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Abstract

We show that for any k � 2 and g � 3 there are infinitely many finite 2k-valent half-
arc-transitive graphs of girth g with cyclic vertex-stabiliser of order k.
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1 Introduction

A group of automorphisms G  Aut(X) of a graph X is half-arc-transitive if it is transi-
tive on vertices and edges but not on arcs of X; the graph X itself is half-arc-transitive if
G = Aut(X). It is well known that a finite half-arc-transitive is 2k-valent for some k � 2.
There are numerous constructions of half-arc-transitive graphs available, see for instance
[1, 2, 11, 12, 14, 17, 18].

The smallest non-trivial valency of a half-transitive graph is 4. Somewhat surprisingly,
all constructions of 4-valent half-arc-transitive graphs known to the date of submission of
this note have bounded girth (length of the shortest cycle). This led Primož Šparl in his
invited talk at the SIGMAP 2022 workshop to state the following question.

Question: Are there 4-valent half-arc-transitive graphs of arbitrarily large girth?

We answer this question in the affirmative as a consequence of the following more
general result.

*We thank the referees for useful comments.
†Author was supported by the research grant GACR 20-15576S and by VEGA grant 2/0078/20.
‡Author acknowledges support from the APVV Research Grants 19-0308 and 22-0005, as well as from the

VEGA Research Grants 1/0567/22 and 1/0069/23.
E-mail addresses: nedela@kma.zcu.cz (Roman Nedela ), siran@math.sk (Jozef Širáň )
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Theorem 1.1. For any integers k � 2 and g � 3 there are infinitely many finite half-arc-
transitive graphs of valency 2k, girth g and with the cyclic vertex-stabilisers of order k.

The proof, presented in Section 3, relies on a combination of some known facts from
the theory of regular hypermaps and their relationship to half-transitivity of their medial
graphs, the existence of such hypermaps of a given type and arbitrarily large edge-width,
and the existence of their chiral covers; all these notions and relevant results will be intro-
duced and summed up in Section 2.

2 Hypermaps: orientable regularity, chirality, and large edge-width

We begin with a very brief outline of some aspects of the theory of hypermaps and their
symmetries needed in this note. For more information on combinatorial models of hyper-
maps see [4, 6, 16]. A recent account can be found in [8, Section 7.6].

A 3-edge-colouring of a cubic graph X is a mapping from the edge set of X to {0, 1, 2}
such that, for each vertex of X , the three edges incident to the vertex receive pairwise
different colours. A topological hypermap H is a 2-cell-embedding of a connected cubic
3-edge-colored graph on an orientable surface, such that the boundary of each face is a
bi-colored cycle of even length greater than 2. The hypermap has type {k,m, n} if 2n, 2m
and 2k are the least common multiples of the lengths of all facial alternating 0� 1 cycles,
0� 2 cycles and 1� 2 cycles, respectively.

The three colours determine three perfect matchings of the underlying graph X of our
hypermap H, and each of the three perfect matchings defines an involution rj , j 2 {0, 1, 2},
on the set of vertices of X (the vertices are flags of the hypermap), with rj interchanging
the vertices incident to edges coloured j. The group Mon(H) = hr0, r1, r2i generated by
the three involutions is the monodromy group of the hypermap. The assumed orientability
of the supporting surface of H implies that the ‘even-length-word’ subgroup Mon+(H) =
hr0r1, r1r2i has index two in Mon(H).

Based on the above, by a combinatorial hypermap we will understand the quadruple
H = (F ; r0, r1, r2), where F is its set of flags and ri, i = 0, 1, 2, are fixed-point-free
involutory permutations of F such that the group H = hr0, r1, r2i is transitive on F and its
even-length-word subgroup H

+ = hr1r2, r2r0i is of index 2 in H and acts on F with two
orbits, say, F+ and F

�, with F
+
[ F

� = F . We have deliberately used the same symbol
for a hypermap introduced at the beginning of this section and its ‘combinatorial mate’, the
latter being an algebraic equivalent of the former.

Addressing the issue of symmetries of a combinatorial hypermap, an automorphism of
H is a permutation  2 Sym(F ) of its flag-set which centralizes the group Mon(H) =
hr0, r1, r2i. Recalling our assumption of orientability, the automorphism  is orientation-
preserving if it preserves both sets F

+ and F
�, and orientation-reversing if it swaps the

two sets. The hypermap H is orientably-regular if the group of all its orientation preserving
automorphisms Aut+(H) is a regular permutation group on F

+ (and hence also on F
�).

By well known general facts from the theory of permutation groups, in the case of an
orientably-regular hypermap the group Aut+(H) is isomorphic to the even-length-word
subgroup Mon+(H) = hr1r2, r2r0i

⇠= H
+. In addition, if such a hypermap H admits an

orientation-reversing automorphism, then the group Aut(H) of all automorphisms of H is
isomorphic to its monodromy group Mon(H) = hr0, r1, r2i, and the hypermap is said to
be reflexible.

In an orientably-regular and reflexible hypermap H = (F ; r0, r1, r2) of type {k,m, n},
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the orders of the products r1r2, r2r0 and r0r1 of automorphism are, respectively, equal to
n, m and k. The group Aut(H) ⇠= Mon(H) then has a presentation of the form

Aut(H) = hr0, r1, r2 | r
2
0, r

2
1, r

2
2, (r1r2)

k
, (r2r0)

m
, (r0r1)

n
, . . .i. (2.1)

If only orientable regularity of H = (F ; r0, r1, r2) is assumed, then, using the notation
R = r1r2, L = r2r0 and T = r0r1 = (RL)�1, the group Aut+(H) ⇠= Mon+(H) admit a
presentation

Aut+(H) = hR,L, T | R
k
, L

m
, T

n
, RLT, . . .i . (2.2)

Let �(k,m, n) and �+(k,m, n) denote the extended and the ordinary (k,m, n)-triangle
groups with presentations

�(k,m, n) = ha, b, c | a
2
, b

2
, c

2
, (bc)k, (ca)m, (ab)ni, and (2.3)

�+(k,m, n) = hx, y, z| x
k
, y

m
, z

n
, xyzi. (2.4)

It is obvious that the groups Aut(H) and Aut+(H) are smooth quotients of �(k,m, n) and
�+(k,m, n) induced by the epimorphisms taking the ordered triples (a, b, c) and (x, y, z)
to the triples (r0, r1, r2) and (R,L, T ), respectively. Note that the group �+(k, l,m) forms
the ‘even-length-word’ subgroup of �(k,m, n) of index 2 by taking x = bc, y = ca and
z = ab.

To explain the topological counterpart of the above quotients and epimorphisms, con-
sider the orientably-regular and reflexible hypermap U = (�(k,m, n); a, b, c); notice that
the flag-set of U is identified with the group �(k,m, n) = ha, b, ci itself. The hypermap U

is known as the universal hypermap of type {k,m, n}. Its supporting surface is a sphere, an
Euclidean plane, and a hyperbolic plane, depending on whether 1/k+1/m+1/n is greater
than, equal to, and smaller than 1. Its universality is given by the fact that it smoothly cov-
ers any orientably-regular and regular hypermap of type {k,m, n}; in particular, the above
smooth group epimorphism �(k,m, n) ! Aut(H) extends to a smooth covering of the
orientably-regular hypermap H by the universal hypermap U .

By the same token, the hypermap U
+ that one obtains from U by taking into account

only its orientation-preserving automorphism group �+(k,m, n), serves as a smooth cover
of every orientably-regular hypermap of type {k,m, n}. This is equivalent to the fact that
the projection ⇡ : �+(k,m, n) ! Aut+(H) such that ⇡(x, y, z) = (R,L, T ) extends to a
smooth cover of the orientably-regular hypermap H by U

+. However, the epimorphism ⇡

need not project reflexibility of U+ down to H in general; the orientably-regular hypermap
H = ⇡(U+) is reflexible if and only if the kernel K = ker(⇡), which is a normal subgroup
of �+(k,m, n), is also normal in the extended triangle group �(k,m, n). If this is not
the case, then the hypermap H is commonly called chiral (irreflexible); equivalently, H is
chiral if Aut(H) = Aut+(H).

An important ingredient for the proof of our main result in Section 3 is the following
non-trivial theorem proved by G. Jones [9].

Theorem 2.1 (Jones 2015). For every finite orientably-regular hypermap H of type {k,m, n}

with 1/k + 1/m + 1/n  1 there exist infinitely many finite orientably-regular but chiral
maps of type {k,m, n} which are smooth covers H.

For many more details on (orientable) hypermaps we refer the reader to [6, 7]. In the
remaining part we address hypermaps with ‘large edge-width’ and we confine ourselves to



Acc
ep

te
d m

an
usc

rip
t

4 Art Discrete Appl. Math.

the case of orientable regularity. Let H = (F ; r0, r1, r2) be an orientably-regular hypermap
of type {k,m, n} with 1/k + 1/m + 1/n  1, which is equivalent to assuming that the
(orientable) supporting surface of the underlying 3-edge-coloured graph X of M is not a
sphere. The edge-width ew(H) of H is the length of the shortest non-contractible cycle
in the embedding of X . We say that H is a hypermap of large edge-width if ew(H) >

max{2k, 2m, 2n}; hence, for a hypermap with large edge-width, ew(H) exceeds the length
of any closed walk bounding a face of H.

Edge-width has been thoroughly studied in [13] in a much more general setting for ar-
bitrary cellular embeddings of graphs. The main motivation was the fact that embeddings
of 3-connected graphs with edge-width exceeding the length of any face-bounding cycle
share a number of properties with embeddings of 3-connected graphs in a plane; in par-
ticular, one can generalize Whitney’s theorem relating map and graph automorphisms in
the planar case. Here we need a consequence for regular hypermaps that follows from [13,
Sections 5.1 and 5.2].

Theorem 2.2. Let H be an orientably-regular hypermap with an underlying 3-edge-coloured
graph X embedded in an orientable surface that is not a sphere. If H has large edge-width
and if X is 3-connected, then Aut(X) = Aut(H); moreover, a shortest facial cycle of the
embedding of X is a girth cycle of X .

The fact that non-spherical orientably-regular maps of arbitrary types exist may be
surprising at a first glance; it is a consequence of Maltsev’s theorem on residual finiteness
applied to triangle groups.

Theorem 2.3. For every {k,m, n} such that 1/k + 1/m + 1/n  1 there exist finite
hypermaps of type {k,m, n} of edge-width larger than any j > max{2k, 2m, 2n}, and
consequently with a 3-connected underlying graph.

Proof. The proof is an adaptation of that of Proposition 2 and Theorem 1 of [15] and we
give here only a sketch. Let U+ be the universal orientably-regular map of type {k,m, n},
1/k + 1/m+ 1/n  1, its orientation-preserving automorphism group being the ordinary
{k,m, n}-group �+(k,m, n) = hx, y, z | x

k
, y

m
, z

n
, xyzi. An element of �+(k,m, n),

expressed as a word of length ` in the generators {x, y, z}, is irreducible if it is not possible
to reduce it by means of the relators {xk

, y
m
, z

n
, xyz} to a word of a smaller length.

Let j > max{2k, 2m, 2n} and let Wj be the finite set of irreducible (non-identity)
words over the alphabet {x, y, z} of length less than or equal to j. By residual finite-
ness, the group �+(k,m, n) contains a normal subgroup N of finite index avoiding the
set Wj . It follows that, in the finite quotient �+(k,m, n)/N , every irreducible word of
length at most j represents a non-identity element. But such irreducible elements corre-
spond to non-contractible closed curves of length at most j in the supporting surface of
the finite orientably-regular hypermap H with orientation-preserving automorphism group
�+(k,m, n)/N . We conclude that the hypermap H with Aut+(H) = �+(k,m, n)/N has
edge-width larger than j; this also implies that the underlying graph of H is 3-connected,
see [13, Proposition 5.5.12].

3 The main result

In accordance with [3], for any given orientable hypermap H = (F ; r0, r1, r2) and any i

from the index set {0, 1, 2} identified with Z3, we may introduce the (orientable) medial
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map Medi(H) of H by contracting every face-bounding cycle alternately edge-coloured
i� 1 and i+ 1 onto a new vertex, leaving the edges coloured i intact.

To describe an algebraic counterpart of the presented topological construction, recall
that to describe an orientable map (a cellular embedding of a connected graph on an ori-
entable surface) one only needs to specify at each vertex a cyclic permutation of arcs ema-
nating from the vertex and consistent with the chosen surface orientation. The product ⇢ of
all such ‘local’ cyclic orientations, taken over all vertices, is the rotation of the map, and to-
gether with the arc-reversing involution (usually denoted by �) they completely determine
the map. In such an algebraic way the medial map Medi(H) of an orientable hypermap
H = (F ; r0, r1, r2) is obtained by taking its arc set equal to F = F

+
[ F

� and its arc-
reversing involution � equal to ri; its rotation ⇢ is then defined by ⇢(x) = ri+1x if x 2 F

+

and ⇢(x) = ri�1 if x 2 F
�.

The following statement proved by Breda and Nedela in [3] shows that there is a cor-
respondence between orientably regular hypermaps and half-arc-transitive groups of auto-
morphisms of graphs.

Theorem 3.1. Let H = (F ; r0, r1, r2) be an orientably-regular hypermap of type
{k0, k1, k2} for ki = ord(ri�1ri+1) and i 2 Z3, with Aut+(H) = G. Then, for any
i 2 Z3, its medial map M = Medi(H) is an edge-transitive map on the same surface,
with the group G  Aut+(M) acting half-arc-transitively on the 2ki-valent underlying
graph of the medial map, with cyclic vertex-stabilisers of order ki.

Conversely, if X is a graph and G  Aut(X) is a group acting half-arc-transitively on
edges of X with cyclic vertex stabilisers, then there exists an orientably regular hypermap
H with Aut+(H) ⇠= G such that X is the underlying graph of a medial map Medi(H) for
some i 2 Z3.

Now we are ready to prove our main result.

Proof of Theorem 1.1. Let n > 1 be an integer. Observe that assuming n > g, we have
always 1/k + 1/g + 1/n  1, except when (k, g, n) = (2, 3, 4) and (k, g, n) = (2, 3, 5).
Hence, in the case k = 2 and g = 3 we assume n � 6. By Theorem 2.3, for any n > g

(and for any n � 6 if k = 2 and g = 3), there exist orientably regular hypermaps K of type
{k, g, n} and with arbitrarily large edge-width. Throughout this proof we do not assume
k  g, i.e. both possibilities k  g and k > g will be allowed. According to Theorem 2.1
there are infinitely many finite orientably-regular but chiral hypermaps H of type {k, g, n}

covering K. Set M = Med0(H). Since H is a smooth cover of K, the hypermap H is of
large edge-width and 3-connected, and hence so is its medial map M. Theorem 2.2 then
implies that Aut(M) = Aut(X), where X is the underlying graph of M.

Following Theorem 3.1, the group G = Aut+(H) can be considered to be a subgroup
of H = Aut(M) of index at most 2, with G acting half-arc-transitively on X with cyclic
stabiliser of order k. We aim to prove that G = H; this together with H ⇠= Aut(M) =
Aut(X) will establish our result. As G is transitive on vertices, it will be sufficient to prove
that, for some vertex v of M, the vertex stabilizers Gv and Hv coincide.

First, recall that the group Gv
⇠= Zk contains only orientation-preserving automor-

phisms. Further, in the medial map M there are 2k faces incident to v; among them k are
of face size g and the other k are of face size n, and they appear alternately around v on the
(orientable) supporting surface of M. Since g < n and Gv

⇠= Zk is orientation-preserving,
the stabilizer Hv cannot contain any more orientation-preserving elements except those
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already in G. But since Hv stabilizes a vertex as part of a map automorphism group,
the assumption Gv 6= Hv would imply existence of a reflection in Hv . Hence, both the
orientable map M and the orientable hypermap H would be reflexible. This, however,
contradicts chirality of H.

It follows that the groups G = Aut+(H) and H = Aut(M) can be identified, as
claimed. Finally, we prove that the girth of the underlying graph XMed of the medial map
M = Med0(H) is equal to g. But the way a medial map was introduced implies that XMed

contains facial cycles of length only g and n, where g < n, and by Theorem 2.2 the graph
XMed has girth g.

We note that Theorem 1.1 has predecessors dealing with special subcases in [3, 5, 11,
10]. For k = 1 Theorem 1.1 does not hold, since there are no half-arc-transitive graphs of
valency 2.
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