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The surface component of the IceCube Neutrino Observatory, IceTop, consists of an array of
ice-Cherenkov tanks measuring the electromagnetic signal as well as low-energy (~ GeV) muons
from cosmic-ray air showers. In addition, accompanying high-energy (above a few 100 GeV)
muons can be observed in coincidence in the deep in-ice detector. A combined measurement of
the low- and high-energy muon content is of particular interest for tests of hadronic interaction
models as well as for cosmic-ray mass discrimination. However, since IceTop does not feature
dedicated muon detectors, an estimation of the low-energy muon component of individual air
showers is challenging.

In this work, a two-component lateral distribution function (LDF), using separate descriptions
for the electromagnetic and muon lateral distributions of the detector signals, is introduced as
a new approach for the estimation of low-energy muons in air showers on an event-by-event
basis. The principle of the air-shower reconstruction using the two-component LDF, as well as
its reconstruction performance with respect to primary energy and number of low-energy muons
will be discussed.
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Two-Component LDF

1. Introduction

Cosmic rays enter the Earth’s atmosphere where they produce extensive air showers (EASs) which
can be measured with large detector arrays at the ground. Although cosmic rays have been measured
over several orders of magnitude in energy, large uncertainties remain, for example in measurements
of their mass composition [1]. The main challenge lies in the understanding of muon production
in EAS. Various experiments performed measurements of muons in EASs over the last decades,
where some reported discrepancies in the number of muons in simulated and observed air showers,
while others reported no discrepancies [2—5]. IceTop has measured the GeV muon density in EASs
at cosmic ray energies between 2.5 PeV and 120 PeV where no significant discrepancies have been
observed [6]. However, this statistical analysis does not provide event-by-event information of
the muon content in EASs which is important in order to correlate measurements of low-energy
(~GeV) muons in IceTop and high-energy (above a few 100 GeV) muons in the deep-ice detector
of the IceCube Neutrino Observatory [7-9]. This coincident measurement will provide strong
constraints on hadronic interaction models [10, 11].

In this work, we will present a novel approach to reconstruct the number of muons in air showers
measured with IceTop on an event-by-event basis. This approach uses a two-component lateral
distribution function (LDF) to fit the EAS signals measured in IceTop in order to account for the
electromagnetic and muonic signal contributions separately.

2. IceTop

IceTop [12] is the surface detector of the IceCube Neutrino Observatory (IceCube) [13] and it
is located at the geographic South Pole at about 2.8 km above sea level, corresponding to an

atmospheric depth of about 690 g/ cm?

. IceTop comprises 81 detector stations, each consisting
of two cylindrical Cherenkov tanks, which are separated by approximately 10 m, deployed in
a triangular grid with a spacing of 125m. Each tank is filled with clear ice and houses two
digital optical modules (DOMs) which measure the Cherenkov light generated by charged particles
traversing the ice. An infill area in the center of the detector has a denser spacing of < 50 m, which
improves the sensitivity of cosmic ray measurements at low energies.

A local trigger occurs when the signal in a tank exceeds a predefined discriminator threshold, as
described in Ref. [12]. Further, a hard local coincidence (HLC) is defined where both tanks in a
station have a local trigger within a time window of 1 us. If there is a local trigger in only one tank,
it is called a soft local coincidence (SLC). Following calibration, which accounts for the individual
tank responses, all IceTop signals are expressed in units of vertical equivalent muons (VEM),
which is the average signal produced by a muon traversing the tank vertically. For further analysis,
various basic event cleanings are applied and only events that pass a cosmic ray filter are kept (see
Ref. [12] for details). The subsequent EAS reconstruction is generally based on a fit to the lateral
distribution of HLC hits (only) which provides the core position and direction of the air shower,
as well as an estimate of its energy. In the following, we will describe an approach to extend
this technique by including SLCs in order to reconstruct the lateral distribution of muons, which
typically produce the SLC hits recorded by IceTop.
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3. Signal Model
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Jected into the tank, followed by the Figure 1: Muon signal PDFs derived from IceTop tank response
simulation of the detector response simulations for single muons injected at different zenith angles.

using Geant4 [14] and a calibration to units of VEM. Generally, the signal distributions of muons
mainly depend on the track length within the detector, i.e. are determined by the tank geometry.
The tank response for single muons as function of the zenith angle is shown in Fig.1. The peak
position for a vertical muon is by definition located at a charge deposit of 1 VEM. With higher
inclination the maximum track length increases, causing a shift in the peak position proportional to
1/cos 8. Simultaneously, the influence of muons traversing only the edge of the detector manifests
in an increased contribution at lower charge deposits. Hence, the width of the signal distribution,
i.e. the signal fluctuation increases as a function of the zenith angle. The signal distributions
P u,sig(S16, n) for multiplicities of up to n = 15 muons as function of muon inclination are saved as
spline fits and can be retrieved for any given combination of observed signal strength and zenith
angle. It is important to mention that the latter is given by the reconstructed primary zenith angle,
assuming the muon directions follow the direction of the primary cosmic-ray. In order to obtain
the total muon signal probability density function (PDF) given an expectation value (N, for the
average number of muons, the signal distributions for an integer number of muons have to be
weighted by the according Poission probability
& n
Pu(SI0-(N) = %

n

e Nl p e(S16,1) (1)

where (N,) is determined by the muon signal expectation value (S,) given by the muon LDF
multiplied with the effective IceTop tank area. For muon multiplicities above n = 15 the muon
PDF is approximated by a Gaussian distribution. The total PDF for an observed tank signal S is
determined by the convolution of electromagnetic (Gaussian) PDF

2
(IOglo S - 10g10<Sem>)
— eXp (- > )
O-em,loglo S 2” Zo-em’loglo S

pem(Slg’ <Sem>) =

and the muon signal PDF. The electromagnetic signal is affected by the snow accumulation on
top of the IceTop tanks. Thus, the resulting signal attenuation has to be taken into account in the
reconstruction procedure.
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4. Implementation

For the combined reconstruction of the electromagnetic and muonic part, respectively, two LDFs
are fit to an observed charge distribution. The LDF used for the electromagnetic contribution is
the Double Logarithmic Parabola (DLP) function [12]

r
Sem = Sem,125 (_

Fem

_Bem(Sem,IZS)_K(Sem,US) 10g]() (r/rem)
) Fem=125m. 3)

The parameters 8., and k describe the slope and the curvature of the function, respectively. Sem,125
is given as the signal strength at a distance of 125 m perpendicular to the shower axis and is used
as a proxy for the primary energy. This reference distance is found to minimize the primary
mass dependence while providing a good reconstruction resolution [15]. For the parametrization
of k as a function of Sem 125, a separate simulation set is used in which all muons are omitted
for the derivation of the detector response. The DLP function is then fit to the average lateral
distributions in bins of Sem, 125, resulting in both a decrease in the slope Sem and an increase in
the curvature « (i.e., steeper tail of the distribution) for an accurate description of the observed
lateral shape of purely electromagnetic showers. While the parametrization of « is fixed within the
whole reconstruction procedure, the LDF slope is treated as free parameter with its parametrization
taken as an initial choice. The LDF used to model the muon contribution is based on the Greisen
function [16]:

_,Bu (Sem,l25) +320 _Y(Sem,l25)
r) (r m) , ry=600m, )

Sn = Suo00 ( Fe+320m
J7i

T
containing two slope parameters §, and y. Both are parametrized as a function of Sey, 125,
accounting for the steepening of the muon density profile with increasing primary energy. S, 600
is used as a proxy for the low-energy muon number and is derived at a distance of 600 m in order
to reduce the electromagnetic background while minimizing the influence of large fluctuations far
from the shower axis. The distance of 320 m is the Greisen radius [16]. In order to constrain
the parameters to the expected physical range and at the same time increase the stability of the
reconstruction procedure, all parameters are fit while applying a penalty term

Pconstr = ]/ZZ/lp(p _pPaI)z’ p € {10g10 Sem,lZS,ﬂemaﬁpey}a /?'P = 0-1;2 (5)
p

to the final likelihood (LLH) function (Eq. (9)). In the case of Sem,125, @ constant penalty is
applied, corresponding to the observed maximum spread of 4% when omitting all muons from
a standard IceTop reconstruction [12]. The effective strength A, of the constraints for the slope
parameters is determined by the inverse of the observed spread o, Uin the corresponding parameter
distributions after application of the reconstruction procedure. This spread reduces as a function
of Sem,125 as the reconstruction becomes more stable with increasing multiplicity. Thus, the
corresponding parametrization of A, results in an increased strength of the penalty with increasing
Sem,125- In order to minimize a possible bias introduced by a given constraint, its parametrization
is performed iteratively. With each iteration pp,, and A, are updated with the mean and spread of
the parameter distributions, respectively. The reconstruction procedure itself is based on a negative
log-likelihood minimization and is incorporated into a new reconstruction framework, designed
for the reconstruction of multiple LDFs and/or detectors [17]. For the two-component fit, the
combined PDF is utilized in the convolution regime to determine the likelihood value for a given
tank signal:



Two-Component LDF

pem((S - S,u) /Csnowl6, (Sem)), Ou < Oem/10

S - S 9, N 5 < 10
P (Sl@, (Sem)» (Nﬂ>) = Pug p#g emCsnow |0, € /1>) Oem o'ﬂ/

[ Pen(Stnl om0 Sen (S = Sta0. DSy else . o
0

To account for the snow accumulation, an exponential attenuation factor cgpow [18] is applied to
the electromagnetic signal. If either the electromagnetic or muon signal uncertainty (determined
based on the corresponding signal expectation) is small in comparison, the according signal PDF
is approximated as a delta function. The resulting signal PDF is multiplied with the discriminator
trigger pug [6] to account for the signal detection efficiency. In addition to the resulting signal
likelihood, saturated as well as silent (i.e. non-triggered) detectors are taken into account. While
the former (llhg,) can be included as Gauss CDF [12], the likelihood of silent detectors (llhgj)
is based on the no-hit probability pponi derived from the convolution of the electromagnetic and
muon contribution:

GaussCDF((Sir — Su)/Csnow)- Oy < Tem/10
3 _
(N >n 3 Sthr —Sem Csnow
_ Z L'e (N / P p,sigs Oem < 0';1/10
Prohit = Prg - 0 n: S,=0 @)
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The convolution is calculated within similar integration regions as in Eq. (6) and describes the
probability of an observed tank signal to be below the threshold given a particular signal expectation
from both the electromagnetic and muon contribution (as determined by the corresponding LDF).
If both tanks in one station are not triggered (silent HLC), the likelihood is derived based on the
squared probability p?

1’101’11[
llhg; = log (1 = pb ) » 0 =2/1 if silent HLC/SLC, (8)

which corresponds to the not-hit probability of one station. The global likelihood is derived by
summation of all parts including the parameter constraints:

1h = Ilhgje + lhgye + g — peonstr - ©))

The reconstruction procedure is realized as 6-step log-likelihood minimization. Starting out with
a standard 3-step IceTop reconstruction as described in [17] as a basis for the two-component
fit. In the last three steps, the two-component fit is performed while fixing the geometrical
reconstruction derived from the previous steps. Since the standard reconstruction only includes
HLC hits, the underlying distribution as well as the resulting DLP fit are dominated by the
electromagnetic contribution. Thus, the derived Si»5 [19] parameter can serve as an anchor point
for the electromagnetic function and determines the initial values of Sem 125 and all LDF slope
parameters. Initially, Sem, 125 is fixed and only the low-energy muon number estimator S, 600 along
with the muon and electromagnetic slope parameters are adjusted while applying the constraints
shown in Eq. (5) in order to find the proper parameter space. In the last two steps, all LDF
parameters except for « are fit successively. An example fit obtained after the last reconstruction
step is illustrated in Fig. 5, showing the electromagnetic and muon LDF as well as the resulting
total LDF Sio((r) = Sem(r) + S, (7).
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5. Reconstruction Performance

The two-component reconstruction is [0G10(Sem, 125/VEM) = 1.7, Breco = 16.2°
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be within the IceTop array. Secondly, 0.2 VEM. The color scale indicates the fraction of the measured

three additional cuts specific to the signal produced by muons as derived from CORSIKA.

analysis presented in this work are applied. For a preliminary quantification of the reconstruction
performance with the two component LDF only nearly vertical showers 6y, < 18° are taken
into account. To ensure a sufficient fit quality, only reconstructed fits resulting in a reduced y>
of below 20 are included. This cut predominantly affects low energy events, as the fit stability
increases with the event multiplicity. In the reconstruction only SLCs of > 0.7 VEM are included
in order to increase the probability of hits far from the shower axis to be of muonic origin [6]. To
ensure a significant muonic contribution to the measured charge distribution, a final cut on the SLC
multiplicity (= 3 SLCs) is applied. Above ~ 20 PeV these cuts become practically independent of
the primary mass. The resulting distribution for Sem 125 and S, 600 1s shown in Fig. 3, where N, e
includes all muons above a threshold of 210 MeV. Both distributions show a linear dependence
to the corresponding true quantity, with a narrowing toward higher energies. The width of the
distributions reflects the reconstruction resolution of the primary energy and low-energy muon
number, respectively. In addition, the average of the distributions is shown for each simulated
primary type separately. While Sep,, 125 as a function of the true energy shows only a small primary
mass dependence, S, 600 manifests a significant splitting between light and heavy primaries for
the same log;, N wue. Although the mass dependence decreases with increasing muon number, it
can result in a significant systematic shift for analyses utilizing S, 600, and is therefore subject to
further study. Fig. 4 shows the reconstruction performance, i.e., the bias and resolution for both
estimators. The primary energy is reconstructed with a minimal dependence (few percent level)
on the cosmic-ray mass. Above 10 PeV the energy resolution is below 10% and improves toward
higher energies. Around 100 PeV saturation effects start to become important, and slightly worsen
the reconstruction resolution for primary protons. The mass dependent bias of the low-energy
muon number reconstruction is a direct reflection of the mass dependence of S, ¢00. Towards
higher log;y Ny irue (i.€., higher primary energy), the bias reduces from 20% to around 10%. The
corresponding reconstruction resolution improves as a function of 1og;q N, irue to below 20%.
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Figure 3: Distributions of the energy estimator Sep, 125 (left) and the low-energy muon number estimator
S,i,600 (right) for Oreco < 18° as a function of true primary energy and muon number, respectively, along

with the mean values for each primary mass.
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Figure 4: Reconstruction bias (left column) and resolution (right column) of the energy estimator Sem 125
(left) and the low-energy muon number estimator Sy, go0 (right) as a function of true primary energy and
muon number, respectively.

6. Conclusion

In this work a new method for a combined reconstruction of the primary energy and the low-energy
muon number of cosmic-ray air showers on an event-by-event basis is presented. For this purpose,
a separate description for the electromagnetic and muon LDFs is used in a combined likelihood
approach in order to fit the signal footprint measured with IceTop. It is shown, that the parameters
Sem, 125 and Sy, 600 Of the electromagnetic and muonic LDF, respectively, can be used as a proxy for
the primary energy and the low-energy muon number. While the former can be reconstructed with
a minimal dependence on the mass of the cosmic ray, the low-energy muon number estimation can
be further optimized in terms of reconstruction resolution as well as primary mass dependence.
Several possible reasons for the mass dependence in S, 600, such as a non-optimal choice of the
reference distance as well as a persisting entanglement between the electromagnetic and muonic
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part within the reconstruction procedure are currently under investigation. Further studies will
include extended zenith and energy ranges as well as different levels of snow accumulation on top
of the IceTop tanks. With increasing snow accumulation, the attenuation of the electromagnetic
component becomes stronger, effectively increasing the potential of the IceTop tanks as muon
detectors. This is of particular interest in the context of the IceTop enhancement [21] as well as
the planned next generation detector IceCube-Gen2 [22]. An event-by-event based low-energy
(~GeV) muon estimate is of high interest for tests of hadronic interaction models when combined
with an estimation of the high-energy (above a few 100 GeV) muons of the same showers, allowing
for a study of the corresponding correlations. Additionally, a separation of the electromagnetic
and muonic shower component can be beneficial for mass composition analyses. Generally, any
future study incorporating SLC information can potentially benefit from the application of the
two-component LDF. In this context, the inclusion of IceTop uncontained events (shower core
outside of IceTop) is of particular interest and will be part of future studies.
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