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Abstract—Deep learning accelerators are important tools for
feeding the growing demand for deep learning applications. The
automated design of such accelerators—which is important for
reducing development costs—can be viewed as a search over
a vast and complex design space that consists of all possible
accelerators and all the possible software that could run on them.
Unfortunately, this search is complicated by the existence of many
ordinal and categorical values, which are critical to explore for
the ultimate design but are not handled well by existing search
techniques.

This paper presents a technique for efficiently searching this
space by injecting domain information—in this case information
about hardware/software (HW/SW) co-design—into the auto-
mated search process. Specifically, this paper introduces a novel
Bayesian optimization framework called daBO (domain-aware
BO) that accepts domain information as input, including those
describing ordinal and categorical values.

This paper also introduces Spotlight, a design tool based on
daBO, and this paper empirically shows that Spotlight produces
accelerator designs and software schedules that are orders of
magnitude better than those created by the state-of-the-art.
For example, for the ResNet-50 deep learning model, Spotlight
produces a HW/SW configuration that reduces delay by 135×

over the configuration produced by ConfuciuX, a state-of-the-
art HW/SW co-design tool, and Spotlight reduces energy-delay
product (EDP) by 44× over an Eyeriss-like accelerator, which
is an edge-scale hand-designed accelerator. In the realm of
cloud-scale accelerators, Spotlight reduces the EDP of a scaled-
up Eyeriss-like accelerator by 23×. Our evaluation shows that
Spotlight benefits from the efficiency of daBO, which allows
Spotlight to identify accelerator designs and software schedules
that prior work cannot identify.

I. INTRODUCTION

Deep learning (DL) models have had tremendous impact

in fields such as computer vision, natural language process-

ing, and speech recognition [73]. The varying demands of

these models have driven an explosion of DL accelerators,

which provide significant energy and performance benefits

over CPUs and GPUs [11]–[14], [20], [26], [29], [33], [43],

[45], [53].

Because DL accelerators can be deployed in a variety of

situations—from datacenters to edge devices—they come in a

large variety of shapes and sizes. And because DL models con-

tinue to rapidly evolve—sometimes incorporating new types

of layers [22], [59] that do not execute efficiently on existing

DL accelerators [13]—there is a constant desire to design new

*These authors contributed equally to this work.

DL accelerators. Unfortunately, hardware design is expensive

because of its lengthy design cycle [26], and the software stack

often requires bespoke compilers and optimizations [35].

To significantly reduce the cost of accelerator design, we

would ideally employ design automation. However, both the

hardware design space—which considers architectural pa-

rameters such as buffer sizes and processing element (PE)

arrangement—and the software design space—which consid-

ers loop optimization parameters such as permutations and

tiling factors—are massive. Still, both prior work [46], [53]

and our own results show that hardware/software (HW/SW)

co-design is essential to the design of efficient DL accelerators.

Unfortunately, the co-design space exhibits unique char-

acteristics that make it challenging to search automatically:

(1) the co-design space is massive, e.g. a single layer of

the ResNet-50 [22] DL model on a spatial array of PEs has

O(1018) configurations, (2) the co-design space is complex, as

hardware and software parameters have complex interactions

that render large and unpredictable parts of the co-design space

infeasible or invalid, and (3) some parameters are ordinal

(sortable but discontinuous values) or categorical (a set of

arbitrary options), so performance and energy can vary wildly

and unpredictably with minor changes to their values, i.e.,

there are performance and energy cliffs.

To search this vast co-design space, prior work has em-

ployed intelligent search algorithms, such as reinforcement

learning [27], [66] or Bayesian optimization [24], [44], [48],

[61], [66], [72]. Unfortunately, these techniques have largely

relied on off-the-shelf algorithms which struggle with the

complex portions of the design space, particularly with ordinal

and categorical parameters [24], [44].

In this paper we introduce a novel customized Bayesian

optimization framework, daBO (domain-aware BO), that over-

comes the challenges of searching the HW/SW co-design

space. Our key insight is that the search algorithm, which

conventionally evaluates numerous samples to learn the shape

of the co-design space, can be made more efficient by boot-

strapping it with domain information. For example, a domain

expert knows that the degree of parallelism, which is derived

from the spatially unrolled dimension, the shape of the DL

model, and the arrangement of processing elements, is a more

accurate predictor of delay than any of the constituent parts

alone. In designing daBO, we introduce a flexible method of

providing high-level correlations, i.e. domain information, to

the search algorithm. As a result, daBO is sample efficient—
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i.e., it converges to a solution faster than prior techniques.

Because daBO is sample efficient, it can be applied to

massive HW/SW co-design spaces, enabling it to find—in

the same amount of time—solutions that are superior to those

identified by other search techniques. Because it can leverage

domain information, daBO can learn complex interactions be-

tween parameters. And because daBO can handle ordinal and

categorical values, it can consider important design parameters

that other techniques struggle with.

We use daBO as the basis for a new automated HW/SW

co-design tool called Spotlight, which takes as input a set of

DL models and a hardware budget. Spotlight then evaluates

configurations using the MAESTRO [31] analytical model,

and Spotlight produces as output (1) optimized microarchitec-

tural parameters for a programmable DL accelerator and (2)

optimized software schedules for each layer of the DL model.

This paper makes the following contributions:

• We present daBO (domain-aware BO), a novel Bayesian

optimization framework that effectively deals with the

ordinal and categorical search parameters that lead to

discontinuities in the design space. In particular, daBO

leverages domain information to efficiently learn correla-

tions among categorical search parameters.

• We illustrate the benefits of daBO by presenting Spot-

light, an open-source* automated HW/SW co-design tool

that is built on daBO. We show that for the ResNet-50 DL

model, Spotlight produces DL accelerator designs with

44× lower energy-delay product (EDP) than an Eyeriss-

like hand-designed accelerator and 135× lower delay than

a design created by ConfuciuX, a state-of-the-art HW/SW

co-design tool. For the Transformer DL model, Spotlight

achieves 902× lower EDP than an NVDLA-like hand-

designed accelerator and 52× lower delay than a cloud-

scale Eyeriss-like accelerator.

• We demonstrate that automated HW/SW co-design is crit-

ical for designing efficient DL accelerators. A significant

part of Spotlight’s benefit comes from the co-design of

loop tile sizes with scratchpad sizes—a strategy that is

made possible by daBO, which can efficiently explore

the search space of tile sizes through the use of domain

information.

• We empirically demonstrate that Spotlight exhibits sev-

eral desirable properties.

1) It is extremely sample efficient. We show that it

can effectively search a co-design space of O(1018)
design points using just 100 hardware samples and

100 software samples per layer.

2) It can find configurations that prior work completely

ignores. Specifically, Spotlight considers both loop

permutations and loop tiling factors for each dimen-

sion, while prior work in automated HW/SW co-

design prunes this part of the co-design space.

3) It is highly flexible and can be used in diverse design

settings that include both edge-scale and cloud-

*https://github.com/chiragsakhuja/spotlight

for n := 0 to N
for k := 0 to K
for c := 0 to C
for y := 0 to Y
for x := 0 to X
for r := 0 to R
for s := 0 to S
prod = Weights[k][c][s][r] *

Inputs[n][c][y][x]
Outputs[n][k][y-s][x-r] += prod

Fig. 1: The 7-level loop used to compute a CONV layer.

scale designs: (1) It supports single-model co-design

of accelerator parameters and software schedules,

which is useful for FPGA deployment, and (2) it

produces programmable accelerators that are able

to efficiently execute DL models that they were not

co-designed for—a property that is useful for ASIC

deployment.

The remainder of this paper is organized as follows. Sec-

tions II and III present background and related work. In

Section IV we discuss our HW/SW co-design space and

introduce our concept of a feature space. Section V introduces

daBO, and Section VI describes Spotlight, which is evaluated

in Section VII before we conclude in Section VIII.

II. BACKGROUND

Deep learning (DL) models have diverse layer types such

as convolutional, attention, and fully-connected layers that

can be represented with the primitive operations of a con-

volution (CONV) or matrix multiplication (GEMM). Since

these primitive operations are highly regular and constitute

the majority of DL model inference time, they are popular

targets for acceleration. In this work, we primarily focus on

accelerating CONV operations, which can compute GEMM

operations without loss of generality.

A. DL Layers

The CONV operation has many uses in DL models, includ-

ing those that target image processing. Moreover, other types

of layers, such as fully connected, GEMM, and depth-wise

separable convolutions, can be represented as CONV layers.

The building block of CONV layers is the 3-D convolution

operation, which operates on a weight tensor of size R×S×C
and an input tensor of size X × Y × C to produce an output

tensor of size (X − R + 1) × (Y − S + 1) × 1. The CONV

operation is repeated for each of K weight tensors and N input

tensors to produce K ×N output tensors. Output tensors are

reshaped such that subsequent layers are presented with N
input tensors of size (X −R+ 1)× (Y − S + 1)×K.

The CONV operation is implemented in software as a 7-

level nested loop as shown in Figure 1.

Other operations can also be represented by CONV. For

example, GEMM can be transformed, without loss of gener-

ality, to a CONV using an algorithm called col2im [1]. Also,

depth-wise separable convolutions, which consists of a depth-

wise convolution followed by a point-wise convolution, can be
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Fig. 2: An abstract DL accelerator architecture with 16 PEs,

which are arranged in 2 clusters of 4× 2 spatial arrays and 2

levels of scratchpads.

computed with CONV by computing each of its constituent

parts independently. In both cases, some inefficiency may be

introduced during the transformation.

Additionally, DL models incorporate important intermediate

operations such as pooling and activation functions. Our work

does not support these types of layers because of limitations in

the analytical model backend, MAESTRO [31]. Fortunately,

these layers do not contribute significantly to runtime of

the DL model [7] MAESTRO also does not model cross-

layer optimizations such as layer fusion, which are important

components of modern DL models. These shortcomings have

non-trivial implications, but we leave a solution to future work.

B. DL Accelerators

At a high level, DL accelerators comprise a spatial array

of processing elements (PEs) or reduction trees that compute

one or more Multiply-Accumulate (MAC) operations and are

connected via multiple levels of on-chip scratchpad buffers and

interconnects. Figure 2 shows an abstract DL accelerator with

16 PEs, 2 levels of scratchpads, and a register file (RF) within

each PE. The architecture is a tree-like structure of scratchpads

with leaves that are 2D spatial arrays of PEs. In this figure,

there are two leaves of 2×4 PEs. Communication within a row

of PEs occurs through a dedicated interconnect that is capable

of uni-casting and multi-casting, and communication across

rows occurs through queues in each scratchpad. This simple

abstract accelerator design captures the high-level microar-

chitectural parameters of many popular DL accelerators [11],

[12], [20], [26], [29], [33], [43], [45]. Edge-scale accelerators

generally have one or two levels of scratchpads.

For a two-level DL accelerator, each of the seven loops in

Figure 1 is broken into three tile sizes. The outer-most loops

describe the data that is stored in the L2 scratchpad, and the

inner-most loops describe the data that is stored in the RF.

At each tile level, one dimension is spatially unrolled and is

distributed evenly among the lower level processing clusters.

If a dimension cannot be fully unrolled, then the partial tiles

are streamed temporally.

C. Bayesian Optimization

Bayesian optimization (BO) is a search algorithm that

converges to solutions in fewer total number of samples than

competing algorithms, such as reinforcement learning [27],

[66] and genetic algorithms [28], [66]. The key mechanism

behind BO is the surrogate model, which is a probabilistic

approximation of the cost function. The surrogate model is

cheaper to query than the cost function, so it is consulted first

when evaluating a candidate. To identify candidates that are

worth evaluating on the slower cost function, BO generates

a batch of candidates, queries their values on the surrogate

model, ranks the candidates using an acquisition function, and

selects the most promising candidates. Thus, if the surrogate

model can accurately approximate the cost function, BO

mostly selects high quality samples to evaluate. Unfortunately,

the cost function of co-design has many invalid regions and

behaves erratically, so it is difficult to train the surrogate

model. In this work, we introduce a technique that overcomes

these challenges to quickly and effectively train the surrogate

model.

III. RELATED WORK

The deep learning stack consists of (1) a DL model [22],

[52], [54], [58], (2) a software optimizer [23], [28], [42], [46]

or DL compiler [10], [36], which additionally performs code

generation, and (3) a DL accelerator [9], [45], [53], [56].

Because each component of the stack has an enormous

number of design points, prior work has focused on automating

the co-design of two of the three components: either the

accelerator and software mapping (HW/SW co-design) or the

accelerator and DL model (HW/Model co-design).

End-to-end frameworks are a tangential type of automated

design that iteratively transform a DL model into a fixed-

function DL accelerator by projecting high-level representa-

tions into low-level representations until synthesizable hard-

ware is produced. By contrast, HW/SW and HW/Model co-

design simultaneously explore the joint space of two compo-

nents of the deep learning stack. End-to-end frameworks can

be augmented with HW/SW or HW/Model co-design, so we

consider our work to be orthogonal to end-to-end frameworks.

A. HW/SW Co-Design

HW/SW co-design of DL accelerators aims to optimize the

microarchitectural parameters of the accelerator alongside the

loop structure of a single layer of a DL model. Interstellar [70]

searches for the optimal loop to spatially unroll in the X and Y

dimensions of a systolic array, but there are only a few hundred

possibilities, so the design space is limited. dMazeRunner [16]

and ZigZag [41] both present a vast software design space but

only search a small hardware design space. MAGNet [61] uses

off-the-shelf Bayesian optimization by first using heuristics to

prune the software search space and then applying BO to the

reduced hardware design space. In Section VII we compare

Spotlight against HASCO [66], which uses reinforcement

learning and Bayesian optimization, and ConfuciuX [27],

which uses reinforcement learning and genetic algorithms,
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but neither explores loop tiling options. Hypermapper [44]

is a custom Bayesian optimization framework that accepts a

limited and somewhat unintuitive form of domain information

as input. VAESA [24] automatically learns a transformation of

the complex design space into one that is easier for a search

algorithm to explore. However, to learn the transformation,

VAESA requires many samples.
Spotlight uses hand-provided domain information to trans-

form the complex design space into a space that is more suit-

able for automated HW/SW co-design. Consequently, Spot-

light can explore a large HW/SW co-design space comprised

of complicated ordinal and categorical parameters, such as

loop tiling sizes.

B. HW/Model Co-Design

Neural Architecture Search is the process of automatically

designing the neural architecture of a DL model [5], [39],

[49], [72], [75], and recent work has incorporated hardware

design parameters into the search space. Reagen et al. [48]

show that BO can effectively be used to co-design a model

and accelerator, but their framework only searches over limited

hardware design parameters. Other work limits the hardware

design space by using hardware templates [21], [38], [69] or

a few hardware parameters [3]. EDD [37] formulates the joint

hardware-model design space as a differentiable search but

only searches for a single parameter in the hardware design

space.
HW/Model co-design is orthogonal to our work because our

work accepts the DL model as input and searches the HW/SW

design space for an optimized design.

C. End-to-End Frameworks

End-to-end frameworks, i.e., high-level synthesis tools,

transform a high-level algorithmic description written in Ten-

sorFlow [2], C++, or a domain-specific language into fixed-

function hardware. End-to-end frameworks, particularly those

that target FPGAs and CGRAs, have been extensively stud-

ied [15], [18], [40], [60], but such work is orthogonal to ours,

which aims to produce a programmable DL accelerator that

can execute DL models that it was not explicitly designed for.
Hadjis and Olukotun [19] present a convenient frame-

work that consumes a DL model and automatically deploys

a specialized DL accelerator on an Amazon Web Services

FPGA instance. The framework uses a series of independent

tools, such as the Spatial [30] hardware design language

and Vitis HLS [67], so there is limited room for co-design.

Aurora [57] and REVAMP [6] use custom-designed CGRAs,

which provide an effective tradeoff between reusability and

performance, to generate workload-specific hardware. Other

work restricts the hardware design space either by using hard-

ware templates [17], [68], by limiting the design parameters

that are searched [71], or by generating hardware that is highly

specialized for the given algorithm [62], [64], [74].

IV. CO-DESIGN SPACE

We now describe our co-design space, which is the Carte-

sian product of the hardware and software space of DL accel-

Parameter Range

SIMD Lanes 2 to 16

Bandwidth 64 to 256

PEs 128 to 300

(a) Cardinal parameters.

Parameter Range Stride

Scratchpad Size 64 to 256 KB 8

Register File Size 64 to 256 KB 8

PE Aspect Ratio Divisors of PE Count N/A

Tiling Factors† Divisors of layer shape N/A

(b) Ordinal parameters.

Parameter Values

Loop Order† Permutations of loops

Unroll Dimension† N, K, C, R, S, X, Y

(c) Categorical parameters.
†Independent values per scratchpad level.

Fig. 3: HW/SW co-design parameter values.

erators. We select a set of hardware parameters that, as prior

work [25], [31], [32], [46], [61] has shown, captures a wide

variety of DL accelerators and software optimizations. The

resulting co-design space is massive—O(1018) for a single

layer of ResNet-50 running on a parameterizable accelerator

(see Figure 3 for details).

We then present the notion of a feature space, which is our

technique for reducing the complexity of the co-design space

by using domain information.

A. Parameter Space

Our parameter space is composed of (1) high-level microar-

chitectural parameters for DL accelerators and (2) the full set

of loop transformations that can be applied to the 7-level loop

to compute a CONV.

1) Hardware Parameters: The hardware design space com-

prises the following prominent characteristics of DL acceler-

ators: processing elements (PEs) count and arrangement in

a 2D spatial array; the number of SIMD lanes in each PE;

the size of the register files (RFs) that are in each PE; the

size of a single global scratchpad; and the bandwidth of the

simple interconnect, which supports uni-cast and multi-cast.

To compare fairly against prior work, we use a fixed 8-bit

precision. Figure 3 shows the range of values that Spotlight

uses when designing an edge-scale accelerator.

2) Software Parameters: The software design space, which

is independent for each layer of the DL model, consists of

all loop transformations that can be applied to the CONV

layer’s 7-level loop. We consider three loop transformations:

loop tiling, loop reordering, and spatial unrolling.

Loop tiling [65] is a common compiler optimization that

improves data locality by splitting large loops into smaller

loops that fit into on-chip caches or scratchpads. Each of the

7 loops in the CONV computation can be independently tiled.

Naively, there are (N×K×C×R×S×X×Y )2 options for

loop tiling, but many of these options are invalid or require

insertion of edge cases in the loops or padding in the memory
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Feature Calculation

Raw Cardinal Parameters SIMD Lanes, On-Chip Bandwidth, Total # of PEs, Width of PE Array

Total Amount of On-Chip SRAM Register File Size + Scratchpad Size

Parallelism Available in Kernel R0 × S0

Degree of Spatial Unrolling Outer Loop Unrolled Tile Size × Inner Loop Unroll Tile Size

PE Utilization DRAM Tile Size
Outer Loop Unrolled Tile Size×Height of PE Array

× Outer Loop Unrolled Tile Size
Inner Loop Unrolled Tile Size×Width of PE Array

Number of Loop Iterations to Completion ⌈Outer Loop Unrolled Tile Size
Height of PE Array

⌉ × ⌈ Inner Loop Unrolled Tile Size
Width of PE Array

⌉

Approximate Transfers from DRAM (X0/X2)× (Y0/Y2)× (Width of PE array + Height of PE array)
Size of Commonly Unrolled Dimensions 2×X0 + 3× Y0 + 5×K0 + 7×K1 + 11×K2

Fig. 4: Features used as domain information by the search algorithm.

footprint. Our design space only considers loop tiling options

that evenly divide the size of the layer.

After loop tiling is applied, the resulting 14 loops can be

reordered in any of (7!)2 permutations, and each permutation

is a viable option. One loop of each level of loop tiling can also

be spatially unrolled along a dimension of the spatial array.

Our search space considers all 72 options.

3) Cardinal, Ordinal, and Categorical Parameters: Cardi-

nal parameters, which take on integral values within a specified

range, are straightforward for search algorithms to explore be-

cause they tend to exhibit appreciable trends. For example, as

on-chip bandwidth is increased, energy consumption and area

increase, while delay decreases. Ordinal parameters, which

take on ordered values, are more complex to search if they

have inconsistent spacing, but they can still exhibit appreciable

trends. Categorical parameters, however, are problematic for

search algorithms because they represent arbitrary values that

have no correlation among them, so changes in their value

have unpredictable implications. Figure 3 defines the type of

each parameter in our parameter space of our co-design space.

B. Feature Space

The HW/SW co-design space of DL accelerators exhibits

three unique challenges: (1) the co-design space is vast, (2)

the co-design space is complex, with interactions among pa-

rameters rendering large portions of the space invalid, and (3)

changes to the numerous ordinal and categorical parameters

can result in erratic changes in behavior of the resulting design.

Our technique of injecting domain information into the search

overcomes these challenges.

1) Overview: To understand how domain information can

improve a search algorithm’s learning process, consider an

example: It is well known that end-to-end delay is directly

proportional to PE count and utilization, and given enough

sample points, a search algorithm can learn this correlation

on its own. However, it is sample efficient for an expert to

explicitly highlight this correlation. Thus, domain information

can be used (1) to guide the search toward profitable regions

and away from invalid regions of the co-design space, and (2)

to provide information on the behavior of parameters so that

changes to these parameters are more predictable.

Typically, a search algorithm explores the parameter space

directly, but we introduce the notion of a feature space,

Hardware Optimizer

For i samples

Software Optimizer (Per Layer)

daBOHW

daBOSW
For j samples

Analytical
Model

HW Conig

Minimized SW Conig

HW+SW Conig

Perf Metrics

Hardware Budget

Optimized Microarchitectural
Params and Software Schedules

Model 0, Layer 0 Model m, Layer n...

Optimization Algorithm

Cost Function

Fig. 5: Spotlight takes as input a hardware budget and a DL

model and performs a nested optimization using our novel

Bayesian optimization framework, daBO, to produce opti-

mized microarchitectural parameters and software schedules.

which comprises features, which are defined as an arbitrary

transformation over the parameter space.

Concretely, let P be the set of HW/SW co-design parame-

ters. The cost function, C, maps a point in P to its perfor-

mance. The feature space is defined as any transformation

T : P → F, where F is the feature space and comprises

individual features fi : P → R. The transformed cost function,

which is what is learned by Spotlight, maps the performance

of a point, p ∈ P, as follows: C ′(T (p)).

It is easier for a search algorithm to find correlations in C ′

than C. For example, it is unreasonable for a search algorithm

to learn much useful information about delay from just the

spatially unrolled dimension, which is a categorical parameter

that takes on 72 unrelated values. By contrast, it is much more

apparent that there is an inverse relationship between delay

and degree-of-parallelism, which is a feature derived from the

spatially unrolled dimension, the tiling factors, and the PE

arrangement.

2) Feature Selection: The quality of the features determines

the quality of the search, so thorough feature selection is

critical. The selection of relevant and meaningful features is

domain-specific, so we follow four general guidelines. (1) We

ensure that categorical parameters are incorporated into one
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or more features so that it is easier for the search algorithm

to find correlations among them. (2) We encode domain infor-

mation, i.e. well-known complex interactions among hardware

and software parameters, as features. Examples of domain

information are: the cost of data transfer among parts of the

memory hierarchy and knowledge about the infeasible regions

of the co-design space. (3) We design features that have linear

trends so that the surrogate model in our Bayesian optimization

framework can use a linear kernel, which can be computed

more quickly than other common kernels such as Radial Basis

Function and Matérn. (4) We verify the usefulness of each

feature by computing permutation importance [4], [8].

We use these principles to brainstorm an initial set of 15

intuitive features, including buffer utilization, reuse volume,

PE perimeter, and those in Figure 4. To ensure that the features

are of high quality, we measure each feature’s correlation with

performance metrics by (1) computing each feature’s value for

millions of random HW/SW samples, and (2) visualizing the

feature values against the performance of those samples. We

discard any features that do not exhibit a strong correlation.

Furthermore, to ensure that removal of a feature does not affect

search quality, we evaluate our automated HW/SW co-design

tool, Spotlight, both with and without these weakly- or un-

correlated features (see Section VI).

Figure 4 shows the final results of our feature selection pro-

cess, including the equations used to compute each feature. We

validate each of these features by ensuring that the correlations

learned by the surrogate model are the same as those that we

observe with our offline samples. The first features are simply

raw cardinal parameters, which our search algorithm is already

able to correlate well with performance metrics. Next, the total

amount of on-chip SRAM is directly correlated with power

consumption. The next three features—parallelism available

in kernel, degree of parallelism in the spatially unrolled

dimension, and PE utilization—measure available parallelism,

which is a property of both the hardware and software, and is

strongly correlated with delay. Next, some configurations can

produce many edge cases that lead to a large tail latency, so

we incorporate as features an approximation for the number

of loop iterations for a layer to completely execute and the

number of transfers of the input and kernel matrices from

DRAM. Finally, we incorporate commonly unrolled spatial

dimensions that are correlated with delay. We observe that

each independent parameter—X0, Y0, K0, etc.—has a weak,

but notable, correlation with delay because the parameters

generally take on fewer than 32 unique values, making it

difficult to disambiguate them. For this feature, we spread out

the number of unique values by using the prime numbers as

the “basis vectors” to compute a linear combination of these

parameters.

V. DOMAIN-AWARE BO

Our novel Bayesian optimization framework utilizes the

notion of a feature space to efficiently search the co-design

space.

As an optimizer, Bayesian optimization consists of two

major components: (1) a surrogate model that predicts a

Bayesian posterior probability distribution over the values of

a cost function, and (2) an acquisition function that leverages

the posterior distribution to suggest a design point to evaluate.

A. Surrogate Model

Conventionally, the surrogate model learns the characteris-

tics of the parameter space to predict the cost function. With

daBO, the surrogate model is trained on features instead of

parameters. Candidate configurations are randomly generated

in the parameter space, and daBO transforms them into the

feature space before evaluating them on the surrogate model.

As is common practice, daBO uses Gaussian process (GP)

as the surrogate model [47]. At a high level, GP learns a prob-

abilistic approximation of the cost function by maintaining

a Gaussian distribution for each point in the domain. More

concretely, GP takes as input the features, denoted by x, and

predicts a posterior distribution based on prior distribution over

the space of functions comprised of a mean function m(x) and

a covariance, or kernel function, k(x,x′). If the covariance for

every point in the domain is 0, then GP exactly matches the

function it is learning.

Typically, a Matérn or Radial Basis Function (RBF) kernel

is employed because they can approximate a wide variety of

cost functions, but both kernels have complexity of O(N3),
and we find that they overfit to the evaluated samples. Instead,

daBO employs a simple linear kernel, which has O(N) com-

plexity, takes far fewer samples to accurately model the trends

of the cost function, and fits well with our feature selection.

B. Acquisition Function

The acquisition function selects the next configuration to

evaluate on the cost function. A batch of candidate configura-

tions is randomly generated in parameter space; each candidate

is then transformed into feature space and evaluated on the

posterior predictive distribution predicted by the surrogate

model. daBO then uses Lower Confidence Bound [55] as the

acquisition function, which is maximized to determine the next

configuration to evaluate.

VI. SPOTLIGHT

Spotlight is a design automation tool that employs multiple

instances of daBO to conduct automated HW/SW co-design.

At a high level, Spotlight accepts as input a hardware budget

and a set of layers from one or more DL models; for each

input layer, Spotlight produces as output microarchitectural

parameters for an optimized DL accelerator, along with opti-

mized software schedules. Spotlight uses the MAESTRO [31]

analytical model to evaluate configurations. Spotlight does

not perform code generation or hardware synthesis. Figure 5

provides an overview of Spotlight.

A. Layerwise Optimization

It is challenging to optimize multiple layers of a model

simultaneously, so Spotlight iteratively optimizes the hardware

6



and software configurations using a layerwise approach. Inde-

pendent instances of daBO are used as the search algorithms

for both hardware and software, so we denote the instances as

daBOHW and daBOSW.

We use xh and xs to denote the set of hardware and

software parameters in the parameter space. In Spotlight’s

layerwise approach, a hardware search is first performed by

daBOHW with the objective being to minimize f(xh | layers),
which can be the energy-delay product (EDP) or delay of

executing the DL model layers on the hardware configuration.

Given the hardware configuration, Spotlight optimizes the

software schedule by applying daBOSW to each layer indepen-

dently, with the objective being to minimize f(xs | xh, layerj),
which is defined as the EDP or delay of running the layer

j on the fixed hardware configuration. The software search

produces a configuration that represents the best software

schedule for each layer on the hardware configuration. The

layerwise energies and delays are then summed to represent

the cost of the hardware to compute aggregate EDP or delay,

which is fed back to daBOHW to generate the next hardware

configuration. This concludes one iteration of search. The

iterative search between hardware and software repeats for a

user-defined number of trials.

B. Candidate Evaluation

To evaluate the cost of each design, we use MAESTRO [31]

to report delay, energy, throughput, power, and area of DL

accelerators. MAESTRO has been validated against RTL sim-

ulation, and our hardware and software design spaces naturally

translate into MAESTRO’s data-centric loop representation.

MAESTRO models primitives, such as interconnects and con-

volutional layers, that are building blocks for DL accelerators

and DL models.

Spotlight performs single objective optimization to mini-

mize delay or EDP, which is a common metric for comparing

DL accelerators [28]. From the pareto-optimal frontier, Spot-

light selects the configuration that is closest to the inputted

area and power budgets without exceeding them.

VII. EVALUATION

We evaluate Spotlight in a variety of settings and against a

variety of baselines. Unless otherwise specified, we evaluate

Spotlight with 100 hardware samples and, for each hardware

design and each layer, 100 software samples.

DL Models: We co-design separate DL accelerators with

each of five DL models. Four models—VGG16 [54], ResNet-

50 [22], MobileNetV2 [52], and MnasNet [58]—are popular

for image processing and span nearly a decade of progress, in-

cluding one model, MnasNet, which is automatically generated

by neural architecture search (NAS). The fifth model is a single

Transformer [59], which is a building block for the state-of-

the-art natural language processing model, ALBERT [34].

Hand-Designed Accelerators: We compare Spotlight’s

optimized DL accelerator designs against three hand-

designed accelerators: NVDLA-like [45], Eyeriss-like [12],

and MAERI-like [33]†. NVDLA and Eyeriss are popular

edge-scale DL accelerators that have been fabricated. Both

accelerators suffer from rigid dataflows that cannot always

run modern DL models efficiently [13], [32], while MAERI,

which is a more recent edge-scale accelerator that has not

been fabricated, is designed to be highly flexible. For fairness,

we evaluate Spotlight-generated accelerators and the hand-

designed accelerators under our layerwise software optimizer,

daBOSW and we scale all accelerators so that they fit in the

same area.

HW/SW Co-Design Tools: Where possible, we com-

pare Spotlight against two state-of-the-art HW/SW co-design

frameworks that also use the MAESTRO [31] ecosystem:

ConfuciuX [27] and HASCO [66]. ConfuciuX optimizes

with a combination of reinforcement learning and genetic

algorithms, and HASCO uses a combination of Bayesian

optimization and reinforcement learning. Both tools search

limited software schedules; ConfuciuX selects among Eyeriss-

like, NVDLA-like, and ShiDianNao-like, and HASCO uses a

fixed software schedule. We evaluate ConfuciuX and HASCO

with their out-of-the-box configurations. We do not show

comparisons against Hypermapper [44], which is a domain-

specific Bayesian optimization framework, because most runs

do not terminate within four days of runtime (far longer than

the scale of our evaluated results), and those that do produce

designs on par with Eyeriss.

DL Accelerator Size: We generally use Spotlight to

generate edge-scale accelerators with the parameters specified

in Figure 3. Additionally, we optimize for a cloud-scale setting

and compare against scaled-up hand-designed accelerators. To

explore cloud-scale accelerators, the only change to Spotlight

is the range of the parameter values that Spotlight explores—

Spotlight works out-of-the-box without any other change to

configuration.

Performance Metrics: Spotlight can minimize either de-

lay or energy-delay product (EDP) under area and power

constraints.

Design Scenarios: We present results for two different

scenarios, which are described in more detail in their re-

spective sections: single-model co-design (Section VII-A) and

multi-model co-design (Section VII-B).

We conclude the evaluation with a discussion of Spotlight’s

benefits (Section VII-C), a deeper dive into daBO’s behavior

(Section VII-D), an ablation study (Section VII-E), and a

comparison of results from a different analytical model than

MAESTRO (Section VII-F).

A. Single-Model Co-Design

One use case for Spotlight is to co-design an accelerator

with a full DL model. The generated accelerator can be

deployed on an FPGA, which can be reconfigured for each

new model, or it can be deployed as a highly specialized ASIC,

†We refer to the hand-designed accelerators as Eyeriss-like, NVDLA-like,
and ShiDianNao-like because the MAESTRO model can only approximate
their behavior.
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Spotlight often produces accelerators with a long and narrow

PE array, resulting in two benefits: (1) on the narrow side

of the array, network latency is lower and there are fewer

unicast operations, and (2) the layer edge cases, which result

in low utilization and add tail latency, are smaller and thus have

smaller impact on overall runtime. These results (1) illustrate

the importance of co-design and (2) the benefits of automated

co-design over manual co-design.

D. Feature Space Analysis

We have demonstrated that Spotlight can efficiently co-

design DL accelerators and software schedules. We now peer

into daBO to understand the source of Spotlight’s benefits.

Surrogate Model Accuracy: We quantify the accuracy of

the surrogate model, Guassian Process (GP), in predicting the

behavior of the cost function. GP does not need to predict the

absolute EDP or delay values, but it should be able to predict

trends in these metrics so that the acquisition function can

accurately select promising configurations.

To measure GP’s predictability, we use a dataset of thou-

sands of HW/SW samples and their respective EDP and delay.

We use 90% of the dataset to train GP in two configurations—

with a linear kernel and with a Matérn kernel—using the

features described in Figure 4. We then predict the EDP

and delay of the remaining 10% of the dataset. Rather than

comparing directly with ground truth, we sort the predicted

samples and the ground truth and compare the ordering using

the Spearman rank correlation coefficient (ρ) [63], which

measures the difference in ordering between vectors such that

a score of 1 indicates a strong correlation and −1 indicates an

inverse correlation.

Across the test set, ρ is equal to 0.0822 and 0.1127 for

the linear and Matérn kernels, respectively. In both cases

the correlation is quite low, but roughly 24% of the top

20% of samples are correctly predicted, which we find is

sufficient for the acquisition function to select a high quality

candidate. Though the Matérn kernel achieves a slightly higher

correlation than the linear kernel, when we run Spotlight

with the Matérn kernel we find no noticeable difference

in search quality, so we opt for the simpler linear kernel.

Nonetheless, the low correlation may warrant the use of a

more sophisticated surrogate model.

Feature Importance: We rank the importance of each

feature. For each instance of daBOSW in single-model con-

figuration, we conduct a commonly used experiment called

permutation importance [4], [8]. After the GP is trained,

we randomly perturb each feature in turn and measure the

resulting change in the surrogate model’s prediction. Features

that cause large changes are considered to be more important.

Figure 9 shows the relative importance of each feature

normalized for each model. Aside from Transformer, for

which “parallelism available in the kernel” is dominant, no

single feature is the sole indicator of performance. Parallelism

is especially important for the Transformer model because

Transformer is dominated by GEMM operations, which when

converted to CONV operations result in large and uneven

kernel sizes. In general, though, the most important feature

varies.

We repeat this experiment with two modified configurations

of Spotlight: (1) with only vanilla parameters instead of

features (Spotlight-V) and (2) with the union of all features

and raw parameters (Spotlight-A). We find the exact same

result: There are typically a few features, which are different

for each model, that are the most indicative of performance.

We find that Spotlight-A produces accelerators that are on par

with Spotlight, and both Spotlight and Spotlight-A produce

better accelerators than Spotlight-V. This observation indicates

that while good feature selection is still critical, Spotlight is

somewhat resilient to the precise feature selection.

E. Ablation Study

To isolate the benefits of the daBO framework we compare

sample convergence against ConfuciuX and four different

search algorithms within the Spotlight tool, i.e., we replace

daBOHW and daBOSW with each of the following five al-

gorithms: genetic algorithm (Spotlight-GA), random search

(Spotlight-R), vanilla BO (Spotlight-V), and BO with fixed

software schedule options (Spotlight-F). More specifically,

Spotlight-V is identical to off-the-shelf BO because it di-

rectly searches the parameter space instead of the feature

space. Spotlight-F searches the Spotlight feature space, but

it only searches among the three software schedules sup-

ported by ConfuciuX—namely, Eyeriss-like, NVDLA-like,

and ShiDianNao-like—and it only searches for tiling factors

in the K and C dimensions.

The key takeaway: Bayesian optimization is a strong

starting point and is further enhanced by the introduction

of the feature space. Moreover, most of the configurations

selected by Bayesian optimization are superior to the best

configuration produced by competing algorithms.

Figure 10 shows how each search algorithm, including

ConfuciuX, converges—as a function of wall clock time—to a

minimized EDP and delay when co-designing a single model.

The shaded region represents the minimum and maximum of

10 search trials, and the solid line represents the median. We

are unable to collect per-sample data with HASCO, so we

denote with a dashed line the best result of HASCO’s 10 trials.

BO consistently achieves lower EDP and delay than random

search, genetic algorithm, ConfuciuX, and HASCO. Further-

more, our results suggest that given unlimited runtime, Con-

fuciuX may never achieve the same quality of solutions that

Spotlight can achieve in a few hours. Moreover, both Spotlight

and Spotlight-F, which use domain information, outperform

Spotlight-V, which does not use domain information, by up

to 2× in all cases except for Transformer. For Transformer,

we compute permutation importance [4], [8], as described in

Section VII-D, on the parameter space of Spotlight-V and the

feature space of Spotlight, and we find, unexpectedly, that the

raw parameters have a larger impact on the surrogate model’s

prediction than our selected features. This observation explains

why Spotlight-V outperforms Spotlight, and it highlights the
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F. Evaluations Using Timeloop

Because Spotlight uses an analytical model to evaluate

candidate designs, there is a risk that Spotlight’s designs

overfit to the MAESTRO analytical model—i.e., the designs

exploit features of MAESTRO that do not represent actual

hardware. To evaluate this risk, we measure the performance of

Spotlight’s designs using a separate analytical model, namely,

Timeloop [46].

Timeloop is an analytical model that given an accelerator

specification, estimates the performance of a single layer of a

DL model. Compared to MAESTRO, Timeloop provides more

precise control over the accelerator specification and software

schedule. Consequently, it is less intuitive and exposes larger

hardware and software design spaces.

To compare Timeloop and MAESTRO, we take the results

in Figure 6, which evaluates 100 samples for each layer of

each DL model, and perform the following for each layer: (1)

We compute the performance of the 100 samples with both

MAESTRO and Timeloop, (2) we sort the results, and (3) we

quantify the similarity between the two analytical models. On

average, across all layers, 35% of the highest 20 and lowest

20 samples match. These results indicate that Spotlight does

not overfit to MAESTRO but that some caution should be

taken when considering the optimality of specific designs. If

Spotlight’s designs are to be applied to another medium, such

as to actual hardware, our recommendation is to evaluate each

of the top 20 designs on the other medium.

VIII. CONCLUSIONS

In this paper, we have presented Spotlight, an automated

framework for performing hardware/software (HW/SW) co-

design of deep learning accelerators. We have also presented

daBO, our novel Bayesian optimization framework that is

critical to Spotlight’s success because it incorporates domain

information into the automated search process. We have em-

pirically demonstrated that Spotlight can produce highly effi-

cient HW/SW co-designs that are orders of magnitude better

than competing solutions, including both manually designed

accelerators and those designed by state-of-the-art tools.

Philosophically, we observe that previous work [16], [61],

[70] manually applies domain information to define dramati-

cally smaller co-design spaces to search, but because the co-

design space is so complex, this manual pruning apparently

removes many of the best design points from the search space.

By contrast, Spotlight gets great power by embracing a vast

co-design space and incorporating the domain information

into the automated search process, thereby giving Spotlight

a mechanism for finding many of the best design points.

As we look to the future, we see many potential uses for

Spotlight. For example, we believe that Spotlight’s sample

efficiency will be amplified by more costly but more accurate

evaluation backends, such as FPGA emulation. Moreover,

Spotlight can be integrated with widely-studied neural archi-

tecture search techniques to fully explore the joint space of

hardware, software, and neural models.
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APPENDIX

A. Abstract

This artifact provides the source code for Spotlight as well

as scripts that aid with reproduction of key results. The latter

includes the raw values shown in Figures 6-8 and the end

results of Figure 10.

B. Artifact check-list (meta-information)

• Runs Spotlight and Spotlight variants.

• Supports DL models: VGG16, ResNet-50, MobileNetV2,

MnasNet, and Transformer.

• Supports hand-designed accelerator baselines: Eyeriss,

NVDLA, and MAERI.

• Includes scripts to produce and compare results.

• Outputs all sample points and final results for architec-

tural parameters and software schedules.

• Setup takes 20 minutes.

• Runtime takes 5-9 days, depending on the number of

workloads being evaluated. Runtime can be significantly

reduced if more parallelism is available.

C. Access to Artifact

The artifact is permanently archived on Zenodo [50] and is

also publicly released on GitHub [51].

D. System Requirements and Dependencies

In this appendix, for convenience, we present a workflow

using Docker. However, the README.md in the artifact ad-

ditionally outlines a native installation process, which requires

lower overhead and may have slightly higher performance.
System requirements:

• 10 GB of disk space

• 16+ GB of RAM recommended

• 8+ core CPU recommended

Software dependencies:

• Docker

• Linux installation recommended

E. Setup

Build the Docker image and set up a new container. (20

minutes)

$ do c k e r b u i l d − t s p o t l i g h t .

$ do c k e r run − i t s p o t l i g h t / b i n / bash

From within the Docker container, activate the Python

environment and build Spotlight. (1 minute).

$ conda a c t i v a t e s p o t l i g h t −ae

$ s c o n s −j $ ( np roc )
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F. Workflow

If the container is not running, then start it up.

$ do c k e r c o n t a i n e r l s −a

( To g e t C o n t a i n e r ID )

$ do c k e r s t a r t <C o n t a i n e r ID>
$ do c k e r exec − i t <C o n t a i n e r ID> / b i n / bash

The starting point for all runs is the run-ae.sh script,

which launches the experiments. There are four modes, each

one corresponding to the key figures: Main-Edge (Figure 6),

Main-Cloud (Figure 7), General (Figure 8), and Ablation

(Figure 10).

The following is a brief description of each mode, including

its expected runtime. The runtime can be fairly high in

some cases, but it can be reduced if more parallelism is

available. We were able to complete all runs within a couple

of days by running on a cluster instead of a single machine.

However, the run-ae.sh script requires modifications to

support parallelism across machines.

• Main-Edge: Runs Spotlight to generate an edge-scale,

fine-tuned DL accelerator. It fine-tunes separately for

EDP and delay, and it runs Spotlight independently

for each of the 5 models. Finally, it also searches for

optimal software schedules and hardware configurations

for Eyeriss, NVDLA, and MAERI. The expected runtime,

if running a single trial for each configuration, is 1 day.

• Main-Cloud: Runs a similar set of workloads as Main-

Edge, but it performs them for a cloud-scale accelerator,

including cloud-scaled versions of Eyeriss, NVDLA, and

MAERI. The cloud-scale design space contains many

more invalid points than the edge-scale design space,

so the expected runtime is anywhere between 3 and 7

days. It is recommended to perform other comparisons

before Main-Cloud, because Main-Cloud can have highly

variable runtimes.

• General: Runs Spotlight’s software optimizer with ac-

celerator parameters that were generated by Spotlight

when fine-tuning an accelerator for either (1) all 5 DL

models simultaneously or (2) VGG16, ResNet-50, and

MobileNetV2 simultaneously. In scenario (1), all 5 DL

models are independently optimized to see if the ac-

celerator is flexible. In scenario (2), only MnasNet and

Transformer are optimized to see if the accelerator can

generalize to efficiently process models it wasn’t fine-

tuned for. Since only the software optimizer is running

in this mode, its runtime is roughly 10 minutes.

• Ablation: Runs the remaining variants of Spotlight:

Spotlight-GA, Spotlight-R, Spotlight-V, and Spotlight-F.

The expected runtime is roughly 1 day.

All runs can be executed with the following simple com-

mands.

$ . / run−ae . sh main−edge

$ . / run−ae . sh main−c l o u d

$ . / run−ae . sh a b l a t i o n

$ . / run−ae . sh g e n e r a l

Each command can optionally be augmented with the

--trials N flag, where N indicates the number of inde-

pendent trials for which each experiment runs. Though we

use 10 trials for all evaluations in this work, we recommend

sticking with the default value of 1 unless more parallelism is

available. As it stands, multiple trials are run in series.

Results are stored in the results directory.

G. Steps for Evaluation and Results

After the runs are complete, then results can be analyzed us-

ing the compare-ae.sh script. Similar to the run-ae.sh

script, the user specifies a comparison mode that corresponds

to Figures 6-8 and 10.

The script is run with the following simple commands.

$ . / compare−ae . sh main−edge

$ . / compare−ae . sh main−c l o u d

$ . / compare−ae . sh a b l a t i o n

$ . / compare−ae . sh g e n e r a l

The compare-ae.sh script outputs a CSV file to standard

output. The columns of the CSV are the configuration type, the

minimum achieved performance across all trials, the maximum

achieved performance across all trials, the median performance

across all trials, and the median normalized to the median

of Spotlight. This output can be used to evaluate Figures 6-

8 directly, although numbers may vary slightly due to the

randomness of the optimization process. The CSV output

corresponds to the final endpoint of each line in Figure 10.

For more thorough details, see the README.md in the

artifact.

15


	Introduction
	Background
	DL Layers
	DL Accelerators
	Bayesian Optimization

	Related Work
	HW/SW Co-Design
	HW/Model Co-Design
	End-to-End Frameworks

	Co-Design Space
	Parameter Space
	Hardware Parameters
	Software Parameters
	Cardinal, Ordinal, and Categorical Parameters

	Feature Space
	Overview
	Feature Selection


	Domain-Aware BO
	Surrogate Model
	Acquisition Function

	Spotlight
	Layerwise Optimization
	Candidate Evaluation

	Evaluation
	Single-Model Co-Design
	Multi-Model Co-Design
	Discussion
	Feature Space Analysis
	Ablation Study
	Evaluations Using Timeloop

	Conclusions
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Access to Artifact
	System Requirements and Dependencies
	Setup
	Workflow
	Steps for Evaluation and Results


