
Franklin Open 6 (2024) 100080

Available online 1 March 2024
2773-1863/© 2024 The Authors. Published by Elsevier Inc. on behalf of The Franklin Institute. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Franklin Open

journal homepage: www.elsevier.com/locate/fraope

Optimal querying for communication-efficient ADMMusing Gaussian
process regressionI

Aldo Duarte a,<, Truong X. Nghiem b, Shuangqing Wei a
a Division of Electrical and Computer Engineering, School of Electrical Engineering and Commputer Science, Louisiana State University, Baton
Rouge, LA 70803, United States
b School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, United States

A R T I C L E I N F O

Keywords:
Gaussian process
ADMM
Distributed optimization
Proximal operator
Communication reduction

A B S T R A C T

In distributed optimization schemes consisting of a group of agents connected to a central coordinator, the
optimization algorithm often involves the agents solving private local sub-problems and exchanging data
frequently with the coordinator to solve the global distributed problem. In those cases, the query-response
mechanism usually causes excessive communication costs to the system, necessitating communication reduction
in scenarios where communication is costly. Integrating Gaussian processes (GP) as a learning component to
the Alternating Direction Method of Multipliers (ADMM) has proven effective in learning each agent’s local
proximal operator to reduce the required communication exchange. A key element for integrating GP into the
ADMM algorithm is the querying mechanism upon which the coordinator decides when communication with
an agent is required. In this paper, we formulate a general querying decision framework as an optimization
problem that balances reducing the communication cost and decreasing the prediction error. Under this
framework, we propose a joint query strategy that takes into account the joint statistics of the query and
ADMM variables and the total communication cost of all agents in the presence of uncertainty caused by the GP
regression. In addition, we derive three different decision mechanisms that simplify the general framework by
making the communication decision for each agent individually. We integrate multiple measures to quantify the
trade-off between the communication cost reduction and the optimization solution’s accuracy/optimality. The
proposed methods can achieve significant communication reduction and good optimization solution accuracy
for distributed optimization, as demonstrated by extensive simulations of a distributed sharing problem.

1. Introduction

In a distributed optimization scheme that consists of a group of
agents connected to a central coordinator, the optimization algorithm
often involves the agents solving private local sub-problems and ex-
changing data frequently with the coordinator. In many of those
schemes, the underlying local sub-problems in the form of proximal
minimization problems [1] are solved by the agents in response to queries
sent by the coordinator. Proximal minimization is suitable for networks
with privacy constraints because it prevents each agent’s local objec-
tive and constraints from being disclosed to the coordinator or other
agents. Once the coordinator receives the local proximal minimization
solutions from the agents, it uses them to calculate new queries for
the agents that keep on driving the agents’ solutions to the global
solution. Such distributed optimization schemes have been applied to
power management for smart buildings and distribution power systems,
among other applications, as shown in [2].
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The Alternating Direction Method of Multipliers (ADMM) [3] is
an algorithm well suited for distributed optimization settings. It has
found great success in distributed optimization due to its simplicity
of implementation and its suitability for parallelization. As a result,
ADMM has found many applications in machine learning problems [4]
and other distributed optimization problems [5–8].

The query-response mechanism inherent to distributed optimization
algorithms (ADMM included) often requires many iterations before
the algorithm converges to a solution. An extensive amount of com-
munication between the coordinator and the agents could make the
system unviable in cases where communication is expensive, such as
underwater communication for robot formation control [9]. For that
reason, reducing communication expenditure is highly desirable, even
critical, for the viability of these distributed optimization schemes in
real-life applications.

Communication reduction in distributed optimization settings has
previously been studied. The authors of [10] presented a hierarchi-
cal distributed optimization algorithm for the predictive control of a
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smart grid with reduced communication overhead by avoiding com-
munication between agents; however, agents communicate with the
coordinator at each iteration. This is different from our proposed
approach, which not only avoids communications between the agents
but also skips communications between the agents and the coordi-
nator whenever possible. Solutions for large-scale machine learning
applications using distributed optimization schemes that are efficient
in communication were proposed in [11,12]. These approaches are
different from our work in that they do not predict the solution of the
local sub-problems, but rather they turn the complex global problem
into simpler sub-problems to be solved in parallel by the agents, thereby
reducing communication rounds by constraining the required iterations
to reach convergence. In [13], ADMM-based communication-efficient
federated learning algorithms are proposed, which perform aggregation
at a central coordinator of the updates sent by other agents at prede-
fined intervals, instead of assessing the need for communication at each
iteration as in this work. The authors of [14] propose using a com-
munication censoring strategy to develop a communication-efficient
ADMM algorithm to solve a convex consensus optimization problem.
In contrast with our approach, the censoring mechanism reduces the
communication load by recycling an agent’s previous response if there
is not enough variation between the agent’s new response and the
precedent one.

An alternative approach to communication reduction in distributed
optimization via ADMM was proposed in [15] and developed with
further detail in [16]. In this approach, a coordinator uses predictions
from the proximal operators of local agents to skip communication with
an agent whenever its corresponding prediction is deemed accurate
enough. The approach uses the theory of the Moreau envelope function
and its connections to the proximal operator [17, Chapter 1.G]. This
idea was further extended in [18], where the predictions of local prox-
imal operators and their gradients are obtained by Gaussian processes
(GP). The GP models generate estimations of prediction uncertainty,
which the coordinator uses to decide when communication with each
agent is necessary. In our work [19], further communication reduction
was achieved by extending this method to incorporate Lloyd’s and
uniform quantization in communications between the coordinator and
agents to reduce the payload size of the shared information. We further
refined our approach in [20], where a GP-based linear regression
method was developed to properly account for the impact of the
uniform quantization error on learning and prediction with GP.

In the above approaches, the querying mechanism to decide when
a communication round should be skipped greatly affects the desired
communication cost and the performance of the ADMM algorithm;
therefore, developing a systematic approach for this is critical. Our
work in [18] proposed a querying mechanism using a heuristic method,
which decides when to communicate with an agent by comparing
the conditional variance given by its corresponding GP to a threshold
that adapts at each algorithmic iteration depending on the perfor-
mance of the ADMM algorithm. Although this strategy was effective,
it was based on an intuitive idea rather than a well-founded systematic
querying mechanism. It remains unclear whether additional communi-
cation costs can be reduced using a more effective querying approach
while properly solving the underlying optimization problem. This is the
primary question we address in this paper.

Our main contributions in this paper are: (1) We propose a
systematic querying framework to balance two criteria: reducing com-
munication overhead and maintaining a good optimization perfor-
mance. (2) We develop a joint querying method based on the general
framework to make joint communication decisions for all agents. (3)
We develop three simpler approximate querying strategies through
which the controller makes individual decisions about when to query
each agent. (4) We validate our methods through extensive simulations
of a distributed sharing problem with quadratic cost functions. The
simulation results show significant reductions in total communication

expenditure in all test cases compared to the vanilla ADMM. Further-
more, all query methods present an acceptable trade-off between com-
munication expenditure reduction and optimization accuracy. Lastly,
the joint querying method outperforms all the other query methods in
terms of their trade-off performances, as evidenced by the numerical
results.

Paper Organization: We begin with the problem formulation in Sec-
tion 2. The systematic querying framework is presented in Section 3.
We present our proposed joint query mechanism in Section 4, followed
by our proposed individual query strategies in Section 5. A probabilistic
comparison between the proposed methods, which leads to an expected
querying behavior, is presented in Section 6. The simulation results are
presented in Section 7, and the conclusions are made in Section 8.

Notations

Let R denote the set of real numbers and Rp denote the set of
p-dimensional vectors of real numbers. E[.] refers to the expecta-
tion operator, while Cov[.] is the covariance operator. The operator
argmin{f (x)} returns a value of x that minimizes the function f (x).
tr(A) is the trace of the square matrix A, defined as the sum of its
diagonal entries. For a p-dimensional vector x À Rp, ÒxÒ1 and ÒxÒ2
denote the L1 and L2 norms of x, respectively, while min1flfp(xl) and
max1flfp(xl) refer to the minimum element and the maximum element
of x, respectively. We consider a distributed optimization setting for
multiple agents, so the subscript i of a variable refers to the i-th agent
and the superscript k of a variable refers to the algorithmic iteration
count.

2. Problem formulation

This paper considers a sharing problem with n agents and a central
coordinator, similar to that in [4,6]. In this problem, a global cost,
which includes all agents’ convex local cost functions fi: Rp ≠ R on
local decision variables xi À Rp and a convex shared cost function h:
Rp ≠ R, is minimized, as denoted by the expression

minimize
n
…

i=1
fi

�

xi
�

+ h
H n
…

i=1
xi

I

. (1)

The cost function fi is known only to its corresponding agent. Addi-
tionally, the problem (1) is solved with communication allowed only
between the coordinator and agents, but without exchange between
agents.

The sharing problem (1) is solved using ADMM as shown in [4] with
the following updates

xk+1i = argmin
xiÀRp

�

fi(xi) + (⇢_2)Òxi * xki * Ñyk + Ñxk + ukÒ2
�

Ñyk+1 = argmin
ÑyÀRp

�

h(n Ñy) + (n⇢_2)Ò Ñy * Ñxk+1 * ukÒ2
�

uk+1 = uk + Ñxk+1 * Ñyk+1, (2)

where k is the algorithmic iteration count, ⇢ > 0 is a penalty parameter
and Ñxk = (1_n)≥n

i=1 x
k
i . In iteration k, the coordinator sends a query

value zki to the ith agent and receives the following local proximal
operator as a response

prox 1
⇢ fi

(zki ) = argmin
xiÀRp

$

fi(xi) +
⇢
2Òxi * z

k
i Ò

2
%

. (3)

The x-minimization step in (2) consists of the local proximal minimiza-
tion problem, for every agent i,

xk+1i = prox 1
⇢ fi

(xki + Ñyk * Ñxk * uk
≠́≠≠≠≠≠≠≠≠Ø≠≠≠≠≠≠≠≠≠̈

zki

).

2.1. STructural estimation of proximal operator with Gaussian processes
(STEP-GP) overview

For brevity, we will drop the subscript i and the superscript k in the
subsequent equations. The Moreau envelope of f is defined as
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Fig. 1. Flow diagram of the query decision and the query process and response between
the coordinator and 4 agents in the proposed approach.

f
1
⇢ (z) = min

xÀRn

$

f (x) + ⇢
2Òx * zÒ

2
%

. (4)

When f is a convex function, the Moreau envelope f
1
⇢ is convex and dif-

ferentiable with Lipschitz continuous gradient with constant ⇢. Furthermore,
given that the unique solution to the proximal minimization x

1
⇢ (z) =

prox 1
⇢ f

(z) is [21, Proposition 5.1.7]

x
1
⇢ (z) = z * 1

⇢
(f

1
⇢ (z), (5)

the optimal solution of (3) only requires the gradient (f
1
⇢ (z) to be

reconstructed. In [18], we proposed using GP to learn the local prox-
imal operators, based on the training sets from past data to predict
(f

1
⇢ (z), thus improving the STEP method in [16]. This approach is

named STEP-GP.
In particular, in STEP-GP, the coordinator maintains a GP model,

named proxGP, for each agent. Each GP model predicts the gradient

(f
1
⇢
i (zki ) of each agent’s Moreau envelope, which has a multivariate

Gaussian distribution with conditional mean E
L

(f
1
⇢
i (zki )

M

= �ki (z
k
i )

and conditional covariance matrix Cov
L

(f
1
⇢
i (zki )

M

= ⌃GP(zki ). The

coordinator then uses an uncertainty measurement coming from the
conditional covariance matrix to decide whether to query each agent.
More details of the STEP-GP method can be found in [18].

2.2. Query-response dynamics

In Fig. 1, we present one round of the proposed algorithm for a
network of 4 agents. The GP regression block named proxGP refers to

the GP prediction of f
1
⇢
i (zki ) and (f

1
⇢
i (zki ) as presented in [18]. The coor-

dinator has a corresponding proxGP for each agent, which is trained on
its past query data with the agent. The coordinator first calculates the
query variables zki for each agent and uses them as input to the agent’s
proxGP. Using the covariance matrices ⌃GP(zki ) given by the proxGPs,
the coordinator decides which agents are to be queried. In the figure,
agents 1 and 2 are set to be queried, so the coordinator sends zk1 and z

k
2

to the agents, which solve their proximal minimization problems as in
(4), depicted by block prox 1

⇢ fi
. It then receives the Moreau envelopes

f
1
⇢
1 (zk1), f

1
⇢
2 (zk2) and their gradients (f

1
⇢
1 (zk1), (f

1
⇢
2 (zk2) as responses from

agents 1 and 2. Meanwhile, for agents 3 and 4, which are not queried,
the coordinator uses the corresponding predicted values �k3 (z

k
3) and

�k4 (z
k
4) from their proxGPs to perform the ADMM updates.

2.3. ADMM updates with GP

Following the query-response mechanism presented in Fig. 1, the
ADMM expressions in (2) are modified to include the proxGP regres-
sion. First, let us define the communication decision variable for agent
i at iteration k as

�ki =
T

1, if agent i is queried
0, otherwise.

(6)

When �ki = 1, the query zki is sent to agent i to obtain the exact value

of (f
1
⇢
i (zki ). On the contrary, when �

k
i = 0, we use the predicted value

�ki (z
k
i ) given by the GP. We then define the received value �

k
i as

�ki = �ki (f
1
⇢
i (zki ) + (1 * �ki )�

k
i (z

k
i ). (7)

The ADMM expressions in (2) can now be reformulated as:

xk+1i = zki * (1_⇢)�ki
Ñyk+1 = argmin

ÑyÀRp

�

h(n Ñy) + (n⇢_2)Ò Ñy * Ñxk+1 * ukÒ2
�

uk+1 = uk + Ñxk+1 * Ñyk+1. (8)

This paper focuses on how the query decision-making, represented
by the blue diamond block ‘‘Query Needed?’’ in Fig. 1, can be carried
out effectively.

3. General querying decision framework

The main objective of including GP regression in the ADMM algo-
rithm when solving a distributed optimization problem is to reduce
communication overhead. However, we do not want it to significantly
affect the algorithm convergence and accuracy of the optimization
solution. A key component in the ADMM updates when GP is used, as
presented in (8), is the variable �ki . This variable becomes the exact gra-

dient (f
1
⇢
i (zki ) of the Moreau envelope or its predicted value, depending

on �ki . In (8), the set of x
k+1, Ñyk, and uk+1 can be considered as a high

dimensional vector trajectory to the global solution. This trajectory is
affected by �ki , which depends on the communication decision variable
�ki as defined in (6) and (7), which in turn affects the GP regression
accuracy and the optimization performance. Therefore, the mechanism
to decide �ki will ultimately impact the overall communication and
optimization performance. If the coordinator does not have a sound and
systematic mechanism to determine when to send queries to the agents,
the ADMM algorithm could require excessive iterations to converge or
never achieve convergence. Furthermore, it may reach an inaccurate
solution upon reaching convergence. We propose a systematic querying
framework that balances two opposing criteria: communication over-
head reduction and optimization performance. In this framework, the
querying decision solves an optimization of the form

minimize comm(�k),
subject to �ki À {0, 1}, 1 f i f n

uncer(�k) f  k,

(9)

where comm(�k) is a communication cost function, uncer(�k) is an
uncertainty function caused by the GP regression, and  k is a given
threshold that fluctuates at each iteration. The uncertainty is compared
with the threshold because we want to limit the prediction error at
each step so that the reduction in communication does not introduce
an insurmountable amount of error to the ADMM algorithm. Therefore,
the decision outcomes depend on how we measure those criteria.
We can define the communication cost in several ways, such as the
number of agents communicating at each iteration or the number of bits
exchanged at each communication round. The uncertainty is measured
by the prediction uncertainty of the agents’ proxGPs. Thus, we define
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the query strategy in (9) as minimizing the communication cost under
a constraint on the uncertainty introduced by proxGPs.

In general, the optimization problem (9) has to be solved using a
combinatorial approach due to the n binary variables {�ki }i=1,…,n. The
computation cost, therefore, could be prohibitive when the number of
agents is large. For that reason, in this work, we will seek approaches
for solving (9) under certain communication cost and uncertainty func-
tions without resorting to combinatorial techniques.

4. Proposed joint query method

In this section, we propose a joint query strategy within the general
framework, where the uncertainty function in (9) is the trace of the
joint covariance matrix of the ADMM variables affected by the GP
regression. In the following subsection, we justify why this uncertainty
function is a suitable representation of the overall prediction error.

4.1. Justification of adopting trace of the covariance matrix as the uncer-
tainty function

Consider a real Gaussian random vector F Ì N (�,⌃) with mean
vector � and covariance matrix ⌃F , where the lth element of � is �l,
and the lth element of F is Fl, with l À {1,… , p}. Our objective is to
determine a sufficient condition for the L2 norm of the discrepancy
between F and its mean to be small with high probability. This can
be expressed by the confidence sphere:

P
⌅

ÒF * �Ò2 f Ò�Ò2�
⇧ g 1 * ⇠, (10)

where ⇠ and � are two small numbers chosen in advance for quality
control. The values of � and ⇠ must be small because we want the
discrepancy between the actual value and the mean of F to be small
with high probability, so these control variables will determine how
tight we allow the discrepancy to be and with how much probability.

The following proposition presents a sufficient condition for (10).

Proposition 1. A sufficient condition for (10) is given by

tr(⌃F ) f Ò�Ò22�
2 * 2

`

r

r

p

�1 ln(1_⇠) +
˘

ln(1_⇠)

y

x

x

w

p
…

l=1
�2l
a

s

s

q

. (11)

Proof. The proof is presented in Appendix B.

Proposition 1 suggests that the trace of the joint covariance matrix
of the ADMM variables affected by GP regression, as the random
vector F , can be constrained to control the desired prediction errors,
which affect the convergence of the algorithm and the accuracy of the
solution. Therefore, it justifies the use of this trace as the uncertainty
function uncer(�k) in (9).

4.2. Proposed joint query method

Following the general querying decision framework presented in
Section 3, we propose using the L1 norm of �k as the communication
cost function, which indicates how many agents are queried in the
current iteration.

The uncertainty function uncer(�) is selected based on the analysis in
the previous subsection and the work [22]. The authors of [22] present
a stochastic approach to inexact ADMM in which the expectation of the
mean square error of the inexact ADMM variables with respect to their
exact counterparts is bounded. It can be shown that the bounded ex-
pectation is equal to the trace of the error covariance matrix. Extending
both analyses to our problem, we propose to use the trace of the joint
covariance matrix of the iterative variables of the ADMM algorithm,
given by tr(Cov[xk+1; Ñyk+1; uk+1�k]), to derive the uncertainty function.
Here, tr(�) is the trace operator.

We thus have the following realization of the general optimization
problem (9):

minimize Ò�kÒ1
subject to �ki À {0, 1}, 1 f i f n,

tr(Cov[xk+1; Ñyk+1; uk+1]�k) f  k,

(12)

where the threshold  k varies at each iteration. The rationale for (12)
is to choose the smallest set of agents to query while ensuring that the
trace of the joint uncertainty caused by not querying the other agents
does not exceed the threshold  k, thus ensuring that there is a high
probability that the uncertainty is within a desired sphere. Following
the convergence analysis for the stochastic inexact ADMM in [22], we
choose the sequence of thresholds  k such that

≥ÿ
k=1  

k < ÿ. More
details on  k are presented in Section 4.4.

Next, we present an efficient solution to the problem in (12) without
resorting to a combinatorial approach by exploiting the convexity and
linearity of the cost functions and constraints considered. The idea is
that the search for a set of agents to query starts with the scenario
where the communication cost is maximum and the uncertainty is
minimum. Then, we calculate the contribution to the joint trace of
each agent where the ones that contribute the least to the joint un-
certainty will be the first candidates not to be queried in the current
round. Instead of considering each possible combination, we analyze
the constraint on the joint uncertainty each time the next candidate
is set to skip communication until the constraint is met. The proposed
joint query method named L1Norm-Trace follows the steps listed below
at iteration k:

1. For each agent, calculate its uncertainty contribution uni =
tr(Cov[xk+1; Ñyk+1; uk+1�ki = 0, �kjëi = 1]).

2. In the order from the smallest to the largest uni, pick all the
agents whose sum of uni does not exceed the threshold  k and
set their �ki to 0, i.e., they are not queried. The remaining agents
are to be queried, i.e., their �ki are set to 1.

The proposed strategy does not consider all possible combinations
of communicating agents, as it would be necessary to combinatorically
solve the problem posed in (12). However, our strategy solves this
optimization problem optimally.

Lemma 1. The L1Norm-Trace method solves the optimization problem in
(12) optimally.

Proof. If our method is not optimal, then our selection of agents to
be queried does not minimize the communication cost while ensuring
that the uncertainty constraint is met. Because we select agents from
the smallest to the largest uni, we select the largest number of agents
to not be queried such that the uncertainty constraint is met. There
is no other selection of agents that can further reduce Ò�kÒ1 without
violating

≥n
i=1 tr(Cov[x

k+1
i ; Ñyk+1i ; uk+1i ]�ki ) f  k.

The next subsections derive the calculation of the joint trace
tr(Cov[xk+1; Ñyk+1; uk+1]�k) and present the mechanism to vary the
threshold  k.

4.3. Derivation of the trace of the ADMM joint covariance matrix

In this subsection, we first present an equivalent expression to the
ADMM updates presented in (8) that allows us to see the inherent cou-
pling of the agents. This expression is then used to find the specifics of
the proposed uncertainty cost tr(Cov[xk+1; Ñyk+1; uk+1]�k). The following
proposition uses the notation presented in the problem definition in
Section 2.
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Proposition 2. The specific form of the ADMM algorithm presented in
(8) has an equivalent expression given by

xk+1i = zki * (1_⇢)�ki
uk+1 = (1_⇢)(hn_⇢

�

vk
�

Ñyk+1 = Ñyk * 1_(⇢n)
n
…

i=1
�ki * uk+1, (13)

where vk = n Ñyk * (1_⇢)≥n
i=1 �

k
i and (hn_⇢() is the gradient of the Moreau

Envelope of the function h.

Proof. The proof is presented in Appendix A.

The expression in (13) presents the ADMM updates in terms of the
gradient of the Moreau Envelope of functions {fi} and h, and follows
the calculations for the ADMM algorithm executed on the coordinator
side. More importantly, such an expression also shows that each agent’s
�ki is present in each of the ADMM updates, especially in the Ñyk+1 and
uk+1 updates where we have the sum of those variables. The variable
�ki (depending on �

k
i as defined in (7)) comes from the exact value or

the predicted value of (f
1
⇢
i (zki ), so the ADMM updates in (13) can be

used to quantify the joint uncertainty of the ADMM variables.
Due to the linearity of the trace, the proposed uncertainty cost is

simplified to tr(Cov[xk+1; Ñyk+1; uk+1�k]) = tr(Cov[xk+1�k])+tr(Cov[ Ñyk+1
�k]) + tr(Cov[uk+1�k]). Following the expression in (13), the definition
of �ki in (7), and that only the terms including �ki contribute to the
uncertainty, the overall trace function becomes

tr(Cov[xk+1; Ñyk+1; uk+1�k]) =

(1 + 1_n2)(1_⇢)2
n
…

i=1
(1 * �ki )tr

�

⌃GP(zki )
�

+

2(1_⇢)2tr
�

Cov[(hn_⇢(vk)]
�

, (14)

which is subject to the function h. Calculating the covariance matrix of
(hn_⇢(vk) given the probability distribution of vk is generally difficult
and may not have a closed-form equation, because (hn_⇢(�) is generally
a nonlinear function. In this case, we must approximate this covariance
matrix [23]. However, this approximation will introduce uncertainty,
which will propagate into the algorithmic iterations, affecting the
communication decision methods and having an impact on the ADMM
algorithm.

4.4. Threshold  k mechanism

During the execution of the ADMM algorithm, the uncertainty of the
GP regression tends to reduce when the ADMM algorithm gets closer
to convergence. This is because more training data from responses to
queries is available, which allows the prediction to be more accurate.
For that reason, the threshold to be considered should decrease over
the ADMM iterations. We propose a decreasing threshold mechanism
that relies on the iteration count and k0, which is the iteration where
the GP regression is used for the first time.

 k0 = ◆V k0 , (15)

where V k0 is the uncertainty variable used by the query method (in this
case tr(Cov[xk+1; Ñyk+1; uk+1]�k)), and ◆, chosen in advance, is a number
between 0 and 1. Given a preselected decay rate ↵ À (0, 1), at a later
iteration k > k0, the threshold is updated as:

 k =  k0↵k*k0 . (16)

5. Proposed individual query methods

In this section, we simplify the query framework presented in
Section 3 by proposing three individual query methods to determine
when a communication round between the coordinator and the agents

is necessary. The notation individual query method is used to describe
that the coordinator determines if communication with a specific agent
is required by analyzing its uncertainty individually without consider-
ing the uncertainty measures of the other agents. This strategy reduces
considerably the computational complexity of the general method pre-
sented in Section 3, but ignores the impact of an agent’s decision on the
overall prediction error introduced to the system. However, by limiting
the uncertainty of each agent per iteration, we ensure that the predic-
tion error does not affect the ADMM’s algorithm performance greatly.
Although this approach is not as rigorous as the joint method, its
simplicity makes it suitable for applications where the computational
cost must be as low as possible.

In an individual query method, the decision is made per agent
where this decision is reflected in the agent’s corresponding binary
decision variable �ki . The general principle of such methods is that
for agent i, the coordinator shall decide in favor of not sending a
query to this agent if the probability of an estimation error of both
the Moreau Envelope and its gradients is within an acceptable bound.
This estimation error is quantified in different ways. By doing this, we
drop the minimization problem presented in (9) and set each �ki by
comparing the estimated error of each agent to a threshold individually.
The individual query strategies proposed were not arbitrarily derived,
but followed the mathematical intuition given by a confidence interval
analysis to be performed per agent. The specifics of the proposed
individual query strategies are presented in the following subsections.

5.1. Maximum variance query method

Similarly to the derivation presented in Section 4.1, our goal is to
generate a decision rule in which the prediction error is small with
a high probability. For that reason, using the concept of confidence
interval, a threshold setting can be derived. When the prediction error
is below a chosen threshold, no query will be sent to an agent. As
a consequence, we want the probability that the estimation error is
bounded by a small upper bound to be as large as possible.

For the following derivations, we employ the general notation used
in Section 4.1, where the variables F , Fl, �, �l, �, and ⇠ were defined,
and we add the definition of the vector of variances of F as s2 =
diag(⌃F ), where the lth element of s2 is s2l . The desired confidence
interval is given by

P
L

*�Ò�Ò1 f ÒF * �Ò1 =
p
…

l=1
Fl * �l f �Ò�Ò1

M

g 1 * ⇠, (17)

A sufficient condition of (17) is given below in terms of the requirement
imposed on each dimension Fl of F .

P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f ��l
sl

, 1 f l f p
5

g 1 * ⇠. (18)

Following the region probability defined in [24], we get an immediate
bound of (18):

P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f ��l
sl

, 1 f l f p
5

g p
«

l=1
P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f ��l
sl

5

. (19)

and it implies that if the following condition holds true,

P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f ��l
sl

5

g 1 * ⇠®,≈1 f l f p, (20)

where 1*⇠® = (1*⇠)1_p, the requirement in (17) is immediately satisfied.
However, instead of analyzing this condition for each of the dimen-

sions of F , we can simplify the analysis by further requiring that the
maximum standard deviation (the maximum element of the vector s)
satisfy the condition inside the probability in (18) when the bound is
minimum. This is achieved when

P
4

Û

Û

Fl * �lÛ
Û

sl
f �min1flfp �l

max1flfp(sl)
5

g 1 * ⇠®, ≈1 f l f p, (21)
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The condition in (20) is met when requiring

max
1flfp(sl) f

min1flfp �l�
Q*1(⇠®_2)

=  (1), (22)

where Q*1() is the inverse of the Q-function Q(x) = î ÿ
x

1̆
2⇡
e*v2_2dv.

The right-hand side of the inequality in (22) can be used as the thresh-
old  (1) to compare the maximum element of the vector of variances s
(sl). In case max1flfp(sl) f  (1), then automatically all the elements of
s satisfy the condition.

In the context of the problem defined in Section 2, at each iteration,
the GP regression gives us for agent i the predicted mean �ki (z

k
i ) and the

conditional covariance matrix ⌃GP(zki ). In this scenario, the vector of
variances will be defined as (ski )

2 = diag(⌃GP(zki )). Furthermore, as men-
tioned in the previous section, each agent’s GP prediction uncertainty
is reduced over the algorithmic rounds. For that reason, the threshold
 (1) should not be static as also implied in (22) but should decrease over
the ADMM iterations. This requires the control variables ⇠ and � to be
adjusted at each iteration, which can be problematic considering that
the two variables need to be adjusted at each round. Therefore, we do
not use the specific threshold  (1) defined in (22), but instead employ
a general threshold  ki per agent that follows the threshold mechanism
described in Section 4.4. Finally, under this querying mechanism, the
variable �ki is defined as

�ki =
T

0, if max1flfp(ski[l]) f  ki
1, otherwise.

(23)

5.2. Maximum variance and mean ratio query method

The subsequent proposed strategy expands from the confidence
interval analysis presented in Section 5.1 to build its mathematical
intuition. Following the confidence interval defined in (18), to require
that each dimension of an agent has a small relative estimation error,
we are interested in evaluating the bound in (19). Defining a< =
max1flfp sl

�l 
, it is then straightforward to show that if

p
«

l=1
P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f ��l
sl

5

g
0

P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f �
a<

51p g 1 * ⇠, (24)

we always satisfy

P
4

Û

Û

Û

Û

Fl * �l
sl

Û

Û

Û

Û

f ��l
sl

, 1 f l f p
5

g 1 * ⇠. (25)

Note that under the GP model, each Fl is Gaussian following N (�l , s2l ),
suggesting Fl*�l

sl
following N (0, 1). We then obtain a sufficient condi-

tion to meet the confidence region requirement stated in (25), namely,

max
1flfp

s[l]
�[l]

f �
Q*1(1_2 * 1_2 < (1 * ⇠)1_p)

=  (2). (26)

The upper-bound expressed in (26) is not imposed on the maximum
element of s but on the maximum ratio of sl

�l 
.

In the context of our problem defined in Section 2, the threshold
 (2) should decrease over the ADMM algorithmic rounds to keep up
with the reduction of the uncertainty of the GP prediction. Similarly to
the query method presented in Section 5.1, we do not use the specific
threshold  (2) defined in (26), but instead employ a general threshold
 ki per agent following the mechanism described in Section 4.4. Using
the notation of our problem, the variable �ki under this query strategy
is defined as

�ki =
h

n

l

n

j

0, if max
1flfp

ski[l]
�ki[l](z

k
i )

f  ki

1, otherwise.
(27)

5.3. Ratio of maximum eigenvalue and the norm of the mean query method

In this subsection, we derive a norm-based decision strategy about
when a query shall be sent to an agent by the coordinator similar to
the one derived in Section 4.4. Our objective is to fulfill the decision
criterion presented in (10) given by:

P
⌅

ÒF * �Ò2 f Ò�Ò2�
⇧ g 1 * ⇠.

Following the same transformation presented in Appendix B ex-
pressed in (B.1), we seek an alternative sufficient condition to satisfy
the confidence sphere condition in (B.1). We find an alternative lower
bound on this probability by defining �1 = max1flfp �l (the maximum
eigenvalue of the matrix ⌃F ) and resorting to the following inequality
p
…

l=1

G2
l
�l

g 1
�1

p
…

i=1
Gl2 =

1
�1

ÒGÒ2, (28)

where Gl_
˘

�l are independent and identical distributed (i.i.d standard

Gaussian following N (0, 1), which suggests that ≥p
l=1

G2
l
�l
follows a chi-

square distribution with degree of p, i.e.
≥p
l=1

G2
l
�l

Ì �2
p . Based on the

desired bound in (10) and the inequality in (B.1), we have a sufficient
condition to satisfy (10) given by:

P
⌅

ÒGÒ2 f Ò�Ò2�
⇧ g P

L p
…

l=1

G2
l
�l

f 1
�1

Ò�Ò22�
2
M

g 1 * ⇠. (29)

This expression can be satisfied if �1 satisfies the following condition:

�1
Ò�Ò22

f �2

F*1
�2

(1 * ⇠)
=  (3), (30)

where F*1
�2

(.) is the inverse function of the Cumulative Distribution

Function (CDF) of the chi-square random variable. Thus, if �1
Ò�Ò22

f  (3),
we ensure that the confidence sphere criterion in (B.1) is met; therefore,
there is no need to send a query. It should be noted that, different
from the approach following a high-dimensional confidence region
whose sufficient condition is based on the maximum ratio between
the standard deviation and its associated absolute mean, as stated
in (26), we need to compare the relationship between the maximum
eigenvalue and the square of the L2 norm of the conditional mean to
a threshold subject to the chi-square distribution, under the confidence
sphere setting. Once again, the specific threshold presented in this
subsection is replaced by a general threshold  ki per agent following the
mechanism described in Section 4.4. Finally, we define a query strategy
in which the variable �ki is defined as

�ki =
h

n

l

n

j

0, if
�k1

Ò�ki (z
k
i )Ò

2
2
f  ki

1, otherwise.
(31)

The query strategies presented in this section are simple strategies
with low impact on the overall computational cost, but they ignore
the inherent uncertainty dependencies between the agents which will
negatively affect the performance of the ADMM algorithm. The fol-
lowing section presents a comparative analysis of the mathematical
foundation of each of the proposed methods to have an intuition about
what querying behavior to expect for each method.

6. Probability comparison between querying strategies

In this section, we present a comparative analysis of the probabili-
ties used as a basis for the various querying strategies proposed. This
analysis allows us to have an idea of the expected querying behavior
for each of the methods. For the following derivations, we use the same
notation used to derive each of the methods’ probabilities first defined
in Section 4.1.
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6.1. Relationship between maximum variance and maximum ratio methods

Comparing the conditions presented in (20) and (24), while ac-
knowledging the bound presented in (19), we can observe that the
condition in (20) is more likely to occur. Thus, we find that the rela-
tionship between the Maximum Variance and Maximum Ratio between
variance and mean methods is given by
0

P
4

Û

Û

Fl * �lÛ
Û

sl
f �

a<

51p f
P
4

Û

Û

Fl * �lÛ
Û

sl
f �min1flfp �l

max1flfp(sl) , 1 f l f p
5

. (32)

This relationship shows that the condition given by the maximum ratio
method is more stringent than the one for the maximum variance. For
that reason, we anticipate the former to behave more aggressively in
terms of the frequency of queries.

6.2. Relationship between L2 norm-based methods and a L1 norm condi-
tion

The querying strategies involving the maximum eigenvalue and the
trace, presented in Sections 5.3 and 4.1, respectively, are derived from
the same confidence sphere involving the L2 norm of F * �. This
confidence region is defined in Eq. (10). We want to find a relationship
between this confidence sphere and a condition involving the L1 norm
of F * � given by

P
⌅

ÒF * �Ò1 f �Ò�Ò2
⇧ g 1 * ⇠. (33)

We know that for any real vector x, the relationship between L1 and
L2 norms is given by ÒxÒ1 g ÒxÒ2. This implies

P
⌅

ÒF * �Ò1 f �Ò�Ò2
⇧

< P
⌅

ÒF * �Ò2 f �Ò�Ò2
⇧

, (34)

which suggests that if the condition in (33) holds true then automati-
cally the condition in (10) is also true, thereby the querying condition
based on L1 norm is more demanding than that under the L2 norm,
thereby resulting more frequent queries accordingly.

6.3. Relationship between maximum variance method and an L1 norm
condition

The probability in the condition given in (33) can be expressed as

P
L p
…

l=1
Fl * �l f �Ò�Ò2

M

g 1 * ⇠. (35)

Since a sufficient condition of
≥p
l=1 Fl * �l f � is Fl * �l f 1

p �Ò�Ò2,
for 1 f l f p, we have

P
⌅

Fl * �l f 1
p
�Ò�Ò2, 1 f l f p

5

f P
⌅

ÒF * �Ò1 f �Ò�Ò2
⇧

. (36)

Now, we want to compare the left-hand side of (36) with the probability
expression for the Maximum Variance method in (18). Since the vari-
able �, used throughout all derived probabilities, is a variable that can
be tuned, we can define a variable Ç� such that 1

p
Ç�Ò�Ò2 = �min1flfp �l.

Dividing by sl into both sides of the arguments in the probability of
the left side of (36), it is straightforward to see that the following
inequalities hold.

P
b

f

f

d

Û

Û

Û

F[l] * �[l]
Û

Û

Û

sl
f �min1flfp �l

max1flfp(sl) , 1 f l f p
5

f

P
4

Fl * �l
sl

f 1
p
Ç�Ò�Ò2
sl

, 1 f l f p

M

f
P
⌅

ÒF * �Ò1 f Ç�Ò�Ò2
⇧

. (37)

This results in the condition based on the L1 norm of F *� being more
likely to occur than the condition used in the query method based on
the maximum variance.

6.4. Complete relationship between all methods

Combining the inequalities obtained in (32), (34), and (37) with the
definition of Ç�, we get the following inequalities
0

P
4

Û

Û

Fl * �lÛ
Û

sl
f �
a<

51p

f P
4

Û

Û

Fl * �lÛ
Û

sl
f �min1flfp �l

max1flfp(sl) , 1 f l f p
5

f P
⌅

ÒF * �Ò1 f Ç�Ò�Ò2
⇧

f P
⌅

ÒF * �Ò2 f Ç�Ò�Ò2
⇧

.

(38)

The relationships in (38) demonstrate how the probabilities used in our
proposed decision strategies are related to each other. They reveal that
the query dynamics will be more aggressive when using the method
based on the maximum ratio of mean and variance, followed by the
method based on the maximum variance, and finally, the two methods
directly based on the L1 and L2 norm-based confidence spheres will
end up with a more relaxed querying dynamics.

The following section presents numerical results to validate and
compare all the proposed query methods. We will present comparisons
made in terms of querying dynamics, which will be shown consistent
with the analysis presented in this section and their resulting conver-
gence speed and qualities in solving a distributed ADMM optimization
problem.

7. Numerical simulations

In this section, we evaluate the proposed query methods through a
numerical study of solving a sharing problem where each agent’s local
function is quadratic.

The details of our problem setting are presented next.

7.1. Quadratic sharing problem

7.1.1. Problem definition
We evaluate our methods using a sharing problem motivated by the

application in [6]. However, we do not consider the dynamic behavior
of the variables as in [6] but assume that they are stationary. The
sharing problem is formulated as

minimize
n
…

i=1
[(1_2)xTi Mixi +wTi xi + ci]

+ (1_2)
n
…

i=1
yTi Mh

n
…

j=1
yj +wTh

n
…

i=1
yi + ch

subject to xi * yi = 0,

(39)

where for i = 1,… , n, variables xi, yi À Rp, with wi,wh À Rp, Mi,Mh À
Rpùp positive definite, and ci, ch À R being given problem parameters.

7.1.2. Problem parameters generation
The problem’s parameters presented (39) are generated following

the example given in [6]. First, the parameters ci and ch will be two
randomly generated numbers that are uniformly distributed on [*1,1].
For the case of wi, we generate for each agent a parameter w

[0]
i which is

a p-dimensional vector with entries randomly generated and uniformly
distributed on [*1,1]. Then, the value of wi is generated for each agent
following wi = w[0]

i + ⌘si, where ⌘ is some small positive number and
si is a p-dimensional vector for agent i whose entries are randomly
generated and uniformly distributed on [*1,1]. The parameter wh is
generated following the same procedure as wi, but is calculated only
once and not for each agent.
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On the other hand, to generateMi for each agent, we first generate a
symmetric pùp matrixM [0]

i = AA®, where the entries of A are randomly
generated and uniformly distributed on [*1, 1]. Then we generate ÉMi =
M [0]

i + ⌘Si, where Si = BB® is a symmetric p ù p matrix with the
entries of B randomly generated and uniformly distributed on [*1,1].
Subsequently, Mi is constructed as

Mi =
T

ÉMi, if �min( ÉMi) > ✏d
ÉMi +

�

✏d * �min( ÉMi)
�

Ip, otherwise,
(40)

where �min( ÉMi) denotes the smallest eigenvalue of ÉMi and ✏d > 0 is a
positive constant. The parameter Mh is generated following the same
procedure as Mi, but it is calculated only once and not for each agent.

7.1.3. Solution using ADMM
Following the specifics of the problem in (39) and the expression

of ADMM in (2), we can derive a closed-form solution for updating the
ADMM variable xk+1i . Because the function fi is convex, the optimal
solution of xk+1i is attained when the gradient of the objective function
vanishes. By taking the gradient of the xk+1i -update and equating it to
zero, we obtain

xk+1i = (Mi + ⇢Ip)*1(⇢zki *wi), (41)

where Ip is the pùp identity matrix. The expression in (41) is the closed-
form solution of the optimization for the xi update to be computed on
the agent side.

Similarly, we can derive a closed-form solution for the Ñyk+1 update.
Because the function h is also convex quadratic then once again the
optimal solution of Ñyk+1 is attained when the gradient of the objective
function vanishes, leading to the expression

Ñyk+1 = (nMh + ⇢Ip)*1(⇢(uk + Ñxk+1) *wh). (42)

Finally, combining the ADMM expression in (2) with the expressions
in (41) and (42), the ADMM updates are expressed as

xk+1i = (Mi + ⇢Ip)*1(⇢zki *wi)
Ñyk+1 = (nMh + ⇢Ip)*1((⇢_n)vk *wh)

uk+1 = (1_n)(vk * n Ñyk+1), (43)

where vk = n Ñyk * (1_⇢)≥n
i=1 �

k
i .

7.2. Equation of the trace of the joint covariance matrix

As presented in Section 4.2, our proposed joint query strategy
depends on an uncertainty measurement given by the trace of the
joint uncertainty of the ADMM updates. The specific expression of
tr(Cov[xk+1; Ñyk+1; uk+1]�k), following the specific ADMM updates pre-
sented in (43), is given by

tr(Cov[xk+1; Ñyk+1; uk+1�k]) =

(1 + 1_n2)(1_⇢)2
n
…

i=1
(1 * �ki )tr

�

⌃GP(zki )
�

+

(2_n2)
n
…

i=1
(1 * �ki )tr

�

CT C⌃GP(zki )
�

*

2(1_n2⇢)
n
…

i=1
(1 * �ki )tr

�

C⌃GP(zki )
�

, (44)

where C = (nMh + ⇢Ip)*1.

7.3. Simulation implementation

The problem in (39) is solved with two different algorithms:

1. Sync: this algorithm uses ADMM with proximal operator as
in (2), which simplifies to (43) with ⇢ = 10.

2. STEP-GP: the algorithm proposed in [18].

For the STEP-GP algorithm, different query methods are considered as
follows:

• MaxVar : The query strategy presented in Section 5.1.
• MaxRat : The query strategy presented in Section 5.2.
• MaxEig : The query strategy presented in Section 5.3.
• L1Norm-Trace: The query strategy presented in Section 4.2.

In our simulations, we consider the following combinations: Sync, STEP-
GP:MaxVar, STEP-GP:MaxRat, STEP-GP:MaxEig, and STEP-GP:L1Norm-
Trace. Also, we consider two cases where the number of agents is taken
from n À {10, 30}.

Our results were generated using MATLAB. For comparison pur-
poses, ground truth solutions to minimization problems (39) were
obtained using the YALMIP toolbox [25]. For the construction of the
GP models, we used the GPstuff toolbox [26]. All calculations were per-
formed on high-performance computers at Louisiana State University
(http://www.hpc.lsu.edu).

7.4. Metrics and considerations

7.4.1. Media access control (MAC) metric
We include a simulation component to reflect the channel con-

tention assuming that the coordinator communicates with the agents
wirelessly following the IEEE 802.11 specification. We employed the
802.11 CSMA/CA simulator presented in [27], which was implemented
in MATLAB. The simulator returns the number of total transmissions,
successful transmissions, and an efficiency value defined by ⇣ = st_tt,
where st is the successful transmissions observed and tt is the total
number of transmissions performed. After running the simulation off-
line 100 times, an average efficiency ⇣ is obtained. At iteration k,
the coordinator receives a certain number of simultaneous responses
that are expressed in the variable T ksimul. The expected transmission
time in one iteration round will be T kround = T ksimul_⇣

<, where ⇣< is the
average efficiency in the MAC simulation for the given scenario. The
total transmission time is Txt =

≥N
k=1 T

k
round, where N is the iteration

number where convergence was reached.

7.4.2. ADMM termination criterion
For our simulations, we use the ADMM termination criterion pre-

sented in Section 3.3.1 in [4]. Such criterion presents two conditions
that compare the primal and dual of ADMM against two different
tolerances. Expressing the primal and dual in terms of the specifics of
our problem results in a termination criterion of the form:

Ò Ñxk+1 * Ñyk+1Ò2 f ✏pri and Ò⇢( Ñyk+1 * Ñyk)Ò2 f ✏dual, (45)

where ✏pri > 0 and ✏dual > 0 are feasibility tolerances for the primal
and dual feasibility conditions. These tolerances can be chosen using
an absolute and relative criteria, such as

✏pri =
˘

p✏abs + ✏relmax(Ò Ñxk+1Ò2, Ò Ñyk+1Ò2),
✏dual =

˘

p✏abs + ✏relÒ Ñyk+1Ò2,

where ✏abs > 0 is an absolute tolerance, ✏rel > 0 is a relative tolerance,
and the factor

˘

p account for the fact that the L2 norms are in Rp.
Both ✏abs and ✏rel are set manually at the beginning of the algorithm.
The choice of ✏abs depends on the scale of the typical variable values of
the application, while reasonable values for ✏rel might be 10*3 or 10*4,
depending on the application.

7.4.3. Performance trade-off
We propose to present the results showing directly the trade-off

between the transmission time reduction and the accuracy of the al-
gorithm. Define the negative logarithm of the relative error (NLRE)
expression as

NLRE = * log(Jgt * J<_Jgt), (46)

http://www.hpc.lsu.edu


Franklin Open 6 (2024) 100080

9

A. Duarte et al.

Fig. 2. Performance trade-off between the Relative Transmission Time Reduction and the Negative Logarithm of the Relative Error for 10 Agents with variable’s dimension p = 5
(left) and p = 10 (right). The plots show the 12 best-ranked tuple medians of the 100 simulations for different sets of parameters Mi, Mh, wi, wh, ci and ch, and for different
values of ↵.

where Jgt is the true optimal value calculated directly with a convex
solver, and J< is the objective value obtained by a particular approach.
Also, let us define the relative transmission time reduction (RTx) as

RTx = (TxADMM * TxGP )_TxADMM , (47)

where TxADMM is the transmission time obtained when running the
Sync:Exact algorithm, and TxGP is the transmission time obtained by
any of the methods using the STEP-GP algorithm. The metric RTx
assumes that the Sync:Exact and STEP-GP methods use the same set
of problem parameters.

We present our results in a graph where the vertical axis shows
the values of RTx and the horizontal axis shows the values of NLRE.
Each point in the graph is a tuple of transmission time reduction and
accuracy, and its location shows how well it performs in terms of the
trade-off between these two relative metrics. In particular, the ideal
scenario is when NLRE and RTx are as large as possible. Hence, we
want the points to be as close to the right upper corner of the graph as
possible.

7.5. Initial threshold tuning

Since the variation of the initial threshold affects the overall per-
formance of the tested algorithms, we propose fine-tuning the initial
threshold for the multiple methods proposed in this work. We consider
testing 11 different initial thresholds per case, so we can capture
the impact of such variation in the proposed methods. The threshold
presented in Section 4.4 initializes its initial threshold  k0 following
the expression in (15). Such an initialization requires manually setting
the variable ◆, which indicates how proportional regarding V k0 we want
 k0 to be. For all the different methods tested in this chapter, we tune
 k0 considering ◆ = [0.5, 0.6… , 1.4, 1.5].

7.6. Simulation results setting

In this subsection, we present the results for 10 and 30 agents when
using the different query strategies proposed in this work with the
threshold mechanism described in Section 4.4. We consider different
initial threshold values following the description in Section 7.5. Each
algorithm for the different methods was run 100 times with different
sets of Mi, Mh, wi, wh, ci and ch, generated as in Section 7.1.2. In the
generated graphs, each point among the same colored cluster represents
a tuple of the median values among the 100 simulations of the same
method for the NLRE and RTx metrics, as presented in Section 7.4.3.

The decaying threshold described in Section 4.4 is greatly affected
by the selection of the decay rate ↵. For that reason, we also considered
running simulations for different values of ↵ on top of tuning the initial
threshold. Since we consider a set of 11 initial thresholds per method,
each scenario tested has 11 points per method and per value of ↵. The
best performance of a given method might occur for a value of ↵ that
is not necessarily the same as the rest of the methods. Consequently,
we present the results in Figs. 2–3 as a ranking of all the median points
across all different values of ↵ tested. The ranking is done by setting a
tuple as an upper bound with a value of NLRE and RTx that is higher
than any of the values obtained in our results. Then we will calculate
the Euclidean distance of all the median points obtained across the
different values of ↵ to the upper bound tuple. The 12 median points
that attain the lowest distance are included in the graph.

This set of results considered values of ⌘ = 0.2, ✏d = 1, ⇢ = 10, p = 5,
an absolute tolerance value of ✏abs = 10*6, a relative tolerance value of
✏rel = 10*5, values of ↵ = [0.95, 0.96,… , 0.99], and x0i = Ñy0 = u0 = 0.

7.7. Simulation results for 10 and 30 agents

Figs. 2–3 (left) present the graph NLRE vs. RTx for 10 and 30
agents of the median of 100 simulations for the Sync:Exact and the
STEP-GP based algorithms for the different initial thresholds consid-
ered, per each of the values considered of ↵ when the dimension of the
variables is p = 5, while Figs. 2–3 (right) show the same information but
when the dimension of variables is p = 10. The presented results were
selected as a consequence of a ranking of the best points in terms of the
trade-off between all values tested of ↵. The results in all cases show
three main clusters of the points presented. In the lower-left corner,
the points that show the worst performance in terms of the trade-
off between communication reduction and accuracy appear, which
corresponds to the STEP-GP:MaxRat method. In the upper-left corner,
with results similar to each other in all cases, appear STEP-GP:MaxVar
and STEP-GP:MaxEig. These methods present a similar reduction in
transmission time; however, STEP-GP:MaxVar presents better relative
error values than STEP-GP:MaxEig which is showcased by the points
coming from STEP-GP:MaxVar being closer to the ideal case. In the
upper-right corner, separated from the other methods appears STEP-
GP:L1Norm-Trace with all its points close to each other in all the graphs
presented.

On the other hand, the results presented in terms of the reduction
in relative transmission time in Figs. 2–3 correlate with the analysis
presented in Section 6. As the graphs show, STEP-GP:MaxRat presents
the lowest communication reduction in all cases. The observation of the
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Fig. 3. Performance trade-off between the Relative Transmission Time Reduction and the Negative Logarithm of the Relative Error for 30 Agents with variable’s dimension p = 5
(left) and p = 10 (right). The plots show the 12 best-ranked tuple medians of the 100 simulations for different sets of parameters Mi, Mh, wi, wh, ci and ch, and for different
values of ↵.

Fig. 4. Variation of the primal residual through the iteration count for all the proposed query methods. The graphs present the test scenario for the same set of parameters Mi,
Mh, wi, wh, ci, and ch of 10 agents with variables’ dimension of p = 10, an initial threshold given by ◆ = 1, and decay rate ↵ = 0.97 for all cases.

intermediate results showed that this method asked queries for each
agent in around 80% of the total iterations required to reach conver-
gence. Furthermore, the two methods based on an L2 norm confidence
sphere (STEP-GP:MaxEig and STEP-GP:L1Norm-Trace) present a little
more reduction in relative transmission time than the STEP-GP:MaxVar
method. This difference is not significant if we only analyze the relative
transmission time reduction metric. However, through the intermediate
results, we observed that STEP-GP:MaxEig and STEP-GP:L1Norm-Trace
present a lower frequency of queries, but require more iterations to
converge than STEP-GP:MaxVar. This behavior is more pronounced for

the STEP-GP:L1Norm-Trace where the frequency of queries is consider-
ably lower but the increment in the number of iterations is also very
significant. Thus, the results generated are aligned with the anticipated
query behavior.

7.8. Empirical convergence

In this subsection, we present results on the convergence behaviors
of the proposed query methods. Fig. 4 shows the ADMM primal residual
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Fig. 5. Prediction Error statistics corresponding to agent 1 under the STEP-GP:L1Norm-Trace query strategy for a specific set of parameters Mi, Mh, wi, wh, ci, and ch in a system
of 10 agents with variables’ dimension of p = 10, an initial threshold set by ◆ = 1, and decay rate ↵ = 0.97. Graph (a) presents the histogram of the normalized prediction error,
while graph (b) presents the variation of the L2 norm of the prediction error at each iteration.

as defined in Section 7.4.2 through the iteration count until conver-
gence is reached for all methods tested. The four graphs present the test
scenario for the same set of parametersMi,Mh, wi, wh, ci, and ch of 10
agents with the dimension of the variables p = 10, an initial threshold
set by ◆ = 1 and the decay rate ↵ = 0.97 for all cases. The figures
presented show the decaying behavior of the residual until a significant
drop when convergence is achieved. The main difference between
methods is the speed of convergence, which is defined by the query
frequency. The smaller such a frequency, the larger the convergence
speed. The speed of convergence shown in Fig. 4 for each method is
aligned with the analysis presented in Sections 6 and 7.7 because we
see that STEP-GP:L1Norm-Trace requires considerably more iterations
to reach convergence than the rest of the methods, while STEP-GP:
MaxRat requires fewer iterations than all other methods. Although
only one case is presented, this trend is observed in all test scenarios
considered in all our experiments presented in the previous subsections.
Thus, all generated simulations (regardless of the parameters of the test
scenario) reached convergence and each query strategy presents the
same convergence speed behavior.

7.9. Prediction error

In this subsection, we present statistics about how the prediction
error behaves in our algorithm through all different query methods.
Fig. 5 presents two graphs showing information on the prediction error
of a simulation corresponding to agent 1 under the STEP-GP:L1Norm-
Trace query strategy for a specific set of parameters Mi, Mh, wi, wh, ci
and ch in a system of 10 agents with the dimension of the variables
p = 10, an initial threshold set by ◆ = 1, and decay rate ↵ = 0.97.
To generate both graphs we calculated the real values of the Moreau
Envelope and its gradient even in iterations where a query was not
requested.

In Fig. 5 (a) we present the histogram of the normalized prediction
error vector (✏ki(NPE)), where the l

th entry (l À [1,… , p + 1]) is defined
as

✏ki[l](NPE) =
H

1
ski[l]

I

Û

Û

Û

Û

Û

Û

L

f
1
⇢
i (zki );(f

1
⇢
i (zki )

M

[l]
* �ki[l]

Û

Û

Û

Û

Û

Û

.

This normalized error results in a vector generated at each iteration
for each agent. To construct the presented histogram, we consider
each individual component of the vector ✏ki(NPE) as a point to be
considered in the graph. Following the GP assumptions, we should
expect that the discrepancy between the Moreau Envelope and its
gradient with the predicted mean follows a Gaussian distribution.
However, the histogram in Fig. 5 (a) contradicts the prior expectation.

This non-normality of the prediction error is also observed in other
query strategies throughout different system parameters. Some cases
presented histograms showing more discrepancies with respect to the
expected Gaussian bell shape than the one presented in Fig. 5 (a). This
is interesting because these results show that even though the assumed

Gaussian distribution of f
1
⇢
i (zki ) does not hold, the GP is still capable

of making a good prediction with acceptable accuracy. Furthermore,
this discrepancy from the initial assumption did not prevent any of the
scenarios tested from reaching convergence.

On the other hand, Fig. 5 (b) presents the variation of the L2 norm
of the prediction error at each iteration for agent 1. This is defined as

✏ki[PE] =
Ù

Ù

Ù

Ù

Ù

Ù

L

f
1
⇢
i (zki );(f

1
⇢
i (zki )

M

* �ki
Ù

Ù

Ù

Ù

Ù

Ù2

.

This metric generates a single point per iteration, so the presented
graph shows the variation of the prediction error over the algorithmic
iterations. Fig. 5 (b) also makes a differentiation between iterations
in which a query was made (green points) and iterations in which no
query was made (blue points). The decaying behavior of the prediction
error is clearly seen in the graph with a significant drop closer to
convergence. This behavior is desirable because we want our prediction
to become more accurate through the algorithmic iterations, which is a
favorable condition to be confident not only that we reach convergence
but that we converge to a good solution. Furthermore, the figure shows
a bursting behavior between intervals, where we see an increment in
the prediction error during the interval where no query was made and
an abrupt drop once a query is requested. This prediction error behavior
is observed for all agents through all the different test scenarios and
different query strategies.

7.10. Query dynamics

In this subsection, we present information on the distances between
the queries zki generated at each iteration compared to the previous
query points included in the GP training set. Fig. 6 (a) presents the
measurement of the minimum distance between a new query vector and
all query vectors already in the training set. This distance is defined as

d(zki ,Z
k) = min{d(zki , z) : z À Zk

i },

where Zk
i is the set containing the queries within the GP training set

for agent i until iteration k and d(�) is the distance function. Since each
generated zki is a vector, the distance function considered is d(z

k
i ,Z

k) =
Òzki * zÒ2 where z À Zk

i . Fig. 6 (a) presents a differentiation between
iterations in which a query was made (green points) and iterations
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Fig. 6. Distances between generated query points for a specific set of parameters Mi, Mh, wi, wh, ci, and ch in a system of 10 agents with variables’ dimension of p = 10, an
initial threshold set by ◆ = 1, and decay rate ↵ = 0.97. Graph (a) presents the measurement of the minimum distance between a new query vector and all query vectors already in
the training set. Graph (b) presents the minimum query distances between query points that are already part of the training set only.

in which there was no query (blue points). The results show that
the distance between the queries throughout the iterations tends to
become smaller as the iteration process approaches convergence. This is
correlated with the patterns observed in Fig. 5 (b), where the prediction
error is smaller when the algorithm is closer to convergence. The closer
the query points are to the end of the algorithm run, the more points
are trained in GP around a close vicinity, thus considerably reducing
the uncertainty of the prediction. Furthermore, the behavior of the
minimum distance between queries presented in Fig. 6 (a) presents a
similar bursting behavior to that observed for the prediction error in
Fig. 5 (b).

On the other hand, Fig. 6 (b) presents the minimum query distances
between the query points already included in the training set. Only
when a new point is added to the training set is this minimum distance
recalculated. This distance is defined as

d(z, x) = inf{d(z, x) : z, x À Zk
i , z ë x},

where d(.) once again is defined as d(z, x) = Òz * xÒ2. The graph in
Fig. 6 (b) presents a new point when a query is made, so each point
presented represents an interval after a period of iterations where no
query was made. Similarly to the results presented in Fig. 6 (b), the
distance between the query points also decreases closer to convergence.
However, in the case where we only compare points that are part of the
training set, we do not see increasing variations at any point.

7.11. Overall remarks

The presented results across different initial parameters showed
that the joint query method STEP-GP:L1Norm-Trace is the method
that achieved better trade-off performance among all query strategies
tested. An observation we made during the simulations is that such a
method tends to reduce the required queries considerably; however,
it does not require extensive communication rounds to obtain good
values for theNLRE metric. Compared to the other methods tested, for
similar values of total transmission time, the STEP-GP: L1Norm-Trace
method usually produces a global ADMM solution closer to the true
solution. In contrast, the STEP-GP:MaxRat method proved to be the
one with the worst trade-off performance among all tested methods. Al-
though the other individual query strategies showed similar behavior,
it was STEP-GP:MaxVar that showed a better overall trade-off perfor-
mance compared to STEP-GP:MaxEig. In addition, the results obtained
were consistent across all the different simulation cases presented.
The querying behavior observed during simulations correlates with the
previous analysis, resulting in an anticipated querying behavior of the
proposed methods.

The results presented showed that the more complex querying strat-
egy can achieve the best performance. This outcome agrees with the

intuitive idea that the method closer to the general querying framework
should achieve better performance. On the other hand, the individual
query methods, despite their simplicity, were able to maintain an
acceptable accuracy while reducing the transmission time considerably.
Thus, the individual strategies STEP-GP:MaxVar and STEP-GP:MaxEig
are viable options in scenarios where the computation cost needs to be
as low as possible.

8. Conclusion

Distributed optimization methods, such as ADMM, generally incur
an excessive undesired communication overhead. In this context, the
use of Gaussian processes has proven to be effective in learning the
unknown proximal operators of the agents. Therefore, the coordi-
nator can predict the solutions to the local proximal minimization
sub-problems, requiring fewer queries to the agents, which leads to
a significant reduction in communication. However, the extent of the
achievable reduction in communication depends in part on the mech-
anism through which the coordinator decides if communication with
the agents is needed. For that reason, this work proposed several
query strategies to decide whether the coordinator should send queries
to the agents in a particular iteration when running the STEP-GP
algorithm based on the notion of the general querying framework.
Such an ideal mechanism solves a constrained optimization problem
by balancing two opposing criteria, which are to maximize the com-
munication reduction while minimizing the error of the final solution
obtained. Motivated by this constrained optimization problem and an
alternative expression of the regular ADMM updates that showcases the
inherent coupling between agents, we proposed a joint query strategy
consisting in minimizing a convex communication cost restricted by
the trace of the joint uncertainty of the ADMM variables. On the other
hand, to reduce the computational burden added to our algorithm, we
proposed different individual query strategies for each agent using an
individual uncertainty measure to determine whether the prediction is
reliable enough to skip a communication round. The numerical results
of solving a sharing problem with quadratic cost functions showed
the different performances of the proposed methods in terms of the
trade-off between reduction of communication cost and loss of accuracy
in solving the optimization problem. In particular, the proposed joint
query method achieved a better trade-off performance compared to the
independent query strategies. Our next research steps include testing
our proposed framework in more complex applications where we have
more challenging objective functions, and convergence analysis of all
query methods.
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Appendix A. Proof of Proposition 2

Combining the definition of zki = xki + Ñyk* Ñxk*uk and the expression
for xk+1i defined in (5), we can express the update of Ñy in (8) as

Ñyk+1 = (1_n)argmin
ÇyÀRp

�

h( Çy) + (⇢_2n)Ò Çy * n( Ñxk+1 + uk)Ò2
�

,

where Çy = n Ñy. Then, we can express Ñyk+1 in terms of its proximal
operator Ñyk+1 = (1_n)prox(n_⇢)h[n( Ñxk+1 + uk)], which can be expressed
in terms of the gradient of the Moreau Envelope of h, as in (5), leading
to

Ñyk+1 = ( Ñxk+1 + uk) * (1_⇢)(hn_⇢
�

n( Ñxk+1 + uk)
�

. (A.1)

Now, expressing the u-update presented in (2) in terms of (A.1) gives

uk+1 = (1_⇢)(hn_⇢
�

n( Ñxk+1 + uk)
�

. (A.2)

Next, we can express (A.1) in terms of zki as

Ñyk+1 = (1_n)
n
…

i=1
[zki * (1_⇢)(f 1_⇢

i (zki )] + u
k

*(1_⇢)(hn_⇢
�

n( Ñxk+1 + uk)
�

, (A.3)

and by inserting the definition of zki we get

Ñyk+1 = Ñyk * 1_(⇢n)
n
…

i=1
(f 1_⇢

i (zki ) *

(1_⇢)(hn_⇢(n( Ñxk+1 + uk)). (A.4)

Taking the average of the definition of zki we get Ñz
k = Ñyk * uk, and

by inserting it into the average of the xi-updates given by Ñxk = Ñzk *
1_(⇢n)≥n

i=1 (f
1_⇢
i (zki ) we get the equality

Ñyk * 1_(⇢n)
n
…

i=1
(f 1_⇢

i (zki ) = Ñxk+1 + uk. (A.5)

Thus, combining (A.4) and (A.5), we obtain

Ñyk+1 = Ñyk * 1_(⇢n)
n
…

i=1
(f 1_⇢

i (zki ) *

(1_⇢)(hn_⇢
H

n Ñyk * (1_⇢)
n
…

i=1
(f 1_⇢

i (zki )
I

, (A.6)

and the u-update combining (A.2) with (A.5) is expressed as

uk+1 = (1_⇢)(hn_⇢
H

n Ñyk * (1_⇢)
n
…

i=1
(f 1_⇢

i (zki )
I

. (A.7)

As presented in Section 2, each agent’s (f 1_⇢
i (zki ) is predicted by

the GP and this prediction is used by the ADMM algorithm when the
coordinator skips a communication round with an agent. This dynamic
is expressed in (7) with the variable �ki , where depending on the
communication decision, �ki takes the value of (f

1_⇢
i (zki ) or its predicted

value. In the context of our problem, we replace (f 1_⇢
i (zki ) from the

expressions in (A.6) and (A.7) with the dynamics defined in (7), giving
the ADMM expression

xk+1i = zki * (1_⇢)�ki

uk+1 = (1_⇢)(hn_⇢
H

n Ñyk * (1_⇢)
n
…

i=1
�ki

I

Ñyk+1 = Ñyk * 1_(⇢n)
n
…

i=1
�ki * uk+1. (A.8)

Defining the variable vk = n Ñyk * (1_⇢)≥n
i=1 �

k
i , we get that the

u-update is given by

uk+1 = (1_⇢)(hn_⇢
�

vk
�

. (A.9)

Appendix B. Proof of Proposition 1

Consider the condition in (10). We introduce a unitary transforma-
tion U , whose columns are normalized eigenvectors of ⌃F , i.e., ⌃F =
U⇤UT, where ⇤ is the diagonal matrix whose diagonal entries are the
eigenvalues of ⌃F sorted in descending order �1 g �2 g 5 g �p > 0.
Given F Ì N (�,⌃F ), define G = UT(F * �), which follows N (0,⇤).
Moreover, ÒGÒ2 = ÒF * �Ò2. Consequently,

P
⌅

ÒF * �Ò2 f Ò�Ò2�
⇧

= P
⌅

ÒGÒ2 f Ò�Ò2�
⇧ g 1 * ⇠. (B.1)

Let us define Zl =
Gl
˘

�l
for 1 f l f p, with Zl Ì N (0, 1). Then, (B.1) can

be expressed in terms of Z as

P
L p
…

l=1
�lZ2

l g Ò�Ò22�
2
M

f ⇠, (B.2)

requiring the probability of being outside of an error sphere to be small.
Let R = ≥p

l=1 �lZ
2
l , which follows a weighted chi-square distribu-

tion, and X = R *≥p
l=1 �l, we transform (B.2) as

P
L

X +
p
…

l=1
�l g Ò�Ò22�

2
M

f ⇠. (B.3)

We will follow the proof of Lemma 1 in [28] to get a bound for the
inequality in (B.3). For a random vector Z with individual components
Zl Ì N (0, 1), the logarithm of the Laplace transform of Z2

l * 1 is given
by

 (u) = log[E[exp(u(Z2
l * 1))]] = *u * 1

2 log(1 * 2u),

which for 0 < u < 1_2 we get the bound

 (u) f u2
1 * 2u .

Therefore, extending the previous expressions for a variable Y =
≥p
l=1 al(Z

2
l * 1), with al g 0, we get

log[E[exp(uY )]] =
p
…

l=1
log

⌅

E[exp(ual(Z2
l * 1))]

⇧

f p
…

l=1

a2l u
2

1 * 2alu
, (B.4)

which leads to the inequality

log[E[exp(uY )]] f ÒaÒ22u
2

1 * 2ÒaÒÿu
. (B.5)

On the other hand, in [29] it was proven that if

log[E[exp(uY )]] f vu2
2(1 * 2cu) , (B.6)

then, for any positive x,

P(Y g cx +
˘

2vx) f exp(*x). (B.7)
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Thus, given (B.5) and (B.6) we get v_2 = ÒaÒ22 and c = 2ÒaÒÿ, which
allow us to rewrite (B.7) as

P(Y g 2ÒaÒÿx + 2ÒaÒ2
˘

x) f exp(*x). (B.8)

We can define ↵ = 2ÒaÒÿ and � = 2ÒaÒ2, and by equaling 2ÒaÒÿx+
2ÒaÒ2

˘

x to a positive number w we get

↵x + �
˘

x = w

↵x + �
˘

x *w = 0.

Solving the quadratic equation we get that

˘

x =
*� +

˘

�2 + 4↵w
2↵ ,

where we can obtain a value for x that depends on w and will be named
x(w) defined as

x(w) =
�2

2↵2
* �

2↵2
˘

�2 + 4↵w + w
↵
. (B.9)

Introducing the definition of ↵ and � into (B.9) we get

x(w) =
ÒaÒ22
2ÒaÒ2ÿ

*
ÒaÒ22
2ÒaÒ2ÿ

v

1 +
2wÒaÒÿ
ÒaÒ22

+ w
2ÒaÒÿ

, (B.10)

which after some algebraic manipulations can be expressed as

x(w) =
`

r

r

p

y

x

x

w

w
2ÒaÒÿ

+
ÒaÒ22
4ÒaÒ2ÿ

*
ÒaÒ2
2ÒaÒÿ

a

s

s

q

2

. (B.11)

Inserting (B.11) and ↵x+�
˘

x = w into (B.8), we get the expression for
the desired probability as

P [Y g w] f exp(*x(w)),≈w g 0. (B.12)

Going back to the context of the inequality in (B.3) given by

P
L

X +
p
…

l=1
�l g Ò�Ò22�

2
M

f ⇠,

and since
≥p
l=1 �l = tr(⌃F ) this inequality is expressed as

P
⌅

X g Ò�Ò22�
2 * tr(⌃F )

⇧ f ⇠. (B.13)

This probability can be also bounded following (B.12) as

P
⌅

X g Ò�Ò22�
2 * tr(⌃F )

⇧ f exp(*x<
(Ò�Ò22�

2*tr(⌃F ))
) f ⇠, (B.14)

where x<
(Ò�Ò22�

2*tr(⌃F ))
is the specific form for our problem of (B.11)

which is defined as

x<
(Ò�Ò22�

2*tr(⌃F ))
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x
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4�21
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t
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s
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2

, (B.15)

with �l representing the eigenvalues of the covariance matrix ⌃F and
�1 representing the biggest of those eigenvalues. Combining (B.14) and
(B.15) we find a bound on the trace of ⌃F given by
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