Leveraging Domain Information for the Efficient
Automated Design of Deep Learning Accelerators

Chirag Sakhuja*
The University of Texas at Austin
chirag.sakhuja@utexas.edu

Abstract—Deep learning accelerators are important tools for
feeding the growing demand for deep learning applications. The
automated design of such accelerators—which is important for
reducing development costs—can be viewed as a search over
a vast and complex design space that consists of all possible
accelerators and all the possible software that could run on them.
Unfortunately, this search is complicated by the existence of many
ordinal and categorical values, which are critical to explore for
the ultimate design but are not handled well by existing search
techniques.

This paper presents a technique for efficiently searching this
space by injecting domain information—in this case information
about hardware/software (HW/SW) co-design—into the auto-
mated search process. Specifically, this paper introduces a novel
Bayesian optimization framework called daBO (domain-aware
BO) that accepts domain information as input, including those
describing ordinal and categorical values.

This paper also introduces Spotlight, a design tool based on
daBO, and this paper empirically shows that Spotlight produces
accelerator designs and software schedules that are orders of
magnitude better than those created by the state-of-the-art.
For example, for the ResNet-50 deep learning model, Spotlight
produces a HW/SW configuration that reduces delay by 135x
over the configuration produced by ConfuciuX, a state-of-the-
art HW/SW co-design tool, and Spotlight reduces energy-delay
product (EDP) by 44 over an Eyeriss-like accelerator, which
is an edge-scale hand-designed accelerator. In the realm of
cloud-scale accelerators, Spotlight reduces the EDP of a scaled-
up Eyeriss-like accelerator by 23x. Our evaluation shows that
Spotlight benefits from the efficiency of daBO, which allows
Spotlight to identify accelerator designs and software schedules
that prior work cannot identify.

I. INTRODUCTION

Deep learning (DL) models have had tremendous impact
in fields such as computer vision, natural language process-
ing, and speech recognition [73]. The varying demands of
these models have driven an explosion of DL accelerators,
which provide significant energy and performance benefits
over CPUs and GPUs [11]-[14], [20], [26], [29], [33], [43],
[45], [53].

Because DL accelerators can be deployed in a variety of
situations—from datacenters to edge devices—they come in a
large variety of shapes and sizes. And because DL models con-
tinue to rapidly evolve—sometimes incorporating new types
of layers [22], [59] that do not execute efficiently on existing
DL accelerators [13]—there is a constant desire to design new

*These authors contributed equally to this work.

Zhan Shi*
The University of Texas at Austin
zshil7 @cs.utexas.edu

Calvin Lin
The University of Texas at Austin
lin@cs.utexas.edu

DL accelerators. Unfortunately, hardware design is expensive
because of its lengthy design cycle [26], and the software stack
often requires bespoke compilers and optimizations [35].

To significantly reduce the cost of accelerator design, we
would ideally employ design automation. However, both the
hardware design space—which considers architectural pa-
rameters such as buffer sizes and processing element (PE)
arrangement—and the software design space—which consid-
ers loop optimization parameters such as permutations and
tiling factors—are massive. Still, both prior work [46], [53]
and our own results show that hardware/software (HW/SW)
co-design is essential to the design of efficient DL accelerators.

Unfortunately, the co-design space exhibits unique char-
acteristics that make it challenging to search automatically:
(1) the co-design space is massive, e.g. a single layer of
the ResNet-50 [22] DL model on a spatial array of PEs has
O(10'8) configurations, (2) the co-design space is complex, as
hardware and software parameters have complex interactions
that render large and unpredictable parts of the co-design space
infeasible or invalid, and (3) some parameters are ordinal
(sortable but discontinuous values) or categorical (a set of
arbitrary options), so performance and energy can vary wildly
and unpredictably with minor changes to their values, i.e.,
there are performance and energy cliffs.

To search this vast co-design space, prior work has em-
ployed intelligent search algorithms, such as reinforcement
learning [27], [66] or Bayesian optimization [24], [44], [48],
[61], [66], [72]. Unfortunately, these techniques have largely
relied on off-the-shelf algorithms which struggle with the
complex portions of the design space, particularly with ordinal
and categorical parameters [24], [44].

In this paper we introduce a novel customized Bayesian
optimization framework, daBO (domain-aware BO), that over-
comes the challenges of searching the HW/SW co-design
space. Our key insight is that the search algorithm, which
conventionally evaluates numerous samples to learn the shape
of the co-design space, can be made more efficient by boot-
strapping it with domain information. For example, a domain
expert knows that the degree of parallelism, which is derived
from the spatially unrolled dimension, the shape of the DL
model, and the arrangement of processing elements, is a more
accurate predictor of delay than any of the constituent parts
alone. In designing daBO, we introduce a flexible method of
providing high-level correlations, i.e. domain information, to
the search algorithm. As a result, daBO is sample efficient—

i.e., it converges to a solution faster than prior techniques.

Because daBO is sample efficient, it can be applied to
massive HW/SW co-design spaces, enabling it to find—in
the same amount of time—solutions that are superior to those
identified by other search techniques. Because it can leverage
domain information, daBO can learn complex interactions be-
tween parameters. And because daBO can handle ordinal and
categorical values, it can consider important design parameters
that other techniques struggle with.

We use daBO as the basis for a new automated HW/SW
co-design tool called Spotlight, which takes as input a set of
DL models and a hardware budget. Spotlight then evaluates
configurations using the MAESTRO [31] analytical model,
and Spotlight produces as output (1) optimized microarchitec-
tural parameters for a programmable DL accelerator and (2)
optimized software schedules for each layer of the DL model.

This paper makes the following contributions:

¢ We present daBO (domain-aware BO), a novel Bayesian
optimization framework that effectively deals with the
ordinal and categorical search parameters that lead to
discontinuities in the design space. In particular, daBO
leverages domain information to efficiently learn correla-
tions among categorical search parameters.

o We illustrate the benefits of daBO by presenting Spot-
light, an open-source” automated HW/SW co-design tool
that is built on daBO. We show that for the ResNet-50 DL
model, Spotlight produces DL accelerator designs with
44x lower energy-delay product (EDP) than an Eyeriss-
like hand-designed accelerator and 135 x lower delay than
a design created by ConfuciuX, a state-of-the-art HW/SW
co-design tool. For the Transformer DL model, Spotlight
achieves 902x lower EDP than an NVDLA-like hand-
designed accelerator and 52x lower delay than a cloud-
scale Eyeriss-like accelerator.

« We demonstrate that automated HW/SW co-design is crit-
ical for designing efficient DL accelerators. A significant
part of Spotlight’s benefit comes from the co-design of
loop tile sizes with scratchpad sizes—a strategy that is
made possible by daBO, which can efficiently explore
the search space of tile sizes through the use of domain
information.

o We empirically demonstrate that Spotlight exhibits sev-
eral desirable properties.

1) It is extremely sample efficient. We show that it
can effectively search a co-design space of O(10'®)
design points using just 100 hardware samples and
100 software samples per layer.

2) It can find configurations that prior work completely
ignores. Specifically, Spotlight considers both loop
permutations and loop tiling factors for each dimen-
sion, while prior work in automated HW/SW co-
design prunes this part of the co-design space.

3) Itis highly flexible and can be used in diverse design
settings that include both edge-scale and cloud-

“https://github.com/chiragsakhuja/spotlight

o X

to R

0 to S
Weights[k][c][s][r] *
Inputs[n][c][y][x]
Outputs[n][k][y-s][x-r] += prod

nm 1 ot

Fig. 1: The 7-level loop used to compute a CONV layer.

scale designs: (1) It supports single-model co-design
of accelerator parameters and software schedules,
which is useful for FPGA deployment, and (2) it
produces programmable accelerators that are able
to efficiently execute DL models that they were not
co-designed for—a property that is useful for ASIC
deployment.

The remainder of this paper is organized as follows. Sec-
tions Il and III present background and related work. In
Section IV we discuss our HW/SW co-design space and
introduce our concept of a feature space. Section V introduces
daBO, and Section VI describes Spotlight, which is evaluated
in Section VII before we conclude in Section VIII.

II. BACKGROUND

Deep learning (DL) models have diverse layer types such
as convolutional, attention, and fully-connected layers that
can be represented with the primitive operations of a con-
volution (CONV) or matrix multiplication (GEMM). Since
these primitive operations are highly regular and constitute
the majority of DL model inference time, they are popular
targets for acceleration. In this work, we primarily focus on
accelerating CONV operations, which can compute GEMM
operations without loss of generality.

A. DL Layers

The CONV operation has many uses in DL models, includ-
ing those that target image processing. Moreover, other types
of layers, such as fully connected, GEMM, and depth-wise
separable convolutions, can be represented as CONV layers.

The building block of CONV layers is the 3-D convolution
operation, which operates on a weight tensor of size Rx S xC
and an input tensor of size X X Y x C to produce an output
tensor of size (X — R+ 1) x (Y — S+ 1) x 1. The CONV
operation is repeated for each of K weight tensors and N input
tensors to produce K x N output tensors. Output tensors are
reshaped such that subsequent layers are presented with N
input tensors of size (X —R+1)x (Y —S+1) x K.

The CONYV operation is implemented in software as a 7-
level nested loop as shown in Figure 1.

Other operations can also be represented by CONV. For
example, GEMM can be transformed, without loss of gener-
ality, to a CONV using an algorithm called col2im [1]. Also,
depth-wise separable convolutions, which consists of a depth-
wise convolution followed by a point-wise convolution, can be

L2 Scratchpad
\ \

~ PE PE ~ PE PE
RF FF RF FF
- PE PE 5 PE PE
o — | © — |
S RF FF S RF RF
U [}
© ©
S PE PE S PE PE
v — —_— [V J— -
— RF FF - RFFRF
_ PE PE PE PE
RF FRF RF FRF

Fig. 2: An abstract DL accelerator architecture with 16 PEs,
which are arranged in 2 clusters of 4 x 2 spatial arrays and 2
levels of scratchpads.

computed with CONV by computing each of its constituent
parts independently. In both cases, some inefficiency may be
introduced during the transformation.

Additionally, DL models incorporate important intermediate
operations such as pooling and activation functions. Our work
does not support these types of layers because of limitations in
the analytical model backend, MAESTRO [31]. Fortunately,
these layers do not contribute significantly to runtime of
the DL model [7] MAESTRO also does not model cross-
layer optimizations such as layer fusion, which are important
components of modern DL models. These shortcomings have
non-trivial implications, but we leave a solution to future work.

B. DL Accelerators

At a high level, DL accelerators comprise a spatial array
of processing elements (PEs) or reduction trees that compute
one or more Multiply-Accumulate (MAC) operations and are
connected via multiple levels of on-chip scratchpad buffers and
interconnects. Figure 2 shows an abstract DL accelerator with
16 PEs, 2 levels of scratchpads, and a register file (RF) within
each PE. The architecture is a tree-like structure of scratchpads
with leaves that are 2D spatial arrays of PEs. In this figure,
there are two leaves of 2 x4 PEs. Communication within a row
of PEs occurs through a dedicated interconnect that is capable
of uni-casting and multi-casting, and communication across
rows occurs through queues in each scratchpad. This simple
abstract accelerator design captures the high-level microar-
chitectural parameters of many popular DL accelerators [11],
[12], [20], [26], [29], [33], [43], [45]. Edge-scale accelerators
generally have one or two levels of scratchpads.

For a two-level DL accelerator, each of the seven loops in
Figure 1 is broken into three tile sizes. The outer-most loops
describe the data that is stored in the L2 scratchpad, and the
inner-most loops describe the data that is stored in the RF.
At each tile level, one dimension is spatially unrolled and is
distributed evenly among the lower level processing clusters.
If a dimension cannot be fully unrolled, then the partial tiles
are streamed temporally.

C. Bayesian Optimization

Bayesian optimization (BO) is a search algorithm that
converges to solutions in fewer total number of samples than
competing algorithms, such as reinforcement learning [27],
[66] and genetic algorithms [28], [66]. The key mechanism
behind BO is the surrogate model, which is a probabilistic
approximation of the cost function. The surrogate model is
cheaper to query than the cost function, so it is consulted first
when evaluating a candidate. To identify candidates that are
worth evaluating on the slower cost function, BO generates
a batch of candidates, queries their values on the surrogate
model, ranks the candidates using an acquisition function, and
selects the most promising candidates. Thus, if the surrogate
model can accurately approximate the cost function, BO
mostly selects high quality samples to evaluate. Unfortunately,
the cost function of co-design has many invalid regions and
behaves erratically, so it is difficult to train the surrogate
model. In this work, we introduce a technique that overcomes
these challenges to quickly and effectively train the surrogate
model.

III. RELATED WORK

The deep learning stack consists of (1) a DL model [22],
[52], [54], [58], (2) a software optimizer [23], [28], [42], [46]
or DL compiler [10], [36], which additionally performs code
generation, and (3) a DL accelerator [9], [45], [53], [56].

Because each component of the stack has an enormous
number of design points, prior work has focused on automating
the co-design of two of the three components: either the
accelerator and software mapping (HW/SW co-design) or the
accelerator and DL model (HW/Model co-design).

End-to-end frameworks are a tangential type of automated
design that iteratively transform a DL model into a fixed-
function DL accelerator by projecting high-level representa-
tions into low-level representations until synthesizable hard-
ware is produced. By contrast, HW/SW and HW/Model co-
design simultaneously explore the joint space of two compo-
nents of the deep learning stack. End-to-end frameworks can
be augmented with HW/SW or HW/Model co-design, so we
consider our work to be orthogonal to end-to-end frameworks.

A. HW/SW Co-Design

HW/SW co-design of DL accelerators aims to optimize the
microarchitectural parameters of the accelerator alongside the
loop structure of a single layer of a DL model. Interstellar [70]
searches for the optimal loop to spatially unroll in the X and Y
dimensions of a systolic array, but there are only a few hundred
possibilities, so the design space is limited. dMazeRunner [16]
and ZigZag [41] both present a vast software design space but
only search a small hardware design space. MAGNet [61] uses
off-the-shelf Bayesian optimization by first using heuristics to
prune the software search space and then applying BO to the
reduced hardware design space. In Section VII we compare
Spotlight against HASCO [66], which uses reinforcement
learning and Bayesian optimization, and ConfuciuX [27],
which uses reinforcement learning and genetic algorithms,

but neither explores loop tiling options. Hypermapper [44]
is a custom Bayesian optimization framework that accepts a
limited and somewhat unintuitive form of domain information
as input. VAESA [24] automatically learns a transformation of
the complex design space into one that is easier for a search
algorithm to explore. However, to learn the transformation,
VAESA requires many samples.

Spotlight uses hand-provided domain information to trans-
form the complex design space into a space that is more suit-
able for automated HW/SW co-design. Consequently, Spot-
light can explore a large HW/SW co-design space comprised
of complicated ordinal and categorical parameters, such as
loop tiling sizes.

B. HW/Model Co-Design

Neural Architecture Search is the process of automatically
designing the neural architecture of a DL model [5], [39],
[49], [72], [75], and recent work has incorporated hardware
design parameters into the search space. Reagen et al. [48]
show that BO can effectively be used to co-design a model
and accelerator, but their framework only searches over limited
hardware design parameters. Other work limits the hardware
design space by using hardware templates [21], [38], [69] or
a few hardware parameters [3]. EDD [37] formulates the joint
hardware-model design space as a differentiable search but
only searches for a single parameter in the hardware design
space.

HW/Model co-design is orthogonal to our work because our
work accepts the DL model as input and searches the HW/SW
design space for an optimized design.

C. End-to-End Frameworks

End-to-end frameworks, i.e., high-level synthesis tools,
transform a high-level algorithmic description written in Ten-
sorFlow [2], C++, or a domain-specific language into fixed-
function hardware. End-to-end frameworks, particularly those
that target FPGAs and CGRAs, have been extensively stud-
ied [15], [18], [40], [60], but such work is orthogonal to ours,
which aims to produce a programmable DL accelerator that
can execute DL models that it was not explicitly designed for.

Hadjis and Olukotun [19] present a convenient frame-
work that consumes a DL model and automatically deploys
a specialized DL accelerator on an Amazon Web Services
FPGA instance. The framework uses a series of independent
tools, such as the Spatial [30] hardware design language
and Vitis HLS [67], so there is limited room for co-design.
Aurora [57] and REVAMP [6] use custom-designed CGRAs,
which provide an effective tradeoff between reusability and
performance, to generate workload-specific hardware. Other
work restricts the hardware design space either by using hard-
ware templates [17], [68], by limiting the design parameters
that are searched [71], or by generating hardware that is highly
specialized for the given algorithm [62], [64], [74].

IV. Co-DESIGN SPACE

We now describe our co-design space, which is the Carte-
sian product of the hardware and software space of DL accel-

[Parameter [Range |
SIMD Lanes 2to 16
Bandwidth 64 to 256
PEs 128 to 300
(a) Cardinal parameters.
| Parameter | Range | Stride |
Scratchpad Size 64 to 256 KB 8
Register File Size 64 to 256 KB 8
PE Aspect Ratio | Divisors of PE Count N/A
Tiling Factors’ Divisors of layer shape | N/A

(b) Ordinal parameters.
\ Parameter \ Values |

Loop Order"
Unroll Dimension’

Permutations of loops
N,K,C,R, S, X, Y

(c) Categorical parameters.
"Independent values per scratchpad level.

Fig. 3: HW/SW co-design parameter values.

erators. We select a set of hardware parameters that, as prior
work [25], [31], [32], [46], [61] has shown, captures a wide
variety of DL accelerators and software optimizations. The
resulting co-design space is massive—O(10'®) for a single
layer of ResNet-50 running on a parameterizable accelerator
(see Figure 3 for details).

We then present the notion of a feature space, which is our
technique for reducing the complexity of the co-design space
by using domain information.

A. Parameter Space

Our parameter space is composed of (1) high-level microar-
chitectural parameters for DL accelerators and (2) the full set
of loop transformations that can be applied to the 7-level loop
to compute a CONV.

1) Hardware Parameters: The hardware design space com-
prises the following prominent characteristics of DL acceler-
ators: processing elements (PEs) count and arrangement in
a 2D spatial array; the number of SIMD lanes in each PE;
the size of the register files (RFs) that are in each PE; the
size of a single global scratchpad; and the bandwidth of the
simple interconnect, which supports uni-cast and multi-cast.
To compare fairly against prior work, we use a fixed 8-bit
precision. Figure 3 shows the range of values that Spotlight
uses when designing an edge-scale accelerator.

2) Software Parameters: The software design space, which
is independent for each layer of the DL model, consists of
all loop transformations that can be applied to the CONV
layer’s 7-level loop. We consider three loop transformations:
loop tiling, loop reordering, and spatial unrolling.

Loop tiling [65] is a common compiler optimization that
improves data locality by splitting large loops into smaller
loops that fit into on-chip caches or scratchpads. Each of the
7 loops in the CONV computation can be independently tiled.
Naively, there are (N x K x C' x R x S x X xY)? options for
loop tiling, but many of these options are invalid or require
insertion of edge cases in the loops or padding in the memory

Feature

Calculation

Raw Cardinal Parameters

SIMD Lanes, On-Chip Bandwidth, Total # of PEs, Width of PE Array

Total Amount of On-Chip SRAM

Register File Size + Scratchpad Size

Parallelism Available in Kernel

RQXS()

Degree of Spatial Unrolling

Outer Loop Unrolled Tile Size x Inner Loop Unroll Tile Size

PE Utilization

DRAM Tile Size x Outer Loop Unrolled Tile Size
Outer Loop Unrolled Tile Size x Height of PE Array Inner Loop Unrolled Tile Size x Width of PE Array

Number of Loop Iterations to Completion

’—Outer Loop Unrolled Tile SIZC" l—Inner Loop Unrolled Tile Slze~|
Height of PE Array Width of PE Array

Approximate Transfers from DRAM

(Xo0/X2) x (Yy/Ys) x (Width of PE array + Height of PE array)

Size of Commonly Unrolled Dimensions

2Xx Xog+3xYy+5x Kg+7x K1+ 11 x Ko

Fig. 4: Features used as domain information by the search algorithm.

footprint. Our design space only considers loop tiling options
that evenly divide the size of the layer.

After loop tiling is applied, the resulting 14 loops can be
reordered in any of (7!)? permutations, and each permutation
is a viable option. One loop of each level of loop tiling can also
be spatially unrolled along a dimension of the spatial array.
Our search space considers all 7% options.

3) Cardinal, Ordinal, and Categorical Parameters: Cardi-
nal parameters, which take on integral values within a specified
range, are straightforward for search algorithms to explore be-
cause they tend to exhibit appreciable trends. For example, as
on-chip bandwidth is increased, energy consumption and area
increase, while delay decreases. Ordinal parameters, which
take on ordered values, are more complex to search if they
have inconsistent spacing, but they can still exhibit appreciable
trends. Categorical parameters, however, are problematic for
search algorithms because they represent arbitrary values that
have no correlation among them, so changes in their value
have unpredictable implications. Figure 3 defines the type of
each parameter in our parameter space of our co-design space.

B. Feature Space

The HW/SW co-design space of DL accelerators exhibits
three unique challenges: (1) the co-design space is vast, (2)
the co-design space is complex, with interactions among pa-
rameters rendering large portions of the space invalid, and (3)
changes to the numerous ordinal and categorical parameters
can result in erratic changes in behavior of the resulting design.
Our technique of injecting domain information into the search
overcomes these challenges.

1) Overview: To understand how domain information can
improve a search algorithm’s learning process, consider an
example: It is well known that end-to-end delay is directly
proportional to PE count and utilization, and given enough
sample points, a search algorithm can learn this correlation
on its own. However, it is sample efficient for an expert to
explicitly highlight this correlation. Thus, domain information
can be used (1) to guide the search toward profitable regions
and away from invalid regions of the co-design space, and (2)
to provide information on the behavior of parameters so that
changes to these parameters are more predictable.

Typically, a search algorithm explores the parameter space
directly, but we introduce the notion of a feature space,

Hardware Budget Model 0, Layer 0 Model m, Layer n

|

Hardware Optimizer

Minimized SW Config
For i samples
Software Optimizer (Per Layer)

HW Config
Perf Metrics

For j samples

Analytical

HW+SW Config Model

.. . . Optimization Algorith:
Optimized Microarchitectural Bl Optimization Algorithm

Params and Software Schedules Cost Function

Fig. 5: Spotlight takes as input a hardware budget and a DL
model and performs a nested optimization using our novel
Bayesian optimization framework, daBO, to produce opti-
mized microarchitectural parameters and software schedules.

which comprises features, which are defined as an arbitrary
transformation over the parameter space.

Concretely, let P be the set of HW/SW co-design parame-
ters. The cost function, C, maps a point in P to its perfor-
mance. The feature space is defined as any transformation
T : P — F, where F is the feature space and comprises
individual features f; : P — R. The transformed cost function,
which is what is learned by Spotlight, maps the performance
of a point, p € P, as follows: C'(T'(p)).

It is easier for a search algorithm to find correlations in C’
than C. For example, it is unreasonable for a search algorithm
to learn much useful information about delay from just the
spatially unrolled dimension, which is a categorical parameter
that takes on 72 unrelated values. By contrast, it is much more
apparent that there is an inverse relationship between delay
and degree-of-parallelism, which is a feature derived from the
spatially unrolled dimension, the tiling factors, and the PE
arrangement.

2) Feature Selection: The quality of the features determines
the quality of the search, so thorough feature selection is
critical. The selection of relevant and meaningful features is
domain-specific, so we follow four general guidelines. (1) We
ensure that categorical parameters are incorporated into one

or more features so that it is easier for the search algorithm
to find correlations among them. (2) We encode domain infor-
mation, i.e. well-known complex interactions among hardware
and software parameters, as features. Examples of domain
information are: the cost of data transfer among parts of the
memory hierarchy and knowledge about the infeasible regions
of the co-design space. (3) We design features that have linear
trends so that the surrogate model in our Bayesian optimization
framework can use a linear kernel, which can be computed
more quickly than other common kernels such as Radial Basis
Function and Matérn. (4) We verify the usefulness of each
feature by computing permutation importance [4], [8].

We use these principles to brainstorm an initial set of 15
intuitive features, including buffer utilization, reuse volume,
PE perimeter, and those in Figure 4. To ensure that the features
are of high quality, we measure each feature’s correlation with
performance metrics by (1) computing each feature’s value for
millions of random HW/SW samples, and (2) visualizing the
feature values against the performance of those samples. We
discard any features that do not exhibit a strong correlation.
Furthermore, to ensure that removal of a feature does not affect
search quality, we evaluate our automated HW/SW co-design
tool, Spotlight, both with and without these weakly- or un-
correlated features (see Section VI).

Figure 4 shows the final results of our feature selection pro-
cess, including the equations used to compute each feature. We
validate each of these features by ensuring that the correlations
learned by the surrogate model are the same as those that we
observe with our offline samples. The first features are simply
raw cardinal parameters, which our search algorithm is already
able to correlate well with performance metrics. Next, the total
amount of on-chip SRAM is directly correlated with power
consumption. The next three features—parallelism available
in kernel, degree of parallelism in the spatially unrolled
dimension, and PE utilization—measure available parallelism,
which is a property of both the hardware and software, and is
strongly correlated with delay. Next, some configurations can
produce many edge cases that lead to a large tail latency, so
we incorporate as features an approximation for the number
of loop iterations for a layer to completely execute and the
number of transfers of the input and kernel matrices from
DRAM. Finally, we incorporate commonly unrolled spatial
dimensions that are correlated with delay. We observe that
each independent parameter—X, Yy, Ky, etc.—has a weak,
but notable, correlation with delay because the parameters
generally take on fewer than 32 unique values, making it
difficult to disambiguate them. For this feature, we spread out
the number of unique values by using the prime numbers as
the “basis vectors” to compute a linear combination of these
parameters.

V. DOMAIN-AWARE BO

Our novel Bayesian optimization framework utilizes the
notion of a feature space to efficiently search the co-design
space.

As an optimizer, Bayesian optimization consists of two
major components: (1) a surrogate model that predicts a
Bayesian posterior probability distribution over the values of
a cost function, and (2) an acquisition function that leverages
the posterior distribution to suggest a design point to evaluate.

A. Surrogate Model

Conventionally, the surrogate model learns the characteris-
tics of the parameter space to predict the cost function. With
daBO, the surrogate model is trained on features instead of
parameters. Candidate configurations are randomly generated
in the parameter space, and daBO transforms them into the
feature space before evaluating them on the surrogate model.

As is common practice, daBO uses Gaussian process (GP)
as the surrogate model [47]. At a high level, GP learns a prob-
abilistic approximation of the cost function by maintaining
a Gaussian distribution for each point in the domain. More
concretely, GP takes as input the features, denoted by x, and
predicts a posterior distribution based on prior distribution over
the space of functions comprised of a mean function m(x) and
a covariance, or kernel function, k(x,x’). If the covariance for
every point in the domain is 0, then GP exactly matches the
function it is learning.

Typically, a Matérn or Radial Basis Function (RBF) kernel
is employed because they can approximate a wide variety of
cost functions, but both kernels have complexity of O(N?),
and we find that they overfit to the evaluated samples. Instead,
daBO employs a simple linear kernel, which has O(N) com-
plexity, takes far fewer samples to accurately model the trends
of the cost function, and fits well with our feature selection.

B. Acquisition Function

The acquisition function selects the next configuration to
evaluate on the cost function. A batch of candidate configura-
tions is randomly generated in parameter space; each candidate
is then transformed into feature space and evaluated on the
posterior predictive distribution predicted by the surrogate
model. daBO then uses Lower Confidence Bound [55] as the
acquisition function, which is maximized to determine the next
configuration to evaluate.

VI. SPOTLIGHT

Spotlight is a design automation tool that employs multiple
instances of daBO to conduct automated HW/SW co-design.
At a high level, Spotlight accepts as input a hardware budget
and a set of layers from one or more DL models; for each
input layer, Spotlight produces as output microarchitectural
parameters for an optimized DL accelerator, along with opti-
mized software schedules. Spotlight uses the MAESTRO [31]
analytical model to evaluate configurations. Spotlight does
not perform code generation or hardware synthesis. Figure 5
provides an overview of Spotlight.

A. Layerwise Optimization

It is challenging to optimize multiple layers of a model
simultaneously, so Spotlight iteratively optimizes the hardware

and software configurations using a layerwise approach. Inde-
pendent instances of daBO are used as the search algorithms
for both hardware and software, so we denote the instances as
daBOyxw and daBOgw.

We use x; and x, to denote the set of hardware and
software parameters in the parameter space. In Spotlight’s
layerwise approach, a hardware search is first performed by
daBOpgyw with the objective being to minimize f(xy, | layers),
which can be the energy-delay product (EDP) or delay of
executing the DL model layers on the hardware configuration.
Given the hardware configuration, Spotlight optimizes the
software schedule by applying daBOgw to each layer indepen-
dently, with the objective being to minimize f(xs | x5, layer;),
which is defined as the EDP or delay of running the layer
j on the fixed hardware configuration. The software search
produces a configuration that represents the best software
schedule for each layer on the hardware configuration. The
layerwise energies and delays are then summed to represent
the cost of the hardware to compute aggregate EDP or delay,
which is fed back to daBOgw to generate the next hardware
configuration. This concludes one iteration of search. The
iterative search between hardware and software repeats for a
user-defined number of trials.

B. Candidate Evaluation

To evaluate the cost of each design, we use MAESTRO [31]
to report delay, energy, throughput, power, and area of DL
accelerators. MAESTRO has been validated against RTL sim-
ulation, and our hardware and software design spaces naturally
translate into MAESTRO’s data-centric loop representation.
MAESTRO models primitives, such as interconnects and con-
volutional layers, that are building blocks for DL accelerators
and DL models.

Spotlight performs single objective optimization to mini-
mize delay or EDP, which is a common metric for comparing
DL accelerators [28]. From the pareto-optimal frontier, Spot-
light selects the configuration that is closest to the inputted
area and power budgets without exceeding them.

VII. EVALUATION

We evaluate Spotlight in a variety of settings and against a
variety of baselines. Unless otherwise specified, we evaluate
Spotlight with 100 hardware samples and, for each hardware
design and each layer, 100 software samples.

DL Models: We co-design separate DL accelerators with
each of five DL models. Four models—VGG16 [54], ResNet-
50 [22], MobileNetV2 [52], and MnasNet [58]—are popular
for image processing and span nearly a decade of progress, in-
cluding one model, MnasNet, which is automatically generated
by neural architecture search (NAS). The fifth model is a single
Transformer [59], which is a building block for the state-of-
the-art natural language processing model, ALBERT [34].

Hand-Designed Accelerators: We compare Spotlight’s
optimized DL accelerator designs against three hand-
designed accelerators: NVDLA-like [45], Eyeriss-like [12],

and MAERI-like [33]". NVDLA and Eyeriss are popular
edge-scale DL accelerators that have been fabricated. Both
accelerators suffer from rigid dataflows that cannot always
run modern DL models efficiently [13], [32], while MAERI,
which is a more recent edge-scale accelerator that has not
been fabricated, is designed to be highly flexible. For fairness,
we evaluate Spotlight-generated accelerators and the hand-
designed accelerators under our layerwise software optimizer,
daBOgw and we scale all accelerators so that they fit in the
same area.

HW/SW Co-Design Tools: Where possible, we com-
pare Spotlight against two state-of-the-art HW/SW co-design
frameworks that also use the MAESTRO [31] ecosystem:
ConfuciuX [27] and HASCO [66]. ConfuciuX optimizes
with a combination of reinforcement learning and genetic
algorithms, and HASCO uses a combination of Bayesian
optimization and reinforcement learning. Both tools search
limited software schedules; ConfuciuX selects among Eyeriss-
like, NVDLA-like, and ShiDianNao-like, and HASCO uses a
fixed software schedule. We evaluate ConfuciuX and HASCO
with their out-of-the-box configurations. We do not show
comparisons against Hypermapper [44], which is a domain-
specific Bayesian optimization framework, because most runs
do not terminate within four days of runtime (far longer than
the scale of our evaluated results), and those that do produce
designs on par with Eyeriss.

DL Accelerator Size: We generally use Spotlight to
generate edge-scale accelerators with the parameters specified
in Figure 3. Additionally, we optimize for a cloud-scale setting
and compare against scaled-up hand-designed accelerators. To
explore cloud-scale accelerators, the only change to Spotlight
is the range of the parameter values that Spotlight explores—
Spotlight works out-of-the-box without any other change to
configuration.

Performance Metrics: Spotlight can minimize either de-
lay or energy-delay product (EDP) under area and power
constraints.

Design Scenarios: We present results for two different
scenarios, which are described in more detail in their re-
spective sections: single-model co-design (Section VII-A) and
multi-model co-design (Section VII-B).

We conclude the evaluation with a discussion of Spotlight’s
benefits (Section VII-C), a deeper dive into daBO’s behavior
(Section VII-D), an ablation study (Section VII-E), and a
comparison of results from a different analytical model than
MAESTRO (Section VII-F).

A. Single-Model Co-Design

One use case for Spotlight is to co-design an accelerator
with a full DL model. The generated accelerator can be
deployed on an FPGA, which can be reconfigured for each
new model, or it can be deployed as a highly specialized ASIC,

TWe refer to the hand-designed accelerators as Eyeriss-like, NVDLA-like,
and ShiDianNao-like because the MAESTRO model can only approximate
their behavior.

ResNet-50

MobileNetV2

MnasNet Transformer

108

Cycles (Log)
=y
2

104

[uny
(=)
@

108 ConfuciuX
HASCO
Eyeriss-Like
NVDLA-Like
MAERI-Like
Spotlight

10°

108

107

104 10°

Fig. 6: Comparison of Spotlight against edge-scale hand-designed accelerators and those designed by state-of-the-art HW/SW
co-design tools. The missing data is due to limitations of HASCO—which does not accept VGG16, MnasNet, or Transformer
as inputs—and ConfuciuX—which cannot optimize Transformer. Lower is better.

VGG16 ResNet-50 MobileNetV2

~1018

MnasNet Transformer

1016

nJxCycles (Log

-

(=)
—
~

e
(=}
®

1011
106

106

Cycles (Log)
-
<

10*

10*

10*

10° mmm Eyeriss-Cloud
I NVDLA-Cloud
I MAERI-Cloud

mmm Spotlight

10*

105

103

Fig. 7: Comparison of EDP (nJxCycles) and delay (Cycles) of Spotlight against scaled-up versions of hand-designed

accelerators. Lower is better.

for example, in a low-power IoT device with a long lifetime
and static workload.

The key takeaway from this first set of experiments:
When co-designing with a single DL model, Spotlight
produces designs that achieve significantly lower delay
than hand-designed accelerators and those produced by
other co-design tools.

Figure 6 shows the results when Spotlight co-designs edge-
scale accelerators. Each bar represents the median delay of
10 independent trials, and the error bars indicate min/max of
the trials. The missing data is due to limitations of HASCO
and ConfuciuX, which cannot run all the selected DL models.
This figure focuses on delay because HASCO and ConfuciuX
cannot minimize energy-delay product (EDP). Notably, the
trends when minimizing EDP are identical.

ConfuciuX and HASCO produce inefficient designs pri-
marily because of their limited design spaces—neither aims
to co-design loop tile sizes with scratchpad sizes, and we
show in Section VII-C that co-design of these parameters is
the primary reason that Spotlight performs well. Additionally,
ConfuciuX and HASCO explore a severely limited set of
software schedules, but we show in Section VII-E that this
is not a crippling limitation.

Not surprisingly, of the hand-designed accelerators, MAERI
generally achieves the lowest delay, followed by NVDLA and
then Eyeriss. MAERI is highly flexible, so it can efficiently
execute a wider variety of layer shapes than NVDLA and
Eyeriss. NVDLA achieves lower delay than Eyeriss because it
spatially unrolls the K and C dimensions, which exhibit higher

parallelism in the mid and late layers of every evaluated model
than the X and Y dimensions that Eyeriss unrolls. Eyeriss
performs especially poorly on Transformer because we convert
the GEMM operations that compose Transformer into CONV
operations, which results in layer shapes that Eyeriss is not
designed for efficiently executing.

Figure 7 presents results for cloud-scale accelerators when
Spotlight minimizes EDP (top graphs) and delay (bottom
graphs). We do not compare against HASCO or ConfuciuX
because they do not support cloud-scale accelerators out-of-
the-box. For this experiment, our only change to Spotlight
was to change the range of parameters; we did not change the
feature space or otherwise tune BO for the cloud setting. These
results follow the same trends as the edge-scale accelerators.

B. Multi-Model Co-Design

Spotlight can also be used to co-design one accelerator with
many DL models. Such an accelerator might be deployed as
an ASIC, so it must efficiently execute a variety of DL models
and remain efficient as new DL models are found.

Specifically, we consider two realistic deployment scenar-
ios: (1) We assume that all the DL models are known at design-
time, which is common for dedicated IoT accelerators; and
(2) we assume that only a limited set of models is known
at design-time, and the hardware is expected to generalize to
unseen models.

The key takeaway: Spotlight can automatically design
programmable DL accelerators that frequently outperform
programmable hand-designed accelerators.

VGG16

1018 ResNet-50

MobileNetV2

MnasNet Transformer

nJxCycles (Log)
S
>

1015

-
(=]
o

10° 10*

10° s
_ m Eyeriss-Like
2 mm NVDLA-Like
[) Emm MAERI-Like
8 10 m Spotlight-Single
S B Spotlight-Multi
© Spotlight-General

10* 10°

Fig. 8: The EDP (nJxCycles) and delay (Cycles) of the best designs found in the single-model co-design (green), the
multi-model co-design (purple), and the generalization (yellow) scenarios. For the generalization scenario, we co-design the
accelerator with VGG16 ResNet-50 and MobileNetV2, and we evaluate it on MnasNet and Transformer. Thus, only MnasNet

and Transformer have yellow bars. Lower is better.

1.0
Parallelism Available in
Kernel

Size of Commonly
Unrolled Dimensions
Degree of Spatial
Unrolling

PE Utilization

Number of Loop
Iterations to Completion

Approximate
Transfers from
DRAM

0.8

0.6

0.4

0.2

0.0

MnasNet
Transformer

ResNet-50
MobileNetV2

Fig. 9: The relative importance of each feature in daBOgw.

Figure 8 shows results for both EDP (top graphs) and
delay (bottom graphs), comparing Spotlight’s design against
hand-designed accelerators that are designed to generalize
well. Spotlight-Single shows the results of single-model co-
design, as described in Section VII-A, Spotlight-Multi shows
the results of deployment scenario (1), and Spotlight-General
shows the results of deployment scenario (2).

To emulate the first scenario, we co-design a DL accelerator
with all five DL models as input to Spotlight and then re-
run Spotlight’s layerwise optimizer (daBOgw) for each model
independently on the resulting accelerator. Unsurprisingly,
Spotlight-Multi has higher EDP and delay than Spotlight-
Single because Spotlight-Single finely tunes each accelerator
for a single model. However, Spotlight-Multi still almost
always outperforms each hand-designed accelerator, highlight-
ing the benefits of automated design.

To emulate the second scenario, we evaluate whether
the hardware co-designed with a subset of DL models—
VGG16, ResNet-50, and MobileNetV2—generalizes well to
other DL models—MnasNet and Transformer. We co-design
a DL accelerator by providing the first three models as input
to Spotlight, and then for the resulting accelerator we run

daBOgyw independently for each of the last two models. We
find that Spotlight-General has slightly higher EDP and delay
than Spotlight-Single. Rather counterintuitively, we see that
Spotlight-General has lower delay and EDP than Spotlight-
Multi. We conjecture that when simultaneously co-designing
for five models, daBOpyy is unable to learn correlations among
the complex software space spanning hundreds of unique
layers, so the resulting accelerator is no longer as efficient
for any single model.

C. Discussion

To understand the benefit of Spotlight, we compare its op-
timized configurations with the behavior of the hand-designed
accelerators and HW/SW co-design tools.

The single most significant benefit of using Spotlight is its
ability to co-design scratchpad sizes with tile sizes and loop
unrolling properties, which leads to improved data locality.
For example, given the same area and power budget, when
Spotlight’s optimized configuration, called Spotlight-Opt, runs
ResNet-50, it achieves 26x higher throughput per Joule than
Eyeriss, 28x higher than NVDLA, and 8.3x higher than
MAERI. The main source of this improvement is greater
input and weight reuse, computed as reads per fill, in the
L1 scratchpad and RF. Eyeriss and NVDLA, which have
rigid software schedules and fixed hardware, are unable to
adjust unrolling parameters or on-chip memory sizes, so they
cannot maintain high on-chip memory utilization for diverse
layer shapes. MAERI supports flexible dataflows but still
has fixed on-chip memory sizes, so it loses a degree of
freedom compared to Spotlight, which finds a better balance
between PE count and on-chip memory space than MAERI,
so Spotlight-Opt has higher average utilization of both.

Qualitatively, the same reasoning explains Spotlight’s im-
provement over HASCO and ConfuciuX. Neither HASCO nor
ConfuciuX searches for tile sizes nor spatial unroll dimension,
so these tools struggle to produce accelerator designs that
match the efficiency of Spotlight-Opt.

Additionally, Spotlight achieves good results through a
series of small wins, which designers often do not consider,
during the execution of each layer. For example, we find that

Spotlight often produces accelerators with a long and narrow
PE array, resulting in two benefits: (1) on the narrow side
of the array, network latency is lower and there are fewer
unicast operations, and (2) the layer edge cases, which result
in low utilization and add tail latency, are smaller and thus have
smaller impact on overall runtime. These results (1) illustrate
the importance of co-design and (2) the benefits of automated
co-design over manual co-design.

D. Feature Space Analysis

We have demonstrated that Spotlight can efficiently co-
design DL accelerators and software schedules. We now peer
into daBO to understand the source of Spotlight’s benefits.

Surrogate Model Accuracy: We quantify the accuracy of
the surrogate model, Guassian Process (GP), in predicting the
behavior of the cost function. GP does not need to predict the
absolute EDP or delay values, but it should be able to predict
trends in these metrics so that the acquisition function can
accurately select promising configurations.

To measure GP’s predictability, we use a dataset of thou-
sands of HW/SW samples and their respective EDP and delay.
We use 90% of the dataset to train GP in two configurations—
with a linear kernel and with a Matérn kernel—using the
features described in Figure 4. We then predict the EDP
and delay of the remaining 10% of the dataset. Rather than
comparing directly with ground truth, we sort the predicted
samples and the ground truth and compare the ordering using
the Spearman rank correlation coefficient (p) [63], which
measures the difference in ordering between vectors such that
a score of 1 indicates a strong correlation and —1 indicates an
inverse correlation.

Across the test set, p is equal to 0.0822 and 0.1127 for
the linear and Matérn kernels, respectively. In both cases
the correlation is quite low, but roughly 24% of the top
20% of samples are correctly predicted, which we find is
sufficient for the acquisition function to select a high quality
candidate. Though the Matérn kernel achieves a slightly higher
correlation than the linear kernel, when we run Spotlight
with the Matérn kernel we find no noticeable difference
in search quality, so we opt for the simpler linear kernel.
Nonetheless, the low correlation may warrant the use of a
more sophisticated surrogate model.

Feature Importance: We rank the importance of each
feature. For each instance of daBOgyw in single-model con-
figuration, we conduct a commonly used experiment called
permutation importance [4], [8]. After the GP is trained,
we randomly perturb each feature in turn and measure the
resulting change in the surrogate model’s prediction. Features
that cause large changes are considered to be more important.

Figure 9 shows the relative importance of each feature
normalized for each model. Aside from Transformer, for
which “parallelism available in the kernel” is dominant, no
single feature is the sole indicator of performance. Parallelism
is especially important for the Transformer model because
Transformer is dominated by GEMM operations, which when
converted to CONV operations result in large and uneven

10

kernel sizes. In general, though, the most important feature
varies.

We repeat this experiment with two modified configurations
of Spotlight: (1) with only vanilla parameters instead of
features (Spotlight-V) and (2) with the union of all features
and raw parameters (Spotlight-A). We find the exact same
result: There are typically a few features, which are different
for each model, that are the most indicative of performance.
We find that Spotlight-A produces accelerators that are on par
with Spotlight, and both Spotlight and Spotlight-A produce
better accelerators than Spotlight-V. This observation indicates
that while good feature selection is still critical, Spotlight is
somewhat resilient to the precise feature selection.

E. Ablation Study

To isolate the benefits of the daBO framework we compare
sample convergence against ConfuciuX and four different
search algorithms within the Spotlight tool, i.e., we replace
daBOyw and daBOgw with each of the following five al-
gorithms: genetic algorithm (Spotlight-GA), random search
(Spotlight-R), vanilla BO (Spotlight-V), and BO with fixed
software schedule options (Spotlight-F). More specifically,
Spotlight-V is identical to off-the-shelf BO because it di-
rectly searches the parameter space instead of the feature
space. Spotlight-F searches the Spotlight feature space, but
it only searches among the three software schedules sup-
ported by ConfuciuX—namely, Eyeriss-like, NVDLA-like,
and ShiDianNao-like—and it only searches for tiling factors
in the K and C dimensions.

The key takeaway: Bayesian optimization is a strong
starting point and is further enhanced by the introduction
of the feature space. Moreover, most of the configurations
selected by Bayesian optimization are superior to the best
configuration produced by competing algorithms.

Figure 10 shows how each search algorithm, including
ConfuciuX, converges—as a function of wall clock time—to a
minimized EDP and delay when co-designing a single model.
The shaded region represents the minimum and maximum of
10 search trials, and the solid line represents the median. We
are unable to collect per-sample data with HASCO, so we
denote with a dashed line the best result of HASCO’s 10 trials.

BO consistently achieves lower EDP and delay than random
search, genetic algorithm, ConfuciuX, and HASCO. Further-
more, our results suggest that given unlimited runtime, Con-
fuciuX may never achieve the same quality of solutions that
Spotlight can achieve in a few hours. Moreover, both Spotlight
and Spotlight-F, which use domain information, outperform
Spotlight-V, which does not use domain information, by up
to 2x in all cases except for Transformer. For Transformer,
we compute permutation importance [4], [8], as described in
Section VII-D, on the parameter space of Spotlight-V and the
feature space of Spotlight, and we find, unexpectedly, that the
raw parameters have a larger impact on the surrogate model’s
prediction than our selected features. This observation explains
why Spotlight-V outperforms Spotlight, and it highlights the

= VGG16 1018 ResNet-50 1016 MobileNetV2 MnasNet 1023 Transformer
o
S10 1015
* \k 1019 N
° otéf | — T |
9 R — % g E
5’1016% o 1ot TR0
2 |
e] .
= hota ConfuciuX
0.0 0.5 1.0 0 1 2 0.0 05 1.0 1.5 0 1 2 0.0 0.2 0.4
e T s S o
— —— Spotlight-
2109 9 11
810 10 10 —— Spotlight-R
g - 107 107 - h_ Spotlight-V
e | e = — Spotlight-F
O e [—— — i —— Spotlight
1(b5 1(2)5 102
0.0 0.5 1.0 0.0 0.5 1.0 .00 0.25 0.50 0.75 .00 0.25 0.50 0.75 0.0 0.2 0.4 0.6

Time (Hours) Time (Hours) Time (Hours)

Time (Hours) Time (Hours)

Fig. 10: The EDP (nJxCycles) and delay (Cycles) over time during single-model co-design for five search algorithms: Spotlight,
three variations of Spotlight—random search (Spotlight-R), BO with fixed dataflow (Spotlight-F), and vanilla BO (Spotlight-
V)—and two state-of-the-art co-design tools. For each layer of each hardware design, Spotlight and variations evaluate 100
sample points in the software design space. The solid line represents the median of 10 trials, and the shaded region represents

the minimum and maximum. Lower is better.

100 VGG16 ResNet-50 MobileNetV2 MnasNet Transformer
1] 7 !/ 7
8 [[|
= / ,
d 50 /
7]
G
° /
& |) /)
1016 1018 1c20 1014 1016 10 18 1014 1016 1013 1015 1015 1019 1023
nJxCycles (Log) nJxCycles (Log) nJxCycles (Log) nJxCycles (Log) nJxCycles (Log)
" 100 — { P 7 - 777 - ConfuciuX
8 [/ | [| —— Spotlight-GA
g‘ | f | | —— Spotlight-R
8 50 1 / | Spotlight-V
5 | —— Spotlight-F
& ol |) ! —— Spotlight
107 10° 107 10° 10° 107 10° 10° 107 109 105 108 101t
Cycles (Log) Cycles (Log) Cycles (Log) Cycles (Log) Cycles (Log)

Fig. 11: Cumulative distribution function of hardware samples for each search algorithm. Each line represents the results from

1 of 10 trials. Further to the left is better.

importance of carefully selecting good for each specific appli-
cation.

Our results also show that BO searches the co-design space
more efficiently than other algorithms. The domain of the
X axis of Figure 10 is set to the shortest wall clock time
of the evaluated algorithms—in most cases, Spotlight-GA.
Compared to Spotlight-GA, Spotlight-R evaluates 82% of the
total number of samples, and Spotlight evaluates 52% of the
total number of samples. Though Spotlight spends more time
per-sample than Spotlight-GA and Spotlight-R, the improved
sample efficiency of daBO results in superior results within
the same wall clock time.

We find that Spotlight-F outperforms Spotlight for VGG16
and Transformer. Eyeriss is designed to be highly efficient
when executing VGG16 [12], and indeed we find that when
minimizing either EDP and delay, Spotlight-F selects an
Eyeriss-like software schedule every time. Transformer is
dominated by GEMM operations (converted to CONV), which
NVDLA-like and ShiDianNao-like software schedules are able
to execute efficiently. Because the software schedules that
Spotlight-F explores are already tuned for the layers of VGG
and Transformer, Spotlight-F has the advantage of exploring a

11

simple yet high-quality co-design space that can be explored
quicker than the co-design space of Spotlight, so Spotlight-F
achieves superior results within the same wall clock time.

To further evaluate the quality of each search algorithm, we
present Figure 11. This figure plots the cumulative distribution
function (CDF) of hardware sample points, which shows the
percentage of total sample points evaluated that achieve a
given EDP or delay. Each line represents 1 of 10 trials.

The CDFs for Spotlight and Spotlight-F are further left
than those of the competing algorithms, which indicates that
Spotlight does not just find a single good configuration but
rather consistently finds configurations that outperform the
best configurations found by competing algorithms.

The CDF for Spotlight-R is Guassian, while the other search
algorithms have a steep initial slope, which means that many
of the sample points achieve EDP or delay that is similar to
the final optimized configuration. Specifically, 81.7% of the
hardware samples that Spotlight selects are better than the
best results that Spotlight-R finds. So it is clear that BO is
conducting a higher quality search.

FE. Evaluations Using Timeloop

Because Spotlight uses an analytical model to evaluate
candidate designs, there is a risk that Spotlight’s designs
overfit to the MAESTRO analytical model—i.e., the designs
exploit features of MAESTRO that do not represent actual
hardware. To evaluate this risk, we measure the performance of
Spotlight’s designs using a separate analytical model, namely,
Timeloop [46].

Timeloop is an analytical model that given an accelerator
specification, estimates the performance of a single layer of a
DL model. Compared to MAESTRO, Timeloop provides more
precise control over the accelerator specification and software
schedule. Consequently, it is less intuitive and exposes larger
hardware and software design spaces.

To compare Timeloop and MAESTRO, we take the results
in Figure 6, which evaluates 100 samples for each layer of
each DL model, and perform the following for each layer: (1)
We compute the performance of the 100 samples with both
MAESTRO and Timeloop, (2) we sort the results, and (3) we
quantify the similarity between the two analytical models. On
average, across all layers, 35% of the highest 20 and lowest
20 samples match. These results indicate that Spotlight does
not overfit to MAESTRO but that some caution should be
taken when considering the optimality of specific designs. If
Spotlight’s designs are to be applied to another medium, such
as to actual hardware, our recommendation is to evaluate each
of the top 20 designs on the other medium.

VIII. CONCLUSIONS

In this paper, we have presented Spotlight, an automated
framework for performing hardware/software (HW/SW) co-
design of deep learning accelerators. We have also presented
daBO, our novel Bayesian optimization framework that is
critical to Spotlight’s success because it incorporates domain
information into the automated search process. We have em-
pirically demonstrated that Spotlight can produce highly effi-
cient HW/SW co-designs that are orders of magnitude better
than competing solutions, including both manually designed
accelerators and those designed by state-of-the-art tools.

Philosophically, we observe that previous work [16], [61],
[70] manually applies domain information to define dramati-
cally smaller co-design spaces to search, but because the co-
design space is so complex, this manual pruning apparently
removes many of the best design points from the search space.
By contrast, Spotlight gets great power by embracing a vast
co-design space and incorporating the domain information
into the automated search process, thereby giving Spotlight
a mechanism for finding many of the best design points.

As we look to the future, we see many potential uses for
Spotlight. For example, we believe that Spotlight’s sample
efficiency will be amplified by more costly but more accurate
evaluation backends, such as FPGA emulation. Moreover,
Spotlight can be integrated with widely-studied neural archi-
tecture search techniques to fully explore the joint space of
hardware, software, and neural models.

12

ACKNOWLEDGMENTS

This work was funded in part by NSF Grant CCF-1823546,
a gift from Intel Corporation through the NSF/Intel Partnership
on Foundational Microarchitecture Research, and an NXP
fellowship. We thank Kevin Swersky and Milad Hashemi for
their collaboration on foundational concepts that this paper
builds on, and we thank Minesh Patel and Molly O’Neil for
their comments on early drafts of this paper.

REFERENCES

[1]
[2]

col2im. [Online]. Available: https://www.mathworks.com/help/images/
ref/col2im.html

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). USENIX
Association, 2016, pp. 265-283.

M. S. Abdelfattah, ¥.. Dudziak, T. Chau, R. Lee, H. Kim, and N. D.
Lane, “Best of both worlds: Automl codesign of a cnn and its hardware
accelerator,” in Proceedings of the 57th IEEE/ACM Design Automation
Conference (DAC). 1EEE, 2020, pp. 1-6.

A. Altmann, L. Toloi, O. Sander, and T. Lengauer, ‘“Permutation
importance: a corrected feature importance measure,” Bioinformatics,
vol. 26, no. 10, pp. 1340-1347, 04 2010. [Online]. Available:
https://doi.org/10.1093/bioinformatics/btq134

B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing neural
network architectures using reinforcement learning,” arXiv preprint
arXiv:1611.02167, 2016.

T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, “Revamp: a
systematic framework for heterogeneous cgra realization,” in Proceed-
ings of the 27th International Conference on Architectural Support for
Operating Systems (ASPLOS), 2022, pp. 918-932.

A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira,
X. Ma, E. Shiu, and O. Mutlu, “Google neural network models for
edge devices: Analyzing and mitigating machine learning inference
bottlenecks,” in Proceedings of the 30th International Conference on
Parallel Architectures and Compilation Techniques (PACT). 1EEE,
2021, pp. 159-172.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and
M. Martina, “An updated survey of efficient hardware architectures
for accelerating deep convolutional neural networks,” Future Internet,
vol. 12, no. 7, p. 113, 2020.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al, “{TVM}: An automated end-to-end
optimizing compiler for deep learning,” in Proceedings of the 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). IEEE, 2018, pp. 578-594.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th International Conference
on Architectural Support for Operating Systems (ASPLOS). 1EEE, 2014,
pp. 269-284.

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Pro-
ceedings of the 43rd IEEE/ACM International Symposium on Computer
Architecture (ISCA). 1EEE, 2016, pp. 367-379.

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” [EEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292-308, 2019.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercomputer,”
in Proceedings of the 47th IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2014, pp. 609-622.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

S. Dave, R. Baghdadi, T. Nowatzki, S. Avancha, A. Shrivastava, and
B. Li, “Hardware acceleration of sparse and irregular tensor computa-
tions of ml models: A survey and insights,” Proceedings of the IEEE,
vol. 109, no. 10, pp. 1706-1752, 2021.

S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava, “dmazerun-
ner: Executing perfectly nested loops on dataflow accelerators,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 18, no. 5s,
pp. 1-27, 2019.

Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: an automated framework for mapping deep
neural networks onto FPGAs with rtl-hls hybrid templates,” in Proceed-
ings of the 25th IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 1EEE, 2017, pp. 152-159.

K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-based
neural network accelerator,” arXiv preprint arXiv:1712.08934, 2017.

S. Hadjis and K. Olukotun, “Tensorflow to cloud fpgas: Tradeoffs for
accelerating deep neural networks,” in Proceedings of the 29th Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2019, pp. 360-366.

T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1-13.
C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “FPGA/DNN co-design: An efficient design methodology
for iot intelligence on the edge,” in Proceedings of the 56th IEEE/ACM
Design Automation Conference (DAC). IEEE, 2019, pp. 1-6.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the 2016 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 1EEE, 2016, pp.
770-778.

K. Hegde, P-A. Tsai, S. Huang, V. Chandra, A. Parashar, and C. W.
Fletcher, “Mind mappings: Enabling efficient algorithm-accelerator map-
ping space search,” in Proceedings of the 26th International Conference
on Architectural Support for Operating Systems (ASPLOS). 1EEE, 2021,
pp. 943-958.

Q. Huang, C. Hong, J. Wawrzynek, M. Subedar, and Y. S. Shao,
“Learning a continuous and reconstructible latent space for hardware
accelerator design,” in Proceedings of the 2022 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2022, pp. 277-287.

L. Jia, Z. Luo, L. Lu, and Y. Liang, “Analyzing the design space of
spatial tensor accelerators on FPGAs,” in 2021 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). 1EEE, 2021, pp. 230-235.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th IEEE/ACM International Symposium on Computer Architecture
(ISCA), 2017, pp. 1-12.

S.-C. Kao, G. Jeong, and T. Krishna, “ConfuciuX: autonomous hardware
resource assignment for DNN accelerators using reinforcement learn-
ing,” in Proceedings of the 53rd IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1EEE, 2020, pp. 622-636.

S.-C. Kao and T. Krishna, “GAMMA: automating the hw mapping of
DNN models on accelerators via genetic algorithm,” in Proceedings
of the 2020 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 1EEE, 2020, pp. 1-9.

S. Knowles, “Graphcore,” in 2021 IEEE Hot Chips 33 Symposium
(HCS). IEEE, 2021, pp. 1-25.

D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang, S. Hadjis, R. Fiszel,
T. Zhao, L. Nardi, A. Pedram, C. Kozyrakis et al., “Spatial: A language
and compiler for application accelerators,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 1EEE, 2018, pp. 296-311.

H. Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and
A. Parashar, “MAESTRO: a data-centric approach to understand reuse,
performance, and hardware cost of DNN mappings,” IEEE Micro,
vol. 40, no. 3, pp. 20-29, 2020.

H. Kwon, M. Pellauver, A. Parashar, and T. Krishna, “Flexion: A
quantitative metric for flexibility in DNN accelerators,” IEEE Computer
Architecture Letters (CAL), vol. 20, no. 1, pp. 1-4, 2020.

H. Kwon, A. Samajdar, and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,” in Proceedings of the 23rd International Conference on Archi-

13

[34]

[35]

[36]

371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]

[52]

(53]

tectural Support for Operating Systems (ASPLOS).
461-475.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in Proceedings
of the 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 1EEE, 2021, pp. 2-14.

M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehensive
survey,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 32, no. 3, pp. 708-727, 2020.

Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and
D. Chen, “Edd: Efficient differentiable dnn architecture and implemen-
tation co-search for embedded ai solutions,” in Proceedings of the 57th
IEEE/ACM Design Automation Conference (DAC). IEEE, 2020, pp.
1-6.

Y. Lin, D. Hafdi, K. Wang, Z. Liu, and S. Han, “Neural-hardware
architecture search,” 2019, mL for Systems.

Y. Lin, M. Yang, and S. Han, “Naas: Neural accelerator architecture
search,” in Proceedings of the 58th IEEE/ACM Design Automation
Conference (DAC). 1EEE, 2021, pp. 1051-1056.

L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei,
“A survey of coarse-grained reconfigurable architecture and design:
Taxonomy, challenges, and applications,” ACM Computing Surveys
(CSUR), vol. 52, no. 6, pp. 1-39, 2019.

L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “ZigZag:
enlarging joint architecture-mapping design space exploration for DNN
accelerators,” IEEE Transactions on Computers (TC), 2021.

G. E. Moon, H. Kwon, G. Jeong, P. Chatarasi, S. Rajamanickam,
and T. Krishna, “Evaluating spatial accelerator architectures with tiled
matrix-matrix multiplication,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 4, pp. 1002-1014, 2021.

T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm,
Z. Jiang, L. Ceze, C. Guestrin et al., “A hardware—software blueprint
for flexible deep learning specialization,” IEEE Micro, vol. 39, no. 5,
pp- 8-16, 2019.

L. Nardi, D. Koeplinger, and K. Olukotun, “Practical design space
exploration,” in Proceedings of the 27th IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS). 1EEE, 2019, pp. 347-358.

NVIDIA, “Nvidia deep learning accelerator.”” [Online]. Available:
http://nvdla.org/

A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in Proceedings
of the 2019 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 1EEE, 2019, pp. 304-315.

C. E. Rasmussen and C. K. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

B. Reagen, J. M. Herndndez-Lobato, R. Adolf, M. Gelbart, P. What-
mough, G.-Y. Wei, and D. Brooks, “A case for efficient accelerator
design space exploration via bayesian optimization,” in Proceedings of
the 2017 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED). 1EEE, 2017, pp. 1-6.

P. Ren, Y. Xiao, X. Chang, P-Y. Huang, Z. Li, X. Chen, and X. Wang,
“A comprehensive survey of neural architecture search: Challenges and
solutions,” arXiv preprint arXiv:2006.02903, 2020.

C. Sakhuja, Z. Shi, and C. Lin, “Spotlight,” Nov 2022. [Online].
Available: https://doi.org/10.5281/zenodo.7269574

C. Sakhuja, Z. Shi, and C. Lin, “Spotlight,” Nov 2022. [Online].
Available: https://github.com/chiragsakhuja/spotlight

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 4510-4520.

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer, M. Fojtik, N. Jiang,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, and C. T. Gray, “Simba: Scaling deep-learning
inference with multi-chip-module-based architecture,” in Proceedings
of the 52nd IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2019, pp. 14-27.

IEEE, 2018, pp.

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger, “Gaussian process
optimization in the bandit setting: No regret and experimental design,”
arXiv preprint arXiv:0912.3995, 2009.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295-2329, 2017.

C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Aurora: Automated
refinement of coarse-grained reconfigurable accelerators,” in Proceed-
ings of the 2021 Design, Automation and Test in Europe Conference
and Exhibition (DATE). 1EEE, 2021, pp. 1388-1393.

M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 1EEE, 2019, pp. 2820-2828.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future direc-
tions,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1-39, 2018.
R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al, “Magnet: A
modular accelerator generator for neural networks,” in Proceedings
of the 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2019, pp. 1-8.

J. Wang, L. Guo, and J. Cong, “Autosa: A polyhedral compiler for
high-performance systolic arrays on FPGA,” in Proceedings of the 2021
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA). 1EEE, 2021, pp. 93-104.

E. W. Weisstein. Spearman rank correlation coefficient. From
MathWorld—A Wolfram Web Resource. From MathWorld—A Wolfram
Web Resource. [Online]. Available: https://mathworld.wolfram.com/
SpearmanRankCorrelationCoefficient.html

J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
Synthesizing programmable spatial accelerators,” in Proceedings of the
47th IEEE/ACM International Symposium on Computer Architecture
(ISCA). 1IEEE, 2020, pp. 268-281.

M. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge,
MA: MIT Press, 1989.

Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang, “Hasco:
Towards agile hardware and software co-design for tensor computation,”
in Proceedings of the 48th IEEE/ACM International Symposium on
Computer Architecture (ISCA), 2021, pp. 1055-1068.

Xilinx, “Vitis high-level synthesis.” [Online]. Available: https:/www.
xilinx.com/products/design-tools/vivado/integration/esl-design.html

P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “AutoDNNchip: An automated DNN chip predictor
and builder for both FPGAs and ASICs,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA). ACM, 2020, pp. 40-50.

L. Yang, Z. Yan, M. Li, H. Kwon, L. Lai, T. Krishna, V. Chandra,
W. Jiang, and Y. Shi, “Co-exploration of neural architectures and
heterogeneous asic accelerator designs targeting multiple tasks,” in
Proceedings of the 57th IEEE/ACM Design Automation Conference
(DAC). 1EEE, 2020, pp. 1-6.

X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina e al., “Interstellar: Using halide’s scheduling language
to analyze DNN accelerators,” in Proceedings of the 25th International
Conference on Architectural Support for Operating Systems (ASPLOS),
2020, pp. 369-383.

C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA). ACM, 2015, pp. 161-170.
D. Zhang, S. Huda, E. Songhori, K. Prabhu, Q. Le, A. Goldie, and
A. Mirhoseini, “A full-stack search technique for domain optimized
deep learning accelerators,” in Proceedings of the 27th International
Conference on Architectural Support for Operating Systems (ASPLOS),
2022, pp. 27-42.

D. Zhang, N. Maslej, E. Brynjolfsson, J. Etchemendy, T. Lyons,
J. Manyika, H. Ngo, J. N. Carlos, M. Sellitto, E. Sakhaee, Y. Shoham,
J. Clark, and R. Perrault, “The ai index 2022 annual report,”

14

Human-Centered Al Institute, Stanford University, Stanford, CA, Tech.
Rep., Mar 2022. [Online]. Available: https://aiindex.stanford.edu/wp-
content/uploads/2021/03/2021- AI-Index-Report_Master.pdf

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and
D. Chen, “DnnBuilder: An automated tool for building high-performance
DNN hardware accelerators for FPGAs,” in Proceedings of the 2018
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2018, pp. 1-8.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” arXiv preprint arXiv:1611.01578, 2016.

(74

[75]

APPENDIX
A. Abstract

This artifact provides the source code for Spotlight as well
as scripts that aid with reproduction of key results. The latter
includes the raw values shown in Figures 6-8 and the end
results of Figure 10.

B. Artifact check-list (meta-information)

o Runs Spotlight and Spotlight variants.

Supports DL models: VGG16, ResNet-50, MobileNetV2,
MnasNet, and Transformer.

Supports hand-designed accelerator baselines: Eyeriss,
NVDLA, and MAERL

Includes scripts to produce and compare results.
Outputs all sample points and final results for architec-
tural parameters and software schedules.

Setup takes 20 minutes.

Runtime takes 5-9 days, depending on the number of
workloads being evaluated. Runtime can be significantly
reduced if more parallelism is available.

C. Access to Artifact

The artifact is permanently archived on Zenodo [50] and is
also publicly released on GitHub [51].

D. System Requirements and Dependencies

In this appendix, for convenience, we present a workflow
using Docker. However, the README.md in the artifact ad-
ditionally outlines a native installation process, which requires
lower overhead and may have slightly higher performance.

System requirements:

o 10 GB of disk space
16+ GB of RAM recommended
e 8+ core CPU recommended
Software dependencies:

o Docker
o Linux installation recommended

E. Setup

Build the Docker image and set up a new container. (20
minutes)

$ docker build —t
$ docker run —it

spotlight

spotlight /bin/bash

From within the Docker container, activate the Python
environment and build Spotlight. (1 minute).

$ conda activate spotlight—ae
$ scons —j$ (nproc)

FE. Workflow
If the container is not running, then start it up.

$ docker container ls —a
(To get Container ID)
$ docker start <Container ID>
$ docker exec —it <Container ID> /bin/bash

The starting point for all runs is the run-ae.sh script,
which launches the experiments. There are four modes, each
one corresponding to the key figures: Main-Edge (Figure 6),
Main-Cloud (Figure 7), General (Figure 8), and Ablation
(Figure 10).

The following is a brief description of each mode, including
its expected runtime. The runtime can be fairly high in
some cases, but it can be reduced if more parallelism is
available. We were able to complete all runs within a couple
of days by running on a cluster instead of a single machine.
However, the run-ae.sh script requires modifications to
support parallelism across machines.

o Main-Edge: Runs Spotlight to generate an edge-scale,
fine-tuned DL accelerator. It fine-tunes separately for
EDP and delay, and it runs Spotlight independently
for each of the 5 models. Finally, it also searches for
optimal software schedules and hardware configurations
for Eyeriss, NVDLA, and MAERI. The expected runtime,
if running a single trial for each configuration, is 1 day.
Main-Cloud: Runs a similar set of workloads as Main-
Edge, but it performs them for a cloud-scale accelerator,
including cloud-scaled versions of Eyeriss, NVDLA, and
MAERI. The cloud-scale design space contains many
more invalid points than the edge-scale design space,
so the expected runtime is anywhere between 3 and 7
days. It is recommended to perform other comparisons
before Main-Cloud, because Main-Cloud can have highly
variable runtimes.
General: Runs Spotlight’s software optimizer with ac-
celerator parameters that were generated by Spotlight
when fine-tuning an accelerator for either (1) all 5 DL
models simultaneously or (2) VGG16, ResNet-50, and
MobileNetV2 simultaneously. In scenario (1), all 5 DL
models are independently optimized to see if the ac-
celerator is flexible. In scenario (2), only MnasNet and
Transformer are optimized to see if the accelerator can
generalize to efficiently process models it wasn’t fine-
tuned for. Since only the software optimizer is running
in this mode, its runtime is roughly 10 minutes.
Ablation: Runs the remaining variants of Spotlight:
Spotlight-GA, Spotlight-R, Spotlight-V, and Spotlight-F.
The expected runtime is roughly 1 day.

All runs can be executed with the following simple com-
mands.

sh
sh
sh
sh

./ run—ae.
./ run—ae.
./ run—ae.
./ run—ae.

main—edge
main—cloud
ablation
general

$
$
$
$

15

Each command can optionally be augmented with the
——trials N flag, where N indicates the number of inde-
pendent trials for which each experiment runs. Though we
use 10 trials for all evaluations in this work, we recommend
sticking with the default value of 1 unless more parallelism is
available. As it stands, multiple trials are run in series.

Results are stored in the results directory.

G. Steps for Evaluation and Results

After the runs are complete, then results can be analyzed us-
ing the compare—ae. sh script. Similar to the run-ae. sh
script, the user specifies a comparison mode that corresponds
to Figures 6-8 and 10.

The script is run with the following simple commands.

sh
sh
sh
sh

./ compare—ae .
./ compare—ae .
./ compare—ae .
./ compare—ae .

main—edge
main—cloud
ablation
general

& PH LA

The compare-ae. sh script outputs a CSV file to standard
output. The columns of the CSV are the configuration type, the
minimum achieved performance across all trials, the maximum
achieved performance across all trials, the median performance
across all trials, and the median normalized to the median
of Spotlight. This output can be used to evaluate Figures 6-
8 directly, although numbers may vary slightly due to the
randomness of the optimization process. The CSV output
corresponds to the final endpoint of each line in Figure 10.

For more thorough details, see the README.md in the
artifact.

	Introduction
	Background
	DL Layers
	DL Accelerators
	Bayesian Optimization

	Related Work
	HW/SW Co-Design
	HW/Model Co-Design
	End-to-End Frameworks

	Co-Design Space
	Parameter Space
	Hardware Parameters
	Software Parameters
	Cardinal, Ordinal, and Categorical Parameters

	Feature Space
	Overview
	Feature Selection

	Domain-Aware BO
	Surrogate Model
	Acquisition Function

	Spotlight
	Layerwise Optimization
	Candidate Evaluation

	Evaluation
	Single-Model Co-Design
	Multi-Model Co-Design
	Discussion
	Feature Space Analysis
	Ablation Study
	Evaluations Using Timeloop

	Conclusions
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Access to Artifact
	System Requirements and Dependencies
	Setup
	Workflow
	Steps for Evaluation and Results

