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Abstract
We determine and fully describe all pure realizations of the cubic toroids, that is, the

regular (n+1)-polytopes of type {4, 3n�2, 4}b, where b = (b, 0n�1), (b, b, 0n�2) or (bn),
n > 2 and b > 2.
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1 Introduction
In [13, 14] we explicitly described all the pure realizations of the various toroidal maps
of types {3, 6}(b,0) and {3, 6}(b,b) (and their duals), and then {4, 4}(b,0) and {4, 4}(b,b).
The constructive part of these papers involves looking at a twisting operation applied to a
Coxeter group K, which is in turn the direct product of a certain number of copies of the
dihedral group Ib of order 2b. This is illustrated in Figure 1, which is a reworking of [14,
Figure 2]. A beautiful feature of the construction is that hidden in a picture of the toroid
itself we find a parametrization of all pure realizations, along with their dimensions.

To prove that our list of realizations was complete we used the character-like relations
for pure realizations found in [9] and [15]. Unfortunately, these relations needed the cor-
rections in [8]. In fact, because of our Proposition 3.3, we can detour around this hazard.
This simple, but very useful, fact seems not to be explicitly mentioned in the literature.

In Section 4, we generalize the results of [14] to include all cubical toroids of rank
n+1 > 4. The core result is Theorem 4.16, where we find that the pure realizations of the
cubical (n + 1)-toroid H(b,0,...,0) are indexed by integer parameters 0 6 l1 6 l2 6 . . . 6
ln 6 b/2 taken modulo b. For each pure realization the corresponding group representation
is explicitly described. The dimensions of the realizations are given in Theorem 5.4. In
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Figure 1: The Coxeter group K for toroids of type {4, 4}. (In B2, ⇢0⇢1 = ⇢1⇢0.)

fact, most pure realizations will have dimension 2n · n!. Our two main theorems have a
particularly nice visual description set out in Corollary 5.6.

The pure realizations for the cubical toroids H(ck,0n�k), where k = 2 or n, are exhibited
in Theorems 6.1 and 6.2.

First, however, let us set up the machinery we need to construct the cubical toroids
of higher rank. Proposition 2.5(b), which led the author astray, may be unfamiliar to the
reader.

2 Cubes and cubical toroids
The n-cube P is likely the most familar regular convex polytope in Euclidean n-space En

[1, Section 7.2]. To begin our discussion, let us describe En in the customary way as the
vector space of real n-tuples x = (x1, . . . , xn) equipped with the standard inner product.
As vertices of P we may take the 2n sign change vectors

(e1, . . . , en) 2 {±1}n. (2.1)

The symmetry group Bn of the cube now consists of all permutations and sign changes of
the n coordinates, so that the group has order 2n · n!.

Recall that Bn ' Sn n Cn
2 is a semidirect product; each element � 2 Bn factors

uniquely as � = ↵µ, where ↵ 2 Sn is a permutation of {1, . . . , n} (labelling the n coordi-
nates); and µ = (µ1, . . . , µn) 2 Cn

2 = {±1}n is a sign change vector, just as in equation
(2.1). (One can more precisely view ↵ as an n⇥ n permutation matrix and µ as a diagonal
matrix.) The rule µ↵ = ↵µ↵, with µ↵ := ↵�1µ↵, makes easy work of calculations in Bn.
The action of Bn on En is described by

x
↵ = (x1↵�1 , x2↵�1 , . . . , xn↵�1) and x

µ = (µ1x1, . . . , µnxn) .

From a more abstract point of view, Bn = h⇢0, . . . , ⇢n�1i is (isomorphic to) the Cox-
eter group having the diagram

t t t t t4 3 3
. . . (2.2)
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For 1 6 j 6 n � 1, the generator ⇢j can be identified with the transposition (j, j + 1);
and ⇢0 with the sign change in the first coordinate, that is, reflection in the first coordinate
hyperplane (orthogonal to (1, 0, . . . , 0)). Thus reflection in the j-th coordinate hyperplane,
1 6 j 6 n, is

�j := ⇢
⇢1···⇢j�1

0 . (2.3)

The product of these n special reflections, in any order, is the central element ⇣ : x 7! �x.
Note that �1 = ⇢0. It is easy to check that

⇣ = (⇢n�1 · · · ⇢1⇢0)
n = (⇢0)

n , (2.4)

where for future use we let  := ⇢n�1 · · · ⇢1. Thus  can be identified with the n-cycle
(1, 2, . . . , n).

Note that the subgroup h⇢1, . . . , ⇢n�1i of Bn is isomorphic to the symmetric group
Sn (and to the Coxeter group An�1). Up to similarity there is clearly a unique non-zero
point p = (1, 1, . . . , 1) fixed by Sn. We may regard p as a base vertex; its orbit under Bn

is the full vertex set of P, as described in (2.1). The base edge of P has vertices p and
p
⇢0 = (�1, 1, . . . , 1), so that the edge length is 2. In fact, for any j, the base j-face is the

j-cube whose vertex set is the orbit of p under the subgroup h⇢0, . . . , . . . , ⇢j�1i.
Just as we can view Bn either as a concrete group of signed permutation matrices or

as an abstract Coxeter group, we can likewise reimagine the regular convex polytope P in
combinatorial terms. To do so, just take the abstract n-cube P = {4, 3n�2

} to be the face
lattice of P.

We will soon encounter other abstract regular polytopes, but there is little need to out-
line here the general theory (covered fully in [12]). Let us only recall that an abstract
n-polytope Q is a ranked, partially ordered set (with quite natural properties, of course).
Its elements of rank j, where �1 6 j 6 n, are called j-faces; these correspond to faces
of dimension j in the convex case. But Q can be very general; it need not be finite nor a
lattice (qua poset).

We say that the n-polytope Q is (abstractly) regular if its automorphism group �(Q) is
transitive on flags (maximal chains) in Q. It follows [12, Chapter 2] that �(Q) is a string

C-group. This means that
�(Q) = h�0, . . . , �n�1i

is generated in the manner of a Coxeter group with string diagram on n nodes; and further-
more, these generators satisfy a natural ‘intersection condition’ [12, Proposition 2B10].
Conversely, from any such group � we can reconstruct Q up to isomorphism as a coset
geometry over the group [12, Theorem 2E11]. Now the j-faces are all right cosets of
�j = h�0, . . . , �j�1, �j+1, . . . , �n�1i, taking ��1 and �n to be two distinct copies of �.
For j 6 k, two cosets of �j and �k are incident just when their intersection is non-empty.

We see all this for the abstract cube above. More generally, the classical convex regular
polytopes are isomorphic to those abstract regular polytopes for which the symmetry group
actually is a finite Coxeter group (with string diagram). But usually, the generators of
�(Q) satisfy ‘extra’ relations which prevent the group from being a Coxeter group; see, for
example, equation (2.8) for the toroids appearing below.

Let us now examine a familiar infinite abstract regular polytope. The (n+ 1)-polytope
H = {4, 3n�2, 4} is realized faithfully by the face-to-face tessellation H of En by identical
n-cubes, which we may take to be copies of P from before. The automorphism group �(H)
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is the infinite Coxeter group fCn = h⇢0, . . . , ⇢n�1, ⇢ni with diagram

t t t t t t4 3 43
. . .

The symmetry group of the base facet for H is just the subgroup Bn = h⇢0, . . . , ⇢n�1i.
The final generator ⇢n : (x1, . . . , xn�1, xn) 7! (x1, . . . , xn�1, 2 � xn) is reflection in the
hyperplane xn = 1. We have

�(H) ' fCn ' h⌧1, . . . , ⌧nioBn, (2.5)

where T = h⌧1, . . . , ⌧ni ' Zn is the translation subgroup. Here ⌧j is translation through 2
units parallel to the xj-axis. In terms of the ⇢j’s we have

⌧1 = ⇢0⇢1 · · · ⇢n�1⇢n⇢n�1 · · · ⇢1 = ⇢0 · ⇢
⇢n�1···⇢1
n , (2.6)

and
⌧j = ⌧

⇢1···⇢j�1

1 , 1 6 j 6 n.

Notice that ⇢n also fixes the base vertex p = (1, 1, . . . , 1) for the cube P. It is because
of this that �(H) takes copies of P and effectively assembles them face-to-face, so as to
produce the tessellation H. Furthermore, the stabilizer of p in �(H) is the vertex-figure

subgroup �0 = h⇢1, . . . , ⇢ni; and we have a dual semidirect factorization

�(H) ' h⌧1, . . . , ⌧nio �0. (2.7)

The important geometric conclusion is that the translation subgroup acts in a sharply tran-
sitive way on the vertex set of H. (Another consequence is that both �0 and Bn (= �n) are
isomorphic to the point group for the crystallographic group fCn.)

We now move to the toroidal polytopes central to this paper, following [12, Section
6D]. In general, a regular (n + 1)-toroid Q⇤ is the quotient of a regular tessellation Q of
En by a (non-trivial) normal subgroup ⇤ of translations in �(Q). We specialize right away
to the cubical tessellation H, with its faithful realization H. (Here we anticipate Section 3.
Put simply, H, with its natural facial structure, is isomorphic to the partially ordered set
H.)

The regular cubical toroid H⇤ can be constructed inside a familiar topological space,
namely the quotient of En by a non-trivial, normal subgroup ⇤ of translation symmetries.
For example, if ⌧ b1 2 ⇤, for some integer b > 1, then ⌧ bj 2 ⇤ for all j. If these generate
⇤, then we may think of H⇤ as a b ⇥ · · · ⇥ b block of n-cubes, still of edge length 2
and all packed into a larger n-cube whose outermost facets (supported by hyperplanes
xj = �b, xj = b) are identified in pairs.

It suits us in what follows to focus on the groups and so work on a more abstract
level. First of all, to generate ⇤ as a normal subgroup of fCn we actually need only one
translation, say ⌧ = ⌧ b11 · · · ⌧ bnn . After applying symmetries in Bn, we can further assume
that b = (b1, . . . , bn) takes one of the forms described in Theorem 2.1. (See the discussion
preceding Proposition 5.10 below.) We use (bk, 0n�k) as shorthand for the vector with b
repeated k times and 0 repeated n� k times.
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Theorem 2.1 ([12, Theorems 6D1, 6D4]). For n > 2 the regular cubical (n + 1)-toroids

can be described as follows. For b > 2 and k = 1, 2 or n, let b = (bk, 0n�k). Then there is

a finite regular toroid Hb = {4, 3n�2, 4}b whose facets are isomorphic to the n-cube and

whose vertex-figures are isomorphic to the n-cross-polytope. Moreover, Hb is self-dual.

The automorphism group �(Hb) is obtained from fCn by factoring out the single extra

relation

(⇢0⇢1 · · · ⇢n�1⇢n⇢n�1 · · · ⇢k)
bk = 1. (2.8)

This group has order 2n+k�1
· bn · n!; and the toroid Hb has 2k�1

· bn vertices.

Remark 2.2. When n = 2 there are actually only two families of 3-toroids, with b = (b, 0)
or (b, b). If, say, in the second case we choose b = 1, then ⇤ is generated by translations
with vectors (1, 1) and (1,�1). If we identify the opposite edges of the square spanned by
these two vectors, then we do get a perfectly good map on the torus, with 2 vertices, 4 edges
and 2 faces. However, this map is not polytopal, since each vertex lies on all four edges
of each square. We refer here to the so-called ‘diamond property’ for abstract polytopes,
which demands that exactly two j-faces be trapped between any incident (j � 1)-face and
(j + 1)-face [12, page 25]. This accounts (in all ranks) for the restriction b > 2.

Notice that with b = 1 = k in (2.8) we get ⇢n = ⇢⇢1···⇢n�1

0 . We labelled this element
�n in (2.3) and identified it as reflection in the nth coordinate hyperplane. Even though the
toroid H(1,0,...,0) is non-polytopal, it delivers a useful

Lemma 2.3. The group Bn = h⇢0, . . . , ⇢n�1,�ni, with the redundant generator �n :=
⇢⇢1···⇢n�1

0 has type {4, 3n�2, 4} and is isomorphic to �(H(1,0,...,0)).

To conclude this section we gather together various properties of the cubical groups
Bn. Consider first the subgroup Dn = h�, ⇢1, . . . , ⇢n�1i, where

� := ⇢⇢01 = ⇢0⇢1⇢0.

In fact [7, Chapter 1.1], this is the Coxeter group with diagramt
t t t t@@
��

3 3
. . .

3
(2.9)

Notice that when we truncate the diagrams in (2.2) and (2.9) from the right, we pass from
Bn, Dn to Bn�1, Dn�1. When n = 3, B3 is the group of the cube, and D3 ' A3 has
diagram t

t t@
@

�
�

3

3

⇢1

�

⇢2

Hence D3 is isomorphic to the group of the regular tetrahedron, that is, to the symmetric
group S4. When n = 2, B2 ' I4, the group of the square, and D2 ' C2 ⇥ C2, with
diagram t

t
⇢1

�
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Here are some useful properties of these groups.

Proposition 2.4. Suppose n > 2.

(a) Both Dn and the rotation subgroup B+
n have index 2 in Bn and hence order 2n�1

·n!.
Moreover, for odd n > 3, Dn ' B+

n .

(b) The center of Bn has order 2 and is generated by the involution ⇣. Also, ⇣ 2 Dn

(and B+
n ) if and only if n is even.

(c) For n=2, B2 has cyclic rotation group B+
2 ' C4; and D2 ' C2 ⇥C2 is not isomor-

phic to B+
2 .

Proof. The calculations here are easy with the factorization � = ↵µ for � 2 Bn. Recall
that we may interpret µ as an n ⇥ n diagonal matrix of signs ±1, and ↵ as a permutation
matrix. From the structure of Bn as a semidirect product, we find that the map

Bn ! C2 ⇥ C2

↵µ 7! (det↵, detµ)

is an epimorphism. The groups Dn and B+
n correspond to two subgroups of index 2 gener-

ated by (�1,+1) and (�1,�1), respectively, in the image C2 ⇥ C2. (The third subgroup
consists of all sign changes together with even permutations.)

Part (b) is well-known; and (c) follows by inspection.
To finish part (a) for odd n > 3, observe that an isomorphism from Dn to B+

n is induced
by the mapping

↵µ 7!

(
↵µ, if det↵ = +1,

↵µ⇣, if det↵ = �1.
.

From Proposition 2.4(b) the centre of Bn is generated by

⇣ = (⇢n�1 · · · ⇢1⇢0)
n = (⇢0)

n = �1 · · ·�n,

following the notation in (2.3). We call the quotient Bn := Bn/h⇣i a hemi-cubical group.
Indeed, Bn is also a string C-group; the corresponding regular n-polytope is the hemi-

n-cube {4, 3n�2
}n. Typically we use ' to indicate an element of Bn. But it makes for

smoother notation if we casually let ⇢j ,�j refer to either the element of Bn or its image in
Bn, depending on context. Keep in mind, therefore, that �1 · · ·�n = 1 in Bn.

Later we need a subgroup of index n in Bn. A natural starting point is the stabilizer in
Bn of the x1-axis, say. This is the subgroup

h�1, . . . ,�n, ⇢2, . . . , ⇢n�1i = h�1,�n, ⇢2, . . . , ⇢n�1i

of order 2n · (n� 1)!. In the quotient Bn, where the element �1 = �2 · · ·�n is redundant,
we get the subgroup

Ln := h�n, ⇢2, . . . , ⇢n�1i,

with order 2n�1
· (n� 1)!. We need, in turn, its subgroup

Mn = h�2�n, ⇢2, . . . , ⇢n�1i.

One can think of Mn as containing sign changes in even numbers of the positions 2, ..., n.
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Proposition 2.5. (a) Bn ' Sn n Cn�1
2 , where Sn ' h⇢1, . . . , ⇢n�1i, and Cn�1

2 =
h�2, . . . ,�ni.

(b) [3, page 128] For odd n > 3, Bn ' Dn(' B+
n ).

(c) For n > 2, the group Ln has index n in Bn, with coset representatives j , 1 6 j 6 n.

(d) The group Mn has index 2 in Ln = Mn tMn�n.

Proof. In (a), Bn inherits its semidirect product structure from Bn; note that 1 = �1 · · ·�n
is invariant under permutation of subscripts.

For (b) we first recall that Sn has trivial centre for n > 3. Thus a central element in Dn

can only be a pure sign change, indeed only 1 or ⇣. When n is odd, Dn therefore has trivial
centre and Bn = Dn ⇥ h⇣i. Hence, Dn ' Bn (see Proposition 2.4(a)).

Parts (c) and (d) are clear from our earlier discussion of Ln. Note that products of even

numbers of the commuting involutions �2, . . . ,�n form a group of order 2n�2 which does
not contain �n.

The case B2 is special. Here  = ⇢1 = (1, 2); and since �1�2 = 1 we have �2 = �1 =
⇢0. Thus L2 = h�2i, with order 2; and M2 = h1i.

We also need some finicky properties of the sign change subgroup h�2, ...,�ni. For
more clarity, let us identify it with the additive group Zn�1

2 , matching � = �a2
2 · · ·�an

n to
(a2, ..., an). We require the following subgroup of sign changes:

Q :=

(
h�3, . . . ,�ni, for even n > 2; so a2 = 0;

h�k�m : 2 6 k < m 6 ni, for odd n > 3; so a2 + · · ·+ an = 0.
(2.10)

In either case, Q�2 is a coset containing half the elements of h�2, ...,�ni. Also let k =
⇢k�1 · · · ⇢1, for 1 6 k 6 n. Thus n = , 1 = 1 and we may identify k with the cycle
(1, 2, ..., k).

Proposition 2.6. Suppose �,� 2 h�2, ...,�ni.

(a) Suppose �k ,�k lie in the same coset of Q for 2 6 k 6 n. Then � = �.

(b) Each � belongs to an odd number of the sets

h�3,�4, ...,�ni, h�2�3,�4, ...,�ni, h�2,�3�4, ...,�ni,

. . . h�2,�3, ...,�n�1�ni, h�2,�3, ...,�n�1i�n.

(Note that the last is a proper coset.)

Proof. (a) Since Q has index 2 in h�2, ...,�ni, all ('��1)k 2 Q, so that

'��1
2 Q⇢1 \ . . . \Q⇢1···⇢n�1 . (2.11)

Say (a2, ..., an) represents '��1. When n is even, Q⇢1···⇢k�1 is determined by ak = 0,
for 2 6 k 6 n, so a = (0, ..., 0) and the intersection in (2.11) is trivial. When n is odd,
Q⇢1···⇢k�1 is now given by a2 + · · ·+ ak�1 + ak+1 + · · · an = 0. Again a = (0, ..., 0). In
all cases, � = �.

(b) These n sets are determined by setting to 0 the quantities

a2, a2 + a3, ... an�1 + an, an + 1

in turn. But the sum of these terms is 1.
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3 Realizations of regular polytopes
We have already encountered ‘realizations’ of abstract polytopes: the convex n-cube P,
with base vertex p, is a faithful realization (of dimension n) of the abstract cube P =
{4, 3n�2

}. Likewise, the tessellation H is a faithful realization of H = {4, 3n�2, 4}. Our
main goal in this paper is to classify realizations of the cubical toroids Hb. First, we must
carefully summarize the general theory of realizations.

Although it is often necessary to abandon concrete geometric figures (such as a convex
polytope) when thinking of an abstract polytope Q, it is still interesting to try to realize Q

in a natural way in some Euclidean space E. For an up-to-date and comprehensive survey
of realizations and the geometric regular polytopes that then arise, we refer to [11]. Here
we assume that Q is finite. This lets us modify slightly the discussion in [9, 10, 11].

Suppose then that Q is a finite regular n-polytope with group � = �(Q) =
h�0, . . . , �n�1i. Fixing an origin 0 2 E, we consider any homomorphism

f : �(Q) ! O(E)
�j 7! rj

(into the orthogonal group on E). Note that each rj is an isometry of period 2 (or 1). It is
convenient to indicate the action of �(Q) on points of E by writing x

� := (x)(�f). For
example, x�j := (x)rj . Typically we use

G = G(Q) := (�(Q))f = hr0, . . . , rn�1i

to denote the image group of linear isometries.
Next define the Wythoff space for f to be

W = Wf := {x 2 E : x�j = x, 1 6 j 6 n� 1} (3.1)

(a linear subspace of E). Let wG := dim(W) be its dimension.
A realization Q := [f,q] of Q is now defined by the homomorphism f , together with

a choice of (geometric) base vertex q 2 W.
Recall that, as an abstract regular polytope, Q has (abstract) base vertex �0 =

h�1, . . . , �n�1i. The (abstract) vertex set of Q is Q0 := {�0� : � 2 �(Q)}, the set of
right cosets of �0 in �. The number of vertices in Q is just v = |Q0|, the index of �0 in �.

Observe that the map

h : Q0 ! E
�0� 7! q

�

is well-defined. Each � 2 �(Q) thereby induces an isometric permutation on

V = V (Q) := (Q0)h,

the (geometric) vertex set of the realization. Note that G = G(Q) leaves invariant the sub-
space E0 spanned by the vertex set V . The dimension of the realization is dG := dim(E0).

Remark 3.1. As we will soon see, it is quite possible to have |V | < v = |Q0|. In this
and other ways, a realization can fail to be faithful. However, beyond this warning, we may
put aside any worries as to just how a representation f induces a transfer of combinatorial
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structure from Q to some sort of geometric object (typically not a convex polytope) in E.
See below for examples and [11] for much more. It is convenient to use Q to also suggest
the geometric object, just as we did for the n-cube P in Section 2.

Two realizations of Q, say Qj = [fj ,qj ] in Ej for j = 1, 2, are congruent if there is
an isometry g : E1 ! E2 such that

(q1)g = q2 and (�f1)g = g(�f2), for all � 2 �.

Now by diagonal we mean an unordered pair of distinct vertices in Q0. Suppose that there
are r classes of diagonals under the action of �(Q). If the jth diagonal class is represented
by q,qj 2 V (Q), and ||q � qj ||

2 = �j , then Q is determined up to congruence by
the diagonal vector �(Q) = (�1, . . . , �r); see [12, Lemma 5A13]. Through this device
we also find that the congruence classes of realizations have the structure of a convex r-
dimensional cone [12, Theorem 5B2]. Moreover, by rescaling in an obvious way, we obtain
similar realizations.

If G(Q) acts reducibly on E0, then in a natural way Q is congruent to a blend of lower
dimensional realizations, say Q1 and Q2; and we write Q ⌘ Q1#Q2 [12, Section 5A].
On the other hand, if this does not happen, that is, if G(Q) acts irreducibly on E0, then Q

is said to be a pure realization. The diagonal vectors of pure realizations span the extreme
rays in the realization cone.

Every Q admits the trivial realization induced by the trivial representation

�(Q) ! O(E1)

� 7! I

We might take q = 1, giving a realization of dimension dG = 1; this convention suits us.
However, it is sometimes more convenient to shift the base vertex to q = 0, giving dG = 0
and wG = 0 [12, 5B]. This conforms to another situation, in which a higher dimensional
representation G has Wythoff space W = {0}, thereby also yielding the trivial realization
of Q (up to congruence).

Let us consider another extreme case. For v = |Q0|, let E be (v � 1)-dimensional
Euclidean space. Clearly, Q has a simplex realization E, obtained by letting �(Q) act in
a natural way on the vertex set of a regular simplex in E. Let w be the dimension of its
Wythoff space.

We can compute the important parameters r and w directly from the group by counting
double cosets [12, Theorem 5B17]:

w = |{�0��0 : � 2 �\�0}|

r = |{�0��0 [ �0�
�1�0 : � 2 �\�0}|

Let us now restrict our attention to the finitely many distinct, irreducible real repre-
sentations �

f
! G of �(Q). (Any such f leaves invariant a positive definite, symmetric,

bilinear form and so may be viewed as orthogonal.) The character for f (or more loosely,
for G) has norm

�G = |G|
�1

X

g2G

�(g)�(g).
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(Recall that �(g) is the trace of the linear isometry g. See [12, page 131].)
In order not to overcount congruence classes of the realizations afforded by G, we

must take into account the centralizer of G in its orthogonal group. For real irreducible
representations G, we have three possibilities [12, Section 5B]:

1. �G = 1; G is absolutely irreducible (i.e. remaining so upon extension of scalars to
C); the centralizer consists of unit reals {±1}.

2. �G = 2; G = H + H , where H,H are conjugate but non-isomorphic, non-real
irreducibles; the centralizer consists of unit complex numbers.

3. �G = 4; G = 2H , where H is a non-real irreducible with real character; the central-
izer consists of unit quaternions.

Discounting the action of the appropriate centralizer on the Wythoff space for G, we find
that the dimension of the essential Wythoff space is the integer w⇤

G := wG/�G.
Putting all this machinery to use, we get some very useful character-like results. These

appeared first in [9], were corrected in [10], and were then re-corrected a final time and
broadly generalized in [8]. The sums appearing in Theorem 3.2 are over all distinct ir-
reducible, orthogonal representations G of �(Q). In these sums we may ignore all rep-
resentations in which wg = 0 (= w⇤

G). But, as mentioned earlier, we do take the trivial
realization to have dG = wG = w⇤

G = 1. This accounts for the small differences between
parts (a) and (c) here and in [12, Theorem 5B14]. Part (b) appears in [8, Corollary 3.9].
The correction mentioned earlier is the term �G.

Recall that the regular polytope Q has v vertices, r diagonal classes and a simplex
realization with Wythoff space dimension w.

Theorem 3.2 ([8, 9, 10]). (a)
P

G w⇤
GdG = v.

(b)
P

G w⇤
G + 1

2w
⇤
G(w

⇤
G � 1)�G = r + 1.

(c)
P

G w⇤
GwG = w + 1.

We will make good use of the following simple observation concerning the first kind
of real representation. For a moment, we reconsider a general, not necessarily irreducible,
orthogonal representation f : �(Q) ! G with realization Q = [f,q].

Proposition 3.3. If wG = 1, then G is (absolutely) irreducible on E0 (the subspace of E
spanned by the vertex set V ); and the corresponding realization Q is pure.

Proof. As before, G = hr0, r1, . . . , rn�1i acts on the Euclidean space E0 spanned by V ,
the G-orbit of the base vertex q 6= 0. Suppose G admits a proper invariant subspace E1,
so that E0 = E1 � E?

1 . We have q = q + q
?, with q 2 E1,q?

2 E?
1 . But the subgroup

G0 = hr1, . . . , rn�1i fixes the one-dimensional subspace W = Rq of E0. Since G0 also
leaves E1 and E?

1 invariant, both q and q
? are fixed by G0. Since the two components

cannot both be 0, V is contained in either E1 or E?
1 , a contradiction.

Since wG = 1, we can only have w⇤
G = 1 and thus �G = 1.

We now determine the crucial parameter r for Hb, when b = (b, 0, . . . , 0). Recall from
Section 2 that the facets of the tessellation H of En are n-cubes, like P, with edge length
2. We may thus envision the toroid Hb as a b ⇥ · · · ⇥ b block of such cubes, with pairs
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of supporting hyperplanes xj = �b, xj = b identified. It is convenient to describe the bn

vertices of Hb in the familiar way by n-tuples ` = (l1, ..., ln) 2 Zn
b . (See Figures 4 and 7

below for the cases n = 2, 3.) These modular coordinates are still symmetric under signed
permutations.

We now compute the number r of proper diagonal classes in Hb. This is the number of
distinct unordered pairs 0, `, with ` 2 Zn

b and 0 6= `. Note that the “half-turn” x 7! `� x

is a symmetry of Zn
b which sends 0, ` to `,0. Thus all diagonal classes are symmetric.

From [12, Theorem 5B18], this means that r = w. However, we will later see this in a
different way using Theorem 3.2(b),(c) and our Proposition 4.10.

Since we may take ` modulo b and apply signed permutations, it follows that we can
assume with no loss of generality that

0 6 l1 6 l2 6 ... 6 ln 6 b
b

2
c. (3.2)

It is clear that different n-tuples of this type cannot be equivalent under a non-trivial signed
permutation. Let us say that ` has standard form if it satisfies (3.2).

The case ` = 0 was excluded when counting r, so we have the main part of

Proposition 3.4. The toroid Hb, with b = (b, 0, ..., 0) and b > 2, has r proper diagonal

classes, where r + 1 is the number of integer n-tuples ` = (l1, ..., ln) satisfying

0 6 l1 6 l2 6 ... 6 ln 6 b
b
2c. In fact,

r + 1 =

✓
n+ b

b
2c

n

◆
. (3.3)

Proof. The sum of the n+1 non-negative increments l1 = l1�0, l2�l1, ..., ln�ln�1, b
b
2c�

ln is b b
2c. Any such choice of increments specifies a unique `. Essentially, we must split

b
b
2c counters into n+ 1 piles using n dividers.

4 Realizations of the cubical toroids
We have seen that the problem of constructing the pure realizations of the cubical toroids
Hb becomes a matter of constructing the right family of real irreducible representations G
of the abstract automorphism group �(Hb). Before magically pulling these G out of thin
air, let us give some motivation.

Pure realizations in the case n = 2 were completely described in [14] (which, because
of Proposition 3.3, does survive the correction in Theorem 3.2(b)). From that and from
evidence gathered with GAP [5] for n = 3, 4, we guess that realizations for the (n + 1)-
toroids Hb, n > 2, can be described as follows.

For fixed b = (b, 0, . . . , 0), the pure realizations Hb of Hb will be indexed by inde-
pendent integer parameters l1, . . . , ln (mod b), where we may even take 0 6 l1 6 . . . 6
ln 6 b

b
2c. As in Proposition 3.4, these parameters correspond to integer points ` in a fun-

damental region for the natural action of Bn on Hb (here understood to be a b ⇥ · · · ⇥ b
block of n-cubes, with outer facets identified in pairs). The dimension (or degree) of a pure
realization Hb seems then to be the size of the orbit of ` = (l1, . . . , ln) under the action
of Bn on Hb. We thus expect the maximal dimension to be 2n · n!, which should also be
generic when b is large.
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Let us abuse notation by using ⌧j to refer to both the translation in fCn and its image in
�(Hb). However, we do use tj for the image in any linear representation G = G(Hb). In
the latter group, we expect that the translation subgroup be realized as a direct product of
copies of the cyclic group Cb. Since the toroid has cubical facets, we also expect the point
group to be a faithful copy of Bn, at least for generic realizations.

We seek a linear group G which holds all this information. We further speculate that
a typical translation will be a product of b-fold rotations in orthogonal 2-spaces in some
suitable Euclidean space E. Likely these come from dihedral groups Ib, of order 2b, acting
on the individual 2-spaces. Therefore, since dim(E) = 2n · n!, we require 2n�1

· n! copies
of Ib.

This motivates us to let K be the Coxeter group which is the direct product of 2n�1
·n!

copies of Ib. The corresponding diagram has 2n · n! nodes, which can be parametrized by
the elements Bn. Our first thought was to pair these off by taking the 2n�1

· n! branches
of the diagram to connect elements �, ⇢0� (corresponding to 0-adjacent flags in the n-cube
P). The subgroup Dn then acts on K; and this indeed will work for n odd. But this is a
dead end when n is even; we were led astray by the isomorphism in Theorem 2.5(b). The
key is to exploit the group Bn for the hemi-cube in all dimensions. After a great deal of
experiment we arrived at the construction which follows.

Construction 4.1. Suppose n > 2 and fix an integer b > 2. Let E be a Euclidean space of

dimension 2n · n! with orthonormal basis {e', f' : ' 2 Bn}. (Recall that Bn has order

2n�1
· n!.) Thus E is the orthogonal sum of the planes F' := Re' � Rf'.

For each' 2 Bn define two reflections on E: r' whose mirror is the hyperplane normal

to e', and s' with normal � cos(⇡/b)e' � sin(⇡/b)f'. Observe that (e')r' = �e', but

r' fixes all other basis vectors, including f'. The dihedral group Ib(') := hr', s'i has

order 2b and acts as usual on the plane F', while fixing pointwise all other such planes.

Let K := ⌦'2Bn
Ib(') be the direct product of these dihedral groups. In fact, K is a

(linear) Coxeter group; and an action of Bn on K is induced by permuting its generators.

For � 2 Bn, we have

r' 7! r'·� and s' 7! s'·� .

(This is an example of the twisting discussed in [12, Section 8A].) In similar fashion, Bn

permutes basis vectors and so also acts as a group of isometries on E:

e' 7! e'·� , f' 7! f'·� . (4.1)

The semidirect product Bn nK is thus represented as a group of isometries in O(E). ⇤

Remark 4.2. The group K is crucial (and enormous, although in the end we use only
a modest part of it). In the plane F', the mirrors for r', s' are configured as shown in
Figure 2.

As a convenient notation for the b reflections in Ib('), let

[l,'] = (r's')
lr'. (4.2)

For example, [0,'] = r'. Note that the integer parameter l can be taken mod b.
Now any subgroup G of Bn nK projects onto a subgroup of Bn. To force G to have

type {4, 3n�2, 4}, we exploit Lemma 2.3, not forgetting that somehow the K components
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eϕ

fϕ

rϕ

sϕ

π/b

Figure 2: Generators for the dihedral group Ib(') acting on the plane F'.

should force the facet subgroup of G to be cubical, not hemi-cubical. From K we start with
products of reflections like

x = ⌦'2Bn
[l','].

If � 2 Bn, then
x� = ⌦'2Bn

[l',' · �] = ⌦'2Bn
[l'·��1 ,'].

Recall from Proposition 2.5 that the subgroup Mn of Bn has index 2n, with transversal
elements j�i

n, with 1 6 j 6 n and i = 0, 1. Notice that in Ln = Mn tMn�n, we have
�nMn = Mn�n. When n is even, we will also need the subgroup Q := h�3, . . . ,�ni of
order 2n�2 in Bn (see equation (2.10)). Taking S = h⇢1, . . . , ⇢n�1i ' Sn as well, we
form the set product W := SQ�2. Thus W has size 2n�2

· n!. When n = 2 we have
Q�2 = {�2}.

Definition 4.3. For n > 2, b > 2, let b = (b, 0n�1); and fix any integers l1, · · · , ln, which
can be taken mod b. First let

x = ⌦'2Bn
[l','], where l' =

(
lj , if ' 2 jMn,

(�1)nlj , if ' 2 j�nMn.
(4.3)

(Thus x 2 K; and the terms lj and (�1)nlj each occur 2n�2
· (n� 1)! times.)

(a) When n is odd, take

z := ⌦'2Bn
[0,'] = ⌦'2Bn

r' 2 K.
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In this case, define elements of Bn nK as follows:

g0 = ⇢0x

gj = ⇢j , 1 6 j 6 n� 1

gn = �nz,

(b) When n is even, the element in (4.3) reduces to x = ⌦'2Bn
[l','], where l' := lj

when ' 2 jLn. Next let

w := ⌦'2W [0,'] = ⌦'2W r',

where W = SQ�2 = h⇢1, . . . , ⇢n�1ih�3, . . . ,�ni�2. In this case, define these
elements of Bn nK:

g0 = ⇢0x

g1 = ⇢1w

gj = ⇢j , 2 6 j 6 n� 1

gn = �n.

Finally, for each n let GRb(l1, . . . , ln) = hg0, g1, . . . , gn�1, gni, a subgroup of K o
Bn. We often briefly write instead GRb(`), where ` = (l1, . . . , ln).

Remark 4.4. It is important to keep in mind that � 2 Bn acts on E by (regularly) permut-
ing the planes F' through their subscripts. In contrast, y 2 K preserves each such plane,
acting on it as a reflection or rotation.

We put an ‘R’ in GRb to distinguish the group from a later subrepresentation of more
interest. The �n may seem out of place; but here it does need to be distinguished from ⇢n.

The splitting of the definition according the parity of n is irksome, though perhaps
inevitable. Certainly, a lot of effort yielded no fix. Peter McMullen notes that the range
of toroidal quotients admitted by Hb does depend on the parity of n [12, Theorem 6F1].
It is not clear why that could matter for our purposes, and in any case, our key results,
Theorems 4.16 and 5.4 below, do not depend on the parity of n.

In Figure 3 we at first see the 3-cube P, along with the barycentric subdivision of
its boundary [12, Section 2C]. The generators ⇢0, ⇢1, ⇢2 for the symmetry group B3 are
indicated. The (shaded) base triangle which they enclose serves as a fundamental region
for B3 and corresponds to the base flag in the abstract 3-cube P . After identifying antipodal
points on the rim, we can just as well view Figure 3 as the hemi-cube of rank 3 (with its
order complex). The 24 automorphisms ' 2 B3 now correspond exactly to the 24 flags
visible in the Figure 3. We have labelled these ±l1,±l2,±l3 as dictated by equation (4.3).

It is useful now to gather together some special calculations before proceeding to a key
theorem.

Lemma 4.5. Suppose n > 4 is even. Then

(a) w = ⌦'2SQ�2 [0,'] = ⌦'2SQ�2 r' satisfies ww⇢2⇢1w⇢2 = 1.

(b) for x = ⌦'2Bn
[l','] as in Definition 4.3(b), we have

xw⇢0x⇢1⇢0w⇢0⇢1⇢0x⇢1⇢0⇢1w⇢0⇢1x⇢1w = 1.
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Figure 3: The hemi-cube (n = 3), with its order complex.

Proof. Notice that Bn = SQ t SQ�2. As a temporary notation, let [1,'] = 1 2 Ib('),
then take

m' =

(
0, if ' 2 SQ�2,

1, if ' 2 SQ.

Thus w = ⌦'2Bn
[m',']. The '-component for ww⇢2⇢1w⇢2 , which is also an element of

the direct product K, is then

[m','] · [m'·⇢1⇢2 ,'] · [m'·⇢2 ,'].

Now U := h�4, . . . ,�ni has coset representatives 1,�2,�3,�2�3 in h�1, . . . ,�ni. Notice
that U is invariant under conjugation by ⇢1, ⇢2 and that Q = U t U�3. We now can easily
compute the values in the following chart:

' 2 SU ' 2 SU�2 ' 2 SU�3 ' 2 SU�2�3
m' = 1 0 1 0

m'·⇢1⇢2 = 1 0 0 1

m'·⇢2 = 1 1 0 0

For example, if ' 2 SU�2, then

' · ⇢2 2 SU�⇢22 = SU�3 2 SQ,

so m'·⇢2 = 1. Since there are an even number of 0’s in each column, we get ww⇢2⇢1w⇢2 =
1. Actually part (a) holds for odd n, too.

With the conventions 1/1 = 0, 1/0 = 1, we similarly find that

m'·⇢1⇢0 = 1/m' = m'·⇢0 , for all ' 2 Bn.
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In part (b), l' = lj when ' 2 jL. Since ⇢1⇢0⇢1 = �⇢11 = �2 2 L, we always have
l'·⇢1⇢0⇢1 = l' and l'·⇢1 = l'·⇢0⇢1 . The '-component of xw⇢0 · · ·x⇢1w in part (b) is then
(condensing the notation)

[l'][m'·⇢0 ][l'·⇢0⇢1 ][m'·⇢0⇢1⇢0 ][l'·⇢1⇢0⇢0 ][m'·⇢1⇢0 ][l'·⇢1 ][m']

= [l'][
1

m'
][l'·⇢1 ][m'][l'][

1

m'
][l'·⇢1 ][m'].

If m' = 0, then [ 1
m'

,'] = [1,'] = 1, and the previous product is

[l'][l'·⇢1 ][0][l'][l'·⇢1 ][0] = [l'][l'·⇢1 ][�l'][�l'·⇢1 ] = (r's')
l'�l'·⇢1 (r's')

�l'+l'·⇢1 = 1.

(Note that [0][l'][0] = r'(r's')l'r' = (r's')�l' = [�l'].) The case m' = 1 is
similar.

Now we can prove our main

Theorem 4.6. For n > 2, b > 2, b = (b, 0n�1) and integer vector ` = (l1, . . . , ln), we

have a representation

�(Hb) ! GRb(`)

⇢j 7! gj , 0 6 j 6 n.

Proof. Considering Theorem 2.1, we must show that the gj’s satisfy the defining relations
for the Coxeter group fCn, along with the toroidal relation (2.8), taking k = 1. First of
all, we have from Lemma 2.3 that the components ⇢j ,�n from Bn (a quotient of Bn) do
satisfy the relations for fCn. (In Proposition 4.7, we dispel any worry that that the facet or
vertex-figure subgroup of �(Hb) collapses in GRb(`).) For now, we need only understand
how x and z (or w) behave and check that they do not ‘ruin’ desired relations.

Suppose that n is odd. Notice that

z� = (⌦'r')
� = ⌦'r'·� = z,

for all � 2 Bn (all such products taken over Bn). Thus, for example,

(gngn�1)
4 = (�n⇢n�1)

4z�nz�n⇢n�1�nz⇢n�1�n⇢n�1z⇢n�1 = z4 = 1.

We also find that g2n = 1 and gn commutes with g1, . . . , gn�2.
The dual calculations involving g0 = ⇢0x fall out nicely. Consider the description of

x in (4.3), with integers l' specified as in Definition 4.3. Since n is odd, ⇢0 = �1 =
(�2�3) · · · (�n�1�n) 2 Mn. Thus ' 2 j�i

nMn implies ' · ⇢0 2 j�i
nM . It follows that

l' = l'·⇢0 for all ', giving x⇢0 = x and g20 = 1. Similarly, for 2 6 j 6 n, ⇢j 2 Mn and
(g0gj)2 = 1.

In the same way we find that l'·�n = �l'. Compare this with

[0,'] [l','] [0,'] = r' · (r's')
l'r' · r' = (r's')

�l'r' = [�l','].

We conclude that x�n = zxz, giving

(g0gn)
2 = x⇢0z⇢0�nx�nz = xzx�nz = 1.
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Similarly, ⇢1⇢0⇢1 = ⇢⇢10 = �⇢11 = �2 2 �nMn, so that l' = �l'·⇢1⇢0⇢1 and l'·⇢1 =
l'·⇢1⇢1⇢0⇢1 = �l'·⇢0⇢1 . Now we have

(g0g1)
4 = x⇢0x⇢0⇢1⇢0x⇢1⇢0⇢1x⇢1 = xx⇢1⇢0x⇢1⇢0⇢1x⇢1 .

But in the latter product, the '-component is

[l','] [l'·⇢0⇢1 ,'] [l'·⇢1⇢0⇢1 ,'] [l'·⇢1 ,'] = (r's')
(l'�l'·⇢1 ) · (r's')

(�l'+l'·⇢1 ) = 1.

Thus (g0g1)4 = 1. We are left to deal with the toroidal relation (2.8), so we examine

g0g1 · · · gn�1gngn�1 · · · g1 = (⇢0x) · (�nz)
 ( = ⇢n�1 · · · ⇢1)

= ⇢0x · �nz


= ⇢0x�1z (�1 = ⇢0)

= x⇢0z

= xz = ⌦'2Bn
(r's')

l' .

But this product of rotations in the several planes F' has order dividing b, so relation (2.8)
holds in GRb(`). This finishes the job for n odd.

Now let n be even. We have ⇢0(= �1),�n 2 L, so that x = x⇢0 = x�n , giving
g20 = (g0gn)2 = 1. Similarly, (g0gj)2 = 1 for 2 6 n� 1. We can focus on g1.

Notice that ⇢1 = (1, 2) leaves invariant Q, as well as the coset Q�2. This gives w⇢1 =
w and g21 = 1. Similarly, (g1gj)2 = 1 for 3 6 j 6 n� 1.

For the moment, let us continue with n > 4. Since �n 2 Q, we get (g1gn)2 = 1. Next
we have

(g1g2)
3 = (⇢1⇢2)

3w⇢2⇢1⇢2⇢1⇢2w⇢2⇢1⇢2w⇢2 = w⇢1w⇢1⇢2⇢1w⇢2 = ww⇢2⇢1w⇢2 = 1,

by Lemma 4.5(a). To verify that (g0g1)4 = 1, we use Lemma 4.5(b).
For the toroidal relation (2.8) we consider

g0g1 · · · gn�1gngn�1 · · · g1 = ⇢0x⇢1w�
⇢n�1···⇢2
n ⇢1w

= ⇢0x⇢1w�2⇢1w

= �1xw
⇢1�⇢12 w = �1xw�1w

= x�1 · (w�1w) = x(w�1w)

= ⌦'2Bn
(r's')

l' .

But x is a product of reflections over all ' 2 Bn; and so is w�1w, since Bn = W tW�1.
Note that W�1 = SQ�2�1 = SQ(�3 · · ·�n) = SQ. Once more g0g1 · · · gn�1gngn�1 · · · g1
is a product of rotations acting on the whole set of planes F'.

We are left with the case n = 2, which is a bit degenerate. Nevertheless, much the same
calculations as above give (g0g1)4 = (g1g2)4 = 1 and g0g1g2g1 = x(w�1w).

The next result is comforting, though strictly speaking not necessary for enumerating
the realizations of Hb.

Proposition 4.7. The subgroups h⇢0, ..., ⇢n�1i and h⇢1, ..., ⇢ni of �(Hb) are represented

faithfully in the group GRb(`) of Theorem 4.6.
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Proof. Recall from Definition 4.3 the description of the generators of GRb(`) as elements
in the semidirect product Bn nK. Clearly there is an epimorphism hg0, ..., gn�1i ! Bn.
Now consider h = g0 · · · gn�1. Certainly h2n = 1, so we must show hn has period 2. Let
↵ = ⇢0⇢1 · · · ⇢n�1, which has period n in Bn. When n is odd, h = x↵, so that

hn = x · x↵
�1

· · ·x↵
�(n�1)

.

Since x is ‘supported’ on all of Bn, this product contains an odd number n of reflections
from every Ib('), so hn has period 2.

When n is even, h = xy↵, where y = w⇢0 = w�1 is supported on
SQ = h⇢1, ..., ⇢n�1ih�3, ...,�ni. Now the products of the x↵

�k

contribute even numbers
of reflections to each Ib('), so we need to show that

y · y↵
�1

· · · y↵
�(n�1)

contains an odd number of reflections from each Ib('). The permutation component of '
(from S) can be discounted. After some calculation, we find that we must show that each
sign change � belongs to an odd number of the n sets listed in Lemma 2.6(b). Thus, for
any n we have h⇢0, ..., ⇢n�1i ' hg0, ..., gn�1i.

The dual argument that h⇢1, ..., ⇢ni ' hg1, ..., gni is quite similar, after a natural modi-
fication of Lemma 2.6(b), again when n is even.

We have taken a big step toward understanding the pure realizations of Hb. However,
we still need to find a base vertex v for the realization.

Lemma 4.8. Up to scale, the only non-zero point fixed by the vertex-figure subgroup

hg1, . . . , gni of GRb(`) is

v =
X

'2Bn

f'. (4.4)

Proof. Suppose v =
P
'2Bn

x'e' + y'f', with x', y' 2 R. The coefficients
⇢1, . . . , ⇢n�1,�n for g1, . . . , gn generate Bn. Since z (or w) fixes all f', we see that
y' = y, a common value for all ' 2 Bn. Similarly, all |x'| = x, say. But since there are
sign changes, x = 0. Thus v = y

P
' f'.

For certain choices of ` = (l1, . . . , ln), it can happen that GRb(`) does not act irre-
ducibly on E. We are interested in the action on the orbit of the base vertex.

Definition 4.9. Suppose n > 2, b > 2, b = (b, 0n�1), and ` = (l1, . . . , ln) 2 Zn.
Let Gb(`) be the isometry group defined by restricting GRb(`) to the (invariant) linear
subspace Eb(`) of E spanned by the orbit of v.

We denote the corresponding realization of Hb by either Hb(l1, . . . , ln) or Hb(`).

In what follows we maintain our assumptions for b = (b, 0n�1) and ` = (l1, . . . , ln),
but often use the abbreviations G for Gb(`) and E0 for Eb(`). Likewise we abuse notation
slightly by using g0, . . . , gn for the generators of G. (To better conform with the notation
of Section 3, we should use rj for the restriction of gj to E0.)

From Lemma 4.8 and Proposition 3.3, we immediately get

Proposition 4.10. The group G = Gb(`) is absolutely irreducible (on E0). Thus wG =
w⇤

G = 1. The corresponding realization Hb(`) for Hb is pure.
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Example 4.11. If all parameters l1 = · · · = ln = 0, then g0 = ⇢0 ·⌦'2Bn
r' also fixes v.

In fact, the realization Hb(l1, . . . , ln) is trivial if and only if l1 ⌘ · · · ⌘ ln ⌘ 0 (mod b).

Proposition 4.12. Each realization Hb(`) is congruent to a realization of this type with

` = (l1, . . . , ln) in standard form:

0 6 l1 6 . . . 6 ln 6 b
b

2
c. (4.5)

Proof. Under the signed permutations in Bn, any integer point is equivalent to a unique
point satisfying 0 6 l1 6 . . . 6 ln. But here l1, . . . , ln are parameters in the definition of
x = ⌦'2Bn

[l','] in (4.3), so we require a new action of Bn on E.
First, fix j and consider the isometry g of E induced by mapping e' 7! �e' just

for ' 2 jLn, while fixing all other basis vectors. (The effect is to reverse orienta-
tion in the corresponding planes F'.) Since (v)g = v, we conclude that the realizations
Hb(l1, . . . , lj , . . . , ln) and Hb(l1, . . . ,�lj , . . . , ln) are congruent. Thus any lj can be re-
placed by �lj . In fact, since we can also reduce mod b, we can assume 0 6 lj 6 bb/2c,
for 1 6 j 6 n.

Similarly, suppose g transposes ejµ, ej+1µ and fjµ, fj+1µ, for µ 2 Ln, while fixing
all remaining basis vectors. Then the isometry g lets us transpose lj and lj+1. We can
permute the lj as we wish.

Now we must address uniqueness. To do so, we might compute diagonal vectors for
Hb(`) and Hb(k), with parameters `,k in standard form (3.2). We instead take a related
approach which makes for easier calculation. It is clear that congruent realizations have
the same angle between the base vertex and its image under a particular translation. We
therefore take a closer look at the translations in GRb(`).

We earlier concluded from the semidirect decomposition in (2.7) that the translation
subgroup T = h⌧1, . . . , ⌧ni acts transitively on the vertex set of the tessellation H of En.
This behaviour persists for the toroids Hb and their realizations Hb.

The first translation ⌧1 := ⇢0⇢1 · · · ⇢n�1⇢n⇢n�1 · · · ⇢1; and for 2 6 k 6 n, the transla-
tion ⌧k = ⌧

⇢1···⇢k�1

1 . We have seen in the proof of Theorem 4.6 that ⌧1 maps to

t1 := g0g1 · · · gn�1gngn�1 · · · g1 = ⌦'2Bn
(r's')

l' 2 GRb(`),

regardless of whether n is even or odd. The image of ⌧k is likewise tk := t
g1···gk�1

1 . Our
task is to determine the '-component for tk, that is, the corresponding rotation in the plane
F'.

When n is odd, g1 · · · gk�1 = ⇢1 · · · ⇢k�1 = �1
k , again taking k = ⇢k�1 · · · ⇢1. We

have

tk = [⌦'2Bn
(r's')

l' ]
�1
k = ⌦'2Bn

(r'·�1
k
s'·�1

k
)l' = ⌦'2Bn

(r's')
l'·k .

When n is odd, half the l'’s have the form �lj .
When n is even, each l' instead equals some lj . But now g1 = ⇢1w = w⇢1, where

w is the product of the commuting reflections r , as  runs through W = SQ�2 =
h⇢1, . . . , ⇢n�1ih�3, . . . ,�ni�2 (Definition 4.3). So before conjugating t1 by �1

k , we first
conjugate by w, giving the preliminary translation

u = [⌦'(r's')
l' ]w = ⌦' 62W (r's')

l' ⌦'2W (r's')
�l'
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(which might not lie in GRb(`)).

Now we can put the cases n even or odd on equal footing simply by letting u = t1 when
n is odd. In both cases, tk = u

�1
k for 2 6 k 6 n; and if we let u = ⌦'2Bn

(r's')m' , we
get further unification. We always have

m' :=

(
lj , if ' 2 jh⇢2, ..., ⇢n�1iQ;

�lj , if ' 2 jh⇢2, ..., ⇢n�1iQ�2,
. (4.6)

where Q was defined in (2.10). This needs a little calculation when n is even; and when n
is odd, this is equivalent to Definition 4.3(a), giving m' = l', as expected. We have

tk = u
�1
k = ⌦'2Bn

(r's')
m'·k .

We must get a handle on m'·k and equally l'·k . It follows from (4.6) that the parameters
m'·kand l'·k can differ only in sign.

For each ' 2 Bn we want to understand j(') = (l',m'·2 , . . . ,m'·n). Because of
the semidirect product structure of Bn, there is a unique factorization ' = ↵�, where the
permutation ↵ 2 h⇢1, . . . , ⇢n�1i ' Sn and the sign change � 2 h�1, . . . ,�ni ' Cn�1

n .
Furthermore, there are unique 1 6 j 6 n and µ 2 h⇢2, . . . , ⇢n�1i ' Sn�1 such that
↵ = jµ. Then l' = ±lj , depending on �.

Since 'k = ↵k · �k , we can separately track the effect of k on ↵ and �. As an aid
we use the special permutation ⇠ = 2 · · ·n = (1, n)(2, n� 1) · · · , so that

⇠ : j 7! 1� j (mod n).

Suppose ↵ = jµ, with µ 2 h⇢2, . . . , ⇢n�1i. Then ↵k = jµk = mµ̃, say, where µ̃
fixes 1. This means that

(1)j�mµ = (1)µ̃�1
k = k (mod n),

so

1 + j �m = (k)µ�1 = (k)↵�1j = (k)↵�1 + j (mod n),

whence

m = 1� (k)↵�1 = (k)↵�1⇠ (mod n).

It follows that for any ' = ↵�, j(') looks like (l(1)↵�1⇠, l(2)↵�1⇠, . . . , l(n)↵�1⇠) (signs still
to be inserted).
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Example 4.13. When ' = 1 we obtain j(1) = (ln, ln�1, ..., l2, l1) (with no sign changes
required). Similarly, j(⇠) = ` = (l1, l2, . . . , ln) in order.

Suppose now that we fix the permutation component ↵ = jµ but vary the sign compo-
nent � 2 Q�i

2, with i 2 {0, 1}. It follows at once from Proposition 2.6(a) that �2 , ...,�n

induce all 2n�1 possible sign changes e2, . . . , en for the last n� 1 positions in the permu-
tation l(1)↵�1⇠, l(2)↵�1⇠, . . . , l(n)↵�1⇠. Keeping close track of the first sign change e1, we
actually get

Proposition 4.14. Suppose ` is fixed as above. For each ' = ↵� 2 Bn, the translation

ti, 1 6 i 6 n, has '-component (r's')ji , where j(') = (j1, . . . , jn) is some signed

permutation (e1l(1)↵�1⇠, e2l(2)↵�1⇠, ..., enl(n)↵�1⇠) of ` = (l1, . . . , ln). There are 2n�1

sign changes (e1, . . . , en). When n is even, e1 = +1 and the signs occur in all possible

ways for e2, . . . , en. But when n is odd, e1 = �1 half the time, always with e1e2 · · · en =
+1.

Finally, we can return to realizations like Hb(`) and Hb(k). Note that they share the
same base vertex v. If these pure realizations were congruent, then certainly
v·(v)t1 · · · tk must be the same for them, for 1 6 k 6 n. (Of course, the actual translations
t1 · · · tk do depend on ` and k.)

Let us focus on Hb(`). Recall that the component of v in F' is just f'. If some
translation t has rotational component (r's')l in this plane, then the contribution of ' to
v · (v)t is simply cos(2⇡l/b). Consulting Definition 4.3 again, we can already compute

v · (v)t1 =
X

'

cos(
2⇡l'
b

)

= 2n�2(n� 1)!
nX

j=1

cos(
2⇡lj
b

) + cos(
(�1)n2⇡lj

b
)

= 2n�1(n� 1)!(c1 + · · ·+ cn),

where cj := cos(2⇡lj/b). The last sum involves the first elementary symmetric function
of the cosines.

Now consider t = t1 · · · tk for k > 2. By our earlier calculations, the rotational com-
ponent (r's')l when ' = ↵� has l = e1l(1)↵�1⇠ + e2l(2)↵�1⇠ · · · + ekl(k)↵�1⇠, for some
specific choice of signs ei. The sign selections e2, . . . , ek come in 2k�2 pairs of opposites,
though in slightly different ways depending on the parity of n; see Proposition 4.14. How-
ever, since the cosine function is even, we can assume e1 = 1 when n is odd, taking care
to adjust the subsequent counting. In this way we may ignore the parity of n.

The remaining subscripts and signs (for positions k + 1 through n) now ensure that a
specific choice for l occurs with multiplicity 2n�k

· (n � k)! in the following calculation.
For easier notation, we let mi = (i)↵�1⇠. We get
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v · (v)t1 · · · tk = 2n�k(n� k)!
X

m1,m2,...,mk
e2,...,ek=±1

cos(
2⇡[lm1 + e2lm2 + · · ·+ eklmk)]

b
)

= 2n�k+1(n� k)!
X

m1,m2,...,mk
e3,...,ek=±1

cos(
2⇡lm1

b
)

cos(
2⇡[lm2 + e3lm3 + · · ·+ eklmk)]

b
)

. . . = 2n�1(n� k)!
X

m1,m2,...,mk

cos(
2⇡lm1

b
) cos(

2⇡lm2

b
) · · · cos(

2⇡lmk

b
)

= 2n�1(n� k)!k!
X

16m1<m2<···<mk6n

cm1cm2 · · · cmk .

Here we repeatedly use the identity cos(✓1 + ✓2) + cos(✓1 � ✓2) = 2 cos(✓1) cos(✓2). We
have

Proposition 4.15. For ` = (l1, ..., ln), let cj := cos(2⇡lj/b). For 1 6 k 6 n, the

realization Hb(`) has dot product v · (v)t1 · · · tk equal 2n�1(n � k)!k! times the k-th

elementary symmetric function in c1, ..., cn.

Theorem 4.16. Each pure realization of Hb is similar to exactly one realization of the type

Hb(`), with ` is standard form (3.2).

Proof. Two congruent realizations Hb(`) and Hb(k) certainly give equal inner products
v · (v)t1 · · · tk, since they have common base vertex v. From Proposition 4.15, the corre-
sponding elementary symmetric functions of cosines are equal. But these functions deter-
mine the coefficients of the polynomial

nY

j=1

(x� cj),

which must therefore be shared by Hb(`) and Hb(k). One set of cosines is thus a permu-
tation of the other. Since `,k are in standard form, so that c1 > c2 > ... > cn, for instance,
we have ` = k.

We have Hb(`) congruent to Hb(k) if and only if ` = k when in standard form. Thus
the number of distinct pure realizations of this type is the number of ` satisfying (3.2) in
Proposition 4.12. By Proposition 3.4, this is the same number as the parameter r + 1 for
the abstract toroid Hb. We are done by Theorem 3.2(b) and Proposition 4.10.

5 The dimension of Hb(`)

The most interesting (and frustrating) part of this investigation has been to determine the
dimension db(`) of Hb(`), that is, d = dim(E0) in our brief notation. To do this we first
draw on the geometric ideas underlying Clifford’s Theorem (see [4, Theorem 2.2]).

We know that G = Gb(`) acts irreducibly on E0 and has the abelian normal sub-
group T = ht1, . . . , tni. (Recall that we abuse notation with T referring to the image of
h⌧1, . . . , ⌧ni in G.)
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Now T admits a 1- or 2-dimensional irreducible subspace Y ⇢ E0. For each h 2 G,
Y h is also an irreducible T -space; and two of these either coincide or meet trivially. From
this ensues a direct sum decomposition

E0 = Y h1 � · · ·� Y hp, (5.1)

for certain h1, ...., hp 2 G. Of course, the T -spaces Y hj have the same (real) dimension 1
or 2. To cover both cases at once, we extend scalars to C. Thus, for a bit, we work in the
unitary spaces EC and E0

C.
The group T is a representation of h⌧1, . . . , ⌧ni ' Zn

b . The latter abelian group has
bn irreducibles over C, all 1-dimensional [4, Corollary 2.6]. Suppose ! = e

2⇡ı
b . Then

the irreducibles are parametrized by all k = (k1, . . . , kn) 2 Zn
b itself. For each k, the

corresponding representation maps

⌧ j11 · · · ⌧ jnn 7! !k⇤j,

as j = (j1, . . . , jn) runs through Zn
b . It is very convenient here to treat Zn

b as an additive
group, equipped with the symmetric bilinear form k ⇤ j := k1j1 + · · · + knjn. Note that
the complex number !k⇤j is then well-defined. We next indulge in a little discrete Fourier
analysis on Zn

b .

Lemma 5.1. For fixed q 2 Zn
b ,

1

bn

X

m2Zn
b

!q⇤m =

(
1, if q = 0;

0, otherwise.

Proof. The sum factors as a product of n geometric series indexed by m1, ...,mn, respec-
tively.

Now our goal must be to find a vector y 2 E0
C such that the line Cy is T -invariant.

Motivated by Schur’s Lemma, we eventually think to try

y :=
1

bn

X

m2Zn
b

!�l⇤m(v)tm, (5.2)

where for brevity we take tm := tm1
1 · · · tmn

n . It is easy to check that

ti : y 7! !liy, 1 6 i 6 n.

Thus Cy is indeed a T -invariant line in E0
C, so long as y 6= 0. In fact, we could replace

` in (5.2) by any k 2 Zn
b . But we will soon see why y = 0 unless k is one of the signed

permutations of ` enumerated in Proposition 4.14.
We must determine the component y' of y in CF', for all ' 2 Bn. Recall from

Proposition 4.14 that, for 1 6 i 6 n, ti acts on F' as the rotation (r's')ji , where j =
(j1, . . . , jn) is some signed permutation of ` (depending on '). Now for fixed ' and
m 2 Zn

b , the vector (v)tm has this component in CF':

(f')(r's')
j⇤m = � sin(

2⇡(j ⇤m)

b
)e' + cos(

2⇡(j ⇤m)

b
)f'

= (
!�j⇤m

� !j⇤m

2ı
)e' + (

!j⇤m + !�j⇤m

2
)f'
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Next sum such terms weighted by !�k⇤m in (5.2) and simplify using Lemma 5.1. We
conclude that y' is as described in the first column of Table 1.

y' y1,' y2,' j = j(')
ı
2e' + 1

2 f'
1
2 f'

1
2e' j = l, j 6= �l

�ı
2 e' + 1

2 f'
1
2 f'

�1
2 e' j 6= l, j = �l

0 0 0 j 6= l, j 6= �l

f' f' 0 j = l = �l

Table 1: Real components for y1,y2 spanning Y .

Certainly y 6= 0, since at least j(') = l for ' = ⇠ (Example 4.13). We need to understand
the ‘support’ sp(y) = {' 2 Bn : y' 6= 0}.

Since the group G is real, the vector y also spans a T -invariant subspace; and clearly
sp(y) = sp(y). Now we can examine the real representation T . We have computed in
Table 1 the components y1,' and y1,' in F' for the two real vectors y1 := 1

2 (y + y) and
y2 := 1

2ı (y � y). In order to pin down the T -invariant subspace Y = Ry1 + Ry2, we
must determine sp(yj) = {' 2 Bn : yj,' 6= 0}. For instance, when l = �l, we have
sp(y2) = ;. Otherwise, sp(y1) = sp(y2) = sp(y) 6= ;.

Over C or R, our goal is to count the distinct T -invariant subspaces Y h, with h 2 G.
But G = TG0, where G0 = hg1, . . . , gni, so we can assume h 2 G0. Thus h = �y, where
� 2 Bn and y = ⌦�2Ar� 2 K, for some subset A ✓ Bn. (For h 2 G0, the factor y has
no s� terms. This follows from Definition 4.3, though the details depend on the parity of
n.) Thus y fixes all f' and all e', ' 62 A, but swaps e',�e' when ' 2 A.

Lemma 5.2. If h = �y 2 G0, where � 2 Bn, y 2 K, then

sp((y)h) = (sp(y))�.

A similar result holds for the real vectors y1 and y2.

Proof. If ' 2 sp(y), then y' = ae' + bf', where the scalars a, b are not both 0. Thus

(y')h = (ae'� + bf'�)y = ±ae'� + bf'�,

so '� 2 sp((y)h). Thus (sp(y))� ✓ sp((y)h). The reverse inclusion follows in the same
way by applying h�1 = ��1y�

�1

to (y)h. The calculations for y1,y2 are immediate.

Let us now dispense with the special case that ` = �`, so that only the last two lines
of Table 1 are relevant. Thus y2 = 0 and Y = Ry1 is the real line spanned by y1 =P
'2sp(y1)

f'.
For ` = 0, we have already observed in Example 4.11 that Hb(0) is the trivial realiza-

tion of Hb, with db(0) = 1, according to our conventions.
Suppose ` 6= 0 but 2` = 0 (mod b). Then it must be that b is even and we may take

` = (0, ..., 0,
b

2
, ...,

b

2
) = (0m, (

b

2
)n�m),

for some 0 6 m < n. Again, since ` = �` we can ignore the complications due to
signs. Referring to Proposition 4.14, we must determine all ' = ↵� for which j(') = l.
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Now � can be any of the 2n�1 sign changes in Bn; and ↵ 2 Sn is any permutation
such that ↵�1⇠ preserves the set {1, . . . ,m}, hence also {m + 1, . . . , n}. (Recall that
⇠ = 2 · · ·n = (1, n)(2, n� 1) · · · .) Thus ↵�1⇠ lies in

D = h⇢1, . . . , ⇢m�1, ⇢m+1, . . . , ⇢n�1,�2, . . . ,�ni,

a subgroup of order 2n�1m!(n�m)! in Bn. We have sp(y1) = ⇠D. But from Lemma 5.2,
the subspaces Y h, h 2 G0, are spanned by vectors (y1)h, which in turn are supported on
subsets ⇠D�. These fixed left translates of the various right cosets D� partition Bn. The
distinct vectors (y1)h are linearly independent, being supported on disjoint subsets of basis
vectors f' in E. Furthermore, they lie in E0 and their sum is the base vertex v. Thus the
dimension of E0 is the index of D in Bn. To sum up, we have

Theorem 5.3. Suppose b is even and ` = (0m, ( b2 )
n�m), for some 0 6 m 6 n. Then the

realization Hb(`) has dimension

db(`) =

✓
n

m

◆
.

It remains to consider the case ` 6= �`, so that just the first three lines of Table 1 are
needed. Now y1,y2 are orthogonal and T acts irreducibly on the plane Y = Ry1 � Ry2.
(By a variant of the Jordan-Hölder Theorem, the dimension of the summands in (5.1) is
uniquely determined by T ; there can be no alternative decomposition of E0 into invariant
lines.)

Again suppose ` is in standard form, so that 0 6 l1 6 l2 6 ... 6 ln 6 b
b
2c; but now

some 0 < li < b/2. For 0 6 k 6 b
b
2c, let mk be the number of (necessarily consecutive)

li’s which equal k. Note that mk = 0 is quite possible and that

n = m0 +m1 + · · ·+mb b
2 c
.

It is useful to let m⇤ = mb b
2 c

for b even, and m⇤ = 0 when b is odd.
Recall from Proposition 4.14 the way that ' = ↵� 2 Bn acts on `: ↵ 2 h⇢1, . . . , ⇢n�1i

induces the subscript permutation ↵�1⇠, while � 2 Cn�1
2 induces the sign change

(e1, . . . , en). Clearly the blocks of equal parameters li are preserved by some subgroup
of Sn. To these permutations adjoin all sign changes in the first m0 or last m⇤ slots giving
a subgroup D of Bn with order

st` := 2m0+m⇤ ·m0! ·m1! · · ·mb b
2 c
! . (5.3)

Quite possibly m0 +m⇤ = 0; but in any case, the sign change subgroup is normalized by
the permutation subgroup.

Again we use Proposition 4.14 to compute sp(y) = {' = ↵� 2 Bn : j(') = ±l}.
Once more ↵ 2 ⇠D. The analysis for � is more involved, with eight similar cases depend-
ing on the parity of n and which of m0,m⇤ 6= 0.

Suppose, for example, that m0 = m⇤ = 0, so 0 < l1 6 . . . 6 ln < b/2. If n is even,
e1 = 1 so j(') = �l is inadmissible (l1 6= �l1). If n is odd, j(') = �l is again impossible
since an even number of ei = �1. In either case, j(') = l forces � = 1, so the sign change
subgroup has order 1 = 2m0+m⇤ . We conclude that sp(y) = ⇠D.
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At the other extreme, m0,m⇤ > 0, with b even, although u = n�m0 �m⇤ > 0. Now

l = (0, 0, . . . , 0; lm0+1, . . . , ln�m⇤ ;
b

2
, . . . ,

b

2
)

has the three segments indicated. None of the middle u terms equals its negative, so all
signs assigned there must be +1, when j(') = l or all �1 when j(') = �l. Entries in the
first and last segments can then be negated in various ways.

Continuing with this case, suppose, for instance, that n is odd. Just an even number of
sign changes is allowed. If u is odd as well, then m0+m⇤ is even. For `, any even number
of changes amongst these m0 + m⇤ is allowed, and for �` any odd number is allowed
(because there are already u changes). Thus the first and last segments can be given signs
in all 2m0+m⇤ ways. If u is even, the allocation of signs is a little different, but there are
still 2m0+m⇤�1 ways for each of ` and �`. If n is even, the counting is a bit simpler but
with the same end result.

It is easy to adapt the argument when m0 = 0 or m⇤ = 0. In all cases, sp(y) = ⇠D.
Now we proceed as we did for Theorem 5.3. By Lemma 5.2, the plane Y h, h 2 G0

has a basis (y1)h, (y2)h which in turn is supported on some subset ⇠D�, where � 2 Bn.
These fixed left translates of the various right cosets D� partition Bn. Once more, the
distinct vectors (y1)h are linearly independent, they lie in E0 and their sum is now half the
base vertex v. Since dim(Y ) = 2, the dimension of E0 is twice the index of D in Bn. We
have

Theorem 5.4. Assume, as usual, b = (b, 0, . . . , 0), b > 2. Suppose ` is in standard form,

and for 0 6 k 6 b
b
2c, let mk be the number of li’s which equal k. Also let m⇤ = mb b

2 c
(respectively, m⇤ = 0) for b even (respectively, b odd). Then the realization Hb(`) has

dimension

db(`) =
2n · n!

st`
= 2n�m0�m⇤

✓
n

m0,m1,m2, ...,mb b
2 c

◆
. (5.4)

Remark 5.5. In fact, Theorem 5.3 is also covered by the expression on the right in (5.4).

Recall from Section 2 our topological description of the toroid Hb, still with b =
(b, 0, . . . , 0). We pack a b⇥ · · ·⇥ b block of n-cubes into a larger n-cube whose outermost
facets are identified in pairs. The bn vertices of Hb are parametrized by the n-tuples m 2

Zn
b . We have been much concerned with the role played by Bn in Proposition 4.14. But

put that aside and recall from Section 2 how Bn itself acts by signed permutations on Zn
b .

Suppose ` 2 Zn
b has standard form. It is easy to see that its stabilizer in Bn has the

order
st` = 2m0+m⇤ ·m0! ·m1! · · ·mb b

2 c
!,

as computed before. (This does not contradict (5.3), where st` was the order of a subgroup
D ✓ Bn. However, we had assumed there that m0 +m⇤ 6 n � 1.) We immediately get
from equation (5.4) the following

Corollary 5.6. Suppose b = (b, 0, . . . , 0), b > 2 and ` 2 Zn
b . Then the dimension db(`)

of the realization Hb(`) of Hb is simply the size of the orbit of ` in Zn
b under signed

permutations.

Remark 5.7. The calculations for the Corollary are easily visualized when n = 2 or 3.
Various examples are described in Section 7. For n = 2, the Corollary appeared piecemeal



Acc
ep

te
d m

an
usc

rip
t

B. Monson: Realizations of the higher rank toroids 27

in [13, Theorem 3.1]. The several orbits partition Zn
b , of course, so we have confirmed

Theorem 3.2(a) for these toroids.

Next we make a note about the dimension in ‘most’ cases. Let us say that ` (in standard
form) is generic for b if 0 < l1 < l2 < · · · < ln < b

2 . A non-generic ` thus has some li
either repeated or equal 0 or b/2. But this just means that ` is a point on a hyperplane of
symmetry or on the outer surface of the large n-cube which holds the bn smaller cubes used
in the construction of Hb. There are n2 hyperplanes of symmetry, each containing order
O(bn�1) integer vertices from the bn smaller cubes. We therefore see that most ` will be
generic (for fixed n and large enough b). From Theorem 5.4 we immediately have

Corollary 5.8. If ` is generic for b, then Hb(`) has dimension 2n · n! (so that E0 = E).

Remark 5.9. Several years ago I showed our original paper [13] on 3-toroids to Keith Tay-
lor, who noted that our construction must relate to an application of the Mackey Theorems
from group representation theory [6, Section 6.4]. I have been unable to make the con-
nection, though there should be one. That approach resides in fairly heavy-duty character
theory, whereas here we want and do describe the actual representations. The Mackey The-
orems also produce a full character table for �(Hb), but we are concerned with just with
those irreducibles having non-zero Wythoff space. Still, it would be nice to have a more
direct proof of Corollary 5.6.

We close this section by using the machinery at hand to compute the actual number
of vertices realized in Hb(`). We know that Zn

b acts transitively on the vertex set of the
realization. The stabilizer of v can be described as

A := {m 2 Zn
b : m ⇤ j(') = 0 (mod b), for all ' 2 Bn}.

Using Proposition 4.14 and the fact that here m ⇤ (�j(')) = 0, we conclude that A is
closed under all signed permutations of m. But A ' ⇤/(bZn), for some submodule ⇤ of
Zn which contains bZn and is itself closed under signed permutations. This means that we
can adapt an argument from [12, p. 166]. Let s be the minimal positive integer among the
coordinates of vectors x 2 ⇤. Certainly 1 6 s 6 b. There then exists a minimal k such
that ⇤ is generated by all signed permutations of s = (sk, 0n�k). In fact, k = 1, 2 or n;
and in the current situation, s must be a divisor of b. We have bZn

✓ ⇤ ✓ sZn
✓ Zn.

To pin down s and k we must finally involve ` = (l1, ..., ln). For instance, if k = 1
then x = (s, 0, ..., 0) 2 ⇤, so that s li ⌘ 0 (mod b) for all i. A bit of number theory
gives s = s1 = b/gcd(b, l1, ..., ln). We summarize this and the other cases in the following
chart:

k s > 1
1 s1 = b/(gcd(b, l1, ..., ln)
2 s2 = b/(gcd(b, l1 + l2, l2 + l3, ..., ln�1 + ln, 2ln)
n sn = b/(gcd(b, l1 + l2 + · · · ln, 2l2, ..., 2ln)

Given ` = (l1, ..., ln), we have s = min{s1, s2, sn}. For ties take k to be the smallest
subscript.

But ⇤ has index 2k�1 in sZn, so we easily compute the index

[Zn
b : A] = [Zn : ⇤] = [Zn : sZn] · [sZn : ⇤] = 2k�1sn.

We have
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Proposition 5.10. Suppose b = (b, 0, . . . , 0). Using the parameters computed above, we

have that the number of vertices in the realization Hb(`) is 2k�1sn.

Example 5.11. If b is odd, then it follows that k = 1. In fact, if b is an odd prime, then
Hb(`) has either all bn vertices or is trivial (` = 0).

6 Toroids of type H(c,c,0,...,0) or H(c,c,...,c)

We move to the toroids Hc, with c = (c2, 0n�2) or (cn). If we represent the translation
subgroup of eCn by Zn, then �(Hc) ' eCn/⇤, where ⇤ 6 Zn is a subgroup symmetric
under signed permutations of coordinates, just as in the previous section; and ⇤ is gener-
ated by c. But ⇤ contains (c,�c, 0, ..., 0), respectively (c,�c,�c, ...,�c), so that hence
2cZn

✓ ⇤. Taking b = 2c and b = (b, 0, ..., 0), this means that there is an epimorphism

�(Hb)
h
! �(Hc)

mapping the specified generators of �(Hb) to those of �(Hc). On the other hand, a pure
realization of Hc is determined by a map f : �(Hc) ! G, acting on the space D, say, with
base vertex w 6= 0 (fixed by the vertex-figure subgroup of �(Hc)). Thus [hf,w] is a pure
realization of Hb. Rescale w so that w · w = 2n�1n! = v · v. By Theorem 4.16, the
induced realization of Hb is congruent to a unique Hb(`) with ` in standard form.

It is easy to see that this means that kerh lies in the kernel of the epimorphism �(Hb) !
Gb(`). Conversely, if this condition holds, then there is induced a map �(Hc) ! Gb(`),
which in turn gives a pure realization of Hc. We conclude from relation (2.8) in Theo-
rem 2.1, that the pure realizations of Hc, in the cases k = 2, n, are precisely those Hb(`)
for which (g0g1 · · · gn�1gngn�1 · · · gk)ck = 1 in Gb(`).

For example, when n = k = 2, the pure realizations of H(c,c) are given by those
H(2c,0) in which

1 = (g0g1g2)
2c

= (t1t2)
c

= (r1s1)
c(l2+l1)(r⇢0s⇢0)

c(l2�l1)(r⇢1s⇢1)
c(l1+l2)(r⇢0⇢1s⇢0⇢1)

c(l1�l2).

We require that ` = (l1, l2) satisfy c(l1 ± l2) ⌘ 0 (mod 2c), or more simply,

l1 ⌘ l2 (mod 2)

(cf. [14, Theorem 4.1]). In fact, for any n > 2, it is straightforward to check that
(a) for k = 2,

(g0g1 · · · gn�1gngn�1 · · · g2)
2c = (t1t2)

c

(b) for k = n > 3,

(g0g1 · · · gn�1gn)
nc = (t1t2 · · · tn)

c

To see this last equality, it is easiest to pull back to eCn, where

⇢0⇢1 · · · ⇢n : (x1, ..., xn) 7! (x2, x2, ..., xn, x1 + 2)

We saw earlier that the '-component of t1t2 is (r's')±lj±lm , for 1 6 j 6= m 6 n. All
parameter choices occur, as do half the choices of opposite signs (Proposition 4.14). When
k = 2 we thus get
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Theorem 6.1. Each pure realization of H(c2,0n�2) is similar to exactly one realization of

the type H(2c,0,0,...,0)(`), where ` = (l1, ..., ln) is in standard form and lj ⌘ lm (mod 2),
for all 1 6 j < m 6 n.

Similarly, for k = n we have

Theorem 6.2. Each pure realization of H(cn) is similar to exactly one realization of the

type H(2c,0,0,...,0)(`), where ` = (l1, ..., ln) is in standard form and

l1 + l2 + · · ·+ ln ⌘ 0 (mod 2).

7 Toroids of rank 3 or 4 (n = 2 or 3)
In this section we consider some of the more accessible examples.

When n = 2, it is quite easy to interpret Theorems 4.16 and 5.4 using Corollary 5.6. In
Figure 4 we display the (topological) toroids H(b,0), for b = 4 and 5. The opposite (outer)
edges of each square are identified in the usual manner. We have noted how the vertices of
H(b,0) correspond to points of Z2

b . The points ` in turn serve double duty by parametrizing
the realizations of H(b,0) (and H(b/2,b/2), when b is even). With the l1 and l2 axes labelled
as shown, the ` in standard form are the circled grid points in the shaded region. This
triangle is a fundamental region for the action of B2 = h�0, �1i by signed permutations.
Here �0 : (l1, l2) 7! (�l1, l2) and �1 : (l1, l2) 7! (l2, l1). (We use new generators �i to
avoid confusion with the ⇢i so often used to generate Bn.)

The dimension of Hb(`) is easily computed from Corollary 5.6 and is entered inside
the corresponding circle. Since the point ` = 0 is fixed by B2, it has orbit size 1; we get
the correct dimension 1 for the trivial realization.

Suppose b = 2c is even. Then the point ` = (c, c) also has orbit size 1, since the
corners of the square coincide under the toroidal identifications (Figure 4, with b = 4 on
the left). In this case, the 1-skeleton of H(b,0) is bipartite, and the toroid can be collapsed
onto a segment. (Proposition 5.10 correctly predicts the 22�1

· 12 = 2 vertices.) Similarly,
from ` = (0, c), we get orbit size 2; the toroid can be collapsed to a square.

Whenever 1 6 a < b/2, both ` = (a, a) and (0, a) have orbit size 4. The only generic
case so far is ` = (1, 2) when b = 5 (on the right of Figure 4). When b = 2c, there are
(c + 1)(c + 2)/2 grid points in the fundamental triangle; and 3c of these are on one of its
sides. If b > 594, then 99% of the pure realizations are generic and have dimension 8.

The 4-dimensional pure realizations of H(4,0) are particularly interesting, since we can
situate them inside the regular convex 4-cube P4. The actual calculations (here, at least)
are not hard with the aid of Table 1 and the other machinery in Section 5.

For instance, suppose ` = (0, 1). Then j(') = ` (or �`) only for ' = ⇢1 (or ⇢0⇢1).
Ordering the planes F' = Re'�Rf' by the list 1, ⇢0, ⇢1, ⇢0⇢1, we conclude that the basic
T -space Y has basis

y1 = (0, 0, 0, 0, 0, 1/2, 0, 1/2)

y2 = (0, 0, 0, 0, 1/2, 0,�1/2, 0)

Then E0 = Y � (Y g1) is the 4-dimensional Euclidean space on which G = G(4,0)((0, 1))
acts. Furthermore, t1, t2 are simple rotations through 90� about the axes Y, Y g1, respec-
tively. The 16 vertices of the realization H(4,0)((0, 1)) are therefore the vertices of the
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Figure 4: H(b,0), for b = 4 (left) and b = 5 (right).

double prism {4} ⇥ {4}, or equally well, the vertices of the regular convex 4-cube P4 [2,
Section 4.5].

The most symmetric planar projection of P4 appears on the left of Figure 5. The
realization H(4,0)((0, 1)) contains all 16 vertices and 32 edges of P4, but just 16 of the
24 square faces. Recall that each facet of P4 is a 3-cube which belongs in three ways to
a belt of 4 in which consecutive faces share a square. Indeed, all eight facets lie in two
complementary belts. If we discard the eight intermediary squares from the two belts, we
are left with the 2-faces of H(4,0)((0, 1)). These 2-faces are here realized by actual squares.
Since all proper faces of H(4,0) appear as distinct objects in H(4,0)((0, 1)), we say that this
realization is faithful. Of course, this was not so for ` = (0, 0), (2, 2) or (0, 2).

Actually, for any b > 3, H(b,0)((0, 1)) provides the (planar) square faces of the double
prism {b}⇥{b}. (See [2, page 37], where H(b,0)((0, 1)) appeared as the metrically regular
skew polyhedron {4, 4 | b}).

On the right of Figure 5 we display H(4,0)((1, 2)). Again we get all 16 vertices of P4.
But now the edges of H(4,0)((1, 2)) are realized as the 32 main diagonals of the 8 cubical
facets of P4. Each 2-face of H(4,0)((1, 2)) is a skew quadrilateral inscribed in one of the
above-mentioned belts of 4 facets. This realization is also faithful.

Finally, in H(4,0)((1, 1)), the edges appear as certain diagonals in the square faces of
P4. There is a 2 to 1 collapse of the vertices of H(4,0) onto a set of 8 alternate vertices of P4.
In fact, these 8 points are the vertices of a (convex) regular cross-polytope Q4 = {3, 3, 4}
inscribed in P4. In Figure 6 we have used a different orthogonal projection for this cross-
polytope [2, Figure 4.2A]. The dotted lines indicate the removal from Q4 of the edges of
two equatorial squares in orthogonal planes.

The realization H(4,0)((1, 1)) is not faithful. However, according to Theorem 6.1, we
also have here a realization of the different toroid H(2,2), which does turn out to be faithful.
The eight 2-faces of H(2,2) are certain Petrie polygons belonging to the (eight) tetrahedral
facets of Q4 (see [12, Section 7B]). Adjacent 2-faces of H(2,2) map to Petrie polygons in
tetrahedra which share just an edge of Q4.
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Figure 5: H(4,0)(`), for ` = (0, 1) (left) and ` = (1, 2) (right).

Figure 6: H(4,0)(`), with ` = (1, 1), also gives a pure realization of H(2,2).
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Now let us increase the rank. For n = 3, we can still visualize the topological toroid. A
portion of H(4,0,0) is shown in Figure 7. Using Corollary 5.6, it is again easy to enumerate
the distinct pure realizations and their dimensions. There are ten pure realizations, none
generic. (For that we need b > 6.) For instance, ` = (0, 0, 1) has 2 images on each of
the 12 edges of the cube under the action of B3; but these are identified in fours to give
dimension 6.

From Theorems 6.1 and 6.2 we can also locate here the five pure realizations for
H(2,2,0) and the six for H(2,2,2).

Notice that both ` = (0, 0, 2) and ` = (0, 2, 2) give 3-dimensional realizations. But
these must be different! In fact, from Proposition 5.10 we find 8 and 4 vertices, respectively.
H(4,0,0)((0, 0, 2)) describes a very believable collapse of each of H(4,0,0),H(2,2,0),H(2,2,2)

onto a 3-cube. On the other hand, H(4,0,0)((0, 2, 2)) describes a further collapse onto a
hemi-cube, here realized as the Petrie dual of a regular tetrahedron.

l1

l2 l3

segment

trivial

1

12
12

12

3

6

8

3

6

1

Figure 7: A fragment of the 4-toroid H(4,0,0), showing the dimensions of H(4,0,0)(`) for `
in standard form.

We conclude this section with a look at the two 6-dimensional realizations of H(4,0,0),
again using the tools of Section 5, with some help from GAP [5]. Both H(4,0,0)((0, 0, 1))
and H(4,0,0)((1, 2, 2)) can in some fashion be ‘inscribed’ in a regular convex 6-cube P6;
and in each case �(H(4,0,0)) is faithully represented (but in different ways!) as a subgroup
of index 15 in the group B6 (of signed permutations).

First of all, H(4,0,0)((0, 0, 1)) is a natural generalization of the realization H(4,0)((0, 1))
described earlier for n = 2. Now t1, t2, t3 act as simple 90� rotations in three mutually
orthogonal planes spanning E0 (each having the two remaining planes as axis). This re-
alization finds all 64 vertices of P6 and all its 192 edges, but omits 48 squares and 96
3-cubes from P6. The angle between any vertex and an adjacent vertex is arccos(2/3).
Since t21 t

2
2 t

2
3 = �1, the realization is centrally symmetric.

In the second realization H(4,0,0)((1, 2, 2)), we again achieve the 64 vertices. But now
each vertex is joined to the former neighbors of its antipode, giving the complementary
angle arccos(�2/3). The translations here are t̃j = �t�1

4�j .
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8 Conclusion
Looking back, our results may seem more interesting for the group-theoretic techniques
involved, rather than for the geometric objects which arise. It is the nature of regular toroids
that small dimensional examples are few in number, often with considerable collapse of the
structure in Hb.

Our title is also slightly dodgy, as we have not considered all the toroids of higher
rank. We have indeed omitted the 5-toroids Fb = {3, 4, 3, 3}b and their duals (for which
b = (bk, 04�k), k = 1 or 2 and b > 2; see [12, Section 6E]). The starting point here is the
Coxeter group fF4 with diagram

t t t t t3 3 4 3

Notice that B4 = h⇢3, ⇢2, ⇢1, ⇢0i appears in dual fashion as the facet group for fF4. We
then get fF4 by adjoining a new, naturally situated, reflection ⇢�1 not fixing the origin 0.
Then fF4 is infinite, acts discretely on E4 and is the symmetry group of the dual regular
tessellations of E4 by cross-polytopes {3, 3, 4} or by 24-cells {3, 4, 3}. After adjusting our
usual representation of B4 a little, we can take the vertex set of the tessellation {3, 4, 3, 3}
to be the D4 lattice

⇤ = Z4
[ (Z4 + (

1

2
,
1

2
,
1

2
,
1

2
)).

(See [12, Section 6E].) We find that fF4 has a subgroup of translations isomorphic to Z4

and normalized by F4 = h⇢2, ⇢1, ⇢0, ⇢�1i ' [3, 4, 3]. The toroids {3, 4, 3, 3}b can be
constructed much as in the cubical case.

Based on our previous work, including [13], we now expect various things. First, the
distinct pure realizations of Fb will be parametrized by vectors ` describing vertices of
the toroid but confined to some fundamental region for the action of the point group F4

on the toroid itself. The dimension of a realization will equal the size of the `-orbit, so
generic pure realizations will have dimension 1152. (In fact, we have calculated that this
first happens for b = (12, 0, 0, 0). The single generic pure realization is accompanied by
fourteen of dimension 576.) Accessible examples of small dimension will be sparse.

On the other hand, we also expect that the same group-theoretic methods as used in this
paper (twisting, Clifford’s Theorem, etc.) will be enough to do the classification. But that
we leave to someone else. It would be unfair to call our neglect of these toroids ‘laziness’,
although ‘exhaustion’ is accurate.
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