the
stability and effectiveness of language modeling can be substan-
tially enhanced. In addition, a stochastic item reordering strategy
is proposed for the collaborative LLM to ignore the order of item
tokens without negative influence on the vocab tokens. Finally,
we propose a novel recommendation-oriented finetuning strategy
for CLLM4Rec, where an item prediction head with multinomial
likelihood is added to the pretrained collaborative LLM backbone
to predict hold-out items based on soft+hard prompts established
from masked user interaction history, where recommendations of
multiple items can be efficiently generated without hallucination.
The contribution of this paper can be concretely summarized as:
• We present CLLM4Rec, the first generative RS that tightly cou-
ples the ID paradigm and LLM paradigm, where user/item ID to-
ken embeddings aligned to the LLM vocab space are introduced
to well capture the intrinsic user interests and item properties.

• A novel soft+hard prompting strategy is proposed to effectively
pretrain CLLM4Rec on heterogeneous tokens describing histori-
cal interactions and user/item features in a mutually regularized
manner, where collaborative and content information can be
effectively learned by the user/item token embeddings.

• A recommendation-oriented finetuning strategy is proposed
that predicts hold-out items based on soft+hard prompts estab-
lished from masked interactions via an item prediction head
with multinomial likelihood, where recommendations for mul-
tiple items can be generated efficiently without hallucination.

2 RELATED WORK

2.1 Large Language Model (LLM) Basics

Large transformer networks [30] trained on large corpora, i.e., large
language models (LLMs), have demonstrated unprecedented un-
derstandings of natural language and logical reasoning ability [8].
According to the part of transformer utilized for language modeling,
existing LLMs can be categorized into three classes: (i) encoder-
only LLMs, such as BERT [31], (ii) encoder-decoder-based LLMs,
such as T5 [10], and (iii) decoder-only LLMs, such as GPT, LLaMA
[9, 11]. We focus on LLMs with decoders due to their superior gen-
erative abilities compared with the encoder-only models [32]. The
training of LLMs is mainly based on two stages. In the pretraining
stage, LLMs are trained on large corpora via language modeling
(i.e., next/masked token prediction), where knowledge can be ef-
fectively encoded in the transformer network weights facilitated
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by the stacked self-attention modules. Then, during the finetuning
stage, exemplar prompt-output pairs or human feedback on mul-
tiple generated answers are provided to the LLMs such that they
can conduct logical reasoning and generate answers according to
prompt based on the encoded knowledge from the pretrained stage.

2.2 LLM in Recommender Systems

Recently, LLM-based RSs have shown potential to address the long-
standing issues of ID-based RSs, such as shallow understanding
of user/item textual features [33], poor generalization [34], etc.
Hou et al. [22] demonstrated that existing LLMs can be viewed as
zero-shot rankers, which can sort the relevance of movies based
on user historical interactions and movie descriptions. Recently,
more efforts have been devoted to the finetuning of LLMs to obtain
recommendation-oriented models. An exemplar work is P5 [18],
which finetunes T5 on corpora established from both interactions
and user/item features, where items are presented by pseudo-IDs.
Afterward, M6 [17] was proposed to combine text infilling and
auto-regression tasks in the pretraining stage, where pseudo IDs
are replaced by textual descriptions. Recently, TALLRec [35] was
proposed where items are represented by both pseudo-ID and tex-
tual descriptions. However, pseudo-ID-based item representations
can introduce spurious correlations between irrelevant items. To
address this issue, Hua et al. [28] proposed to introduce a small num-
ber of new tokens to describe the items, which are determined by
their content and collaborative similarity. However, indexing items
with shared tokens can still introduce bias. In addition, candidate
items need to be explicitly provided in the prompt, and recommen-
dations are generated via inefficient auto-regression. In summary,
the dichotomy between NLP and RS is still not well-addressed.

3 METHODOLOGY

3.1 Problem Formulation

In this paper, we focus on recommendations with implicit feedback
[36]. Consider a system of 𝐼 users and 𝐽 items.We use a binary rating
vector r𝑖 ∈ {0, 1}𝐽 to denote whether user 𝑖 has interacted with the
𝐽 items. In addition, we use x𝑢

𝑖
, x𝑣
𝑗
to denote the textual features

associated with user 𝑖 and item 𝑗 , such as user biography and item
content, etc. x𝑢𝑣

𝑖 𝑗
denotes the textual features associated with both

user 𝑖 and item 𝑗 , such as user 𝑖’s review for item 𝑗 , etc. Hereafter,
we take a sequential view of x{𝑢,𝑣,𝑢𝑣}{𝑖, 𝑗,𝑖 𝑗 } , where x{𝑢,𝑣,𝑢𝑣}{𝑖, 𝑗,𝑖 𝑗 },𝑘 is a size
𝑁 one-hot vector denoting the 𝑘-th token in the textual sequence.
In addition, we have a pretrained large language model (LLM), of
which we take a probabilistic view and denote it as 𝑝𝑙𝑙𝑚 (x𝑘+1 |x1:𝑘 ).
𝑝𝑙𝑙𝑚 transforms x1:𝑘 into a latent sequence h(𝐿)1:𝑘 ∈ R𝑘×𝐾ℎ via

𝐿 stacked self-attention modules 𝑙𝑙𝑚(x1:𝑘 ) and maps h(𝐿)
𝑘

to the
probability space of the next token x𝑘+1. Since the LLM is pretrained
on large corpora and finetuned on exemplar prompt-answer pairs,
the generation of x𝑘+1 is based on logical reasoningwith the context
information in x1:𝑘 according to its pretrained knowledge.

Our aim is to design a new generative RS that tightly couples
LLMs with the recommendation task by introducing user/item ID
tokens (and token embeddings), such that user/item semantics (e.g.,
users’ interests in item) can be accurately modeled for effective and
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Figure 2: The overview of the proposed CLLM4Rec in the

mutually-regularized pretraining stage. Mutual regulariza-

tion for item_𝒌 is omitted for simplicity.

efficient recommendations, and the encoded knowledge and reason-
ing ability of pretrained LLMs can be fully utilized simultaneously.

3.2 Extension of User/Item Tokens

3.2.1 Vocab Expansion. To tightly couple the pretrained LLM
with the recommendation task, we first expand the vocabulary of
the LLM by adding user/item ID tokens to describe the intrinsic
user/item semantics, such that the semantic gap between RS and
natural language can be well bridged. We use bracket notations
"<user_𝒊>" and "<item_𝒋>" to denote the newly-introduced token
for the 𝑖-th user and the 𝑗-th item, which has token ID 𝑁 + 𝑖 and
𝑁 + 𝐼 + 𝑗 , and will not be broken down into atomic tokens.

3.2.2 Token Embeddings. For LLMs to understand the newly
introduced user/item tokens, they must first be transformed into
dense embeddings. Accordingly, we use z𝑡

𝑘
∈ R𝐾 to represent the

pretrained embedding of the 𝑘-th vocab token. In addition, for the
newly introduced user/item tokens, we introduce two types of token
embeddings that are aligned with the vocab space to faithfully repre-
sent the user/item collaborative and content semantics. Specifically,
we first sample user/item collaborative token embeddings from the
same 𝐾-dimensional latent space as follows:

z𝑙,𝑢
𝑖
, z𝑙,𝑣
𝑗

∼ N
(
0, 𝜆−1

𝑙
· I𝐾

)
, (1)

where 𝜆𝑙 is the prior precision for z𝑙,𝑢
𝑖
, z𝑙,𝑣
𝑗
. Importantly, to align the

content semantics with the collaborative semantics for recommend-
ation-oriented content modeling, we sample user/item content to-
ken embeddings from the following conditional prior:

z𝑐,𝑢
𝑖

∼ N
(
z𝑙,𝑢
𝑖
, 𝜆−1𝑐 · I𝐾

)
, z𝑐,𝑣
𝑗

∼ N
(
z𝑙,𝑣
𝑗
, 𝜆−1𝑐 · I𝐾

)
, (2)

where 𝜆𝑐 is the precision for the conditional prior of z𝑐,𝑢
𝑖
, z𝑐,𝑣
𝑗
. The

horizontally-stacked matrices of vocab/collaborative/content token
embeddings are denoted as Z𝑡 , Z𝑙,{𝑢,𝑣} , and Z𝑐,{𝑢,𝑣} , respectively.

3.2.3 CLLM4Rec Base Model. With user/item tokens and the
corresponding token embeddings introduced in the previous sub-
sections, we are ready to introduce the CLLM4Rec base model with
expanded vocabulary. The CLLM4Rec base model is denoted with

h(𝐿){𝑙,𝑐 },1:𝑘 = ˆ𝑙𝑙𝑚{𝑙,𝑐 } (x1:𝑘 ), (3)
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Review: The color is a perfect mix of 
dark purple, red and pink. The only 
downside is the drying aspect of the 
lipstick, which I counteract by using 
lip balm before putting it on.

User ID: 0057 Item ID: 0046

Item Title: Wet n Wild Mega Last 
Lip Color 908C Sugar Plum Fairy

Figure 3: Exemplar review data from the Amazon Beauty

dataset [15], where prior knowledge of natural language can

help understand item property and user interests.

which maps the token sequence x1:𝑘 into the hidden space R𝑘×𝐾ℎ

through 𝐿 stacked self-attention modules (the superscript (𝐿) will
be omitted if no ambiguity exists); here, x𝑘 is a size 𝑁 +𝐼 + 𝐽 one-hot
vector denoting the token of either a vocab, a user, or an item. In
addition, the subscript in ˆ𝑙𝑙𝑚{𝑙,𝑐 } denotes which embedding matrix
is used to encode the user/item tokens (where 𝑙 stands for matrix
Z𝑙,{𝑢,𝑣} and 𝑐 stands for matrix Z𝑐,{𝑢,𝑣} ). For the CLLM4Rec base
model ˆ𝑙𝑙𝑚{𝑙,𝑐 } , only the user/item token embeddings are trainable,
whereas the vocab embeddings Z𝑡 as well as the other parts of the
backbone LLM are fixed to preserve the pretrained knowledge.

3.3 Mutually-Regularized Pretraining

With CLLM4Rec base model introduced in the previous section, we
discuss themutually-regularized pretraining strategy for CLLM4Rec.
The aim is to learn user/item collaborative/content token embed-
dings based on language modeling on the corpora established from
user-item interactions and user/item textual features, where the
encoded knowledge and logical reasoning ability of the LLM can
be fully utilized. The overall process can be referred to in Fig. 2.

3.3.1 Recommendation-Specific Corpora. Generally, we can
transform the interactions r𝑖 and user/item content features x𝑢

𝑖
, x𝑣
𝑗
,

x𝑢𝑣
𝑖 𝑗

into documents of user/item/vocab token sequences as follows:

RawCorpora Transformed fromRecommendationData

(a) Historical Interactions r𝑖 :
<user_𝑖> has interacted with <item_𝑗> <item_𝑘> ...

(b) User/Item Textual Features x𝑢
𝑖
, x𝑣
𝑗
, x𝑢𝑣
𝑖 𝑗
:

The biography of <user_𝑖> is: Main biography.

The content of <item_𝑗> is: Main contents.

<user_𝑖> writes the review for <item_𝑗> : Main reviews.

where an example based on the Amazon Beauty dataset [15] can
be referred to in Fig. 3. However, directly conducting language
modeling on the raw corpora is clearly infeasible, as each document
is composed of heterogeneous vocab, user, and item tokens, where
the number of meaningful vocab tokens (e.g., ∼ 50k for GPT, and ∼
30k for T5) can be diluted by the large number of newly introduced
user/item tokens with randomly initialized embeddings.

3.3.2 Soft+Hard Prompting. To address the above challenge, we
propose a novel soft+hard prompting strategy to facilitate language
modeling on RS-specific corporawith heterogeneous user/item/vocab

tokens. The strategy is based on a key observation that documents
transformed from both user-item interactions r𝑖 and user/item tex-
tual features x𝑢

𝑖
, x𝑣

𝑗
, x𝑢𝑣
𝑖 𝑗

can be broken down into two parts: A
heterogeneous part composed of soft (user/item) and hard (vocab)
tokens providing context information regarding the gist of the doc-
ument, and a main text part with homogeneous item/vocab tokens
fulfilling the pretexts in detail. Therefore, we can view the first part
as a soft+hard prompt and conduct language modeling only on the
second part. This encourages the model to focus exclusively on
collaborative and content information, such that the effectiveness
and stability of language modeling can be substantially enhanced.

For collaborative modeling, document x𝑟
𝑖
transformed from the

historical interactions of user 𝑖 can be broken down into the soft+hard
prompt x𝑟,𝑝

𝑖
and homogeneous item token sequence x𝑟,𝑚

𝑖
as follows:

(a) Historical Interactions r𝑖 :
<user_𝑖> has interacted with︸                                     ︷︷                                     ︸

soft+hard prompt x𝑟,𝑝
𝑖

<item_𝑗> <item_𝑘> ...︸                           ︷︷                           ︸
item token seq. x𝑟,𝑚

𝑖

.

Accordingly, we introduce the collaborative LLM by adding an
item prediction head 𝑓𝑙 : R𝐾ℎ → P(𝐽 ) to the CLLM4Rec base model
ˆ𝑙𝑙𝑚𝑙 , which maps the final-layer last-step hidden representation

h𝑙,−1 calculated via ˆ𝑙𝑙𝑚𝑙 to the item probability space P(𝐽 ) to predict
the next item token. The weights of 𝑓𝑙 are tied with the item collab-
orative token embeddings Z𝑙,𝑣 as 𝑓𝑙 (h𝑙,−1) = softmax(Z𝑙,𝑣 · h𝑙,−1).
The generative process of the collaborative LLM can be denoted as:

x𝑟,𝑚
𝑖,𝑘+1 ∼ 𝑝

𝑓𝑙
ˆ𝑙𝑙𝑚𝑙

(
x𝑟,𝑚
𝑖,𝑘+1 |x

𝑟,𝑚

𝑖,1:𝑘 , x
𝑟,𝑝

𝑖

)
, (4)

where the prompt x𝑟,𝑝
𝑖

serves as a context to generate the next item
token based on the previous item tokens. Since the generation of
x𝑟,𝑚
𝑖,𝑘+1 requires attending to previous tokens, when maximizing the
likelihood, the collaborative LLM pushes the token embeddings of
user 𝑖 , i.e., z𝑙,𝑢

𝑖
, and the token embeddings of the interacted items, i.e.,

z𝑙,𝑣
𝑗
, z𝑙,𝑣
𝑘
, · · · , to be close to each other, where user/item collaborative

semantics in recommendation can be accurately captured.
Similarly, for the document transformed from the user/item con-

tent x𝑢𝑣
𝑖 𝑗
, it can also naturally be split into a soft+hard prompt x𝑢𝑣,𝑝

𝑖 𝑗

and the main text x𝑢𝑣,𝑚
𝑖 𝑗

of homogeneous vocab token sequence as:

(b) User/Item Textual Features x𝑢𝑣
𝑖 𝑗
:

<user_𝑖> writes the review for <item_𝑗> :︸                                                        ︷︷                                                        ︸
soft+hard prompt x𝑢𝑣,𝑝

𝑖 𝑗

Main reviews.︸             ︷︷             ︸
vocab seq. x𝑢𝑣,𝑚

𝑖 𝑗

Accordingly, we introduce the content LLM by adding a vocab
prediction head 𝑓𝑐 : R𝐾ℎ → P(𝑁 ) to the CLLM4Rec base model
ˆ𝑙𝑙𝑚𝑐 , which maps the final-layer last-step hidden representation

h𝑐,−1 calculated via ˆ𝑙𝑙𝑚𝑐 (which shares the same pretrained LLM
with ˆ𝑙𝑙𝑚𝑙 but uses Z𝑐,{𝑢,𝑣} to decode the user/item tokens) to the
vocab probability space. Similarly, the weights of 𝑓𝑐 are tied with
the vocab embeddings Z𝑡 as 𝑓𝑐 (h𝑐,−1) = softmax(Z𝑡 · h𝑐,−1). The
generative process of the content LLM can be denoted as follows:

x𝑢𝑣,𝑚
𝑖 𝑗,𝑘+1 ∼ 𝑝

𝑓𝑐
ˆ𝑙𝑙𝑚𝑐

(
x𝑢𝑣,𝑚
𝑖 𝑗,𝑘+1 |x

𝑢𝑣,𝑚

𝑖 𝑗,1:𝑘 , x
𝑢𝑣,𝑝

𝑖 𝑗

)
, (5)
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which generates the next vocab token x𝑢𝑣,𝑚
𝑖 𝑗,𝑘+1 based on the pre-

viously generated vocab tokens x𝑢𝑣,𝑚
𝑖 𝑗,1:𝑘 with prompt x𝑢𝑣,𝑝

𝑖 𝑗
as the

context. When maximizing the likelihood, the content information
in x𝑢𝑣,𝑚

𝑖 𝑗
can be encoded in the content token embeddings of user 𝑖

and item 𝑗 , i.e., z𝑐,𝑢
𝑖

, z𝑐,𝑣
𝑗
, where the pretrained knowledge of the

LLM can be fully utilized. For example, for the review shown in
Fig. 3, the pretrained LLM will know that <item_46> is a lipstick
with dark purple, red, and pink colors and can have side effects of
drying lips, and reasons that <user_57> likes the colors but hates
the side effects, which can be alleviated by applying lip balm.

Discussion. Generally, since the "hard" (i.e., the vocab) part of the
prompts x𝑟,𝑝

𝑖
and x𝑢𝑣,𝑝

𝑖 𝑗
is what the pretrained LLM could under-

stand, it is designed to trigger the reasoning ability of the pretrained
LLM based on its encoded knowledge. For example, the relational
phrase "has interacted with" in the prompt x𝑟,𝑝

𝑖
guides the col-

laborative LLM to understand that the newly-introduced token
<user_𝒊> is a user subject and the tokens in the prompt x𝑟,𝑚

𝑖
are

the objects of interacted item sequences. Meanwhile, the contexts
"write the review for" in x𝑢𝑣,𝑝

𝑖 𝑗
direct the content LLM to better

understand the nature of main texts in x𝑢𝑣,𝑚
𝑖 𝑗

, i.e., <user_𝒊>’s judg-
ment on <item_𝒋> based on the personal using experience. The
specific formulation of the prompt can be flexible, as Geng et al.
[18] have demonstrated that variations in the expression of the
prompt make less difference as long as the meaning is the same
and the prompt is consistent across the training and testing phases.

3.3.3 Mutually-Regularization. Since pretrained LLMs are not
recommendation-oriented, naively optimizing Eq. (5) unavoidably
captures noisy information from content features irrelevant to rec-
ommendations. In addition, since user/item interactions are sparse,
the collaborative LLM can easily overfit on the observed interac-
tions when optimizing Eq. (4). To address these issues, we propose a
mutually regularized pretraining strategy for CLLM4Rec, where col-
laborative LLM can guide content LLM to capture recommendation-
related information from user/item content, and content LLM can
in turn introduce side information to support collaborative filtering.

The mutual regularization naturally comes with the aligned
generative process of CLLM4Rec defined in Eqs. (1), (2). Specifically,
for user 𝑖 , if we denote the stacked item token embeddings as Z𝑐,𝑣

𝑖
,

Z𝑙,𝑣
𝑖
, which contains item 𝑗 and other items interacted by the user

𝑖 , the generation process of CLLM4Rec associated with x𝑟
𝑖
and x𝑢𝑣

𝑖 𝑗

can be defined as the joint distribution as follows:

𝑝

(
x𝑟,𝑚
𝑖

, x𝑢𝑣,𝑚
𝑖 𝑗

, z𝑙,𝑢
𝑖
,Z𝑙,𝑣
𝑖
, z𝑐,𝑢
𝑖
,Z𝑐,𝑣
𝑖

��x𝑟,𝑝
𝑖
, x𝑢𝑣,𝑝
𝑖 𝑗

)
=

Π𝑘𝑝
𝑓𝑙
ˆ𝑙𝑙𝑚𝑙

(
x𝑟,𝑚
𝑖,𝑘

��x𝑟,𝑚
𝑖,1:𝑘−1, x

𝑟,𝑝

𝑖

)
︸                               ︷︷                               ︸

LM for collab. LLM

·Π𝑘𝑝
𝑓𝑐
ˆ𝑙𝑙𝑚𝑐

(
x𝑢𝑣,𝑚
𝑖 𝑗,𝑘

��x𝑢𝑣,𝑚
𝑖 𝑗,1:𝑘−1, x

𝑢𝑣,𝑝

𝑖 𝑗

)
︸                                    ︷︷                                    ︸

LM for content LLM

·

𝑝

(
z𝑐,𝑢
𝑖

��z𝑙,𝑢
𝑖

)
· Π𝑘𝑝

(
z𝑐,𝑣
𝑖𝑘

��z𝑙,𝑣
𝑖𝑘

)
︸                               ︷︷                               ︸

mutual regularization

· 𝑝
(
z𝑙,𝑢
𝑖

)
· Π𝑘𝑝

(
z𝑙,𝑣
𝑖𝑘

)
︸                   ︷︷                   ︸

prior

.

(6)
A scrutiny of Eq. (6) reveals that the joint distribution can be decom-
posed into three parts: (i) the languagemodeling of the collaborative
and content LLMs that learn user/item token embeddings as Eqs. (4)

and (5); (ii) the mutual regularization that connects the user/item
token embeddings of the two LLMs (i.e., according to Eqs. (1), (2),
𝑝

(
z𝑐,𝑢
𝑖

��z𝑙,𝑢
𝑖

)
and 𝑝

(
z𝑐,𝑣
𝑖𝑘

��z𝑙,𝑣
𝑖𝑘

)
are conditional Gaussian, which will

introduce MSE regularization between z𝑐,𝑢
𝑖
, z𝑙,𝑢
𝑖

, and z𝑐,𝑣
𝑖𝑘
, z𝑙,𝑣
𝑖𝑘

when
log-likelihood is maximized); (iii) the prior of z𝑙,𝑢

𝑖
and z𝑙,𝑣

𝑖𝑘
, which

will be ignored due to the existence of mutual regularization (i.e.,
setting the precision 𝜆𝑙 in the prior in Eq. (1) as zero).

We useMaximum a Posteriori (MAP) [37] to estimate the user/item
token embeddings z𝑙,𝑢

𝑖
,Z𝑙,𝑣
𝑖
, z𝑐,𝑢
𝑖
,Z𝑐,𝑣
𝑖

, where the objective is pro-
portional to the logarithm of the joint distribution defined in Eq.
(6). Here, we take alternate steps to optimize the MAP objective. If
we denote the trainable parameters associated with the item token
prediction head 𝑓𝑙 and vocab token prediction head 𝑓𝑐 as 𝜽 (which
are tied with the corresponding token embeddings), the objective
for the collaborative LLM (L-step) and content LLM (C-step) with
mutual regularization can be derived as follows:

L-step. In the L-step, we fix user/item content embeddings z𝑐,𝑢
𝑖
,Z𝑐,𝑣
𝑖

as ẑ𝑐,𝑢
𝑖
, Ẑ𝑐,𝑣
𝑖

in Eq. (6), and use them to constrain the user/item
collaborative embeddings along with the language modeling of
collaborative LLM, leading to the following composite objective:

LMAP
l_step

(
z𝑙,𝑢
𝑖
,Z𝑙,𝑣
𝑖
;𝜽

)
=
∑︁
𝑘

− ln 𝑝 𝑓𝑙ˆ𝑙𝑙𝑚𝑙

(
x𝑟,𝑚
𝑖,𝑘

��x𝑟,𝑚
𝑖,1:𝑘−1, x

𝑟,𝑝

𝑖

)
︸                                 ︷︷                                 ︸

LM loss for collab. LLM

+𝜆𝑐
2




z𝑙,𝑢𝑖 − ẑ𝑐,𝑢
𝑖




2
2
+
∑︁
𝑘

𝜆𝑐

2
·



z𝑙,𝑣
𝑖𝑘

− ẑ𝑐,𝑣
𝑖𝑘




2
2︸                                                  ︷︷                                                  ︸

MR loss with content LLM

+𝜆𝑙
2




z𝑙,𝑢𝑖 


2
2
+ 𝜆𝑙

2




z𝑙,𝑣𝑗 


2
2︸                         ︷︷                         ︸

Prior loss

+ C𝑙 ,

(7)
where C𝑙 is the constant irrelevant for optimization. The LM loss
captures the collaborative similarity between token embeddings
of user 𝑖 and the interacted items, where side information can be
introduced via the MR loss to support collaborative filtering.

C-step. After one-step optimization of the L-step, we fix the user/item
collaborative token embeddings z𝑙,𝑢

𝑖
, z𝑙,𝑣
𝑗

as ẑ𝑙,𝑢
𝑖

, ẑ𝑙,𝑣
𝑗

in Eq. (6), lead-
ing to the following composite objective for the content LLM:

LMAP
c_step

(
z𝑐,𝑢
𝑖
, z𝑐,𝑣
𝑗
;𝜽

)
=
∑︁
𝑘

− ln 𝑝 𝑓𝑐ˆ𝑙𝑙𝑚𝑐

(
x𝑢𝑣,𝑚
𝑖 𝑗,𝑘

��x𝑢𝑣,𝑚
𝑖 𝑗,1:𝑘−1, x

𝑢𝑣,𝑝

𝑖 𝑗

)
︸                                      ︷︷                                      ︸

LM loss for content LLM

+𝜆𝑐
2




z𝑐,𝑢𝑖 − ẑ𝑙,𝑢
𝑖




2
2
+ 𝜆𝑐

2
·



z𝑐,𝑣𝑗 − ẑ𝑙,𝑣

𝑗




2
2︸                                             ︷︷                                             ︸

MR loss with collab. LLM

+ C𝑐 ,
(8)

whereMR loss encourages the content LLM to capture recommend-
ation-oriented information from user/item textual features. In Eqs.
(7) and (8), 𝜆𝑐 controls the strength of mutual regularization, which
will be thoroughly discussed in the empirical study.

3.3.4 Stochastic Item Reordering. Another issue that hinders
effective collaborative filtering via Eq. (7) is the order of item to-
kens when transforming the historical interactions r𝑖 into a token
sequence x𝑟,𝑚

𝑖
. Item order usually does not matter for direct rec-

ommendations as users’ long-term interests can be viewed as fixed
(even if it matters, the positional embeddings denoting the order
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of natural language may not capture the semantics of the order of
interactions). To address this issue, we propose a stochastic item
reordering strategy to randomly permute the item tokens in x𝑟,𝑚

𝑖
,

with soft+hard prompt x𝑟,𝑝
𝑖

fixed when optimizing the collaborative
LLM as Eq. (7). Through this strategy, the order of items can be
ignored without negative influence on the vocab tokens in x𝑟,𝑝

𝑖
.

3.4 Recommendation-Oriented Finetuning

3.4.1 Pretraining v.s. Finetuning. The pretraining of CLLM4Rec
aims to learn the user/item token embeddings based on the large
corpora established from user-item interactions r𝑖 and user/item tex-
tual features x𝑢

𝑖
, x𝑣
𝑗
, x𝑢𝑣
𝑖 𝑗

via language modeling, such that prompts
with heterogeneous user/item/vocab tokens can be properly under-
stood by CLLM4Rec. However, for now, the pretrained CLLM4Rec
can only complete item/vocab token sequences based on prompts,
rather than making recommendations, and therefore the gap be-
tween NLP and RS is still not completely eliminated. In addition,
naively treating the collaborative LLM as a recommendation model
can lead to huge computational costs as the recommended items are
sequentially generated via auto-regression. Therefore, we propose a
novel recommendation-oriented finetuning strategy for CLLM4Rec,
which aims to further finetune the pretrained collaborative LLM
and tailor it for more efficient recommendations.

3.4.2 Masked Prompting with Multinomial Prediction Head.
To achieve this purpose, we first design a masked prompting strat-
egy to generate recommendation-oriented prompts and targets
for CLLM4Rec finetuning. Specifically, for each user, we randomly
mask the interacted items r𝑖 by 100 × 𝑝𝑚%, where the remaining
items are denoted as r𝑚𝑎𝑠𝑘𝑒𝑑

𝑖
. We then use r𝑚𝑎𝑠𝑘𝑒𝑑

𝑖
to generate a

recommendation-oriented prompt x𝑟𝑒𝑐,𝑝
𝑖

as the input. All hold-out
items, which we denote with a multi-hot vector rℎ𝑜𝑙𝑑

𝑖
, are treated

as the target. The prompt x𝑟𝑒𝑐,𝑝
𝑖

based on r𝑚𝑎𝑠𝑘𝑒𝑑
𝑖

is designed as:

(c) Masked Prompts & Target for Finetuning
(prompt) <user_𝑖> has interacted with <item_𝑗 ′>

<item_𝑘 ′> the user will interact with:

(target) rℎ𝑜𝑙𝑑
𝑖

∈ {0, 1} 𝐽 (masked items)

which triggers the reasoning ability of the pretrained LLM by using
relational phrase "has interacted with" to describe the historical
interactions, and using the phrase "the user will interact with"

to guide the prediction of the target hold-out items rℎ𝑜𝑙𝑑
𝑖

.
We name CLLM4Rec in the finetuning stage as RecLLM, which

inherits the CLLM4Rec base model ˆ𝑙𝑙𝑚𝑙 from the collaborative
LLM in the pretraining stage and introduces a new item prediction
head with multinomial likelihood, i.e., 𝑓𝑟𝑒𝑐 , whose weights are also
tied with the item token embeddings Z𝑙,𝑣 . The generation of the
hold-out items rℎ𝑜𝑙𝑑

𝑖
via the RecLLM can be formulated as follows:

rℎ𝑜𝑙𝑑𝑖 ∼𝑚𝑢𝑙𝑡𝑖
(
𝑓𝑟𝑒𝑐

(
h𝑟𝑒𝑐
𝑙,𝑖,−1

)
, 𝑁ℎ𝑜𝑙𝑑𝑖

)
, where h𝑟𝑒𝑐

𝑙,𝑖
= ˆ𝑙𝑙𝑚𝑙

(
x𝑟𝑒𝑐,𝑝
𝑖

)
,

(9)
where𝑚𝑢𝑙𝑡𝑖 denotes the multinomial distribution, and 𝑁ℎ𝑜𝑙𝑑

𝑖
is the

number of hold-out items for user 𝑖 . When finetuning the RecLLM
according to Eq. (9), h𝑟𝑒𝑐

𝑙,𝑖,−1, which can be viewed as the latent vari-
able summarizing the historical interaction of user 𝑖 , is encouraged

to be similar to the collaborative embeddings of all the interacted
items. In addition, we keep it regularized with the content LLM in
a similar manner as Eq. (7)2, and use the stochastic item reorder-
ing strategy to generate the prompt x𝑟𝑒𝑐,𝑝

𝑖
. Through the proposed

recommendation-oriented finetuning strategy, CLLM4Rec can effi-
ciently generate recommendations in a single forward-propagation
step while fully utilizing the encoded knowledge of the pretrained
LLM backbone and the user/item token embeddings learned via
mutually-regularized pretraining, where all 𝐽 items serve as the
candidates. In addition, since the target rℎ𝑜𝑙𝑑

𝑖
is constrained to be

in the item probability space, hallucinated items can be avoided.

3.5 Predictions with CLLM4Rec

After the pretraining and finetuning of CLLM4Rec, to make recom-
mendations for user 𝑖 , we can convert the whole historical interac-
tions of the user, i.e., r𝑖 , into the recommendation-oriented prompt
x̂𝑟𝑒𝑐,𝑝
𝑖

as described in Section 3.4.2 (with nomasked items) and input
it into the RecLLMmodel. Then, the multinomial probability r̂𝑖 over
all 𝐽 items can be obtained through one forward propagation via
r̂𝑖 =𝑚𝑢𝑙𝑡𝑖

(
𝑓𝑟𝑒𝑐

(
ĥ𝑟𝑒𝑐
𝑖,−1

))
, ĥ𝑟𝑒𝑐
𝑖

= ˆ𝑙𝑙𝑚𝑙
(
x̂𝑟𝑒𝑐,𝑝
𝑖

)
, where uninteracted

items with top-𝑀 scores in r̂𝑖 can be selected as recommendations.

4 EMPIRICAL STUDY

In this section, we present and analyze the experiments on four pub-
lic datasets and the LinkedIn job recommendation dataset, aiming
to answer the following three research questions:
• RQ1. How does CLLM4Rec, the first RS that tightly couples
the ID-based paradigm with the LLM-based paradigm, perform
compared to state-of-the-art ID-based and LLM-based RSs?

• RQ2.How does the pretraining stage of CLLM4Rec (including
the mutual regularization trick and the stochastic item reorder
strategy) influence the performance of CLLM4Rec?

• RQ3. How does the finetuning stage of CLLM4Rec with
masked prompting and multinomial item prediction head influ-
ence the efficiency and effectiveness of recommendations?

Due to space limitation, we only discuss CLLM4Rec with GPT-2
[9] backbone in this section, which has 768-dimensional token
embeddings and token size 50,257. Experiments with more LLM
backbones are thoroughly discussed in Appendix B.

4.1 Experimental Setup

4.1.1 Datasets. The four public datasets we include for experi-
ments are Amazon (AM)-Beauty dataset, AM-Toys dataset, AM-
Sports dataset [15] and Yelp dataset [38]. In preprocessing, we
binarize the interactions by keeping only ratings > 3 and treat them
as implicit feedback [39]. In addition, we filter the datasets such that
they keep the 5-core property after binarization. For each user, we
randomly select 80% of interactions for training, 10% for validation,
and 10% for testing, where at least one item is selected in the vali-
dation and the test set. The reviews users provide to the items are
collected as the textual feature x𝑢𝑣

𝑖 𝑗
. The real-world experiments

are based on a job recommendation dataset collected at LinkedIn,
where users’ clicks on the job Ads are logged as the implicit feed-
back, and users’ self-provided biography x𝑢

𝑖
and the job descriptions

2The objective of the RecLLM is formulated in Eq. (10) in Appendix A.2.
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x𝑣
𝑗
are collected as the textual features, respectively. The statistics

of the dataset are summarized in Table 3 in the Appendix.

4.2 Comparison with Baselines

4.2.1 Baselines. To demonstrate the multifaceted superiority of
the proposed CLLM4Rec, we include the following ID-based and
(L)LM-based RSs as baselines for comparisons:
(i) ID-based Baselines.

• Multi-Vae [39] is an ID-based collaborative filtering baseline
that recommends new items by reconstructing the ratings r𝑖 via
a variational auto-encoder (VAE) with multinomial likelihood.

• Md-Cvae [40] is a hybrid RS that extends the Multi-VAE by
introducing a dual feature VAE on textual features to regularize
the reconstruction of r𝑖 in Multi-VAE.

(ii) LM-based Baselines
3.

• Bert4Rec [41] uses masked language modeling (MLM) pro-
posed in BERT [31] to learn user/item embeddings for recom-
mendation via bidirectional self-attention.

• S
3
Rec [38] extends BERT4Rec by augmenting the MLM with

auxiliary tasks such as item attribute prediction, where content
features can be fused for self-supervised learning.

(iii) LLM-based Baselines.

• Llm-Scratch has the same structure as CLLM4Rec, but it trains
the whole model from scratch instead of loading and fixing the
weights of the pretrained LLM backbone.

• Llm-CF eliminates the content LLM from CLLM4Rec and the
mutually-regularized pretraining step and uses only the collabo-
rative LLM and RecLLM for recommendations.

• Llm-FtALL has the same structure as CLLM4Rec, but it fine-
tunes the whole network, including the vocab embeddings as
well as other parts of the pretrained LLM, instead of training only
the newly-introduced user/item token embeddings.

• Llm-FixOrd has the same structure as CLLM4Rec, but it re-
moves the stochastic item reordering strategy for both the col-
laborative LLM in pretraining and the RecLLM in finetuning.

• Llm-PreRec discards finetuning and ranks the categorical prob-
ability from the next item token prediction head of the collabora-
tive LLM in the pretraining stage to make recommendations.

4.2.2 Qualitative Analysis. For other existing LLM-based RSs
(i.e., both pseudo-ID-based and description-based methods intro-
duced in Section 2.2), they represent users/items with multiple
tokens and formulate direct recommendation as a next token gen-
eration problem. Since the generated tokens could be irrelevant to
the recommendation purpose, candidate items usually need to be
explicitly provided in the prompt to avoid hallucination (e.g., P5
[18] provides 100 candidate items where one is positive, and TALL-
Rec [35] outputs yes/no decision based on user/item descriptions
in the prompts, etc.). In contrast, CLLM4Rec can simultaneously
generate multiple recommendations from the entire item candidate
pool. Therefore, these methods cannot directly work in our setting,
and the comparisons are mainly based on qualitative analysis.

3Note that both BERT4Rec and S3Rec are original designed for sequential recommenda-
tion. In this paper, we use similar recommendation-oriented finetuning as CLLM4Rec
to adapt them to direct recommendation, where item sequences generated frommasked
interactions are used to predict all hold-out items with multinomial likelihood.

Table 1: Comparison between CLLM4Rec and various base-

lines with GPT-backbone on three Amazon Review datasets.

AM-Beauty Recall@20 Recall@40 NDCG@100

Multi-VAE 0.1295 0.1720 0.0835
MD-CVAE 0.1472 0.2058 0.0976
BERT4Rec 0.1126 0.1677 0.0781
S3Rec 0.1354 0.1789 0.0867

LLM-Scratch 0.0840 0.1265 0.0583
LLM-CF 0.1319 0.1841 0.0855
LLM-FtAll 0.1335 0.1988 0.0836
LLM-FixOrd 0.1524 0.2219 0.1072
LLM-PreRec 0.1547 0.2196 0.1051

CLLM4Rec 0.1656 0.2323 0.1118

AM-Toys Recall@20 Recall@40 NDCG@100

Multi-VAE 0.1076 0.1558 0.0781
MD-CVAE 0.1291 0.1804 0.0844
BERT4Rec 0.0853 0.1375 0.0532
S3Rec 0.1064 0.1524 0.0665

LLM-Scratch 0.0485 0.0771 0.0362
LLM-CF 0.1027 0.1434 0.0680
LLM-FtAll 0.1162 0.1542 0.0696
LLM-FixOrd 0.1342 0.1887 0.0889
LLM-PreRec 0.1308 0.1859 0.0874

CLLM4Rec 0.1436 0.1933 0.0918

AM-Sports Recall@20 Recall@40 NDCG@100

Multi-VAE 0.0659 0.0975 0.0446
MD-CVAE 0.0714 0.1180 0.0514
BERT4Rec 0.0521 0.0701 0.0305
S3Rec 0.0616 0.0813 0.0438

LLM-Scratch 0.0362 0.0538 0.0362
LLM-CF 0.0642 0.0966 0.0419
LLM-FtAll 0.0794 0.1002 0.0424
LLM-FixOrd 0.0901 0.1295 0.0592
LLM-PreRec 0.0839 0.1248 0.0561

CLLM4Rec 0.0926 0.1351 0.0634

4.2.3 Results on the Public Datasets. We first analyze the ex-
perimental results on four public datasets to provide preliminary
answers forRQs. 1, 2, 3. FromTables 1 and 2, we can find that the ID-
base method, Multi-VAE, remains a strong baseline for collaborative
filtering (CF). LLM-CF, the CF backbone of CLLM4Rec, cannot beat
Multi-VAE on both AM-Sports and Toys datasets, even if the "hard"
part of the prompt triggers the reasoning ability of the pretrained
LLM. However, when utilizing the large textual data, CLLM4Rec
outperforms its ID-based counterpart, MD-CVAE (which tightly
couples an item content VAE with Multi-VAE) by a large margin.
This is because MD-CVAE uses shallow bag-of-word representa-
tions of textual features, for which pretrained LLMs in CLLM4Rec
can provide deeper understanding via their pretrained knowledge.
The importance of pretrained knowledge can also be shown by
the LLM-Scratch model, which performs the worst among all in-
cluded baselines. An interesting finding is that, LLM-FtAll, which
finetunes the whole model including the pretrained LLM backbone,
performs worse than CLLM4Rec, which optimizes only the newly
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Table 2: Comparison between CLLM4Rec and various base-

lines on the Yelp dataset and the LinkedIn dataset.

Yelp Recall@20 Recall@40 NDCG@100

Multi-VAE 0.0526 0.0842 0.0424
MD-CVAE 0.0664 0.1058 0.0497
BERT4Rec 0.0418 0.0724 0.0361
S3Rec 0.0563 0.0893 0.0485

LLM-Scratch 0.0199 0.0325 0.0159
LLM-CF 0.0541 0.0860 0.0412
LLM-FtAll 0.0653 0.0989 0.0520
LLM-FixOrd 0.0694 0.1053 0.0524
LLM-PreRec 0.0639 0.1021 0.0498

CLLM4Rec 0.0735 0.1149 0.0536

LinkedIn Recall@10 Recall@20 NDCG@10

Two-Tower 0.1186 0.2041 0.0979

M6-Retrieval 0.1279 0.2118 0.1020
CLLM4Rec-Emb 0.1302 0.2165 0.1034
CLLM4Rec 0.1427 0.2398 0.1199

introduced user/item token embeddings. The reason could be that,
since the weights of the pretrained LLM are fully optimized, the
recommendation-specific corpora are still not enough to adapt the
pretrained LLM with good generalization ability for RS. Therefore,
the cons of degenerating the pretrained knowledge outweigh the
pros of introducing extra RS-specific knowledge. We can also find
that LLM-PreRec, which uses the collaborative LLM in the pretrain-
ing stage to generate recommendations, is already a strong baseline.
This demonstrates the effectiveness of the soft+hard prompting
strategy to facilitate efficient and stable language modeling on
recommendation-oriented corpora with heterogeneous tokens. Still,
CLLM4Rec performs better than LLM-PreRec, which demonstrates
the effectiveness of recommendation-oriented finetuning in adapt-
ing collaborative LLM for efficient recommendations.

4.2.4 Results on the LinkedIn Dataset. In the real-world ex-
periment, we compare CLLM4Rec with the two-tower (TT) model
utilized in LinkedIn for job recommendations. The TT model is
implemented as a two-branch multi-layer perceptron (MLP), where
the input user/item embeddings include embeddings extracted from
a graph neural network (GNN) learned on the user-job bipartite
graph, as well as features extracted from an internal BERT model.
In addition, since the textual features are available for almost every
user and item, we compare CLLM4Rec with the state-of-the-art
LLM-based RS, M6-Retrieval [17], which takes the dimensional-
reduced embeddings of user/item descriptions fromM6 transformer
for contrastive recommendations. The results are summarized in
Table 2. For Table 2, we can find that CLLM4Rec outperforms the
shallow TT model by a large margin. However, although the in-
ference latency for CLLM4Rec is significantly improved compared
with existing methods due to the introduction of recommendation-
oriented finetuning, directly deploying CLLM4Rec online is still
infeasible, as the inference budgets are higher compared to the TT
model. Therefore, we design the CLLM4Rec-Emb baseline, which
includes the user/item token embeddings Z𝑙,𝑢 and Z𝑙,𝑣 learned from
CLLM4Rec (projected into 128 dimensions) as extra inputs for the
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Figure 4: Sensitivity analysis w.r.t. 𝜆𝑐 , which controls the

strength of mutual-regularization for CLLM4Rec.

TT model, which demonstrates a performance improvement than
the original TT model and the M6-Retrieval model in our offline ex-
periment. This demonstrates the potential application of CLLM4Rec
in industrial applications where low latency matters.

4.3 Parameter Sensitivity Analysis

To further answer RQs. 2 and 3, we vary 𝜆𝑐 in Eqs. (7), (8), and
(10) that controls the strength of mutual regularization and investi-
gates how it influences the performance of CLLM4Rec. From Fig.
4, we can find that, when 𝜆𝑐 is small, the mutual regularization
is weak, and the content LLM cannot provide enough user/item
content side information to support the collaborative LLM and Re-
cLLM. Therefore, the recommendation performance degenerates to
a similar level as the LLM-CF. On the other hand, when 𝜆𝑐 is too
large, the MR loss in Eqs. (7), (8) and (10) dominates, which hinders
CLLM4Rec from learning useful user/item token embeddings via
language modeling. Generally, for all four datasets, the performance
of CLLM4Rec peaks at around 𝜆𝑐 = 1, which serves as a good start
when applying the GPT-based CLLM4Rec to new datasets.

5 CONCLUSION

In this paper, we proposed CLLM4Rec, the first method that tightly
couples the ID paradigm and the LLM paradigm of RS, which faith-
fully captures user/item semantics while fully utilizing encoded
knowledge and logical reasoning ability of pretrained LLMs simul-
taneously. Specifically, with mutually regularized pretraining based
on soft+hard prompting strategy, CLLM4Rec can effectively capture
the user/item collaborative and content information via language
modeling. Furthermore, with recommendation-oriented finetuning,
the pretrained knowledge of CLLM4Rec can be fully utilized to
efficiently generate recommendations. Extensive experiments show
the multifaceted superiority of CLLM4Rec over the state-of-the-art.
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Appendix

Table 3: Statistics of the datasets. #Feat. stands for number

of textual features (i.e., # reviews for AM/Yelp datasets, and

#user biography+#job descriptions for the LinkedIn dataset.

Dataset #Int. #Users #Items Sparsity #Feat.

AM-Beauty 94,148 10, 553 6, 086 99.85% 70,604
AM-Toys 95,420 11, 268 7, 309 99.88% 70,784
AM-Sports 185,718 22, 686 12, 301 99.93% 137,618
Yelp 292,017 28, 330 18, 775 99.94% 224,825

LinkedIn 90,173 22, 391 1, 071 99.62% 23,362

A TECHNICAL DETAILS

A.1 Implementation of Soft+Hard Prompting

To implement the soft+hard prompting strategy discussed in Section
3.3.2, for decoder-only LLMs such as GPT, we can generate only the
"keys" and "values" for the heterogeneous tokens in the prompts
x𝑟,𝑝
𝑖

, x𝑢𝑣,𝑝
𝑖 𝑗

, and use the "query" of the last token as the start to
generate the homogeneous tokens of the main texts x𝑟,𝑚

𝑖
, x𝑢𝑣,𝑚
𝑖 𝑗

for
language modeling. For encoder-decoder-based LLMs such as T5, a
natural thought is to input the prompts x𝑟,𝑝

𝑖
, x𝑢𝑣,𝑝
𝑖 𝑗

in the encoder,
and use the decoder to generate the main texts x𝑟,𝑚

𝑖
, x𝑢𝑣,𝑚
𝑖 𝑗

.

A.2 Mutually Regularized Objective for

Recommendation-Oriented Finetuning

If we denote the multinomial probability obtained from the Re-
cLLM prediction head 𝑓𝑟𝑒𝑐 as r̂ℎ𝑜𝑙𝑑𝑖

, and denote the stacked item
collaborative token embeddings of items interacted by user 𝑖 as Z𝑙,𝑣

𝑖
,

the rec-step objective of the recommendation-oriented finetuning
(regularized with the content LLM) can be formulated as:

LMAP
rec_step

(
z𝑙,𝑢
𝑖
,Z𝑙,𝑣
𝑖
;𝜽

)
= −

∑︁
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MR loss with content LLM

+ C𝑟𝑒𝑐 ,

(10)
where NLL stands for negative log-likelihood, and C𝑟𝑒𝑐 is the con-
stant irrelevant for the optimization purpose. From the form of
the multinomial NLL loss we can find that, when finetuning the
RecLLM according to Eq. (10), the h𝑟𝑒𝑐

𝑙,𝑖,−1 output by the CLLM4Rec
base model ˆ𝑙𝑙𝑚𝑙 , which can be viewed as the latent variable sum-
marizing the historical interaction of user 𝑖 , is encouraged to be
similar to the collaborative embeddings of all the interacted items.

B EXPERIMENTS

B.1 Statistics of the Datasets

The statistics of the public datasets and the LinkedIn recommenda-
tion dataset in the main paper are summarized in Table 3.

Table 4: Comparison between CLLM4Rec with more back-

bones and more baselines on three Amazon Review datasets.

AM-Beauty Recall@20 Recall@40 NDCG@100

Multi-VAE 0.1295 0.1720 0.0835
EASE 0.1325 0.1757 0.0904
BPR 0.1391 0.1803 0.0862
MD-CVAE 0.1472 0.2058 0.0976

BERT4Rec 0.1126 0.1677 0.0781
S3Rec 0.1354 0.1789 0.0867

CLLM4Rec-T5 0.1538 0.2105 0.1052
CLLM4Rec-LLaMA 0.1614 0.2297 0.1103
CLLM4Rec-GPT2 0.1656 0.2323 0.1118

AM-Toys Recall@20 Recall@40 NDCG@100

Multi-VAE 0.1076 0.1558 0.0781
EASE 0.1082 0.1561 0.0787
BPR 0.1124 0.1579 0.0824
MD-CVAE 0.1291 0.1804 0.0844

BERT4Rec 0.0853 0.1375 0.0532
S3Rec 0.1064 0.1524 0.0665

CLLM4Rec-T5 0.1328 0.1840 0.0851
CLLM4Rec-LLaMA 0.1369 0.1877 0.0896
CLLM4Rec-GPT2 0.1436 0.1933 0.0918

AM-Sports Recall@20 Recall@40 NDCG@100

Multi-VAE 0.0659 0.0975 0.0446
EASE 0.0694 0.1038 0.0501
BPR 0.0756 0.1057 0.0539
MD-CVAE 0.0714 0.1180 0.0514

BERT4Rec 0.0521 0.0701 0.0305
S3Rec 0.0616 0.0813 0.0438

CLLM4Rec-T5 0.0845 0.1226 0.0589
CLLM4Rec-LLaMA 0.0938 0.1369 0.0648

CLLM4Rec-GPT2 0.0926 0.1351 0.0634

B.2 Implementation Details for the

GPT-2-based CLLM4Rec

In this section, we introduce the implementation details for the
GPT-2 based CLLM4Rec used in the main paper. During the train-
ing stage, we first optimize the content LLM as Eq. (5) via lan-
guage modeling for 10 epochs to warm up the user/item content
token embeddings. Then, in the mutually regularized pretraining
stage, we alternately train the collaborative and content LLMs as
specified in Eqs. (7) and (8) for 100 epochs. Finally, we conduct
the recommendation-oriented finetuning for 150 epochs, where
the RecLLM is monitored with metrics Recall@20, Recall@40, and
NDCG@100 calculated on the validation set as with [39]. RecLLM
with the best performance is logged and evaluated on the test set
as the final results. The prior precision 𝜆𝑐 in Eqs. (7) and (8) is an
important hyperparameter that controls the strength of mutual reg-
ularization. In the main paper, we first fix its value to the optimal
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one found by grid search and compare it with other baselines in
Section 4.2, and then we discuss its influence in Section 4.3.

B.3 Additional Results

B.3.1 Implementation Details for More Backbones. In the
appendix, we report the experiments of CLLM4Rec with two more
LLM backbones to demonstrate the generalization ability of the
proposed CLLM4Rec. The first backbone we consider is the T5-base
model [10], which is an encoder-decoder-based LLM with 32,128
vocab tokens (the last 28 tokens are empty), and each token is asso-
ciated with a 768-dimensional vocab embedding. Another backbone
is the LLaMA-7B model [11], which has the same number of tokens
as the T5 model (as both use the sentence-piece tokenizer), and
each token is associated with a 4,096-dimensional token embedding.
For the non-symmetric LLM models where the weights of the LM
prediction head are not tied with the vocab token embeddings, we
randomly initialize the weights for the item prediction head for
collaborative LLM (see Eq. (4) for details) and learn them together
with the item collaborative token embeddings in both the pretrain-
ing and finetuning stages. Model training generally follows similar
steps as the model with GPT-2 backbone described in Section B.1,
where we first warm up the content LLM as Eq. (5) for ten epochs.
Then, we conduct the mutually-regularized pretraining as Eqs. (7),
(8) for 100 epochs, and continue for the recommendation-oriented
finetuning as specified by Eq. (10) for 150 more epochs.

B.3.2 More Baselines. In addition, we report the experiments of
two more strong ID-based baselines, i.e., EASE [42] and BPR [43] in
this Appendix. Specifically, EASE improves over the Multi-VAE by

introducing a single-layer auto-encoder with constraints of no self-
reconstruction, which shows better generalization ability due to its
reduced variance and more suitable inductive bias faced with the
sparse rating data. For the BPRmodel, we concatenate the user/item
bag-of-word textual features with the user/item collaborative latent
variables when optimizing the ranking-based objective.

B.3.3 Results & Analysis. The additional experimental results
are summarized in Table 4. From Table 4 we can find that, although
CLLM4Rec-T5 generally outperforms the ID-based baselines and
shallow LM-based baselines, its performance is consistently worse
than the CLLM4Rec-GPT2model. The reason for the overall inferior
performance of CLLM4Rec with T5 backbone can be two-fold. First,
we note that the weights in T5 are initialized with unit variance,
whereas weights in GPT-2 are initialized with a variance of 0.02.
Therefore, weights in T5 have much larger numerical values, which
leads to large update steps. Therefore, the training of CLLM4Rec-T5
is not as stable as CLLM4Rec-GPT2. In addition, in the finetuning
stage of T5, the prompts are generally used to guide the macro
behavior of the model. e.g., changing model behavior from question
answering to machine generation via prompt "Translate English
to French:". Therefore, another reason could be the mismatch be-
tween the original T5 prompts and the prompts intended to be used
in CLLM4Rec. In addition, we can find that CLLM4Rec with the
larger LLaMA-7B backbone cannot outperformCLLM4Rec-GPT2 on
two smaller AM-Beauty and AM-Sports datasets, where the model
can overfit on limited data. However, CLLM4Rec-LLaMA performs
slightly better than CLLM4Rec-GPT2 on the comparatively large
AM-Sports dataset, which demonstrates the generalization ability
of CLLM4Rec with both larger models and larger data.
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