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Abstract

A classification of orientably-regular maps of genus p + 1 for primes p > 13 was
published in 2010 by M. Conder, J. Širáň and T. Tucker. This involved a computer-free
proof for primes p > 83, while for 17  p  83 it followed from computations undertaken
in 2006 by M. Conder. Classification of such maps for p  7 was already available from
much earlier work by others on such maps of small genus dating back to the 1930s, but
without explicit proofs in a number of cases.

In this paper we give a computer-free classification of orientably-regular maps of genus
p + 1 for all primes p  83, complementing the 2010 work by M. Conder, J. Širáň and
T. Tucker for all larger primes p.
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1 Introduction

An orientably-regular map is a 2-cell embedding of a finite, connected graph or multi-
graph on a compact orientable surface, such that the group of all orientation-preserving
automorphisms of the embedding acts transitively and hence regularly on the arcs of the
graph. Classical examples on a sphere are the five Platonic maps, which all admit also
orientation-reversing automorphisms (reflections) and hence are reflexible, and fully regu-
lar. On a torus, one can take as an example the famous Heawood trivalent map consisting
of seven hexagons; this is an orientably-regular map admitting no reflection, and hence is
‘chiral’). Orientably-regular maps may be viewed as generalisations of these maps to those
on orientable surfaces of arbitrary genus.

Interest in orientably-regular maps goes back more than a century. For this and further
historical background we refer to the survey [25], and continue to describe one of the central
problems in this field of research, namely the classification of orientably-regular maps on
an orientable surface of given genus g.

For g = 0 (the spherical case), all orientably-regular maps are reflexible, and besides
the equatorial maps (embedding cycles) and their duals (the ‘polar’ maps), the only non-
trivial examples are the five Platonic maps. For g = 1 (the Euclidean or toroidal case), the
classification has been known for about a century, and was described in detail by Coxeter
and Moser in [13], for example. In this case there are infinitely many orientably-regular
maps of each of the three possible types (namely (3, 6), (4, 4) and (6, 3)), and for each such
type, infinitely many of these toroidal maps are reflexible and infinitely many are chiral.

For genus g > 1 (the hyperbolic case), however, the problem is much more open.
Below we briefly summarise the history of the classification of orientably-regular maps of
given genus g for small values of g � 2. For genus 2, a first attempt appears to be that of
Erréra [14] a hundred years ago, carried further by Brahana [4] who left out one case, and
the analysis was eventually completed by Threlfall [24]. A classification for genus 3 had
to wait for almost three decades until the appearance of a paper by Sherk [22]. About a
decade later, classifications for genera 4, 5 and 6 were published by Garbe [15], followed
another two decades later by a classification for genus 7 by Bergau and Garbe [3].

Here it is important to note that the proofs given in [4], in combination with what was
done in [24] for g = 2 and in [22] for g = 3, are explicit and complete, based on a
mixture of geometric and group-theoretic considerations. This, however, is not the case
for the next four genera 4 to 7. Although Tables II, III and IV of [15] contain complete
lists of all orientably-regular maps of genus 4, 5 and 6, only a schematic description of
what needs to be done to identify suitable normal subgroups of appropriate triangle groups
to obtain orientably-regular maps of those genera is given, on page 42 in Section 3 of
[15], along with a hint about using the Reidemeister method (with reference to [20]) in the
process. Not a single worked example demonstrating the method in practice is presented
there, although the paper does contains a classification of all orientably-regular maps with
at most 6 faces. A similar comment applies to the paper [3], which includes (among other
things) a complete table of orientably-regular maps of genus 7, but again with no worked
example, although this time the paper includes a little more information about looking
for suitable normal subgroups of triangle groups by checking all possibilities for certain
permutation representations.

The above summary represents the state of the classification of orientably-regular maps
of given genus g (for g > 1) in the late 1980s, with complete tables for genera g  7
available, but with checkable published proofs only for genus 2 and 3. An outcome worth
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mentioning was the non-existence of chiral examples for every genus between 2 and 6.
A new era for the problem coincided with the dawn of the new millennium, with Conder

and Dobcsányi [8] producing a computer-assisted classification of all orientably-regular
and reflexible maps on orientable surfaces of genus 2 to 15, confirming the previously
obtained lists for genus 2 to 7. Over the next 12 years this was gradually taken further
by Conder, thanks to continual improvement of both hardware and algorithms, first in [11]
for genus up to 101 and then in [6] for genus up to 301. (These also have non-orientable
counterparts up to non-orientable genus 30, 202 and 602, respectively.) The current record
goes to orientable genus 1501 and non-orientable genus 1502 [9].

Following the appearance of the first computer-assisted classifications for larger genera,
a quest began for classification of orientably-regular maps and non-orientable regular maps
on infinite families of surfaces. In 2005, Belolipetsky and Jones [2] obtained a classification
of orientably-regular maps M of genus p + 1 with |Aut+(M)| � �p, where � > 6 and
p is any prime such that p � c� for some constant c�. (For example, for � = 8 one may
take p � 17.) In the same year, Breda, Nedela and Širáň [5] derived a classification of
regular maps of non-orientable genus p + 2 where p is prime. While the work for [2] was
based on the theory of Riemann surfaces, the approach of [5] was purely group-theoretic.
Methods of [5] were then substantially extended by Conder, Širáň and Tucker [12], to
obtain a classification of orientably-regular maps M of genus p+ 1 for any prime p � 17,
and hence for any prime p (thanks to earlier computer-assisted findings).

The proof given in [12] splits into two parts, depending on whether the order of the
group Aut+(M) is relatively prime to p or divisible by p. The first part follows from a far
more general theorem given in [12], proved without the need for computations (but guided
by the results in [11] and further computational experiments), and resulting in a classifi-
cation of all orientably-regular maps M of genus g with |Aut+(M)| relatively prime to
g � 1. The second part involves a computer-free proof in [12] for p � 89, with the re-
mainder relying on the earlier computations [11] for primes in the range 17  p  83.
Here it is important to note that the theoretical arguments are very accessible, involving
little beyond the Schur-Zassenhaus theorem, Reidemeister-Schreier theory, Schur’s theo-
rems on the transfer and centre-by-finite groups, and the known classification of ‘almost
Sylow-cyclic’ groups.

The aim of this article is to develop a few more tools which together with [12] give a
very accessible, purely group-theoretic and computer-free proof of a complete classification
of orientably-regular maps of genus p+ 1 for an arbitrary given prime p.

By our summary this amounts to supplying computer-free arguments for classification
of orientably-regular maps M with |Aut+(M)| divisible by p for primes p in the range
17  p  83 as considered seperately in [12], but our approach will be more general
and valid for all primes p � 5. A task like this has recently been accomplished also by
Izquierdo, Jones and Reyes-Carocca [17], in a computer-free classification of orientably-
regular hypermaps of genus p + 1 with the orientation-preserving automorphism group
having order divisible by p, for primes p � 5 (but with no counterpart for the case where
the group order is relatively prime to p). Their arguments, however, are based on the
theory of Riemann surfaces and go beyond elementary group theory, whereas our approach
emphasises easy accessibility.

For completeness we include also a classification for the remaining primes 3 and 2, the
first one because of unavailability of a proof in the literature, and the second one to give
more streamlined arguments compared to those in the original resource [22].
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The structure of this paper is as follows. Sections 2 and 3 contain preliminary material
together with a review of the approach of [12] and arithmetic consequences of Euler’s
formula. In sections 4 and 5 we deal with orientably-regular maps M of genus p+ 1 with
the order of G = Aut+(M) divisible by p for p � 5, when G is soluble and insoluble,
respectively. Finally, sections 6 and 7 handle the remaining cases p = 2 and p = 3.

2 Preliminaries

Recall that an orientably-regular map M is a 2-cell embedding of a finite, connected
(but not necessarily simple) graph on a compact orientable surface, such that the group
Aut+(M) of all the orientation-preserving automorphisms of M acts regularly on the set
of all arcs of M . The regular action of Aut+(M) on arcs provides a close connection
between the map and the group itself, and this connection and the numerous relationships
of such maps with group theory, hyperbolic geometry and Riemann surfaces have been
explored in great detail in [18], so here we just recall a few facts.

By regularity, all vertices of an orientably-regular map M have the same valency, say
k, and all faces of M are bounded by closed walks of the same length, say `. We then say
that M is of type (k, `). For our purposes the latter notation appears to be more appropriate
than the traditional {`, k} (or Schläfli notation {` | k}), listing the face length first and using
curly brackets.

Next, let a = (v, w) be an arc of M emanating from a vertex v. Then regularity of
Aut+(M) on arcs implies also that there exist x, y 2 Aut+(M) such that the x-image a

x

of a is the locally clockwise next arc to a emanating from v, and the y-image a
y of a is

the locally clockwise next arc to a on the boundary of the face f containing both a and a
x,

and then a
xy is the reverse (w, v) of the arc a. Since a non-identity orientation-preserving

automorphism of a map cannot fix any arc, we see that x and y are automorphisms of M
acting like rotations about the vertex v and the centre of a face f , respectively, with the
sense of rotation being consistent with a chosen orientation of the carrier surface, and then
xy then acts like a ‘half-turn’ about the centre of the edge e = {v, w} incident with both v

and f . In particular, x, y and xy have orders k, ` and 2, respectively.
The subgroup generated by x and y contains elements that act locally around each

arc incident with v or f in the analogous way to x and y, and by connectedness of the
underlying graph of M it follows that this subgroup acts transitively on arcs and hence is
equal to the entire group G = Aut+(M). In particular, x and y generate G, which therefore
admits a presentation of the form G = hx, y |xk

, y
`
, (xy)2, . . . i, and hence is a smooth

quotient of the ordinary (k, `, 2)-triangle group �+(k, `, 2) = hX,Y |Xk
, Y

`
, (XY )2 i.

Groups having such a presentation will be called (k, `, 2)-presented, or (k, `, 2)-groups.
(They are also said to be (k, `, 2)-generated.) The map M can then be identified with this
presentation by letting the set of arcs, edges, vertices and faces be, respectively, the set of
right cosets of the subgroups h1i, hxyi, hxi and hyi, with incidence between arcs, edges,
vertices and faces given by non-empty intersection of the corresponding cosets, and with
G acting as the group of all orientation-preserving automorphisms by right multiplication.
All other relators satisfied by x and y in G trace out closed walks in the map M .

In this way one may associate with any (k, `, 2)-presentation hx, y |xk
, y

`
, (xy)2, . . . i

for a group G a uniquely determined orientably-regular map, denoted by Maphx, yi, or by
Map(G) if we think of G in terms of a given (k, `, 2)-presentation for it, rather than as an
abstract group. Another way of saying this is that orientably-regular maps of type (k, `)
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are in a 1-to-1 correspondence with torsion-free normal subgroups of the ordinary (k, `, 2)-
triangle group �+(k, `, 2). For many other algebraic connections and their topological
counterparts we refer the reader to [18].

In general, two maps are isomorphic if there is an incidence-preserving bijection be-
tween their respective vertex, edge and face sets. Here, in the context of orientable regular-
ity, map isomorphism reduces to the existence of a particular group isomorphism, namely as
follows: if G = hx, y |xk

, y
`
, (xy)2, . . . i and H = h r, s | rk, s`, (rs)2, . . . i are (k, `, 2)-

presented groups, then the maps Maphx, yi and Maphr, si are isomorphic if and only if
there is a group isomorphism from G to H taking (x, y) to (r, s).

An orientably-regular map M = Maphx, yi may sometimes also admit an orientation-
reversing automorphism. If this is the case then the map is called reflexible; otherwise it
is called chiral. As in the case of map isomorphism, reflexibility can be expressed in the
language of groups and is equivalent to the existence of an involutory group automorphism
of G = hx, yi inverting both x and y. Equivalently, M = Maphx, yi is reflexible if and
only if G has an automorphism inverting x and fixing xy, or inverting y and fixing xy.
(These three automorphisms are obviously different when k > 2 and ` > 2.)

Similarly, the dual of M = Maphx, yi is the map M
⇤ = Maphy, xi, and so M is self-

dual if and only if G has an automorphism interchanging x and y. It then follows easily
that reflexibility is preserved by map duality.

We now look at implications of Euler’s formula for an orientably-regular map M =
Map(G) of type (k, `) when G = hx, y |xk

, y
`
, (xy)2, . . . i. First, M has |G|/|hxi| =

|G|/k vertices, |G|/|hyi| = |G|/` faces, and of course |G|/2 edges, and so if � and g are
the Euler chraracteristic and genus of the carrier surface of M , then by Euler’s formula,

|G|
✓
1

k
� 1

2
+

1

`

◆
= � = 2� 2g,

which for g > 1 is equivalent to

|G| = 2(g � 1)µ(k, `) where µ(k, `) =

✓
1

2
� 1

k
� 1

`

◆�1

=
2k`

k`� 2k � 2`
. (2.1)

In particular, in the hyperbolic case µ(k, `) > 0 and so 1/k + 1/` < 1/2. It is well known
(and easy to see) that the maximum possible value of 1/k+1/` in this case is 1/3+1/7 =
10/21, and hence µ(k, `)  42, which implies the Hurwitz bound |G|  84(g � 1), with
equality occurring if and only if the type (k, `) is (3, 7) or (7, 3).

The theory outlined above tells us that for g � 2, classification of orientably-regular
maps on a surface of a genus g is equivalent to classification of the finite (k, `, 2)-presented
groups G satisfying the condition |G| = 2(g � 1)µ(k, `). By the Hurwitz bound, the order
of any such group G is bounded, and it follows that up to isomorphism the number of
orientably-regular maps on a surface of genus g is finite for every g � 2. This fact makes
the classification only a little easier, but in what follows we will simplify matters further
by assuming that the hyperbolic type (k, `) satisfies k  `, since the types satisfying the
reverse of the latter inequality can be handled by duality.

3 First observations about orientably-regular maps M of genus p + 1
with p dividing |Aut+(M)|

We begin this section by giving more details about the structure and principal results of
[12]. One major theorem [12, Theorem 8.4] implies a classification of all the orientably-
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regular maps M of given genus g > 2 with the property that |Aut+(M)| is relatively prime
to g � 1. For any such map M , in the expression 2(g � 1)µ(k, `) for |G| given in (2.1) in
the previous section, the term g � 1 is completely absorbed by the denominator of µ(k, `).
In particular, if g � 1 = p for an odd prime p, this gives all of the orientably-regular maps
M of genus p+1 such that p does not divide |Aut+(M)|. Again, from the point of view of
the aim of this paper, we emphasise that the proof of this theorem in [12] is computer-free.

To complete our classification of all orientably-regular maps M of genus p+ 1 for odd
primes p, it therefore remains to consider the situation when p divides |Aut+(M)|. This
was done for p � 17 by the fairly general Theorem 3.1 of [12], but the proof of the latter
theorem in [12] relies on computation for p in the range 17  p  83. To eliminate the
need for computer-based arguments here, we present a modified version of Theorem 3.1 of
[12] and indicate below how a computer-free proof this modified version can be extracted
from the original arguments of [12].

Theorem 3.1. Let M be an orientably-regular map of type (k, `) with k  `, and of
genus p + 1 for some odd prime p � 5 dividing neither k nor ` but dividing the order of
G = Aut+(M). If Cp is a normal subgroup of G, then only the following three cases can
occur:

(a) M has type (8, 8) and G ⇠= Cp o C8, of order 8p, with p ⌘ 1 mod 8,

(b) M has type (5, 10) and G ⇠= Cp o C10, of order 10p, with p ⌘ 1 mod 10,

(c) M has type (6, 6) and G ⇠= Cp o (C6 ⇥ C2), of order 12p, with p ⌘ 1 mod 6.

Moreover, up to isomorphism in cases (a) and (c), there is a unique chiral pair of such
maps, while in case (b) there are two such chiral pairs.

The differences between the statement above and the original Theorem 3.1 of [12] are
as follows. First, the original statement of Theorem 3.1 in [12] assumes that p > 13 and p

divides |G|, and its proof in [12] begins by assuming that p > 83, which, together with the
assumption that p divides |G|, is shown to imply that (i) p divides no entry of the type of the
map, and (ii) G contains a normal subgroup of order p. Using (i) and (ii), the conclusions
(a) to (c) are subsequently derived in [12] for p > 83, and the proof in [12] finishes with
a remark that the validity of the conclusions can be verified also for primes p in the range
13 < p  83 by the computations described in [11]). That part of the proof, however, is
valid without any restriction on the size of the odd prime p, when (i) and (ii) are included
as extra assumptions, as we have done in the revised statement. We have also replaced the
assumption p > 13 by p � 5, for the same reason. A further modification of the statement
could be made to cover all primes p, but such a change is rather pointless, because for
p 2 {2, 3} there is no orientably-regular map M of genus p + 1 such that |Aut+(M)| is
divisible by p and assumptions (i) and (ii) are both satisfied.

Now let M be an orientably-regular map of type (k, `) with k  ` and of genus p+ 1,
where p is a prime dividing |Aut+(M)|. Then (k, `) is hyperbolic and so 1/k+1/` < 1/2.
Also besides the obvious divisibility of |Aut+(M)| by lcm(k, `, 2), invoking (2.1) tells us
that the number |Aut+(M)|/(2p) = µ(k, `) is an integer.

Let us consider what the last condition says for k 2 {3, 4, 5}:
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if k = 3, then µ(3, `) =
6`

`� 6
= 6 +

36

`� 6
, so ` 2 {7, 8, 9, 10, 12, 15, 18, 24, 42};

if k = 4, then µ(4, `) =
8`

2`� 8
= 4 +

16

`� 4
, so ` 2 {5, 6, 8, 12, 20};

if k = 5, then µ(5, `) =
10`

3`� 10
= 3 +

`+ 30

3`� 10
, so ` 2 {5, 10, 20}.

Next, suppose 6  k  `. Note that µ(k, `) = 2k`/(k` � 2k � 2`) > 2 for every
hyperbolic pair (k, `), and so for µ(k, `) to be a positive integer we must have µ(k, `) � 3,
which is equivalent to 2k` � 3k` � 6k � 6` and hence to (k � 6)(` � 6)  36; and
also µ(k, `) = 3 if and only if (k � 6)(` � 6) = 36. On the other hand, observe that
if 6  k  ` then (k � 3)(` � 3) � 9 and hence 4k` � 12k � 12` � 0 which gives
µ(k, `) = 2k`/(k` � 2k � 2`)  6; and also µ(k, `) = 6 if and only if (k � 6)(` � 6) =
36. Thus µ(k, `) 2 {3, 4, 5, 6}, and similarly we find that µ(k, `) = 4 if and only if
(k� 4)(`� 4) = 16, and µ(k, `) = 5 if and only if (3k� 10)(3`� 10) = 100. These give
just eight more possibilities for (k, `), namely (7, 42), (8, 24), (9, 18), (10, 15) and (12, 12)
with µ(k, `) = 3, plus (6, 12) and (8, 8) with µ(k, `) = 4, plus (6, 6) with µ(k, `) = 6.

Thus we have a total of exactly 17 + 8 = 25 pairs (k, `) with k  ` such that µ(k, `) 2
Z.

Now these include the eight pairs (3, 15), (3, 24), (3, 42), (4, 20), (6, 12), (8, 24),
(9, 18) and (12, 12), with |G| = 2µ(k, `)p = 20p, 16p, 14p, 10p, 8p, 6p, 6p and 6p,
respectively, but as p � 5, none of the listed group orders is divisible by the first entry k

of the corresponding pair (k, `), contradicting the fact that one generator of G has order k.
Hence we can eliminate all of them from consideration. Also we can eliminate two further
pairs, namely (7, 42) and (5, 20): in the former case, |G| = 2µ(k, `)p = 6p and is divisible
by ` = 42, and so p = 7, but then G ⇠= C42 which is clearly not (7, 42, 2)-generated, while
in the latter case |G| = 2µ(k, `)p = 8p and is divisible by ` = 20, so p = 5, and then
|G| = 40 and so G has a normal Sylow 5-subgroup P , but then the quotient G/P has order
8 and so is clearly not (1, 4, 2)-generated.

This leaves us with only 15 hyperbolic pairs (k, `) with k  ` such that µ = µ(k, `) is
an integer, as given in Table 1. We will split our consideration of the hypothetical (k, `, 2)-
groups for these pairs by taking solubility (or otherwise) of the groups into account.

k 3 3 3 3 3 3 4 4 4 4 5 5 6 8 10
` 7 8 9 10 12 18 5 6 8 12 5 10 6 8 15
µ 42 24 18 15 12 9 20 12 8 6 10 5 6 4 3

Table 1: The remaining 15 pairs (k, `) with k  ` and µ(k, `) 2 Z for p � 5.

4 Maps with a soluble automorphism group

The following proposition will be our basic tool for handling soluble (k, `, 2)-groups G of
order 2µ(k, `)p for the pairs (k, `) listed in Table 1, and we state it in a form applicable
to hypermaps as well. Using number-theoretic notation, for any prime s and any positive
integer m, we let ⌫s(m) be the largest non-negative integer e such that se divides m.
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Proposition 4.1. Let p � 5 be a prime, and let n > 1 be a positive integer such that all
prime divisors of n are less than p, and let G be a soluble group of order np generated
by two non-trivial elements of orders k and `, both coprime to p, and let m = lcm(k, `).
Further, suppose that if s is any prime, then ⌫s(n)  ⌫s(m) + 1 if s divides m (that is, if
⌫s(m) > 0), while ⌫s(n)  2 otherwise. Then G contains a normal subgroup of order p.

Proof. First, if n is a prime r smaller than p, then the claim follows from Sylow theory.
(Note here that for an arbitrary prime r � 2 dividing p�1, the semi-direct products CpoCr

are examples of groups as in the statement of the proposition, generated by two elements
of order r.) So from now on we may assume that n is composite. We will proceed by
induction on n. Note that p does not divide n, and so ⌫p(n) = 0.

As G is soluble, G contains an elementary abelian normal subgroup, say N ⇠= C
j
r for

some prime r and some integer j � 1. If r = p then |N | = p (since ⌫p(n) = 0), and
there is nothing left to prove, so r is a prime a divisor of n, and hence r < p, and indeed
r + 1 < p since p and r are primes with p � 5.

Next, let u and v be two generators for G of orders k and `. As p divides |G/N |, neither
of u and v can be contained in N (for otherwise G/N would be cyclic, of order a multiple
of p, implying that one of the generators would have to have order a multiple of p, contrary
to our assumptions).

So let k0 > 1 and `
0
> 1 be the orders of Nu and Nv in G/N , and let m0 = lcm(k0, `0).

Since N is an elementary abelian r-group, it follows that either k
0 = k or k

0 = k/r,
and, similarly, `0 = ` or `

0 = `/r. Also let n0 = n/r
j , so that |G/N | = n

0
p, and

⌫r(n0) = ⌫r(n) � j  ⌫r(n) � 1. Also let e = ⌫r(m), and recall the hypethsis that
⌫r(n)  e+ 1 if e � 1, while ⌫r(n)  2 if e = 0.

Letting e
0 = ⌫r(m0) it is obvious that either e0 = e, or e� 1 if e > 0, and so we have

⌫r(n)� 1  2� 1 = 1 if e = e
0 = 0, and

⌫r(n)� 1  e+ 1� 1 = 1 if e = 1 and e
0 = 0, while

⌫r(n)� 1  e+ 1� 1 = e  e
0 + 1 if e � e

0
> 0.

Hence in all cases ⌫r(n0) = ⌫r(n) � j  ⌫r(n) � 1  e
0 + 1 if e0 > 0, while otherwise

⌫r(n0) = ⌫r(n)� j  ⌫r(n)� 1 = 1  2 (when e
0 = 0).

This shows that the ‘largest exponent condition’ for the prime r is satisfied in G/N .
Also this condition is clearly satisfied for any prime s 6= r automatically.

The above observations show that the (soluble) group G/N of order n0
p, generated by

a pair of elements of orders k0, `0 > 1 as above, satisfies all the required assumptions. By
the induction hypothesis, the group G/N contains a normal subgroup isomorphic to Cp,
and it follows that G has a normal subgroup K containing N such that K/N ⇠= Cp. Since
N and Cp have relatively prime orders, the Schur-Zassenhaus theorem gives K ⇠= N oCp.

Moreover, we can show that |N | = r or r2. Let L be a a Sylow r-subgroup L of G.
Then L contains the normal r-subgroup N of G, which has exponent r and order rj , while
L itself has order r⌫r(n). By the assumption on e = ⌫r(m), we know that |L| divides re+1

if e � 1, or divides r
2 if e = 0. If e = 0 then |N |  |L|  r

2. On the other hand, if
e > 0 then since m divides both k and `, which are the orders of two elements of G, the
Sylow subgroup L contains a cyclic subgroup of order re, and so the exponent of L/N is
a multiple of re�1

, which gives |N |  |L|/(|L/N |)  r
e+1

/r
e�1 = r

2. Accordingly, in
both cases |N | = r or r2, so j = 1 or 2, and K ⇠= Cr o Cp or C 2

r o Cp.
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We now examine the semi-direct product K, which is determined by some group ho-
momorphism from Cp into Aut(C j

r ). For this homomorphism to be non-trivial, we need
an element of order p in Aut(C j

r ). But there is no such element, because Aut(Cr) ⇠=
Cr�1, which has order r � 1 < p, while Aut(C 2

r ) ⇠= GL(2, r), the order of which is
(r2 � 1)(r2 � r) = r(r � 1)2(r + 1) and hence is not divisible by p (because r + 1 < p).

We conclude that the subgroup Cp of K acts trivially on N , and then since p - |N |,
it follows that K ⇠= N ⇥ Cp, and so the subgroup Cp is characteristic in K and therefore
normal in G. This completes the proof by induction.

Proposition 4.1 enables us to establish the existence of a normal subgroup of order p in
the vast majority of cases of (k, `)-groups covered by Table 1.

Proposition 4.2. Let G be a soluble (k, `, 2)-group of order 2µ(k, `)p for some odd prime
p, and for a pair (k, `) and corresponding value of µ(k, `) as given in Table 1. If p � 7, or
if p = 5 but 5 - `, then G contains a normal subgroup isomorphic to Cp.

Proof. First, suppose (k, `) = (3, 7). By considering the commutator subgroup G
0 of G

and the induced presentation of the abelianisation G/G
0 for a (3, 7, 2)-group G one finds

that G0 = G, implying that in any such case G is insoluble. An inspection shows that
for all the remaining 9 types (k, `) 6= (3, 7) with 5 - ` listed in Table 1, the conditions of
Proposition 4.1 are satisfied for the given prime p, and the rest follows easily.

To complete this section, we deal with the five cases listed in Table 1 but not covered by
Proposition 4.2, namely the pairs (3, 10), (4, 5), (5, 5), (5, 10) and (10, 15), all with p = 5.
We do this by using a trivial but useful consequence of Sylow theory coupled with the fact
that if a Sylow p-subgroup is normal in the commutator subgroup G

0 of G, then it is also
characteristic in G

0 and therefore normal in G as well:

(F) If |G| = tp
j or if |G0| = tp

j for some prime p and some positive integer t < p, then
the group G has a unique (and hence normal) Sylow p-subgroup.

The situation for those five remaining cases is as follows.

Proposition 4.3. For p = 5, there is:

(a) a unique (3, 10, 2)-group of order 2·µ(3, 10)·p = 150, isomorphic to (C5⇥C5)oS3,
with presentation hx, y |x3

, y
10
, (xy)2, (x�1

y
2)3 i,

(b) no (4, 5, 2)-group of order 2 · µ(4, 5) · p = 200,

(c) no (5, 5, 2)-group of order 2 · µ(5, 5) · p = 100,

(d) a unique (5, 10, 2)-group of order 2·µ(5, 10)·p = 50, isomorphic to (C5⇥C5)oC2,
with presentation hx, y |x5

, y
10
, (xy)2, [x, y2] i, and

(e) a unique (10, 15, 2)-group of order 2 · µ(10, 15) · p = 30, isomorphic to C15 o C2,
with presentation hx, y |x10

, y
15
, (xy)2, xyx�1

y
4 i.

Proof. We will consider the five pairs (k, `) one by one.
Case (a). Let G = hx, y |x3

, y
10
, (xy)2, . . . i be a (3, 10, 2)-group, with order 2 · 15 · 5 =

150. In what follows, we will work with an equivalent presentation of G obtainable by
taking a = xy = y

�1
x
�1 and b = x, namely G = h a, b | a2, b3, (ab)10, . . . i. As the
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order of no non-abelian simple group divides 150, such a group is soluble, and then since
the abelianisation G/G

0 can only be C2, it follows that |G0| = 75. Moreover, by the
observation (F) above, the group G has a normal Sylow 5-subgroup N , with G/N be-
ing (3, 2, 2)-generated and therefore isomorphic to S3. The subgroup N has order 25
and hence is abelian, but N is not cyclic, for otherwise K = h(ab)2i would be a nor-
mal subgroup in G, with G/K having order 30, and yet G/K ⇠= S3 by the same argu-
ment as in the previous sentence, so N ⇠= C

2
5 . Next, by the Schur-Zassenhaus theorem,

G ⇠= N o S3. Letting u = (ab)2 and v = (ba)2, we see that conjugation by a inter-
changes a with b, and conjugation by b takes v to u, and also the two elements u and
v generate N (for otherwise u and v would generate the same cyclic normal subgroup
J of order 5 with quotient G/J ⇠= S3). Next, using b

2 = b
�1 we have 1 = [u, v] =

[(ab)2, (ba)2] = b
�1

ab
�1

aab
�1

ab
�1

ababbaba = (b�1
aba)3, and with the help of this we

also obtain b
�1

ub = b
�1

abab
�1 = ab

�1
abab

�1
a = ab

�1
ab

�1
b
�1

ab
�1

a = v
�1

u
�1.

Hence the action of S3 by conjugation on N is completely and uniquely determined by
the extra relator (b�1

aba)3, which is conjugate to (x�1
y
2)3 in the original notation. This

proves uniqueness of our group of order 150, and its given (3, 10, 2)-presentation.

Case (b). Here µ(k, `) = µ(4, 5) = 20 and p = 5, and G = hx, y |x4
, y

5
, (xy)2, . . . i

has order 200. As in the previous case, by (F) the group G would have a normal Sylow
5-subgroup N , but then G/N would be (4, 1, 2)-generated, which is impossible.

Case (c). Here µ(k, `) = µ(5, 5) = 10 and p = 5, and G = hx, y |x5
, y

5
, (xy)2, . . . i has

order 100, and by Sylow theory would have a normal Sylow 5-subgroup N , but then x and
y would lie in N and so could not generate G.

Case (d). Let G = hx, y |x5
, y

10
, (xy)2, . . . i be a (5, 10, 2)-group for p = 5, with order

50. Then G has a Sylow 5-subgroup N , and clearly G = N o hxyi ⇠= N oC2. Also N not
cyclic (for otherwise G would have a normal subgroup K of order 5 such that G/K is a
(1, 2, 2)-generated group of order 10), and so N ⇠= C

2
5 . Next, N contains both x and y

2, but
hxi 6= hy2i by the immediately previous argument, so hx, y2i = N , and [x, y2] = 1. The
latter relation now implies that (xy)�1

x(xy) = y
�1

xy = y
�2

yxy = y
�2

x
�1 = (xy2)�1,

and that (xy)�1
y
2(xy) = y

�1
x
�1

y
2
xy = y

�1
y
2
y = y

2, and as these completely and
uniquely determine the action of xy by conjugation on N , it gives the stated presentation
for G.

Case (e). Let G = hx, y |x10
, y

15
, (xy)2, . . . i be a (15, 10, 2)-group for p = 5, with

order 30. Then H = hyi is a normal subgroup of G of index 2, and so conjugation by
the involution xy gives (xy)y(xy)�1 = y

j for some square root j of 1 in Z15, namely
j 2 {1, 4, 11, 14}. Then also xyx

�1 = y
j , and so 1 = (yx)2 = yxyx

�1
x
2 = y

1+j
x
2, so

that y1+j = x
�2 which has order 5, and so 1 + j ⌘ 3, 6, 9 or 12 mod 15. The intersection

of the two congruences for j leaves only j ⌘ 11 ⌘ �4 mod 15, giving G as a semi-direct
product hyio hxyi ⇠= C15 o C2, determined by the extra relator xyx�1

y
4.

The orientably-regular maps M from the first, fourth and fifth cases of Proposition 4.3
are all reflexible: it is easy to check that in each case the assignment (x, y) 7! (x�1

, y
�1)

extends to an automorphism of Aut+(M), preserving the given group presentation.
The remaining (k, `, 2)-groups G of order 2µ(k, `)p, which are insoluble, are handled

separately in the next section.
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5 Maps with an insoluble automorphism group, and summary of the

classification for p � 5

Again in this section we suppose that M is an orientably-regular map with type (k, `) as
given in Table 1, and with genus p + 1 for some prime p � 5, such that the order of
G = Aut+(M) is divisible by p, but now also such that G is insoluble. Moreover, if
p > 84 then because the Hurwitz bound gives |G|  84p, we know that the group G would
have a normal Sylow p-subgroup P , but then the insoluble quotient G/P would have to be
A5 and so |G| = 60p, which is impossible since µ(k, `) 6= 30 for all the cases in Table 1.
Hence we may suppose that 5  p  83.

Next, |G| = 2µp must be a multiple of the order of some non-abelian simple group
H , with |H|  |G|  84 · 83 = 6972. There are exactly thirteen such simple groups,
namely An for n 2 {5, 6, 7}, PSL(2, q) for q 2 {7, 8, 11, 13, 16, 17, 19, 23], PSL(3, 3)
and PSU(3, 3), with orders 60, 360, 2520, 168, 504, 660, 1092, 4080, 2448, 3420, 6072,
5616 and 6048 respectively. (This may be checked at numerous online references; for an
article reference pre-dating the Classification of Finite Simple Groups see [16].)

Comparison of these orders with the entries in Table 1 reveals that there are just eleven
possibilities for (k, `, µ, p, |G|), and a unique H for each one, as in Table 2.

We consider these eleven cases in detail, showing that only three of them (cases (b), (d)
and (h)) are realisable.

Case k ` µ p |G| = 2µp H

(a) 3 7 42 5 84 · 5 = 420 A5

(b) 3 7 42 13 84 · 13 = 1092 PSL(2, 13)
(c) 3 8 24 5 48 · 5 = 240 A5

(d) 3 8 24 7 48 · 7 = 336 PSL(2, 7)
(e) 3 9 18 5 36 · 5 = 180 A5

(f) 3 12 12 5 24 · 5 = 120 A5

(g) 3 12 12 7 24 · 13 = 168 PSL(2, 7)
(h) 4 6 12 5 24 · 5 = 120 A5

(i) 4 6 12 7 24 · 7 = 168 PSL(2, 7)
(j) 4 12 6 5 12 · 5 = 60 A5

(k) 6 6 6 5 12 · 5 = 60 A5

Table 2: The eleven possibilities for (k, `, µ, p, |G|) and simple H .

In case (a), we have |G| = 420 = 60 · 7 and H = A5, so the group G must have
A5 and C7 as composition factors, with one of them being the quotient of G by the other,
but neither of those groups is a quotient of the (3, 7, 2)-triangle group, so this case can be
eliminated.

In contrast, for case (b) the group G is PSL(2, 13), which is known to be a quotient
of the (3, 7, 2)-triangle group in three different ways, as a consequence of a theorem by
Macbeath [19, Theorem 8]. Details were given in [23], but also explicit matrix represen-
tations for these three ways can be extracted from [10, 21] to show that the corresponding
group presentations can be obtained by adding the relator [x, y]6, [x, y3]3 or [x, y]7 to the
presentation hx, y | x3 = y

7 = (xy)2 = 1 i for the (3, 7, 2)-triangle group; see also [7].
In case (c), the group G of order 240 = 60 · 4 cannot have A5 as a quotient, because

A5 has no element of order 8 and is not a quotient of either of the (3, 2, 2)- and (3, 4, 2)-
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triangle groups (which have orders 6 and 24), and so G must have the cyclic group C2 as
a quotient, and hence a normal subgroup K of index 2. This subgroup K has order 120
and so must be isomorphic to one of A5 ⇥ C2, SL(2, 5) or S5

⇠= PGL(2, 5). But if x and
y are generators for G satisfying x

3 = y
8 = (xy)2 = 1, then K is generated by the two

elements y and xyx
�1 (= (xy)x(xy)�1) of order 3, so K cannot have C2 as a quotient,

and hence K ⇠= SL(2, 5). But now this implies that K contains a unique involution, which
must be equal to y

4, and if L = hy4i then L is characteristic in K and hence normal in G,
and the quotient G/L has order 240 but is a quotient of the (3, 4, 2)-triangle group of order
24, a contradiction.

In case (d), the group G must have PSL(2, 7) and C2 as composition factors, but cannot
have PSL(2, 7) as a quotient by the same argument as in the first sentence of the previous
case, and so G ⇠= PGL(2, 7). Using the known enumeration of all (k, `)-groups isomorphic
to PSL(2, q) or PGL(2, q) for some prime power q, completed in [21] and independently
in [1] and later revisited in [10], we find that PGL(2, 7) is a quotient of the (3, 8, 2)-triangle
group in two different ways, with presentations obtainable by adding the relator [x, y]4 or
[x, y3]2 to the presentation hx, y | x3 = y

8 = (xy)2 = 1 i for the (3, 8, 2)-triangle group.
In case (e), the group G must have A5 and C3 as composition factors, but cannot have

A5 as a quotient, because A5 has no element of order 9 and is not a quotient of the (3, 3, 2)-
triangle group (which has order 12). Thus G has a normal subgroup K isomorphic to A5

with G/K ⇠= C3, but G 6⇠= A5 ⇥ C3. Now Aut(K) ⇠= Aut(A5) ⇠= S5 with all elements of
order 3 being inner automorphisms, and so conjugation by y (which has order 9) induces the
same automorphism of K as conjugation by some element w of order 3 in K. This implies
that yw�1 centralises K, and as it lies outside K, it follows that Z(G) is non-trivial, and
must have order 3, so G ⇠= K ⇥ C3

⇠= A5 ⇥ C3, a contradiction.
In cases (f) and (h), the group G has order 120 but cannot have A5 as a quotient because

A5 is not a quotient of the (3, 12, 2) or the (4, 6, 2)-triangle group, and so G ⇠= S5, But
S5 has no element of order 12, and so this eliminates case (f). On the other hand, S5 is
a (4, 6, 2)-group, being generated by x = (1, 2, 3, 4) and y = (1, 2)(3, 4, 5) with xy =
(2, 4)(3, 5), and this choice of generators is unique up to conjugacy in Aut(S5) = S5.

Finally, cases (g), (i), (j) and (k) are easy to eliminate, as in each case G = H , which
has no element of order `. (Both PSL(2, 7) and A5 have no element of order 12 or 6.)

Summing up our findings gives the following.

Proposition 5.1. Let G be an insoluble (k, `, 2)-group of order 2 ·µ(k, l) ·p, where the type
(k, `) is given in Table 1, and p is a prime � 5. Then p = 5 and G = S5, expressible as
a (4, 6, 2)-group uniquely, or p = 7 and G = PGL(2, 7), expressible as a (3, 8, 2)-group
in two ways, or p = 13 and G = PSL(2, 13), expressible as a (3, 7, 2)-group in three
ways.

All the orientably-regular maps identified above are reflexible, because in each case the
(k, `, 2)-presented group G = hx, yi admits an automorphism taking (x, y) to (x�1

, y
�1).

This can be verified directly for the map in (h) using conjugation by the permutation
(1, 2)(3, 4), while for all the remaining maps it follows from the fact that relators of the
form x

r, ys, (xy)t and [xr
, y

s]t are preserved by such inversion. (For example, [xr
, y

s]t is
taken to [x�r

, y
�s]t = (xr

y
s
x
�r

y
�s)t, which is conjugate to (x�r

y
�s

x
r
y
s)t = [xr

, y
s]t.)

Theorem 3.1 and Propositions 4.2 to 5.1 together give the following.
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Theorem 5.2. Up to isomorphism and duality, every orientably-regular map M of genus
p+1 where p is prime, p � 5, and p divides the order of G = Aut+(M), occurs as one of
the maps in the list below:

(a) one chiral pair of maps of type (8, 8) with G ⇠= Cp o C8 of order 8p,
for every prime p ⌘ 1 mod 8, with p � 17;

(b) two chiral pairs of maps of type (5, 10) with G ⇠= Cp o C10 of order 10p,
for every prime p ⌘ 1 mod 10, with p � 11;

(c) a unique chiral pair of maps of type (6, 6) with G ⇠= Cp o (C6 ⇥ C2) of order 12p,
for every prime p ⌘ 1 mod 6, with p � 7;

(d) three reflexible maps of type (3, 7) with G ⇠= PSL(2, 13) of order 84p for p = 13;

(e) two reflexible maps of type (3, 8) with G ⇠= PGL(2, 7) of order 48p for p = 7;

(f) a unique reflexible map of each of the types (3, 10), (4, 6), (5, 10) and (10, 15), with
groups G isomorphic to (C5⇥C5)oS3 of order 30p, S5 of order 24p, (C5⇥C5)oC2

of order 10p, and C15 o C2 of order 6p, respectively, and all for p = 5.

To complete our computer-free proof of the classification of orientably-regular maps on
surfaces of genus p+ 1 where p is prime, it remains to deal with the cases p = 2 (genus 3)
and p = 3 (genus 4), which we do in the next (and final) two sections.

6 Orientably-regular maps of genus 3

It is easy to compile a table of possible types (k, `) with k  ` for an orientably-regular
map M of genus 3 (for p = 2), together with the corresponding integer value of 2µ(k, `)
and the order 4µ(k, `) of G = Aut+(M), which must be divisible by k and ` – see Table 3.

k 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 6 6 7 8 12
` 7 8 9 10 12 14 18 30 5 6 8 12 20 5 6 10 6 9 14 8 12
2µ 84 48 36 30 24 21 18 15 40 24 16 12 10 20 15 10 12 9 7 8 6
|G| 168 96 72 60 48 42 36 30 80 48 32 24 20 40 30 20 24 18 14 16 12

Table 3: Potential hyperbolic pairs (k, `) with k  ` for p = 2.

The values in Table 3 will eventually give 12 group presentations and hence 12 orientably-
regular maps of genus 3, up to isomorphism and duality. We will obtain groups of orders
168, 96, 48, 32, 24, 16, 14 and 12, among which each of the orders 48, 32, 24, and 116 will
give a pair of non-isomorphic maps. We show this in the following two subsections.

6.1 Genus 3: non-existence

Here we exclude pairs (k, `) from Table 3 for which no suitable (k, `, 2)-group exists.
• Groups with a cyclic subgroup of index 1 or 2. If G is a abelian group of generated by
two elements, then ord(ab) divides lcm(ord(a), ord(b)) for any pair generating pair (a, b),
and so ` divides lcm(k, 2). Hence there is no (3, 30, 2)-generated group of order 30, and no
(4, 20, 2)-generated group of order 20. Similarly, if G is a group generated by two elements
a and b of orders r and s where r is odd and |G| = 2s, then b generates a normal subgroup
N of index 2, but then N contains both a (as it has odd order) and b, a contradiction.
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Hence there is no (3, 18, 2)-generated group of order 36, and no (5, 10, 2)-generated group
of order 20. Also there is no (6, 9, 2)-generated group of order 18, for in that case N = hyi
would have index 2 in G, so x

2 = y
±3 (to have order 3), and also x

�1
yx = y

j where
j = ±1, but then y

⌥3 = x
�2 = x

�2(xy)2 = x
�1

yxy = y
j+1 and so j = 2 or 5, a

contradiction.
• Groups of order 2rs where r and s are distinct odd primes, and x has order r while y has
order s or 2s. If r and s are small enough that we can assume that G is soluble, then consider
a minimal normal subgroup N of G. This must be elementary abelian, and hence cyclic
of (prime) order 2, r or s. But then respectively G/N is (r, s, 1)-generated, or (1, s, 2)- or
(1, 2s, 2)-generated, or (r, 1, 2) or (r, 2, 2)-generated, all of which are impossible. Hence
there is no (3, 14, 2)-generated group of order 42, and no (5, 6, 2)-generated group of order
30. Also for later use, the same argument shows there is no (3, 10, 2)-generated group of
order 30, and we note that the only (3, 5, 2)-generated group is A5, of order 60.
• A (5, 5, 2)-group of order 40. Any such group G would have a normal Sylow 5-subgroup
N (of index 8), but then G/N would be (1, 1, 2)-generated, which is impossible.
• A (4, 5, 2)-group of order 80. Any such group G would be soluble, and its commutator
subgroup G

0 would have index 2 and order 40, with a unique Sylow 5-subgroup N that is
normal in G, but then G/N would be (4, 1, 2)-generated, which is impossible.
• A (3, 9, 2)-group of order 72. Any such group G would be soluble, and its abelianisation
G/G

0 would have order 3. so G
0 would have order 24, and contain the involution xy.

Also x lies in a conjugate of the cyclic Sylow subgroup of order 9 generated by y, so
h
�1

xh = y
±3 for some h 2 G, and therefore G

0 contains h
�1

xhx
�1 = y

±3
x
�1 =

y
±3

yy
�1

x
�1 = y

1±3
xy. Hence G

0 contains y1±3 = y
4 or y7, both of which have order 9,

a contradiction.
• A (3, 10, 2)-group of order 60. Any such group G is soluble (because A5 has no element
of order 10), and then a minimal normal subgroup N of G has order 2, 3, 4 or 5. The last
three cases are impossible since G/N cannot be (1, 10, 2)-, (3, 5, 1)- or (3, 2, 2)-generated,
and so |N | = 2. Then similarly, because G/N cannot be (3, 5, 1)- or (3, 10, 1)-generated,
we find that G/N is (3, 5, 2)- or (3, 10, 2)-generated, but there is no such group of order
30 (as observed at the end of the second bullet point above).

The above arguments exclude 11 of the 21 cases in Table 3, leaving only the 10 pairs
(3, 7), (3, 8), (3, 12), (4, 6), (4, 8), (4, 12), (6, 6), (7, 14), (8, 8) and (12, 12).

6.2 Genus 3: existence

Here we examine the remaining 10 pairs (k, `) from Table 3, which will give the total of 12
orientably-regular maps of genus 3 and type (k, `) with k  `. In the course of the analysis
we also derive presentations for the corresponding (k, `, 2)-groups.
• Pairs (k, `) = (12, 12) and (7, 14). For these pairs, |G| = ` and hence G is cyclic,
with xy = y

`/2 as the unique involution, and x = y
`/2�1. This gives unique (k, `, 2)-

presentations hx, y |x12
, y

12
, (xy)2, x5

y
�1 i for C12 and hx, y |x7

, y
14
, (xy)2, x�1

y
6 i for

C14.
• Pairs (k, `) = (4, 12) and (8, 8). For these pairs, |G| = 2` and hence N = hyi is
a cyclic subgroup of index 2, and x

2 2 N but x /2 N , with x
2 = y

" for some " such
that y" has order k/2. Now conjugation by the involution xy gives (xy)y(y�1

x
�1) =

xyxx
�2 = y

�1
x
�2 = y

�1�", and so G ⇠= hyi o hxyi ⇠= C` o C2. This gives a unique
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(k, `, 2)-presentation in the first case, namely hx, y |x4
, y

12
, (xy)2, x2

y
6 i for C12 o C2,

and two (k, `, 2)-presentations in the second case, namely hx, y |x8
, y

8
, (xy)2, x2

y
2 i and

hx, y |x8
, y

8
, (xy)2, x2

y
�2 i for C8 o C2.

• The pair (k, `) = (6, 6). For this pair, the number of distinct products xi
y
j in G is equal

to 6 ⇥ 6/|hxi \ hyi| and as this cannot exceed |G| = 24, and G is not cyclic, we find
that xi = y

j for some i, j 2 {2, 3, 4}, and so either x2 = y
±2 or x3 = y

3. In the first
case the intersection hx2i = hxi \ hyi = hy2i would be normal in G and give a (2, 2, 1)-
or (2, 2, 2)-generated quotient of order 8, which is impossible, so N = hx3i = hy3i is
normal in G, with G/N a (3, 3, 2)-group of order 12 and hence isomorphic to A4. Also by
centrality of x3 = y

3 we find (x2
y
2)2 = (x�1+3

y
�1+3)2 = (x�1

y
�1)2 = (yx)�2 = 1,

so G ⇠= hx2
, y

2i ⇥ hx3i ⇠= A4 ⇥ C2, and hx, y |x6
, y

6
, (xy)2, x3

y
3 i is a unique (6, 6, 2)-

presentation for G.
• The pair (k, `) = (4, 8). Here we consider the permutation representation of the group G

(of order 32) on right cosets of H = hyi ⇠= C8. Clearly H 6= Hx, and also if Hx
2 = H ,

then x
2 2 H and so x

2 = y
4, but then this would be a central involution in G and give a

(2, 4, 2)-generated quotient of order 8, a contradiction. Hence the four cosets H , Hx, Hx
2

and Hx
�1 are distinct. On the other hand, right multiplication by y fixes H and takes Hx to

Hxy = Hy
�1

x
�1 = Hx

�1, and then since y has even order it must induce an involution,
swapping Hx with Hx

�1 and hence fixing Hx
2. It follows that xy�1

x = x(xyx)x =
x
2
yx

�2 2 H , so xy
�1

x = x
2
yx

�2 = y
j for some j 2 {±1,±3}, noting that y has order 8,

and then squaring gives x2
y
2
x
�2 = y

2j . Also (Hx)y2 = Hx, so xy
2
x
�1 2 H and hence

xy
2
x
�1 = y

±2 and then conjugating again gives y
2j = x

2
y
2
x
�2 = y

2
, which implies

that j 2 {1,�3}. Next, conjugation by the involution xy on hx2
, yi ⇠= hyio hx2i is given

by (xy)y(xy) = xyx
�1 = xyxx

�2 = y
�1

x
2 and (xy)x2(xy) = (y�1

x
�1)x2(xy) =

y
�1

x
2
y = y

�1(x2
yx

�2)x2 = y
�1+j

x
2. This gives G ⇠= (hyi o hx2i) o hxyi, where for

j = 1 the leftmost semi-direct product is a direct product. Hence we have a unique (4, 8, 2)-
presentation for each of two groups of order 32, namely hx, y |x4

, y
8
, (xy)2, xy�1

xy
�1 i

for a semi-direct product (C8⇥C2)oC2 when j = 1, and hx, y |x4
, y

8
, (xy)2, xy�1

xy
3 i

for a semi-direct product (C8 o C2)o C2 when j = �3.
• The pair (k, `) = (4, 6). For this pair, the group G of order 48 is soluble, and G/G

0 is
a non-trivial quotient of the Klein four-group V4

⇠= C
2
2 , so |G0| = 12 or 24, and G/G

0

has exponent 2, and hence G
0 contains both x

2 and y
2. Next, a Sylow 3-subgroup P of G

cannot be normal in G, for otherwise G/P would be a (4, 2, 2)-generated group, and hence
also P cannot be normal in G

0.
Now suppose |G0| = 24. Then G ⇠= SL(2, 3), A4 ⇥ C2 or S4, because it is known

(as a consequence of Sylow theory) that these are the only groups of order 24 not having a
normal subgroup of order 3. In the first two cases, G0 contains a unique involution, which
has to be x

2 and which generates a subgroup N of order 2 that is characteristic in G
0 and

hence normal in G, but with (2, 3, 2)-generated quotient G/N of order 12, a contradiction.
Hence G

0 ⇠= S4. In particular, G00 ⇠= A4, but then G/G
00 has order 4 and hence is abelian,

contradicting the fact that G/G
0 has order 2.

Thus |G0| = 12, and G
0 ⇠= A4 (the only group of order 12 without a normal subgroup

of order 3), and then also G
0 = hx2

, y
2i, because A4 is generated by any pair (a, b) of

its elements with o(a) = 2 and o(b) = 3. Clearly the three involutions in G
0 ⇠= A4 are

x
2 and its conjugates under y±2, and these generate a subgroup isomorphic to V4 that is

characteristic in G
0 and hence normal in G, so y

�1
x
2
y must equal one of them. But if

y
�1

x
2
y = x

2 then x
2 commutes with y and hence with y

2, while if y
�1

x
2
y = x

2 =
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y
�2

x
2
y
2 then the same thing happens, and so y

�1
x
2
y = y

2
x
2
y
�2, which is equivalent to

[x2
, y

3] = 1.
It follows that the subgroup K = hx2

, yi is the direct product hx2
, y

2i ⇥ hy3i ⇠= A4 ⇥
C2, of order 24 and normal of index 2 in G. In particular, y3 generates Z(K) and hence is
centralised by x (and xy), so [x, y3] = 1, which implies the relation [x2

, y
3] = 1 found in

the previous sentence. Finally, x�1
y
2
x = x

�1
y
�1

y
3
x = y

3
x
�1

y
�1

x = y
3
yxx = y

�2
x
2,

while y
�1

x
2
y = y

2
x
2
y
�2 as before, and these relations determine conjugation of G0 =

hx2
, y

2i (and hence also conjugation of hG0
, y

3i = K) by x and y.
The result is just one possibility for G, namely (A4 ⇥ C2)o C2, with unique (4, 6, 2)-

presentation hx, y |x4
, y

6
, (xy)2, [x, y3] i.

• The pair (k, `) = (3, 12). Here we consider the permutation representation of the group
G (of order 48) on the four right cosets of H = hyi ⇠= C12. Clearly multiplication by x

induces a 3-cycle (H,Hx,Hx
�1), fixing the fourth coset, while multiplication by y fixes

H and takes Hx to Hxy = Hy
�1

x
�1 = Hx

�1, but then by transitivity of hx, yi = G

it cannot fix the fourth coset, and so it must induce the 3-cycle (Hx,Hx
�1

, Hx
�1

y).
In particular, Hxy

3 = Hx and so xy
3
x
�1 2 H , and then because hyi ⇠= C12 has no

automorphism of order 3, we deduce that xy3x�1 = y
3, and therefore N = hy3i is a

central cyclic subgroup of order 4. Finally, the quotient G/N of order 12 must be (3, 3, 2)-
generated and hence is isomorphic to A4, which makes G a central (non-split) extension of
C4 by A4, with unique (3, 12, 2)-presentation hx, y |x3

, y
12
, (xy)2, [x, y3] i.

• The pair (k, `) = (3, 8). In this case the group G (of order 96) is soluble, and G/G
0 ⇠= C2

with x, y
2 2 G

0. In fact, G0 = hx, y2i, because y
�1

x
�1

y = xyy 2 hx, y2i and hence the
latter subgroup is normal, with index 2. Moreover, the fact that xy2 = y

�1
x
�1

y implies
that xy2 has order 3, and so G

0 is (3, 3, 4)-generated, by u = x
�1 and v = xy

2. Next,
let a = uv = y

2 and b = vu = xy
2
x
�1. Then clearly x

�1
bx = a and yay

�1 = a,
while x

�1
ax = x

�1
y
2
x = xxyyx = xy

�1
x
�1

x
�1

y
�1 = xy

�1
xy

�1 = xy
�1

xyy
�2 =

xy
�1

y
�1

x
�1

y
�2 = xy

�2
x
�1

y
�2 = b

�1
a
�1 and then also yby

�1 = yxy
2
x
�1

y
�1 =

x
�1

y
�1

y
2
yx = x

�1
y
2
x = x

�1
ax = b

�1
a
�1, and so K = ha, bi is normalised by x

and y
�1, and hence is normal in G. The quotient G/K is (3, 2, 2)-generated and therefore

isomorphic to S3, and so G
00 = K = ha, bi = hy2, xy2x�1i, which must have order 16

and be generated by two elements of order 4.
Now let N be a minimal normal subgroup of G contained in G

00. Then N is an elemen-
tary abelian 2-group, but cannot have order 2 because there is no (3, 8, 2)-generated group
of order |G|/2 = 48 (as it would have to give an orientably-regular map on the sphere), and
it cannot have order 8 because there is no (3, s, 2)-generated group of order |G|/8 = 12
with s 2 {2, 4}. Thus |N | = 4, with G/N isomorphic to the (3, 4, 2)-generated group S4.
Also N contains y

4 = a
2 and its two conjugates xa

2
x
�1 = b

2 and x
�1

a
2
x = (ab)�2,

which must be the three involutions in N ⇠= V4, and so they commute with each other, with
trivial product. Hence (ab)2 = a

2
b
2 and so ba = ab, making K itself abelian, and isomor-

phic to C4 ⇥ C4. In particular, 1 = [a, b] = [y2, xy2x�1] = y
�2

xy
�2

x
�1

y
2
xy

2
x
�1 =

y
�2

xy
�2

xxyyxy
2
xx = y

�2
xy

�2
xy

�1
x
�1

yxyyxx = y
�2

xy
�2

xy
�1

x
�2

x
�1

y
�1

x =
y
�2

xy
�2

xy
�2

x = (y�2
x)3, and so (x�1

y
2)3 = 1. Conversely, this relation implies that

[a, b] =1 and hence gives a unique (3, 8, 2)-presentation G =hx, y |x3
, y

8
, (xy)2, (x�1

y
2)3i

for G ⇠= ((C4 ⇥ C4)o C3)o C2.
• The pair (k, `) = (3, 7). In this case G is the unique (smallest) Hurwitz group PSL(2, 7),
which is known to have a unique (3, 7, 2)-presentation, namely hx, y |x3

, y
7
, (xy)2, [x, y]4i;

see [19] (or [7]).
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6.3 Genus 3: summary

In summary, we have a classification of all orientably-regular maps of genus 3, in a some-
what different form but equivalent to earlier findings by [22], and confirmed by compu-
tations in [6, 8, 11]. Note also that all of these maps are reflexible, as in each case the
(k, `, 2)-presentation for G is preserved under inversion of the generators x and y.

Theorem 6.1. Up to isomorphism and duality, an orientably-regular map M has genus 3 if
and only if G = Aut+(M) is one of the twelve (k, `, 2)-presented groups with presentation
of the form G = hx, y |xk

, y
`
, (xy)2, . . . i as given in Table 4. All of these maps are

reflexible.

Type |G| Additional relators Group structure
(12, 12) 12 x

5
y
�1

C12

(7, 14) 14 x
�1

y
6

C14

(4, 12) 24 x
2
y
6

C12 o C2

(8, 8) 16 x
2
y
2

C8 ⇥ C2

(8, 8) 16 x
2
y
�2

C8 o C2

(6, 6) 24 x
3
y
3

A4 ⇥ C2

(4, 8) 32 (xy�1)2 (C8 ⇥ C2)o C2

(4, 8) 32 xy
�1

xy
3 (C8 o C2)o C2

(4, 6) 48 [x, y3] (A4 ⇥ C2)o C2

(3, 12) 48 [x, y3] C4 ·A4

(3, 8) 96 (x�1
y
2)3 ((C4 ⇥ C4)o C3)o C2

(4, 7) 168 [x, y]4 PSL(2, 7)

Table 4: Orientably-regular maps of genus 3 (up to duality).

7 Orientably-regular maps of genus 4

For a classification of orientably-regular maps M of genus 4 (for p = 3) we need only
consider the situation when the order of the group G = Aut+(M) is divisible by 3, for the
remainder are furnished by Theorem 8.4 of [12].

More specifically, Theorem 8.4 of [12] tells us that up to duality there are exactly four
orientably-regular maps M of genus 4 with |Aut+(M)| not divisible by 3. These consist
of three maps of types (4, 10), (4, 16) and (10, 10) with group G having order 40, 32 and
20 (respectively), all of which arise from case (A2) of Theorem 8.4, and one map of type
(16, 16) with group G having order 16, arising from case (A0) of Theorem 8.4.

Again we compile a table of possible types (k, `) with k  ` for an orientably-regular
map M , this time with the order |G| = |Aut+(M)| divisible by 3, k and ` – see Table 5.

k 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 6 6 8 9
` 7 8 9 10 12 15 18 24 42 5 6 8 12 5 10 6 12 8 18

µ(k, `) 42 24 18 15 12 10 9 8 7 20 12 8 6 10 5 6 4 4 3
|G| 252 144 108 90 72 60 54 48 42 120 72 48 36 60 30 36 24 24 18

Table 5: Potential hyperbolic pairs (k, `) with k  ` for p = 3.

The values in Table 5 will give eight orientably-regular maps of genus 4, with types
(3, 12), (4, 5), (4, 6), (5, 5), (6, 6), (6, 6), (6, 12) and (9, 18). Together with the four maps
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M of types (4, 10), (4, 16), (10, 10) and (16, 16) mentioned earlier with |Aut+(M)| not
divisible by 3, these will give the complete family of all twelve orientably-regular maps of
genus 4, up to isomorphism and duality. Again we split the analysis into two subsections,
the first dealing with pairs (k, `) from Table 5 for which no suitable (k, `, 2)-generated
group exists.

7.1 Genus 4 and group order divisible by 3: non-existence

• Groups with a cyclic subgroup of index 1 or 2. These can be handled as for genus 3, and
result in elimination of the cases with (k, `) = (3, 24) or (3, 42) from Table 5.

• A (3, 18, 2)-group G of order 54. In this case, we see that in the natural action of G on
the three right cosets of H = hyi, the generator y fixes H and induces the transposition
(Hx,Hx

�1), since Hxy = Hy
�1

x
�1 = Hx

�1. Hence the image of this permutation
representation of G is isomorphic to S3, and so its kernel of order 9 is N = hy2i. Now
N is centralised by y, so conjugation by x and xy induce the same automorphism of N ,
of order dividing gcd(3, 2) = 1. Hence x centralises y2, but this implies that x�1

y
�2 has

order 9, and yet x�1
y
�2 = yxy

�1, which has order 3, a contradiction.

• An (8, 8, 2)-group G of order 24. Here the formula |hxihyi| = |hxi| |hyi|/|hxi \ hyi|
gives 24 = |G| � |hxihyi| = 64/|hxi \ hyi| and so |hxi \ hyi| = 8 or 4, but the former is
impossible (as G is not cyclic), and so is the latter since it would imply that K = hxi\hyi =
hx2i = hy2i is central in G, with (2, 2, 2)-generated quotient G/K of order 6.

• A (5, 10, 2)-group G of order 30. In this case, if N is a minimal normal subgroup of
G, then |N | 6= 2 or 5, as G/N cannot be a (5, 5, 1)-generated group of order 15 or a
(1, 2, 2)-generated group of order 6, so |N | = 3. But then any element of order 5 (such as
x) centralises N , so G has a cyclic subgroup of order 15 and index 2, and hence a normal
subgroup of order 5 after all, a contradiction.

• A (4, 12, 2)-group G of order 36. In this case, in the natural action of G on the three
right cosets of H = hyi, the generator x of order 4 induces a transposition, and so x

2 2 H ,
but then (xy)�1

y(xy) = y
�1

x
�1

yy
�1

x
�1 = y

�1
x
�2 2 H and therefore G = hy, xyi =

hyio hxyi, which has order 24, a contradiction.

• A (4, 8, 2)-group G of order 48. Here the number of Sylow 2-subgroups of G (with order
16) is 1 or 3, but is not 1 since C3 cannot be a quotient of the (4, 8, 2)-generated group G,
similarly, is not 3 because neither C3 nor S3 can be a quotient of G.

• A (3, 15, 2)-group G of order 60. In this case H = hyi has index 4 and so the element
y
3 (of order 5) must induce the identity permutation on right cosets of H, and therefore

Hxy
3 = Hx, which implies that x normalises N = hy3i ⇠= C5. Moreover, since x has

order 3, it must centralise y
3. It follows that N is a central subgroup of hx, yi = G, of

order 5, with the (3, 3, 2)-generated quotient G/N of order 12 isomorphic to A4. By the
Schur-Zassenhaus theorem, G ⇠= C5 o A4 and hence G ⇠= C5 ⇥ A4 (because N ⇠= C5 is
central) and hence. But now the pre-image V in G of the subgroup V4 of A4 is normal in
G, which is impossible because G/V cannot be (3, 15, 1)-generated.

• A (3, 10, 2)-group G of order 90. Here G is soluble, and its abelianisation G/G
0 must

be C2, so |G0| = 45. But then by Sylow theory, G0 has a normal Sylow 3-subgroup N

of order 9, which is characteristic in G
0 and hence normal in G, which is impossible since

G/N cannot be (1, 10, 2)-generated.
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• A (3, 9, 2)-group G of order 108. In this case we observe that G is soluble, and that there
is no (3, 9, 2)-generated group of order 54 or 36, by Euler’s formula and the fact that there
is no orientably-regular map of genus 2 with type {3, 9}. Hence every non-trivial quotient
of G is isomorphic to either the (3, 3, 1)-generated group C3, or the (3, 3, 2)-generated
group A4, or G itself, and so G has a unique minimal normal subgroup N of order 9,
isomorphic to C

2
3 , and with quotient G/N ⇠= A4. Now G/CG(N) is isomorphic to a

subgroup of Aut(N) ⇠= Aut(C 2
3 ) ⇠= GL(2, 3), and this has no subgroup H isomorphic to

A4 (because A4 has no subgroup of index 2 and yet cannot be isomorphic to a subgroup
SL(2, 3) as it contains more than one involution). It follows that G/CG(N) ⇠= C3 and
hence CG(N) ⇠= N⇥K ⇠= C

2
3 ⇥V4 for some subgroup K ⇠= V4, by the Schur-Zassenhaus

theorem. But then because K is characteristic in CG(N) and hence normal in G, we find
that G has a quotient G/K of order 27, a contradiction.
• A (3, 8, 2)-group G of order 144. In a similar way to the previous case, such a group G

is soluble, and there is no (3, 8, 2)-generated group of order 24 or 72 (by Euler’s formula),
and it follows that every non-trivial quotient of G is isomorphic to C2, or S3, or S4, or the
unique (3, 8, 2)-generated group H of order 48 (associated with the orientably-regular map
of genus 2 with type {3, 8}), or G itself, Thus G has a unique minimal normal subgroup
N , of order 3. Moreover, from the classification of orientably-regular maps of genus 2 we
know that G/N ⇠= H has (3, 8, 2)-presentation hu, v |u3

, v
8
, (uv)2, [u, v4] i, and hence

the normal subgroup N of order 3 is generated by z = [x, y4]. Then since Aut(N) ⇠=
Aut(C3) ⇠= C2, we find that N is centralised by x (of order 3) and y

2, and in particular,
[z, y4] = 1 and therefore zy

4 has order 3 · 2 = 6. But also x
�1

y
4
x = x

�1
y
�4

x =
[x, y4]y4 = zy

4, and so zy
4 is conjugate to y

4, which has order 2, a contradiction.
• A (3, 7, 2)-group G of order 252. Every (3, 7, 2)-generated group is perfect and therefore
insoluble, but every group of order 252 is soluble, as its order is not divisible by 60 or 168.

7.2 Genus 4 and group order divisible by 3: existence

In this subsection we examine the remaining seven pairs (k, `) from Table 5, which will
give the eight orientably-regular maps of genus 4 and type (k, `) with k  ` and with
|G| = |Aut+(M)| divisible by 3, and we give presentations for the corresponding groups.
• The pair (k, `) = (9, 18). In this case, a (9, 18, 2)-group G of order 18 is cyclic, with
unique (9, 18, 2)-presentation hx, y |x9

, y
18
, (xy)2, x�1

y
8 i.

• The pair (k, `) = (6, 12). Here the subgroup H = hyi is normal in G of index 2 in
G, so (xy)y(xy)�1 = xyx

�1 = y
j for some square root j of 1 mod 12, namely ±1 or

±5. Also x /2 H but x2 2 H , so x
2 = y

±4 (because it has order 3), and now it follows
that y⌥4 = x

�2 = (yxy)(yy�1
x
�1) = y(xy)y(xy)�1 = yy

j = y
j+1, implying that

j+1 2 {⌥4} and therefore j = �5, and x
2 = y

4. This gives G = hyiohxyi ⇠= C12oC2,
with unique (6, 12, 2)-presentation hx, y |x6

, y
12
, (xy)2, x�2

y
4 i.

• The pair (k, `) = (6, 6). In this case hxi \ hyi is trivial, for otherwise it would be a
central subgroup N order 2 or 3 and then G/N would be a (3, 3, 2)-generated group of
order 18 or a (2, 2, 2)-generated group of order 12, both of which are impossible. It follows
that G = hxihyi, and so in the action of G by right multiplication on the right cosets of
H = hyi, the generator x induces a 6-cycle. On the other hand, right multiplication by y

fixes H , and takes Hx to Hx
�1 as usual, since Hxy = Hy

�1
x
�1 = Hx

�1.
Now if also Hx

�1
y = Hx, then x

�1
yx

�1 2 H and so x
�1

y
2
x = x

�1
yx

�1
y
�1 2 H ,

which implies that hy2i is normal in G, and indeed x
�1

y
2
x = y

2j where j = ±1. Hence
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K = hy2, xi is a subgroup of order 18 and index 2, isomorphic to the direct product C3⇥C6

when j = 1 or a semi-direct product C3 o C6 when j = �1, and then G ⇠= K o C2, with
conjugation of K by the involution xy given by (xy)�1

x(xy) = y
�1

xy = y
�2

x
�1 and

(xy)�1
y
2(xy) = y

�1
x
�1

y
2
xy = y

�1
y
2j
y = y

2j . Moreover, when j = �1 the relation
x
�1

y
2
x = y

�2 implies 1 = x
�1

y
2
xy

2 = x
�1

y(yxy)y = x
�1

yx
�1

y (and vice versa),
and hence is equivalent to (x�1

y)2 = 1. Accordingly, we obtain two possibilities for G,
namely (C3 ⇥ C6) o C2 with unique (6, 6, 2)-presentation hx, y |x6

, y
6
, (xy)2, [x, y2] i,

and (C3 o C6)o C2 with unique (6, 6, 2)-presentation hx, y |x6
, y

6
, (xy)2, (x�1

y)2 i.
On the other hand, suppose Hx

�1
y 6= Hx. Then since y has order 6 it follows that Hx

and Hx
�1 lie in a 3-cycle, so Hxy

3 = Hx, which gives xy3x�1 2 H and so xy
3
x
�1 =

y
3, and then Hx

i
y
3 = Hx

i for every i, so y must induce a single 3-cycle on right cosets of
H and hence fix Hx

2 or Hx
�2 (as well as H). It follows that x2

yx
�2 2 H or x�2

yx
2 2

H , and so x
2
yx

�2 = y
±1 or x

�2
yx

2 = y
±1, and in both cases this implies that x2

centralises y, because x
2 has order 3. Thus [x2

, y] = 1, which is dual to one of the two
sub-cases above.
• The pair (k, `) = (5, 5). First, suppose G is soluble, and let N be a minimal normal
subgroup of G. Then |N | 6= 5 or 3 or 4, for otherwise G/N would be (1, 1, 2)-generated,
or a (5, 5, 2)-generated group of order 20 with a normal Sylow 5-subgroup K/N such
that (G/N)/(K/N) is (1, 1, 2)-generated, or a (5, 5, 1) generated group of order 15. Thus
|N | = 2, and G/N is a (5, 5, 2)-generated group of order 30, but this is also impossible, for
otherwise G/N would have a normal Sylow 3-subgroup K/N such that (G/N)/(K/N) is
a (5, 5, 2)-generated group of order 10 (again with a (1, 1, 2)-generated quotient).

Thus G is insoluble, and so G ⇠= A5. Finally, it is well known (and quite easy to verify)
that A5 can be (5, 5, 2)-generated in just one way up to conjugacy in Aut(A5) ⇠= S5, such
as by x = (12345) and y = (12435), and then because xy

�1 = (2, 4, 3) for this x and y

(with xy
�1 and y

2 giving the more standard (3, 5, 2)-presentation for A5), it follows that
hx, y |x5

, y
5
, (xy)2, (xy�1)3 i is a unique (5, 5, 2)-presentation for G.

• The pair (k, `) = (3, 12). In this case, again let H = hyi, and consider the action of G by
right multiplication on the six cosets of H . As y has order 12, it must induce a permutation
of order dividing 4 or 6. Now if y6 fixes Hx, then xy

6
x
�1 2 H and so xy

6
x
�1 = y

6, and
then K = hy6i is central in G with (3, 6, 2)-generated quotient G/K of order 36. Such a
quotient would be the group of orientation-preserving automorphisms of a toroidal map of
type (3, 6). By the theory of such maps (as in [13]), however, this is impossible because
36 = |G/K| is not equal to 6(a2 � ab+ b

2) for any integers a and b. Hence y
4 fixes Hx,

which gives xy4x�1 2 H and so xy
4
x
�1 = y

±4, indeed xy
4
x
�1 = y

4 since x has order
3. Thus N = hy4i ⇠= C3 is central in G, with (3, 4, 2)-generated quotient G/N isomorphic
to S4, and it follows that G is isomorphic to a central extension C3 · S4 of C3 by S4, with
unique (3, 12, 2)-presentation hx, y |x3

, y
12
, (xy)2, [x, y4] i.

• The pair (k, `) = (4, 6). Here we start by noting that potential non-smooth quotients of
G and hence of �+(4, 6, 2) are abelian of order 1, 2 or 4, dihedral of order 6, 8 or 12, or
isomorphic to the (4, 3, 2)-generated group S4. Next, G (of order 72) is soluble, and so a
minimal normal subgroup N has order 2, 3, 4, 8 or 9. But |N | 6= 2, for otherwise G/N

would be a (4, 6, 2)-generated group of order 36, violating Euler’s theorem, and |N | 6= 4
or 8, for otherwise G/N would be a non-smooth quotient of of �+(4, 6, 2) of order 9 or
18. Hence |N | = 3 or 9, and N ⇠= C3 or C 2

3 .

Now if N ⇠= C3 then the quotient G/N of order 24 cannot be (4, 2, 2)-generated,
so must be (4, 6, 2)-generated, and by Euler’s formula is isomorphic to the orientation-
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preserving group of automorphisms of the regular map of genus 2 with type {4, 6}, having
presentation hu, v |u4

, v
6
, (uv)2, (uv�1)2 i. Thus N = hzi where z = (xy�1)2, and

by normality of N it follows that every element of G either centralises or inverts z by
conjugation. In particular, both xy

�1 and y
2 must centralise z, and therefore so does

(xy�1)�1
x
2 = yx, and it follows that zyx has order 3 · 2 = 6. But on the other hand,

zyx = (xy�1)2yx = xy
�1

x
2 = xy

�1
x
�2 = x(y�1

x
�1)x�1 = x(xy)x�1

, so zyx has
order 2, a contradiction.

Hence N ⇠= C
2
3 , and G/N is isomorphic to the (4, 2, 2)-generated group D4, and then

by the Schur-Zassenhaus theorem, G ⇠= C
2
3 oD4. Next, N contains y2 and its conjugate

x
�1

y
2
x, and x

�1
y
2
x 6= y

±2 for otherwise L = hy2i would be normal in G with (4, 2, 2)-
generated quotient of order 36, and it follows that N = hy2, x�1

y
2
xi. Also because D4 has

abelianisation C
2
2 , the abelianisation G/G

0 of G is the (2, 2, 2)-generated group C
2
2 , and

therefore G
0 = hN, x

2i, of order 18. Moreover, x2 cannot centralise y
2, for otherwise x

2

centralises x�1
y
2
x and hence also G

0, but then G
0 = hy2, x�1

y
2
xi⇥hx2i ⇠= N⇥C2, which

implies that hx2i is characteristic in G
0 and hence normal in G, with (2, 6, 2)- or (2, 3, 2)-

generated quotient of order 36, which is impossible. Hence conjugation by x induces an
automorphism of N of order 4. Then since Aut(N) ⇠= Aut(C 2

3 ) ⇠= GL(2, 3), conjugation
by x

2 behaves like the only involution in SL(2, 3), namely �I2, and hence inverts every
element of N . In particular, x�2

y
2
x
2 = y

�2 and so (x2
y
2)2 = 1, which implies this in re-

verse. Finally, conjugation of N by G is given by the 4-cycles (y2, x�1
y
2
, y

�2
, x

�1
y
�2

x)
induced by x on {y±2

, x
�1

y
±2

x} and the assignment (y2, x�1
y
2
x) 7! (y2, x�1

y
�2

x) in-
duced by y, noting that y�1(x�1

y
2
x)y = xyy

2
y
�1

x
�1 = xy

2
x
�1 = x

�1
y
�2

x, and we
have a unique (4, 6, 2)-presentation hx, y |x4

, y
6
, (xy)2, (x2

y
2)2 i for G.

• The pair (k, `) = (4, 5). In this case, first suppose that the group G (of order 120) is
soluble, and let N be a minimal normal subgroup of G. Then |N | 6= 5 for otherwise
G/N would be (4, 1, 2)-generated, and |N | 6= 3 for otherwise G/N would be a (4, 5, 2)-
generated group of order 40 and hence give rise to an orientably-regular map of genus 2
with type {4, 5}, but no such map exists. Hence |N | divides 8, and as x has order 4 it
follows that N ⇠= C2 or C 2

2 , but then since G/N has order 60 or 30 it cannot be (2, 5, 2)-
generated, so it must be (4, 5, 2)-generated, which is impossible by Euler’s formula when
|G/N | = 60, and because there is no element order 4 in G/N when |G/N | = 30.

Thus G is insoluble, and hence isomorphic to one of SL(2, 5), A5 ⇥ C2 or S5. The
first two groups contain a central subgroup K of order 2, with quotient G/K ⇠= A5, but
this is neither (4, 5, 2)-generated nor (2, 5, 2)-generated, and so G ⇠= S5. Finally, it is
well known (and easy to verify) that S5 can be (4, 5, 2)-generated in just one way up to
conjugacy in Aut(S5) ⇠= S5, such as by x = (1234) and y = (15432), with xy = (45)
and [x, y] = (145) and with hy, x�1

yxi = A5, it follows that hx, y |x4
, y

5
, (xy)2, [x, y]3 i

is a unique (4, 5, 2)-presentation for G.

7.3 Genus 4: summary

The analysis in the previous two subsections contributes to a complete classification of the
orientably-regular maps of genus p + 1 for p = 3, up to isomorphism and duality. These
arise from eight kinds of map M for which the order of the group G = Aut+(M) is a
multiple of 3 as determined above, plus four more for which |G| is not divisible by 3,
coming from the classification in [12]. The result is equivalent to the classification given
with just an indication of the method of proof in [15], and is confirmed by computations
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described in [6, 8, 11]. Note also that all of these maps are reflexible, as in each case the
(k, `, 2)-presentation for G is preserved under inversion of the generators x and y.

Theorem 7.1. Up to isomorphism and duality, an orientably-regular map M has genus 4 if
and only if G = Aut(M) is one of the twelve (k, `, 2)-presented groups with presentation
of the form G = hx, y |xk

, y
`
, (xy)2, . . . i as given in Table 6. All of these maps are

reflexible.

Type |G| Additional relators Group structure
(9, 18) 18 x

�1
y
8

C18

(6, 12) 24 x
�2

y
4

C12 o C2

(6, 6) 36 [x, y2] (C3 ⇥ C6)o C2

(6, 6) 36 (x�1
y)2 (C3 o C6)o C2

(5, 5) 60 (xy�1)3 A5

(3, 12) 72 [x, y4] C3 · S4

(4, 6) 72 (x2
y
2)2 (C3 ⇥ C3)oD4

(4, 5) 120 [x, y]3 S5

(16, 16) 16 x
�1

y
7

C16

(10, 10) 20 x
2
y
2

C10 ⇥ C2

(4, 16) 32 x
2
y
8

C16 o C2

(4, 10) 40 (xy�1)2 (C2 ⇥ C10)oC2

Table 6: Orientably-regular maps of genus 4 (up to duality).
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