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Modelling shear stress distribution in ice-covered streams
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Abstract: Distribution of bed shear stress is the critical factor in regulating the meandering of single-thread
rivers. However, the impact of ice cover on bed shear stress is largely unknown. In this study, we develop a
theoretical model of cross-stream momentum balance to examine the distribution of bed shear stresses in
ice-covered meandering rivers. To validate the theoretical model, field surveys were carried out in a river
reach of the Red River in Fargo, North Dakota. Data monitoring was completed using an Acoustic Doppler Cur-
rent Profiler to obtain time-averaged velocity profiles. Our theoretical model indicates that an ice covering
develops high-shear zones near both the inner and outer banks, which might exacerbate sediment transport
and enhance bank erosion. Velocity measurements confirm the results of the proposed model and demonstrate
a clear impact of meandering river banks on velocity profiles and secondary flow patterns under ice cover. Based
on our results, we hypothesize that ice cover increases turbulent stresses near banks, which in turn lead to the
enhancement of the bed shear stress. Our work provides new insights into the impact of ice cover on bed shear
stress distribution, which could play an important role in driving sediment-transport processes and the long-term
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morphodynamic evolution of meandering rivers seasonally covered by ice.

Most studies in river hydraulics have focused on the
ice-free condition (Blanckaert and Graf 2001;
Blanckaert and De Vriend 2005; van Balen et al.
2010; Constantinescu et al. 2011; Koken et al.
2013). However, the existence of ice cover during
the winter season in cold regions changes flow struc-
tures (Kirillin ez al. 2012; Wang et al. 2020, 2021).
In comparison to the open-surface condition, ice
cover increases the complexity of the three-
dimensional flow structures, especially the vertical
velocity profiles (Teal et al. 1994; Wang et al.
2020). Hence, flow structure and dynamics in ice-
covered streams is still an active area of research
(Demers et al. 2011). To date, the impact of ice
cover on the hydrodynamic and morphological char-
acteristics of rivers is still largely unknown (Gautier
et al. 2021). Globally, the extent of river ice is tend-
ing to decrease under the impact of climate change
(Yang et al. 2020). Thus, the understanding of ice-
covered hydrodynamics will assist in the prediction
of forthcoming changes in the large-scale morphol-
ogy of rivers found in cold regions (Lauzon et al.
2019).

The most common theoretical approach to
address the impact of ice is the two-layer hypothesis,
which assumes the independent existence of two log-
arithmic layers near the channel bed and the ice
cover, respectively (Urroz and Ettema 1994; Wang
et al. 2020). The presence of the logarithmic layer
allows the logarithmic fitting to estimate the shear

velocity of the bed (ulf ) (Petrie and Diplas 2016).
Recently, the logarithmic fitting has been used to
estimate the shear velocity of the ice layer (uX) as
well (Sukhodolov ef al. 1999; Ghareh Aghaji Zare
et al. 2016) under field conditions. However, the
recent work of Guo et al. (2017) suggested that the
two-layer hypothesis has many shortcomings,
including the discontinuity of the velocity gradient.
In addition, the relationship between the shear
stresses on the river bed and the ice cover has not
been clarified in previous studies owing to the
de-coupling assumption of the two logarithmic
layers.

Bed shear stress is a critical factor in regulating
river morphology (Parker 1978; Nanson and
Huang 2017). In classical theories of open channel
flow in straight channels, the river channel is usually
assumed to be infinitely wide (Devauchelle e al.
2022). This assumption ignores the lateral momen-
tum transfer across a cross-section. Thus, the distri-
bution of bed shear stress near banks due to the
momentum transfer is typically not considered
despite bed shear stress distribution playing a critical
role in the evolution of river width (Seizilles er al.
2013, 2014; Métivier et al. 2017; Popovi¢ et al.
2021; Devauchelle et al. 2022).

The most significant location for the cross-stream
momentum balance is the correspondence of river
bends. Flow over a bend is characterized by an accel-
eration of flow velocity near the outer bank,
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especially at the point of the maximum channel cur-
vature (i.e. bend apex). Under open-surface condi-
tions, the centrifugal force gives rise to the
emergence of a helical motion that directs fluid
from the inner bank towards the outer bank within
a cross-section (Ferreira da Silva and Ebrahimi
2017). This redistribution of momentum has been
thought to be the driving force for river meandering.
Under open-surface conditions, the main circulation
is dominant throughout the cross-section at high flow
rates (i.e. bankfull conditions) (Koyuncu and Le
2022). Under ice-covered conditions, this helical
motion (secondary flow) is observed to change
(Demers et al. 2011; Koyuncu and Le 2020). There
is evidence suggesting that the helical cell pattern
is altered as the ice cover promotes the cross-stream
momentum transfer by introducing an additional
helical cell near the ice layer (Demers et al. 2011).
It is the formation of double-stacked secondary
cells that is hypothesized to influence the secondary
flow patterns under the ice cover (Urroz and Ettema
1994; Tsai and Ettema 1996; Lotsari et al. 2017). To
date, it is unclear how this change affects the distri-
bution of bed shear stress.

In this work, the impact of ice coverage on the
bed shear stress distribution is investigated. First, a
theoretical model is developed based on the momen-
tum balance to identify the important parameters of
the problem. We propose a relationship between
the shear stresses at both the bed and ice surfaces
using the cross-stream momentum balance. Second,
field measurements are carried out to provide valida-
tion data for the theoretical model. The impacts of
the ice cover on the vertical velocity profiles are
reported. A comparison between the theoretical

"

model and the measured data is discussed. Finally,
the applications of the proposed theoretical model
for estimating bed shear stress under ice coverage
are explained.

Methodology
Study area

The chosen study area is a 1.0 km-long reach of the
Red River of the North (Fig. 1a), which originates in
the state of North Dakota, USA. This specific loca-
tion was chosen owing to the accessibility to the
river surface both during open-surface and ice-
covered conditions (Fig. 1b). At the end of the
reach, hydrological data (i.e. water level, discharge,
temperature) are collected continuously at the United
States Geological Survey (USGS) Fargo station
(09020104). The station is located at latitude 46°
50" 40” and longitude —96° 47" 00” (NAD27) in
North Dakota, USA. The gauge is at 263 m
(862.88 ft) above the datum.

The topography data for the study area were
retrieved from the ND State Water Commission
LiDAR data (https://lidar.dwr.nd.gov with a hori-
zontal and vertical accuracy of 1 m and 0.2 m,
respectively. The radius of curvature is 110 m and
the river width is ¢. 38 m; accordingly, the ratio of
the radius of curvature to river width is calculated
as 2.9 for the bend in Figure la.

Field surveys

Field surveys were carried out on 2 October 2020, 10
October 2020 and 8 February 2022 in the study area

[} Pedestriar’ Bndge E

Fig. 1. (a) The Red River reach in the study area. The pedestrian bridge is located in the relatively straight portion of
the reach. (b) Drone photograph of the pedestrian bridge (19 March 2022). (¢) The ice holes opened along the
cross-sections. Source: Satellite image: Google Earth Pro — March 2021.
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Table 1. The summary of all expeditions in autumn 2020 (bridge cross-section under open surface case (OS)
and bathymetry measurement) and winter 2022 (CS;, CS,, CS; and CSy)

Case Date Surface 0 (m?s™) Elevation (m) No. verticals T (mins)
(0N 2 Oct. 20 Open 23.5 267.22 13 10
Bathymetry 10 Oct. 20 Open 20.1 267.17 - -

CS, 8 Feb. 22 Ice 11.1 267.05 6 4

CS, 8 Feb. 22 Ice 11.1 267.05 6 4

CS; 8 Feb. 22 Ice 11.1 267.05 5 4

CS, 8 Feb. 22 Ice 11.1 267.05 5 4

The hydrological data (flow discharge Q and water surface elevation) are monitored at the USGS Fargo (09020104) station. 7' (minutes) is

the total time of measurement in each vertical/(ice hole) location.

as shown in Figure lc. The summary of the field
expeditions is shown in Table 1. A Sontek M9
Acoustic Doppler Current Profiler (ADCP) was
employed for the data collection stage. The sampling
frequency of the ADCP was 1 Hz with a 0.06 m ver-
tical cell size. During all the measurements, the trans-
ducer depth was set to 0.25 m below the water
surface. Depending on the case and purpose, two
deployment techniques were adopted to conduct
measurements: (1) moving-vessel (MV); and (2)
fixed-vessel (FV) techniques. The MV deployment
technique was only available for the open-surface
condition while collecting the bathymetry to develop
the digital terrain model (DTM). During the bathy-
metry collection and cross-sectional measurements,
the M9 and the Hydroboard were attached to a
kayak and moved on the river surface. In contrast,
the FV deployment technique was used for the ice-
covered condition to monitor the vertical velocity
profile by keeping the sensor stationary throughout
the recording.

(a) CS4

T | |
260 262 264 266 268 270

Elevation (m)

Under the open-surface condition (10 October
2020), the ADCP was towed along the entire
bend to create the bathymetry (see Fig. 2a). The
depth-averaged velocity was collected continuously
throughout this towing process. In addition, we
performed one FV measurement on 2 October
2020 on the bridge cross-section (see Fig. 2a).
These datasets provide the baseline ice-free
conditions.

Since the FV deployment technique (stationary
technique) is the only available option for the mea-
surements during the winter, ice holes were opened
on the cross-sections (see Table 1). The most critical
issue for the FV technique is that the ice thickness
must be thick enough to walk on. The ice thickness
was checked manually using a chisel in all cross-
sections before any measurements. Measurements
showed that the ice layer thickness was c. 0.3—
0.5 m. The air temperature was at c. —15°C on
most of our measurement days. Under this condition,
the ADCP sensor is sensitive to air temperature and

(b)

ADCP
(Sontek M9)

Ice

transducer depth  : 0.25m
cell size :0.06m
sampling frequency : 1Hz
sampling record 1240

Fig. 2. (a) The locations of the cross-section CSy, CS,, CS; and CS, in February 2022. The location of CS; is at the
bridge. The elevation of the bathymetry is shown in the UTM-14N WGS-84 coordinate system. A stationary
measurement was carried out near the outer bend (OS,) under open-surface conditions (2 October 2020) as shown in
Table 1. (b) The placement of the ADCP M9 under the ice cover. Owing to the side-lobed configuration of the

sensors, signal interference might occur near the river bed.
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its surface can become frozen easily. The ADCP sen-
sor also has the well-known issue of signal interfer-
ence near the river bed (see Fig. 2b). Thus, it is
challenging to collect data points close to the river
bed and the ice cover (Demers et al. 2011).

The field survey in the ice-covered condition was
carried out in a single day (08:00-17:00, 8 February
2022), and thus variations in the flow rate are consid-
ered negligible. Four cross-sections were selected
downstream of the pedestrian bridge, CS;, CS,,
CS; and CS,, as shown in Figure 2. The recording
length for each ice hole is limited to 7 = 4 minutes.
We refer to a measurement at the cross-section N
with a vertical line M using the notation CSn-M.

Topography and bathymetry data processing

Since the LiDAR data do not provide the river bathy-
metry, it is necessary to combine the ADCP data and
the LiDAR point clouds. After completing the col-
lection of bathymetry and cross-section data, a three-
dimensional model of the study area can be recon-
structed. An in-house MATLAB script was written
to merge the LiDAR and ADCP data using the refer-
ence water level at the USGS Fargo station. Sub-
sequently, the final output DTM was generated, as
seen in Figure 2.

Flow data processing

The raw data from the ADCP in text format were
processed using our in-house MATLAB script to
produce a 1 Hz time series of three velocity compo-
nents ug, un and uy, in the east, north and vertical
directions of the Universal Transverse Mercator
(UTM). Therefore, the local velocity magnitude u
(z, t) at a depth z and time 7 is computed as:

UGz 1) = \Jup, 7+ un( 0 g ® (1)

A separate MATLAB script was used to calculate
flow statistics from the time series including: (a) the
depth-averaged velocity profiles; and (b) the time-
averaged velocity profile for each vertical location.
Following the suggestion of Petrie and Diplas
(2016), the time-averaged profiles for each vertical
u(z, T) and the depth-averaged value U(T') are com-
puted as the function of averaging period T as:

1 =T
u(z, t)=TtJ0 u(z, tHydt
. @)
U = L5 T)d.
M= [ u(z, T)dz

z=—H

The final values of U(T') and u(z, T') correspond
to the time-averaged values of the entire record.
They are denoted by the depth-averaged (U,,) and
time-averaged (u.(z)) velocities, respectively, to
provide a scale to indicate the range of variability
of the signals. Finally, the calculation of the shear
velocities uX and uX are based on the values of
U(z) as shown in the next sections. Unless other-
wise noted, the notation oo is dropped to simplify
the discussion of the vertical velocity as u(z).

Logarithmic velocity profile

The traditional method to determine the values of u*
and u¥ is to assume that there exist two logarithmic
layers near the ice and the bed surfaces in the vertical
velocity profile u(z) (Ghareh Aghaji Zare et al.
2016). The logarithmic law of a rough wall for the
bed layer reads as (Shen and Lemmin 1997):
ue—z) 1, 2
el S ks

+B 3)

where k¥ = 0.39 is the Von Karman constant, §is the
additive constant (8 = 8.5) and z, is the bed eleva-
tion. The parameter k; is the roughness length. In nat-
ural rivers, this logarithmic law is typically
considered valid within a distance &, from the river
bed. Typically, &, varies from 20 to 50% of the
total water depth H (Petrie et al. 2013; Petrie and
Diplas 2016; Koyuncu and Le 2021).

The shear velocity (1) and the roughness length
(ks) are found by fitting equation (3) to the measured
data (u(z — z)). A common procedure is to use the
linear regression line between the measured value
of u(z—z,) and In(z — z,) (Petrie and Diplas
2016). As the linear regression line is known, the val-
ues of uX and k, are computed as:

uE = xm )
_ _r
k, = exp[&SK m] (5)

Here, y and m are the intercept point and the slope
of the best-fit regression line, respectively.

It is common to use wall units to describe the fit-
ting process using u¥ and v to form the velocity and
viscous length scales. The vertical distance from the
river bed z — z;, and the dimensionless velocity pro-
fileu"((z — z,)") are expressed in terms of wall units
as:

(H — |zhuy

(H—|z)" = (6)
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u(H — |z])
T (7

w (H — |z2)") =

A similar fitting procedure can be carried out to
define the shear velocity for the ice layer using the
value of Izl:

*
ot = e ®)
u+(ur*>=:”3f” ©)

i

To perform the fitting process, data points must
be available in the logarithmic layer. The minimum
number of available points is selected as five in the
current study. The agreement between the linear
regression line and the measured data must also sat-
isfy the following criteria: (1) a correlation coeffi-
cient R*>0.70; (2) a positive shear velocity
uX, u* >0; and (3) a realistic value of k
(0.00l m < k¢ < 10m). The fitting process is
rejected if one of these conditions is not met. The
details of the fitting procedure can be found in
Koyuncu and Le (2022).

Quartic profile for asymmetrical flows

The quartic profile of Guo et al. (2017) is formulated
using the relative distance 7, which is defined as
n = (2(H — Izl)/H ). The maximum velocity location
in each vertical (z,,.,) is defined in terms of its rela-
tive distance as Nmax = 2H — 1zmaxl)/H).

The dimensionless parameter A is used to repre-
sent the asymmetry of the flow profile. It is assigned
by the fitting as:

2

A= —1

(10)

nmax

Here 1 = (ui* /u) quantifies the asymmetry of
shear stress on the top (ui* ) and bottom (u;‘ ) surfaces.
Therefore, the value of 1 is important in determining
the shape of the velocity profile.

The location of the zero shear stress plane (1.)
typically does not coincide with the maximum veloc-
ity location (Hanjali¢ and Launder 1972). In practice,
they are relatively close (Guo 2017). To simplify the
fitting procedure, we assume that 7. & 7M.«. Thus,
this location can relate to A as 7. & fmax ~ 2/(1 +
A™) with ue & Upay.

The quartic solution finds the best-fit velocity
profile (ug) to the measured data. u; can be written
in terms of its dimensionless form u™* with the help

of the bed shear velocity u;‘ as:

uf(n)_ +
* =

u” () )

Uy

Therefore, the bed shear velocity is used to pro-
vide a dimensionless profile u" = u/u;¥. For exam-
ple, the critical velocity at the critical depth 7. is
non-dimensionalized as u}” = u./uy.

It is suggested that the dimensionless velocity
profile (u") follows the analytical solution (Guo
et al. 2017):

ut () = ul + () 12)

Here the velocity profile function (¢(n)) is

derived for an infinitely long and straight channel as:

1 2—n 144
6, A) = — 1n(1>+/11n n_lt4
K UR 2_77c 2

ln|:1 + a(l —%)2} —q —z"+1)¢&(1 - n%)}

13)

where, « is an interim parameter (¢ = (1 — /1 —
2>") used to reflect the asymmetry. In this equation,
n is the mixing turbulent intensity. While » can vary
depending on the turbulent flow condition, it is found
for the symmetric flow condition as n =5/6 (Guo
et al. 2017). The shear velocity at the river bed can
be calculated using all available data points as:

* _ Zip(my, M) — uc)

uy = (14)
’ g% (m;. A)
The shear stresses can be computed as:
7 = puy)’ (15)
uX =uri (16)
7 = pu*)’ (17)

where p is the density of water.

Secondary flow visualization

The classical Rozovskii method is used to visualize
the secondary flow pattern (Lane e al. 2000). The
Cartesian components of the velocity u, (east), u,
(north) and u, (up) are used to derive the secondary
components. The primary and the secondary flow
components u, and us are computed using the
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projections of the east and north components on the
depth-averaged velocity vector at the vertical:

(18)

u, = (ui + ui)o'5 cos (6 — o)

us = (u + 13)* sin (6 — ) (19)

Here o and 6 are defined as the angle between the
depth-averaged vector U and the time-averaged vec-
tor u to the x (east) direction in the counter-clockwise
direction. The components u; and the u, are used to
visualize the secondary flow pattern.

Theoretical model

To simplify the analysis, we introduced a local coor-
dinate system (x, y, z), which changes from one
cross-section to another. The x, y and z are the
local cross-stream, streamwise and vertical direction,

(a)

Ice cover

(b) .
Ice cover
z=0 Logarithmic Layer Y
\ Zmax
H umax

Logarithmic Layer

Fig. 3. (a) The mathematical model of the cross-stream
momentum transfer utilizing the local coordinate
system. (b) The vertical flow profile and the logarithmic
layers under the ice cover. The ice—water interface is set
at the level z = 0. The main flow direction (streamwise)
aligns towards the y axis. The cross-stream direction x
starts from the outer bank x = 0 towards the inner bank
x = B. The local depth at one location on the
cross-section defines the cross-sectional shape H(x).
The maximum velocity u,,,x appears near the mid-depth
of the vertical under the ice cover. The verticals are
numbered 1, 2, 3, etc. from the outer bank towards the
inner bank across the cross-section. The number of
verticals for each cross-section is shown in Table 1.

respectively. The cross-stream direction (x) is identi-
fied as the water—ice interface identically as shown in
the model configuration in Figure 3. Here the coordi-
nate system is local to each cross-section with x = 0
at the intersection between the water surface and the
outer bank. In the mathematical expressions, we
assume a flat water—ice interface across the cross-
sections. The ice—water interface is also used to
determine the z = 0 plane.

Three components of the velocity field
u(uy, uy, usz) are denoted as u,, u, and us in the x, y
and z direction, respectively. Note that the stream-
wise velocity component is u,, whereas (uq, uz) are
the cross-stream velocity components. Under this
configuration, the distribution of the streamwise
velocity profile u,(x, z) can be described by the bal-
ance of momentum (Devauchelle et al. 2022). The
details of the mathematical analysis can be found
in Appendix A.

With the use of turbulent viscosity v,, the gravita-
tional acceleration g, the energy slope Sy and ignor-
ing the effect of curvature, the momentum equation
reads:

(20)

821,{2 32142
V1<82x + 82Z> +gSf == 0

The no-slip conditions on the ice—water interface
and the river bed can be written as:

z =0 (ice—water interface)
z = —H(x) (river bed)

u; =0 for
(21)
u, =0 for

Note that the flow depth H(x) changes from one
vertical to the other (the cross-section shape) as
shown in Figure 3. We assume that the river cross-
section can be approximated by a polynomial func-
tion that is sufficiently smooth so that the side

oH
slope exists ( 8—' < 00) (Abramian et al. 2020).
X

By definition, the depth-averaged streamwise
velocity (U,) can be computed as:

z=0
I ude = U2H

z=—H

(22

Here we use the definition of the shear stresses on
the ice (7;) and the bed (7,) surfaces:

L =u 8u2|
i =g l=0
: 23)
3142
To :#ta—z l;=—
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After several algebraic transformations as shown
in Appendix A, equation (20) can be written as:

32
thW(UZH) — T

OH\>
—Tb<1 + (a) > + pgStH =0

The impact of the lateral momentum transfer is
accounted for by considering the variation of depth
(oH/ 05) and the lateral transfer of turbulence

24

(pvi == (U2H)) along the cross-section. The ratio

between the shear stresses can be related to the
shear velocity ratio via a factor 4 as follows:

A= % (25)
a_ (”—*)z — 2 (26)
T p(uy)
The bed shear stress can be estimated as:
o L PSSTH +pn(@ /02U

1 + A%(0H / 9x)*

The value of depth-averaged v, can be approxi-
mated as v, = 0.1u;‘ H (Vionnet et al. 2004). Once
the bed shear stress (7,) is available from measure-
ments, it is possible to validate our theoretical
model by comparing the measured value of 7, with
the one obtained from equation (27). Accordingly,

1.6 CS,—4
— U(m
14 — = u(z,T), z1 = -0.44m
== u(zy,T), z2 = -1.64m
SRS u(z3,T), z3 = -2.84m
‘S S
= ] g 10 ﬂ;‘... prespee e e
SR [ =
0.8 1y
0.6
0 50 100 150 200 250

Record Length, T (s)

the shear velocity can be estimated through the rela-

T
tionship of u¥ = |-
Ve

To validate the mathematical results with the
measurement data, we introduce a notation ¢ to rep-
resent the measured distance from one point to the
outer bank in the field measurements. Conceptually,
¢ and x are identical. However, it is challenging to
determine the exact starting point of the cross-
section under the ice cover. Thus, a reference point
on the outer bank is selected for # = 0. This selec-
tion does not affect all calculations since only the
value of derivatives is needed in our model.

Results
Flow patterns induced by ice coverage

The statistical properties of the velocity time series u
(z, t) are examined to determine the accuracy of the
time-averaged u.,(z) and the depth-averaged U,
velocities. As illustrated in Figure 4, the values of
the time-averaged velocity (u(z, T)) and depth-
averaged velocity (U(T)) converge to the long-term
values (u., and U,) as the measurement duration T
is increased. For example, the value of U(T') varies
largely in the first 35 s of CS3-3. However, U(T)
remains within 5% of U, as T < 35 s. The conver-
gence of u(z, T') to u,, at different depths exhibits a
similar fashion for both CS,-4 and CS;-3. However,
the impact of the ice surface and the river bed bound-
aries is evident. Measurement results show that the
velocities at different depths in both stations includ-
ing the one close to the surface (dashed blue line) and
bed (dashed yellow line) are within 10% of the long-
term values (u.(z)) after the 40th second. Of note,

16 CS3-3
— U(m
1.4 —— u(z1,T), z7 = -0.38m
—— u(zz,T), z = -1.64m
1.2 '-\ u(z3,T), z3 = -3.14m
[,
v
IOW -".\\..— Dt 5 Pr BT o
P AT
i
0.8
0.6
0 50 100 150 200 250

Record Length, T (s)

Fig. 4. The convergence properties (equation 2) of the time-averaged (u(z, 7)) and depth-averaged (U(T')) velocities
of CS,-4 and CS;-3 at different depths (z) as a function of the measurement duration 7. The instantaneous velocity
magnitude u(z, t) is computed from the east, north and up components of the measured ADCP data

u(z, t) = \/ u%(z, 1+ uzN(z, 1+ uﬁp(z, t). In both cases (the fourth station of CS, and the third station of CS53), the

measured verticals are located in the thalweg. The value of u(z, T') converges quickly within 7' = 100 s.
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the velocity in the vicinity of the ice surface (z;=
—0.44 m) at CS,-4 fluctuates considerably until the
180th second. This type of fluctuation poses a chal-
lenge in obtaining accurate data near the ice cover.

As the value of U, is available for the ice holes, it
is possible to reconstruct the flow pattern in the hor-
izontal plane. The depth-averaged velocity vectors
(Uso(ug, un)) measured on 8 February 2022 are rep-
resented in Figures 5 and 6a. Here, the impact of the
channel curvature can be seen clearly at cross-
section CS;, which is located next to the pedestrian
bridge (see Fig. 2). The U vectors direct towards
the inner (west) bank indicating a sharp turn in the
large-scale flow pattern (see Figs 5 & 6a). On the
other hand, the flow vectors in CS, show a spreading
pattern, which is caused by the complex helical pat-
tern at the bend apex. The flow adapts to the channel
curvature well at CS; and CS,. In comparison to the
open-surface condition as seen in Figure 6b, the flow
patterns at the corresponding cross-sections do not
change significantly. While it is clear that the flow
velocity is higher under the open-surface condition,
the direction of the velocity vectors indicates a con-
sistent flow planform. In brief, the presence of the ice
cover did not alter significantly the flow planform in
the bend.

The presence of the ice cover, however, altered
the vertical flow profile completely. Figure 7
shows the measured vertical velocity profiles close
to the outer bank (¢ < 10 m) under open-surface
and ice-covered conditions. As shown in Figure 7a,
the presence of a logarithmic layer can be found up
to 1 m from the river bed under the open-surface con-
dition (OS,). As displayed at vertical CS,-2

0.14 s
cs,
0.12 CS3
0.10 €5
% 0.08
£
S 0.06
0.04
0.02
0.00

0 5 10 15 20 25 30 35 40 45
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Fig. 5. The depth-averaged velocity profile U(x) in the
river reach for the February 2022 measurement. The
symbols represent the actual measurements at CS;, CS,,
CS; and CS,. The line denotes the assembled profile
from the measured data as a guide for the eye. The
assembled profile shows a slight asymmetry towards the
outer bank. The distance to the outer bank ¢ is used as
the cross-stream direction x (see also the diagram in
Fig. 3).

(Fig. 7b), the ice cover changes the velocity profile
into a nearly symmetrical shape owing to its addi-
tional resistance at the top. Moreover, the flow veloc-
ity under the ice cover is remarkably slower in
comparison to the case under the open-surface condi-
tion (OS,; Fig. 7a). In contrast to the open-surface
condition, the logarithmic layer is not guaranteed
to be found under the ice-covered condition. Accord-
ing to our logarithmic fitting methodology, the pres-
ence of the logarithmic layer is confirmed near the
river bed for CS,-2 as shown in Figure 7b
(RE.q = 0.96 > 0.70). However, the logarithmic
layer is not confirmed for the ice layer
(R, = 0.68 < 0.70). The two-layer hypothesis is
not considered valid for this case.

To evaluate the changes of the vertical velocity
profiles along the river reach, the vertical profiles
along the thalweg are plotted as seen in Figure 8.
The presence of the ice cover shifts the position of
the maximum time-averaged velocity (u,,x) towards
the river bed. As shown in Figure 8, the location of
Umax 18 not close to the ice layer. In most cases,
Umax 1S located at nearly one-half of the entire
depth. The flow profiles vary from CS; to CS4
along the thalweg. The value Of iy ~0.15m s ™"
and ¢. 0.12ms ' at CS;-3/CS,-4 and CS;-2/
CS;-1, respectively. The position of u,x at CS;-3
is around the mid-depth (z = —1.5 m); however, it
is closer to the ice cover at the other three stations.
Therefore, the channel curvature does have an effect
in altering the position of the maximum core velocity
in the vertical direction.

Logarithmic velocity profile

Logarithmic fitting is employed to determine the
shear velocities as summarized in Table 2. The log-
arithmic layer is found only in certain verticals. In
general, the logarithmic layer is evident if the flow
depth is greater than 2 m. Two vertical profiles
(CS,-6 and CS5-1) are presented in Figure 9a and b
to demonstrate the extension of the logarithmic law
in the ice layer. In the bed layer, the fitting is success-
ful for 14 out of 22 verticals. It is important to note
that the logarithmic layer can extend far (c. 1 m)
from the ice and bed surface as shown in Figure 7.
The details of the fitting are as follows.

The extension of the logarithmic layer in the bed
layer is illustrated in Figure 9¢ (CS;-3) and Figure 9d
(CS;-4). Here, (H — Iz))" is the dimensionless length
representing the vertical distance from the channel
bed. The separation from the logarithmic layer starts at
(H — Iz)" = 7000 for the case CS,;-3, and (H — Izl)*
~ 6500 for the case CS;-4. Thus, the extension of
the logarithmic layer varies from one vertical
to another.

The cross-stream distribution of ub* in CS, CS,,
CS; and CS,4 shows an increase in u;‘ near the banks
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Fig. 6. Depth-averaged velocity (U) direction (a) under ice-covered conditions (8 February 2022), and (b) under

open-surface conditions (10 October 2020). The value of U is computed using equation (2) from the measured time

series. There exists a significant impact of the local bathymetry on the depth-averaged velocity distribution in addition

to the channel curvature effect.

as seen in Table 2 (see also Fig. 12). The maximum
u¥ value around the channel centre is found to be
0.0129m s™' (CS,-3). A higher value of u} ~
0.0163 m s~ is found near the outer bank (CS4-1).
The value of ¥ is ¢. 0.0112 m s~ near the inner
bank (CS,-5). In brief, the bed shear stress is found
to be higher near both banks in comparison to the
channel centre.

(a) 0.0 > 0s; (b) 0.0 =~ !
== log. layer i
-0.5 -0.5
-1.0 -1.0
— > C5;-2
1S —— Quartic solution
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» »
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Fig. 7. The measured vertical velocity profiles near the
outer bank at (a) station OS, (Z = 9.85 m) on 2
October 2020 (open-surface conditions), and (b) station
CS,-2 (¢ = 8.75 m) on 8 February 2022 (ice-covered
conditions). Two separate values of R? were obtained
during the fitting for the logarithmic layers: (i) near the
ice (green dashed line) R? = 0.68; and (ii) near the bed
(blue dashed line) R? = 0.96. The quartic solution
(solid red line) is shown (R = 0.85) to demonstrate its
difference from the logarithmic profiles.
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Fig. 8. The performance of the quartic solution in
replicating the measured profiles along the vertical

direction z. The measured vertical profiles (points) in
ice holes of cross-sections CS;-3, CS,-4, CS;3-2 and

CS;-1 (see Fig. 6). The profiles are selected along the
thalweg CS;-3, CS,-4, CS;3-2 and CS;-1. The quartic

0.15

profile (thick red line) is found by fitting equation (13)

with the measured data. The parameters for the fitting

of each ice hole are shown in Table 3.
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Table 2. Derivation of the shear velocity u* and uX using the logarithmic fitting for the cases CS;, CS,, CS3

and CS, (see Table 1)

Case H (m) £ (m) R* (bed) uf(ms™") R* (ice) u¥(ms™"
CSy-1 1.10 4.66 ~ - - -
CS;2 2.35 6.83 0.7523 0.0075 - -
CS;-3 3.21 11.58 0.9575 0.0066 - =
CS;-4 3.55 18.90 0.9660 0.0062 - -
CS;-5 3.23 25.30 0.8778 0.0060 0.7938 0.0021
CS;-6 1.05 33.83 - - - -
CS,-1 0.80 3.05 - - - -
CS,-2 2.70 8.75 0.9683 0.0121 - -
CS,-3 3.80 14.23 0.9202 0.0129 - -
CS,-4 3.93 19.72 0.9000 0.0060 0.7831 0.0028
CS,-5 3.38 25.36 0.9526 0.0112 - -
CS,-6 2.40 30.91 - - 0.9713 0.0112
CS5-1 2.40 6.70 0.9420 0.0135 0.8865 0.0031
CS;-2 4.50 12.50 0.7443 0.0035 - -
CS;-3 4.41 17.98 - - - -
CS;-4 3.95 23.59 - - - -
CS5-5 3.23 27.71 0.9310 0.0107 - -
CS,-1 221 5.18 0.8841 0.0163 0.9622 0.0034
CS,2 3.64 11.16 0.8477 0.0060 - -
CS,-3 4.24 15.21 - - - -
CS,4 3.90 20.76 0.7495 0.0063 - -
CS,-5 3.34 25.88 - - - -

The notation — denotes an unsuccessful fitting in that vertical. H and ¢ are the flow depth and the distance to the outer bank, respectively. The

value of R* denotes the degree of fit.

Quartic profiles

The application of the quartic profile on ice-covered
datasets suggests that it is applicable for most of the
observed vertical profiles. Figure 8 illustrates the
velocity distribution function (equation 13) of
CS;-3, CS,-4, CS5-2 and CSy4-1. The quartic solution
is highly robust when the flow depth is sufficiently
large (H < 2m) as shown in Table 3. The R?
value is mostly higher than 0.9 as shown in
Table 3. Here, the position of u,,,, does not usually
correspond to the symmetry plane (7,.x 7 1). Our
results confirm that the value of A is generally less
than 1 as shown in Table 3 in most verticals. These
results imply that the location of u,,x in most of
the stations is closer to the ice surface (see equation
10). Exceptions are found in the verticals CS;-2 and
CS;-5 (near the banks) in which u,,,y is closer to the
channel bed. In brief, the quartic method is robust in
replicating the vertical profiles under ice cover.

The ability of the quartic profile to determine val-
ues of u¥ using the velocity distribution function
(¢(n, A)) in equation (14) is shown in Table 3. Com-
paring Tables 2 and 3, it is evident that the quartic
velocity distribution provides significantly lower
values for u¥. For example, the logarithmic method
predicted ul’; =0.0060 m s~ ! (Table 2) at CS;-5. On
the contrary, the quartic method gave wuX =
0.0037m s~ ! (Table 3) at the same vertical. In

conclusion, the quartic method provides a lower
value for u¥.

Secondary flow patterns

The secondary flow pattern along the river reach is
illustrated in Figure 10 using the classical rotation-
based Rozovskii method. The overall pattern is con-
voluted, indicating the significant impact of the local
bathymetry. At the first cross-section CS; there
exists a strong return flow from the outer bank
towards the thalweg at vertical 1. This return flow
persists until the second cross-section CS,. Addition-
ally, two circulations are found near the verticals 3
and 5, which are closer to the banks. These single cir-
culations are also present in other cross-sections CS,,
CS; and CS,. Strikingly, double helical cells are
observed in the second and third cross-sections
(CS, and CSs3). At the verticals CS,-4 and CS5-4,
counter-clockwise circulations are found both near
the ice cover and the channel bed.

Modelling lateral momentum transfer

Equation (27) provides a reasonable estimation of
lateral momentum transfer but it requires the evalua-
tion of cross-stream derivatives. As shown in
Table 1, the flow depth and velocities are obtained
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Fig. 9. The logarithmic fitting for the flow profiles near the (a, b) ice and (¢, d) river bed surfaces. The absolute
value of z (Izl) denotes the distance to the ice-water interface as shown in Figure 3. H is the total depth at the vertical.
The cross-sections CSy, CS,, CS; and CS,4 are shown in Figure 2. The solid line denotes the logarithmic law of
equation (3). The detailed parameters for the fitting in each ice hole are shown in Table 2.

only in several verticals. Therefore, there are insuffi-
cient data to generate estimations of these deriva-
tives. Thus, a polynomial least-square method
using a quadratic function (f(x) = co + c1x + cx?)

is used to develop the fitting curve for the available
datasets of H(x) and U,H(x). As an example, the
cross-section profile of CS, is represented in
Figure 1la. Our fitting results show excellent

Table 3. Derivation of the shear velocity on the bed layer ( u,f ) and on the ice layer ( ul* ) using the quartic

solution for CS;, CS,, CS; and CS,

Case H (m) Umax R? uX(ms™" u¥(ms™") A Thmax

CS;-2 2.35 0.1242 0.7663 0.0031 0.0047 1.5226 0.6027
CS,-3 3.21 0.1514 0.9678 0.0049 0.0050 1.0232 0.9771
CS4 3.55 0.1488 0.9409 0.0031 0.0023 0.7434 1.2881
CS,-5 3.23 0.1266 0.9563 0.0037 0.0031 0.8479 1.1635
CS,-2 2.70 0.0960 0.8470 0.0075 0.0067 0.9035 1.1011
CS,-3 3.80 0.1402 0.9061 0.0067 0.0049 0.7391 1.2935
CS,4 3.93 0.1528 0.9441 0.0051 0.0036 0.6991 1.3434
CSs-1 2.40 0.0991 0.9150 0.0044 0.0024 0.5482 1.5379
CS;3-2 4.50 0.1265 0.9068 0.0031 0.0019 0.6256 1.4374
CS4-1 2.21 0.1211 0.9477 0.0087 0.0058 0.6714 1.3786
CS,4-4 3.90 0.1098 0.9372 0.0017 0.0008 0.4586 1.6525
CS4-5 3.34 0.0956 0.9099 0.0008 0.0016 1.9778 0.4072

The position of 7.« and the value of u,,,, are determined by optimizing the R? of the velocity distribution function. The details of the math-

ematical notations are explained in equations (10-14).
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Fig. 10. The secondary flow pattern is visualized by the classical Rozovskii method (Lane ez al. 2000). The
secondary flow velocity pattern changes from one cross-section to another as the helical cells emerge. The
double-stacked cells are found at the cross-sections CS, and CS5. Flow direction follows the north direction (from

bottom to top).

agreements between the measured data and the
quadratic curves with R? > 0.75. The shape of the
cross-section can be described reasonably well by
the fitted curve. However, the precise location of
the thalweg is slightly shifted towards the inner
bank. The unit flow rate (U,H(x)) is also well cap-
tured by the fitting process as depicted in
Figure 11b. The values of (0H(x)/dx) and (0*(U,H

- |east-square fitting
= 4th order Polynomial fitting
® observations

0O 5 10 15 20 25 30 35 40 45
£ (m)

)/ dx?) are derived from the coefficients co, ¢
and ¢, of the fitted curve.

Manning’s formula is used to estimate the energy
slope (Sy) from the mean velocity V = Q/A with the
flow discharge Q and the cross-sectional area A as:

W
(b)
0.5 .
0.4
T 0.3
)
0.2 o e
0.1
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Fig. 11. Procedures to compute the cross-stream derivatives. The least-square fitting is performed for: (a) the water
depth (H(x), the cross-sectional shape); and (b) the unit flow rate g(x) = U(x)H(x). The depth and the unit flow rate of
the cross-section CS, are shown as an illustration of the procedure. The quadratic polynomial f(x) = ¢ + c1x + cox°
is used as the trend line. The fitting procedure is carried out using the least-square fitting to determine ¢, ¢; and ¢;.
The derivatives (0H/dx) and (0*(UH) / ox?) are evaluated by differentiating the function f(x). Note that the measured
distance to the outer bank £ is used as the cross-stream direction x.
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Here the hydraulic radius (R},) and the roughness
coefficient n are computed as follows.

A one-dimensional HEC-RAS model is devel-
oped for the river reach to determine R}, and n using
the DTM in Figure 2. The rating curve (Q, H) at the
USGS Fargo (09020104) station is used to calibrate
the value of Manning’s n under the open-surface con-
dition. The roughness coefficient is estimated for
the bankfull condition as n ~ 0.0166. Accordingly,
the average energy slope for the entire river reach is
estimated as Sy = 6.9 x 107°. The depth- averaged
eddy viscosity v, is estlmated as vp=10"%m? s~
(Vionnet et al. 2004).

The validity of the theoretical model is tested in
the cross-sections CS;, CS,, CS; and CS, as
shown in Figure 12. The theoretical value of u¥ is
calculated using equation (27) and the guided value
of 4 in the range from 0.45 to 2.0, which is observed
in Table 3. At the channel centre from CS; to CSy,
the theoretical model predicts well the variation of
uX given the bounds of 1. The model captures well
the upper and lower bounds of ub and their trends
as evident in Figure 12. In particular, the proposed
theory is able to capture the elevated values of ub
(0.0150 m s~ ') and the lowest values (~ 0.005 m
s~!). The impact of the channel curvature can be
seen as the magnitude of the measured shear velocity
is significantly larger near the outer bank. The theo-
retical model fails to capture this feature. The model
significantly underpredicts u¥ near the outer bank
(CS;3-1 and CS4-1).
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n
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Fig. 12. The comparison between the cross-stream
momentum model (equation 27) and the measured
cross-stream shear velocity profile in the river reach.
The bed shear velocity (1) is computed from the
logarithmic fitting for the cross-sections CS;, CS,, CS;
and CSy (see Table 2). The predicted values are

generated using two different values of A (equation 27
and u;‘ = T—b) for each cross-section: (i) A, = 0.45
P

(solid lines); and (ii) Anax = 2.0 (dashed lines). The
range of 4 is selected from the quartic solution fitting of
the measurements (Table 3). The value of u,f (green

dash—dotted line) is calculated with u}’,‘ = V\/g (see

equation 29).

Discussion

Cross-stream momentum transfer plays an important
role in regulating the river width via the modulation
of sediment flux (Abramian er al. 2020). The sedi-
ment transport is balanced out in the bank region
under the equilibrium condition where the gravity
force and the bed shear stress equate to each other
(Phillips and Jerolmack 2016; Popovic et al. 2021).
In ice-covered rivers, the roughness of the ice layer
adds further complexities by introducing the shear
stress in the ice layer (z;) and altering the one in the
bed layer (5,) (Guo et al. 2017). Most previous
works have not considered the impact of ice cover
on the cross-stream momentum transfer. Our work
develops a framework to investigate the cross-stream
distribution of 7; and 7,, which is important in regu-
lating the morphology of rivers in cold regions (Gau-
tier et al. 2021).

Impacts of ice cover on the vertical profiles

The two-layer hypothesis (see also Fig. 3) assumes
the presence of two logarithmic profiles near the
bed and ice layers concurrently (Sukhodolov et al.
1999). This has been the main approach to describ-
ing vertical velocity distribution in many previous
studies (Urroz and Ettema 1994; Attar and Li
2012, 2013). Since the applicability of the logarith-
mic method is based on the availability of the data
near the surface, the problem of signal interference
is critically important. As our previous work indi-
cated, obtaining flow data under the ice-covered con-
dition is challenging owing to signal interference
near both boundaries (see also Fig. 4) (Koyuncu
and Le 2022). This challenge dictates the logarithmic
fitting for both the ice and the bed layers at the same
vertical. As illustrated in Table 2, there are only a few
verticals where both logarithmic layers are recog-
nized (CS;-5, CS;-4, CS,-6, CS3-1 and CSy4-1).
The reason for this challenge can be further investi-
gated in the wall units (z*, u™). As shown in
Figure 9a and b, the first available point is located
for logarithmic fitting around IzI"™ = 1100 in the
wall units. The last available point is typically less
than IzI* = 5000, which is approximately less than
20% of the total depth (H). The logarithmic fitting
requires a sufficient number of data points to fall
into this range of 1100 < IzI™ < 5000 (Petrie and
Diplas 2016). In practice, this requirement prohibits
an acceptable fitting in many verticals as demon-
strated in Table 2. Therefore, the logarithmic fitting
is not a robust method to determine u* and uX.

In addition to the data requirement, the main lim-
itation of the two-layer hypothesis is that it intro-
duces a discontinuous velocity gradient at the
location of u,,x. As shown in Figure 7, the two-layer
hypothesis cannot capture the entire profile because



Downloaded from https://www.lyellcollection.org by lowa State University, Ames on Jun 13, 2024

B. Koyuncu and T. B. Le

the two logarithmic profiles do not intersect at the
maximum velocity location. The quartic profile is
introduced to alleviate this shortcoming via the use
of all velocity data in the mixing core (mid-depth)
as depicted in Figure 7b (Guo et al. 2017). The quar-
tic profile provides an excellent model for the ice-
covered flows as shown in Figure 8 at all ice holes.
Despite the missing data near the river bed layer (x
0.5 m), the quartic profile can follow the measured
data closely with R*>0.90 in most cases (see
Table 3). This is remarkable given that the quartic
profile needs a minimal number of fitting parameters
such as 4 and o

The impact of banks on the vertical profile is evi-
dent as shown in Figure 8. Field measurement has
demonstrated the impact of banks on altering the ver-
tical profiles under the open-surface condition
(Chauvet et al. 2014). A similar phenomenon is
observed in this study since the profiles are altered
as they are closer to the banks. Near the thalweg
(CS;-3, CS,-4), the profiles are nearly symmetrical.
Near the banks, the location of u,,, is closer to the
ice layer. As shown in the Table 3, the value of
A = (uX /uX) varies significantly from one vertical
to another. As shown in Table 3, the value of A is typ-
ically less than 1.0 in the thalweg region but it can
reach 2.0 in the bank region. Hence, the bank has a
critical role in regulating the vertical profile and the
shear stresses.

Three-dimensional structures of flow in
ice-covered bends

To date, our understanding of ice-covered flows in
rivers has been rather limited (Lotsari et al. 2017).
Most of the previous work has been carried out in
laboratory conditions (Urroz and Ettema 1994;
Ettema 2002; Wang et al. 2020). There are a limited
number of field measurements for small ice-covered
rivers (Sukhodolov et al. 1999; Demers et al. 2011;
Lotsari et al. 2017). The most prominent feature of
ice-covered flows in bends is found in laboratory
conditions in which the vertical profiles possess
two points of inflexion (Urroz and Ettema 1994;
Tsai and Ettema 1996). Field measurement by
Urroz and Ettema (1994) confirms that this feature
indeed exists in a natural bend meander as ‘double-
stacked vortices’ (Demers et al. 2011). The labora-
tory experiment by Urroz and Ettema (1994) sug-
gests that the flow structures consist of two
counter-rotating circulations as opposed to a single
one in the open-surface condition. The field mea-
surement of Demers er al. (2011) further clarifies
that the spatial extent of these double-stacked vorti-
ces is limited in the bend apex. Field data by Lotsari
et al. (2017) confirm that the presence of the double-
stacked vortices is sensitive to the water depth since

these vortices disappear under low flow conditions.
Similar field measurements have not been carried
out for medium-sized and large rivers to investigate
the structure of these vortices.

From the measurements of secondary flows in
Figure 10, it is possible to reconstruct the three-
dimensional structure of the ice-covered flow in the
studied bend as shown in Figure 13. In general, the
flow consists of longitudinal circulations that rotate
in the opposite direction to each other. Two helical
circulations are found near the banks in addition to
a counter-clockwise rotation in the thalweg. Near
the bend apex, the double-stacked vortices appear
intermittently between CS, and CS;. The double-
stacked vortices seem to merge at CS, as the flow
exits the bend. In brief, the three-dimensional flow
structures are organized as separate helical flows
and they interact with each other along the bend.

In general, our three-dimensional flow model
agrees well with the field observations of Demers
et al. (2011) and Lotsari et al. (2017). As shown in
Figures 6, 7 and 9, the ice cover directs the high-
velocity core towards the outer bend and the mid-
depth at the same time, as reported in Demers et al.
(2011). In addition, the intermittent presence of the
double-stacked vortices near the bend apex is almost
identical to the one in the observations of Demers
et al. (2011) and Lotsari et al. (2017). Interestingly,
our results also confirm the transition of the double-
stacked vortices towards a single vortex structure at
the bend downstream end (Demers ez al. 2011).

Our field data further indicate that the three-
dimensional flow structures are more complicated
than those predicted by the model of Lotsari et al.
(2017). In addition to the main circulation in the
thalweg, there exist two additional circulations near

Outer
Bank

Fig. 13. The hypothesized three-dimensional structure
of the flow in the ice-covered bend. Two clockwise
rotations are located near the outer and inner banks,
respectively. The double-stacked vortices appear near
the bend apex.
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the banks. Note that the presence of multiple circula-
tions in one cross-section has been reported in previ-
ous field measurements (Chauvet et al. 2014). Here
the thalweg circulation is the classical secondary
flow, which is driven by the channel curvature. How-
ever, the other circulations are driven by turbulence
anisotropy (Kang and Sotiropoulos 2011). Owing
to the three-dimensional structure of the flow, it is
challenging to capture the dynamics of these vortices
at all cross-sections as shown in Figure 10 as it
requires the period of measurement (7') to be suffi-
ciently large. In previous works, the presence of
bank vortices has not been reported (Demers et al.
2011; Lotsari et al. 2017). The absence of bank vor-
tices in these studies might also be due to the differ-
ence in the stream depth. The measurements of
Lotsari ef al. (2017) and Demers et al. (2011) were
carried out for shallow bends (c¢. 1.5-2 m), whereas
the maximum depth of the current bend is c¢. 4 m,
which is significantly deeper. Thus, both the flow
depth and the bend curvature could play important
roles in regulating the emergence of helical motions
in ice-covered bends (Lotsari er al. 2017). We
hypothesize that the double-stacked vortices only
appear in regions where the flow depth reaches a
critical threshold.

The cross-stream momentum equation

The traditional approach in river hydraulics consid-
ers only the ice-free condition and ignores the bank
effects (e.g. u) ~ /gHS) (Phillips and Jerolmack
2016). In order to provide a similar method to esti-
mate the numerical value of uY under ice cover,
we propose the use of the Haaland’s equation (fric-

tion method) for a closed duct as:

2.95dg,\ M
1 AR 6.9
=181 > 29
I ¢l 37 TRe| @

where Re, R, and f are the Reynolds number
(Re = (V(4Ry)/w)), the hydraulic radius and the fric-
tion coefficient, respectively. Here dg4 = 0.00288 m
is the sediment particle size of the Red River in Fargo
(Galloway and Nustad 2012). Following the compu-
tation of f, the shear velocity near the channel bed is

f

calculated (u¥ =V g) and represented in Figure 12

(Finnemore and Franzini 2002). Using this formula,
the estimated ¥ value is computed as 0.0039 m s~
As seen in Figure 12, this value is in the range of our
field observation (lower bound), which generally
agrees with the estimated values from the quartic sol-

ution (see Table 3). However, this is a single value

for the entire cross-section and thus the cross-stream
distribution of the bed shear stress cannot be
generated.

In contrast to the above-mentioned approach,
equation (27) shows that the presence of the ice
cover complicates the bed shear stress distribution
by introducing the effect of bank slope, the local
flow turbulence and the distortion of the vertical pro-
file (1). Thus, equation (27) can be used to estimate
the bed shear stress under the ice-covered condition
in any location in the cross-section.

The significant contribution of equation (27) is
that it also establishes the linkage between 7; and
7. It is an alternative method to compute 7; as long
as the value of 7, is available via either the logarith-
mic or quartic method. In addition, the roles of the
cross-section shape H(x) and the unit flow rate profile
U,H(x) are evident in the bed shear stress distribu-
tion (see Fig. 11). The presence of the bank slope dic-
tates the bed shear stress via the term (0H/0x). The
cross-sectional flow profile (U,(x)) plays a role in
distributing the momentum via turbulent stress.
Therefore, these terms become significant in regulat-
ing the bed shear stress near banks where their gradi-
ents are large. These effects can be observed as the
value of u;‘ is elevated near the banks, as evident
in Table 3.

To test the sensitivity of the u* calculation to the
choice of the representation of H(x), a fourth degree
polynomial is also used to fit the geometrical form of
H(x) (see Fig. 11a). Our results show that the fourth
degree polynomial does not provide significant
improvements in terms of capturing the location of
the thalweg. Therefore, our results indicate that a
second order polynomial is sufficient to capture the
geometrical shape of the cross-sections in the
current study.

Note that the cross-stream momentum (equation
39) is a simple model that relates the shear stresses
on the bed and the ice cover layers. Therefore, our
model for lateral momentum transfer has several lim-
itations. First, we assume that the channel curvature
has no effect since the variation of the streamwise
component of the velocity has been ignored, (du/
dy) = 0. Natural rivers often follow a meandering
path that changes the entire flow structure by shifting
the position of the main flow and thalweg towards
the outer bank. This pattern generates a high-shear-
stress region near the outer bank (Koyuncu and Le
2022). Indeed, the skewed distribution of
depth-averaged velocity U(x) is observed in the
cross-sections CS;, CS,, CS; and CS,; (Fig. 6).
This skewed distribution affects the ability of the
model to capture the bed shear stress near the outer
bank in cross-sections CS; and CS, (see Fig. 12).
Here, the model fails to capture the large bed shear
stress near the outer bank at stations CSs;-1 and
CS;-1 owing to the sharp curvature of the channel.
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Furthermore, our model assumes that the ice layer is
completely flat across the cross-section (0ze./dx = 0
at z = 0). However, there could be a cross-stream
slope between the surface elevation of the inner
and outer banks (super-elevation effect in a meander
bend). Thus, our equation (27) must be modified to
account for such an effect. In addition, the number
of ice holes in a cross-section must be increased to
increase the accuracy of the fitting procedure for H
(x) and UH(x) as seen in Figure 11. Nevertheless,
the proposed model can provide a reasonable estima-
tion in the range of u¥ in the ice-covered reach using
available inputs such as the energy slope S; and the
range of A. Future efforts will be made to refine the
assumptions to improve the estimation for 7.

Conclusions

We studied the three-dimensional structure of flows
in an ice-covered bend. Field measurements were
carried out to obtain flow velocity data in a river
reach of the Red River, North Dakota, USA. Our
study revealed the importance of ice coverage on
the bed shear stress by regulating the velocity profile.
Based on field data, we developed a mathematical
model for the cross-stream momentum transfer in
ice-covered rivers in general. Our model also empha-
sizes the importance of flow dynamics near banks as
the flow profiles are altered significantly in shallow
areas under ice coverage. As a result, the cross-
sectional distribution of the bed shear stress is highly
dependent on the distance to the banks. Our theoret-
ical model and field data show a significant increase
in bed shear stress near both banks.
Our main conclusions are:

* Itis challenging to apply the two-layer hypothesis
to the study area. In most cases, the logarithmic
layers are not observed at the same vertical
using our fitting methodology.

* The quartic profile provides a robust method to
estimate the bed shear stress under the ice-covered
condition. However, the quartic profile underesti-
mates the bed shear stress.

* We propose a simple formula to compute the
cross-stream distribution of bed shear stress
under ice-covered conditions. Using this formula
and our field measurement data, we show that
the bed shear stress is significantly affected by
the ice cover, especially in the bank regions.

* OQur field data show that the secondary flow pat-
tern under the ice-covered condition might be
more complicated than previously thought, with
double-stacked vortices observed at the bend
apex. Their locations agree with previous works
(Demers et al. 2011; Lotsari et al. 2017). How-
ever, additional helical cells also exist as separate
longitudinal structures along the river reach.
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Appendix A

Our theoretical model is based on the lubrication approxi-
mation (Devauchelle er al. 2022). The following assump-
tions were made:

* The flow is steady. Unsteady effects are not accounted
for.

¢ No curvature effect of the channel planform is consid-
ered (e.g. straight channel only).

* The top surface is completely covered by ice. No open-
surface zones are observed on the top surface.

* The effects of bedform and ice scallops are not consid-
ered in the current model. The ice surface is considered
to be flat (z;ce = const) and it has a grain-size roughness
height of &, (rough wall).

* The turbulent viscosity v; is constant in the vertical
direction.

¢ In the case of ice-covered flow, the situation is similar
to flow in a pipe or a closed duct. Note that there are
three different pressure gradients along three directions:
0p/ox (cross-stream direction), dp/dy (stream direction)
and dp/dz (vertical direction). We ignore the cross-
stream pressure gradient dp/dx = 0 as the river width
(B ~ 40 m) is much smaller than the river reach (L ~
1 km). The pressure gradient along the y direction
dp/dy drives the flow and it is implicitly included in
the flow momentum balance (equation A10). We
assume that the pressure gradient along the vertical
direction dp/oz follows a hydrostatic pressure law
since it is a valid assumption for gravity-driven flows
in closed ducts and pipes (Finnemore and Franzini
2002).

The details of the transformation for the momentum are as
follows:

First, the momentum equation is written as:
#m+$

vl =22
\2x T 8

The no-slip conditions on the ice—water interface and the
river bed can be written as:

)+gSf—0 (A1)

up =0 for z=0 (ice—water interface)

. (A2)
z= —H(x) (river bed)

u, =0 for

Ignoring the channel curvature and revoking the fully
developed flow condition (all the derivatives with respect
to y are zero), the turbulent stresses read:

Y - N Wy L
T A e Ty ) T e

Ty =0

3142 8143 Buz
e Ty ) T e

(A3)

Here u, = pv, with p being water density. Now the
momentum equation can be integrated along the depth in
each vertical (z = — H — z = 0) assuming that v, is invari-
ant across the depth:

z=0 3 M2 z=0
Vi j 2, detm j j gSrdz =0 (Ad)

= =—H

Z

Note that we can calculate the first integral using the
Leibniz’s rule:

LN R BTN
ax j ax X T Tax =0 g0
=—H
8 | oH
T =\ —n
=0 42
0 uz
+ 'i o dz
Here we assume that the ice—water interface is flat
azlce
3 |.=o = 0; this results in the relation:
x
=0 u =0 duy ua OH
g2, 2 Zdr| -y —
j 3 j ox < ox o=t ox
7=—H z=—H

By the chain rule:

81,42 oH

o7 = H ox

oty I 8u2 0z |
ax =H T g oy = H

Therefore, the momentum equation (equation A4) now
becomes:

Wl 2T Py, Jtwe, (oY
‘| ox J ax ) T e = ax

=

0 _
T 2 gSiH = 0 (AS)

By definition, the depth-averaged streamwise velocity
(U,) can be computed as:

0 = 0
— dz | = —(UH
3 —J_ uydz Bx( L H)
Z oH
= 2] Pw l.=o + u2|z:7H§
8u2
dz A6
+J_H ™ (A6)
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Note that we invoke the flat surface condition again,
3Zice . ..

l.—o = 0, and the no-slip condition ul,_ _5 =0, and
we finally have:

(A7)

Now substitute equation (A7) into equation (AS5):

3 (JUH)\ duy oH\>
— 2 al=) )=7- S;H=0
V‘(ax< o ) ox = H<8x>) T Tt gor

(A3)

Here we use the definition of the shear stresses on the ice
(;) and the bed (z,) surfaces:

8142
Ty = —Hy 8_2 |z:0

(A9)
auz
o = - —

or we can write:

P OH\?
pvt—z(UzH) —n—1|1+|— + pgStH =0
ox ox

(A10)
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