PyGDebias: A Python Library for Debiasing in Graph Learning

Yushun Dong
The University of Virginia
Charlottesville, USA
ydéeb@virginia.edu

Song Wang
The University of Virginia
Charlottesville, USA
sw3wv@virginia.edu

Chen Chen
The University of Virginia
Charlottesville, USA
zrh6du@virginia.edu

ABSTRACT

Graph-structured data is ubiquitous among a plethora of real-world
applications. However, as graph learning algorithms have been
increasingly deployed to help decision-making, there has been ris-
ing societal concern in the bias these algorithms may exhibit. In
certain high-stake decision-making scenarios, the decisions made
may be life-changing for the involved individuals. Accordingly,
abundant explorations have been made to mitigate the bias for
graph learning algorithms in recent years. However, there still
lacks a library to collectively consolidate existing debiasing tech-
niques and help practitioners to easily perform bias mitigation
for graph learning algorithms. In this paper, we present PyGDe-
bias, an open-source Python library for bias mitigation in graph
learning algorithms. As the first comprehensive library of its kind,
PyGDebias covers 13 popular debiasing methods under common
fairness notions together with 26 commonly used graph datasets.
In addition, PyGDebias also comes with comprehensive perfor-
mance benchmarks and well-documented API designs for both
researchers and practitioners. To foster convenient accessibility,
PyGDebias is released under a permissive BSD-license together
with performance benchmarks, API documentation, and use exam-
ples at https://github.com/yushundong/PyGDebias.
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1 INTRODUCTION

Graph learning algorithms have been increasingly deployed in
a plethora of real-world applications [3, 27]. Nevertheless, there
has been a rise in societal concerns about the algorithmic bias
these algorithms may exhibit [4, 6, 10]. In certain high-stakes graph
learning applications, such as healthcare and criminal justice, life-
changing decisions could be made for the involved individuals.
Therefore, properly handling the algorithmic bias in commonly
used graph learning algorithms has become a critical need.

In recent years, numerous efforts have been made to mitigate
the exhibited bias in graph learning. Despite these abundant works,
it remains difficult for practitioners to compare existing bias miti-
gation methods and choose appropriate ones for deployment. We
argue that a series of complicated factors have led to such a dilemma,
such as experimental setting inconsistencies and evaluation met-
ric differences. In fact, a common way to handle these complex
factors is to collect existing methods as a library, which paves the
way towards easy implementation, evaluation, and deployment
for practitioners. As an example, AIF360 [2] is a library developed
to mitigate the bias exhibited by machine learning models over
ii.d. data. Such a library has collected multiple existing debiasing
methods and has successfully facilitated the transition of fairness
research algorithms to deployment in industrial settings. However,
existing libraries mainly only include debiasing methods on regular
non-graph data types, and cannot be directly adopted to debias
graph learning algorithms due to the unique challenges in graph
learning [4, 6, 8, 10, 11]. Therefore, in graph learning, there still lacks
a library to collectively consolidate existing debiasing techniques
and help practitioners easily mitigate bias in popular algorithms.

To bridge this gap, we design the first comprehensive Python
Graph Debiasing library named PyGDebias, with a series of key


https://github.com/yushundong/PyGDebias
https://doi.org/10.1145/3589335.3651239
https://doi.org/10.1145/3589335.3651239
https://doi.org/10.1145/3589335.3651239
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589335.3651239&domain=pdf&date_stamp=2024-05-13

WWW ’24 Companion, May 13-17, 2024, Singapore, Singapore

. APIs for ! ajd();
Dataset Preparation ~ Datisgtr : features();
(Module 1) O E———— sens();
Algorithm Implementation APIs for
: O
(Module 2) O N Algorithms GitHub
————— Actions
< fit()
.. . it0; 2
Emplrli/claldElva;uatlon preciel): é’
( odule ) O CodeQL

Figure 1: An illustration for the design of PyGDebias.

technical advancements. We summarize the main contributions of
PyGDebias in four perspectives below.

¢ Diverse Evaluation Metrics. PyGDebias provides abun-
dant evaluation metrics for model utility and fairness mea-
surements. Notably, the integrated fairness metrics are under
a wide range of commonly used fairness notions, including
group fairness, individual fairness, and counterfactual fair-
ness, which supports diverse research in this field.

¢ Extensive Real-World Datasets. PyGDebias provides 24
real-world graph-structured datasets in the domain of al-
gorithmic fairness research, including 22 commonly used
datasets and two newly collected ones. All datasets are packed
up in a standard approach for ease of use, and contributions
are also open for further extension.

e Comprehensive Debiasing Algorithms. PyGDebias cov-
ers a wide range of popular debiasing algorithms in the
domain of graph learning, which can be adopted to achieve
higher fairness levels under different fairness notions. Specif-
ically, PyGDebias supports 13 popular debiasing algorithms,
and is open for further contributions as well.

e Abundant Materials. PyGDebias also comes with an ex-
tensive performance benchmark under different fairness no-
tions, where experimental settings are ensured to be con-
sistent under each notion. Additionally, all datasets are also
integrated with PyGDebias, and the corresponding APIs can
be easily called for evaluation.

In addition, to foster convenient accessibility, PyGDebias is released
under a permissive BSD-license together with performance bench-
marks, API documentation, and use examples at https://github.com/
yushundong/PyGDebias.

2 LIBRARY DESIGN

The architecture of PyGDebias encompasses a comprehensive stream-
line to conduct debiasing for graph learning algorithms. In particu-
lar, three different modules are involved in this streamline, namely
graph dataset preparation, algorithm implementation, and the sub-
sequent empirical evaluation. We show an overview of the design
for PyGDebias in Figure 1, and we provide a brief introduction for
each of the three modules below.

Module 1: Dataset Preparation. PyGDebias offers an extensive
collection of popular graph datasets, including 22 commonly used
datasets in existing literature on graph learning algorithm debias-
ing, together with 2 newly collected datasets (i.e., AMiner-L and

1020

Yushun Dong, et al.

Table 1: 24 commonly used real-world graph datasets col-
lected in PyGDebias 0.1.1.

Dataset #Nodes #Edges #Features
Facebook 1,045 53,498 573
Pokec_z 67,796 882,765 276
Pokec_n 66,569 729,129 265
NBA 403 16,570 95
German 1,000 24,970 27
Credit 30,000 200,526 13
Recidivism 18,876 403,977 18
Google+ 290,468 3,601 2,532
AMiner-L 129,726 591,039 5,694
AMiner-S 39,424 52,460 5,694
Cora 2,708 4,751 1,433
Citeseer 3,312 4,194 3,703
Pubmed 19,717 88,648 500
Amazon 2,549 (item) 2 (genre) 2,549 N/A
Yelp 2,834 (item) 2 (genre) 2,834 N/A
Ciao 7,375 (user) 106,797 (product) 57,544 N/A
DBLP 22,166 (user) 296,277 (product) 355,813 N/A
Filmtrust 1,508 (user) 2,071 (item) 35,497 N/A
Lastfm 1,892 (customer) 17,632 (producer) 92,800 N/A
ML100k 943 (user) 1,682 (item) 100,000 4
ML1m 6,040 (user) 3,952 (item) 1,000,209 4
ML20m 138,493 (user) 27,278 (item) 20,000,263 N/A
Oklahoma 3,111 73,230 N/A
UNC 4,018 65,287 N/A

Table 2: 13 debiasing methods collected for graph learning
algorithms in PyGDebias 0.1.1.

Methods Debiasing Technique Fairness Notions

FairGNN [5] Adversarial Learning Group Fairness

EDITS [9] Edge Rewiring Group Fairness
FairWalk [22] Rebalancing Group Fairness
CrossWalk [17] Rebalancing Group Fairness
UGE [28] Edge Rewiring Group Fairness

FairVGNN [29]
FairEdit [18]
NIFTY [1]
GEAR [19]
InFoRM [15]
REDRESS [7]
GUIDE [24]
RawlsGCN [16]

Adversarial Learning Group Fairness

Edge Rewiring Group Fairness
Optimization with Regularization Group/Counterfactual Fairness
Edge Rewiring Group/Counterfactual Fairness
Optimization with Regularization Individual Fairness
Optimization with Regularization Individual Fairness
Optimization with Regularization Individual Fairness

Rebalancing Degree-Related Fairness

AMiner-S) for further advances of this field. We provide an in-
troduction of all collected datasets in Table 1. Although various
raw datasets come in diverse formats and data types, PyGDebias
automatically preprocesses all raw datasets to ensure the unifor-
mity, providing a set of datasets in standardized formats and data
types. As such, users can easily access these datasets by simply
instantiating the designated submodules, which also automatically
downloads and stores the raw data from our repository online to
user-specified locations. In addition, various properties of each
datasets (e.g., the adjacency matrix and the total number of nodes)
are easily accessible through unified APIs.
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Module 2: Algorithm Implementation. PyGDebias provides a
comprehensive coverage of graph debiasing algorithms collected
from recent works, including both algorithms based on Graph Neu-
ral Networks (GNNs, e.g. FairGNN [5]) and those non-GNN-based
(e.g. FairWalk [23]) ones. Initializing and executing the algorithms
are straightforward and also highly flexible with unified APIs. We
provide an introduction of all collected algorithms in Table 2. In
addition, PyGDebias enables customization of different algorithms
to meet specific use requirements, which allows for diverse modi-
fications in the structure and hyperparameter configurations. As
an example, FairGNN accepts both model-specific configurations
(such as backbone GNN model specification) and common training
hyperparameters (such as dropout rate and learning rate), which
enables model personalization and optimization configuration.
Module 3: Empirical Evaluation. PyDebias is equipped with
comprehensive evaluation approaches for the collected algorithms
after optimization, and such evaluation can be easily performed
on different datasets. Similar to the access of dataset properties,
we provide evaluation metrics in standardized formats and these
evaluation metrics work by directly taking the output of algorithms
as their input. In general, the collected metrics fall into two cat-
egories. (1) Utility-based metrics, e.g. Accuracy (ACC) and Area
Under the Curve (AUCROC); (2) Fairness-based metrics, e.g. De-
mographic Parity (DP), Equality Opportunity (EO), and Group
Disparity of Individual fairness (GDIF). An illustrative example of
using the model named GUIDE is provided in Demo 1 to show an
end-to-end training procedure based on PyGDebias.

In addition, abundant APIs are incorporated in PyGDebias for
various functionalities. Below we introduce the API design for (1)
dataset properties and (2) algorithm optimization and inference.
APIs for Dataset Properties. We first introduce the API design
in PyGDebias to access the properties of the integrated datasets. In
general, PyGDebias provide a simple and straightforward design
for the ease of use. More specifically, PyGDebias provides eight
main APIs to retrieve the corresponding standard properties for
most of the algorithms. We provide a brief introduction for each
of them below. (1) adj () returns the adjacency matrix of a graph,
which describes the connectivity between nodes in the dataset. (2)
features() returns the input feature matrix of all the data samples,
e.g. the absence/presence of words for the content of papers in the
citation graph dataset. (3) idx_train(), idx_val(), idx_test()
are the APIs that return the node indices for the training/valida-
tion/test sets. (4) labels() returns the ground truth labels for the
nodes involved in the dataset. (7) sens() returns a vector flag-
ging the membership of each node w.r.t. different demographic
subgroups (e.g., male v.s. female), which is a particularly interest in
group fairness research [10]. It is worth noting that PyGDebias uses
a parent class Dataset to standardize the dataset pre-processing
and access. By simply wrapping a new dataset into a class that
inherits from the defined parent class, PyGDebias allows for the
easy inclusion of new datasets to the whole streamline.

APIs for Algorithm Optimization & Inference. We then in-
troduce the APIs PyGDebias provided for algorithm optimization
and inference. All algorithms (see Table 2) integrated in PyGDe-
bias is packed up as an individual class, and the API design for all
algorithms follows a consistent pattern for ease of use. We now
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from pygdebias.debiasing import GUIDE
from pygdebias.datasets import Nba

# Instantiate the dataset.

nba = Nba()

adj, features, idx_train, idx_val, idx_val, idx_test,
labels, sens = nba.adj(), nba.features(),
nba.idx_train(), nba.idx_val(), nba.idx_test(),
nba.labels(), nba.sens()

# Initiate the model (with default parameters).
model = GUIDE()

# Train the model.
model.fit(adj, features, idx_train, idx_val, idx_test,
labels, sens)

# Evaluate the model.

(ACC, AUCROC, F1, ACC_sens@, AUCROC_sens@, F1_senso,
ACC_sens1, AUCROC_sens1, F1_sensl, SP, EO) =
model.predict()

Demo 1: Using GUIDE [24] on NBA dataset.

introduce two main types of functions that are shared by all inte-
grated algorithms. (1) fit() allows users to optimize the model
based on either user-specified or default hyperparameters. Different
datasets can also serve as the input of this function. (2) predict()
allows users to perform inference on the test set, and it returns
an array of metric values for ease of evaluation. For most of the
algorithms, predict() returns standardized metrics for evaluation
of both model utility and fairness performance. Different metric
values under different fairness notions (e.g., group fairness, individ-
ual fairness, counterfactual fairness, and degree-related fairness)
can also be easily obtained through this function.

Dependencies. PyGDebias is built upon Python 3.6+ with com-
mon deep learning packages, including Pandas [20], Numpy [14],
Scipy [26], and PyTorch [21] for data processing and model train-
ing. Additionally, PyGDebias is also developed based on popular
libraries to handle graph-structured data such as NetworkX [13]
and Pytorch Geometrics (PyG) [12] frameworks.

3 ROBUSTNESS AND ACCESSIBILITY

Robustness & Quality Check. To facilitate robust automation
of our project, we have incorporated automatic code testing with
GitHub Actions'. PyGDebias includes a suite of unit tests for dataset
implementations and comprehensive integration tests, which en-
sures that each update upholds the integrity and stability of the
project. Furthermore, PyGDebias has been comprehensively tested
with CUDA on local devices. For security assurance, we use Cod-
eQL? to automate security checks and identify potential vulnerabili-
ties proactively. In adherence to the PEP8 standard [25], our project
maintains a uniform black-formatted coding style given by Pylint3,
enhancing code readability and community collaborations.

Accessibility. PyGDebias provides clear guidance on installation
and dependency requirements in its repository. In addition, a more

LGitHub Actions: https://docs.github.com/en/actions.
2CodeQL: https://codeql.github.com/docs/index.html
3Pylint: https://pylint.pycqa.org/en/latest/index.html
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detailed documentation has been published including illustrations
about how to utilize each API and execute the whole streamline.
The performance benchmark are also provided in the main page of
its repository for better comparison and reproduction of existing
graph fairness methods. To encourage broader community contri-
butions, PyGDebias is mainly hosted on GitHub, together with a
user-friendly guide for contributions and an efficient GitHub-hosted
mechanism for reporting issues.

4 CONCLUSION AND FUTURE PLANS

In this paper, we introduced PyGDebias, the first comprehensive
library to facilitate research in the realm of algorithmic fairness for
graph learning algorithms. PyGDebias supports a variety of fairness
algorithms with hands-on APIs, which have been integrated into a
standardized workflow. In the future, we will endeavor to achieve
several goals: (1) integrate more popular datasets and algorithms;
(2) expand its functionality to cover a wider range of real-world
graph learning applications; (3) incorporate advanced machine
learning techniques such as automatic hyperparameter tuning and
curriculum learning to provide a more intelligent streamline; and
(4) collaborate with industry stakeholders to enhance utility.
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