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ABSTRACT

We examine the problem of determining demonstration su�ciency:

how can a robot self-assess whether it has received enough demon-

strations from an expert to ensure a desired level of performance? To

address this problem, we propose a novel self-assessment approach

based on Bayesian inverse reinforcement learning and value-at-risk,

enabling learning-from-demonstration (“LfD") robots to compute

high-con�dence bounds on their performance and use these bounds

to determine when they have a su�cient number of demonstra-

tions. We propose and evaluate two de�nitions of su�ciency: (1)

normalized expected value di�erence, which measures regret with

respect to the human’s unobserved reward function, and (2) percent

improvement over a baseline policy. We demonstrate how to formu-

late high-con�dence bounds on both of these metrics. We evaluate

our approach in simulation for both discrete and continuous state-

space domains and illustrate the feasibility of developing a robotic

system that can accurately evaluate demonstration su�ciency. We

also show that the robot can utilize active learning in asking for

demonstrations from speci�c states which results in fewer demos

needed for the robot to still maintain high con�dence in its policy.

Finally, via a user study, we show that our approach successfully

enables robots to perform at users’ desired performance levels,

without needing too many or perfectly optimal demonstrations.
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1 INTRODUCTION

If robots and other AI systems are to be deployed in safety-critical

settings, we want them to be able to con�dently self-assess their

performance and understand when they require additional training
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data to meet a desired level of performance. This becomes especially

di�cult in domains such as learning from demonstration (LfD) [3,

39] or inverse reinforcement learning (IRL) [47, 4] where the re-

ward function itself is unknown and must be learned from human

demonstrations. Imagine a robot that is learning from demonstra-

tions how to navigate across uneven terrain or how to perform a

household task such as putting dishes away. How many demonstra-

tions are needed for the robot to learn the task? Is there a way for

the robot to self-assess whether it has received a su�cient number

of demonstrations needed to achieve good performance? How can

the robot measure performance if it doesn’t know the human’s true

reward function? In this paper we seek to address these questions.

Our main insight is the following: Maintaining a belief distribu-

tion over the demonstrator’s true, but unobserved, reward function,

enables a robot to reason about its performance under this distribution

and determine, with high-con�dence, when it has received enough

demonstrations to satisfy a desired performance threshold.

To maintain a belief distribution over reward functions, we pro-

pose a novel application of Bayesian IRL (BIRL) [38] that uses sam-

ples from the posterior distribution over reward functions given

demonstrations to enable the robot to evaluate its current policy

and determine how con�dent it is that this learned policy has su�-

ciently good performance. We propose two de�nitions of demon-

stration su�ciency: (1) whether, with high con�dence, the learned

policy has low regret compared to the optimal policy under the

unobserved reward function of the demonstrator and (2) whether

the learned policy will, with high con�dence, outperform a given

baseline policy (e.g., a policy that is known to be safe but subopti-

mal) by a desired margin. Our approach allows a robot to self-assess

when it has received enough demonstrations to enable it to meet

one of the above performance criteria.

By proposing a Bayesian approach to self-assessment when learn-

ing from demonstrations, we seek to enable robots to properly rea-

son about uncertainty. For example, if the human demonstrator

happens to provide redundant or ambiguous demonstrations, the

robot will have a large amount of uncertainty regarding the true

intention of the demonstrator, leading it to continue to ask for ad-

ditional demonstrations. This kind of self-assessment also allows

robots to know when they do not require any further demonstra-

tions. An important bene�t of this approach is that it removes the

need for the human to predict when the robot has had enough

training data. It is often di�cult for humans to inspect a robot’s

policy or learned reward function to determine whether it is aligned

with their intent. Instead, we argue that robots should be able to
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Figure 1: Demonstration su�ciency: Pictured is an illustrative two-feature MDP in which the demonstrator is seeking to teach

the robot to reach the starred state. White states have small negative reward and red states have large negative reward. (Left)

The robot receives two demonstrations (the black arrows) from the expert but, through our self-assessment method discussed

below, deems them insu�cient to be highly con�dent that its learned policy has low regret–it does not yet have strong evidence

about the relative rewards of the di�erent features in the MDP. (Right) The robot receives an additional two demonstrations

and, after applying our method, deems them su�cient to guarantee with high-con�dence that its learned policy will have low

regret if evaluated under the unobserved true reward function.

self-assess their performance, relative to their uncertainty over the

human’s intent. Figure 1 shows an illustrative example of this.

We examine demonstration su�ciency assessment across several

domains using both simulated demonstrations as well as human-

provided demonstrations from a user study. The main contributions

of our work are: (1) we formalize the problem of demonstration

su�ciency for robots that learn from demonstrations; (2) we de-

�ne two speci�c metrics for measuring demonstration su�ciency

and develop approaches to calculate high-con�dence performance

bounds on these metrics through a novel application of Bayesian

inverse reinforcement learning; and (3) we evaluate our approach

across four domains in simulation and two domains through a user

study, showing the e�cacy of our approach in enabling a robot to

accurately assess when it has received enough demonstrations.

2 RELATED WORK

Our work falls under the area of autonomous self-assessment of

robots and other AI systems. Previous work examines how a robot

can assess its performance and communicate its shortcomings to a

human expert [36, 17]; however, most existing performance met-

rics and studies do not involve learning from demonstration, and

those that do, focus on communication and knowledge-sharing [29,

24] rather than addressing how a robot or AI agent can directly

self-assess whether a learned policy or reward function is above

a desired safety threshold. Other work [7] studies optimal stop-

ping for robot teaching but uses information gain from pairwise

preferences instead of policy performance estimated from demon-

strations. Prior work does consider high-con�dence performance

bounds for inverse reinforcement learning [1, 42]. However, the

bounds obtained by these methods are generally loose and correlate

to a high number of training examples needed to show the robot.

We build o� more recent work [14, 15, 13] that demonstrate tighter

bounds on performance but do not consider how these bounds can

be used for autonomous assessment of demonstration su�ciency.

Our work is also related to prior work on pedagogic teaching by

demonstrations which studies how to craft demonstrations that will

be maximally informative [18, 16, 28, 45, 30]; however, prior work

only considers this problem from the teacher’s perspective and

assumes the teacher has privileged information about the student’s

learning algorithm and complete knowledge of the reward function

they seek to teach. By contrast, we focus on developing algorithms

from the student’s perspective, i.e., algorithms that allow the robot

to knowwhen it has received su�cient demonstrations, without any

assumptions about the demonstrations being highly informative.

3 METHOD

3.1 Preliminaries

3.1.1 Markov Decision Processes. We model the environment as

an MDP consisting of a set of states ( , actions �, transition func-

tion ) : ( × � × ( → [0, 1], reward function ' : ( → R, initial

state distribution (0, and discount factor W ∈ [0, 1). A policy c is a

mapping from states to a probability distribution over actions. The

expected return of a policy c under a reward function ' is denoted

as+ ÿ
Ď

= Eĩ∼ď0+
ÿ
Ď
(B), where the value function for a state is+ ÿ

Ď
(B) =

Eÿ [
∑∞
Ī=0 WĪ'(BĪ ) |B0 = B] and the Q-value function for a state-action

pair is de�ned as&ÿ
Ď
(B, 0) = '(B) +W ∑ĩ′∈ď ) (B, 0, B)+ ÿ

Ď
(B′). Follow-

ing prior work [1, 47, 14, 26, 4], we assume that the reward function

' can be de�ned in terms of a linear combination of features: for

an MDP with features q (B) ∈ Rġ , '(B) = FĐq (B) whereF ∈ Rġ is

a vector of feature weights, with ∥F ∥2 = 1.

3.1.2 Bayesian Inverse Reinforcement Learning. In inverse rein-

forcement learning (IRL), we seek the underlying reward function

of an MDP given demonstrations [35]. We denote a set of demon-

strations by � , which we de�ne to be a set of state-action pairs:

� = {(B1, 01), . . . , (BĤ, 0Ĥ)}. Bayesian IRL (BIRL) [38] estimates the

posterior distribution over reward functions given demonstrations,

% (' |�) ∝ % (� |')% ('), where the demonstrator is assumed to fol-

low a softmax policy, leading to the following likelihood function:

% (� |') =
∏

(ĩ,ė) ∈Ā
% ((B, 0) |') =

∏

(ĩ,ė) ∈Ā

4ÿč
∗
Ď
(ĩ,ė)

∑

Ę∈ý 4ÿč
∗
Ď
(ĩ,Ę ) (1)

where V ∈ [0,∞) represents the con�dence in the demonstrator’s

optimality (a higher V means the demonstrator is more likely to
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give optimal demonstrations) and &∗
Ď
(B, 0) = maxÿ &

ÿ
Ď
(B, 0) is the

optimal Q-value for a state and action under the reward function

'. Equation (1) assigns higher likelihoods to demonstrated actions

that result in higher Q-values under ' compared to alternative

actions. Equation (1) is an example of Boltzmann-rationality, a

model that has found widespread utility in economics [11, 33],

psychology [5, 22, 23], and AI [48, 19, 8, 20, 25, 31] as a useful

model of human decision-making and can be seen as the maximum

entropy distribution over choices for a satis�cing agent [25].

3.1.3 Value-at-Risk Bounds. Value-at-Risk is a common probabilis-

tic measure of worst-case performance [27, 43]. TheU-Value-at-Risk,

or U-VaR, is the U-worst-case value of a random variable / . With

U ∈ (0, 1) as the quantile level, this is de�ned as

aĂ (/ ) = �−1Ė (U) = inf{I : �Ė (I) g U} (2)

where �Ė (I) = % (/ f I), the cumulative distribution function of

/ . The higher the value of U , the more risk-sensitive we are.

3.2 Problem De�nition

Our aim is to determine whether or not a robot has received suf-

�cient demonstrations in order to complete a task in a way that

aligns with the expert’s intended policy derived from their unob-

served reward function '∗. We want to enable robots to quantify

how con�dent they are in the goodness of their policy compared to

the expert’s via high-con�dence bounds on regret. The robot should

request more demonstrations if it is not yet highly con�dent that its

learned policy will have low regret compared to the expert’s, and it

should declare demonstration su�ciency if it is highly con�dent.

Demonstration Su�ciency: Given an MDP with an unobserved

reward function '∗, a set of demonstrations � , con�dence param-

eter U , and a performance threshold Y, we want the robot to be

able to determine when it is U-con�dent that its policy regret, if

evaluated under the demonstrator’s true reward function '∗, is no
worse than Y. Thus, demonstration su�ciency is achieved when

%
(

A46A4C (crobot, '∗) f Y |�
)

g U (3)

Given this self-assessment, the robot can tell the demonstrator that

it has received enough demonstrations. Note that in practice, crobot
can be any robot policy. In our paper, we set crobot to be cMAP, the

optimal policy corresponding to the maximum a posteriori reward

estimate 'MAP learned by the robot using Bayesian IRL.

3.3 Determining Demonstration Su�ciency

To assess demonstration su�ciency we must select a measure of

regret. We also need to �gure out how the robot can bound its

performance with respect to the unknown reward function, '∗.
To represent policy regret (also known as “policy loss"), prior

work on IRL [38, 32, 44, 14, 15] has typically used the expected

value di�erence (EVD), de�ned as

�+� (crobot, '∗) = + ∗
Ď∗ −+

ÿrobot

Ď∗ (4)

While this is a common metric for comparing di�erent IRL algo-

rithms, reward functions are equivalent under positive scaling and

a�ne shifts [35, 2], making a threshold de�ned in raw reward units

uninterpretable. Thus, we propose the use of demonstration su�-

ciency thresholds de�ned in terms of normalized expected value

di�erence (nEVD):

A46A4C (crobot, '∗) := =�+� (crobot, '∗) =
+ ∗
Ď∗ −+

ÿrobot

Ď∗

+ ∗
Ď∗ −+

ÿrand

Ď∗
, (5)

where crand is a uniform random policy. Normalizing with respect

to a random uniform policy enables the demonstrator to specify

a regret threshold in terms of an interpretable percentage rather

than in raw reward units.

Because the ground-truth reward function is unknown to the

robot, it is impossible to calculate its true regret, =�+� (crobot, '∗).
Instead, to perform demonstration su�ciency self-assessment, we

propose a Bayesian approach that leverages Bayesian IRL to sample

from % (' |�), the posterior distribution of reward functions given

demonstrations, and then uses these reward samples to calculate an

U-Value-at-Risk (U-VaR) upper bound on regret [14, 15]. We propose

that the robot should declare demonstration su�ciency when

aĂ (=�+� (crobot, ')) f Y, for ' ∼ % (' |�) . (6)

3.4 Dealing with Finite Sampling Errors

As discussed in the previous section, we want to �nd an U-quantile

worst-case bound on =�+� (crobot, '∗) by computing the U-VaR

over % (' |�). In practice we do not know % (' |�) explicitly but in-

stead obtain samples from the posterior % (' |�) via Markov chain

Monte Carlo (MCMC) methods [38]. Thus, we need to be careful

about the error induced by samples and make sure that we do not

underestimate the policy regret due to a small number of samples

from the posterior. To �nd % (' |�), we use MCMC to generate a

sequence of sampled rewards R = {' : ' ∼ % (' |�)} from the pos-

terior distribution over reward functions given the demonstrations.

Bayesian IRL has rapid �nite-time mixing guarantees and con-

verges to the true posterior, making it a viable method to estimate

% (' |�) [38], but we still need to deal with error and uncertainty

when estimating the value-at-risk. We do this as follows. For each

sample 'ğ ∼ % (' |�) ∈ R we �rst compute

-ğ = =�+� (crobot, 'ğ ), (7)

giving us samples from the posterior distribution over normalized

expected value di�erences conditioned on the user’s demonstra-

tions. Given = samples of - , we can obtain a point estimate of the

U-VaR by sorting the samples of - in ascending order to get order

statistics/ , then take the U-quantile. This gives us/ġ as an estimate

of the U-VaR, where : = +U=,. However, this does not take into
account our con�dence in this point estimate.

Following Brown et al. [14], we derive a high-con�dence upper

bound on theU-VaR. By de�nition, we have that % (-ğ < aĂ (- )) = U

for any sample -ğ , 8 ∈ 0, . . . , =. We �rst sort these samples to obtain

order statistics / Ġ , 9 ∈ 0, . . . , =. Then for any / Ġ , we can calculate

the probability that the U-VaR is less than / Ġ using the binomial

cumulative distribution function (CDF):

% (aĂ (- ) < / Ġ ) = � ( 9 − 1;=, U) (8)

=

Ġ−1
∑

ğ=0

(

=

8

)

Uğ (1 − U)Ĥ−ğ (9)

Note that aĂ (- ) is the 100U percentile value of - . Thus, for the

order statistic / Ġ to be larger than aĂ (- ), we must have that aĂ (- )
is greater than at most 9−1 samples. This probability is given by the
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Figure 2: Bounding regret with U-VaR: Error bands around the lines denote standard error. (a) shows that the robot is able to

generate accurate U-VaR upper bounds on its true, but unobserved, regret (nEVD). (b) shows the corresponding bound errors

and (c) shows the accuracy, indicating that in almost all MDPs, the bounds are correct upper bounds.

binomial CDF, � ( 9 − 1;=, U), which gives the probability of getting

9 − 1 or fewer successes in = trials (hence Eq. (8)). In this formula-

tion, a success is when a sample -ğ is less than aĂ (- ), making the

probability of success, % (-ğ < aĂ (- )), equal to U by de�nition of

U-VaR; it follows that the probability of failure, % (-ğ g aĂ (- )), is
1−U , hence Eq. (9). Finally, to get a 95% con�dence bound on aĂ (- ),
we can use the inverse binomial CDF, �−1. Thus, the order statistic
/ġ , where : = �−1 (0.95;=, U), forms a 0.95-con�dence bound on

aĂ (- ). We use the above derivation to compute 95%-con�dence

bounds on the U-VaR throughout the paper.

3.5 Empirical Justi�cation for Our Bounds

Figure 2 shows the results of testing the robot’s capability of es-

timating the underlying reward function using our approach to

bound the nEVD in a simple 5x5, 4-feature gridworld environment.

We set the con�dence level U to be 0.90, 0.95, and 0.99 and plotted

the results of each trial. The G-axis denotes the number of demon-

strations the robot is given. We show the actual bounds, the bound

error (how much the estimated policy loss overestimates the true

policy loss on the unobserved ground-truth reward), and accuracy,

de�ned as the proportion of environment replicates in which the

U-VaR bound on the nEVD is higher than the true nEVD.

We see that the robot is able to obtain high accuracy and tight

value-at-risk (VaR) bounds on the normalized expected value dif-

ference. Starting with only one or two demos, the robot cannot

be expected to truly learn what is an acceptable policy or reward

function, and the high bounds and bound errors re�ect this fact.

However, within �ve or six demos, the VaR bounds and the bound

errors are all able to reach close to 0.0. Our results provide strong

evidence that we can use our previously described approaches to

both bound performance and to determine demonstration su�-

ciency. As expected, the higher U is, the more conservative the

bound; however, all bounds are highly accurate and surprisingly

tight, especially for increasing numbers of demonstrations.

4 EMPIRICAL RESULTS

4.1 Experimental Design

Figure 3 shows the environments we use to test our methodol-

ogy. Two have discrete state spaces (Gridworld and Driving) and

two have continuous state spaces (Lunar Lander and Lavaworld).

Figure 3: The environments in which we examine demon-

stration su�ciency assessment.

We generated multiple randomized MDP instances of each envi-

ronment and tested three methods on the same set of MDPs: our

approach and two baselines, discussed in Section 4.2. In each envi-

ronment we simulate human demonstrations by sampling states

uniformly at random and providing an optimal action for that state

(discrete environments) or optimal trajectory starting from that

state (continuous environments). Our test environments are:

Gridworld: A discrete state space MxN environment where each

state has one of four features, each associated with a di�erent

reward weight. One of these states is the goal state. The robot can

take one of four actions: up, down, left, and right.

Driving: A discrete, in�nite horizon environment with di�erent

road conditions and tra�c. There are two o�-road patches on either

side of the main roads. The end of the road segment is connected

to the beginning, simulating a continuous road. Actions are drive

straight, turn left, and turn right.

Lunar lander [12]: A continuous state space environment from

OpenAI Gym where the human lands a craft on the moon.

Lavaworld [26]: A continuous state space environment where

the human guides the robot towards a goal while attempting to

both avoid a pit of lava randomly placed in the environment and

maintain a smooth, non-jerky trajectory.

4.2 Baselines

To the best of our knowledge, we are the �rst to study demonstration

su�ciency. Thus, we adapt two stopping criteria from supervised

learning [37] into heuristic baselines for demonstration su�ciency.
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Convergence (Conv.): Given a “patience" hyperparameter ? , the

robot signals demonstration su�ciencywhencMAP does not change

over ? consecutive demonstrations.

Validation set (V.S.): Every 8th demonstration is added to a held-

out set. If for each (B, 0) in the held-out set, cMAP (B) = 0, the robot

declares demonstration su�ciency.

4.3 Dependent Measures

Identi�cation accuracy:We use F1 score to represent identi�ca-

tion accuracy, de�ned as

�1 =
)%

)% + 1
2 (�% + �# )

(10)

True positive (TP) means that A46A4C (crobot, '∗) f Y when the robot

declares demonstration su�ciency. False positive (FP) is when the

robot declares demonstration su�ciency but A46A4C (crobot, '∗) > Y.

False negative (FN) is when the robot does not declare demonstra-

tion su�ciency but A46A4C (crobot, '∗) is actually less than Y.

Sample e�ciency: While having good accuracy is important, we

argue that practicality in terms of human interaction burden is

also crucial. More speci�cally, we do not want the human to have

to give too many demonstrations to the robot before it can learn

a high-performing policy. As such, we measure the proportion of

demonstrations needed before the robot determines it can stop receiv-

ing demonstrations. For discrete environments this is the number of

unique states where a demonstrator action is provided. For continu-

ous environments we use the number of demonstrated trajectories.

4.4 Analysis

For our nEVD stopping condition, we tested �ve di�erent thresh-

olds: 0.1, 0.2, 0.3, 0.4, 0.5. We stop at 0.5 as this denotes a regret that

is exactly half that of a random policy; any larger regret is deemed

unreasonable. For the convergence baseline, we tested �ve di�erent

patience hyperparameters, ? = 1, 2, 3, 4, 5. For the validation set

baseline, we also tested �ve di�erent interval hyperparameters,

8 = 3, 4, 5, 6, 7. We picked the two hyperparameter settings that

gave the best sample e�ciency vs. identi�cation accuracy tradeo�

in order to compare with our regret con�dence bounding method.

We set a con�dence level of U = 0.95 for our method.

We test the following hypotheses:

H1. Ourmethod achieves higher F1 scores than baseline methods.

H2. Ourmethod requires fewer demonstrations to be given to the

robot before it declares demonstration su�ciency, compared

to baseline methods.

The results in Figure 4 show that the nEVD bounding method

generally outperforms both baseline stopping conditions. Complete

results can be found in the appendix. In the discrete domains, our

method achieves a higher F1 score, near 1.00 for all thresholds, than

the validation set baseline (V.S.), while requiring at least 25% fewer

demonstrations. This can be attributed to the fact that V.S. needs

to set aside usable demonstrations for its held-out set, and on top

of that requires an exact match between cMAP states and held-out

states. The convergence baseline (Conv.) has high sample e�ciency,

but this comes at the cost of a much lower F1 score, a consistent

trend across both the discrete and continuous domains. This can be

attributed to the fact that Conv. depends on the stability of cMAP,

not its actual performance.

In the continuous domains (Figure 4(c) and (d)), our sample

e�ciency over the baseline methods becomes much clearer. We

believe the di�erence is so stark because in environments with

a continuous state space, there is more ambiguity regarding the

demonstrator’s true reward '∗. This ambiguity causes 'MAP to vary

widely, which means that the baselines end up requesting many

demonstrations. This results in V.S. achieving a high F1-score due

to exact matching with the optimal policy, but it comes with the

aforementioned sacri�ce in sample e�ciency.

Our method maintains high F1 scores and high sample e�ciency

in both domains because it takes into account how well the robot’s

current policy crobot will perform under the ground-truth reward

function compared to an expert using our high-con�dence bounds.

It does not require that crobot converges to or match any singular

policy so long as the robot is con�dent that crobot achieves low

regret. Moreover, a converged policy does not necessarily mean it

will generalize well to the expert’s true intended reward function.

It may just mean that consecutive demonstrations convey very

similar information. Determining demonstration su�ciency based

on high-con�dence bounds on nEVD not only enables robots to

learn high-performing policies e�ciently and accurately, but also

allows human demonstrators to calibrate the robot’s performance

according to desired con�dence levels and performance thresholds.

4.4.1 Statistical Tests for H1. Since the distribution of F1 scores

across all methods and their corresponding thresholds did not meet

normality or variance homogeneity assumptions, we conducted

a Kruskal-Wallis test. Kruskal-Wallis yielded statistically signi�-

cant results for both the discrete (� = 71, ? ≈ 0) and continuous

(� = 83, ? ≈ 0) domains. Subsequent Dunn post-hoc tests with the

Bonferroni correction and median comparisons revealed that there

was a statistically signi�cant di�erence between our method’s F1

scores and Conv.’s (? ≈ 0), but no signi�cant di�erence between

our method’s scores and V.S.’s. (? ≈ 1). Thus, our results partially

support H1.

4.4.2 Statistical Tests for H2. We ran the same set of statistical

tests to compare each method’s sample e�ciency across thresh-

olds. Kruskal-Wallis yielded statistically signi�cant results for both

the discrete domain (� = 358, ? ≈ 0) and continuous domain

(� = 601, ? ≈ 0). Dunn and median comparisons revealed that our

method required fewer demonstrations for the continuous domain

(? ≈ 0) compared to the convergence baseline and fewer demonstra-

tions for both domains (? ≈ 0 for both) compared to the validation

set baseline. While Conv. required fewer demonstrations for the

discrete domain than our method, the median di�erence was only

12%. Our results provide strong evidence for H2, especially since

most environments robots encounter in the real world will have

continuous state spaces.

4.4.3 Comparison to Prior Theoretical Bounds. We next compare

the e�ciency at which our method obtains con�dence bounds com-

pared to prior work [1, 42] in IRL that uses Hoe�ding bounds. While

these works were also focused on determining the optimal number

of demonstrations to achieve a policy regret bound, their bounds
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Figure 4: nEVD method compared to baseline methods for determining demonstration su�ciency: The G-axis across all sub�gures

denote the nEVD bound threshold the robot was using to assess demonstration su�ciency with our method. “Conv." denotes the

convergence baseline with a patience hyperparameter of ?. “V.S." is the validation set baseline with an interval hyperparameter

of 8. Sub�gures (a) and (b) show the sample e�ciency and identi�cation accuracy measures, respectively, for the discrete domain

(gridworld and driving). Sub�gures (c) and (d) show the sample e�ciency and identi�cation accuracy measures, respectively,

for the continuous domain (lander and lavaworld). Bands around the lines denote standard error.

Threshold Abbeel and Ng [1] Syed and Schapire [42]

0.1 1,624,056 3,654,126

0.2 406,014 913,532

0.3 180,451 406,014

0.4 101,504 228,383

0.5 64,963 146,166

Table 1: Number of demonstrations required under a 95% con-

�dence Hoe�ding-based bound to reach each nEVD thresh-

old. Our method (showcased in Figure 4) requires orders of

magnitude fewer demonstrations to reach the same bounds.

depend on loose concentration inequalities regarding the demon-

strator’s state occupancy frequencies. As a result, these bounds

are highly impractical for determining real-world demonstration

su�ciency. To showcase this, we averaged results across a common

set of gridworld MDPs with U = 0.95 for our method and a 95%

con�dence level for these other methods. Table 1 shows how many

demonstrations the latter require to reach each of our policy loss

thresholds. When compared with Figure 4, the results in Table 1

show that our approach provides a dramatic improvement in practi-

cality over prior high-con�dence bounds for robots that learn from

demonstrations.

4.4.4 Noisy Demonstrations Ablation. Finally, we study how our

method performs given noisy, or suboptimal, demonstrations. We

ran a small experiment that varied the percentage of noisy demon-

strations and assessed how identi�cation accuracy and sample e�-

ciency changed as noise increased. On average, we found that iden-

ti�cation accuracy decreases slowly with noise, remaining above

95% until over around 30% of demonstrations are suboptimal. The

same trend could be found for the true positive rate, indicating

that even with noisy demonstrations, the robot using our nEVD

bounds is still able to correctly pinpoint at which point it can safely

stop receiving training data. On the other hand, the false positive

rate increases faster but still remains below 5% until around 20%

of demonstrations are suboptimal. This trend is expected since

the robot will be misled towards an incorrect reward and policy

given very noisy demonstrations. Meanwhile, we found that there

was no clear trend in relation to noise when it came to sample

e�ciency; across all noise levels, sample e�ciency datapoints re-

mained roughly within ±6% of each other. Overall, this experiment

provides some evidence that our methods are decently robust to

noise—20% to 30% of demonstrations can be suboptimal, which is

promising for real-world applications.

4.5 Method Extensions

4.5.1 Percent Improvement over a Baseline Policy. As mentioned in

the Introduction, our framework of using high-con�dence bounds

to help robots reason under uncertainty regarding their policy

performance can be applied to another �avor of demonstration

su�ciency, one based on performance gain rather than loss.

There are situations where there already exists a baseline pol-

icy, e.g., a robot comes pre-deployed with a default policy or the

demonstrator has previously trained a safe policy for one task and

now wants to teach the robot a related task. In such scenarios, a

stopping condition based on bounds on improvement over the base-

line policy would allow the robot to, with high con�dence, learn

a policy that performs better under the true reward function. We

de�ne this as Percent Improvement Over a Baseline (PIOB):

%�$�(crobot, cbase, ') =
+
ÿrobot

Ď
−+

ÿbase

Ď

+
ÿbase

Ď

(11)

Using the same approach as before, we sample reward functions

from the Bayesian posterior given demonstrations and use these

samples to create a bound on performance gain at a given con-

�dence level. The robot signals demonstration su�ciency when

its estimated lower bound on PIOB surpasses the user-provided

improvement threshold. Since the robot is trying to obtain a lower

bound on policy improvement rather than an upper bound on policy

loss, the robot uses a (1 − U)-worst-case value:
a1−Ă (/ ) = �−1Ė (1 − U) = sup{I : �Ė (I) f (1 − U)} (12)

Given a set of demonstrations � , a baseline policy cbase, and

an improvement threshold Y, demonstration su�ciency is now
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Discrete Continuous

PIOB Bound Threshold F1 Score F1 Score

20% 1.00 ± 0.00 0.99 ± 0.00

40% 0.97 ± 0.00 0.99 ± 0.00

60% 0.95 ± 0.00 0.99 ± 0.00

Table 2: PIOBmethod: F1 scores for the two domains, for each

percent improvement bound threshold used.

determined by whether the robot policy su�ciently improves over

the baseline with high con�dence.

Using the same four environments, we show the results of using

VaR bounds on percent improvement over a baseline as a way to as-

sess demonstration su�ciency in Table 2 (more results can be found

in the appendix).We omitted the sample e�ciencymeasure from the

table due to space constraints; we found that sample e�ciency was

similar to what was achieved with the nEVD bound method (67%

± 2% of states for discrete, 6.12 ± 0.22 states for continuous) and,

as expected, decreased with increasing threshold values, especially

if the original baseline policy was already high-performing. This

trend can also be seen in the F1 scores. While these scores start out

high, similar to those achieved with nEVD bounds, they decrease

as the threshold increases because the robot accrues more false

negatives—due to the conservative nature of our high-con�dence

performance bounds. We do not see this as a large concern because

these bounds are designed to be lower bounds on policy gain. That

is, the robot may underestimate the quality of its learned policy,

which in reality can turn out to be better than expected.

4.5.2 Active Learning. Our previous empirical experiments and

user study used demonstrations that were given in a “passive” man-

ner, where demonstrations were chosen by the human. In this

section, we investigate the bene�ts of applying prior work on risk-

aware active queries [15] to allow the robot to actively query for

demonstrations, which can achieve better sample e�ciency while

still maintaining high demonstration su�ciency identi�cation ac-

curacy.

For the two discrete environments where there are a �nite set

of states to select from, we conducted experiments using the same

MDPs and dependent measures for both nEVD and PIOB bounding

methods, with a key di�erence being that the robot is able to actively

query a speci�c state where it wants an additional demonstration.

At each iteration, the robot calculates which state has the highest

U-VaR bound on expected value di�erence (EVD), then requests a

demonstration from this state to be added to the demo set � for the

next iteration. Note that we use unnormalized state EVD (similar

to Eq. (4) but for a single state instead of the whole policy). This is

because the normalization factor helps quantify the performance of

a policy but is unnecessary computation if we are merely comparing

the EVDs of di�erent states together. Formally, the robot will select

a state, B∗, for requesting a new demonstration as follows:

B∗ = argmax
ĩ∈ď

aĂ (�+� (B, ')) = argmax
ĩ∈ď

aĂ (+ ∗
Ď (B) −+

ÿrobot

Ď
(B)) (13)

where ' are the reward functions sampled from the Bayesian pos-

terior and + ∗
Ď
(B) and + ÿrobot

Ď
(B) are the values of state B under ' for

the respective policies.

Reduction

Stopping Condition Mean StdDev

nEVD 12.95% 1.62%

Percent improvement 13.24% 0.65%

Table 3: Passive vs. active demonstration selection: The mean

and standard deviation of reduction in proportion of states

needed between active and passive demonstration selection.

Note that both the nEVD bound and PIOB bound stopping con-

ditions use EVD in selecting a state to actively query. While in

practice the demonstrator can set the selection metric to be any

measure he or she prefers, we believe that it is best for the robot

to select states based on which one currently results in the most

policy regret compared to an expert to ensure as high-performing

a policy as possible.

We �nd that active demonstration selection results in signif-

icantly fewer state-action pairs required for the robot to signal

demonstration su�ciency, compared to passive demonstration se-

lection, with no compromise in identi�cation accuracy. When ac-

tively querying, the robot is able to pinpoint exactly what informa-

tion it needs before it can be con�dent in learning a high-performing

policy, instead of the demonstrator having to guess what informa-

tion would be most useful. This reduction in the percentage of

states needed is showcased in Table 3.

5 USER STUDY

We designed a user study in order to evaluate our approach with

real human demonstrations. We recruited 11 participants from the

university campus, aged 18-55, 64% male, 36% female.

5.1 Experimental Design and Measures

To keep the user study session within a reasonable amount of time,

we designed six experiments for our participants to execute via an

online interface: two environments × three demonstration su�-

ciency methods. We chose the gridworld and driving environments,

which would be both easy enough for users to handle during the

study, and, like in the real world, di�cult enough where users could

provide good, but not always optimal, demonstrations [34]. The

three methods used were nEVD bounds (ours), convergence, and

validation set. We used U = 0.95 and an nEVD bound threshold of

0.3 for our method, ? = 3 for convergence, and 8 = 5 for validation

set (the median hyperparameter values for each method). For each

experiment, participants were either given a randomly generated

reward function or asked to design their own for the environment.

Then, they provided demonstrations one by one for the robot. After

the robot declared demonstration su�ciency, users were asked to

rank the �nal learned policy on a scale of 1 to 5 based on how

well they thought the policy aligned with their demonstrations

and intended reward function. This study was blind in that the

participants were never aware which of the three methodologies

was operating behind the scenes. A more detailed description of

the study can be found in the appendix.
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Gridworld Driving

Evaluation Metric Ours Convergence Validation Set Ours Convergence Validation Set

Prop. states needed 0.22 ± 0.05 0.45 ± 0.03 0.64 ± 0.01 0.25 ± 0.06 0.69 ± 0.07 0.60 ± 0.03

User evaluation 4.31 ± 0.40 3.47 ± 0.32 4.00 ± 0.53 4.15 ± 0.28 3.00 ± 0.71 4.00 ± 0.39

Table 4: User study results: The three methods’ performances in our user study.

5.2 Analysis

We test the following hypotheses:

H3. Users liked the policies that our method learned more than

those that the baseline methods learned.

H4. The proportion of demonstrated states our method required

in the user study is less than what the baseline methods

required.

Results from our user study are shown in Table 4. For each

hypothesis we ran a Kruskal-Wallis test and Dunn post-hoc tests

with median comparisons for each environment, gridworld and

driving. ForH3, Kruskal-Wallis did not yield statistically signi�cant

results for either gridworld or driving (0.05 < ? < 0.1). Table 4

does show that our method achieves a higher mean user evaluation

than the baselines; thus the lack of statistical signi�cance could

be due to a non-standardized evaluation scale. For H4, Kruskal-

Wallis yielded statistically signi�cant results for both environments

(� = 19, ? < 0.0001 for gridworld; � = 14, ? < 0.001 for driving).

Dunn further revealed that our method required a lower proportion

of demonstrated states for gridworld (? < 0.05 for both baselines)

and for driving (? < 0.05 for both baselines).

Our user study revealed two more interesting outcomes. First,

we found that our method was much more sample e�cient in the

user study than in our empirical experiments. Comparing with the

empirical results for an nEVD bound threshold of 0.3, our method re-

quired over 60% fewer demonstrations to be shown in the user study.

We hypothesize that this is because the actual human demonstrators

were more likely to choose highly informative demonstrations in-

stead of random ones, enabling faster learning. Future work should

investigate how close these human demonstrations are to optimally

pedagogic demonstrations [18, 16]. Second, unlike in our empirical

experiments, the user-provided demonstrations were indeed sub-

optimal at times; on average, 14% of user demos were suboptimal

for gridworld, 8% for driving. The noise for driving shows that

users aren’t perfect at following even their own speci�ed reward

function, an interesting area future work can explore. Nevertheless,

our approach still was able to e�ciently and accurately determine

demonstration su�ciency, indicating its robustness to noisy, real-

world data.

6 DISCUSSION

6.1 Pathway to Deployment. Deploying our demonstration su�-

ciency methods onto a physical robot or other AI system is a matter

of integrating the algorithms into or extending the robot or system’s

existing software and then having a human available to provide

demonstrations. Demonstrations for physical robots are often pro-

vided through teleoperation, kinesthetic teaching, or even videos.

Our methods assume that the robot shares the same features as the

demonstrator, can correctly map demonstrated states and actions

into its own state and action spaces, and can perform policy opti-

mization (either model-based or model-free). While these are strong

assumptions, they are common in HRI and are not unrealistic given

recent advances in feature alignment [10, 9], cross-embodiment

IRL [46], and o�ine reward and policy learning [41]. The exact

hyperparameters used to implement our methods will depend on

the risk-sensitivity of the environment and user discretion. The

nEVD stopping condition can be used when no baseline policy

exists or is able to be provided, or when the demonstrator wants to

ensure con�dence in minimizing policy loss itself. Meanwhile, the

percent improvement stopping condition can be used in situations

in which a baseline policy can be provided and the demonstrator is

focused on improving this existing policy. Selecting the thresholds

for the stopping conditions and the U value is also up to the demon-

strator, though U = 0.95 is most commonly used. Finetuning the

thresholds and U will enable the demonstrator to adjust the robot’s

performance and conservativeness.

6.2 Limitations and Future Work. One of the limitations in our ex-

periments is the repeated running of MCMC in the BIRL algorithm,

which is time- and resource-intensive, especially as the number of

samples increases. Implementing successor features could optimize

transfer learning between di�erent 'MAP reward functions [6], im-

proving MCMC e�ciency. In addition, future work should explore

the bene�ts of active queries in continuous-state domains.

Furthermore, while our empirical experiments and user study

provide some evidence that our methodologies are compatible with

suboptimal demonstrations, future work could make this appli-

cation more robust by running a calibration stage before demon-

stration collection to estimate the suboptimality of the demonstra-

tor [40, 21] and tune V in the Bayesian inference algorithm. Finally,

future work should study whether mutual information or posterior

entropy could be used for estimating demonstration su�ciency.

6.3 Conclusion. In this paper, we formalized the problem of demon-

stration su�ciency and proposed and evaluated several methods

which a robot can use to determine whether it has enough demon-

stration data. Our empirical and user study results provide promis-

ing evidence that our methods allow robots to self-assess their

performance in cases where the reward function is unobserved by

estimating this reward from human demonstrations. By develop-

ing robotic systems that can self-assess demonstration su�ciency,

researchers and practitioners can achieve safer and more e�cient

training and deployment of LfD systems. Rather than simply giving

robots as many demonstrations as possible and hoping that they

will eventually learn the correct policy, our work takes the onus

o� the demonstrator by enabling robots and other AI systems to

detect themselves when they are highly con�dent that they can use

the existing demonstrations to learn a high-performing policy.
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Appendix

A CODE

Methods and experiments can be found here.

B METHOD IMPLEMENTATION DETAILS

Bayesian IRL (BIRL) uses Markov Chain Monte Carlo (MCMC)

sampling in order to sample from the posterior % (' |�) [38]. In
this paper, we assume the prior distribution is uniform, though

this distribution can take on any form depending on the domain.

Feature weights F̂ are sampled according to a proposal distribution

and normalized such that ∥F̂ ∥2 = 1. We implemented an adaptive

version of MCMC where the standard deviation, or step size, f of

the proposal distribution is automatically tuned during MCMC. If

the current accept rate A is higher than the target accept rate A∗, the
step size will decrease by �f , and if it is lower, the step size will

increase by �f , where �f =
Ă√
ğ+1 (A − A∗) and 8 is the index of the

current MCMC sample or iteration.

In our experiments we give the agent one demonstration, i.e.,

one state-action pair, at a time.

Algorithm 1 below shows a succinct psuedocode of our high-

con�dence nEVD bounding method. In particular, # , U , and X are

pre�xed values for the number of reward samples, the VaR quantile

level and the con�dence parameter, respectively. �−1
ý

is the inverse

Gaussian distribution.

Algorithm 1: Demonstration Su�ciency (nEVD)

1 Calculate the U-VaR bound index 9 = with

9 = +#U + �−1
ý

(1 − X)
√

#U (1 − U) − 1
2 ,.

2 for : = 0, 1, 2, . . . do

3 Collect a new demo, update the posterior of the

distribution of rewards ' by P(' |�) ∝ P(� |')P(').
4 Using MCMC, compute 'MAP and randomly sample

rewards '1, '2, . . . , 'Ċ .

5 Run value iteration on 'MAP and extract policy

cMAP =: crobot.

6 Perform policy evaluation of crobot on each reward

sample 'ğ to obtain + robot
Ďğ

.

7 Perform policy evaluation of crand on each reward

sample 'ğ to obtain + rand
Ďğ

.

8 Run value iteration on each 'ğ to obtain + ∗
Ďğ
.

9 Calculate nEVDğ =
Ē ∗
Ďğ
−Ē robot

Ďğ

Ē ∗
Ďğ
−Ē rand

Ďğ

. Sort and �nd the U-VaR

bound nEVDĠ .

10 if nEVDĠ > threshold then

11 Repeat.

12 else

13 Stop.

14 end

15 end

C USER STUDY DETAILS

Here we provide a more thorough description of our user study

setup. Users were asked to complete six rounds (3 demonstration

su�ciency methods × 2 environments), without knowing which

round used which method. For each round, they were presented

with either a gridworld or driving environment to teach the agent

in. Users were instructed to sequentially provide demonstrations,

which were (state, action) pairs, via the online interface, until the

robot declared demonstration su�ciency.

For gridworld, users were shown a reward function as a weight

vector, where each reward value was color-coded to match a feature.

Theywere told to guide the robot towards the goal as fast as possible

while avoiding low-reward features. For driving, we described the

features and requested users create their own reward function as a

weighted combination of those features (three lanes, collision, and

dirt patch). We provided examples to help, such as, “If you want to

drive towards the right as much as possible and avoid accidents,

your reward function could be 1, 2, 3, -10, -5.” Their reward function

was then normalized to have an L2 norm of 1 to be consistent with

our methodology. Users were then told to give demonstrations

according to this custom reward function.

At the end of each of the six rounds, users were shown a visual

display of the robot’s learned policy and asked, “On a scale of 1

(worst) to 5 (best), how well did the agent’s learned policy match

your intended policy or reward function?”

A short video example of what a user study round would have

looked like can be found here.

D REASONING UNDER UNCERTAINTY

A particular bene�t to using a Bayesian approach for determining

demonstration su�ciency is that this allows agents to properly

reason about their uncertainties after receiving some number of

demonstrations. In the paper we analyzed how our method can

still perform strongly when noisy or suboptimal demonstrations

are provided. Here we o�er additional insight on how it performs

with ambiguous (but still optimal) demonstrations. We de�ne an

ambiguous demonstration as one that is either redundant—one that

has been provided before and thus gives no new information—or

unhelpful—one that is unclear at showing what objectives or ob-

stacles are present in the environment, in other words one that

could be applicable to a wider set of environment con�gurations.

Given such ambiguous demonstrations, we �nd that an agent us-

ing our approach will still be able to identify that there remains

a high level of uncertainty about the demonstrator’s intent, and

so it will request additional demonstrations. On the other hand,

when the demonstrations are clear, the agent can determine they

are su�cient early on.

Figure 5 shows examples of ambiguous vs. informative demon-

strations for each of the four environments, as well as results from

a small experiment. We used the nEVD stopping condition with

a threshold of 0.5 and provided each type of demonstration sepa-

rately; in other words, we gave either only very informative or only

very ambiguous demonstrations per trial, though it is important to

note that in practice, there will generally be a mix of the two types.

Our results show that the more ambiguous the demonstrations

provided, the more additional demonstrations the agent using our



Autonomous Assessment of Demonstration Su�iciency via Bayesian Inverse Reinforcement Learning HRI ’24, March 11–14, 2024, Boulder, CO, USA

Bayesian approach will request, indicating its ability to correctly

maintain a level of uncertainty about whether or not it will be able

to learn the correct policy.

Figure 5: Comparison of number of demonstrations re-

quested. Left: Sample environments in which we provided

ambiguous (blue arrows) vs. informative (green arrows)

demonstrations. Right: This plot illustrates that the more

ambiguous the provided demonstrations, the more the agent

maintains uncertainty and requests additional demos. The

more informative the demonstrations already are, the fewer

demos the agent will request.

E COMPLETE RESULTS

Below we show complete results for our proposed stopping con-

ditions using both passive and active demonstration selection as

well as baseline stopping methods. In addition to the dependent

measures described in section 4.3, we also show

(1) Bound error: the discrepancy between the robot’s �nal U-VaR

bound and the true nEVD or percent improvement value

(2) Policy optimality: the proportion of actions under crobot that

will lead to an optimal Q-state

(3) Accuracy: for the nEVD stopping condition, the proportion

of MDP replicates in which the bound is correctly greater

than or equal to the ground-truth nEVD; for the percent im-

provement stopping condition, the proportion of replicates

in which the bound is correctly less than or equal to the

ground-truth percent improvement

E.1 nEVD Stopping Condition

Figures 6 and 7 are the results of testing the nEVD stopping con-

dition. Figure 6 shows the results when using passive demonstra-

tion selection. Figure 7 shows the results when using active query

demonstration selection.

E.2 Baseline Stopping Condition Results

Figure 8 is the result of testing the patience baseline. Figure 9 is the

result of testing the held-out set baseline.

E.3 Percent Improvement Stopping Condition

Figures 10 and 11 are the results of testing the percent improvement

stopping condition. The G-axis displays the possible thresholds on

percent improvement. Figure 10 shows the results when using

passive demonstration selection. Figure 11 shows the results when

using active query demonstration selection.
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Figure 6: nEVD stopping condition (passive selection): Error bands denote standard error. Moving left to right across the G-axis

denotes higher thresholds, i.e. looser requirements for the U-VaR bound. The looser the threshold, the fewer states need to be

seen before the robot determines demonstration su�ciency but the higher the U-VaR bound error as well, as seen in columns

(a) and (b). Policy optimality and accuracy, columns (c) and (d), stay high across all thresholds due to the nature of the U-VaR

bound. The high true positive rates in column (e) indicate the robot is able to learn a policy such that its ground-truth nEVD is

also below the threshold.

Figure 7: nEVD stopping condition (active selection): The same patterns for the above experiment hold true.
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Figure 8: Patience stopping condition: Moving across the G-axis denotes higher patience, i.e. more iterations of demonstrations

in which the robot is expected to reach the same MAP policy. Column (a) shows the low number of demonstrations needed,

especially for lower patience. While policy optimality in column (b) is acceptable, column (c) shows that accuracy is quite low

and variable. Error bands denote standard error.
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Figure 9: Held-out set baseline: Moving across the G-axis denotes larger intervals, i.e. demonstrations are added to the held-out

set more infrequently. Column (a) shows the extremely high number of demonstrations needed, especially in the continuous

domain. While policy optimality in column (b) is still high, this comes at the cost of waiting for multiple demonstrations to be

added to a validation set and for the validation set to be of su�cient size for comparison. Column (c) shows that accuracy is

quite low and variable. Again, error bands denote standard error.

Figure 10: Percent improvement stopping condition (passive selection): Error bands denote standard error. Moving left to right

on the G-axis shows higher thresholds, i.e. stricter requirements for the percent improvement over the baseline policy. As seen

in columns (a) and (b), the stricter the requirement, the more states will need to be seen and the higher the bound error will

reach, as the robot becomes more conservative. Columns (c) and (d) still show high policy optimality and accuracy. Column

(e)’s lower TPR highlights 1) the agent’s conservativeness and 2) the relatively more di�cult feat of also achieving near 100%

improvement—performing twice as well as the baseline—under the true reward function.
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Figure 11: Percent improvement stopping condition (active selection): The same patterns for the above experiment hold true.


