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ABSTRACT
Autonomous drones (UAVs) have rapidly grown in popularity due
to their form factor, agility, and ability to operate in harsh or hostile
environments. Drone systems come in various form factors and con-
figurations and operate under tight physical parameters. Further, it
has been a significant challenge for architects and researchers to
develop optimal drone designs as open-source simulation frame-
works either lack the necessary capabilities to simulate a full drone
flight stack or they are extremely tedious to setup with little or no
maintenance or support. In this paper, we develop and present Uni-
UAVSim, our fully open-source co-simulation framework capable
of running software-in-the-loop (SITL) and hardware-in-the-loop
(HITL) simulations concurrently. The paper also provides insights
into the abstraction of a drone flight stack and details how these
abstractions aid in creating a simulation framework which can
accurately provide an optimal drone design given physical parame-
ters and constraints. The framework was validated with real-world
hardware and is available to the research community to aid in future
architecture research for autonomous systems.
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1 INTRODUCTION & MOTIVATION
Autonomous drones, also known as Unmanned Aerial Vehicles
UAVs, have become increasingly popular in recent years due to
their ability to perform a wide range of tasks without human in-
tervention. Drone systems come in various form factors to suit
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different missions and environments such as multi-rotor, fixed-
wing, and hybrid VTOL versions which combine the advantages of
both multi-rotor and fixed-wing drones.

UAV architecture is a rapidly evolving domain. Initial designs
focused on high performance purpose-specialized drones with the
lowest latencies for a specific task such as object tracking. These
drones were well suited for their purpose and the technology made
its way to the recreational sector with popular models such as
DJI Mavic [3] and Skydio [19]. Enhanced drone workloads and
missions have led to the proliferation of general-purpose drones in
both the commercial and recreational markets. General-purpose
drones are built on a compute platform which closely relates to the
general-purpose model of computing, hence the use of Raspberry
Pis [7], Intel NUCs [10], and Nvidia Jetson [16] is seen in such
drones. These drones are able to adapt to changing workloads and
environments which has shifted the primary focus of drone design
from fully performant to a combination of performant and resource
efficient.

Efficient development of drones has become increasingly cru-
cial due to the vast choice of components. For example, a com-
mon question facing architects is whether to attach a GPU or an
FPGA to a drone for accelerating computations? The answer lies in
weighing several characteristics until an optimal design is reached.
This is where simulation and modeling play a critical role. While
there has been a lot of research effort in designing intricate mod-
els [1, 9, 11, 12], not all are integrated into a simulation platform.
For those which are integrated into a simulation platform, they ei-
ther perform software-in-the-loop (SITL) or hardware-in-the-loop
(HITL) simulations and to the best of our knowledge, almost no
open-source platform integrates both into one unified framework.
Hence we propose UniUAVSim, our own unified co-simulation
framework which can model and simulate across the full UAV flight
stack.
In summary, this paper makes the following contributions:
• Provides an abstraction of the fundamentals of UAV architec-
ture which can be extended to any UAV design.

• Develops an open-source co-simulation framework that can
simulate the entire UAV flight stack using models for both SITL
and HITL simulations.

• Showcases the usefulness of the developed framework by val-
idating it against real-world UAV hardware.

• Provides researchers a packaged and setup toolchain for mod-
elling and developing UAV systems and algorithms.
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The rest of the paper is organized as follows. Section 2 provides
details on how drone sub-systems and architecture are abstracted
for our simulation framework. Section 3 discusses the simulation
issues which affect current frameworks and discusses how to over-
come them. Section 4 details the development of our framework
along with validation. The related work and conclusions are shown
in Sections 5 and 6 respectively.

2 AUTONOMOUS DRONE ARCHITECTURE
The success rate and performance of autonomous drone missions
is directly linked to the underlying software and hardware flight
stacks. A few studies have thoroughly investigated the inner work-
ings of these flight stacks for specific UAV designs or applica-
tions [9, 11, 12]. However, in the context of unified software and
hardware co-simulations, there is a substantial lack of abstraction
which impedes the development of such a simulation framework.
In this section, we detail the abstraction of a drone system which
allows for the creation of a generic simulation framework which
can be quickly adapted to a specific use case, if required. Figure 1
shows a drone system abstracted as three discreet layers: Compute,
Flight Controller, and Control Surfaces.

Flight Controller
H/W and S/WCompute Control

Surfaces

RGB
Camera

LIDAR

Thermal Radar

BLDC
Motors

Thruster Rudder

Ailerons

MAVLink PWM

PX4

ROS ArduPilot

Figure 1: Abstracted Drone Architecture Overview.

2.1 Compute
The compute sub-system of a drone consists of various input sen-
sors (LIDAR, camera, radar, etc.) interfacing with a compute unit
such as a Raspberry Pi [7] or Nvidia Jetson [16]. These single-
board-computers (SBCs) are a popular choice due to their high
performance-to-weight and performance-per-watt ratios, along
with a high degree of programmability and extensibility for dis-
tributed workloads. They interface with the flight controller via
an open source protocol named MAVLink [21]. However, when a
very high degree of performance or real-time processing is required,
many drone architects opt for an ASIC design as it minimizes data
movement costs while providing higher throughput. However, these
designs are specialized for a single use case and lack the adaptability
several drone workloads require.

A common approach to this tradeoff, is the use of accelerators
such as GPUs and Field Programmable Gate Array (FPGA) devices,
both of which allow for high performance and high programmabil-
ity, albeit at a high power draw. For drone architects to accurately
assess the performance vs. power tradeoff of adding such devices
to their drone model, an accurate simulation framework is needed
which can quantify the compute requirements of various workloads
along with the specific characteristics of the underlying hardware
and software stacks.

2.2 Flight Controller

Figure 2: Navio2
FC [5]

The flight controller (FC) consists of
software and hardware components.
The hardware component is necessary
as regular compute units lack features
such as PID controllers, barometers, re-
dundant IMUs (Inertial Measurement
Units), and GPS/GLONASS receivers.
It serves as the interface between the
higher level compute units and the con-
trol surfaces of the drone by decod-
ing MAVLink data packets and issuing
PWM commands as shown in Figure 1.
An example of such a flight controller
is the Navio2 HAT [5] for Raspberry Pi
pictured in Figure 2. The Navio2 is a popular choice as it is based
on the open-source PX4 [17] platform and comes in a small form
factor.

The role of the flight controller software is to run inner-loop
code [9] consisting of several control sequences such as weight
imbalance correction, motor imperfection adjustments, wind gust
mitigation etc. This inner-loop code is black-boxed away from the
higher level compute algorithm to simplify the task of developing
workloads for drones. In our simulation framework, we allow the
user to choose whether to follow the same black-box methodology
or to expose the control code to the compute algorithm as it will be
useful for simulating heterogeneous compute-control chip designs.

2.3 Control Surfaces
The control surfaces of a drone consist of any device or object on
the drone that helps in maintaining flight. Since our simulation
framework is abstract yet adaptable, the control surfaces could
be motors (for quadcopters) or ailerons, thrusters, and rudder (for
fixed-wing drones). We use the detailed physics models created
by Hadidi et. al [9] in our simulation framework to accommodate
quadcopters, fixed-wing drones, and hybrid versions.

3 SIMULATION CHALLENGES
There are two types of simulations: Hardware-in-the-loop (HITL)
and Software-in-the-loop (SITL). SITL allows for cost efficient soft-
ware testing and reduces barriers between iterations, making it
easier to test edge cases. In the case of UAV systems, SITL simula-
tions generally run on systems that are vastly more powerful than
the hardware systems the software will actually run on. Reduced
cost combined with ease of development make SITL ideal for early
stages of development. HITL, on the other hand enables software
changes based on integrated hardware functionality. With the em-
ulation of electrical inputs to sensors, HITL simulation provides a
more accurate representation of a system’s performance through
the introduction of hardware limitations and characteristics, mak-
ing it useful for testing complex missions.

Though HITL and SITL simulations are popular for drone navi-
gation, researchers often encounter various challenges while set-
ting up these simulations. Simulation software often require many
disparate dependencies for baseline functionality and have min-
imal documentation and community support for outlying bugs.
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In addition, connectivity issues may arise such as the simulation
software failing to detect the drone due to protocol mismatches or
OS specific technicalities. Several simulation software specifically
use Unreal Engine [20], a large game engine code-base, for the
underlying physics and overlaying graphics. These challenges af-
fect simulation efficacy and efficiency and require time consuming
troubleshooting.

However, not all simulation challenges are development based.
Some are fundamental issues which plague the very premise of
first developing a drone in a simulator and then prototyping it,
as summarized by Mairaj et. al [13]. Most simulators are built by
first taking a physics engine used for aircraft simulation and then
adding UAV specific algorithms and control sequences on top of
it [6]. While this approach allows for rapid creation of a simulator,
it starts to fall apart once the autonomous compute component
of a drone is added to the simulation, as the physics engine of an
aircraft simulator is not adapted for a direct link to the compute
unit. However, current state-of-art simulators struggle to simulate
these configurations [13].

By building our framework with the abstraction created in Sec-
tion 2 along with autonomous compute specific models, we over-
come the above-mentioned bottlenecks and challenges.

4 DEVELOPING A UNIFIED FRAMEWORK
In this section, we detail how UniUAVSim was developed along
with validation details and distribution plans.

4.1 Development
The framework is split into two parts: a simulation engine and a
graphics engine. This was done so that simulation is no longer de-
pendent on graphics as it can be performed using just the command
line interface.

Figure 3: Drone simulated with graphics engine.

4.1.1 Graphics Engine. Since the primary focus of our work is
the simulation component of our framework, we decided to use the
current state-of-art graphics engine supplied by AirSim, specifically
the same Unreal Engine environment that is used by PEDRA [1].
The graphics engine provides a visual aid of the current simulation
status to the user as shown in Figure 3. It is important to note that
the graphics engine is optional and the simulation can run without
it as shown in Figure 4. This was done so that our distributed

framework can be used by a wider audience who may not have
access to powerful GPUs to run the graphics engine.

4.1.2 Simulation Engine. The simulation engine incorporates
themost popular of the different physics and computemodels [9, 11–
13] and provides a starting ground to the drone architect to fine
tune each parameter or change the major workings. Each model
also incorporates its own physics model i.e. description of how the
drone’s weight, drag coefficient, thrust-to-weight ratio (TWR), etc.
affect its flight characteristics.

Figure 4: CLI only simulation mode.

These models are selected by the user prior to executing the
simulator but the simulator is also capable of switching models
mid-flight. This may be useful if a user wants to simulate a drone
that was executing an object search workload but after finding the
mobile object, now has to execute the object tracking workload.
This ability to switch models enables our novel framework to be
both generic and specialized.

4.2 Validation

Figure 5: Drone HITL Valida-
tion.

To validate our drone’s
performance, we conducted
both SITL and HITL tests,
using a quadcopter drone
whichwas assembledwith
open-source components
pictured in Figure 5. The
flight controller is a Navio2
board based off the PX4 [17]
framework, running Em-
lid Raspberry Pi OS pre-
installed with the ArduPi-
lot flight controller. We connected this drone to a workstation based
on x86_64 architecture and through tests, we ensured the drone’s
stability, reliability, and suitability for use in HITL or SITL simula-
tion of drone workloads.

4.3 Distribution
UniUAVSim is deployed through Docker [4] so that it is easily
accessible to a wide audience. Docker containers provide a standard
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environment that is easy to setup across contexts. Our goal is to
streamline the setup process and allow for easy local development.

5 RELATEDWORKS
There are several existing frameworks for the simulation of UAVs in-
cluding AirSim, ArduPilot [2], PEDRA, UAV Toolbox [14], QGround-
Control [18], and Gazebo [8]. However, only a few of them support
SITL and HITL simulation modes while none support running
both modes concurrently. Some of them such as UAV Toolbox are
closed-source paid products which are more suited for commercial
development.

AirSim is an open-source framework developed by Microsoft
to support the simulation of drones, cars, and other vehicles. Its
physics is supported by Unreal Engine and it currently supports
SITL simulation for two flight controllers and HITL simulation
for one. However, AirSim is unable to run both SITL and HITL
simulations concurrently. Therefore, a full system simulation and
validation is not feasible. However, our framework allows for uni-
fied co-simulation and enables simulation with validation. Further,
the open-source version of AirSim is no longer being maintained
as of 2022 [15].

ArduPilot is an open-source autonomous vehicle system that
supports various types of UAVs. ArduPilot offers native SITL simu-
lation for Linux and Windows with support for UAVs and specific
documentation for a number of specific flight controllers. ArduPi-
lot is also actively maintained [2]. However, the support for HITL
simulations is lacking.

PEDRA is an open-source engine, built on top of AirSim and
Unreal that allows for ease in developing reinforcement learning
models. PEDRA allows for Python development and supports multi-
drone environments and detailed environments for inference learn-
ing [1]. However, it does not simulate different control sequences
or flight controller models.

6 CONCLUSIONS
Simulating autonomous drones remains a hard problem due to
the tight physical and power constraints that drones operate with.
In this paper, we propose and develop a fully open-source uni-
fied co-simulation framework which can simulate the entire drone
flight stack by using concurrent software-in-the-loop (SITL) and
hardware-in-the-loop (HITL) simulations. The framework can uti-
lize various compute and physics models of different drone designs
and can produce the optimal drone configuration for a given set of
constraints which was validated with real-world hardware. Lastly,
the framework and toolchain is in the process of being made avail-
able to the research community to aid in future drone architecture
research.

7 FUTUREWORK
We plan on further expanding the framework to support simula-
tion of ML drone algorithms. We are also exploring the feasibility
of hosting the framework as a cloud service. This would enable
researchers to use less demanding systems (such as laptops) to run
the simulation framework as the compute heavy tasks would be
running on servers.
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