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Abstract

A vertex-transitive graph is a Cayley graph if and only if it admits a group of automor-
phisms acting regularly on its set of vertices. We generalize Cayley graphs to k-uniform
hypergraphs, i.e. pairs (V, E) where E consists of k-subsets of V , k � 2. We call a k-
uniform hypergraph Cayley if and only if the hypergraph admits a group of automorphisms
acting regularly on the vertex set of the hypergraph. We compare our definition with two
other generalizations of Cayley graphs to hypergraphs found in the literature, and argue that
ours is the most general; the other generalizations are special cases of the one proposed in
this article. We present some basic properties of Cayley hypergraphs, discuss the connec-
tion of this concept to some recent results concerning hypergraphs, as well as connections
to our ongoing project of constructing k-uniform hypergraphs whose full automorphism
group is isomorphic to a prescribed finite group G and acts regularly on the vertices of the
hypergraph.
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1 Introduction
Hypergraphs are natural generalizations of graphs in which instead of edges, which are
subsets of the vertex set of size 2, one admits hyperedges, which are subsets of the vertex
set of arbitrary sizes. If all the hyperedges of a hypergraph are of the same size k, one
talks about k-uniform hypergraphs. Since Cayley graphs constitute an important subclass
of the class of vertex-transitive graphs, it is reasonable to assume that generalizing Cayley

*Corresponding author. Supported by VEGA 1/0437/23 and APVV-19-0308.
†Supported by VEGA 1/0437/23, and APVV-19-0308.
E-mail addresses: tatiana.jajcayova@fmph.uniba.sk (Tatiana B. Jajcayová), robert.jajcay@fmph.uniba.sk

(Robert Jajcay)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



Acc
ep

te
d m

an
usc

rip
t

2 Art Discrete Appl. Math.

graphs to k-uniform hypergraphs might lead to interesting insights into the theory of vertex-
transitive k-uniform hypergraphs (and possibly even to further insights into the theory of
vertex-transitive graphs).

A large part of the importance of Cayley graphs within the class of vertex-transitive
graphs stems from the fundamental fact that Cayley graphs are characterized by the ex-
istence of a regular group of automorphisms. Regular group actions are the most natural
transitive group actions, and appeared already in the classical proof of Cayley’s theorem:
Given a finite group G, the left regular permutation representation GL = {�g | g 2 G}

of G is defined via left multiplication by the elements of G on itself, �g(h) = gh, for all
g, h 2 G. The key property of the left regular permutation representation of a group G is
the existence, for each pair of elements h, h0

2 G, of a unique �g mapping h to h
0. In view

of this, a transitive action of a group G on a set V is regular if and only if the stabilizer of
any vertex is trivial and/or |G| = |V |. Furthermore, if G acts regularly on V , there exists a
one-to-one correspondence � : V �! G that allows one to identify the elements of V with
the elements of G and the action of G on V with the left regular action of G on itself. Since
our paper focuses on generalizations of Cayley graphs, and therefore on regular actions,
we will always assume that regular actions are realized as the action of G on itself via left
multiplication.

The definition of a Cayley graph used most widely today does not start off from a
regular action. Instead, it starts from a (finite) group G and a set X of elements of G,
X ⇢ G, closed under taking inverses, X = X

�1, and not containing 1G. For a given
group G and a subset S satisfying the above properties, the Cayley graph � = C(G,X)
is the graph (G, E) where E = { {g, g · x} | g 2 G, x 2 X}. Alternately, the set of
edges of � is the set of (unordered) pairs {a, b} of elements of G satisfying the property
a
�1

· b 2 X . It is clear that for any g 2 G the left-multiplication �g 2 GL is a graph
automorphism of C(G,X) mapping {a, ax} ! {ga, gax}, for all a 2 G and x 2 X ,
and hence GL  Aut(C(G,X)). This fundamental connection between Cayley graphs as
defined above and regular group actions was first observed by Sabidussi in 1958 [11]:

Theorem 1.1 ([11]). A graph � = (V, E) is a Cayley graph if and only if it admits a group

of automorphisms G acting regularly on V ; in which case � = C(G,X), for some X ⇢ G

closed under taking inverses and not containing 1G.

One of the first to recognize the universality of structures admitting a group of auto-
morphisms acting regularly on the set of vertices was Babai in [1], where he defined the
Cayley object for any concrete category (a category admitting a faithful forgetful functor
into the category of sets) precisely via the existence of a group of automorphisms act-
ing regularly on the underlying set of the structure. This approach was later reinforced
by Pálfy in [10] who considered Cayley objects in the category of relational structures.
Nevertheless, attempts at generalizing Cayley graphs to hypergraphs available in the liter-
ature usually choose to generalize the concept of a Cayley graph using the language of the
connecting set X ⇢ G. While objects defined this way tend to maintain the property of
admitting a regular group of automorphisms, they usually do not cover all hypergraphs with
this property. In our paper, we choose to follow Babai’s approach and to make the existence
of a regular group of automorphisms a characterizing property of Cayley hypergraphs:

Definition 1.2. A Cayley hypergraph (V,H) is a k-uniform hypergraph for some 1  k 

|V |, that admits a regular group of automorphisms.
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Thus, our generalization of Cayley graphs generalizes the most important property of
Cayley graphs equivalent (in the case of graphs) to a graph being Cayley. In what follows,
we present some basic properties of automorphism groups of Cayley hypergraphs, and
compare our definition with two other generalizations of Cayley graphs to hypergraphs.
We also mention the connections of these concepts to some recent results concerning hy-
pergraphs [5, 9], as well as connections to our project of constructing k-uniform hyper-
graphs whose full automorphism group is isomorphic to a prescribed finite group G and
acts regularly on the vertices of the hypergraph [8].

2 Preliminaries
Throughout the paper, all groups considered are finite and so are the sets upon which they
act.

A hypergraph � = (V,H) consists of a set V and a collection H of subsets of V ,
H ✓ P(V ). We will call the elements of H hyperedges or more specifically, k-hyperedges,
if they are of size k. A hypergraph is said to be k-uniform (abbreviated to a k-hypergraph) if
all the hyperedges in H are of the same size k, i.e., H ✓ Pk(V ), where Pk(V ) denotes the
set of k-element subsets of V . A hypergraph is said to be r-regular if all vertices v 2 V are
contained in exactly r hyperedges. A hypergraph � = (V,H) can be alternately represented
via its bipartite incidence graph (sometimes called Levi graph) (V [ H, E) with edges
corresponding to incidences between vertices in V and hyperedges in H. A k-uniform
r-regular hypergraph (V,H) corresponds in this sense to a bipartite graph (V [ H, E) in
which all vertices belonging to V are of degree r and all vertices in H are of degree k. The
dual hypergraph �̃ = (̂V,H) to a k-uniform r-regular (V,H) is the r-uniform k-regular
hypergraph whose vertices are the elements of H, hyperedges are the elements from V , and
the incidence relation is the reverse of the incidence relation of (V,H). An automorphism

of a hypergraph � = (V,H) is a permutation of the elements of V that preserves the
hyperedges, i.e., a permutation ' 2 SymV with the property '(H) 2 H if and only if

H 2 H. The group of all automorphisms of � will be denoted by Aut(�).
The following lemma was originally stated in a more general way in [7].

Lemma 2.1 ([7]). Let � = (V,H) be a k-uniform hypergraph, 1  k  |V |. Then

(i) Aut(V,H) = Aut(V,Pk(V )�H);

(ii) Aut(V,H) = Aut(V, {Hc
|H 2 H}), where (V, {Hc

|H 2 H}) is the (|V | � k)-
uniform hypergraph whose hyperedges are the complements of the hyperedges in H

with respect to the set V .

A finite group G admits a regular representation as the full automorphism group of

a k-uniform hypergraph if there exists a set of k-hyperedges H ✓ Pk(G) for which
Aut(G,H) = GL. In particular, G admits a Graphical Regular Representation (abbre-
viated to GRR) if there exists a system of 2-hyperedges (edges) E ✓ P2(G) such that
Aut(G, E) = GL, and G admits a Digraphical Regular Representation, DRR, if there ex-
ists a system of directed edges E ✓ G ⇥ G such that Aut(G,E) = GL. The problem we
study in our on-going project [8] calls for finding all positive integers k, 1  k  |G|, for
any given finite group G, for which there exists a regular representation of G as the full
automorphism group of some k-hypergraph on G.
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We conclude the section by stating the solutions to the much more specific GRR- and
DRR-problems as well as the classification of finite groups that admit regular representation
via (not necessarily k-uniform) hypergraphs which are essential with regard to the above
mentioned project.

Theorem 2.2 ([6]). Let G be a finite group that does not admit a GRR. Then G is an abelian

group of exponent greater than 2 or G is a generalized dicyclic group or G is isomorphic

to one of the 13 groups : Z2
2, Z3

2, Z4
2, D3, D4, D5, A4, Q8 ⇥ Z3, Q8 ⇥ Z4,⌦

a, b, c | a
2 = b

2 = c
2 = 1, abc = bca = cab

↵
,
⌦
a, b | a

8 = b
2 = 1, b�1

ab = a
5
↵
,⌦

a, b, c | a
3 = b

3 = c
2 = 1, ab = ba, (ac)2 = (bc)2 = 1

↵
,⌦

a, b, c | a
3 = b

3 = c
3 = 1, ac = ca, bc = cb, b

�1
ab = ac

↵
.

As a consequence of Sabidussi’s characterization, if a finite group G admits a GRR
� = (V, E), then � must be a Cayley graph for G.

A digraph (V,E) is a pair that consists of vertices V and a set E ✓ V ⇥ V of ordered
pairs of distinct vertices. An automorphism of a digraph (V,E) is a permutation ' of V
that preserves the set E. A Cayley digraph CD(G,X), 1G 62 X ✓ G (where we do not
require X to be closed under taking inverses), has G for its vertex set and the set of directed
edges E = {(g, gx) | g 2 G, x 2 X}. A digraph (V,E) admits a regular automorphism
group G if and only if (V,E) ⇠= CD(G,X) for some X .

Theorem 2.3 ([2]). The finite group G admits a DRR if and only if G is neither the quater-

nion group Q8 nor any of Z2
2, Z3

2, Z4
2, Z2

3.

Before stating the next theorem, we have to stress that the hypergraphs (G,H) consid-
ered are not necessarily assumed to be k-uniform.

Theorem 2.4 ([7]). A finite group G can be represented as a regular full automorphism

group of some hypergraph (G,H) if and only if G is not one of the groups Z3, Z4, Z5 or

Z2
2.

3 Cayley hypergraphs
Recall that we have defined a Cayley hypergraph as a k-uniform hypergraph admitting a
regular group of automorphisms, and not via a specific definition of its hyperedges. The
following theorem provides us with this ‘missing’ definition and can also be viewed as a
direct analogue of Sabidussi’s characterization of Cayley graphs.

Theorem 3.1 ([7]). Let � = (V,H) be a vertex-transitive hypergraph. Then � admits a

regular group G of automorphisms (and is therefore Cayley) if and only if there exists a

collection of sets Bi 2 P(G), 1  i  s, such that � is isomorphic to the hypergraph

(G,

s[

i=1

B
GL
i ).

Specifically, if � = (V,H) is a vertex-transitive k-uniform hypergraph, then � admits
a regular group G of automorphisms (and is therefore k-uniform Cayley) if and only if
there exists a collection of k-sets Bi 2 Pk(G), 1  i  s, such that � is isomorphic to
(G,

Ss
i=1 B

GL
i ).
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To pursue the analogy with Cayley graphs even further, let us point out that a Cayley
graph C(G,X) can also be viewed as the graph � = (G, E) defined by selecting elements
X ✓ G, 1G 62 X,X = X

�1, and completing the edge set in such a way that guarantees
that all permutations �g 2 GL are automorphisms of �, i.e.,

E = {�g({1G, x}) | g 2 G, x 2 X}.

This observation can now analogously be applied to hypergraphs as follows.

Theorem 3.2. If � = (V,H) is a vertex-transitive k-uniform hypergraph, then � admits a

regular group G of automorphisms (and is therefore a k-uniform Cayley graph) if and only

if there exists a set X ✓ Pk�1(G� {1G}) such that � is isomorphic to the hypergraph

(G,

[

B2X

(B [ {1G})
GL).

The proof of this last statement is relatively simple and is left to the reader.

4 t�Cayley hypergraphs
As we have stated in the introduction, previous attempts at generalizing Cayley graphs to
hypergraphs did not cover all hypergraphs admitting a regular group of automorphisms.
The first of these generalizations can be found in [4], where Buratti considered (among
others) the following type of hypergraphs admitting a group of automorphisms acting reg-
ularly on their vertex sets.

Definition 4.1. Let G be a finite group, X be a subset of G \ {1G}, and t be a positive
integer satisfying 2  t  max{|x| | x 2 X}. The t�Cayley hypergraph t�Cay(G,X)
is the hypergraph (G,H) with H consisting of hyperedges of the form {g, gx, . . . , gx

t�1
},

for all g 2 G and x 2 X .

Clearly, t�Cay(G,X) is a t-uniform hypergraph if and only if 2  t  min{|x| | x 2

X}. It is also fairly easy to see that GL  Aut(t�Cay(G,X)). Consequently, using
any of the equivalent definitions of Cayley hypergraphs derived in the previous section, the
class of t-uniform t�Cayley hypergraphs is a subclass of the class of t-uniform Cayley
hypergraphs defined in this text.

It is a proper subclass, as, for example, the Fano plane PG(2, 2) is a 3-uniform hyper-
graph admitting the regular action of Z7 but is not a 3�Cayley hypergraph [4]. However,
the two classes coincide for t = 2 as the class of 2�Cayley hypergraphs is equal to the
class of the classical Cayley graphs which is also equal to the class of 2-uniform Cayley
hypergraphs. In this sense, Buratti is justified in his claim that t�Cayley hypergraphs con-
stitute a generalization of Cayley graphs. Nevertheless, the generalization introduced in
our paper is in our opinion a better match to Sabidussi’s concept of Cayley graphs.

On the other hand, being a narrower class than that of Cayley hypergraphs, the class
of t�Cayley hypergraphs is sometimes easier to use and search. For example, t�Cayley
hypergraphs have been recently successfully used in the context of cages in [5] where
they have been used to construct small 3-regular graphs of large girth as dual graphs to 3-
uniform 3�Cayley hypergraphs. The fact that the authors of [5] only considered 3�Cayley
hypergraphs, and avoided searching through all 3-uniform Cayley hypergraphs, sufficiently
sped up their calculations and searches to allow them to find new record 3-regular graphs.
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5 Ck-hypergraphs
We conclude our text by considering a second generalization of Cayley graphs to hyper-
graphs different from that of Cayley hypergraphs considered in our paper so far. To ac-
commodate classification of finite groups G that allow for the existence of a k-hypergraph
(G,H), k � 3, satisfying Aut(G,H) = GL, the paper [8] introduced the following gener-
alization of Cayley graphs.

Definition 5.1. Let G be a (finite) group, and let X1, X2, . . . , Xk�1 be subsets of G that
do not contain the identity 1G. The Ck-hypergraph Ck(G;X1, X2, . . . , Xk�1) is the k-
uniform hypergraph (G,H) with H being the set of all k-subsets of the form

{g, gx1, gx1x2, . . . , gx1x2 . . . xk�1},

g 2 G, and xi 2 Xi, for 1  i  k � 1.

Note that we strictly require that the hyperedges have exactly k vertices in order to be
included, i.e., all the vertices g, gx1, gx1x2, . . . , gx1x2 . . . xk�1 must be distinct. This
is equivalent to saying xixi+1 . . . xj 6= 1, for all 1  i  j  k � 1. (This require-
ment may sometimes force H = ;.) The 2-hypergraph C2(G;X) is the Cayley graph
C(G,X), and in the case when X = X1 = X2 = . . . = Xk�1, the resulting hyperedges
of Ck(G;X,X, . . . ,X) are the sets of vertices corresponding to the k-arcs of the Cayley
graph C(G,X) that do not contain repeated vertices ([3, Chapter 17]).

Obviously, the automorphism group of a Ck-hypergraph Ck(G;X1, X2, . . . , Xk�1)
should be related to the groups Aut(C(G,Xi)). For instance, since graph automorphisms
preserve k-arcs that do not contain repeated vertices,

Aut(C(G,X))  Aut(Ck(G;X,X, . . . ,X)).

The next lemma presents sufficient conditions for this inclusion to become an identity. The
girth of a graph � = (V, E) is the number of edges in a smallest cycle in �. Note that even
though some of the results presented here already appeared in [8], they were presented
without proofs.

Lemma 5.2. Let k � 2 be an integer, and C(G,X) be a Cayley graph of girth g > 2k � 2
and valency |X| > k � 1. Then Aut(C(G,X)) = Aut(Ck(G;X,X, . . . ,X)).

Proof. We say that a word (or a product) x1x2 . . . x` 2 X
⇤ (i.e., xi 2 X , for all 1 

i  `) is reduced if it does not contain a generator immediately followed by its inverse:
xi+1 6= x

�1
i , for 1  i  ` � 1. The girth length assumption g > 2k � 2 implies that

the C(G,X) neighborhood NC(G,X)(g) = {h 2 G | d(g, h)  k � 1} of any vertex
g is isomorphic to a regular tree of valency |X| and depth k � 1. Thus, reduced words
x1x2 . . . x`, l  k � 1, represent vertices of distance ` from 1G, and different reduced
words x1x2 . . . x`, 1  `  k�1, represent different vertices of C(G,X). The unique path
of length ` between 1G and x1x2 . . . x` is the path 1G, x1, x1x2, . . . , x1x2 . . . x`.

Suppose (by means of contradiction) that there exists ' 2 Aut(Ck(G;X,X, . . . ,X))
that does not belong to Aut(C(G,X)). Then there exists an a 2 G and x̂ 2 X , such
that '(a)�1

'(ax̂) 62 X . Let  be the composition of ' with the left multiplications
�a,�'(a)�1 ,  = �'(a)�1 � ' � �a. Then  2 Aut(Ck(G;X,X, . . . ,X)),  (1G) =
'(a)�1

· '(a · 1G) = 1G, and  (x̂) = '(a)�1
· '(a · x̂) 62 X . Each k-hyperedge of
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Ck(G;X,X, . . . ,X) that contains 1G assumes one of the following forms (based on our
arguments from the previous paragraph, all of these are indeed k-subsets):

{1G, y1, y1y2, . . . , y1y2 . . . yk�1}, {y
�1
1 , 1G, y2, . . . , y2y3 . . . yk�1},

{y
�1
2 y

�1
1 , y

�1
2 , 1G, y3, . . . , y3. . . yk�1}, . . . , {y

�1
k�1. . . y

�1
2 y

�1
1 , y

�1
k�1. . . y

�1
2 , . . . , y

�1
k�1, 1G},

yi 2 X, 1  i  k � 1. The automorphism  fixes 1G, and therefore must map the
hyperedges

{1G, x̂, x̂y2, . . . , x̂y2y3 . . . yk�1}, (5.1)

yi 2 X , 2  i  k � 1, to hyperedges containing 1G. This means, in particular, that  (x̂),
which is assumed not to be an element of X , must belong to one of these hyperedges as
well, and therefore must be of the form  (x̂) = x1x2 . . . x`, for some xi 2 X , 2  ` 

k � 1, which is an element of distance at least 2 from 1G in C(G,X).
The rest of the argument relies on counting. There are (|X| � 1)k�2 hyperedges of

the form (5.1): after choosing y2 from X � {x̂
�1

}, we have |X|� 1 choices to choose y3

from X � {y
�1
2 }, and so on. On the other hand, each hyperedge containing both 1G and

 (x̂) = x1x2 . . . x` must contain the vertices 1G, x1, x1x2, . . . , x1x2 . . . x` of the unique
path connecting 1G and x1x2 . . . xl. Therefore, inspecting the list of hyperedges containing
1G, x1, x1x2, . . . , x1x2 . . . x`, it is easy to see that there are at most (k� `)(|X|�1)k�1�`

hyperedges that contain both 1G and  (x̂) (where the number (k � `) is added to possibly
account for the different positions of 1G in the hyperedges; which might, but does not
have to, result in different blocks). Consequently, the (|X| � 1)k�2 distinct hyperedges
of the form (5.1) must map bijectively onto at most (k � `)(|X| � 1)k�1�` hyperedges
containing 1G and  (x̂). Since |X| > k � 1, (|X|� 1)k�2

> (k � `)(|X|� 1)k�1�`, for
all 2  `  k � 1, which makes an one-to-one correspondence impossible, and leads to a
contradiction.

Corollary 5.3. Let G be a finite group that admits a GRR of girth g > 2m � 2 and

valency r. Then G can be regularly represented as the full automorphism group of some

k-hypergraph for all 2  k  min {m, r � 1}.

A symmetric subset X , X = X
�1, of a group G is symmetrically irreducible if

|
⌦
X � {x, x

�1
}
↵
| < | hXi | for all x 2 X . The girth of the Cayley graph C(G,X) is

larger than 4 if and only if C(G,X) does not contain triangles and cycles of length 4. This
must be the case, for example, when X = {x1, x2, . . . , xr} is symmetrically irreducible
and satisfying the additional conditions x2

i 6= x
2
j , 1  i 6= j  r, and xixj 6= xjxi when-

ever xj 6= x
�1
i . Based on these observations, the above lemma guarantees the existence of

a 3-uniform regular representation C3(G,X,X) for all finite groups G that admit a GRR
C(G,X) with X of order at least 4, symmetrically irreducible, and satisfying the above
conditions. The high girth requirements imposed on the above GRR’s are certainly quite
restrictive. The following generalization of Lemma 5.2 presents a way of avoiding the need
for high girth.

Lemma 5.4. Let G be a finite group, X1, X2, . . . Xk�1 be symmetric subsets of G not

containing 1G, |Xi| � k, for all 1  i  k � 1, and suppose that all reduced prod-

ucts x1x2 . . . x`, xi 2 Xi, 1  `  k � 1, represent different elements of G. Then,

Aut(Ck(G;X1, X2, . . . , Xk�1))  Aut(C(G,X1)).
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Proof. The counting argument is essentially identical to the one in the proof of Lemma 5.2.

Corollary 5.5. Let G be a finite group that admits a GRR C(G,X1), Aut(C(G,X1)) =
GL. If there exist symmetric subsets X2, X3, . . . , Xk�1 of G not containing 1G, and such

that all the reduced words x1x2 . . . xl, xi 2 Xi, 1  l  k�1, represent different elements

of G and |Xi| > k�1, for all 1  i  k�1, then Aut(Ck(G;X1, X2, . . . , Xk�1)) = GL,

and G admits a regular representation as the full automorphism group of an n-hypergraph,

for all n in the range 2  n  k.

Proof. GL  Aut(Ck(G;X1, X2, . . . , Xk�1)) by the definition of Ck hypergraphs.

Aut(Ck(G;X1, X2, . . . , Xn�1))  Aut(C(G,X1)) = GL,

for all 2  n  k by Lemma 5.4.

Thus, given a finite group G and a GRR C(G,X), to construct a 3-hypergraph with a
regular automorphism group G we just need to find a symmetric set of at least 3 elements
y1, y2, y3, . . . , yl in G such that all the elements 1G, x, xyj , x 2 X and 1  j  l, are
different (note that |X| � 3 as C(G,X) is a GRR). This seems to be reasonably easy and
may lead to a 3-hypergraph for essentially all finite groups G that admit a GRR.

As was the case of the use of t�Cayley hypergraphs in [5], focusing on a narrower
class of Cayley hypergraphs allows for faster exhaustive searches. Similarly, considering
the Ck(G;X1, X2, . . . , Xk�1) hypergraphs introduced in this section allows one to find
regular representations of finite groups via hypergraphs in a narrower class of possible
examples.

In the final result of our paper, we shall abandon the graphs Ck(G;X1, X2, . . . , Xk�1)
in favor of yet another class of k-uniform hypergraphs. We will rely on the concept of
an r-regular rooted oriented tree of depth d, ~Tr,d, which is an oriented tree containing
1+r+r

2+ · · ·+r
d vertices, has a root u of out-degree r and in-degree 0, all of its vertices

of distance 1  i < d from u are of out-degree r and in-degree 1, and all of its vertices of
distance d from u are of out-degree 0 and in-degree 1.

Definition 5.6. Let G be a (finite) group, let ~Tr,k�1 be an oriented rooted tree whose
vertex set is a subset of G and whose root is the identity 1G, and let Xi = Ni(1G), the set
of vertices of ~Tr,k�1 of distance i from 1G in ~Tr,k�1, 1  i  k � 1. The k-hypergraph
C̃k(G, ~Tr,k�1) is the k-uniform hypergraph (G,H) with H being the set of all k-subsets of
the form

{g, gx1, gx2, gx3 . . . , gxk�1},

g 2 G, xi 2 Xi, for 1  i  k � 1, and each (xi, xi+1) being an oriented edge of ~Tr,k�1.

As our first observation, we point out that none of the Xi’s contain 1G and each hyper-
edge {g, gx1, gx2, gx3 . . . , gxk�1} corresponds to an oriented path

(1G, x1), (x1, x2), . . . , (xk�2, xk�1)

of length k � 1 in ~Tr,k�1 starting from 1G and reaching xk�1 2 Xk�1 (which are outward
oriented k-arcs with no repeated vertices starting in 1G). Due to the fact that the sets Xi

are disjoint, all the above sets are necessarily k-subsets of G. The next observation is a
combination of results similar to those used in the proofs of Lemma 5.2 and Corollary 5.3.
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Lemma 5.7. Let G be a finite group, let X = X
�1

be a subset of G of cardinality r,

let k be an integer, 1  k  |X|, and let ~Tr,k�1 be an oriented rooted tree in G with

X1 = N1(1G) = X . Furthermore, suppose that all the elements

{x | x 2 Xi, 1  i  k � 1}, {x�1
| x 2 Xi and x

�1
62 Xi, 2  i  k � 1},

{x
�1

y | x 2 Xi, y 2 Xj , 1  i 6= j  k � 1} (5.2)

are distinct. Then Aut(C̃k(G, ~Tr,k�1))  Aut(C(G,X1)).

Proof. Assume all the above and suppose that there exists ' 2 Aut(C̃k(G, ~Tr,k�1)) that
does not belong to Aut(C(G,X1)). Then there exists an a 2 G and x̂ 2 X1, such
that '(a)�1

'(ax̂) 62 X1. Let  be the composition of ' with the left multiplications
�a,�'(a)�1 ,  = �'(a)�1 � ' � �a. Then  2 Aut(C̃k(G, ~Tr,k�1)),  (1G) = '(a)�1

·

'(a · 1G) = 1G, and  (x̂) = '(a)�1
·'(a · x̂) 62 X1. Each k-hyperedge of C̃k(G, ~Tr,k�1)

that contains 1G must be one of the following

{1G, x1, x2, x3, . . . , xk�1}, {x
�1
1 , 1G, x

�1
1 x2, x

�1
1 x3, . . . , x

�1
1 xk�1},

{x
�1
2 , x

�1
2 x1, 1G, x

�1
2 x3, . . . , x

�1
2 xk�1}, . . . ,{x

�1
k�1, x

�1
k�1x1, x

�1
k�1x2, x

�1
k�1x3, . . . , 1G},

xi 2 Xi, 1  i  k � 1. The automorphism  fixes 1G, and therefore must map
the 2rk�2 hyperedges {1G, x̂, x2, x3, . . . , xk�1}, {x̂, 1G, x̂x2, x̂x3, . . . , x̂xk�1}, xi 2 Xi,
2  i  k � 1, containing both 1G and x̂, to hyperedges containing 1G and  (x̂). This
means, in particular, that  (x̂), which is assumed not to be an element of X1 = X , must
belong to one of these hyperedges as well, and therefore must be equal to x or x�1, for
some x 2 Xi, 2  i  k � 1, or must be equal to some x

�1
y, x 2 Xi, y 2 Xj ,

1  i 6= j  k � 1. We shall consider each possibility separately.
First assume that  (x̂) = x or x�1, for some x 2 Xi, 2  i  k � 1, and recall

that we assume that all the elements listed in (5.2) are distinct. Hence, the only hyperedges
containing both 1G and x are the hyperedges of the form {1G, x1, x2, x3, . . . , x, . . . , xk�1}

or hyperedges of the form {x, xx1, xx2, . . . , 1G, . . . , xxk�1} (in case x
�1 also belongs to

Xi). Since i � 2, there are at most rk�i�1, i > 1, hyperedges of the first kind (for
example, x1 is the uniquely determined element from X1 in ~Tr,k�1 on the path between
1G and x) and there are at most rk�2 hyperedges of the second kind. Hence, there are not
enough hyperedges to map the 2rk�2 hyperedges containing 1G and x̂ onto, and therefore
 (x̂) 6= x 2 Xi, i � 2. Similarly, the only hyperedges containing 1G and x

�1 are the
hyperdges of the form {x

�1
, x

�1
x1, x

�1
x2, . . . , 1G, . . . , x�1

xk�1}, with at most rk�2 of
them, and the hyperedges of the form {1G, x1, x2, x3, . . . , x, . . . , xk�1}, of which there
are at most rk�i�1. Again, there are not enough hyperedges to serve as the images of the
hyperedges containing 1G and x̂.

Next consider the possibility that  (x̂) = x
�1

y, x 2 Xi, y 2 Xj , 1  i 6= j 

k � 1. The only hyperedges containig 1G and x
�1

y are the hyperedges {x
�1

, x
�1

x1,

x
�1

x2, . . . , 1G, . . . , x�1
xk�1} (with one of the products equal to x

�1
y), and there are at

most rk�3 of them.
We conclude that  (x̂) must belong to X1 = X , and therefore

Aut(C̃k(G, ~Tr,k�1))  Aut(C(G,X1)).
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Corollary 5.8. Let G be a finite group, let X = X
�1

be a subset of G of cardinality r

making C(G,X1) into a GRR. Let k be an integer, 1  k  |X|, let ~Tr,k�1 be an oriented

rooted tree in G with X1 = N1(1G) = X , and suppose that all the elements

{x | x 2 Xi, 1  i  k � 1}, {x�1
| x 2 Xi and x

�1
62 Xi, 2  i  k � 1},

{x
�1

y | x 2 Xi, y 2 Xj , 1  i 6= j  k � 1}

are distinct. Then Aut(C̃k(G, ~Tr,k�1)) = GL.
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