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Abstract— We study the problem of determining the emer-
gent behaviors that are possible given a functionally hetero-
geneous swarm of robots with limited capabilities. Prior work
has considered behavior search for homogeneous swarms and
proposed the use of novelty search over either a hand-specified
or learned behavior space followed by clustering to return a
taxonomy of emergent behaviors to the user. In this paper,
we seek to better understand the role of novelty search and
the efficacy of using clustering to discover novel emergent
behaviors. Through a large set of experiments and ablations, we
analyze the effect of representations, evolutionary search, and
various clustering methods in the search for novel behaviors in
a heterogeneous swarm. Our results indicate that prior methods
fail to discover many interesting behaviors and that an iterative
human-in-the-loop discovery process discovers more behaviors
than random search, swarm chemistry, and automated behavior
discovery. The combined discoveries of our experiments uncover
23 emergent behaviors, 18 of which are novel discoveries.
To the best of our knowledge, these are the first known
emergent behaviors for heterogeneous swarms of computation-
free agents. Videos, code, and appendix are available at the
project website.2

I. INTRODUCTION

One of the fundamental problems in swarm robotics is to

design controllers that result in a specific desired emergent

behavior [2], [5]. For example, prior work in evolutionary

swarm robotics has successfully discovered controllers for

aggregation [7], [29], shepherding [22], object clustering [8],

coverage [23], foraging [14], formation design [26]–[28], and

collision optimization [19]. However, much less work has

considered the equally important question of what emergent

behaviors are possible given a swarm of robots with specific

capabilities. Prior work has categorized heterogeneous robots

into two classes, structural and functional heterogeneity [1].

Our work focuses on functionally heterogeneous robots,

where the functions of robots may differ, but structurally

all robots have the same embodiment.

Swarms of robots that act as a direct response to obser-

vations, without the need to compute any information, are

known as computation-free [9]. Prior work on emergent be-

havior discovery has considered swarms of computation-free

agents [4], [17] and showed that all previously known emer-

gent behaviors from single, line-of-sight sensor robots could

be automatically discovered alongside previously undiscov-

ered behaviors. While exciting, prior work only considers

homogeneous swarms, limiting the types of interactions

available when searching for swarm behaviors.
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We seek to explore the richer set of emergent behaviors

that result from heterogeneous swarms. We focus on swarms

where each agent follows one of two different controllers

(where a controller defines an agent’s “behavior type”).

We compare several design choices, including type-aware

vs. type-agnostic representations, hand-crafted vs. learned

representations, different clustering algorithms, and human-

in-the-loop vs. automated behavior discovery methods.

We find that heterogeneous swarms of simple,

computation-free robots with a single line-of-sight sensor

lead to a rich set of 23 emergent behaviors (see Fig. 4).

We find evidence that emergent behavior discovery via

novelty search is less sensitive to the type of clustering

algorithm used than to the representation—hierarchical,

k-medoids, and spectral clustering methods all perform

comparably, but using a pretrained ResNet embedding

performs significantly worse than representations that are

hand-crafted or learned specifically for swarm behavior

search. We also find evidence that the dominant paradigm in

prior work—novelty search followed by clustering—fails to

discover many interesting emergent behaviors. Furthermore,

we find evidence that relying on clustering to produce

a taxonomy of emergent behaviors often leads to many

random and uninteresting behaviors. Consequently, we find

that sometimes random search outperforms novelty search.

Motivated by these findings, we propose a new approach

for emergent behavior discovery that combines novelty

search with a human-in-the-loop. This approach allows us to

leverage novelty search’s ability to efficiently explore high-

dimensional spaces while avoiding the loss of many rare

behaviors by periodically showing the human the most novel

behaviors found so far, rather than clustering all discovered

behaviors at the end of novelty search. Our experiments show

that human-in-the-loop novelty search outperforms purely

automated behavior discovery by 91.4%, random search by

38.8%, and a pure human-guided search based on Swarm

Chemistry [24] by 28.15%.

II. PRIOR WORK

We focus on computation-free robot swarms as origi-

nally proposed by Gauci et al. [9]. Most prior work on

computation-free swarms has only considered evolving one

specific desired behavior, such as aggregation [7] or area

coverage [23]. By contrast, the goal of this paper is to

automatically discover the set of possible collective behaviors

for swarms of mobile robots.

We analyze the use of novelty search to explore a di-

verse set of emergent swarm behaviors. Prior work using
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novelty search has focused on approaches that are designed

to work with creative image and art generation or high-

capability single-agent systems [10]–[12], [16], [18], [20],

[21]. In our work, we use novelty search to explore the

space of heterogeneous swarm behaviors. Diversity is often

studied in evolutionary robotics [20] and has been shown to

enable an agent to search for multiple ways to accomplish a

specific task [6]. By contrast, our work seeks to explore and

categorize behavioral diversity in swarms of robots.

Prior work on emergent behavior discovery has only

considered homogeneous swarms of robots [4], [17]. In

contrast, we analyze behavior discovery for heterogeneous

robot swarms. We evaluate the use of hand-crafted feature

representations [4] and trained embedding networks [17]

(both designed for homogeneous swarms) on heterogeneous

swarms and contribute augmentations to these approaches

that discover more emergent behaviors. We compare these

methods to Swarm Chemistry [24], which uses a human-

in-the-loop to discover novel heterogeneous behaviors. Our

results show that a combination of novelty search and human-

in-the-loop search results in the best performance.

III. PROBLEM FORMULATION

For a robot agent with sensing (S), memory (M), and

actuation (A) capabilities, we define a robot’s capability

model as the three-tuple C = ïS,M,Að. Let U(C ) represent

the space of controllers that can be generated from the

capability model C .

We assign to each robot a behavior type (for brevity,

referred to as type), that defines its controller. We define a

heterogeneous swarm as a swarm of N robots each associated

with one of M behavior types (where N g M > 1) and a

corresponding controller: ci ∈U(C ), for i = 1, . . . ,M. For a

swarm of M behavior types, the space of possible controllers

is U(C )M . We denote the space of possible partitions of N

robots into M behavior types as ∆M
N and a specific population

ratio within the space of partitions as η ∈ ∆M
N . Thus, the

space of all possible heterogeneous swarm configurations

under M behavior types is

HM =U(C )M ×∆M
N . (1)

Our work seeks to address the Heterogeneous Behavior

Discovery Problem: Given a robot capability model and a

predetermined number of behavior types, M, what is the

complete set of heterogeneous collective behaviors that can

emerge from this multi-robot system?

In this paper, we consider the smallest heterogeneous

search space where swarms contain only 2 behavior types. In

the following section, we propose an approach for represent-

ing H2 as a set of decision variables that can be evolved and

discuss methods for obtaining the set of possible emergent

behaviors.

IV. METHOD

Automated behavior discovery for robot swarms has been

shown to effectively work on limited-capability homoge-

neous agents by representing swarm behaviors using hand-

crafted metrics [4] and learned embeddings [17]. In this
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Fig. 1. A computation-free capability model, where a sensor positioned
in the forward orientation is a binary line-of-sight sensor. The robot can
actuate both the right and left wheels with velocities vl and vr .

section, we discuss our proposed methods for extending

and generalizing prior work in the context of discovering

emergent behaviors in heterogeneous swarms.

A. Swarm Configuration

Following prior work [4], [17], we use a robot capability

model that is computation-free, where decisions are made

using only a single bit of input from a binary sensor. As

shown in Fig. 1, the robot model controls two actuators,

corresponding to the left and right wheels, by commanding

a desired velocity to each actuator. This robot is capable

of sensing other agents using an infinite-distance line-of-

sight sensor, positioned in the forward position relative to

the robot chassis. This sensor outputs a binary signal, {0,1},

which is used to actuate the robot according to a single

conditional branch, commanding one pair of velocities to the

wheels when the sensor signal is 0 and a different pair of

velocities to the wheels when the sensor signal is 1. Under

this capability model and the 2-branch conditional decision

scheme, all actions taken by this agent over its entire lifetime

can be represented by 4 real-valued velocities, 2 for each

binary state.

To uncover the set of possible collective behaviors, we

examine sampling and search methods over the space of

heterogeneous swarm configurations H2. For a 2-type het-

erogeneous swarm, we formulate a configuration space from

the the selection of two controllers and the assignment of

some fraction of the agents to behavior type A based on a

population ratio, η ∈ (0,1), assigning the remaining (1−η)
fraction of agents to behavior type B. Formally, a swarm

consisting of 2 behavior types can be sampled from the space

of decision variables formed by

H2 = [vA
l0,v

A
r0,v

A
l1,v

A
r1,v

B
l0,v

B
r0,v

B
l1,v

B
r1,η ], (2)

where, for types {A,B}, the velocities commanded to the left

(l) and right (r) wheels are v{l,r}0 when the binary sensor

detects nothing and v{l,r}1 when the sensor detects another

agent (Fig. 2). Velocities are restricted to the range [−1,1],
resulting in the continuous search space [−1,1]8 × (0,1).

B. Behavioral Representation

The complex nature of agent interaction and locomotion

in robot swarms necessitates systematic low-dimensional



CA = [vL0, vR0, vL1, vR1]
A        A        A        A CB = [vL0, vR0, vL1, vR1]

B        B        B        B

Type A Type B

Heterogeneous Swarms Sampled from ℍ2

Fig. 2. For a functionally heterogeneous swarm comprised of N binary-
controlled differential drive robots and two behavior types, the complete
set of swarm configurations can be sampled from a vector of 9 real-valued
numbers (8 values for the controllers used by behavior types A and B, and
1 for the population ratio, η). For the example shown, N = 8 and η = 5
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Fig. 3. Representation Classes used in experimentation. (a) Type-agnostic
Representations encode information, via the encoder φ , by considering the
entirety of the swarm as one type, where there is no explicit learning from
type information. (b) Type-aware representations encode information about
the swarm as a whole, but also explicitly encode data using privileged
knowledge of each type (shown in red and green), which reflect type-aware
reprsentations of the swarm when concatenated together. Here, w, x, y, and
z are real vectors in the output dimensions of the encoder φ .

representations of high-level behavior. In this work, we con-

sider two classes of behavior representations, type-agnostic

representations and type-aware representations (Fig. 3). For

type-agnostic representations, there is no explicit distinction

provided between the two behavior types. Prior work in

automated behavior discovery [4], [17], addressed behavior

discovery for homogeneous swarms, mitigating any need to

consider behavior occurring at the sub-swarm level. Intro-

ducing multiple robot types to an environment allows us to

examine representations that encode additional information

about type-level behavior. We study the effect of type-aware

representations, where behaviors are calculated or encoded

using privileged knowledge of the locality and behavior that

exists within each type.

We examine the use of both type-agnostic and type-aware

versions of the following representations in the search for

new collective emergent behaviors:

1) Hand-Crafted Behavior Features [4]: A vector in R
5

calculated from 5 feature equations: average speed, angular

momentum, radial variance, scatter, and group rotation, as

described in [3]. For type-aware representations, the metrics

are calculated for each of the two types as well as the entire

swarm. These vectors are then concatenated to form a feature

vector in R
15.

2) Learned Behavior Embedding [17]: A pretrained Con-

volutional Neural Network (CNN) trained via self-supervised

learning and human labeling to embed homogeneous swarm

trajectories into a latent vector in R
5. For type-agnostic

representations, swarm trajectories are rendered in simulation

with all agents displayed with the same color (Fig. 3a),

collapsed into a single channel image of size 50x50, and then

embedded into R
5. Type-aware representations have specif-

ically colored behavior types, where red and green agents

can be extracted into the red and green image channels and

embedded separately into the network (which was trained

on single-channel images). The two channel embeddings are

then concatenated to the embedding of the type-agnostic

embedding to form a vector in R
15 (Fig. 3b).

3) Pretrained ResNet18 [13]: We also consider the use

of an off-the-shelf feature representation model that has not

been trained on robot swarms before. We examine the use

of a pretrained ResNet18 [13], a CNN trained to classify

images on 1,000 classes, as a method of feature extraction

for our swarm trajectories. Swarm trajectories are resized to

256x256 and embedded into the final convolutional layer,

which is flattened to form a behavior representation in R
512.

For ResNet, our type-agnostic representation is a single-

channel greyscale trajectory (Fig. 3a) copied into three image

channels to match the input size of ResNet and the type-

aware representation is the 3-channel colored trajectories.

C. Taxonomy Search and Formulation

Following prior methods by Brown et al. [4] and Mattson

et al. [17], we explore and evolve a diverse set of emergent

swarm behaviors using Novelty Search [15], an evolutionary

algorithm that rewards exploration and diversity in pheno-

types. Given an initial population of sampled controllers

from H2, evolutionary priority for crossover and mutation

is given to controllers in the following generation based off

the novelty of the associated behavior representation [15]:

Novelty(v) =
1

p

p

∑
i=0

dist(v,Ai), (3)

where the distance between the phenotype parameter, v, and

the p-nearest-neighbors in the archive of previously explored

phenotypes, A, is averaged to compute a positive real-valued

novelty score. The goal of each generation is to produce

outcomes that are novel when compared to the phenotypes

of previous generations. All of the evolved behaviors form

an archive A, which is used in prior work as the dataset for

a k-medoids clustering to extract a taxonomy of k emergent

behaviors [4], [17]. While prior work only considers the use

of k-medoids to formulate a taxonomy, we also explore the

use of hierarchical and spectral data clustering algorithms.



(a) Nested Cycles (b) Eye (c) Flower (d) Spiral (e) Nucleus

(f) Flail (g) Containment (h) Dipole (i) Snake (j) Hurricane

(k) Geometric Warp (l) Perimeter (m) Mill + Disp. (n) Agg. + Disp. (o) Cyclic + Disp.

Fig. 4. 15 of 23 heterogeneous behaviors that were discovered throughout our study. Robots are displayed as red (Type 1) and green (Type 2)
circles with traces of their recent actions shown as a curve connected to each agent. Videos of these behaviors are available on our website at
https://sites.google.com/view/heterogeneous-bd-methods.

V. EXPERIMENTS

To analyze the methods described in the previous section,

we conduct a series of experiments in simulation to answer

three research questions: (1) Does the representation type

and clustering method matter when automatically discovering

new behaviors? (Sec. V-B); (2) Does Novelty Search [15]

outperform a set of randomly sampled controllers? (Sec.

V-C); (3) Can we utilize a human-in-the-loop paired with

novelty search to improve the diversity of our behavior

taxonomy? (Sec. V-D)

We conduct our experiments in 2D simulation using a cus-

tom Pygame [25] simulator developed in our prior work [17].

All results represent an average over 3 trials with seeds {0,

1, 2}. Additional experiment parameters are included in the

appendix.

A. Discovered Heterogeneous Behaviors

Throughout our experiments, we find a rich set of 23

emergent heterogeneous behaviors, 18 of which, to the best

of our knowledge, have never been discovered for agents

of the computation-free capability model (Fig. 4). Following

prior work [17], our experimental results reflect behaviors

that are designated as subjectively interesting and distinct by

a human overseer. With this in mind, we justify distinctions

between all emergent behaviors in Appendix VI-C and keep

the definitions of behaviors consistent across all experiments.

The behaviors we discover validate the benefits of hetero-

geneity by highlighting unique interactions that can exist be-

tween types of robots with differing controllers. For example,

in the flower behavior (Fig. 4c), we observe that green agents

and red agents are both performing aggregation but red

agents have a controller with a large turning radius, causing

them to deviate from and then return to the group, filtering

the green agents into the center. We also see the emergence of

some adversarial behaviors, including Containment (Fig. 4g),

where green agents attempt to surround a group of escaping

red agents, and Snake (Fig. 4i), where a line of green agents

chases one or more red agents.

We find that most heterogeneous behaviors for 2 robot

types can be expressed as a combination of 2 emergent

homogeneous behaviors. In some cases, such as Fig. 4[l-o],

this distinction is clear as the two robot types are isolated

from each other in the environment. However, in some cases,

such as Flail (Fig. 4f), Dipole (Fig. 4h), and Spiral (Fig. 4d)

the interactions between the robot types likely would not

have been intuitive to a swarm engineer, further validating

the exciting potential for behavior discovery methods to help

uncover exciting new robot interactions.



Fig. 5. The number of distinct emergent behaviors uncovered during automatic search across 3 different behavior representations and aware-agnostic trials
for 3 types of clustering algorithms. Error bars shown reflect the standard error across 3 trials.

TABLE I

NUMBER OF DISTINCT EMERGENT BEHAVIORS DISCOVERED FOR SEVERAL CLUSTERING APPROACHES AND REPRESENTATION MODELS.

Hand-Crafted Features Learned Embedding Pretrained ResNet18

k-Medoids Hierarchical Spectral k-Medoids Hierarchical Spectral k-Medoids Hierarchical Spectral

Agnostic NS 7.67±0.88 8.0±1.15 8.0±0.57 7.0±1.00 7.0±0.57 6.67±0.66 4.67±0.66 4.0±0.57 5.67±1.19
Aware NS 8.33±0.66 8.67±0.88 8.33±0.66 6.67±1.45 8.0±0.0 7.67±0.88 4.33±0.88 5.0±0.57 5.0±0.57
Agnostic Random 6.33±0.33 7.0±0.57 7.0±0.57 6.67±0.66 6.33±0.33 7.0±1.15 8.67±0.33 7.33±0.88 7.0±1.00
Aware Random 6.0±0.57 7.33±0.66 5.67±0.33 8.0±0.57 7.0±0.00 7.33±0.33 7.0±1.00 7.67±0.66 8.33±0.33

B. Representation-Type and Clustering Algorithm Results

In this experiment, we test whether heterogeneous be-

havior discovery outputs a more diverse set of behaviors

when encoding type-aware information compared to type-

agnostic information. For each behavior representation, we

compare Novelty Search using type-aware data and type-

agnostic data. Each search is run for 50 generations with

each generation simulating 100 swarms for a total of 5000

achieved behaviors. Using these archives, we create k=20

clusters where we extract the controller whose representation

is closest to the centroid of each cluster and hand-label

the corresponding behavior to aggregate the total number

of distinct behaviors discovered.

We compare the number of distinct collective behaviors

discovered for each combination of representation and clus-

tering approach (Fig. 5). Our analysis indicates that there

is no significant evidence to suggest a clear advantage in

choosing either type-agnostic or type-aware representations.

Our results also shows that the learned embedding and

hand-crafted representations of homogeneous behaviors both

outperform an off-the-shelf ResNet18. Finally, we found

no clear evidence suggesting that one type of clustering is

preferred for behavior discovery over another.

C. Novelty Search Versus Random Sampling Results

To further analyze prior automated behavior discovery

methods, we consider whether novelty search is necessary to

evolve a diverse archive of behaviors for use in clustering.

Prior work [4], [17] has used Novelty Search as a means

for behavior discovery and Mattson et al. [17] showed that

novelty search and clustering over a learned representation

space was an improvement compared to randomly sampling

k controllers from the search space. In this experiment, we

propose a stronger baseline, where we generate the archive

A with 5000 random samples from H2. Using the randomly

sampled archive, we employ the same clustering strategies

to extract a set of emergent behaviors.

In Table I, we compare the number of distinct emergent

behaviors obtained when using novelty search to form our

novelty archive and when the archive is formed from random

sampling. We find that using Brown et al.’s [4] hand-

crafted features for type-aware novelty search outperforms

both variations of random sampling, leading to 31.59%

more behaviors being discovered compared to type-agnostic

random (which performed best out of the two random trials)

for k-medoids, 18.28% more than type-aware random for

hierarchical clustering, and 19% more than type-agnostic

random for spectral clustering.

For Mattson et al.’s [17] learned embedding, the type-

aware novelty search outperforms type-aware Random by

14.2% for hierarchical and 4.6% for spectral clustering.

However, the type-aware random k-medoids outperforms the

novelty search approach for the learned behavior embedding.

For the ResNet18, we find that random sampling always

outperforms novelty search.

Our results indicate that the performance of random search

with ResNet18 representations is very similar to the perfor-

mance of novelty search and clustering for the other repre-

sentations. We hypothesize that the reason Novelty Search

only produced, on average, minimal gains over randomly

constructed archives is that uninteresting behaviors were

much more likely to be present in the centroids of cluster-

ing than random sampling (4.95% increase in uninteresting

behaviors for Hand-Crafted Features, 39.51% increase for



the learned embedding, and 147.91% increase for ResNet,

see appendix). Specifically, this significant increase in ran-

dom behaviors indicates that novelty search spent a lot

of time exploring behaviors that are largely uninteresting

to the human, but were novel at the representation-level.

This explains why ResNet18, which has no prior repre-

sentation training on swarm behaviors, would explore far

more uninteresting behaviors than random sampling alone.

If the archives generated from novelty search contain dense

regions of uninteresting datapoints, it is more likely that

using clustering for taxonomy formulation will return a large

number of uninteresting behaviors.

We believe that the marginal gains from clustering the

novelty archive do not nullify the potential benefits of novelty

search. Rather, these results lead to a natural follow-up

question: how can we better utilize novelty search to form a

more representative taxonomy of what was explored? In the

following section, we consider this question.

D. Human-in-the-loop Improvement

Novelty search computes a novelty score (Eq. 3) for

each evolved behavior at the end of every generation. In

this experiment, we propose a novel Human-in-the-Loop

Novelty Search (HIL-NS) approach that strategically queries

a human based on these novelty scores as a replacement

for taxonomy extraction via clustering. Using the same

evolutionary strategy as the previous experiments, we present

a human with the 3 most novel behaviors at the end of

each generation of novelty search. The human may choose

to add any of these behaviors to an aggregated taxonomy

of interesting behaviors they have discovered. At the end of

50 generations, the returned taxonomy is the aggregated set

of the behaviors that the human saved during the search.

To the best of our knowledge, we are the first to consider

using a combination of novelty search and human-in-the-loop

feedback to construct a novel taxonomy for swarm behaviors.

When applied to our swarm, we find that HIL-NS extracts

16.66 emergent behaviors, on average, across 3 trials.

We compare this method to Swarm Chemistry [24], a prior

approach that uses a human-in-the-loop as a fitness function

in an evolutionary walk through of the behavior space. In

Swarm Chemistry, the human selects the behaviors which

they deem to be the most interesting over a series of genera-

tions. The associated controllers are then randomly mutated

and/or combined to produce the next generation (more details

can be found in our Appendix). Though Swarm Chemistry

is effective at discovering new behaviors, we find that over

50 generations of search, HIL-NS discovers 28.15% more

emergent behaviors on average and 38.8% more than what

the human found interesting from 150 randomly sampled

behaviors (HIL-Rand) (Fig 6). When compared to the best

result from Automatic Search (Table I), HIL-NS finds 91.4%

more behaviors on average.

VI. CONCLUSION

This paper considers the behavior discovery problem

where, given a robot’s capability model, the complete set

Fig. 6. A comparison of disinct emergent behaviors discovered for HIL-NS,
a human-in-the-loop implementation of novelty search [15] that aggregates
a taxonomy of emergent behaviors by choosing specific queries for the user
to label, and Swarm Chemistry [24], the state-of-the-art approach to human-
guided behavior evolution. These evolutionary approaches are compared to
human-saved behaviors collected from 150 random samples (HIL-Rand),
and the best result from Automatic Search described in Sec. V-B.

of emergent swarm behaviors can be efficiently discovered.

We provide an analysis of prior swarm behavior discov-

ery methods applied to heterogeneous swarms of limited-

capability robots and find that a human-in-the-loop novelty

search approach outperforms random search, fully-automatic

behavior discovery, and Swarm Chemistry by 38.8%, 91.4%,

and 28.15%, respectively. We show that local interactions

between heterogeneous robot types can lead to 23 distinct

behavioral patterns, 18 of which are novel discoveries for

robots of the computation-free capability model.

Our results highlight the diminishing effectiveness of

combining novelty search and clustering together as the

dimensionality of the search space and rarity of interesting

behaviors increases. We hypothesize that this is because

novelty search will continue to pursue areas of the behavior

space that produce random behaviors that, while uninterest-

ing and/or incoherent to a human, appear distinct in terms of

representation features. To address this problem, we propose

a novel approach for using feedback from the human during

novelty search to improve behavior discovery.

Future work should examine these approaches on more

complicated robots and in swarms containing more than 2

types of robots, where we believe even more interesting

swarm behaviors lie undiscovered. It should be noted that

our work does not include a full user study—our human

experiments reflect the participation and expertise of the au-

thors. An interesting area of future work is to run a user study

with non-experts to explore how a general audience perceives

emergent behaviors and compare discovered behaviors across

different users. In addition, future work should explore how

humans can provide input that refines novelty search or

behavior representations so that behaviors uncovered during

search further align with the human’s beliefs about which

behaviors are novel.
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TABLE II

FREQUENCY OF BEHAVIOR EXTRACTION FOR NOVELTY SEARCH (NS) AND RANDOM SEARCH (RAND.) ACCROSS HAND-CRAFTED (HC), LEARNED

LATENT EMBEDDING (LL) AND RESNET18 (RN) REPRESENTATIONS. THE DASHES (—) DENOTE BEHAVIORS THAT WERE NOT DISCOVERED.

HC Agnostic HC Aware LL Agnostic LL Aware RN Agnostic RN Aware
Behavior NS Rand. NS Rand. NS Rand. NS Rand. NS Rand. NS Rand.

Random 32.2% 38.9% 38.3% 28.3% 48.3% 33.9% 47.8% 35.0% 71.7% 26.7% 60.6% 26.7%
Cyclic Pursuit — — — — — — 0.6% — 0.6% — — —
Milling 1.7% 1.7% 6.7% 0.6% 2.2% 0.6% 3.9% 0.6% 1.1% 2.8% 1.1% 2.8%
Aggregation 1.1% 6.1% 0.6% 5.6% 3.9% 5.6% 4.4% 10.6% — 8.9% 2.8% 11.7%
Dispersal 6.1% 13.3% 5.6% 2— 11.1% 16.7% 1.7% 9.4% 5.0% 15.6% 1— 7.2%
Wall-Following — — — — — 1.1% 0.6% — 1.1% 2.8% 0.6% —
Nested Cycles 2.8% 3.3% 0.6% 2.2% 1.1% — 1.7% 2.2% 0.6% 6.1% 1.7% 2.8%
Containment 16.7% 8.3% 6.7% 6.7% 7.2% 9.4% 1.7% 6.7% 2.8% 3.9% 4.4% 8.3%
Spiral 0.6% — 2.2% 5.6% 1.1% — 1.1% 1.1% — — — —
Segments 1.7% 1.1% 1.1% 1.1% 1.7% 1.1% 4.4% 1.1% 2.2% 5.6% 4.4% 2.2%
Nucleus 6.1% 8.9% 3.9% 11.7% 6.7% 7.8% 8.9% 6.1% 1.1% 13.9% 3.3% 9.4%
Site Traversal — 0.6% 0.6% — — — 0.6% 1.1% 0.6% 0.6% 3.3% 1.1%
Flail — — — 0.6% 0.6% — — 0.6% — — 0.6% 0.6%
Dipole — — 0.6% — — — 1.1% 0.6% — — — —
Hurricane 1.1% 3.3% 3.9% 1.7% 2.8% 5.6% 5.6% 1.1% 2.8% 1.1% — 2.2%
Snake 5.0% 2.8% 5.0% 1.1% 0.6% 1.1% 0.6% — 0.6% 2.8% 2.8% 1.7%
Milling + Dispersal 5.6% — 7.8% 0.6% 3.9% 5.6% 8.3% 5.0% 2.2% 0.6% 2.2% 2.8%
Aggregation + Dispersal 7.2% 10.6% 5.6% 13.9% 3.3% 9.4% 3.3% 15.6% 5.0% 6.1% 1.7% 16.7%
Cyclic Pursuit + Dispersal 7.2% 0.6% 6.7% — 3.3% 0.6% 0.6% 2.8% 1.1% 1.7% 0.6% 2.8%
Geometric Warp 0.6% — 1.1% — — 0.6% — — 1.1% — — —
Mill Followers 2.8% 0.6% 2.2% — 2.2% 0.6% 1.7% 0.6% 0.6% 0.6% — 1.1%
Perimeter — — — — — — — — — 0.6% — —
Flower 1.1% — — 0.6% — — 0.6% — — — — —
Eye 0.6% — 1.1% — — 0.6% 1.1% — — — — —

APPENDIX

A. Experiment Details

At the start of every simulation, each agent is initialized

to a random position and orientation (x,y,θ) in an empty

500x500 units environment. All agents simultaneously begin

operation at time t = 0 and proceed to collect sensor data and

actuate accordingly every timestep until the timeout horizon

at t = 1200.

Our heterogeneous swarms consist of 24 differential

drive agents (Fig. 1). To limit the search space for H2

(Eq. 2), we explore the discrete set of velocities v ∈
{−1.0,−0.9, ...,0.9,1.0} and a discrete set of population ra-

tios η ∈ { 1
24
,

3
24
,

6
24
,

8
24
,

12
24
}, resulting in 218×5 = 1.89x1011

possible heterogeneous swarm configurations. Out imple-

mentation of novelty search uses a 0.15 mutation rate, 0.7

crossover rate, and p=14 (Eq. 3).

B. Behavioral Frequency in Automated Search

Our results indicate that Behavior Discovery using Novelty

Search did not reliably perform better for heterogeneous

swarms than clustering over randomly sampled archives.

We hypothesized that this had something to do with the

number of random behaviors that were being uncovered in

search. Table II shows the frequency of the 23 behaviors we

discovered and which methods were able to most reliably

discover each one. Of clear significance, is the increase in

returned ”Random” (uninteresting) behaviors when observ-

ing Learned Embedding and ResNet approaches compared

to Hand-Crafted Metrics. Coincidentally, ResNet18 achieves

the lowest frequency of Random behaviors when using

Random Search, showcasing the tendency for Novelty Search

to deeply explore random behaviors that appear often in

clustering.

C. Discovered Behaviors

Our work discovers 23 distinct emergent behaviors re-

sulting from local interactions between 2 behavior-types of

robots. In addition to the 15 presented in the main paper

(Fig. 4), we show an additional 8 in Fig. 7.

Because the classification of resulting emergent behaviors

is subjective and based on the human’s notion of novel and

interesting, we include a short description of behaviors that

guided our experiments in distinguishing between behaviors.

We also include a vector from H2 that produces each

behavior in the following paragraphs.

1) Nested Cycles: Agents of Type A form a circle around

a circle of a smaller radius formed by agents of Type B.

Controller: [0.0, 0.5, 0.6, -0.1, 0.3, 0.7, 0.6, 0.0, 8
24

]

2) Eye: A small cyclic or milling pattern formed by Type

A agents is encircled by Type B agents producing a large

milling pattern. Controller: [0.9, 1.0, 0.7, 0.7, 0.9, -0.7, 1.0,

0.8, 8
24

]

3) Flower: Type A agents aggregate in the center while

Type B agents produce large ”pedals” or curves that fall

away from the aggregating agents and then towards them

again. Controller: [0.7, 1.0, 0.4, 0.5, -0.9, -0.4, -0.3, 0.6, 12
24

]

4) Spiral: Type A agents form a cyclic pattern while Type

B agents ”cling” tightly to a member of the Type A behavior,

resulting in a cyclic pattern with many tails coming off of

the central cycle. Controller: [0.1, 0.5, 0.6, -0.1, 0.3, 0.7,

0.4, -0.4, 8
24

]



(p) Segments (q) Site Traversal (r) Mill-Following (s) Aggregation

(t) Dispersal (u) Cyclic Pursuit (v) Wall-Following (w) Milling

Fig. 7. 8 Additional Behaviors Reported by our experiments. Segments, Site Traversal, and Mill-Following have not been reported for agents of these
capabilites before. The remaining behaviors (s-w) have been discovered by [4] in prior work.

5) Nucleus: Agents of Type A form a circle around

Type B aggregating or tightly milling agents, resembling the

nucleus of a cell. Controller: [0.5, -0.7, 0.9, -0.5, 0.7, 1.0,

1.0, 0.5, 8
24

]
6) Flail: Agents of Type A aggregate and bump into a

line of follower agents (Type B). The continual aggregation

bumping causes the line to spin around the aggregation

agents, resembling a flail or chain being swung around a

central pivot point. Controller: [-0.6, 1.0, 1.0, 0.4, 0.7, -0.6,

0.7, 1.0, 3
24

]
7) Containment: Agents of Type A attempt to disperse

outwards from the center of the environment while agents of

Type B attempt to ”fence-in” the dispersing agents by using

a follower or cyclic pattern. Controller: [0.2, 0.7, -0.3, -0.1,

0.1, 0.9, 1.0, 0.8, 4
24

]
8) Dipole: Type A agents form a cyclic pattern around

two opposing mills (Type B), where the mills are more at-

tracted to the encircling agents than to each other, leading to

a behavior where rotation occurs about two poles. Controller:

[1.0, -1.0, 0.7, 0.5, 0.9, 0.7, -1.0, -0.2, 12
24

]
9) Snake: Type A agents form a following pattern (Snake)

where the leader agent seeks ”apples” (Agents of Type B).

Type B agents are particularly good at dispersing/reversing

away from detected snakes, leading to an exciting chase.

Controller: [-0.7, 0.7, -0.4, -0.8, 0.8, 0.1, 0.2, 0.5, 1
24

]
10) Hurricane: Type A agents aggregate in the eye of a

hurricane—A large milling pattern formed by agents of Type

B. Controller: [-0.1, -0.2, 1.0, -1.0, 0.8, 0.9, 0.9, 1.0, 6
24

]
11) Geometric Warp: Type A agents disperse to corners

and walls while a cyclic pattern (Type B) gets slowly warped

due to the influence of the dispersing agents on the sensors

of the cyclic agents, adding noise (warp) to the curve of the

circle. Controller: [-0.4, -1.0, -0.2, 0.9, -0.6, 0.7, 0.9, 1.0,
3
24

]
12) Perimeter: Type A agents mill or aggregate in the

middle of the environment, while Type B agents wall follow

at a distance. Controller: [-0.9, -0.8, -0.8, -1., -0.6, -1., 0.9,

-0.7, 6
24

]
13) Mill + Disp.: Type A agents mill in the center of the

environment while Type B agents disperse away from the

milling agents. Controller: [0.7, 1.0, 0.3, 0.4, 0.2, 0.7, -0.5,

-0.1, 12
24

]
14) Agg. + Disp.: Type A agents aggregate in the center

of the environment while Type B agents disperse away from

the aggregating agents. Controller: [0.1, 1.0, 0.3, 0.7, 0.2,

0.7, -0.5, -0.1, 12
24

]
15) Cyclic + Disp.: Type A agents form a cyclic pursuit

pattern in the center of the environment while Type B agents

disperse away from the cyclic agents. Controller: [0.6, 1.0,

0.4, 0.5, 0.2, 0.7, -0.5, -0.1, 12
24

]
16) Segments: Type A agents form a cyclic pattern and

Type B agents form a cyclic pattern of similar radius but a

much faster speed, causing a slowly rotating inner-cycle and

a fast rotating outer cycle. Controller: [-0.9, 0.6, 0.9, 0.7,

-0.4, 0.1, 0.6, 0.2, 12
24

]
17) Site Traversal: Type A agents remain static or nearly-

static in their initial starting configuration while Type B

agents dart from one Type A agent (site) to the next. The

fast turning rate of Type B agents means that not all agents

will take the same traversal path between sites, as shown in



Fig. 8. The effect of changing the population ratio (η) for in the following controller: [0.326, -0.579, 0.533, 0.472, 0.293, 0.424, 0.817, 0.795, η]. Images
are captured at 1200 timesteps and are cropped for clarity.

Fig. 7q. Controller: [-0.9, 1.0, 1.0, 1.0, 0.1, -0.1, 0.0, 0.0,
12
24

]

18) Mill-Following: Type A agents perform a milling

pattern while Type B Agents follow the outside of the mill.

When the milling agents see the trail of followers, they turn

tightly inward, creating a crashing wave and the behavior

repeats. Controller: [1.0, 0.9, 0.9, 0.5, 0.7, 0.5, 1.0, 1.0, 12
24

]

19) Aggregation: Type A and Type B agents attract each

other and aggregate in the middle of the environment.

Controller: [0.4, -0.7, 0.9, -0.5, 0.9, -0.4, 1.0, 0.4, 8
24

]

20) Dispersal: Type A and Type B agents repel each other

and disperse outward from the middle of the environment.

Controller: [-0.3, 0.1, -0.4, -0.3, -0.3, 0., -0.2, -0.1, 8
24

]

21) Cyclic Pursuit: Type A and Type B agents form

a perfect circle with evenly spaced agents forming the

circumference. Controller: [-0.7, 0.3, 1.0, 1.0, -0.7, 0.3, 1.0,

1.0, 12
24

]

22) Wall-Following: Type A and Type B agents follow

the 4 walls of the environment. Controller: [1.0, -0.1, -0.9,

-1.0, 1.0, 0.6, -0.3, 0.9, 1
24

]

23) Milling: Type A and Type B agents rotate around a

central pivot point but do not form an evenly spaced circle.

Controller: [0.7, 1.0, 0.4, 0.5, 0.7, 0.9, 0.4, 0.5, 8
24

]

D. Swarm Chemistry Implementation

We seek to establish a baseline for automated behavior

discovery by performing evolutionary search using a human

as the fitness function instead of relying on a learned

embedding. To achieve this, we draw inspiration from Swarm

Chemistry, which presents a framework for human-in-the-

loop swarm evolution. Swarm Chemistry presents a human

user with an initial array of swarm behaviors. The human

is tasked with the role of the alchemist, and must select

swarms for evolution which they find interesting/unique.

These swarms are then randomly mutated and/or combined

to form the next generation of swarms. Because the nature of

the heterogeneous capability model presented in this paper

differs fundamentally from that of Swarm Chemistry, so too

does the evolution pipeline. Regardless, the underlying prin-

ciple of using a human as the fitness function for evolution

remains unchanged.

We initialize the evolution pipeline by randomly gen-

erating 8 heterogeneous controllers. If the user wishes to

replicate the starting conditions of the pipeline, they may set

a random seed so that this operation becomes deterministic.

The 8 controllers are simulated on a grid for the user. If

the user finds a behavior interesting/unique, they may ”save”

it using a designated button. The user may save as many

behaviors as they like each generation. The corresponding

controller is saved to a file for later reference. The user

may select between 1 and 2 swarms for evolution. When

the user has selected the desired number of swarms, they

press a button labeled ”Advance” on the right side panel

of the GUI. There are two other buttons labeled ”Back”

and ”Skip”, but their functionalities were not used in the

context of this paper. If the user selects 1 swarm, the

next generation of controllers will consist of 1 copy of the

selected swarm’s controller, 6 randomly mutated versions of

the selected swarm’s controller, and 1 randomly generated

controller. If the user selects 2 swarms, the next generation

of controllers will consist of the 2 controllers corresponding

to the selected swarms, 1 randomly generated controller, and

5 offspring of the 2 controllers corresponding to the selected

swarms. Fig. 9 shows this process.

The random mutation operation applies the following

operations to each element of the controller c to produce a

randomly mutated controller c′. Random crossover takes two

controllers as input and produces an offspring controller.

E. Justification for Population Ratio Value

The population ratio parameter (η) in heterogeneous con-

trollers dictates the ratio between the populations of the two

controller subspecies. For some controllers, the behavior of

a swarm may remain fundamentally the same despite large

changes to η , as shown in Fig. 8.

Conversely, relatively small changes to η can lead to large

and unpredictable changes in the behavior of the swarm.



Fig. 9. A diagram showing how the next generation of controllers is
produced in our implementation of Swarm Chemistry. The process differs
depending on the number of controllers the user selects.

Ultimately, the effect that changing η will have on the

behavior of the swarm depends on the rest of the parameters

in the controller. Restricting η to a constant such as k =
0.5 would limit our ability to explore the entirety of the

behavior space because some behaviors would be impossible

to simulate. For example, if η were restricted to 0.5, it would

be impossible to simulate the Snake behavior shown in Fig.

4. As a means to the end of exploring the largest number

of distinct heterogeneous swarm behaviors, we included the

population ratio in the heterogeneous controller.
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