
Computer Physics Communications 278 (2022) 108422

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

TauRunner: A public Python program to propagate neutral and

charged leptons✩,✩✩

Ibrahim Safa a,b,∗, Jeffrey Lazar a,b,∗, Alex Pizzuto b, Oswaldo Vasquez a,
Carlos A. Argüelles a, Justin Vandenbroucke b

a Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA 02138, USA
b Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, Madison, WI 53706, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 January 2022
Received in revised form 4 May 2022
Accepted 17 May 2022
Available online 24 May 2022

Keywords:
Ultra-high energy
Neutrinos
Neutrino telescope
Simulation
Tau regeneration
Open source

In the past decade IceCube’s observations have revealed a flux of astrophysical neutrinos extending
to 107 GeV. The forthcoming generation of neutrino observatories promises to grant further insight
into the high-energy neutrino sky, with sensitivity reaching energies up to 1012 GeV. At such high
energies, a new set of effects becomes relevant, which was not accounted for in the last generation
of neutrino propagation software. Thus, it is important to develop new simulations which efficiently
and accurately model lepton behavior at this scale. We present TauRunner, a Python-based package
that propagates neutral and charged leptons. TauRunner supports propagation between 10 GeV and
1012 GeV. The package accounts for all relevant secondary neutrinos produced in charged-current tau
neutrino interactions. Additionally, tau energy losses of taus produced in neutrino interactions are taken
into account, and treated stochastically. Finally, TauRunner is broadly adaptable to divers experimental
setups, allowing for user-specified trajectories and propagation media, neutrino cross sections, and initial
spectra.

Program summary
Program title: TauRunner
CPC Library link to program files: https://doi .org /10 .17632 /82nyd9skhj .1
Developer’s repository link: https://github .com /icecube /TauRunner
Licensing provisions: GNU General Public License 3
Programming language: Python
Nature of problem: Propagation of ultra-high energy neutrinos in dense media accounting for various
effects associated with ντ and τ± energy losses.
Solution method: Monte Carlo methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Most natural and anthropogenic neutrino sources produce neu-
trinos with energies below 1 TeV [1], where the smallness of the
neutrino-nucleon cross section [2] allows them to freely stream
through large amounts of column density—the density integrated

✩ The review of this paper was arranged by Prof. Z. Was.
✩✩ This paper and its associated computer program are available via the Computer
Physics Communications homepage on ScienceDirect (http://www.sciencedirect .
com /science /journal /00104655).
* Corresponding authors at: Department of Physics and Wisconsin IceCube Parti-

cle Astrophysics Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
E-mail addresses: isafa@fas.harvard.edu (I. Safa), jeffreylazar@fas.harvard.edu

(J. Lazar).
https://doi.org/10.1016/j.cpc.2022.108422
0010-4655/© 2022 Elsevier B.V. All rights reserved.
along the neutrino trajectory. Famously, low-energy solar neutri-
nos produced in nuclear processes in the Sun are not only able
to escape the dense solar core but also can diametrically traverse
hundreds of Earths unimpeded. In this energy range, the negligible
scattering rates imply that the problem of neutrino transport re-
quires only considering the changing of flavors between neutrinos.
This problem prompted the neutrino community to develop ana-
lytical methods and numerical schemes to compute the neutrino
oscillation probabilities efficiently [3], e.g. nuSQuIDS [4] among
others [5–8]. These solutions, currently available through a vari-
ety of software packages and libraries [9,10], are currently used by
neutrino experiments to extract the neutrino oscillation parame-
ters.

Recently, the construction of gigaton-scale neutrino detectors,
such as the IceCube Neutrino Observatory [11] in the Antarctic

https://doi.org/10.1016/j.cpc.2022.108422
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108422&domain=pdf
https://doi.org/10.17632/82nyd9skhj.1
https://github.com/icecube/TauRunner
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:isafa@fas.harvard.edu
mailto:jeffreylazar@fas.harvard.edu
https://doi.org/10.1016/j.cpc.2022.108422

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422
continent, has enabled the observation of neutrinos with ener-
gies as large as 10 PeV. In this high-energy frontier, neutrino os-
cillations can be safely neglected for Earth-traversing neutrinos;
however, in this regime, the neutrino interaction length becomes
comparable to or much smaller than Earth’s diameter [12], re-
quiring new solutions to the neutrino transport problem. While
the first generation of software packages that aimed to address
this problem [13–15,4,16,17] included the effects of neutrino-
nucleon neutral- and charged-current interactions, they neglected
secondary neutrinos from lepton charged-current interactions, ex-
cept in the case of tau neutrinos. Tau neutrinos were handled as
a special case because, as recognized in [18,19], due to the short
lifetime of the taus, it still carries most of its energy at the time of
decay yielding high-energy secondary neutrinos. This effect, often
known as tau regeneration, implies that Earth is less opaque to tau
neutrinos relative to other flavors.

In these first-generation packages tau regeneration was imple-
mented by using the so-called on-spot tau decay approximation,
which neglects tau energy losses. Though this approximation sat-
isfies the needs of most current scenarios and experimental set-
tings, next-generation neutrino telescopes aim to reach EeV ener-
gies [20,21]. At these extremely high energies, the taus produced
in neutrino interactions are sufficiently long-lived that their energy
losses cannot be neglected. Recently, dedicated software packages
have been made available to solve this problem in this energy
regime. However, the bulk of the available solutions neglects the
stochasticity of tau losses considering only their mean effect. This
limits their ability to function as event generators in neutrino
telescopes and produces mismodeling of the yield of tau-induced
events for a small number of scatterings, where the stochastic na-
ture of the losses is more relevant. A notable exception is the
NuPropEarth [22] package developed for the KM3NeT exper-
iment [23], which is presently being built in the Mediterranean
Sea. Though NuPropEarth offers a complete solution, this pack-
age requires a large number of dependencies to function, making
its distribution and installation difficult. In this article, we describe
a new package, TauRunner, that aims to provide a complete and
versatile solution to the neutrino transport problem at high ener-
gies. Our Python-based package is designed to have minimal de-
pendencies, to allow the user to construct arbitrary neutrino trajec-
tories and propagation media, and to provide interfaces to modify
physics inputs such as neutrino cross sections easily. This package
was first introduced in [24,25], where it was used to study the
ANITA anomalous events [26,27], and is currently used in studies
relating to extremely high-energy neutrinos in IceCube [28]. With
respect to the preliminary version, the version presented in this
paper contains significant improvements in terms of performance
and available features to the user. In this article, we describe the
software and provide examples, benchmarks and comparisons to
other packages that have similar aims. We expect that our soft-
ware will be useful for next-generation neutrino detectors operat-
ing in liquid water (P-ONE [29]), solid water (IceCube-Gen2 [20]),
mountains (Ashra NTA [30], TAMBO [31]), and outer space (PO-
EMMA [21]). Our hope is that the success of neutrino oscillation
measurements enabled by the previous generation of software will
be mirrored in the study of high-energy neutrino properties with
efficient propagation software such as the one presented in this
paper.

The rest of this article is organized as follows. In Sec. 2 we out-
line the transport equation, the algorithm used to solve it, and the
interaction; in Sec. 3 we explain the code structure; in Sec. 4 we
present studies of the software performance; in Sec. 6 we lay out
the examples included with the code. Finally in Sec. 7 we conclude.
2

2. Algorithm overview

The aim of this software is to solve the transport equation for
high-energy neutrino fluxes passing through matter. The transport
equation can be written as follows [34],

d �ϕ(E, X)

dX
= −σ(E) �ϕ(E, X) +

∞∫

E

dẼ f (Ẽ, E) �ϕ(Ẽ, X), (1)

where E is the neutrino energy, X is the target column density,
σ(E) = diag(σν, σν̄) holds the total ν and ν̄ cross section per
target nucleon, f (Ẽ, E) is a function that encodes the migration
from higher to lower neutrino energies and between ν and ν̄ , and
�ϕ(E, x) = {φν, φν̄} contains the neutrino and anti-neutrino spec-
trum. At energies supported by this package, 10 GeV–1012 GeV,
neutrino-nucleon deep inelastic scattering (DIS) is the dominant
neutrino interaction process. The first term on the right hand side
accounts for the loss of flux at energy E due to charged-current
(CC) and neutral-current (NC) interactions, whereas the second
term is the added contribution from neutrinos at higher energy,
Ẽ , to E through NC interactions of νe,μ,τ and CC interactions in
the ντ channel.

This latter channel is unique in that the short τ lifetime causes
the decay of the charged lepton before losing a large fraction of
the parent energy. The τ then decays into a daughter ντ , meaning
that the primary ντ flux is not lost, but only cascades down in en-
ergy. Moreover, if the τ decays leptonically, ν̄μ and ν̄e are created,
contributing significantly to the outgoing flux, as was first pointed
out in [35]. By default, TauRunner takes all those contributions
into account. The story is simpler for the electron channel. There,
CC interactions result in electrons which lose their energy quickly
and are subsequently absorbed in the medium. As a result, elec-
tron losses are not modeled in TauRunner by default, though the
capability exists if needed. For the muon flavor, muons resulting
from CC interactions can travel O(1) kmwe. Therefore, it is impor-
tant to model the propagation and losses of muons near the point
of exit, and that is accounted for in TauRunner as well.

2.1. Algorithm description

In TauRunner, Eq. (1) is solved using a Monte-Carlo approach.
A flowchart of the TauRunner Monte-Carlo algorithm is shown
in Fig. 1. Given an initial neutrino type, energy, and incident an-
gle, it begins by calculating the mean interaction column depth,
λint, which depends on the medium properties and neutrino cross
section. A column depth is then randomly sampled from an expo-
nential distribution with parameter λint , and the neutrino advances
the corresponding free-streaming distance. If the neutrino does not
escape the medium, either an NC or CC interaction is chosen via
the accept/reject method. In the case of an NC interaction, the neu-
trino energy loss is sampled from the differential cross section, and
the process repeats. In the case of a CC interaction, a charged lep-
ton is created with energy sampled from the neutrino differential
cross section.

The treatment of the charged lepton then varies according to
the initial neutrino flavor. Electrons are assumed to be absorbed
and the propagation stops there. μ and τ , however, are recorded
and passed to PROPOSAL [36] to be propagated through the same
medium. μ that do not escape will either decay at rest resulting
in neutrinos that are below the energies supported by TauRun-
ner, or get absorbed. Therefore a μ that does not escape is not
tracked further. Finally, τ s can either escape or decay. In the lat-
ter case, a secondary ντ is created whose energy is sampled from
tau decay distributions provided in [37]. Additionally, if the τ de-
cays leptonically, νe or νμ will be created. When this happens, the

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422

Table 1
Software comparison table. Each row of this table represents a given package. Input and output particles include their not explicitly mentioned antiparticles. Custom medium
refers to a user-defined Body in TauRunner. The Energy losses column compares the treatment of charged particle losses.
Software Language Input Output Medium Energy losses

(
l±

)
TauRunner Python ντ,μ,e, τ , μ ντ,μ,e, τ , μ Earth/Sun/Moon/Custom PROPOSAL
NuPropEarth [22] C++ ντ,μ,e ντ,μ,e, τ Earth/Custom TAUSIC
nuPyProp [32] Python/FORTRAN ντ τ Earth Internal
NuTauSim [33] C++ ντ τ Earth Continuous
Fig. 1. Flowchart of the TauRunner propagation algorithm. Square boxes indicate ac-
tions performed by the software. Diamond boxes indicate decision-making stopping
points. Rounded-corner squared boxes indicate beginning and end of the algorithm.
Note that users can select also charged leptons as the initial state, in which case
the algorithm skips straight to the charged particle propagation step.

properties of the resulting secondaries are recorded and added to
a basket which stores all secondary particles to be propagated to-
gether after the primary particle propagation is complete.

2.2. Lepton interactions and decays

Measurements of neutrino cross sections with matter have been
performed up to a few PeV in energy [38]. This includes a multi-
tude of accelerator [39,40] and reactor [41,42] experiments as well
as solar [43], atmospheric [44], and astrophysical neutrinos [45,46].
However, the energy range supported by TauRunner goes far be-
yond the measurements, where the fractional momenta, xBjorken, of
the quarks probed by the neutrino can reach xBjorken � 10−8. The
nucleon structure function is not measured at such low xBjorken and
is extrapolated in cross section calculations [47,22]. Such extrap-
olations neglect gluon color screening making perturbative QCD
calculations of the neutrino cross section grow faster than allowed
by unitarity at extremely high energies [48]. Phenomenological ap-
proaches to include gluon screening parameterize the extremely
small xBjorken behavior using a dipole model [49] of the nucleon
so as to result in a ln2(s) dependence of the cross section at ex-
tremely high energies [50]. This ultimately results in a difference
of a factor ∼ 2 at 1012 GeV. TauRunner provides, by default, neu-
trino and anti-neutrino DIS cross section tables for two PDF mod-
els: a perturbative QCD calculation [47], and a dipole model [49].
The user also has the option to provide their own cross sections,
see Sec. 3.4 for more details.
3

In the Standard Model, when neutrinos undergo CC interactions,
they convert to their charged partners through the exchange of a
W boson. Charged particles lose energy in dense media through
many processes, and the relative importance of each process de-
pends on the lepton’s mass and its energy [51]. At lower energies,
a charged lepton can ionize atoms as it traverses the medium. This
process is described by the Bethe-Bloche equation, and at higher
energies scales logarithmically and becomes sub-dominant for all
flavors. A charged lepton can also interact with the electric field
of a nucleus, losing energy in the process through the emission
of a photon. This process, called bremsstrahlung, scales like the
inverse-squared mass of the lepton, and is therefore the dominant
energy loss mechanism for electrons. Another possible interaction
with the field of a nucleus leads to the production of electron-
positron pairs. This process scales like the inverse of the lepton
mass, and is one of the leading energy-loss mechanisms for μ and
τ . Finally, the leptons can also lose energy by exchanging a photon
with a nucleon, in what is referred to as a photonuclear interac-
tion. This process dominates tau energy losses at the highest ener-
gies (≥ 109 GeV). The aforementioned processes are implemented
in PROPOSAL, which we use to model them in TauRunner. Apart
from interacting, μ and taus can also undergo weak decays. This
process scales like the mass of the lepton to the fifth power, and
is therefore the most likely outcome for taus propagating in Earth
up to 109 GeV. Above this energy, the total interaction length for
other processes becomes shorter than the decay length. μ, on the
other hand, are much more likely to lose all of their energy before
decaying at rest, or getting absorbed by a nucleus. Therefore, we
only model decays of τ leptons using parametrizations in [37].

3. Structure of the code

TauRunner may be run either from the command line by run-
ning main.py or may be imported to run within another script
or Jupyter notebook. To run from the command line, the user
must minimally specify the initial energy, the incident nadir angle,
and the number of events to be simulated. These can be speci-
fied with the -e, -t, and -n command line flags respectively. This
will run the TauRunner algorithm in Earth with a chord geome-
try. The TauRunner output will be printed in the terminal unless
an output file is specified with the --save flag. If this option is
specified, TauRunner will save both a numpy array and a json
file with the configuration parameters at the specified location. In
order to ensure reproducibility, the user may specify a seed for the
random number generator with the -s flag. By default, main.py
propagates an initial ντ flux, but a user may specify other ini-
tial particle types by using the --flavor flag. Additional options
that may be specified by the user can be found in the initial-
ize_args function of main.py or by running main.py with
the -h flag.

To run within another script or Jupyter notebook the user
must import the run_MC function from main.py. In this lat-
ter case one must also create a TauRunner Particle, Track,
Body, CrossSection objects and a PROPOSAL propagator. The
Particle class, described in Sec. 3.1, contains the particle prop-
erties as well as methods for particle propagation. The Track
class, described in Sec. 3.2, parametrizes the geometry of the par-

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422
ticle trajectories. The Body class, described in Sec. 3.3, defines the
medium in which the propagation is to occur. The CrossSec-
tion class, described in Sec. 3.4, defines neutrino cross section
model. Additionally, TauRunner provides a convenience func-
tion for constructing PROPOSAL propagators, make_propaga-
tor, which can be imported from the utils module. Explicit
examples of how to run TauRunner can be found in Sec. 6.
Casino.py combines these classes according to the logic out-
lined in Fig. 1.

After discussing the package broadly, we will discuss conven-
tions in Sec. 3.6 and describe TauRunner’s output in Sec. 3.7

3.1. Particle

A Particle instance contains the structure of a TauRunner
event. This includes, among other quantities, the particle’s initial
and current energies, particle type, and position. Additionally, it
has a number of methods for particle decay and interaction as well
as charged lepton propagation. Finally, the τ decay parametrization
is contained in particle/utils.py.

The user may propagate νe , νμ , ντ , μ− , τ− , or any of the corre-
sponding anti-particles in TauRunner. To do this, the user should
initialize the Particle object with the corresponding Particle
Data Group Monte Carlo number [51]. It should be noted that the
user may create an e± , but the internal logic of TauRunner as-
sumes all e± are immediately absorbed and thus no propagation
occurs; see Fig. 1.

3.2. Track

The Track class contains the geometrical information about
the particle’s trajectory. A track is parametrized by an affine pa-
rameter which defines the position along the trajectory: 0 is the
beginning of the trajectory, and 1 is the end. Almost all of the
methods of the Track class are mappings between the affine
parameter and physically relevant quantities, e.g. radius, distance
traveled, and column depth. The only argument which is generic
to the Track class is depth which specifies the distance below
the surface of the body at which to stop propagation. This may in-
tuitively be thought of as the depth of the detector to which the
particles are propagated. An illustration of the TauRunner geom-
etry and a diagram of the functional relation of physical quantities
to the affine parameter is shown in Fig. 2

The Track class allows the user to make custom trajectories.
The user need only specify mappings between the affine parameter
and these variables. Different trajectories may require additional
arguments from the user, depending on the nature of the trajec-
tory. To illustrate this point, we can look at the two tracks which
are implemented by default, the Chord and Radial trajectories.
The former is used for paths which originate outside the Body
and cross a section of Body. The latter is used for paths which
originate at the center of the Body. The former Track describes
neutrinos coming from space and passing through Earth on the
way to a detector, as in the case of Earth-skimming τ searches,
while the latter gives the trajectory of a neutrino originating in the
center of the planet, relevant for searches for neutrinos from grav-
itationally trapped dark matter. Clearly, an incoming angle needs
to be specified for the Chord trajectory. Thus, we can see that the
necessary arguments for specifying a Track may vary from one
geometry to another.

3.3. Body

The Body class specifies the medium in which the Particle
is to be propagated. In TauRunner, we require that all bodies be
4

Fig. 2. Schematic of TauRunner geometry as contained within the Track class. (a)
shows the relation between the physical quantities relevant to propagation and the
affine parameter that parametrizes the Track. The arrows connecting these quan-
tities are labeled with the functions used to convert between them in TauRunner.
Specifically, these are the functions a user must define in order to specify a cus-
tom Track geometry. All distances are normalized with respect to the radius of
the body in which the track sits. (b) shows a diagram of these parameters within a
spherical TauRunner body. Colors correspond to the boxes in (a). Additionally, it
illustrates the depth parameter which intuitively gives the depth of the detector.
(For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

spherically symmetric, and so a Body may be minimally speci-
fied by a physical radius, and a density profile. The density profile
may be a positive scalar, a unary function which returns a posi-
tive scalar, or a potentially-mixed list of positive scalars and such
functions. The sole argument of the functions used to specify the
density should be the radius at which the density is to be given, in
units of the radius of the body, i.e. the domains should be [0, 1]. In
this system r = 0 is the center of the body and r = 1 the surface.
If the user wishes to make a layered body, i.e. one where a list
specifies the density profile, they must pass a list of tuple with the
length of this list equal to the number of layers. The first element
of each tuple should be the scalar or function which gives the den-
sity, and the second element should be the right hand boundary
of the layer in units of the radius. The last right hand boundary
should always be 1 since r = 1 is the outer edge of the body. Lastly,
all densities should be specified in g/cm3.

In addition to a radius and a density profile, the user may also
provide the proton_fraction argument to specify the fraction
of protons to total nucleons in the body. By default, we assume
that the propagation medium is isoscalar, i.e. we set the proton
fraction to 0.5 throughout the entire body. As in the case of the
density profile, this argument may be a scalar, a function, or a list
of function-boundary tuples. The domains of any functions pro-
vided must be [0, 1], and the ranges must be in this same interval.

While the user can construct bodies themselves, there are five
bodies implemented by default in TauRunner: the Earth, a high-
metallicity Sun, and low-metallicity Sun, the moon, a constant den-
sity slab. We use the PREM parametrization to model the densities

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422
of Earth [52]. For the Sun, we use fits provided by [53]. To instanti-
ate the Earth object, one calls the construct_earth function,
which returns an Earth object. Additionally, this function allows
one to pass in a list of additional layers which will be placed radi-
ally outward from the edge of the PREM Earth. This functionality
may be useful for e.g. adding a layer of water or ice or adding the
atmosphere for simulating atmospheric air showers. Examples on
using this functionality may be found in Sec. 3.3. To initialize the
Sun, one can use the construct_sun function. With this func-
tion, the user may specify ‘HZ_Sun’ or ‘LZ_Sun’ to use the high-
and low-metallicity TauRunner suns respectively, or a path to a
user defined solar model. An example of how to input solar models
is given in Appendix C

3.4. CrossSection

The TauRunner cross sections module defines the neutrino
interactions. Internally, TauRunner assumes that cross sections
are equal for all neutrino flavors. Additionally, TauRunner uses
the isoscalar approximation by default, i.e. it assumes a medium
is made of equal parts p+ and n; however, this assumption may
be changed by altering the proton_fraction of the Body ob-
ject. See Sec. 3.3 for more information. The software includes both
CSMS [47] and dipole [54] cross sections implemented by default;
however, it is straightforward for the user to implement other
cross section models by providing scipy splines in the appro-
priate format. For the total neutrino cross section these splines
are scipy.interpolate.UnivariateSpline objects whose
x-axis is the log10 of the neutrino energy in eV and whose y-
axis is the log10 of cross section in cm2. The differential cross
section splines are scipy.interpolate.RectBivariateS-
pline objects whose x-axis is the log10 of the neutrino energy
in eV, whose y-axis is a convenience variable which combines the
incoming and outgoing neutrino energies, E in and Eout, given by

η = Eout − 109 eV

E in − 109 eV
,

and whose z-axis is the log10 of incoming energy times the differ-
ential cross section in cm2. An example of how to construct these
splines is given in Appendix B.

3.5. PROPOSAL

To propagate charged leptons, TauRunner relies on PRO-
POSAL, an open source C++ program with Python bindings. A
utility module to interface with PROPOSAL, utils/make_prop-
agator.py, is provided with TauRunner. This function instan-
tiates PROPOSAL particle and geometry objects, which are then
used to create a propagator instance. Since PROPOSAL does not
support variable density geometries, the segment_body function
is used to segment the TauRunner body into a number of con-
stant density layers. The number of layers is determined by solving
for points in the body where fractional change in the density is
equal to a constant factor, called granularity. This argument
may be specified by the user, and by default is set to 0.5. A sin-
gle propagator object is created for all τ± and, if needed, for all
μ± . Since TauRunner assumes e± are always absorbed, a prop-
agator will never be made for these. Whenever a new geometry
is used, PROPOSAL creates energy loss tables which are saved in
resources/proposal_tables. The tables require a few min-
utes to generate, resulting in an overhead for new configurations,
but subsequent simulations with the same geometry will not suf-
fer any slow down.
5

3.6. Conventions

TauRunner uses a natural unit system in which h̄ = c =
eV = 1. As a consequence of this system, any energy passed to
TauRunner must be in eV. TauRunner includes a units pack-
age to easily convert common units to the units TauRunner ex-
pects. This may be imported from the utils module, and its us-
age is demonstrated in several examples. Additionally, since Tau-
Runner assumes that propagation occurs in a spherical body, the
radius of this body establishes a natural length scale. Thus all dis-
tances are expressed as a fraction of this radius.

3.7. Output

The run_MC function, which carries out the logic of Tau-
Runner, returns a numpy.recarray. This array may be set to
a variable if running TauRunner from a script of notebook, or
printed or saved if running TauRunner from the command line.

In this paragraph, we will describe the fields of this output. The
“Eini” field reports the initial energy of the lepton in eV. The
“Eout” field reports the energy of the particle when propaga-
tion has stopped in eV. In the case that the particle was absorbed,
this field will always read 0.0. The “theta” field reports the
incident angle of the lepton in degrees. The “nCC” and “nNC”
fields report the number of charged and neutral current interac-
tions the particle underwent in its propagation. The “PDG_En-
coding” field reports the particle type, using the Particle Data
Group MC numbering scheme. The “event_ID” is a number car-
ried byfield reports which initial lepton the particle comes from.
The “final_position” field reports the track parameter when
the propagation was ended. This may be used to physical quanti-
ties of a particle when it was absorbed, or when a user-defined
stopping condition was met

4. Performance

For a given primary spectrum and medium through which to
propagate, there are a variety of related factors that determine the
runtime of the program, including, but not limited to: (1) the ini-
tial energy of the neutrinos, (2) the total column depth of the path,
(3) the settings for computing energy losses, and (4) which parti-
cles are being tracked.

We show example runtimes for a few different use cases in
Fig. 3. For a fixed Track propagating through Earth, neutrinos
with higher initial energy take longer to propagate as they un-
dergo more interactions and as a result experience more stochas-
tic energy losses. Additionally, those particles that are only being
propagated through Earth-skimming trajectories (cos(θ) ≈ 0) can
be simulated much quicker than those with large column depths.
This is especially advantageous for proposed Earth-skimming next
generation neutrino observatories, e.g. [21,55–57,31].

By default, all secondary particles that are created as a result
of interactions are recorded, meaning that every ντ CC interac-
tion has a chance to increase the number of particles that need
to be simulated. If the user is only interested in outgoing ντ and
τ lepton distributions, this option can be disabled with by setting
no_secondaries=True, which can improve the overall runtime
by as much as a factor of two.

Runtime can further be reduced depending on the treatment
of energy losses of charged leptons. By default, energy losses are
handled by PROPOSAL [36], which treats them stochastically. The
user has the choice to ignore energy losses completely, with the
setting no_losses=True, which can improve the runtime by as
much as 40%, although this approximation can only be used in
certain scenarios, such as when the initial tau lepton energy is
small enough that the interaction length becomes much smaller

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422
Fig. 3. Runtime per ντ event. Average runtime per event for various monochromatic
fluxes of neutrinos through the Earth, as a function of nadir angle, θ for inci-
dent ντ with energies of 1 PeV (circles) and 1 EeV (triangles). In general, runtime
scales with the average number of interactions, which is a function of the energy
of the particles and the column depth through which they propagate. The color-
bar indicates the median number of NC+CC interactions that the initial beam of ντ

undergoes. Tracking secondary particles (solid lines) created in ντ CC interactions
increases the runtime as the number of particles to propagate increases. Each point
represents the average runtime from a simulation including 106 events on a single
CPU.

than the decay length. This has potential applications for recently
proposed indirect searches of ultra-high-energy neutrinos by look-
ing for PeV neutrinos through the Earth [24] using large current
and next-generation ice or water Cherenkov detectors, such as
IceCube-Gen2 [20]. Within PROPOSAL, there is also an option to
treat energy losses that are below a certain threshold continuously.
We find that setting this parameter to vcut=1e-3, meaning all
energy losses that represent less than that fraction of the initial
particle energy are treated without stochasticity, achieves an op-
timal runtime while not neglecting any of the important features
that are a result of treating energy losses stochastically.

The first time that a user runs the code, there may be additional
overhead while PROPOSAL calculates energy loss distributions for
charged leptons. However, these tables are stored so that future it-
erations can run more efficiently. Once the user has run the code at
least once and the PROPOSAL energy loss tables are stored, then
current runtimes allow users to propagate approximately one mil-
lion initial EeV ντ through Earth’s diameter in approximately eight
hours with one CPU. For an initial energy of one PeV, one million
ντ take approximately one hour, depending on the incident angle.
We also found that this runtime varied marginally from machine
to machine, and the runtimes in Fig. 3 and the numbers quoted
thus far were all found using a heterogeneous distributed cluster
of Linux machines. The code was also tested on a machine running
MacOS with the Apple M1 chip, where the runtimes were found to
extremely comparable to those presented above. For example, 104
ντ with initial energy of one EeV and θ = 0◦ with no secondaries
took 0.0127 s per event, on average, and those in the figure above
took 0.0124 s per event, on average.

In terms of memory, TauRunner can be run on most modern
machines, requiring only a few GB of RAM to run. For example,
propagating 104 ντ through the Earth with initial energies of an
EeV requires only approximately 1 GB of memory when tracking
only ντ and τ , and approximately 3 GB when tracking all parti-
cles. The vast majority of this memory is allocated for calculating
energy losses with PROPOSAL, e.g. for various trajectories through
the Earth and for various initial energies, we found that ∼ 50 −90%
of the memory usage was due to PROPOSAL. Because most of the
memory is due to overhead from the energy losses, there is only a
marginal increase in memory usage from propagating many more
6

Fig. 4. Outgoing ντ distributions for an E−1 power-law flux. Shown are the outgoing
tau neutrino energy fraction as a function of the primary ντ flux injected as an
E−1 power-law from 100 TeV to 10 EeV, shown in slices of equal solid angle in the
Northern Sky. The dashed line indicates the median outgoing energy.

particles, e.g. two sample iterations of the code both took between
2.5 GB and 3.0 GB when propagating 104 or 106 ντ through the
Earth with the same initial energies and angles.

5. Outputs and comparisons

The results of several tau neutrino simulation sets are illus-
trated in this section. Fig. 4 shows column-normalized distribu-
tions of outgoing neutrino energy fraction as a function of initial
neutrino energy. Interestingly, the dashed line showing the median
outgoing tau neutrino energy fraction varies with a constant slope,
corresponding to the energy at which Earth becomes transparent.
That energy is roughly 10 PeV at the horizon (top left), O(1) PeV
in the mantle (top right and bottom left), and O(10) TeV through
the core (bottom right). This means that for a large fraction of the
Northern Sky, tau neutrinos pile-up and escape at energies where
the atmospheric neutrino background is relatively low. This idea
is also made clear when illustrated for a monochromatic flux. In
Fig. 5, EeV tau neutrinos are propagated and the outgoing energies
are plotted as a function of nadir angle. A similar feature can be
seen, where a majority of neutrinos in this simulation escape with
energy above 100 TeV.

TauRunner has also been compared to several publicly avail-
able packages that perform similar tasks. A summary of the various
tested packages and their features is shown in Table 1. Besides
TauRunner, only NuPropEarth offers a full solution in the case
of tau neutrinos. To illustrate this, we show in Fig. 6 the output of
both packages for an injected monochromatic flux of tau neutrinos
at 1010 GeV and one degree below the horizon. For secondary taus
and tau neutrinos, the two packages show excellent agreement. We
note that comparisons with NuPropEarth use the trunk version
of the code, which has a new treatment for charged particle propa-
gation using PROPOSAL instead of TAUSIC. Secondary anti-muon
and -electron neutrino distributions show slight disagreement in
the tails, likely due to different tau polarization treatments. These
differences are still being investigated, and will be addressed in an
upcoming work.

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422

1
2
3

4

1
2
3
4

1

1

1

Fig. 5. EeV tau neutrinos in Earth. Median outgoing energies of secondary tau neutri-
nos shown as a function of nadir angle. Also, 68% and 90% probability contours for
outgoing energies are included. The feature at approximately cosθ of 0.8 is caused
by the core.

Fig. 6. A monochromatic flux of tau neutrinos. Outgoing particle energy distributions
for a fixed angle and energy. We include secondary anti-electron and -muon neu-
trinos, as well as charged taus. TauRunner shows good agreement with NuPro-
pEarth. This set assumes Earth as a body with a 4 km layer of water.

Fig. 7. Charged tau lepton exit probability. Different colors correspond to four different
monochromatic neutrino energies. The emergence angle is measured with respect to
horizon. The TauRunner prediction (solid line) is compared to NuTauSim, NuPro-
pEarth, and nuPyProp, which are shown in different linestyles.

Fig. 7 shows a comparison of the charged tau exit probability in
Earth as a function of nadir angle. P τ

exit is the probability that an
incoming neutrino will exit Earth as a charged tau. This quantity
is especially relevant for future neutrino observatories hoping to
detect Earth-skimming tau neutrinos. In that scenario, exiting taus
make up the bulk of the expected signal. TauRunner again shows
great agreement overall with other packages.
7

CLONE_DIR=/path/to/clone/directory
cd $CLONE_DIR
git clone https://github.com/icecube/TauRunner.git && cd

TauRunner
pip3 install -e .

Listing 1: Installing TauRunner using pip3 with access to source
files.

CLONE_DIR=/path/to/clone/directory
cd $CLONE_DIR
git clone https://github.com/icecube/TauRunner.git
export PYTHONPATH=$PYTHONPATH:$CLONE_DIR/TauRunner

Listing 2: Installing TauRunner from source.

6. Examples

In this section, we show examples which illustrate many of
the capabilities of TauRunner. TauRunner can be run from the
command line or imported as a package. When a feature can be
used via both interfaces, we provide an example for each.

6.1. Installation

TauRunner can be installed using pip3 by running:
pip3 install taurunner

This will also install any required dependencies, which include
numpy [58], scipy [59], and PROPOSAL [36].

Furthermore, certain use cases may require access to the source
code, which can be downloaded from the TauRunner GitHub. Af-
ter obtaining the source code, one can install the source code with
the package manager pip3, while allowing the user to make ed-
its to the source code without having to reinstall the package (see
Listing 1).

Alternatively, for those that do not use the pip3 package man-
ager, one can install all of the dependencies listed in the re-
quirements.txt file included on GitHub, and then clone the
repository and add the base directory to the PYTHONPATH vari-
able, as shown in Listing 2.

6.2. Monochromatic through Earth

Here we give an example of how to use the most fundamental
functionality of TauRunner: propagating a monochromatic flux
of neutrinos at a fixed energy through a body at a fixed angle (see
Listing 3).

If you are using the source code installation, you may also
achieve this same effect from the command line in the following
manner:

python main.py -n 1000 -e 1e19 -t 89 --xs CSMS -s 7 --save
/path/to/outdir/output.npy

The --save flag tells the program where to save the output. If
this is not specified, the output will be printed as a table.

6.3. Isotropic flux through Earth with power law distribution

TauRunner also allows the user to sample initial neutrino
energies from a power law distribution. For this, the user must
provide bounds on the minimum and maximum allowed energies.
Furthermore, the user may sample incidence angles to simulate a
isotropic flux. We demonstrate bot of these features in the exam-
ple shown in Listing 4.

This may also be accomplished via the command line interface
by running:
python main.py -n 1000 -e -2 --e_min 1e15 --e_max 1e21 -t

range --th_min 0 --th_max 90 -s 7 --xs CSMS

https://github.com/icecube/TauRunner

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422

1
2
3
4
5
6

7
8
9

10
11
12
13
14

15
16

17
18
19
20
21
22
23
24
25
26
27
28

1

1

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

1

import numpy as np

from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000 # number of events to simulate
eini = 1e19 # initial energy in GeV
theta = 89.0 # incidence angle (nadir)
pid = 16 # PDG MC Encoding particle ID (nutau)
xs_model = "CSMS" # neutrino cross section model

Earth = construct_earth(layers=[(4., 1.0)]) # Make Earth
object with 4km water layer

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini) # Return array of

initial energies in eV
thetas = make_initial_thetas(nevents, theta)

tau_prop = make_propagator(pid, Earth)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand,

)

Listing 3: Propagating a monochromatic flux from a single angle. Exam-
ple of using an independent script to propagate a monochromatic
flux of neutrinos with initial energy Eν = 1010 GeV from a nadir
angle of 89◦ , i.e. one degree below the horizon.

6.4. Custom flux through Earth

The user may also input custom spectra to sample from. These
should be given to TauRunner as pickled splines of the flux’s cu-
mulative density function. An example on how to construct these
splines in the appropriate format is given in Appendix A. The de-
fault TauRunner distribution includes splines of different GZK
models. In this example, we show how to sample energies accord-
ing to the flux predicted in [60] (see Listing 5).

This may also be accomplished using the command line inter-
face by running:

python main.py -n 1000 -e ./resources/ahlers2010_cdf_spline
.pkl -t range --th_min 0 --th_max 90 -s 7 --xs CSMS

6.5. Radial trajectory

Besides the chord trajectory, which simulates neutrinos passing
through a body from one side to the other, TauRunner provides
a radial trajectory, which simulates neutrinos originating from the
center of a Body. To use this, one need only modify the call
to the make_tracks function. Note that the theta argument
which was specified previously has no bearing on this, but must
be passed due to implementation issues (see Listing 6).

This can also be accomplished from the command line by run-
ning:

python main.py -n 1000 -e 1e19 -t 89 --xs CSMS -s 7 --track
radial

6.6. Sun

In addition to the Earth, TauRunner allows for propagation in
the Sun. TauRunner includes high- and low-metallicity Suns, and
a user may provide their own solar model. We include an example
8

import numpy as np

from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000 # number of events to simulate
pid = 16
xs_model = "CSMS"
no_secondaries = True

Earth = construct_earth(layers=[(4., 1.0)])
xs = CrossSections(xs_model)
rand = np.random.RandomState(seed=7)

Sample power-law with index -2 between 1e6 GeV and 1e12
GeV

pl_exp = -2 # power law exponent
e_min = 1e15 # Minimum energy to sample in eV
e_max = 1e21 # Maximum energy to sample in eV
energies = make_initial_e(nevents,

pl_exp,
e_min=e_max,
e_max=e_min,
rand=rand

)

Sample uniform in solid angle over hemisphere
th_min = 0 # Minimum nadir angle to sample from
th_max = 90 # Maximum nadir angle to sample from
thetas = make_initial_thetas(nevents,

(th_min, th_max),
rand=rand

)

tracks = make_tracks(thetas)
tau_prop = make_propagator(pid, Earth)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand,
no_secondaries=no_secondaries

)

Listing 4: Multiangle injection with energies drawn from a powerlaw
distribution. Example of propagating a flux of neutrinos with initial
energies sampled from a power law with incidence angles uni-
formly sampled over a hemisphere.

of the form that these solar models should take in Appendix C (see
Listing 7).

The same result may be achieved from the command line by
running;

python main.py -n 1000 -e 2.4e17 -t 45 -s 7 --body HZ_Sun
--xs dipole

6.7. Constant slab

The user may use the radial track to propagate neutrinos
from a ‘slab’ of material of a constant density. This may be done by
making a Body object on the fly in the manner shown in Listing 8.

6.8. Layered slab

The constant density slab may be generalized to a slab of multi-
ple layers. As mentioned in Sec. 3.2, the densities in each layer may
be positive scalars, unary functions which return positive scalars,
or a potentially mixed list of such objects. In this example, we
show how to accomplish this latter option (see Listing 9).

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422

1
2
3
4
5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

1
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import numpy as np

import taurunner as tr
from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000
pid = 16
xs_model = "CSMS"

Earth = construct_earth(layers=[(4., 1.0)])
xs = CrossSections(xs_model)

tau_prop = make_propagator(pid, Earth)
rand = np.random.RandomState(seed=7)

Sample from pickled CDF
pkl_f = f’{tr.__path__[0]}/resources/ahlers2010_test.pkl

’ # Path to pickle file with CDF to sample from
energies = make_initial_e(nevents,

pkl_f,
rand=rand

)

Sample uniform in solid angle over hemisphere
th_min = 0 # Minimum nadir angle to sample from
th_max = 90 # Maximum nadir angle to sample from
thetas = make_initial_thetas(nevents,

(th_min, th_max),
rand=rand

)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand

)

Listing 5: Propagating a flux drawn from a provided cumulative dis-
tribution function (CDF). Example of propagating ντ with energies
drawn from a user-provided flux. TauRunner provides a few CDFs
for the user, or custom CDFs may be built.

7. Conclusion

In this article, we have introduced a new package to propagate
high-energy neutrinos in a variety of scenarios. Our implemen-
tation includes the dominant neutrino-propagation effects and is
valid in the energy range of current and proposed neutrino tele-
scopes. Additionally, in our performance section, we have com-
pared our package with other state-of-the-art solutions to this
problem and find them in good agreement where they overlap.
Finally, the TauRunner package is designed to be extendable by
the user, by either providing improved or altered physics inputs
or constructing new geometries, giving the user the ability to ex-
tend the package functionality beyond the examples provided in
this article. The authors hope that this work will encourage fur-
ther development of publicly available physics software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We acknowledge useful discussions with Joseph Farchione, Al-
fonso Garcia-Soto, Austin Lee Cummings, Andres Romero-Wolf, and
9

import numpy as np

from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

nevents = 5000
eini = 1e19
pid = 16
xs_model = "CSMS"

Earth = construct_earth(layers=[(4., 1.0)]) # Make Earth
object with 4km water layer

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = np.zeros(nevents)

tau_prop = make_propagator(pid, Earth)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand,

)

Listing 6: Example of propagating ντ along a radial trajectory. TauRun-
ner allows for arbitrary particle trajectories. This example shows
how to use the radial trajectory, whereas all previous examples
have used the chord trajectory.

import numpy as np
from taurunner.main import run_MC
from taurunner.body import construct_sun
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas, units

nevents = 5000
eini = 1e13 # the sun is opaque at high energies
theta = 10.0
pid = 16
xs_model = "dipole"
solar_model = "HZ_Sun" # Can also be "LZ_Sun"

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)

sun = construct_sun(solar_model)
tau_prop = make_propagator(pid, sun, granularity=0.5)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
sun,
xs,
tau_prop,
rand

)

Listing 7: Propagating ντ through the Sun. Example of how to prop-
agate ντ through a body besides earth.

Kareem Ramadan Hassan Aly Muhammad Farrag. We additionally
thank Hallsie Reno, Sameer Patel, and Diksha Garg for insightful
discussions on tau physics. We further thank Christopher Weaver
for providing updated cross section tables and engaging discus-
sions on non-trivial interpolation problems. We would also like to
thank Gwenhaël de Wasseige for providing the solar models used
in this work. Finally, we would like to give special acknowledgment
to Francis Halzen for his support and discovery of tau regeneration,
which was pivotal to this work. IS, JL, AP, and JV are supported by

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np

from taurunner.body import Body
from taurunner.main import run_MC
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000
eini = 1e15
theta = 0
pid = 14
xs_model = "CSMS"

Make body with density 3.14 g/cm^3 and radius 1000 km
body = Body(3.14, 1e3)

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)

tau_prop = make_propagator(pid, body)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
body,
xs,
tau_prop,
rand,
flavor=pid

)

Listing 8: Propagation of νμ through a constant slab. Although Tau-
Runner only supports spherical bodies, we may use a body of
constant density along with a radial trajectory to propagate a
particle through a slab of constant density. One may create the
slab from the base Body object or use the body.slab object. We
do the former here for pedagogical purposes, but we recommend
using the latter in practice since it has some computational speed
ups.

NSF under grants PLR-1600823 and PHY-1607644 and by the Uni-
versity of Wisconsin Research Council with funds granted by the
Wisconsin Alumni Research Foundation. OV acknowledges support
by the Harvard College Research Program in the fall of 2020. CAA
is supported by the Faculty of Arts and Sciences of Harvard Uni-
versity and the Alfred P. Sloan Foundation.

Appendix A. Constructing CDFs from which to sample

TauRunner offers the user the capability to provide custom
spectra from which to sample initial energies. In this appendix,
we describe the form in which TauRunner expects these spec-
tra, and provide an example of constructing one. These should be
scipy.interpolate.UnivariateSpline objects whose x-
axis is the value of the cumulative density function of the spectra
to sample and whose y-axis is the true neutrino energy in eV.
We now provide an example of constructing these splines. The
.csv file we use for this contains one column of energies in GeV
and a corresponding column of the squared energies times the
number density of the flux in units of GeV. It may be found at
resources/ahlers2010.csv (see Listing 10).

Saving the file in resources is not necessary. The user may
now sample from this distribution by passing the path to the
file as the energy argument in the command line or as the first
argument of the make_initial_e function seen in the exam-
ples. A more detailed example of constructing these splines in
a Jupyter Notebook along with some sanity checks may be
found on our GitHub in the examples folder.
10
import numpy as np

from taurunner.body import Body
from taurunner.main import run_MC
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 1000
eini = 1e15
theta = 0
pid = 16
xs_model = "CSMS"

Make layered body with radius 1,000 km
def density_f(x):

return x**-2/4
densities = [4, density_f, 1, 0.4]
boundaries = [0.25, 0.3, 0.5, 1] # Right hand boundaries of

the layers last boundary should always be 1
body = Body([(d, b) for d, b in zip(densities, boundaries)

], 1e3)

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)

tau_prop = make_propagator(pid, body)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
body,
xs,
tau_prop,
rand

)

Listing 9: Propagation of ντ through a layered slab. We may employ
the same strategy of using a radial trajectory to replicate prop-
agation through a slab to propagate through a slab with varying
properties.

Appendix B. Cross section splines

In this section we give an example of saving cross section
splines in the form required by TauRunner so that the user may
pass their own cross section model if they so choose. The differen-
tial splines should be a scipy.interpolate.RectBivari-
ateSpline object and the total cross section splines should be
a scipy.interpolate.UnivariateSpline object. We will
now work out an example, assuming that we have two .csv files,
one each for total and differential cross sections. In the former
case, we will assume that it has two columns, the first contain-
ing neutrino energies and the second the corresponding total cross
section. In the latter case, we will assume that we have three
columns, the first containing an incoming neutrino energy, the sec-
ond containing convenience variable described in Sec. 3.4, and the
third containing the corresponding differential cross section. All
energy units will be assumed to be GeV and all area units cm2.
In the case of the differential cross section, the values of the con-
venience variable must be the same for each incoming neutrino
energy. As a reminder, TauRunner assumes that the cross section
is the same for all neutrino flavors and thus the user need make
only one set of cross section splines (see Listing 11).

This process would then be repeated for all combinations
of interaction type ∈ [“CC”, “NC”], neutrino type ∈ [“nu”,
“nubar”], and nucleon ∈ [“p”, “n”] for a total of 8 splines. Now
we show a similar example for constructing differential cross sec-
tion splines. TauRunner splines have support down to 1 GeV, and
this number is used internally. While it is not strictly necessary to
have support down to this energy, it is possible that TauRunner

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30

31
32
33
34
35
36
37
38
39
40

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26

27

28
29

26

27
28
29

30

31
32
import numpy as np
from scipy.integrate import quad
from scipy.interpolate import UnivariateSpline
import pickle

import taurunner as tr
from taurunner.utils import units

csv of a benchmark GZK flux
infile = f’{tr.__path__[0]}/resources/ahlers2010.csv’
tab_data = np.genfromtxt(infile, delimiter = ’,’)
gzk_e = tab_data[0]*units.GeV # Convert energies to eV
gzk_dnde = tab_data[0]*units.GeV

gzk_mine = gzk_en[0]
gzk_maxe = gzk_en[-1]

Splining in logspace recommended
gzk_spline = UnivariateSpline(np.log(gzk_en), np.log(

gzk_flux/gzk_en**2), k = 4, s=1e-2)

integrand = lambda E: np.exp(gzk_spline(np.log(E)))

integrating in logspace also recommended
norm, _ = quad(lambda x: np.exp(x)*integrand(np.exp(x)), np

.log(gzk_min), np.log(gzk_max))

pdf = lambda E: integrand(E) / norm

Make and spline CDF
cdf_energies = np.logspace(np.log10(gzk_min), np.log10(

gzk_max*1.1), 500) # Maybe more knots than necessary
but more support is better

cdf = np.array([integrate.quad(lambda x: np.exp(x)*
probability(np.exp(x)), np.log(gzk_min), np.log(y))[0]
for y in cdf_energies])

Make sure this in invertible
mask = np.where(np.logical_and(cdf>0, cdf<=1))[0]
cdf = cdf[mask]
cdf_energies = cdf_energies[mask]
cdf_spl = UnivariateSpline(cdf, cdf_energies)

Save the spline as a pickle file
out_f = f’{tr.__path__[0]}/resources/ahlers2010.pkl’
with open(out_f, ’wb’) as pkl_f:

pkl.dump(cdf_spl, pkl_f)

Listing 10: Constructing custom flux files in the format required by
TauRunner.

may evaluate the splines in this regime, and thus understanding
the behavior of splines in this regime is recommended.

import numpy as np
from scipy.interpolate import RectBivariateSpline
import pickle

import taurunner as tr
from taurunner.utils import units

model_name = "my_model"
interaction = "NC" # Neutral current
nucleon = "n" # neutron
nutype = "nu" # neutrino

csv containing the neutrino neutron NC dsigma/de
tot_xs_path = f"/path/to/{nutype}_{nucleon}_{interaction}

_dsde.csv"

e_in = np.genfromtxt(tot_xs_path, delimiter=",")[0]
z = np.genfromtxt(tot_xs_path, delimiter=",")[1]
dsde = np.genfromtxt(tot_xs_path, delimiter=",")[2]

Convert to natural units
e_in = e_in*units.GeV
dsde = dsde*units.cm**2/units.GeV
dsdx = dsde*e_in

Spline in logspace
11
import numpy as np
from scipy.interpolate import UnivariateSpline
import pickle

import taurunner as tr
from taurunner.utils import units

model_name = "my_model"
interaction = "CC" # Charged current
nucleon = "p" # proton
nutype = "nubar" # antineutrino

csv containing the anti-neutrino proton CC xs
tot_xs_path = f"/path/to/{nutype}_{nucleon}_{interaction}

_xs.csv"
e = np.genfromtxt(tot_xs_path, delimiter=",")[0]
xs = np.genfromtxt(tot_xs_path, delimiter=",")[1]

Convert to natural units
e = e*units.GeV
xs = xs*units.cm**2

Spline in logspace
xs_spl = UnivariateSpline(np.log(e), np.log(xs))

Save the spline as a pickle file
Splines must follow this naming convention and be in this

directory
out_f = f"{tr.__path__[0]}/resources/cross_section_tables/{

model_name}_{nutype}_{nucleon}_sigma_{interaction}.pkl
"

with open(out_f, "wb") as pkl_f:
pkl.dump(xs_spl, pkl_f)

Listing 11: Example of constructing differential cross section
splines for TauRunner.

xs_spl = RectBivariateSpline(np.log(np.unique(e_in)), z, np
.log(dsdx))

Save the spline as a pickle file
Splines must follow this naming convention and be in this

directory
out_f = f"{tr.__path__[0]}/resources/cross_section_tables/{

model_name}_{nutype}_{nucleon}_dsde_{interaction}.pkl"
with open(out_f, "wb") as pkl_f:

pkl.dump(xs_spl, pkl_f)

As in the case of the total cross section, this process must be
repeated for all combinations of interaction type ∈ [“CC”, “NC”],
neutrino type ∈ [“nu”, “nubar”], and nucleon ∈ [“p”, “n”] for
a total of 8 splines. This new model may then be used by passing
“my_model” when initializing the CrossSection object.

Appendix C. Solar model format

TauRunner expects solar models to have at minimum three
columns, one containing the radius in units of the solar radius,
one containing the corresponding mass density in g/cm3, and the
last containing the corresponding electron density in N−1

A cm−3.
These values should not be comma separated and lines beginning
with # will be ignored as comments. Any additional columns will
be ignored by TauRunner, allowing the user to add additional
columns if it is useful, for e.g. a column containing the proton frac-
tion to pass to the body.

References

[1] E. Vitagliano, I. Tamborra, G. Raffelt, Rev. Mod. Phys. 92 (2020) 45006, https://
doi .org /10 .1103 /RevModPhys .92 .045006, arXiv:1910 .11878.

[2] J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84 (2012) 1307–1341, https://doi .
org /10 .1103 /RevModPhys .84 .1307, arXiv:1305 .7513.

[3] G. Barenboim, P.B. Denton, S.J. Parke, C.A. Ternes, Phys. Lett. B 791 (2019)
351–360, https://doi .org /10 .1016 /j .physletb .2019 .03 .002, arXiv:1902 .00517.

[4] C.A. Argüelles, J. Salvado, C.N. Weaver, Comput. Phys. Commun. 255 (2020)
107405, https://doi .org /10 .1016 /j .cpc .2020 .107405.

https://doi.org/10.1103/RevModPhys.92.045006
https://doi.org/10.1103/RevModPhys.92.045006
https://doi.org/10.1103/RevModPhys.84.1307
https://doi.org/10.1103/RevModPhys.84.1307
https://doi.org/10.1016/j.physletb.2019.03.002
https://doi.org/10.1016/j.cpc.2020.107405

I. Safa, J. Lazar, A. Pizzuto et al. Computer Physics Communications 278 (2022) 108422
[5] P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, Comput. Phys. Com-
mun. 177 (2007) 432–438, https://doi .org /10 .1016 /j .cpc .2007.05 .004, arXiv:hep -
ph /0701187.

[6] R.G. Calland, A.C. Kaboth, D. Payne, J. Instrum. 9 (2014) P04016, https://doi .org /
10 .1088 /1748 -0221 /9 /04 /P04016, arXiv:1311.7579.

[7] M. Wallraff, C. Wiebusch, Calculation of oscillation probabilities of atmospheric
neutrinos using nuCraft, arXiv:1409 .1387, 2014.

[8] C.A. Argüelles, B.J.P. Jones, Phys. Rev. Res. 1 (2019) 033176, https://doi .org /10 .
1103 /PhysRevResearch .1.033176, arXiv:1904 .10559.

[9] Prob3++ software for computing three flavor neutrino oscillation probabilities,
http://www.phy.duke .edu /~raw22 /public /Prob3 ++/, 2012.

[10] C.A. Argüelles, J. Salvado, C.N. Weaver, nuSQuIDS, https://github .com /arguelles /
nuSQuIDS, 2015.

[11] M.G. Aartsen, et al., J. Instrum. 12 (03) (2017) P03012, https://doi .org /10 .1088 /
1748 -0221 /12 /03 /P03012, arXiv:1612 .05093.

[12] R. Gandhi, C. Quigg, M.H. Reno, I. Sarcevic, Phys. Rev. D 58 (1998) 093009,
https://doi .org /10 .1103 /PhysRevD .58 .093009, arXiv:hep -ph /9807264.

[13] A. Gazizov, M.P. Kowalski, Comput. Phys. Commun. 172 (2005) 203–213,
https://doi .org /10 .1016 /j .cpc .2005 .03 .113, arXiv:astro -ph /0406439.

[14] T.R. De Young, IceTray: a software framework for IceCube, https://doi .org /10 .
5170 /CERN -2005 -002 .463, http://cds .cern .ch /record /865626, 2005.

[15] S. Yoshida, R. Ishibashi, H. Miyamoto, Phys. Rev. D 69 (2004) 103004, https://
doi .org /10 .1103 /PhysRevD .69 .103004, arXiv:astro -ph /0312078.

[16] A.C. Vincent, C.A. Argüelles, A. Kheirandish, J. Cosmol. Astropart. Phys. 11
(2017) 012, https://doi .org /10 .1088 /1475 -7516 /2017 /11 /012, arXiv:1706 .09895.

[17] S. Yoshida, M. Meier, ShigeruYoshida/JULIeT: first official release with a DOI,
https://doi .org /10 .5281 /zenodo .4018117, 2020.

[18] S. Ritz, D. Seckel, Nucl. Phys. B 304 (1988) 877–908, https://doi .org /10 .1016 /
0550 -3213(88)90660 -8.

[19] F. Halzen, D. Saltzberg, Phys. Rev. Lett. 81 (1998) 4305–4308, https://doi .org /
10 .1103 /PhysRevLett .81.4305, arXiv:hep -ph /9804354.

[20] M.G. Aartsen, et al., J. Phys. G 48 (6) (2021) 060501, https://doi .org /10 .1088 /
1361 -6471 /abbd48, arXiv:2008 .04323.

[21] A.V. Olinto, et al., J. Cosmol. Astropart. Phys. 06 (2021) 007, https://doi .org /10 .
1088 /1475 -7516 /2021 /06 /007, arXiv:2012 .07945.

[22] A. Garcia, R. Gauld, A. Heijboer, J. Rojo, J. Cosmol. Astropart. Phys. 09 (2020)
025, https://doi .org /10 .1088 /1475 -7516 /2020 /09 /025, arXiv:2004 .04756.

[23] S. Adrian-Martinez, et al., J. Phys. G 43 (8) (2016) 084001, https://doi .org /10 .
1088 /0954 -3899 /43 /8 /084001, arXiv:1601.07459.

[24] I. Safa, A. Pizzuto, C.A. Argüelles, F. Halzen, R. Hussain, A. Kheirandish, J. Van-
denbroucke, J. Cosmol. Astropart. Phys. 01 (2020) 012, https://doi .org /10 .1088 /
1475 -7516 /2020 /01 /012, arXiv:1909 .10487.

[25] O. Vazquez, I. Safa, J. Lazar, A. Pizzuto, C. Arguelles, A. Kheirandish, J. Vanden-
broucke, PoS ICRC2021 (2021) 1030, https://doi .org /10 .22323 /1.395 .1030.

[26] P.W. Gorham, et al., Phys. Rev. Lett. 117 (7) (2016) 071101, https://doi .org /10 .
1103 /PhysRevLett .117.071101, arXiv:1603 .05218.

[27] P.W. Gorham, et al., Phys. Rev. Lett. 121 (16) (2018) 161102, https://doi .org /10 .
1103 /PhysRevLett .121.161102, arXiv:1803 .05088.

[28] R. Abbasi, et al., PoS ICRC2021 (2021) 1170, https://doi .org /10 .22323 /1.395 .
1170.

[29] M. Agostini, et al., Nat. Astron. 4 (10) (2020) 913–915, https://doi .org /10 .1038 /
s41550 -020 -1182 -4, arXiv:2005 .09493.

[30] M. Sasaki, T. Kifune, JPS Conf. Proc. 15 (2017) 011013, https://doi .org /10 .7566 /
JPSCP.15 .011013.

[31] A. Romero-Wolf, et al., in: Latin American Strategy Forum for Research Infras-
tructure, 2020, arXiv:2002 .06475.

[32] S. Patel, et al., PoS ICRC2021 (2021) 1203, https://doi .org /10 .22323 /1.395 .1203,
arXiv:2109 .08198.

[33] J. Alvarez-Muñiz, W.R. Carvalho, A.L. Cummings, K. Payet, A. Romero-Wolf, H.
Schoorlemmer, E. Zas, Phys. Rev. D 97 (2) (2018) 023021, https://doi .org /10 .

1103 /PhysRevD .97.023021, Erratum: Phys. Rev. D 99 (2019) 069902, arXiv:1707.
00334.

[34] M.C. Gonzalez-Garcia, F. Halzen, M. Maltoni, Phys. Rev. D 71 (2005) 093010,
https://doi .org /10 .1103 /PhysRevD .71.093010, arXiv:hep -ph /0502223.

[35] J.F. Beacom, P. Crotty, E.W. Kolb, Phys. Rev. D 66 (2002) 021302, https://doi .org /
10 .1103 /PhysRevD .66 .021302, arXiv:astro -ph /0111482.

[36] J.H. Koehne, K. Frantzen, M. Schmitz, T. Fuchs, W. Rhode, D. Chirkin, J. Becker,
Comput. Phys. Commun. 184 (2013) 2070–2090, https://doi .org /10 .1016 /j .cpc .
2013 .04 .001.

[37] S.I. Dutta, M.H. Reno, I. Sarcevic, Phys. Rev. D 66 (2002) 077302, https://doi .
org /10 .1103 /PhysRevD .66 .077302, arXiv:hep -ph /0207344.

[38] P. Zyla, et al., Rev. Part. Phys. PTEP 2020 (8) (2020) 083C01, https://doi .org /10 .
1093 /ptep /ptaa104.

[39] A.A. Aguilar-Arevalo, et al., Phys. Rev. D 81 (2010) 092005, https://doi .org /10 .
1103 /PhysRevD .81.092005, arXiv:1002 .2680.

[40] M. Tzanov, et al., Phys. Rev. D 74 (2006) 012008, https://doi .org /10 .1103 /
PhysRevD .74 .012008, arXiv:hep -ex /0509010.

[41] P. Vogel, J.F. Beacom, Phys. Rev. D 60 (1999) 053003, https://doi .org /10 .1103 /
PhysRevD .60 .053003, arXiv:hep -ph /9903554.

[42] A. Kurylov, M.J. Ramsey-Musolf, P. Vogel, Phys. Rev. C 67 (2003) 035502,
https://doi .org /10 .1103 /PhysRevC .67.035502, arXiv:hep -ph /0211306.

[43] M. Agostini, et al., Nature 562 (7728) (2018) 505–510, https://doi .org /10 .1038 /
s41586 -018 -0624 -y.

[44] Z. Li, et al., Phys. Rev. D 98 (5) (2018) 052006, https://doi .org /10 .1103 /
PhysRevD .98 .052006, arXiv:1711.09436.

[45] M.G. Aartsen, et al., Nature 551 (2017) 596–600, https://doi .org /10 .1038 /
nature24459, arXiv:1711.08119.

[46] R. Abbasi, et al., arXiv:2011.03560, https://doi .org /10 .1103 /PhysRevD .104 .
022001.

[47] Amanda Cooper-Sarkar, Philipp Mertsch, Subir Sarkar, J. High Energy Phys. 08
(2011) 042, https://doi .org /10 .1007 /JHEP08(2011)042, arXiv:1106 .3723.

[48] M. Froissart, Phys. Rev. 123 (1961) 1053–1057, https://doi .org /10 .1103 /PhysRev.
123 .1053.

[49] C.A. Argüelles, F. Halzen, L. Wille, M. Kroll, M.H. Reno, Phys. Rev. D 92 (7)
(2015) 074040, https://doi .org /10 .1103 /PhysRevD .92 .074040, arXiv:1504 .06639.

[50] M.M. Block, F. Halzen, Phys. Rev. Lett. 107 (2011) 212002, https://doi .org /10 .
1103 /PhysRevLett .107.212002, arXiv:1109 .2041.

[51] L. Montanet, et al., Phys. Rev. D 50 (1994) 1173–1823, https://doi .org /10 .1103 /
PhysRevD .50 .1173.

[52] A.M. Dziewonski, D.L. Anderson, Phys. Earth Planet. Inter. 25 (1981) 297–356,
https://doi .org /10 .1016 /0031 -9201(81)90046 -7.

[53] G. de Wasseige, personal communication, August 2020.
[54] M.M. Block, L. Durand, P. Ha, Phys. Rev. D 89 (2014) 094027.
[55] A. Neronov, D.V. Semikoz, L.A. Anchordoqui, J. Adams, A.V. Olinto, Phys. Rev. D

95 (2) (2017) 023004, https://doi .org /10 .1103 /PhysRevD .95 .023004, arXiv:1606 .
03629.

[56] J. Álvarez-Mu niz, et al., Sci. China, Phys. Mech. Astron. 63 (1) (2020) 219501,
https://doi .org /10 .1007 /s11433 -018 -9385 -7, arXiv:1810 .09994.

[57] J.A. Aguilar, et al., The next-generation radio neutrino observatory – multi-
messenger neutrino astrophysics at extreme energies, arXiv:1907.12526, 2019.

[58] S. van der Walt, S.C. Colbert, G. Varoquaux, Comput. Sci. Eng. 13 (2) (2011)
22–30, https://doi .org /10 .1109 /MCSE .2011.37, arXiv:1102 .1523.

[59] P. Virtanen, et al., Nat. Methods 17 (2020) 261, https://doi .org /10 .1038 /s41592 -
019 -0686 -2, arXiv:1907.10121.

[60] M. Ahlers, L.A. Anchordoqui, M.C. Gonzalez-Garcia, F. Halzen, S. Sarkar, As-
tropart. Phys. 34 (2010) 106–115, https://doi .org /10 .1016 /j .astropartphys .2010 .
06 .003, arXiv:1005 .2620.
12

https://doi.org/10.1016/j.cpc.2007.05.004
https://doi.org/10.1088/1748-0221/9/04/P04016
https://doi.org/10.1088/1748-0221/9/04/P04016
http://refhub.elsevier.com/S0010-4655(22)00141-2/bib7BDB64A5AFE4A3289ABF771BFE798832s1
http://refhub.elsevier.com/S0010-4655(22)00141-2/bib7BDB64A5AFE4A3289ABF771BFE798832s1
https://doi.org/10.1103/PhysRevResearch.1.033176
https://doi.org/10.1103/PhysRevResearch.1.033176
http://www.phy.duke.edu/~raw22/public/Prob3++/
https://github.com/arguelles/nuSQuIDS
https://github.com/arguelles/nuSQuIDS
https://doi.org/10.1088/1748-0221/12/03/P03012
https://doi.org/10.1088/1748-0221/12/03/P03012
https://doi.org/10.1103/PhysRevD.58.093009
https://doi.org/10.1016/j.cpc.2005.03.113
https://doi.org/10.5170/CERN-2005-002.463
https://doi.org/10.5170/CERN-2005-002.463
http://cds.cern.ch/record/865626
https://doi.org/10.1103/PhysRevD.69.103004
https://doi.org/10.1103/PhysRevD.69.103004
https://doi.org/10.1088/1475-7516/2017/11/012
https://doi.org/10.5281/zenodo.4018117
https://doi.org/10.1016/0550-3213(88)90660-8
https://doi.org/10.1016/0550-3213(88)90660-8
https://doi.org/10.1103/PhysRevLett.81.4305
https://doi.org/10.1103/PhysRevLett.81.4305
https://doi.org/10.1088/1361-6471/abbd48
https://doi.org/10.1088/1361-6471/abbd48
https://doi.org/10.1088/1475-7516/2021/06/007
https://doi.org/10.1088/1475-7516/2021/06/007
https://doi.org/10.1088/1475-7516/2020/09/025
https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1088/0954-3899/43/8/084001
https://doi.org/10.1088/1475-7516/2020/01/012
https://doi.org/10.1088/1475-7516/2020/01/012
https://doi.org/10.22323/1.395.1030
https://doi.org/10.1103/PhysRevLett.117.071101
https://doi.org/10.1103/PhysRevLett.117.071101
https://doi.org/10.1103/PhysRevLett.121.161102
https://doi.org/10.1103/PhysRevLett.121.161102
https://doi.org/10.22323/1.395.1170
https://doi.org/10.22323/1.395.1170
https://doi.org/10.1038/s41550-020-1182-4
https://doi.org/10.1038/s41550-020-1182-4
https://doi.org/10.7566/JPSCP.15.011013
https://doi.org/10.7566/JPSCP.15.011013
http://refhub.elsevier.com/S0010-4655(22)00141-2/bib192F3F7AFDC172AE60163C6F5F1E035Bs1
http://refhub.elsevier.com/S0010-4655(22)00141-2/bib192F3F7AFDC172AE60163C6F5F1E035Bs1
https://doi.org/10.22323/1.395.1203
https://doi.org/10.1103/PhysRevD.97.023021
https://doi.org/10.1103/PhysRevD.97.023021
https://doi.org/10.1103/PhysRevD.71.093010
https://doi.org/10.1103/PhysRevD.66.021302
https://doi.org/10.1103/PhysRevD.66.021302
https://doi.org/10.1016/j.cpc.2013.04.001
https://doi.org/10.1016/j.cpc.2013.04.001
https://doi.org/10.1103/PhysRevD.66.077302
https://doi.org/10.1103/PhysRevD.66.077302
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.81.092005
https://doi.org/10.1103/PhysRevD.81.092005
https://doi.org/10.1103/PhysRevD.74.012008
https://doi.org/10.1103/PhysRevD.74.012008
https://doi.org/10.1103/PhysRevD.60.053003
https://doi.org/10.1103/PhysRevD.60.053003
https://doi.org/10.1103/PhysRevC.67.035502
https://doi.org/10.1038/s41586-018-0624-y
https://doi.org/10.1038/s41586-018-0624-y
https://doi.org/10.1103/PhysRevD.98.052006
https://doi.org/10.1103/PhysRevD.98.052006
https://doi.org/10.1038/nature24459
https://doi.org/10.1038/nature24459
https://doi.org/10.1103/PhysRevD.104.022001
https://doi.org/10.1103/PhysRevD.104.022001
https://doi.org/10.1007/JHEP08(2011)042
https://doi.org/10.1103/PhysRev.123.1053
https://doi.org/10.1103/PhysRev.123.1053
https://doi.org/10.1103/PhysRevD.92.074040
https://doi.org/10.1103/PhysRevLett.107.212002
https://doi.org/10.1103/PhysRevLett.107.212002
https://doi.org/10.1103/PhysRevD.50.1173
https://doi.org/10.1103/PhysRevD.50.1173
https://doi.org/10.1016/0031-9201(81)90046-7
http://refhub.elsevier.com/S0010-4655(22)00141-2/bib89CA4C804830E29A09D2CF1B7B5BB962s1
https://doi.org/10.1103/PhysRevD.95.023004
https://doi.org/10.1007/s11433-018-9385-7
http://refhub.elsevier.com/S0010-4655(22)00141-2/bibE1B0BF2F5FF5F52F35E5FAED5FF3F9FDs1
http://refhub.elsevier.com/S0010-4655(22)00141-2/bibE1B0BF2F5FF5F52F35E5FAED5FF3F9FDs1
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.astropartphys.2010.06.003
https://doi.org/10.1016/j.astropartphys.2010.06.003

	TauRunner: A public Python program to propagate neutral and charged leptons
	1 Introduction
	2 Algorithm overview
	2.1 Algorithm description
	2.2 Lepton interactions and decays

	3 Structure of the code
	3.1 Particle
	3.2 Track
	3.3 Body
	3.4 CrossSection
	3.5 PROPOSAL
	3.6 Conventions
	3.7 Output

	4 Performance
	5 Outputs and comparisons
	6 Examples
	6.1 Installation
	6.2 Monochromatic through Earth
	6.3 Isotropic flux through Earth with power law distribution
	6.4 Custom flux through Earth
	6.5 Radial trajectory
	6.6 Sun
	6.7 Constant slab
	6.8 Layered slab

	7 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Constructing CDFs from which to sample
	Appendix B Cross section splines
	Appendix C Solar model format
	References

