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In the past decade IceCube’s observations have revealed a flux of astrophysical neutrinos extending 
to 107 GeV. The forthcoming generation of neutrino observatories promises to grant further insight 
into the high-energy neutrino sky, with sensitivity reaching energies up to 1012 GeV. At such high 
energies, a new set of effects becomes relevant, which was not accounted for in the last generation 
of neutrino propagation software. Thus, it is important to develop new simulations which efficiently 
and accurately model lepton behavior at this scale. We present TauRunner, a Python-based package 
that propagates neutral and charged leptons. TauRunner supports propagation between 10 GeV and 
1012 GeV. The package accounts for all relevant secondary neutrinos produced in charged-current tau 
neutrino interactions. Additionally, tau energy losses of taus produced in neutrino interactions are taken
into account, and treated stochastically. Finally, TauRunner is broadly adaptable to divers experimental 
setups, allowing for user-specified trajectories and propagation media, neutrino cross sections, and initial 
spectra.

Program summary
Program title: TauRunner
CPC Library link to program files: https://doi .org /10 .17632 /82nyd9skhj .1
Developer’s repository link: https://github .com /icecube /TauRunner
Licensing provisions: GNU General Public License 3
Programming language: Python
Nature of problem: Propagation of ultra-high energy neutrinos in dense media accounting for various 
effects associated with ντ and τ± energy losses.
Solution method: Monte Carlo methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Most natural and anthropogenic neutrino sources produce neu-
trinos with energies below 1 TeV [1], where the smallness of the 
neutrino-nucleon cross section [2] allows them to freely stream 
through large amounts of column density—the density integrated 
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along the neutrino trajectory. Famously, low-energy solar neutri-
nos produced in nuclear processes in the Sun are not only able 
to escape the dense solar core but also can diametrically traverse 
hundreds of Earths unimpeded. In this energy range, the negligible 
scattering rates imply that the problem of neutrino transport re-
quires only considering the changing of flavors between neutrinos. 
This problem prompted the neutrino community to develop ana-
lytical methods and numerical schemes to compute the neutrino 
oscillation probabilities efficiently [3], e.g. nuSQuIDS [4] among 
others [5–8]. These solutions, currently available through a vari-
ety of software packages and libraries [9,10], are currently used by 
neutrino experiments to extract the neutrino oscillation parame-
ters.

Recently, the construction of gigaton-scale neutrino detectors, 
such as the IceCube Neutrino Observatory [11] in the Antarctic 
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continent, has enabled the observation of neutrinos with ener-
gies as large as 10 PeV. In this high-energy frontier, neutrino os-
cillations can be safely neglected for Earth-traversing neutrinos; 
however, in this regime, the neutrino interaction length becomes 
comparable to or much smaller than Earth’s diameter [12], re-
quiring new solutions to the neutrino transport problem. While 
the first generation of software packages that aimed to address 
this problem [13–15,4,16,17] included the effects of neutrino-
nucleon neutral- and charged-current interactions, they neglected 
secondary neutrinos from lepton charged-current interactions, ex-
cept in the case of tau neutrinos. Tau neutrinos were handled as 
a special case because, as recognized in [18,19], due to the short 
lifetime of the taus, it still carries most of its energy at the time of 
decay yielding high-energy secondary neutrinos. This effect, often 
known as tau regeneration, implies that Earth is less opaque to tau 
neutrinos relative to other flavors.

In these first-generation packages tau regeneration was imple-
mented by using the so-called on-spot tau decay approximation, 
which neglects tau energy losses. Though this approximation sat-
isfies the needs of most current scenarios and experimental set-
tings, next-generation neutrino telescopes aim to reach EeV ener-
gies [20,21]. At these extremely high energies, the taus produced 
in neutrino interactions are sufficiently long-lived that their energy 
losses cannot be neglected. Recently, dedicated software packages 
have been made available to solve this problem in this energy 
regime. However, the bulk of the available solutions neglects the 
stochasticity of tau losses considering only their mean effect. This 
limits their ability to function as event generators in neutrino 
telescopes and produces mismodeling of the yield of tau-induced 
events for a small number of scatterings, where the stochastic na-
ture of the losses is more relevant. A notable exception is the
NuPropEarth [22] package developed for the KM3NeT exper-
iment [23], which is presently being built in the Mediterranean 
Sea. Though NuPropEarth offers a complete solution, this pack-
age requires a large number of dependencies to function, making 
its distribution and installation difficult. In this article, we describe 
a new package, TauRunner, that aims to provide a complete and 
versatile solution to the neutrino transport problem at high ener-
gies. Our Python-based package is designed to have minimal de-
pendencies, to allow the user to construct arbitrary neutrino trajec-
tories and propagation media, and to provide interfaces to modify 
physics inputs such as neutrino cross sections easily. This package 
was first introduced in [24,25], where it was used to study the 
ANITA anomalous events [26,27], and is currently used in studies 
relating to extremely high-energy neutrinos in IceCube [28]. With 
respect to the preliminary version, the version presented in this 
paper contains significant improvements in terms of performance 
and available features to the user. In this article, we describe the 
software and provide examples, benchmarks and comparisons to 
other packages that have similar aims. We expect that our soft-
ware will be useful for next-generation neutrino detectors operat-
ing in liquid water (P-ONE [29]), solid water (IceCube-Gen2 [20]), 
mountains (Ashra NTA [30], TAMBO [31]), and outer space (PO-
EMMA [21]). Our hope is that the success of neutrino oscillation 
measurements enabled by the previous generation of software will 
be mirrored in the study of high-energy neutrino properties with 
efficient propagation software such as the one presented in this 
paper.

The rest of this article is organized as follows. In Sec. 2 we out-
line the transport equation, the algorithm used to solve it, and the 
interaction; in Sec. 3 we explain the code structure; in Sec. 4 we 
present studies of the software performance; in Sec. 6 we lay out 
the examples included with the code. Finally in Sec. 7 we conclude.
2

2. Algorithm overview

The aim of this software is to solve the transport equation for 
high-energy neutrino fluxes passing through matter. The transport 
equation can be written as follows [34],

d �ϕ(E, X)

dX
= −σ(E) �ϕ(E, X) +

∞∫

E

dẼ f (Ẽ, E) �ϕ(Ẽ, X), (1)

where E is the neutrino energy, X is the target column density, 
σ(E) = diag(σν, σν̄) holds the total ν and ν̄ cross section per 
target nucleon, f (Ẽ, E) is a function that encodes the migration 
from higher to lower neutrino energies and between ν and ν̄ , and 
�ϕ(E, x) = {φν, φν̄} contains the neutrino and anti-neutrino spec-
trum. At energies supported by this package, 10 GeV–1012 GeV, 
neutrino-nucleon deep inelastic scattering (DIS) is the dominant 
neutrino interaction process. The first term on the right hand side 
accounts for the loss of flux at energy E due to charged-current 
(CC) and neutral-current (NC) interactions, whereas the second 
term is the added contribution from neutrinos at higher energy, 
Ẽ , to E through NC interactions of νe,μ,τ and CC interactions in 
the ντ channel.

This latter channel is unique in that the short τ lifetime causes 
the decay of the charged lepton before losing a large fraction of 
the parent energy. The τ then decays into a daughter ντ , meaning 
that the primary ντ flux is not lost, but only cascades down in en-
ergy. Moreover, if the τ decays leptonically, ν̄μ and ν̄e are created, 
contributing significantly to the outgoing flux, as was first pointed 
out in [35]. By default, TauRunner takes all those contributions 
into account. The story is simpler for the electron channel. There, 
CC interactions result in electrons which lose their energy quickly 
and are subsequently absorbed in the medium. As a result, elec-
tron losses are not modeled in TauRunner by default, though the 
capability exists if needed. For the muon flavor, muons resulting 
from CC interactions can travel O(1) kmwe. Therefore, it is impor-
tant to model the propagation and losses of muons near the point 
of exit, and that is accounted for in TauRunner as well.

2.1. Algorithm description

In TauRunner, Eq. (1) is solved using a Monte-Carlo approach. 
A flowchart of the TauRunner Monte-Carlo algorithm is shown 
in Fig. 1. Given an initial neutrino type, energy, and incident an-
gle, it begins by calculating the mean interaction column depth, 
λint, which depends on the medium properties and neutrino cross 
section. A column depth is then randomly sampled from an expo-
nential distribution with parameter λint , and the neutrino advances 
the corresponding free-streaming distance. If the neutrino does not 
escape the medium, either an NC or CC interaction is chosen via 
the accept/reject method. In the case of an NC interaction, the neu-
trino energy loss is sampled from the differential cross section, and 
the process repeats. In the case of a CC interaction, a charged lep-
ton is created with energy sampled from the neutrino differential 
cross section.

The treatment of the charged lepton then varies according to 
the initial neutrino flavor. Electrons are assumed to be absorbed 
and the propagation stops there. μ and τ , however, are recorded 
and passed to PROPOSAL [36] to be propagated through the same 
medium. μ that do not escape will either decay at rest resulting 
in neutrinos that are below the energies supported by TauRun-
ner, or get absorbed. Therefore a μ that does not escape is not 
tracked further. Finally, τ s can either escape or decay. In the lat-
ter case, a secondary ντ is created whose energy is sampled from 
tau decay distributions provided in [37]. Additionally, if the τ de-
cays leptonically, νe or νμ will be created. When this happens, the 
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Table 1
Software comparison table. Each row of this table represents a given package. Input and output particles include their not explicitly mentioned antiparticles. Custom medium 
refers to a user-defined Body in TauRunner. The Energy losses column compares the treatment of charged particle losses.
Software Language Input Output Medium Energy losses

(
l±

)
TauRunner Python ντ,μ,e, τ , μ ντ,μ,e, τ , μ Earth/Sun/Moon/Custom PROPOSAL
NuPropEarth [22] C++ ντ,μ,e ντ,μ,e, τ Earth/Custom TAUSIC
nuPyProp [32] Python/FORTRAN ντ τ Earth Internal
NuTauSim [33] C++ ντ τ Earth Continuous
Fig. 1. Flowchart of the TauRunner propagation algorithm. Square boxes indicate ac-
tions performed by the software. Diamond boxes indicate decision-making stopping 
points. Rounded-corner squared boxes indicate beginning and end of the algorithm. 
Note that users can select also charged leptons as the initial state, in which case 
the algorithm skips straight to the charged particle propagation step.

properties of the resulting secondaries are recorded and added to 
a basket which stores all secondary particles to be propagated to-
gether after the primary particle propagation is complete.

2.2. Lepton interactions and decays

Measurements of neutrino cross sections with matter have been 
performed up to a few PeV in energy [38]. This includes a multi-
tude of accelerator [39,40] and reactor [41,42] experiments as well 
as solar [43], atmospheric [44], and astrophysical neutrinos [45,46]. 
However, the energy range supported by TauRunner goes far be-
yond the measurements, where the fractional momenta, xBjorken, of 
the quarks probed by the neutrino can reach xBjorken � 10−8. The 
nucleon structure function is not measured at such low xBjorken and 
is extrapolated in cross section calculations [47,22]. Such extrap-
olations neglect gluon color screening making perturbative QCD 
calculations of the neutrino cross section grow faster than allowed 
by unitarity at extremely high energies [48]. Phenomenological ap-
proaches to include gluon screening parameterize the extremely 
small xBjorken behavior using a dipole model [49] of the nucleon 
so as to result in a ln2(s) dependence of the cross section at ex-
tremely high energies [50]. This ultimately results in a difference 
of a factor ∼ 2 at 1012 GeV. TauRunner provides, by default, neu-
trino and anti-neutrino DIS cross section tables for two PDF mod-
els: a perturbative QCD calculation [47], and a dipole model [49]. 
The user also has the option to provide their own cross sections, 
see Sec. 3.4 for more details.
3

In the Standard Model, when neutrinos undergo CC interactions, 
they convert to their charged partners through the exchange of a 
W boson. Charged particles lose energy in dense media through 
many processes, and the relative importance of each process de-
pends on the lepton’s mass and its energy [51]. At lower energies, 
a charged lepton can ionize atoms as it traverses the medium. This 
process is described by the Bethe-Bloche equation, and at higher 
energies scales logarithmically and becomes sub-dominant for all 
flavors. A charged lepton can also interact with the electric field 
of a nucleus, losing energy in the process through the emission 
of a photon. This process, called bremsstrahlung, scales like the 
inverse-squared mass of the lepton, and is therefore the dominant 
energy loss mechanism for electrons. Another possible interaction 
with the field of a nucleus leads to the production of electron-
positron pairs. This process scales like the inverse of the lepton 
mass, and is one of the leading energy-loss mechanisms for μ and 
τ . Finally, the leptons can also lose energy by exchanging a photon 
with a nucleon, in what is referred to as a photonuclear interac-
tion. This process dominates tau energy losses at the highest ener-
gies (≥ 109 GeV). The aforementioned processes are implemented 
in PROPOSAL, which we use to model them in TauRunner. Apart 
from interacting, μ and taus can also undergo weak decays. This 
process scales like the mass of the lepton to the fifth power, and 
is therefore the most likely outcome for taus propagating in Earth 
up to 109 GeV. Above this energy, the total interaction length for 
other processes becomes shorter than the decay length. μ, on the 
other hand, are much more likely to lose all of their energy before 
decaying at rest, or getting absorbed by a nucleus. Therefore, we 
only model decays of τ leptons using parametrizations in [37].

3. Structure of the code

TauRunner may be run either from the command line by run-
ning main.py or may be imported to run within another script 
or Jupyter notebook. To run from the command line, the user 
must minimally specify the initial energy, the incident nadir angle, 
and the number of events to be simulated. These can be speci-
fied with the -e, -t, and -n command line flags respectively. This 
will run the TauRunner algorithm in Earth with a chord geome-
try. The TauRunner output will be printed in the terminal unless 
an output file is specified with the --save flag. If this option is 
specified, TauRunner will save both a numpy array and a json
file with the configuration parameters at the specified location. In 
order to ensure reproducibility, the user may specify a seed for the 
random number generator with the -s flag. By default, main.py
propagates an initial ντ flux, but a user may specify other ini-
tial particle types by using the --flavor flag. Additional options 
that may be specified by the user can be found in the initial-
ize_args function of main.py or by running main.py with 
the -h flag.

To run within another script or Jupyter notebook the user 
must import the run_MC function from main.py. In this lat-
ter case one must also create a TauRunner Particle, Track,
Body, CrossSection objects and a PROPOSAL propagator. The
Particle class, described in Sec. 3.1, contains the particle prop-
erties as well as methods for particle propagation. The Track
class, described in Sec. 3.2, parametrizes the geometry of the par-
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ticle trajectories. The Body class, described in Sec. 3.3, defines the 
medium in which the propagation is to occur. The CrossSec-
tion class, described in Sec. 3.4, defines neutrino cross section 
model. Additionally, TauRunner provides a convenience func-
tion for constructing PROPOSAL propagators, make_propaga-
tor, which can be imported from the utils module. Explicit 
examples of how to run TauRunner can be found in Sec. 6.
Casino.py combines these classes according to the logic out-
lined in Fig. 1.

After discussing the package broadly, we will discuss conven-
tions in Sec. 3.6 and describe TauRunner’s output in Sec. 3.7

3.1. Particle

A Particle instance contains the structure of a TauRunner
event. This includes, among other quantities, the particle’s initial 
and current energies, particle type, and position. Additionally, it 
has a number of methods for particle decay and interaction as well 
as charged lepton propagation. Finally, the τ decay parametrization 
is contained in particle/utils.py.

The user may propagate νe , νμ , ντ , μ− , τ− , or any of the corre-
sponding anti-particles in TauRunner. To do this, the user should 
initialize the Particle object with the corresponding Particle 
Data Group Monte Carlo number [51]. It should be noted that the 
user may create an e± , but the internal logic of TauRunner as-
sumes all e± are immediately absorbed and thus no propagation 
occurs; see Fig. 1.

3.2. Track

The Track class contains the geometrical information about 
the particle’s trajectory. A track is parametrized by an affine pa-
rameter which defines the position along the trajectory: 0 is the 
beginning of the trajectory, and 1 is the end. Almost all of the 
methods of the Track class are mappings between the affine 
parameter and physically relevant quantities, e.g. radius, distance 
traveled, and column depth. The only argument which is generic 
to the Track class is depth which specifies the distance below 
the surface of the body at which to stop propagation. This may in-
tuitively be thought of as the depth of the detector to which the 
particles are propagated. An illustration of the TauRunner geom-
etry and a diagram of the functional relation of physical quantities 
to the affine parameter is shown in Fig. 2

The Track class allows the user to make custom trajectories. 
The user need only specify mappings between the affine parameter 
and these variables. Different trajectories may require additional 
arguments from the user, depending on the nature of the trajec-
tory. To illustrate this point, we can look at the two tracks which 
are implemented by default, the Chord and Radial trajectories. 
The former is used for paths which originate outside the Body
and cross a section of Body. The latter is used for paths which 
originate at the center of the Body. The former Track describes 
neutrinos coming from space and passing through Earth on the 
way to a detector, as in the case of Earth-skimming τ searches, 
while the latter gives the trajectory of a neutrino originating in the 
center of the planet, relevant for searches for neutrinos from grav-
itationally trapped dark matter. Clearly, an incoming angle needs 
to be specified for the Chord trajectory. Thus, we can see that the 
necessary arguments for specifying a Track may vary from one 
geometry to another.

3.3. Body

The Body class specifies the medium in which the Particle
is to be propagated. In TauRunner, we require that all bodies be 
4

Fig. 2. Schematic of TauRunner geometry as contained within the Track class. (a) 
shows the relation between the physical quantities relevant to propagation and the 
affine parameter that parametrizes the Track. The arrows connecting these quan-
tities are labeled with the functions used to convert between them in TauRunner. 
Specifically, these are the functions a user must define in order to specify a cus-
tom Track geometry. All distances are normalized with respect to the radius of 
the body in which the track sits. (b) shows a diagram of these parameters within a 
spherical TauRunner body. Colors correspond to the boxes in (a). Additionally, it 
illustrates the depth parameter which intuitively gives the depth of the detector. 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

spherically symmetric, and so a Body may be minimally speci-
fied by a physical radius, and a density profile. The density profile 
may be a positive scalar, a unary function which returns a posi-
tive scalar, or a potentially-mixed list of positive scalars and such 
functions. The sole argument of the functions used to specify the 
density should be the radius at which the density is to be given, in 
units of the radius of the body, i.e. the domains should be [0, 1]. In 
this system r = 0 is the center of the body and r = 1 the surface. 
If the user wishes to make a layered body, i.e. one where a list 
specifies the density profile, they must pass a list of tuple with the 
length of this list equal to the number of layers. The first element 
of each tuple should be the scalar or function which gives the den-
sity, and the second element should be the right hand boundary 
of the layer in units of the radius. The last right hand boundary 
should always be 1 since r = 1 is the outer edge of the body. Lastly, 
all densities should be specified in g/cm3.

In addition to a radius and a density profile, the user may also 
provide the proton_fraction argument to specify the fraction 
of protons to total nucleons in the body. By default, we assume 
that the propagation medium is isoscalar, i.e. we set the proton 
fraction to 0.5 throughout the entire body. As in the case of the 
density profile, this argument may be a scalar, a function, or a list 
of function-boundary tuples. The domains of any functions pro-
vided must be [0, 1], and the ranges must be in this same interval.

While the user can construct bodies themselves, there are five 
bodies implemented by default in TauRunner: the Earth, a high-
metallicity Sun, and low-metallicity Sun, the moon, a constant den-
sity slab. We use the PREM parametrization to model the densities 
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of Earth [52]. For the Sun, we use fits provided by [53]. To instanti-
ate the Earth object, one calls the construct_earth function, 
which returns an Earth object. Additionally, this function allows 
one to pass in a list of additional layers which will be placed radi-
ally outward from the edge of the PREM Earth. This functionality 
may be useful for e.g. adding a layer of water or ice or adding the 
atmosphere for simulating atmospheric air showers. Examples on 
using this functionality may be found in Sec. 3.3. To initialize the 
Sun, one can use the construct_sun function. With this func-
tion, the user may specify ‘HZ_Sun’ or ‘LZ_Sun’ to use the high-
and low-metallicity TauRunner suns respectively, or a path to a 
user defined solar model. An example of how to input solar models 
is given in Appendix C

3.4. CrossSection

The TauRunner cross sections module defines the neutrino 
interactions. Internally, TauRunner assumes that cross sections 
are equal for all neutrino flavors. Additionally, TauRunner uses 
the isoscalar approximation by default, i.e. it assumes a medium 
is made of equal parts p+ and n; however, this assumption may 
be changed by altering the proton_fraction of the Body ob-
ject. See Sec. 3.3 for more information. The software includes both 
CSMS [47] and dipole [54] cross sections implemented by default; 
however, it is straightforward for the user to implement other 
cross section models by providing scipy splines in the appro-
priate format. For the total neutrino cross section these splines 
are scipy.interpolate.UnivariateSpline objects whose 
x-axis is the log10 of the neutrino energy in eV and whose y-
axis is the log10 of cross section in cm2. The differential cross 
section splines are scipy.interpolate.RectBivariateS-
pline objects whose x-axis is the log10 of the neutrino energy 
in eV, whose y-axis is a convenience variable which combines the 
incoming and outgoing neutrino energies, E in and Eout, given by

η = Eout − 109 eV

E in − 109 eV
,

and whose z-axis is the log10 of incoming energy times the differ-
ential cross section in cm2. An example of how to construct these 
splines is given in Appendix B.

3.5. PROPOSAL

To propagate charged leptons, TauRunner relies on PRO-
POSAL, an open source C++ program with Python bindings. A 
utility module to interface with PROPOSAL, utils/make_prop-
agator.py, is provided with TauRunner. This function instan-
tiates PROPOSAL particle and geometry objects, which are then 
used to create a propagator instance. Since PROPOSAL does not 
support variable density geometries, the segment_body function 
is used to segment the TauRunner body into a number of con-
stant density layers. The number of layers is determined by solving 
for points in the body where fractional change in the density is 
equal to a constant factor, called granularity. This argument 
may be specified by the user, and by default is set to 0.5. A sin-
gle propagator object is created for all τ± and, if needed, for all 
μ± . Since TauRunner assumes e± are always absorbed, a prop-
agator will never be made for these. Whenever a new geometry 
is used, PROPOSAL creates energy loss tables which are saved in
resources/proposal_tables. The tables require a few min-
utes to generate, resulting in an overhead for new configurations, 
but subsequent simulations with the same geometry will not suf-
fer any slow down.
5

3.6. Conventions

TauRunner uses a natural unit system in which h̄ = c =
eV = 1. As a consequence of this system, any energy passed to
TauRunner must be in eV. TauRunner includes a units pack-
age to easily convert common units to the units TauRunner ex-
pects. This may be imported from the utils module, and its us-
age is demonstrated in several examples. Additionally, since Tau-
Runner assumes that propagation occurs in a spherical body, the 
radius of this body establishes a natural length scale. Thus all dis-
tances are expressed as a fraction of this radius.

3.7. Output

The run_MC function, which carries out the logic of Tau-
Runner, returns a numpy.recarray. This array may be set to 
a variable if running TauRunner from a script of notebook, or 
printed or saved if running TauRunner from the command line.

In this paragraph, we will describe the fields of this output. The
“Eini” field reports the initial energy of the lepton in eV. The
“Eout” field reports the energy of the particle when propaga-
tion has stopped in eV. In the case that the particle was absorbed, 
this field will always read 0.0. The “theta” field reports the 
incident angle of the lepton in degrees. The “nCC” and “nNC”
fields report the number of charged and neutral current interac-
tions the particle underwent in its propagation. The “PDG_En-
coding” field reports the particle type, using the Particle Data 
Group MC numbering scheme. The “event_ID” is a number car-
ried byfield reports which initial lepton the particle comes from. 
The “final_position” field reports the track parameter when 
the propagation was ended. This may be used to physical quanti-
ties of a particle when it was absorbed, or when a user-defined 
stopping condition was met

4. Performance

For a given primary spectrum and medium through which to 
propagate, there are a variety of related factors that determine the 
runtime of the program, including, but not limited to: (1) the ini-
tial energy of the neutrinos, (2) the total column depth of the path, 
(3) the settings for computing energy losses, and (4) which parti-
cles are being tracked.

We show example runtimes for a few different use cases in 
Fig. 3. For a fixed Track propagating through Earth, neutrinos 
with higher initial energy take longer to propagate as they un-
dergo more interactions and as a result experience more stochas-
tic energy losses. Additionally, those particles that are only being 
propagated through Earth-skimming trajectories (cos(θ) ≈ 0) can 
be simulated much quicker than those with large column depths. 
This is especially advantageous for proposed Earth-skimming next 
generation neutrino observatories, e.g. [21,55–57,31].

By default, all secondary particles that are created as a result 
of interactions are recorded, meaning that every ντ CC interac-
tion has a chance to increase the number of particles that need 
to be simulated. If the user is only interested in outgoing ντ and 
τ lepton distributions, this option can be disabled with by setting
no_secondaries=True, which can improve the overall runtime 
by as much as a factor of two.

Runtime can further be reduced depending on the treatment 
of energy losses of charged leptons. By default, energy losses are 
handled by PROPOSAL [36], which treats them stochastically. The 
user has the choice to ignore energy losses completely, with the 
setting no_losses=True, which can improve the runtime by as 
much as 40%, although this approximation can only be used in 
certain scenarios, such as when the initial tau lepton energy is 
small enough that the interaction length becomes much smaller 
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Fig. 3. Runtime per ντ event. Average runtime per event for various monochromatic 
fluxes of neutrinos through the Earth, as a function of nadir angle, θ for inci-
dent ντ with energies of 1 PeV (circles) and 1 EeV (triangles). In general, runtime 
scales with the average number of interactions, which is a function of the energy 
of the particles and the column depth through which they propagate. The color-
bar indicates the median number of NC+CC interactions that the initial beam of ντ

undergoes. Tracking secondary particles (solid lines) created in ντ CC interactions 
increases the runtime as the number of particles to propagate increases. Each point 
represents the average runtime from a simulation including 106 events on a single 
CPU.

than the decay length. This has potential applications for recently 
proposed indirect searches of ultra-high-energy neutrinos by look-
ing for PeV neutrinos through the Earth [24] using large current 
and next-generation ice or water Cherenkov detectors, such as 
IceCube-Gen2 [20]. Within PROPOSAL, there is also an option to 
treat energy losses that are below a certain threshold continuously. 
We find that setting this parameter to vcut=1e-3, meaning all 
energy losses that represent less than that fraction of the initial 
particle energy are treated without stochasticity, achieves an op-
timal runtime while not neglecting any of the important features 
that are a result of treating energy losses stochastically.

The first time that a user runs the code, there may be additional 
overhead while PROPOSAL calculates energy loss distributions for 
charged leptons. However, these tables are stored so that future it-
erations can run more efficiently. Once the user has run the code at 
least once and the PROPOSAL energy loss tables are stored, then 
current runtimes allow users to propagate approximately one mil-
lion initial EeV ντ through Earth’s diameter in approximately eight 
hours with one CPU. For an initial energy of one PeV, one million 
ντ take approximately one hour, depending on the incident angle. 
We also found that this runtime varied marginally from machine 
to machine, and the runtimes in Fig. 3 and the numbers quoted 
thus far were all found using a heterogeneous distributed cluster 
of Linux machines. The code was also tested on a machine running 
MacOS with the Apple M1 chip, where the runtimes were found to 
extremely comparable to those presented above. For example, 104
ντ with initial energy of one EeV and θ = 0◦ with no secondaries 
took 0.0127 s per event, on average, and those in the figure above 
took 0.0124 s per event, on average.

In terms of memory, TauRunner can be run on most modern 
machines, requiring only a few GB of RAM to run. For example, 
propagating 104 ντ through the Earth with initial energies of an 
EeV requires only approximately 1 GB of memory when tracking 
only ντ and τ , and approximately 3 GB when tracking all parti-
cles. The vast majority of this memory is allocated for calculating 
energy losses with PROPOSAL, e.g. for various trajectories through 
the Earth and for various initial energies, we found that ∼ 50 −90%
of the memory usage was due to PROPOSAL. Because most of the 
memory is due to overhead from the energy losses, there is only a 
marginal increase in memory usage from propagating many more 
6

Fig. 4. Outgoing ντ distributions for an E−1 power-law flux. Shown are the outgoing 
tau neutrino energy fraction as a function of the primary ντ flux injected as an 
E−1 power-law from 100 TeV to 10 EeV, shown in slices of equal solid angle in the 
Northern Sky. The dashed line indicates the median outgoing energy.

particles, e.g. two sample iterations of the code both took between 
2.5 GB and 3.0 GB when propagating 104 or 106 ντ through the 
Earth with the same initial energies and angles.

5. Outputs and comparisons

The results of several tau neutrino simulation sets are illus-
trated in this section. Fig. 4 shows column-normalized distribu-
tions of outgoing neutrino energy fraction as a function of initial 
neutrino energy. Interestingly, the dashed line showing the median 
outgoing tau neutrino energy fraction varies with a constant slope, 
corresponding to the energy at which Earth becomes transparent. 
That energy is roughly 10 PeV at the horizon (top left), O(1) PeV 
in the mantle (top right and bottom left), and O(10) TeV through 
the core (bottom right). This means that for a large fraction of the 
Northern Sky, tau neutrinos pile-up and escape at energies where 
the atmospheric neutrino background is relatively low. This idea 
is also made clear when illustrated for a monochromatic flux. In 
Fig. 5, EeV tau neutrinos are propagated and the outgoing energies 
are plotted as a function of nadir angle. A similar feature can be 
seen, where a majority of neutrinos in this simulation escape with 
energy above 100 TeV.

TauRunner has also been compared to several publicly avail-
able packages that perform similar tasks. A summary of the various 
tested packages and their features is shown in Table 1. Besides
TauRunner, only NuPropEarth offers a full solution in the case 
of tau neutrinos. To illustrate this, we show in Fig. 6 the output of 
both packages for an injected monochromatic flux of tau neutrinos 
at 1010 GeV and one degree below the horizon. For secondary taus 
and tau neutrinos, the two packages show excellent agreement. We 
note that comparisons with NuPropEarth use the trunk version 
of the code, which has a new treatment for charged particle propa-
gation using PROPOSAL instead of TAUSIC. Secondary anti-muon 
and -electron neutrino distributions show slight disagreement in 
the tails, likely due to different tau polarization treatments. These 
differences are still being investigated, and will be addressed in an 
upcoming work.
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Fig. 5. EeV tau neutrinos in Earth. Median outgoing energies of secondary tau neutri-
nos shown as a function of nadir angle. Also, 68% and 90% probability contours for 
outgoing energies are included. The feature at approximately cosθ of 0.8 is caused 
by the core.

Fig. 6. A monochromatic flux of tau neutrinos. Outgoing particle energy distributions 
for a fixed angle and energy. We include secondary anti-electron and -muon neu-
trinos, as well as charged taus. TauRunner shows good agreement with NuPro-
pEarth. This set assumes Earth as a body with a 4 km layer of water.

Fig. 7. Charged tau lepton exit probability. Different colors correspond to four different 
monochromatic neutrino energies. The emergence angle is measured with respect to 
horizon. The TauRunner prediction (solid line) is compared to NuTauSim, NuPro-
pEarth, and nuPyProp, which are shown in different linestyles.

Fig. 7 shows a comparison of the charged tau exit probability in 
Earth as a function of nadir angle. P τ

exit is the probability that an 
incoming neutrino will exit Earth as a charged tau. This quantity 
is especially relevant for future neutrino observatories hoping to 
detect Earth-skimming tau neutrinos. In that scenario, exiting taus 
make up the bulk of the expected signal. TauRunner again shows 
great agreement overall with other packages.
7

CLONE_DIR=/path/to/clone/directory
cd $CLONE_DIR
git clone https://github.com/icecube/TauRunner.git && cd

TauRunner
pip3 install -e .

Listing 1: Installing TauRunner using pip3 with access to source 
files.

CLONE_DIR=/path/to/clone/directory
cd $CLONE_DIR
git clone https://github.com/icecube/TauRunner.git
export PYTHONPATH=$PYTHONPATH:$CLONE_DIR/TauRunner

Listing 2: Installing TauRunner from source.

6. Examples

In this section, we show examples which illustrate many of 
the capabilities of TauRunner. TauRunner can be run from the 
command line or imported as a package. When a feature can be 
used via both interfaces, we provide an example for each.

6.1. Installation

TauRunner can be installed using pip3 by running:
pip3 install taurunner

This will also install any required dependencies, which include
numpy [58], scipy [59], and PROPOSAL [36].

Furthermore, certain use cases may require access to the source 
code, which can be downloaded from the TauRunner GitHub. Af-
ter obtaining the source code, one can install the source code with 
the package manager pip3, while allowing the user to make ed-
its to the source code without having to reinstall the package (see 
Listing 1).

Alternatively, for those that do not use the pip3 package man-
ager, one can install all of the dependencies listed in the re-
quirements.txt file included on GitHub, and then clone the 
repository and add the base directory to the PYTHONPATH vari-
able, as shown in Listing 2.

6.2. Monochromatic through Earth

Here we give an example of how to use the most fundamental 
functionality of TauRunner: propagating a monochromatic flux 
of neutrinos at a fixed energy through a body at a fixed angle (see 
Listing 3).

If you are using the source code installation, you may also 
achieve this same effect from the command line in the following 
manner:

python main.py -n 1000 -e 1e19 -t 89 --xs CSMS -s 7 --save
/path/to/outdir/output.npy

The --save flag tells the program where to save the output. If 
this is not specified, the output will be printed as a table.

6.3. Isotropic flux through Earth with power law distribution

TauRunner also allows the user to sample initial neutrino 
energies from a power law distribution. For this, the user must 
provide bounds on the minimum and maximum allowed energies. 
Furthermore, the user may sample incidence angles to simulate a 
isotropic flux. We demonstrate bot of these features in the exam-
ple shown in Listing 4.

This may also be accomplished via the command line interface 
by running:
python main.py -n 1000 -e -2 --e_min 1e15 --e_max 1e21 -t

range --th_min 0 --th_max 90 -s 7 --xs CSMS

https://github.com/icecube/TauRunner
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import numpy as np

from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000 # number of events to simulate
eini = 1e19 # initial energy in GeV
theta = 89.0 # incidence angle (nadir)
pid = 16 # PDG MC Encoding particle ID (nutau)
xs_model = "CSMS" # neutrino cross section model

Earth = construct_earth(layers=[(4., 1.0)]) # Make Earth
object with 4km water layer

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini) # Return array of

initial energies in eV
thetas = make_initial_thetas(nevents, theta)

tau_prop = make_propagator(pid, Earth)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand,

)

Listing 3: Propagating a monochromatic flux from a single angle. Exam-
ple of using an independent script to propagate a monochromatic 
flux of neutrinos with initial energy Eν = 1010 GeV from a nadir 
angle of 89◦ , i.e. one degree below the horizon.

6.4. Custom flux through Earth

The user may also input custom spectra to sample from. These 
should be given to TauRunner as pickled splines of the flux’s cu-
mulative density function. An example on how to construct these 
splines in the appropriate format is given in Appendix A. The de-
fault TauRunner distribution includes splines of different GZK 
models. In this example, we show how to sample energies accord-
ing to the flux predicted in [60] (see Listing 5).

This may also be accomplished using the command line inter-
face by running:

python main.py -n 1000 -e ./resources/ahlers2010_cdf_spline
.pkl -t range --th_min 0 --th_max 90 -s 7 --xs CSMS

6.5. Radial trajectory

Besides the chord trajectory, which simulates neutrinos passing 
through a body from one side to the other, TauRunner provides 
a radial trajectory, which simulates neutrinos originating from the 
center of a Body. To use this, one need only modify the call 
to the make_tracks function. Note that the theta argument 
which was specified previously has no bearing on this, but must 
be passed due to implementation issues (see Listing 6).

This can also be accomplished from the command line by run-
ning:

python main.py -n 1000 -e 1e19 -t 89 --xs CSMS -s 7 --track
radial

6.6. Sun

In addition to the Earth, TauRunner allows for propagation in 
the Sun. TauRunner includes high- and low-metallicity Suns, and 
a user may provide their own solar model. We include an example 
8

import numpy as np

from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000 # number of events to simulate
pid = 16
xs_model = "CSMS"
no_secondaries = True

Earth = construct_earth(layers=[(4., 1.0)])
xs = CrossSections(xs_model)
rand = np.random.RandomState(seed=7)

# Sample power-law with index -2 between 1e6 GeV and 1e12
GeV

pl_exp = -2 # power law exponent
e_min = 1e15 # Minimum energy to sample in eV
e_max = 1e21 # Maximum energy to sample in eV
energies = make_initial_e(nevents,

pl_exp,
e_min=e_max,
e_max=e_min,
rand=rand

)

# Sample uniform in solid angle over hemisphere
th_min = 0 # Minimum nadir angle to sample from
th_max = 90 # Maximum nadir angle to sample from
thetas = make_initial_thetas(nevents,

(th_min, th_max),
rand=rand

)

# tracks = make_tracks(thetas)
tau_prop = make_propagator(pid, Earth)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand,
no_secondaries=no_secondaries

)

Listing 4: Multiangle injection with energies drawn from a powerlaw 
distribution. Example of propagating a flux of neutrinos with initial 
energies sampled from a power law with incidence angles uni-
formly sampled over a hemisphere.

of the form that these solar models should take in Appendix C (see 
Listing 7).

The same result may be achieved from the command line by 
running;

python main.py -n 1000 -e 2.4e17 -t 45 -s 7 --body HZ_Sun
--xs dipole

6.7. Constant slab

The user may use the radial track to propagate neutrinos 
from a ‘slab’ of material of a constant density. This may be done by 
making a Body object on the fly in the manner shown in Listing 8.

6.8. Layered slab

The constant density slab may be generalized to a slab of multi-
ple layers. As mentioned in Sec. 3.2, the densities in each layer may 
be positive scalars, unary functions which return positive scalars, 
or a potentially mixed list of such objects. In this example, we 
show how to accomplish this latter option (see Listing 9).
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import numpy as np

import taurunner as tr
from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000
pid = 16
xs_model = "CSMS"

Earth = construct_earth(layers=[(4., 1.0)])
xs = CrossSections(xs_model)

tau_prop = make_propagator(pid, Earth)
rand = np.random.RandomState(seed=7)

# Sample from pickled CDF
pkl_f = f’{tr.__path__[0]}/resources/ahlers2010_test.pkl

’ # Path to pickle file with CDF to sample from
energies = make_initial_e(nevents,

pkl_f,
rand=rand

)

# Sample uniform in solid angle over hemisphere
th_min = 0 # Minimum nadir angle to sample from
th_max = 90 # Maximum nadir angle to sample from
thetas = make_initial_thetas(nevents,

(th_min, th_max),
rand=rand

)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand

)

Listing 5: Propagating a flux drawn from a provided cumulative dis-
tribution function (CDF). Example of propagating ντ with energies 
drawn from a user-provided flux. TauRunner provides a few CDFs 
for the user, or custom CDFs may be built.

7. Conclusion

In this article, we have introduced a new package to propagate 
high-energy neutrinos in a variety of scenarios. Our implemen-
tation includes the dominant neutrino-propagation effects and is 
valid in the energy range of current and proposed neutrino tele-
scopes. Additionally, in our performance section, we have com-
pared our package with other state-of-the-art solutions to this 
problem and find them in good agreement where they overlap. 
Finally, the TauRunner package is designed to be extendable by 
the user, by either providing improved or altered physics inputs 
or constructing new geometries, giving the user the ability to ex-
tend the package functionality beyond the examples provided in 
this article. The authors hope that this work will encourage fur-
ther development of publicly available physics software.
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import numpy as np

from taurunner.main import run_MC
from taurunner.body.earth import construct_earth
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

nevents = 5000
eini = 1e19
pid = 16
xs_model = "CSMS"

Earth = construct_earth(layers=[(4., 1.0)]) # Make Earth
object with 4km water layer

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = np.zeros(nevents)

tau_prop = make_propagator(pid, Earth)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
Earth,
xs,
tau_prop,
rand,

)

Listing 6: Example of propagating ντ along a radial trajectory. TauRun-
ner allows for arbitrary particle trajectories. This example shows 
how to use the radial trajectory, whereas all previous examples 
have used the chord trajectory.

import numpy as np
from taurunner.main import run_MC
from taurunner.body import construct_sun
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas, units

nevents = 5000
eini = 1e13 # the sun is opaque at high energies
theta = 10.0
pid = 16
xs_model = "dipole"
solar_model = "HZ_Sun" # Can also be "LZ_Sun"

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)

sun = construct_sun(solar_model)
tau_prop = make_propagator(pid, sun, granularity=0.5)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
sun,
xs,
tau_prop,
rand

)

Listing 7: Propagating ντ through the Sun. Example of how to prop-
agate ντ through a body besides earth.
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import numpy as np

from taurunner.body import Body
from taurunner.main import run_MC
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 5000
eini = 1e15
theta = 0
pid = 14
xs_model = "CSMS"

# Make body with density 3.14 g/cm^3 and radius 1000 km
body = Body(3.14, 1e3)

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)

tau_prop = make_propagator(pid, body)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
body,
xs,
tau_prop,
rand,
flavor=pid

)

Listing 8: Propagation of νμ through a constant slab. Although Tau-
Runner only supports spherical bodies, we may use a body of 
constant density along with a radial trajectory to propagate a 
particle through a slab of constant density. One may create the 
slab from the base Body object or use the body.slab object. We 
do the former here for pedagogical purposes, but we recommend 
using the latter in practice since it has some computational speed 
ups.

NSF under grants PLR-1600823 and PHY-1607644 and by the Uni-
versity of Wisconsin Research Council with funds granted by the 
Wisconsin Alumni Research Foundation. OV acknowledges support 
by the Harvard College Research Program in the fall of 2020. CAA 
is supported by the Faculty of Arts and Sciences of Harvard Uni-
versity and the Alfred P. Sloan Foundation.

Appendix A. Constructing CDFs from which to sample

TauRunner offers the user the capability to provide custom 
spectra from which to sample initial energies. In this appendix, 
we describe the form in which TauRunner expects these spec-
tra, and provide an example of constructing one. These should be
scipy.interpolate.UnivariateSpline objects whose x-
axis is the value of the cumulative density function of the spectra 
to sample and whose y-axis is the true neutrino energy in eV. 
We now provide an example of constructing these splines. The 
.csv file we use for this contains one column of energies in GeV 
and a corresponding column of the squared energies times the 
number density of the flux in units of GeV. It may be found at
resources/ahlers2010.csv (see Listing 10).

Saving the file in resources is not necessary. The user may 
now sample from this distribution by passing the path to the 
file as the energy argument in the command line or as the first 
argument of the make_initial_e function seen in the exam-
ples. A more detailed example of constructing these splines in 
a Jupyter Notebook along with some sanity checks may be 
found on our GitHub in the examples folder.
10
import numpy as np

from taurunner.body import Body
from taurunner.main import run_MC
from taurunner.cross_sections import CrossSections
from taurunner.utils import make_propagator, make_initial_e

, make_initial_thetas

nevents = 1000
eini = 1e15
theta = 0
pid = 16
xs_model = "CSMS"

# Make layered body with radius 1,000 km
def density_f(x):

return x**-2/4
densities = [4, density_f, 1, 0.4]
boundaries = [0.25, 0.3, 0.5, 1] # Right hand boundaries of

the layers last boundary should always be 1
body = Body([(d, b) for d, b in zip(densities, boundaries)

], 1e3)

xs = CrossSections(xs_model)
energies = make_initial_e(nevents, eini)
thetas = make_initial_thetas(nevents, theta)

tau_prop = make_propagator(pid, body)
rand = np.random.RandomState(seed=7)

output = run_MC(energies,
thetas,
body,
xs,
tau_prop,
rand

)

Listing 9: Propagation of ντ through a layered slab. We may employ 
the same strategy of using a radial trajectory to replicate prop-
agation through a slab to propagate through a slab with varying 
properties.

Appendix B. Cross section splines

In this section we give an example of saving cross section 
splines in the form required by TauRunner so that the user may 
pass their own cross section model if they so choose. The differen-
tial splines should be a scipy.interpolate.RectBivari-
ateSpline object and the total cross section splines should be 
a scipy.interpolate.UnivariateSpline object. We will 
now work out an example, assuming that we have two .csv files, 
one each for total and differential cross sections. In the former 
case, we will assume that it has two columns, the first contain-
ing neutrino energies and the second the corresponding total cross 
section. In the latter case, we will assume that we have three 
columns, the first containing an incoming neutrino energy, the sec-
ond containing convenience variable described in Sec. 3.4, and the 
third containing the corresponding differential cross section. All 
energy units will be assumed to be GeV and all area units cm2. 
In the case of the differential cross section, the values of the con-
venience variable must be the same for each incoming neutrino 
energy. As a reminder, TauRunner assumes that the cross section 
is the same for all neutrino flavors and thus the user need make 
only one set of cross section splines (see Listing 11).

This process would then be repeated for all combinations 
of interaction type ∈ [“CC”, “NC”], neutrino type ∈ [“nu”,
“nubar”], and nucleon ∈ [“p”, “n”] for a total of 8 splines. Now 
we show a similar example for constructing differential cross sec-
tion splines. TauRunner splines have support down to 1 GeV, and 
this number is used internally. While it is not strictly necessary to 
have support down to this energy, it is possible that TauRunner
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import numpy as np
from scipy.integrate import quad
from scipy.interpolate import UnivariateSpline
import pickle

import taurunner as tr
from taurunner.utils import units

# csv of a benchmark GZK flux
infile = f’{tr.__path__[0]}/resources/ahlers2010.csv’
tab_data = np.genfromtxt(infile, delimiter = ’,’)
gzk_e = tab_data[0]*units.GeV # Convert energies to eV
gzk_dnde = tab_data[0]*units.GeV

gzk_mine = gzk_en[0]
gzk_maxe = gzk_en[-1]

# Splining in logspace recommended
gzk_spline = UnivariateSpline(np.log(gzk_en), np.log(

gzk_flux/gzk_en**2), k = 4, s=1e-2)

integrand = lambda E: np.exp(gzk_spline(np.log(E)))

# integrating in logspace also recommended
norm, _ = quad(lambda x: np.exp(x)*integrand(np.exp(x)), np

.log(gzk_min), np.log(gzk_max))

pdf = lambda E: integrand(E) / norm

# Make and spline CDF
cdf_energies = np.logspace(np.log10(gzk_min), np.log10(

gzk_max*1.1), 500) # Maybe more knots than necessary
but more support is better

cdf = np.array([integrate.quad(lambda x: np.exp(x)*
probability(np.exp(x)), np.log(gzk_min), np.log(y))[0]
for y in cdf_energies])

# Make sure this in invertible
mask = np.where(np.logical_and(cdf>0, cdf<=1))[0]
cdf = cdf[mask]
cdf_energies = cdf_energies[mask]
cdf_spl = UnivariateSpline(cdf, cdf_energies)

# Save the spline as a pickle file
out_f = f’{tr.__path__[0]}/resources/ahlers2010.pkl’
with open(out_f, ’wb’) as pkl_f:

pkl.dump(cdf_spl, pkl_f)

Listing 10: Constructing custom flux files in the format required by
TauRunner.

may evaluate the splines in this regime, and thus understanding 
the behavior of splines in this regime is recommended.

import numpy as np
from scipy.interpolate import RectBivariateSpline
import pickle

import taurunner as tr
from taurunner.utils import units

model_name = "my_model"
interaction = "NC" # Neutral current
nucleon = "n" # neutron
nutype = "nu" # neutrino

# csv containing the neutrino neutron NC dsigma/de
tot_xs_path = f"/path/to/{nutype}_{nucleon}_{interaction}

_dsde.csv"

e_in = np.genfromtxt(tot_xs_path, delimiter=",")[0]
z = np.genfromtxt(tot_xs_path, delimiter=",")[1]
dsde = np.genfromtxt(tot_xs_path, delimiter=",")[2]

# Convert to natural units
e_in = e_in*units.GeV
dsde = dsde*units.cm**2/units.GeV
dsdx = dsde*e_in

# Spline in logspace
11
import numpy as np
from scipy.interpolate import UnivariateSpline
import pickle

import taurunner as tr
from taurunner.utils import units

model_name = "my_model"
interaction = "CC" # Charged current
nucleon = "p" # proton
nutype = "nubar" # antineutrino

# csv containing the anti-neutrino proton CC xs
tot_xs_path = f"/path/to/{nutype}_{nucleon}_{interaction}

_xs.csv"
e = np.genfromtxt(tot_xs_path, delimiter=",")[0]
xs = np.genfromtxt(tot_xs_path, delimiter=",")[1]

# Convert to natural units
e = e*units.GeV
xs = xs*units.cm**2

# Spline in logspace
xs_spl = UnivariateSpline(np.log(e), np.log(xs))

# Save the spline as a pickle file
# Splines must follow this naming convention and be in this

directory
out_f = f"{tr.__path__[0]}/resources/cross_section_tables/{

model_name}_{nutype}_{nucleon}_sigma_{interaction}.pkl
"

with open(out_f, "wb") as pkl_f:
pkl.dump(xs_spl, pkl_f)

Listing 11: Example of constructing differential cross section 
splines for TauRunner.

xs_spl = RectBivariateSpline(np.log(np.unique(e_in)), z, np
.log(dsdx))

# Save the spline as a pickle file
# Splines must follow this naming convention and be in this

directory
out_f = f"{tr.__path__[0]}/resources/cross_section_tables/{

model_name}_{nutype}_{nucleon}_dsde_{interaction}.pkl"
with open(out_f, "wb") as pkl_f:

pkl.dump(xs_spl, pkl_f)

As in the case of the total cross section, this process must be 
repeated for all combinations of interaction type ∈ [“CC”, “NC”], 
neutrino type ∈ [“nu”, “nubar”], and nucleon ∈ [“p”, “n”] for 
a total of 8 splines. This new model may then be used by passing
“my_model” when initializing the CrossSection object.

Appendix C. Solar model format

TauRunner expects solar models to have at minimum three 
columns, one containing the radius in units of the solar radius, 
one containing the corresponding mass density in g/cm3, and the 
last containing the corresponding electron density in N−1

A cm−3. 
These values should not be comma separated and lines beginning 
with # will be ignored as comments. Any additional columns will 
be ignored by TauRunner, allowing the user to add additional 
columns if it is useful, for e.g. a column containing the proton frac-
tion to pass to the body.
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